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Abstract

We propose an instantaneous variance process and a return process to jointly price SPX and
VIX derivatives. The instantaneous variance process is described by a two-factor model.
In the interest of analytical tractability, these processes are structured by affine processes.
The main distinct feature of the model is that the factor coefficients are time-varying and
they are designed to be bonded with the term structure of variance swaps. The model
incorporates additional characteristics that the jump of the return process and the jump of
the instantaneous variance processes are more recognizable in the short term than in the
long term, the term structure of variance swaps is versatilely rich to be able to accommodate
many desired features, and the correlation between shocks to returns and shocks to variances
is stochastic.

Introduction

The concept of variance swap appears first in Neuberger (1990), Neuberger (1994), and
Carr and Madan (1998). Since then, many derivative instruments written on volatility are
actively traded in financial market. Among them, VIX futures were launched in March
2004, VIX options were introduced February 2006. These volatility products allow investors
to take views on implied/realized/forward volatilities, and hedge volatility risks of equity
market positions. The unprecedented trading, investing and hedging in volatilities have led
to a parallel systematic development of dynamic volatility modelings. The aim of this paper
is to bring together a volatility model and a return process in which they match stylized
facts of financial markets and they are consistently reconciled to each other.

As far as parametric models are concerned, there are two main approaches in getting
variance/volatility swaps. Buehler (2006), Bergomi (2004), Bergomi (2005), Bergomi (2008),
Cont and Kokholm (2011) set up first the forward variance, which is described by an expo-
nential martingale, to explore variance swaps, instantaneous variance and vanilla options.
However, these models are short of analytical tractability. To value the underlying options,
Monte Carlo simulations are needed in Bergomi (2004), Bergomi (2005), Bergomi (2008),
Cont and Kokholm (2011). For the second vein, the straightforward approach is to spec-
ify the return dynamics. The quadratic variation of the log return process yields variance
swaps. Under the Black-Scholes framework, the underlying asset is modeled by a geometric
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Brownian motion with a constant volatility. The implied smile function and the variance
swap are both trivially constant, which are empirically biased. To highlight features of smiles
and smirks, the Black-Scholes model is soon surrendered by stochastic volatility processes
or/and jump-diffusion models, such as the CGMY dynamics (Carr et al. (2005)), Heston,
Merton and Bates dynamics (Broadie and Jain (2008)), the Sato Process (Madan and Yor
(2010)). However, a single-factor variance process is still criticized on the ground that it is
too rigid to manage versatile natures of volatility smiles across different strikes and maturi-
ties. These models are short of empirical justification, especially they are not flexible enough
to capture the time variation and cross-sectional variation property of the term structure.
Coming into play is a much more improved and strengthened model which assumes there are
several factors spontaneously steering volatility movements(Lee and Engle (1999), Christof-
fersen et al. (2008), Gatheral (2008), Fonseca et al. (2008), Christoffersen et al. (2009),
Egloff et al. (2010)). The existence of multiple factors is empirically tested and supported
in Skiadopoulos et al. (1999), Fengler et al. (2003). Christoffersen et al. (2009) shows that
two-factor variance processes not only provide much more variabilities in engineering the
level and slope of the implied smile function of the Index, but also they yield more adaptable
volatility term structure.

A multi-factor stochastic model, coupled with jump components both in the return pro-
cess and volatility process, is what we believe a realistic and robust model. The construction
of our model is based on the intuition that there is a line joining the initial instantaneous
variance and the long run mean variance due to the mean-reverting property of variance.
The variance behaviour at the initial stage and the behaviour at the long run stage are
conceivably driven by different dynamical factors. Indeed, the current economic condition
determines the initial variance dynamics, but not the long term dynamics. The latter is con-
sidered to be stable irrespective of any initial market conditions. The interpolating of these
two dynamical factors produces the evolution dynamics of the variance process. The distinc-
tive characteristic that separates our model from the other multi-factor models (Gatheral
(2008), Christoffersen et al. (2009), Egloff et al. (2010) ) is that the factor coefficients are
time-varying and they play a role in interpolating the initial and long run variance process.
The exact functional form of coefficients is chosen to agree with the versatile nature of the
variance term structure. In the interest of analytical tractability, the two dynamic factors
are structured from affine processes. Up to solutions of Riccati ODEs, valuations of variance
(volatility) derivatives and underlying instruments have closed analytical forms.

Besides the requirement of the multi-factor feature, another key element to fortify model
robustness is attributed to jumps. Numerous studies have suggested that the presence of
jumps forms an integral feature of financial markets. In addition, Todorov and Tauchen
(2011) show that simultaneous jumps from the return and the variance with opposite signs
are statistically significant. Das and Sundaram (1998) find that jump diffusions don’t work
at long maturities, but only for short maturities. While stochastic volatility models can’t
effectively capture high levels of skewness and kurtosis at short maturities. In a study of
comparing differential information of the near term versus long term options, Bakshi et al.
(2000) find that for the near term options, models with stochastic volatility and jumps in
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the return process perform better among other alternative models, while for the long term
options(LEAPS), models with stochastic volatility alone produce a noticeably better result
than models with both stochastic volatility and jumps in the return process. Adding jumps
to the return process only helps to deteriorate the overall performance for the long term
options. These studies confirm that both the return process and the instantaneous variance
process consist of jump components, and jumps or spikes are more identifiable in the short
term than in the long term. To meet these empirically justified features, in our variance
model, the short term factor is driven by an affine jump-diffusion process, and the long term
factor is driven by an affine diffusion process. For the specification of the simultaneous jumps
from the return and the variance, we follow Duffie et al. (2000).

In addition to the multi-factor and jump features, our model is naturally endowed with
stochastic leverage effect. In currency options, stochastic skew effect is empirically realized
(Carr and Wu (2007)). Stochastic skewness can be introduced by randomizing the correlation
between the return and increments in volatility. In our model, the stochastic leverage effect
is elicited from different dynamical behaviours of the long and the short term factors.

Our time-varying two-factor model is also generic in that it can be easily and naturally
transplanted to modelling interest rate dynamics and default rate dynamics. Apart from
studying dynamics of stochastic volatility, our model construction thus sheds some new light
on the study of other asset families, such as interest rates and credit default rates.

The paper is organized as follows. In section 1, we give a brief coverage of multi-
dimensional affine processes. Section 2 presents the time-varying two factor variance model.
In section 3, we present results on term structure of variance swaps based on several existing
models as well as different damping functions. In section 4, we introduce the CBOE volatility
index (VIX), and we price volatility derivatives from the time-varying two factor model. In
section 5, we proceed to pricing the equity option. In section 6, we examine the impact to
variance/volatility derivatives in the presence of return jumps. Section 7 briefly introduces
the data of our analysis. Section 8 deals with the implementation. Finally, section 9 presents
the main results covering the term structure of variance swaps, convexity adjustment, SPX
option pricing and VIX option pricing.

1. Affine Jump Diffusion Process

Let (Ω,F , {Ft}t≥0, Q) be a filtered probability space, whereQ is an equivalent martingale
measure under the risk neutral world and the filtration satisfies the usual conditions. Let
X = (x1, . . . , xn)ᵀ be an n-dimensional F -adapted stochastic process, solving the stochastic
differential equation (SDE)

dXt = µ(Xt)dt+ σ(Xt)dWt + dJt,

where W is a standard n-dimensional Wiener process, J is a pure jump process whose jump
intensity rate is ι(Xt) and whose jump size is characterized by its bilateral Laplace transform
LJ(·).
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For reasons of computational tractability, we assume the state variable X is an affine
jump-diffusion process (AJD, Duffie et al. (2000)). The affine dependence is structured by

µ(Xt) = K0 +K1Xt, K0 ∈ Rn, K1 ∈ Rn×n,

(σ(Xt)σ
ᵀ(Xt))j,k = (H0)j,k + (H1)

ᵀ
j,kXt, H0 ∈ Rn×n, H1 ∈ Rn×n×n,

ι(Xt) = L0 + Lᵀ
1Xt, L0 ∈ R, L1 ∈ Rn.

The main advantage in choosing AJD lies in the fact that the Laplace transform of Xt

will be exponentially affine. Under technical regularity conditions (see Duffie et al. (2000)),
we have

E(e−ω
ᵀXt |Fs) = e−α

ᵀ(t−s,ω)Xs−β(t−s,ω),

where the coefficients α(t, ω) ∈ Rn, β(t, ω) ∈ R satisfy a Riccati ODE system

∂α

∂t
= Kᵀ

1α−
1

2
αᵀH1α− L1(LJ(α)− 1)

∂β

∂t
= Kᵀ

0α−
1

2
αᵀH0α− L0(LJ(α)− 1)

with boundary conditions
α(0, ω) = ω, β(0, ω) = 0.

1.1. Variance Swaps

Let us assume the instantaneous variance process of the underlying asset is a linear
combination of state variable X, that is,

σ2
t = Θᵀ

tXt,

where Θt = (θ1(t), . . . , θn(t))ᵀ is an n-dimensional (column) vector whose entries are non
random and possibly time varying. In literature, the multi-factor affine model, mostly in the
situation where the coefficients are constant, is extensively employed in modeling interest rate
(Duffie and Kan (1996), Dai and Singleton (2000)), volatility (Christoffersen et al. (2009),
Egloff et al. (2010)), and default rate (Duffie and Singleton (1999)). Whereas the multi-factor
model with (non-random) time-varying coefficients is rarely administrated. There are two
main reasons. First, the model with constant coefficients is simple and easy to implement.
Second, in order to specify these time-varying coefficients, it requires a justifiable explanation
for what is the interpretation behind the construction. The rationale underpinning the
proposed time-varying two-factor affine model comes from the term structure of forward
variance in which the initial forward variance level will always progressively march towards
the equilibrium level, the details of which will be presented in section 2.

The concept of variance swaps is similar to the concept of interest rate swaps. A variance
swap is a forward contract in which the holder pays a predetermined value called the variance
delivery price or the variance swap rate in order to receive at the maturity the annualized
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realized variance accrued over the lifespan of the contract. Without arbitrage, the variance
delivery price is equal to the risk neutral expectation on the annualized future realized
variance of the underlying. The future realized variance is a summation of variances induced
from the quadratic variation of the diffusion part and the quadratic variation of the jump
component on the return process. After taking the conditional risk neutral expectation, we
have

VS(0, T ) = VSC(0, T ) + VSJ(0, T ), (1)

where VSC(0, T ) = 1
T
E
(∫ T

0
σ2
t dt
)

is the result of conditional risk neutral expectation on

the realized variance caused from the diffusion part of the return, VSJ(0, T ) is caused from
the jump component of the return and it vanishes if the underlying dynamics are purely
continuous. A standard practice from pricing a log contract (Neuberger (1990), Neuberger
(1994), Carr and Wu (2006)) yields that variance swaps can be replicated by vanilla options,
that is,

VS(0, T ) =
2erT

T

∫ ∞
0

O(K,T )

K2
dK + ε(0, T ), (2)

where O(K,T ) denotes the value of an out-of-the-money option with strike K and maturity
T , and ε(0, T ) is a small number induced from jumps on the return process. If the return
process is immune from jumps, then variance swaps can be perfectly replicated by vanilla
options, i.e.,

VS(0, T ) = VSC(0, T ) =
2erT

T

∫ ∞
0

O(K,T )

K2
dK.

When the return process consists of jumps, both VSJ(0, T ) and ε(0, T ) are non-varnishing
and small. Furthermore, VSJ(0, T ) 6= ε. Objects of VSJ(0, T ) and ε(0, T ) will be examined
in section 6 after the dynamic model is specified. With the abuse of terminology, in the
sequel, VS(0, T ),VSC(0, T ) and 2erT

T

∫∞
0
O(K,T )
K2 dK are all called variance swap rates.

In order to get variance swap related products, we need to find the (conditional) expec-
tation of Xt.

E(Xt|Fs) = − ∂

∂ω
E(e−ωXt|Fs)

∣∣∣
ω=0

=

(
∂

∂ω
αᵀ(t− s, 0)

)
Xs +

∂

∂ω
β(t− s, 0).

Without arbitrage, the delivery price of a time-t1 forward variance swap over period
[t1, t2] is given by

VSC(t1, t2) : = E
(

1

t2 − t1

∫ t2

t1

σ2
t dt
∣∣∣Ft1

)
=

1

t2 − t1

∫ t2

t1

Θᵀ
tE(Xt|Ft1)dt

= A(t1, t2)
ᵀXt1 +B(t1, t2),
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where

A(t1, t2) =
1

t2 − t1

∫ t2

t1

∂

∂ω
α(t− t1, 0)Θtdt,

B(t1, t2) =
1

t2 − t1

∫ t2

t1

Θᵀ
t

∂

∂ω
β(t− t1, 0)dt.

Again, it is seen that the time-t1 forward variance swaps are affine in state variable Xt.
However, the affine coefficients are not constant, but time-varying. Nevertheless, the Laplace
transform of forward variance swaps is still exponentially affine. In penalizing the time-
varying affine coefficients, the functions ϕ, φ being determined below will depend on t1, t
separately rather than on the difference t1 − t.

E(e−ωVS
C(t1,t2)|Ft) = e−ωB(t1,t2)E(e−ωA

ᵀ(t1,t2)Xt1 |Ft)

= e−ψ
ᵀ(t,t1,t2)Xt−ϕ(t,t1,t2).

Under technical regularity conditions, ϕ and φ satisfy a Riccati system of ODEs

∂ψ

∂t
= −Kᵀ

1ψ +
1

2
ψᵀH1ψ + L1(LJ(ψ)− 1),

∂ϕ

∂t
= −Kᵀ

0ψ +
1

2
ψᵀH0ψ + L0(LJ(ψ)− 1),

with boundary conditions

ψ(t1, t1, t2) = A(t1, t2)ω, ϕ(t1, t1, t2) = ωB(t1, t2).

1.2. Instantaneous Forward Variances and Forward Volatilities

In the interest rate market, forward interest rates are the rates of interest implied by
current zero rates of time in the future. They are the future interest rates which can be
locked in by trading current bond portfolio. Analogously, forward volatilities are the market
price of volatilities that an investor can lock in today to obtain volatility exposure over
specific some range of future times.

Definition 1.1. Given the instantaneous variance process {σ2
t }t≥0, the instantaneous T -

forward variance observed at t is defined by

ζt(T ) := E(σ2
T |Ft).

The instantaneous T -forward volatility observed at t is defined by

ηt(T ) :=
√
ζt(T ).

Immediately, the T -forward variance observed at t and the time-t forward variance swaps
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over [t, T ] entail the relation below to convert one to the other,

ζt(T ) =
∂
(
(T − t)VSC(t, T )

)
∂T

= VSC(t, T ) + (T − t)∂VS
C(t, T )

∂T
,

VSC(t, T ) =
1

T − t

∫ T

t

ζt(s)ds.

The forward volatility is also termed by the local volatility, which lies at the heart of volatility
development by Dupire (1994). Notice, the forward volatility is not the conditional expecta-
tion of volatility, but the square root of the forward variance. From Definition 1.1, it is seen
that the forward variance is a martingale, whereas the forward volatility is not. From the
martingale representation theory, the forward variance can be represented by an Ito integral
with respect to some Brownian motion processes. Starting from the forward variance curve,
which is represented by an exponential martingale, to investigate variance swaps is exactly
the modeling approach followed by Buehler (2006), Bergomi (2005), Bergomi (2008) and
Cont and Kokholm (2011).

2. The Two-Factor Variance Model

Having disposed of the main structural layout of the variance model, we proceed to build
a two-factor variance model and specify relevant functions in such a way that the Riccati
ODE system admits closed solutions. The benefit in doing that is it allows us to find tractable
solutions to both variance and volatility derivative products.

The time-varying two-factor variance model we propose is described by

σ2
t = σ2

∞(1−D(t))xt + σ2
0D(t)yt,

where

• σ2
0 and σ2

∞ are respectively called the initial instantaneous variance and the steady
state mean variance.

• D(t) is a damping function. It satisfies D(0) = 1 and D(∞) = 0. The damping function
plays a role in interpolating points of the initial instantaneous variance and the steady
state mean variance.

• {xt}t≥0 is a positive affine diffusion process. It satisfies the normalization and initial
conditions:

x0 = 1, lim
t→∞

E(xt) = 1.

{yt}t≥0 is a positive affine jump diffusion process, whose initial condition satisfies

y0 = 1.

These conditions are specified so that consistences in the sense that limt→∞ E(σ2
t ) = σ2

∞
and limt→0 σ

2
t = σ2

0 are satisfied. Together with properties of D, it follows that in the
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short term, the variance process is mainly dominated by {yt}t≥0. In the long term,
the process {xt}t≥0 dominates. In regard to these features, the processes {xt}t≥0 and
{yt}t≥0 are hereafter called respectively the permanent factor (or the long term factor)
and the transitory factor (or the short term factor).

The model specification indicates the jump component resides in the transitory factor term.
As a result, the jump of variance dynamics will be more pronounced in the short term.
The model also indicates that the variance process has the mean reverting property and the
steady state mean is σ2

∞. In addition, inherited from the steady state of the permanent factor
{xt}t≥0, the variance process has a steady state. All these characteristics are well justified
from stylized facts of variance dynamics.

To fully examine variance dynamics, we are left with the task of describing two key
components: the damping function, the long term and short term factors.

2.1. Damping

Example 2.1 (Single damping).
D(t) = e−kt.

Example 2.2 (Overdamping).

D(t) = ae−k1t + (1− a)e−k2t.

Example 2.3 (Critical damping).

D(t) = (1 + at)e−kt where a, k > 0.

These damping models are solutions to a first and second order homogeneous linear ODEs
with constant coefficients. Analogously, they can be easily extended to solutions to an n-th
order linear ODEs to accommodate more sophisticated damping shapes. Examples (2.2) and
(2.3) are called harmonic oscillators in classical mechanics (Kreyszig (2005)). Example (2.3)
is called the Nelson and Siegel (1987) damping model.

All of these damping models have the characteristic that they approach zero as time goes
to infinity. The damping is monotonic for the single damping. In contrast, the curve of
the overdamping or critical damping may exhibit humps. Figure 1 illustrates three different
shapes of critical damping model.

The key role played by the damping function is that it connects the initial variance
with the steady state mean variance. The shape of the term structure of variance swaps is
largely influenced by the shape feature of the damping. Damping models are thus naturally
and intrinsically associated with the term structure of variance swaps or volatility swaps.
For the damping function, without otherwise stated, we use the single-damping model, i.e.,
D(t) = e−kt, where k is called the damping constant. Empirically, the term structure usually
displays humps. Though the single damping is monotonic, later in Section 3, we show the
hump can also be elicited from jumps of the short term factor.
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2.2. Long Term and Short Term Factors

It is known that the volatility process is usually negatively correlated with the return pro-
cess of the underlying asset. The negative correlation between the return and the volatility
is called the leverage effect. Taking account of the leverage effect, the innovations driv-
ing the long term and short term factors can’t be arbitrary. If we assume the innovation
part of the return process is driven by {bt}t≥0, innovations of the long term and short
term factors are driven respectively by {w1,t}t≥0 and {w2,t}t≥0. Let ρ be the negative cor-
relation of the leverage effect, then there exists Brownian motions b1, b2, both indepen-
dent to b, such that w1,t = ρbt +

√
1− ρ2b1,t and w2,t = ρbt +

√
1− ρ2b2,t. It leads to

dw1,t ·dw2,t = ρ2dt+(1−ρ2)db1,t ·db2,t. Since −dt ≤ db1,t ·db2,t ≤ dt, therefore the correlation
between the long and short term factors should be no less than 2ρ2 − 1. In particular, it
suggests that, for an expensive leverage effect, w1,t and w2,t must not be independent to each
other. In this paper, we simple assume the long and short term factors are driven by the
same innovation, namely, w1,t = w2,t.

To explicitly specify the two factors, we provide the following bivariate process. The
bivariate process is engineered in such a way that the pricing of VIX derivatives is analytically
available. {

dxt = λ1(1− xt)dt+ ξ1
√
xtdwt, x0 = 1,

dyt = λ2(1− xt)dt+ ξ2
√
xtdwt + djt, y0 = 1.

For the bivariate process, the long term factor {xt}t≥0 is described by a CIR process. with
the Feller condition 2λ1

ξ21
≥ 1 such that the process {xt}t≥0 is strictly positive. The process

{xt}t≥0 is stationary. Its steady state has a Gamma distribution. Since the steady state of
the variance is derived from the steady state of the permanent factor, in the long term, the
variance process has a Gamma distribution. Component j is a compound Poisson process
whose jump size is exponentially distributed with mean γ and whose intensity rate is a
constant ι. The short factor {yt}t≥0is not a stationary process due to the positive sized jump
component. If more flexibilities of variance dynamics are desired, the long run mean level of
the short term factor can be different from 1. From the specification of long and short term

k = 1, a = 1.6

k = 1, a = 1

k = 1, a = 0.4

1 2 3 4

0.2

0.4

0.6

0.8

1.0

Figure 1: the critical damping model
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factors, their conditional means are given by

E(xt|Fs) = (xs − 1)e−λ1(t−s) + 1,

E(yt|Fs) = (t− s)ιγ + ys + λ2
e−λ1(t−s) − 1

λ1
(xs − 1).

The result of conditional means confirms that {xt}t≥0 is mean reverting, whereas {yt}t≥0
is not due to its jump component. From the conditional means, we compute A1, A2 and B.
These gadgets will be frequently needed in order to having variance swap related products.

A1(t1, t2) =
(
E(λ1(t2 − t1))(1− e−kt2)−

ke−kt1

k + λ1
Φ(k, λ1, t2 − t1)

)
σ2
∞ −

λ2e
−kt1

k + λ1
Φ(k, λ1, t2 − t1)σ2

0,

A2(t1, t2) = e−kt1E(k(t2 − t1))σ2
0,

B(t1, t2) =

(
1− E(λ1(t2 − t1))−

λ1e
−kt1

k + λ1
Φ(k, λ1, t2 − t1)

)
σ2
∞

+ e−kt1
(
γι

k
Φ(k, 0, t2 − t1) +

λ2
k + λ1

Φ(k, λ1, t2 − t1)
)
σ2
0,

where

E(x) =
1− e−x

x
, Φ(x, y, t) = E(xt)− e−xtE(yt).

3. Term Structure of Variance Swaps

The relation between the variance swap delivery price and its time to maturity is often
called the term structure of variance swaps. The relation conveyed in a mathematical way
is a function sending maturity T to the variance swap delivery price VSC(0, T ).

In the yield curve literature, the term structure is generally decomposed into a handful
of latent factors, labelled by the level, the slope and the curvature to explain the entire
yield curve. Intuitively, the level term is the one which is persistent across all maturities.
Pertaining to those factors used in Nelson and Siegel (1987), the function

E(kt) =
1− e−kt

kt
,

which starts at 1 and diminishes monotonically to 0 at infinity, is called the slope term. The
parameter k controls the speed of decay. The function

Φ(k, 0, t) =
1− e−kt

kt
− e−kt,

which starts initially at 0, increases and eventually decays to 0 at infinity, is called the
curvature term. The curvature term genuinely produces humps. An important insight of
there factors is that they may also be interpreted as the long term, short term and medium
term.
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In additional to these three factors, we introduce a fourth factor called the aberrancy
term1 by the function

Ψ(kt) =
1− e−kt

kt
− e−kt − 1

2
kte−kt.

Aberrancy is the term used to depict the third derivative of the curve. Its geometric in-
terpretation is that it measures locally the deviation of symmetry at a given point on the
curve. The aberrancy term provides an additional degree of freedom to control locally the
asymmetric behavior of the curve. Figure 2 plots the shapes of the four factors.

1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

Aberrancy

Curvature

Slope

Level

Figure 2: The Four Factors

To explore the role played by the damping and jump more rigorously, we examine the
term structure of variance swaps obtained from different damping functions. But before we
do, we first inspect the term structure attained from several existing dynamic models as an
attempt to display their resemblances and dissimilarities.

3.1. The Black-Scholes Model

The pioneering Black-Scholes model is very basic in that the volatility is a constant. As
a result, the term structure of variance swaps is a constant. It only produces the level term.

3.2. The Basic Affine Process(Duffie and Gârleanu (2001))

The SDE
dvt = λ(θ − vt)dt+ σ

√
vtdwt + djt,

where {jt}t≥0 is a jump process whose intensity rate is ι and whose jump size is exponentially
distributed with mean γ, is called the basic affine process. Let us assume the instantaneous
variance process is governed by the basic affine process, then the term structure of variance
swaps becomes

VSC(0, T ) = (
γι

λ
+ θ − v0)E(λT ) + θ +

γι

λ
. (3)

1The original notion is déviation, introduced by Transon (1841). Aberrancy is the modern translated
term. For the geometric interpretation, see Wilczynski (1916).
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It demonstrates that the term structure consists of only the level factor and the slope factor.
As a result, the curve is monotonic.

3.3. The Two-Factor Process(Balduzzi et al. (1998))

The two-factor variance process, governed by the following SDEs{
dvt = λ(v′t − vt)dt+ ξ

√
vtdw1t,

dv′t = κ(θ − v′t)dt+ η
√
v′tdw2t.

is generally employed in modeling variance dynamics (Gatheral (2008), Christoffersen et al.
(2009), Egloff et al. (2010)). The process {vt}t≥0 depicts the instantaneous variance, and
{v′t}t≥0 is the stochastic central tendency towards the long run mean level θ.

The resulting term structure of variance swaps (Egloff et al. (2010)) from the two-factor
process turns into

VSC(0, T ) = θ +
k(θ − v0) + λ(v0 − v′0)

λ− κ
E(λT ) +

λ(v′0 − θ)
λ− κ

E(κT ). (4)

It indicates that the term structure consists of three terms, one level term followed by two
different slope terms. Each of the slope terms is controlled by a different decay rate. It
improves the model (3) by adding one more slope term. However, the hump is not evident.

3.4. The Single Damping Model

For the single damping model, we have

VSC(0, T ) = A1(0, T ) + A2(0, T ) +B(0, T )

= σ2
∞ + (σ2

0 − σ2
∞)E(kT ) + σ2

0

γι

k
Φ(k, 0, T ). (5)

The corresponding instantaneous forward variance curve is

ζ0(T ) := Eσ2
T = σ2

∞ +
(
σ2
0 − σ2

∞
)
e−kT + σ2

0γιTe
−kT .

The term structure model (5) is divided into three components: the level, the slope
and the curvature. In comparing to the interest rate, it is exactly the yield curve model of
Nelson and Siegel (1987). The main difference is that the curvature coefficient of model (5)
is always positive and the model (5) is deduced naturally from the time-varying two factor
variance model. By specifying functional forms of the Nelson-Sigel term structure model
with time-varying factors, Christensen et al. (2009), and Christensen et al. (2011) also derive
multi-variate affine processes which maintain the Nelson-Sigel factor loading structure.

It is worth emphasizing that λ1 and λ2, the speed of reversion of the long and short term
factors, as well as ξ1 and ξ2, don’t enter into equation (5). In contrast, the term structure of
previous models relies on its speed of reversion to control the slope. The advantage of our
model is that λ1, λ2, ξ1 and ξ2 provide unique freedoms to control implied smiles. The term

12



structure model (5) is solely determined by (σ0, σ∞, k, γι). Conceptually, σ2
0 is the initial

level of variance displacement from the equilibrium level σ2
∞. The parameter k, the damping

constant, plays a key role in determining panoramic shape of the term structure. The
parameter γι, stemming from the jump part of the short term factor, locally adds additional
flexibility of humps. If there is no jump, the term structure model (5) degenerates to the
long and the short term components. If the damping is not included, i.e. k = 0, it further
degenerates to the long term component. Viewing from the upgraded direction, the term
structure of variance swaps implied from the Black-Scholes model only produces the long
term component. If a stochastic Heston model (with jump) is assumed, the slope term is
added. If in addition, the damping and the jump are added, the term structure displays
additional humps.

3.5. Critical Damping Model

For the critical damping model, the forward variance curve has the form

ζ0(T ) = σ2
∞ +

(
aγισ2

0T
2 +

(
σ2
0(a+ γι)− aσ2

∞
)
T + σ2

0 − σ2
∞
)
e−kT .

The curve is a solution to a third order homogeneous linear ODE whose characteristic func-
tion has three identical root k. The corresponding term structure of variance swaps is

VSC(0, T ) = σ2
∞ + (σ2

0 − σ2
∞)E(kT ) +

a (σ2
0 − σ2

1) + γισ2
0

k
Φ(k, 0, T ) +

2aγισ2
0

k2
Ψ(kT ),

Interestingly, it decomposes into the level, slope, curvature and aberrancy term. The
parameter a manages the behavior of the aberrancy term as well as possibly the curvature
term. The jump component also reins the aberrancy term.

3.6. Overdamping Model

For the overdamping model, the instantaneous forward variance rate becomes

ζ0(T ) = σ2
∞ + (1− a)

(
σ2
0 − σ2

∞ + γισ2
0T
)
e−k2T + a

(
σ2
0 − σ2

∞ + γισ2
0T
)
e−k1T ,

which is a solution to a fourth order homogeneous linear ODE whose characteristic function
has two distinctive roots, k1 and k2, each of which has multiplicity 2. The corresponding
term structure of variance swaps turns into

VSC(0, T ) = σ2
∞+

(
σ2
0 − σ2

∞
)
aE(k1T ) +

(
σ2
0 − σ2

∞
)

(1− a)E(k2T )

+
aγισ2

0

k1
Φ(k1, 0, T ) +

(1− a)γισ2
0

k2
Φ(k2, 0, T ).

The term structure consists of 5 terms, among which there are two slope terms and two
curvature terms. Each of the two slope terms is controlled by a different damping constant,
so are the two curvature terms. The parameter a assigns a weight to each of the slope terms
as well as the curvature terms. The term assigned with a larger weight will be called the
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primary term, the less weighted one will be called the secondary term. The overall effect of
the two curvature terms is that the curve exhibits possibly two humps. The impact of the
two slope terms together is that it develops into one monotonic slope. The term structure
model is virtually a Nelson-Siegel-Svensson type(Svensson (1994)).

From the study of these existing dynamic models, we see the resulting term structures
only consist of the level term and the slope term. Lacking the curvature term, the hump,
an empirically justified feature, is missing. For our time-varying two-factor model, a com-
bination of the damping and the jump effectively creates humps 2. Multiple humps can be
produced by properly adjusting the damping model. Without the jump (i.e., κι = 0), the
term structure curve is purely determined by the damping model except the situation when
σ0 = σ∞, in which case, the term structure curve is flat. These examinations suggest that
the jump and damping form essential parts in modeling the term structure of variance swaps.

4. Volatility Index

Variance swaps are much more widely traded in the market than volatility swaps due to
the fact they can be replicated by vanilla options. While volatility swaps have not generally
thought to be replicated possibly. However, in financial markets, the volatility index is
conventionally referenced rather than the variance index.

In 1993, the Chicago Board of Options Exchange(CBOE) introduced the CBOE volatility
index called VIX. VIXt measures the implied volatility of S&P 500 index options of the next
30 days after time t. Mathematically speaking, VIX2

t approximates the conditional risk
neutral expectation of the annualized realized variance over the next 30 days. The original
calculation of VIX was revamped to accommodate a more robust method in September 2003.
The principal idea of the new calculation is based on the fact that variance swaps can be
replicated by the corresponding option prices of the underlying. To calculate VIX2 price,
the CBOE first uses available OTM SPX options to approximate 2erT1

T1

∫∞
0
O(K,T1)
K2 dK and

2erT2
T2

∫∞
0
O(K,T2)
K2 dK from the two nearest maturities T1 and T2, the linear interpolated value

of these two quantities yields the price of VIX2. When the nearest time to maturity is less
than 8 days, the CBOE switches to the next-nearest maturity in order to avoid microstructure
effects. For detailed computation and specification of VIX, we refer to Carr and Wu (2006).

In this paper, we simply assume

VIX2
t = VSC(t, t+ ~) + VSJ(t, t+ ~)− ε(t, t+ ~), (6)

where ~ = 1
12

represents an annualized 30 calendar days. The calculation (6) is exact up to ap-
proximation errors stemming from two major sources: option interpolations/extrapolations
from discrete strikes, a linear interpolation/extrapolation from two maturities.

In equation (6), the proportional value of VSJ(t, t + ~) − ε(t, t + ~) to VSC(t, t + ~) is

2In the time-varying two-factor model, bumps can also be elicited if the long run mean level of the short
term factor is different from the long run mean level of the long term factor.
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small, we define

ṼIX
2

t := VSC(t, t+ ~) =
1

h
E
(∫ t+~

t

σ2
sds|Ft

)
. (7)

If the turn process is immune from jumps, then ṼIXt = VIXt.

4.1. ṼIX Dynamics

From the time-varying two-factor variance model specification and definition (6), after a
rearrangement of terms, we have

ṼIX
2

t =A1(t, t+ ~)xt + A2(t, t+ ~)yt +B(t, t+ ~)

=E(λ1h)(xt − 1)σ2
∞ + σ2

∞ (8)

+e−kt
(
E(kh)σ2

0yt − e−khE(λ1h)σ2
∞xt −

Φ(k, λ1, h)

k + λ1
(λ2σ

2
0 + kσ2

∞)xt

)
(9)

+e−kt
(
γι

k
Φ(k, 0, h)σ2

0 +
Φ(k, λ1, h)

k + λ1
(λ2σ

2
0 − λ1σ2

∞)

)
. (10)

It indicates that ṼIX
2

t can be decomposed into three components. Component (8) simply
describes the long term behavior of implied variances. It is primarily controlled by the per-
manent factor {xt}t≥0. The long term component consists of a level factor and a slope factor.
Component (9) is the stochastic transitory term, which consists of a mixture of stochastic
slope and curvature factors. The stochastic slope and curvature factors are managed by both
the long term factor {xt}t≥0 and the short term factor {yt}t≥0. Both of stochastic slope and
curvature factors fade away by the damping constant k. Component (10) is the deterministic
transitory term. It slowly becomes weaker due to the damping constant k.

The dynamic movement of ṼIX
2

goes as follows. At t = 0, ṼIX
2

0 is decomposed into a
level, a slope and a curvature term. The slope and the curvature factor are controlled by the
damping k. Initially, the process {yt}t≥0 dominates the process {xt}t≥0. As a result, jumps

are more identifiable in the short term. ṼIX
2

t consists of the same level and a mixture of
stochastic slope and curvature terms. With the lapse of time, the process {xt}t≥0 dominates

the process {yt}t≥0. ṼIX
2

t becomes nearly a continuous diffusion process. The stochastic
curvature component fades away. As t → ∞, {yt}t≥0 only consists of the level term and a
stochastic slope term. The slope term is shifted from the original damping k to λ1. The
steady state distribution of VIX2

t is generated from the steady state distribution of the
permanent factor {xt}t≥0. The resulting different jump behaviours between the near term
and long term options are consistent with the empirical study by Bakshi et al. (2000).

4.2. VIX Instruments

On March 26, 2004, the CBOE launched a new exchange, the Chicago Futures Exchanges
(CFE), and started to trade futures on VIX. VIX futures (VX) are standard futures contract.
VIX futures price is defined by

F (T ) := E(VIXT ).
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VIX futures is simply a contract on a forward 30-day implied volatilities.
VIX options were launched on Feb 24, 2006. They are no different than standard options

written on stocks. The payoff at the expiry date T of a VIX vanilla call option with strike
K is given by

(VIXT −K)+.

The payoff at the expiry date T of a VIX vanilla put option with strike K is given by

(K − VIXT )+.

We are thus led to the valuation of VIX derivatives. Before we do that, we first price
derivatives of ṼIX. The valuation of VIX derivatives will be provided after the return

process is specified. Since the Laplace transform of random variable ṼIX
2

t is known in closed

form. To price ṼIX derivatives, we resort to the Laplace transform approach. Valuations of
variance derivatives as an inverse Laplace problem are also examined in Friz and Gatheral
(2005).

4.3. Laplace Transform of VSC(t1, t2)

The conditional Laplace transform of VSC(t1, t2) is given by

E(e−ωVS
C(t1,t2)|Ft) = e−ψ1(t)xt−ψ2(t)yt−ϕ(t), ω ∈ C.

In general, ω is an element taken from the region bounded left by a vertical line segment.
Following the material investigated in Section 1.1, the coefficients ψ1(t), ψ2(t), ϕ(t) satisfy

a Riccati ODE system

∂ψ1

∂t
= λ1ψ1 + λ2ψ2 +

1

2
ξ21ψ

2
1 +

1

2
ξ22ψ

2
2 + ξ1ξ2ψ1ψ2,

∂ψ2

∂t
= 0,

∂ϕ

∂t
= −λ1ψ1 − λ2ψ2 + ι(

1

1 + ψ2γ
− 1),

with boundary conditions

ψ1(t1, ω) = A1(t1, t2)ω, ψ2(t1, ω) = A2(t1, t2)ω, ϕ(t1, ω) = ωB(t1, t2).
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The solution to the Riccati ODE system is

ψ1(t) = ω

(
A1 +

(1− e−ϑ(t1−t))a
(1− e−ϑ(t1−t))(ϑ− b)− 2ϑ

)
ψ2(t) = ωA2,

ϕ(t) = ωB − λ1(λ1 − ϑ)

ξ21
(t1 − t) +

2λ1
ξ21

ln

(
1− ϑ− b

2ϑ
(1− e−ϑ(t1−t))

)
− ωA2

ξ1
(λ1ξ2 − λ2ξ1)(t1 − t)− ι(

1

1 + ωA2γ
− 1)(t1 − t),

where

ϑ =
√
λ21 − 2ξ1A2(ξ1λ2 − ξ2λ1)ω,

a = 2A1λ1 + 2A2λ2 + ω (A2ξ2 + A1ξ1)
2 ,

b = λ1 + ξ1ω(ξ1A1 + ξ2A2).

4.4. Pricing ṼIX Derivatives

From the integral representation of square root function,

√
x =

1

2
√
π

∫ ∞
0

1− e−ωx

ω
3
2

dω,

immediately, the ṼIX futures can be evaluated by

EṼIXT =
1

2
√
π

∫ ∞
0

1− E(e−ωṼIX
2

T )

ω
3
2

dω.

For a ṼIX call option with strike K and maturity T , let f(x) = (
√
x−K)+ be its intrinsic

value. Let Re(ω) > 0, the Laplace transform of the intrinsic value is given by

L(f)(ω) =

∫ ∞
0

(
√
x−K)+e−ωxdx

=

√
π

2ω
3
2

erfc(K
√
ω)

where erfc(·) is the complementary error function. The inverse Laplace transform is given
by

f(x) =
1

2πi
lim
η→∞

∫ ζ+iη

ζ−iη
L(f)(ω)eωxdω,
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which is (absolutely) convergent when ζ > 0. For a suitable ζ, the expectation

E(f(ṼIX
2

T )) =
1

2πi
lim
η→∞

∫ ζ+iη

ζ−iη
L(f)(ω)E(eωṼIX

2

T )dω.

is convergent. In contrast, a mollification technique in Friz and Gatheral (2005) is needed
in order to avoiding oscillation and ensuring the convergence of the integration.

Consequently, the ṼIX call option price is given by

C(K,T ) =
e−rT

2πi

∫ ζ+i∞

ζ−i∞
L(f)(ω)E(eωṼIX

2

T )dω.

In the same manner, the corresponding put option price at the same strike and maturity is
given by

P (K,T ) =
e−rT

2πi

∫ ζ+i∞

ζ−i∞
L(g)(ω)E(eωṼIX

2

T )dω,

where

L(g)(ω) =

∫ ∞
0

(K −
√
x)+e−ωxdx =

K

ω
−
√
π

2ω
3
2

erf(K
√
ω)

and erf(·) is the error function. Put option prices can also be obtained from the put-call
parity.

5. SPX Option Valuations

To price SPX options, the important point remaining concerns the leverage effect. Lever-
age effect is the correlation between shocks to returns and shocks to variances. In light of
analytical tractability of affine process, aggregating the return process of the underlying with
the bivariate process, we assume under the risk neutral world, they form a three dimensional
affine process described below:



dxt = λ1(1− xt)dt+ ξ1
√
xtdwt, x0 = 1,

dyt = λ2(1− xt)dt+ ξ2
√
xtdwt + djt, y0 = 1,

dzt =

(
r − δ − 1

2

(
(1− e−kt)σ2

∞xt + e−ktσ2
0yt
)
− ιµ

)
dt+ ρ

√
((1− e−kt)σ2

∞ + e−ktσ2
0)xtdwt

+
√

(1− ρ2)(1− e−kt)σ2
∞xt + e−ktσ2

0(yt − ρ2xt)dbt + e−ktdqt, z0 = lnS0.

Here, {wt}t≥0 and {bt}t≥0 are two independent Brownian motions, r is the constant
riskless interest rate, δ is the constant proportional dividend rate, S0 is the initial price of
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the underlying. The diffusion correlation is given by

ρ

√
(1− e−kt)σ2

∞xt + e−ktσ2
0xt

(1− e−kt)σ2
∞xt + e−ktσ2

0yt
, (11)

where ρ is subject to

−1 ≤ ρ ≤ 1, (1− ρ2)(1− e−kt)σ2
∞xt + e−ktσ2

0(yt − ρ2xt) ≥ 0.

The above diffusion correlation suggests the leverage effect is both time-varying and stochas-
tic. The diffusion correlation initially starts from ρ. A perturbation, caused by different
behavior movements of xt and yt prompts the course deviation of the instantaneous diffu-
sion correlation away from ρ. The deviation gets weakened as a result of the damping k.
Eventually, the diffusion correlation progressively moves towards ρ. The time-varying and
stochastic nature of leverage effect is empirically supported from studies of currency options
by Carr and Wu (2007). The diffusion correlation is not limited to being of the form (11).
Different forms of diffusion correlations can be configured to accommodate more flexible
features as needed.

Following the return and variance jump specifications from Duffie et al. (2000), we assume
the jump component of return is depicted by a compound Poisson process {qt}t≥0, whose
intensity rate is ι and whose size of jump is normally distributed and correlated to the size of
jump from process {jt}t≥0. More precisely, we assume the joint Laplace transform function
of jumps of jt and qt is given by

Ljt,qt(ω1, ω2) =
e−θω2+

1
2
vω2

2

1 + %γω2 + γω1

.

Translating into the probability density, it means the marginal distribution of jump size in jt
is exponentially distributed with mean γ. Conditional on the jump size l of jt, the jump size
of qt is normally distributed with mean θ+%l and variance v. Here, % is interpreted to be the
jump correlation. Simultaneous jumps with opposite signs in return and in volatility are well
justified empirically (Todorov and Tauchen (2011)). The empirical testing from Bakshi et al.
(2000) confirm the jump diffusion process for the near term options and diffusion process
for the long term options are more desirable than other alternatives. Therefore, we add an
exponential damping function in front of qt. As a result, the jump from the log return process
is much more evident in the short term, the log return process becomes nearly a continuous
diffusion process in the long term. The joint Laplace transform of jt and e−ktqt becomes

Ljt,e−ktqt(ω1, ω2) =
exp(−θω2e

−kt + 1
2
vω2

2e
−2kt)

1 + γω1 + %γω2e−kt
.
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The corresponding joint density function is given by

pjt,e−ktqt(x, y) =
1√

2πvγ
exp

(
kt− x

γ
− (ekty − (θ + %x))2

2v

)
.

Finally, µ = Ljt,e−ktqt(0,−1) − 1 so that the process {ezt−(r−δ)t}t≥0 forms a martingale
under the risk neutral world.

We proceed to computer the (conditional) Laplace transform of log return zt. Let

E(e−ωzt1 |Ft) = e−ψ1(t)xt−ψ2(t)yt−ψ3(t)zt−ϕ(t), Re(ω) > 0,

then the coefficients ψ1, ψ2, ψ3 and ϕ are determined by a Riccati ODE system

∂ψ1

∂t
= λ1ψ1 + λ2ψ2 +

1

2
(1− e−kt)σ2

∞ψ3 +
1

2
(ξ1ψ1 + ξ2ψ2 + ρ

√
(1− e−kt)σ2

∞ + e−ktσ2
0ψ3)

2

+
1

2

(
(1− e−kt)σ2

∞ − ρ2((1− e−kt)σ2
∞ + e−ktσ2

0)

)
ψ2
3,

∂ψ2

∂t
=

1

2
e−ktσ2

0ψ3 +
1

2
e−ktσ2

0ψ
2
3,

∂ψ3

∂t
= 0

∂ϕ

∂t
= −(r − δ − ιµ)ψ3 − λ1ψ1 − λ2ψ2 + ι

(
exp(−θψ3e

−kt + 1
2
vψ2

3e
−2kt)

1 + γψ2 + %γψ3e−kt
− 1

)
,

with boundary conditions

ψ1(t1, ω) = 0, ψ2(t1, ω) = 0, ψ3(t1, ω) = ω, ϕ(t1, ω) = 0.

Immediately, it implies ψ3(t) = ω, ψ2(t) = 1
2k

(ω + ω2)(e−kt1 − e−kt)σ2
0 and ψ1 is the solution

to the Riccati ODE

∂ψ1

∂t
=

1

2
ξ21ψ

2
1 +

(
λ1 + ξ1ξ2ψ2 + ωξ1ρ

√
(1− e−kt)σ2

∞ + e−ktσ2
0

)
ψ1

+ λ2ψ2 +
1

2
ω(1 + ω)(1− e−kt)σ2

∞ +
1

2
ξ22ψ

2
2 + ωξ2ρ

√
(1− e−kt)σ2

∞ + e−ktσ2
0ψ2

with boundary condition ψ1(t1) = 0. ψ1 can be solved numerically, such as by the Runge-
Kutta method. Once the numerical solution ψ1 is attained, the solution to ϕ is given by

ϕ(t) =
λ2
2k2

(ω + ω2)σ2
0(e−kt1(1 + k(t1 − t))− e−kt) + λ1

∫ t1

t

ψ1(s)ds+ (ι+ (r − δ + ι)ω) (t1 − t)

− ωι
∫ t1

t

exp(θe−ks + 1
2
ve−2ks)

1− %γe−ks
ds− ι

∫ t1

t

exp(−θωe−ks + 1
2
vω2e−2ks)

1 + γψ2(s) + %γωe−ks
ds,
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Having obtained numerically the Laplace transform of log return

E(e−ωzt) = e−ψ1(0)−ψ2(0)−φ(0)−ω lnS0 ,

we use the fast Fourier transform method presented in Carr and Madan (1999) to find the
pricings of SPX options.

6. Roles of Jumps from the Return Process

If the return process is immune from jumps, variance swap rates are equivalent to the
quadratic variation of the diffusion part of the return process and variance swaps can be
completely replicated by vanilla options. The presence of jumps in the return process is
confirmed and justified in empirical work (Bates (1996)). Consequently, to derive quadratic
variations of the return process, some correction terms are needed in the presence of jumps.
The aim of this section is to examine the impact of return jumps to variance swap rates and
volatility derivatives.

Let M be the Poisson random measure of jumps from the return process and let ν be its
corresponding intensity measure. From equation (6), two random variables gaining further
attentions are

VSJ(t1, t2) =
1

t2 − t1

∫ t2

t1

∫
R
x2dM(s, x),

ε(t1, t2) = − 2

t2 − t1

∫ t2

t1

∫
R
(ex − 1− x− x2

2
)dM(s, x). (12)

The establishment of equation (12) can be found in Carr and Wu (2006). To adjust valuations
of volatility derivatives, we compute the Laplace transform of VSJ(t1, t2) − ε(t1, t2) . To
correct terms to variance swap rates as a result of return jumps, we quantify VSJ(0, T ) and
ε(0, T ).

Proposition 6.1. For Re(ω) > 0

E exp
(
−ω(VSJ(t1, t2)− ε(t1, t2))

)
≈ exp

(
−ι(t2 − t1)−

ι

2γ%

√
π(t2 − t1)

ω
e
θ
γ%

∫ t2

t1

(
1 + erf

(
c

2γ%
+
θ

c

))
e
kt+ c2

4γ2%2 dt

)
,

where

c =

√
2v +

t2 − t1
ω

e2kt.
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Proof.

E exp
(
−ω(VSJ(t1, t2)− ε(t1, t2))

)
= E exp

(
− 2ω

t2 − t1

∫ t2

t1

∫
R
(ex − 1− x)dM(s, x)

)
= exp

(∫ t2

t1

∫
R
(e
− 2ω
t2−t1

(ex−1−x) − 1)ν(dx, dt)

)
(13)

≈ exp

(∫ t2

t1

∫
R
(e
− ωx2

t2−t1 − 1)ν(dx, dt)

)
= exp

(
−ι(t2 − t1)−

ι

2γ%

√
π(t2 − t1)

ω
e
θ
γ%

∫ t2

t1

(
1 + erf

(
c

2γ%
+
θ

c

))
e
kt+ c2

4γ2%2 dt

)
.

Equation (13) is obtained from exponential formula for Poisson random measure (see Cont
and Tankov (2004)).

Results from Section 4.3 and Proposition 6.1 allow one to get the Laplace transform of VIX2
T ,

i.e.,

E(e−ωVIX2
T ) ≈ E(e−ωṼIX

2

T )E(e−ω(VS
J (T,t+~)−ε(T,t+~)))

Notice, it is an approximation because VSC(t1, t2) and VSJ(t1, t2) − ε(t1, t2) are not gener-

ally independent. Simply replacing ṼIX
2

T with VIX2
T , materials from Section 4.4 straight-

forwardly yield the valuations of VIX derivatives.
Adjustments to variance swap rates as a result of return jumps concern VSJ(0, T ) and

ε(T ). To compute them, we apply the Laplace transform of return jumps.

VSJ(0, T ) =
1

T

∫ T

0

∫
R
x2ν(dx, dt) =

ι

T

∫ T

0

∂2

∂ω2
2

Ljt,e−ktqt(0, ω2)|ω2=0dt

=ι(2γθ%+ 2γ2%2 + θ2 + v)E(2kT ).

Therefore,

VS(0, T ) = VSC(0, T ) + VSJ(0, T )

= σ2
∞ + (σ2

0 − σ2
∞)E(kT ) + ι(2γθ%+ 2γ2%2 + θ2 + v)E(2kT ) + σ2

0

γι

k
Φ(k, 0, T ).

Adding jumps to the return process, the adjustment to variance swap rates is that a second
slope term is created.

If option replicated variance swaps are used to delegate variance swaps, in the event of
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Figure 3: adjustment terms caused by return jumps where σ20 = 0.05, σ2∞ = 0.06, k = 2, γ = 3,
ι = 1, % = −0.01,θ = −0.1, v = 0.005.

return jumps, the adjustment term is given by (Carr and Wu (2006))

ε(0, T ) = − 2

T

∫ T

0

∫
R
(ex − 1− x− x2

2
)ν(dx, dt)

=− 2ι

T

∫ T

0

Ljt,e−ktqt(0,−1)− 1 +

(
∂

∂ω2

Ljt,e−ktqt(0, ω2)−
1

2

∂2

∂ω2
2

Ljt,e−ktqt(0, ω2)

)
|ω2=0dt

=2ι− 2ι

T

∫ T

0

exp(θe−ks + 1
2
ve−2ks)

1− %γe−ks
ds+ 2ι(θ + γ%)E(kT ) + ι(2γθ%+ 2γ2%2 + θ2 + v)E(2kT ).

The adjustment term can also be approximated by

ε(0, T ) =− 2

T

∫ T

0

∫
R
(ex − 1− x− x2

2
)ν(dx, dt)

≈− 1

3T

∫ T

0

∫
R
x3dν(x, t) =

ι

3T

∫ T

0

∂3

∂ω3
2

Ljt,e−ktqt(0, ω2)|ω2=0dt

=− ι(θ
3

3
+ γθ2%+ 2γ2θ%2 + 2γ3%3 + θv + γ%v)E(3kT ).

To rectify variance swap rates from option replicated variance swap rates, an extra slope
term needs to be compensated. In the case of SPX, usually θ < 0 and % < 0 hold, which
implies ε(0, T ) > 0. Under this circumstance, the exponential skewness in the terminology
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of Carr et al. (2011) is negative and the multiplier which measures the relative price of a
variance swap rate to a log contract is larger than 2.

Under the negative exponential skewness situation, these correction terms satisfy 0 <
ε(0, T ) < VSJ(0, T ). Figure 3 reports the adjustment terms ε(0, T ) and VSJ(0, T ) along
with the terms VSC(0, T ) and VS(0, T ) . In general, diffusion variations contributing to
variance swap rates far outweigh jump variations.

7. Data

The Standard & Poor’s 500 Index (SPX) is a capitalization-weighted index of 500 large-
cap common stocks across a broad range of industries. In the security option market, SPX
option is a European type option which is offered on the CBOE(Chicago Board Options
Exchange). It trades with expiries with three near-term months followed by further addi-
tional months from the March quarterly cycle(March, June, September and December). In
addition, the exchange may list Long-term Equity Anticipation Securities(LEAPS) contracts
that expires from 12 to 60 months from the date of issue. The expiration date is the Saturday
following the third Friday of each expiring month. The CBOE Volatility Index (VIX) option
traded on the CBOE is also a European style with expiration months up to six contract
months. The maturity date is the Wednesday that is thirty days prior to the third Friday
of the calendar month immediately following the expiring month.

In our study, option prices of SPX and VIX are collected from Market Data Express
(MDE). In producing option prices, we follow the common convention by taking the average
of the bid and ask price for each strike. In processing SPX/VIX option prices, two types
of options are deleted, the option whose spread is twice larger than the bid price and the
corresponding trading volume is 0, the SPX (resp. VIX) option whose price is less than 0.3
(resp. 0.15) and whose trading volume is 0.

Theoretically, option prices should satisfy certain no-arbitrage shape restriction condi-
tions. Assume {(Ki, Ct(Ki), Pt(Ki)}ni=1 is the option price set on trading date t with maturity
date T , where Ki, Ct, Pt are the strike, call option price and put option price. Let the futures
and the discount factor respectively be Ft and e−rt(T−t), then no arbitrage option price should
satisfy the monotonicity condition

−e−rt(T−t) ≤ C
′
t(K) ≤ 0, 0 ≤ C

′
t(K) ≤ e−rt(T−t),

the convexity condition
C
′′
(K) ≥ 0, P

′′
(K) ≥ 0

and the option pricing constraint

e−rt(T−t)(Ft −K)+ ≤ Ct(K) ≤ e−rt(T−t)Ft, e
−rt(T−t)(K − Ft)+ ≤ Pt(K) ≤ e−rt(T−t)K,

where (K − Ft)+ = max(0, K − Ft).
However, the three no arbitrage constraints of cross-section market option prices are

generally not satisfied. We apply the shape restriction to SPX/VIX options following the
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methodology presented in Aı̈t-Sahalia and Duarte (2003). In performing the shape restriction
procedure, the futures and the discount factor are needed. the SPX/VIX futures contract is
traded on the Chicago Futures Exchangess (CFE). However, SPX/VIX futures and SPX/VIX
options are traded in two different markets, suggesting that they may not be recorded at
the same time. For the reason of avoiding non-synchronous microstructure noise, we don’t
collect SPX/VIX futures and the discount factor or the riskless interest rate from the market.
Instead, the value of the futures Ft and the discount factor are computed from option prices
according to the put-call parity,

Ct − Pt = e−rt(T−t)Ft −Ke−rt(T−t),

the futures Ft and the discount factor e−rt(T−t) are obtained by minimizing the weighted sum
of squared residual (SSR)

SSR =
n∑
i=1

ωi(Ct(Ki)− Pt(Ki)− Fte−rt(T−t) +Kie
−rt(T−t))2,

where ωi, i = 1, . . . , n are the weights to reflect relative liquidity of options.

Date Asset Level Maturity No. of Strikes
Aug 28, 2008

VIX 19.43

Sep 17, 2008 12
Oct 22, 2008 10
Nov 19, 2008 15
Dec 17, 2008 9
Jan 21, 2009 11
Feb 18, 2009 11

SPX 1300.68

Sep 20, 2008 69
Oct 18, 2008 75
Nov 22, 2008 69
Dec 20, 2008 51
Mar 21, 2009 36
Jun 20, 2009 34
Dec 19, 2009* 31
Jun 19, 2010* 24
Dec 18, 2010* 29

* LEAPS
Table 1: Listed are data information of SPX and VIX options traded on August 28, 2008.

Having obtained the futures and the discount factor, we apply the shape restriction
approach presented in Aı̈t-Sahalia and Duarte (2003) to convert market option prices to
these satisfying no arbitrage shape restrictions.

In a final step, because out-of-the-money (OTM) calls and puts are relatively more liq-
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uidly traded than in-the-money(ITM) options, we collect the OTM calls and puts. For
SPX/VIX options, we further use the Black option model to convert each OTM option price
to a unique value of total implied variance. The option data information, with which we
investigate our proposed time-varying two factor model, is listed in Table 1.

8. Calibrations

The parameter calibration step consists of establishing three objective functions, arising
from term structure of variance swaps, VIX options and SPX options. Assume maturity
dates of SPX options are {T1, T2, . . . , Tn}, we compute first variance swaps {VS(0, Tj)}nj=1

based on the fact that they are completely replicated from vanilla options up to a correction
term caused by jumps. In theory (Carr and Wu (2006)), for a given maturity T , with
deterministic interest rate,

2erT

T

∫ ∞
0

O(K,T )

K2
dK = VSC(0, T ) + VSJ(0, T )− ε(0, T )

≈ VSC(0, T ),

where O(K,T ) denotes the value of an out-of-the-money option with strike K and maturity
T . However, available option prices in the traded financial market are not continuous. Since
there is a one-to-one mapping between option prices and implied volatilities, a smoothed
implied volatility curve uniquely produces a smoothed option price function.

In addition to those n synthetic variance swap rates from maturities {Ti}ni=1, there is one
natural variance swap rate expiring in the next 30 days, that is, the square of the initial VIX
price. The model implied initial VIX price is

VIX2
0 = VSC(0, h) + VSJ(0, h)− ε(0, h) ≈ VSC(0, h).

Since VIX2
0 is derived geometrically from the linear interpolation/extrapolation of the first

two of those n synthetic variance swap rates, including it in them may be unnecessary to
do parameter calibrations from a statistic point of view. However, from a financial point of
perspective, it can be viewed as assigning a higher weight to the near term variance swaps
to reflect relative liquidity and to put more emphasis on VIX price. This consideration
reconciles together SPX and VIX derivatives.

In our study, there are totally 9 maturities of SPX options on August 28, 2008. Together
with the VIX price, it is sufficient to estimate the parameter set Θ1 = {σ∞, σ0, k, γι}. The
parameter set Θ1 is obtained by minimizing squared distance between option replicated and
model implied variance swaps, between market and model implied initial VIX price, i.e., Θ1

minimizes the root mean squared error(RMSE) given by

RMSE1 =

√√√√ 1

n+ 1

(
n∑
i=1

(
2erT

T

∫ ∞
0

OMS (K,T )

K2
dK − VSC(0, Ti)

)2

+ (VIX2
0−VSC(0, h))2

)
.
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Other than Θ1, the set of parameters controlling the valuations of VIX derivatives is
Θ2 = {λ1, λ2, ξ1, ξ2, γ}. To calibrate them, we computer the squared distance between market
implied normalized3 OTM VIX option prices and the corresponding model implied ones
across all available strikes and maturities, i.e., Θ2 minimizes

RMSE2 =

√√√√∑i,j(ÕMV (Ki,j, Ti)− ÕV (Ki,j, Ti))2∑
i,j 1

.

The remaining set of parameters is Θ3 = {ρ, %, θ, v}. They are calibrated from minimizing
the squared distance between market implied and model implied OTM SPX option prices,
i.e., Θ3 minimizes

RMSE3 =

√√√√∑i,j(ÕMS (Ki,j, Ti)− ÕS(Ki,j, Ti))2∑
i,j 1

.

Ideally, the three groups of parameters Θ1,Θ2 and Θ3 can be calibrated progressively,
known as the method of dimensionality reduction. In consideration of the market liquidity,
SPX options are among the most highly liquid options on the market as opposed to VIX
options. Furthermore, in the event that the return process of SPX contains jumps, the
objection functions RMSE1 and RMSE2 should incorporate adjustment terms relying on Θ3.
In light of these considerations, calibrations are performed by minimizing a weighed sum of

w1 RMSE1 +w2 RMSE2 +w3 RMSE3, where w1 + w2 + w3 = 1.

The minimization is a nonlinear least square optimization problem. Numerical methods
available to solve a minimization problem include Gauss-Newton algorithm(GNA), Leverberg-
Marguardt algorithm(LMA), genetic programming. The solution from implementing the
LMA or the GNA primarily depends on the initial point, that means in many cases, a local
minimum value is achieved rather than the global minimum. A global searching heuristic of
differential evolution (DE) method (Price et al. (2005)) is implemented first, which is then
followed by the LMA to solve the minimization problem.

Table 2 reports the calibrated parameters and the three RMSEs. Both the speed of
reversion and the volatility of volatility of the short term are more severe than those of the
long term. It demonstrates the uncertainty in the short term is higher than in the long term.
From the specification of the leverage effect, the high level of uncertainty in the short term
also increases the level of a second risk factor which is not explained by the risk factor of

3Given a European option price O(K,T ) with strike K and maturity T , its normalized option price is

given by Õ(K,T ) = erT O(K,T )
FT

where FT is the corresponding futures price. The normalized option price
simply measures the relative option price to the present value of futures.
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Parameters
Descriptions weights RMSEs

Θ1

k damping 3.51

0.225 1.3× 10−3
σ2
0 initial variance 0.026
σ2
∞ long run variance 0.065
γι jump mean(VIX) × jump intensity 1.57

Θ2

λ1 long speed of reversion 1.57

0.05 9.0× 10−3
λ2 short speed of version 9.81
ξ1 long vol of vol 1.69
ξ2 short vol of vol 2.08
γ jump mean(VIX) 11.4

Θ3

ρ diffusion correlation -0.99

0.725 3.1× 10−4
% jump correlation -0.0032
θ jump mean(SPX) -0.156
v jump variance(SPX) 0.023

Table 2: The groups Θ1,Θ2,Θ3 are calibrated from SPX/VIX options on August 28, 2008.

the return. The RMSE of SPX options is 3.1 × 10−4. Its equivalent value in dollar term is
around 1300× 3.1× 10−4 ≈ $0.40. The RMSE of VIX options is 9.0× 10−3. Its equivalent
dollar value is approximately 22× 9.0× 10−3 ≈ $0.198.

9. Results

9.1. Term Structure of Variance Swaps

Figure 4 displays the term structure of variance swaps together with the current VIX
level. The current VIX price practically passes through a straight line determined by option
replicated variance swaps from the two nearest maturities. The calibrated long run variance
level σ2

∞ = 0.065, which suggests that the steady state instantaneous volatility is close to
0.255. The initial variance level is σ2

0 = 0.026, which is about 0.161 in terms of volatility
measurement. The damping is valued at 3.51. The half-life associated with the exponential
damping is approximately 0.197 years or 72 days, suggesting the variance level will be half
the distance towards its steady level after approximately 72 days.

9.2. Convexity Adjustment

A standard result from Jensen’s inequality implies the following inequality relationship
between variance futures EVIX2

T and volatility futures EVIXT :

EVIXT = E
√

VIX2
T ≤

√
EVIX2

T .

Hence, volatility futures is bounded above by the square root of variance futures. The
difference between the square root of variance futures and volatility futures is called the
convexity correction.
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Figure 6: OTM VIX option prices

Figure 5 reports VIX futures and the corresponding square root of 30-days forward vari-
ance swaps. The convexity correction is plotted by the right Y-axis. The correction starts
initially at 0, then it gets wider as time goes but becomes stable eventually. From the

model specification, we have limT→∞
√

EVIX2
T = limT→∞

√
EṼIX

2

T = σ∞. From equations
(8)(9)(10), the equilibrium VIX futures limT→∞ EVIXT depends on both Θ1 and Θ2.

9.3. OTM VIX Options

Figure 6 plots the OTM VIX option prices on August 28, 2008. For each long term ma-
turity, the model implied call prices are consistently undervalued at the high extreme strikes
and the model implied put prices are consistently overvalued at the low extreme strikes. The
reason is that the Heston dynamics are mis-specified. For an intuitive explanation, Figure 7
draws the total implied variance curves if the instantaneous variance process is described
by the Heston dynamics. The implied variance curves apparently have downward sloping
shapes in both tails. However, demonstrated in Figure 8, empirically, the implied variance
curves are upward sloping. Transforming into option prices, at the high extreme strikes, it
is not surprising that the OTM call prices derived from the Heston model are systematically
underestimated, and at the low extreme strikes, the put prices are overestimated. The mean-
reverting processe, such as the Ahn-Gao process (Ahn and Gao (1999)) and the GARCH
diffusion process (Bollerslev et al. (1994)), might be a better choice to rectify this tail in-
consistency. Empirical supportings for these two processes over the Heston are advocated in
Aı̈t-Sahalia and Kimmel (2007), and Bakshi et al. (2006). However, in the spirit of model
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Figure 9: OTM SPX option prices

tractability, they may short of closed analytical solutions to derivative valuations.

9.4. OTM SPX Options

Figure 9 presents the OTM SPX option prices across all maturities and available strikes
on August 28, 2008. Figure 10 reports the corresponding total implied variance curves
against the forward log moneyness. The model fits generally well to SPX derivatives.

Conclusion

The main feature of the two-factor model is that its factor coefficients are time-varying.
The time-varying coefficients are coherently bonded with the term structure of variance
swaps. In the interest of model tractability, the factors of the model are built upon affine
processes. We find the model fits well to SPX options. However, the VIX dynamics are
misspecified with the engagement of affine Heston dynamics. Examination of other mean-
reverting processes, at the sacrifice of analytical tractability, is left for the future research.
In addition to the Heston misspecification, the jump direction of instantaneous variance
process of the two factor model is refrained from granting negative values. To fortify model
robustness, an extension could also include permitting both negative and positive jumps.
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Fengler, M. R., Härdle, W., Villa, C., 2003. The dynamics of implied volatilies: A common
principal components approach. Review of Derivatives Research 6, 179–202.

Fonseca, J. D., Grasselli, M., Tebaldi, C., 2008. A Multifactor Volatility Heston Model.
Quantitative Finance 8 (6), 591–604.

Friz, P., Gatheral, J., December 2005. Valuation of volatility derivatives as an inverse prob-
lem. Quantitative Finance 5 (6), 531–542.

Gatheral, J., 2008. Consistent modeling of spx and vix options. Tech. rep., Merrill Lynch.

Kreyszig, E., 2005. Advanced Engineering Mathematics, 9th Edition. Wiley.

Lee, G. G. J., Engle, R. F., 1999. A permanent and transitory component model of stock re-
turn volatility. In: Engle, R. F., White, H. (Eds.), Cointegration Causality and Forecasting
A Festschrift in Honor of Clive WJ Granger. Oxford University Press, pp. 475–497.

Madan, D., Yor, M., 2010. The s&p 500 index as a sato process travelling at the speed of
the vix. Applied Mathematical Finance, 1–18.

Nelson, C. R., Siegel, A. F., October 1987. Parsimonious modeling of yield curves. Journal
of Business 60 (4), 473–89.

Neuberger, A., 1990. Volatility trading. London Business School Working Paper.

35



Neuberger, A., 1994. The log contract. Journal of Portfolio Management 20, 74–80.

Price, K., Storn, R. M., Lampinen, J. A., 2005. Differential Evolution: A Practical Approach
to Global Minimization. Natural Computing Series. Springer.

Skiadopoulos, G., Hodges, S., Clewlow, L., 1999. The Dynamics of the S&P 500 Implied
Volatility Surface. Journal of Economic Literature 3, 262–282.

Svensson, L., 1994. Estimating and interpreting foreward interest rates: Sweden 1992-1994.
Papers 579, Stockholm - International Economic Studies.

Todorov, V., Tauchen, G., 2011. Volatility jumps. Journal of Business and Economic Statis-
tics, Forthcoming.

Transon, A., 1841. Recherches sur la courbure des lignes et des surfaces. Journal de math-
matiques pures et appliques, 191–208.

Wilczynski, E. J., 1916. Some remarks on the historical development and the future prospects
of the differential geometry of plane curves. Bulletin of the American Mathematical Society
22 (7), 317–329.

36


