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Abstract 

 

Using simulations controlling for the manager’s ability to time the equity, bond and money 

markets, we compare daily and monthly market timing and global performance measures in 

terms of performance detection and ranking. Our main results highlight the joint importance of 

the trading frequency of the fictitious timer and the data sampling frequency for model 

estimation. Specifically, daily timing measures are superior to those estimated monthly for 

daily timers, but inferior for occasional, twice-per-month timers. Global measures perform 

better than timing measures as they show more robustness to differences in trading and data 

sampling frequencies. In this experiment, we also find that conditional measures do not 

improve upon unconditional ones, and that conclusions are similar for performance detection 

versus ranking.  
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1. INTRODUCTION 

The U.S. mutual fund industry continues to grow significantly, from total net assets of 5 791 B$ in 

December 1998 to 10 349 B$ in December 2008
1
, in spite of the so-called “dotcom” financial crisis of 

2000, the “9/11” crisis of 2001 and the “subprime” crisis of 2008. The vast majority of the funds advocate 

active management strategies to generate added value compared to their benchmark index. The 

performance evaluation of these funds is one of the most long-standing issues in finance, starting with the 

classic contributions of Jensen (1968), Sharpe (1966), Treynor (1965) and Treynor and Mazuy (1966).  

There are now a large number of ways to measure the performance, with, for example, more than 

100 ways compiled by Cogneau and Hübner (2009a, 2009b). Yet the empirical results are difficult to 

reconcile as the performance evaluation may change significantly across models and other methodological 

choices, as first emphasized by Lehmann and Modest (1987). Furthermore, the many ways to measure the 

performane produce results that are inevitably subject to the benchmark choice or “bad model” problems. 

(See Roll, 1978; Dybvig and Ross, 1985a, 1985b; Green, 1986; Chen and Knez, 1996; Fama, 1998; and 

Ahn, Cao and Chrétien, 2009.) Ultimately, such issues call for the developpment of strategies to evaluate 

the performance measures themselves.  

  This paper uses simulations, controlling explicitly for the manager’s ability, to evaluate the 

performance of performance measures. The main advantage of such an experiment is that it allows us a 

cleaner comparison of the quality of different performance measures, a difficult task with real mutual 

funds as their true ability is unknown. Given the large number of existing ways to measure the 

performance, this paper focuses on measures of the market timing activities of portfolio managers that 

include a square benchmark return term in the spirit of Treynor and Mazuy (1966). We study the measures 

in terms of their ability to both significantly detect and correctly rank the performance of simulated 

portfolio managers. Our simulation setup and choice of models further reflect three important 

considerations.  

                                                 
1
 Statistics from the 2009 Investment Company Fact Book, p. 9.  
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First, as a mismatch between the frequency of informed trading and the frequency of timing 

measurement is potentially problematic (Goetzmann, Ingersoll and Ivković, 2000), we consider two 

different classes of informed managers (daily and occasional timers) as well as daily and monthly timing 

and global performance measurements. In our setup, the daily timers receive signals every day on future 

returns while the occasional timers receive similar signals twice per month on random days. The signals 

can be at worst random to at best perfect, depending on pre-specified managers’ ability levels, and 

motivate the timers to trade. The resulting portfolio returns are then evaluate daily and monthly to identify 

the ability levels needed for the different measures to detect significantly the performance or rank 

correctly the timers.  

 While performance studies using monthly data are widespread, there is relatively little evidence 

on the impact of using daily data. Bollen and Busse (2001) examine the market timing ability of equity 

funds and argue that the daily performance measures produce estimates that are more precise than their 

monthly counterparts, with a greater number of funds with positive evaluation. Bollen and Busse (2004) 

furthermore show that detecting persistence in the best equity funds is possible when they are evaluated 

with daily data. They do so by proposing a global performance measure that complements the market 

timing measure in the Treynor-Mazuy CAPM-based framework.
2
 The findings of these studies suggest 

that measurement frequency and the use of global performance measures are issues that need to be further 

examined.  

Second, as market timing activities induce time-varying risk exposures, we examine conditional 

versus unconditional measures. Conditional measures have been first proposed by Chen and Knez (1996) 

and Ferson and Schadt (1996) to account for public information and time-varying betas in performance 

evaluation. In a generalization, Christopherson, Ferson and Glassman (1998, hereafter CFG) also 

introduce time-varying alphas. Ferson and Schadt (1996) show that the evaluation can be biased when 

time-varying betas are assumed fixed as they are in unconditional measures. In this light, the findings of 

Bollen and Busse (2001, 2004), for example, could be problematic as they rely on unconditional measures 

                                                 
2
 Their global performance measure combines stock picking and market timing skills.  
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to evaluate market timing strategies that have time-varying betas. Comparing conditional and 

unconditional measures thus appear important in our context.  

One article that considers both conditional measures and daily data is Beaulieu, Coggins and 

Gendron (2009). They propose measures based on a bivariate GARCH framework that estimates the time-

varying betas and volatilities as functions of the public information aggregated in past error terms.
3
 Their 

results show that GARCH-type performance evaluations are usually higher than their competitors and 

significantly decrease the number of extreme (positive or negative) performance compared to daily 

unconditional measures. These findings suggest that some results of Bollen and Busse (2001) on the 

impact of using daily versus monthly data can be attributed to a misspecified periodic risk assessment.  

Based on this literature, this paper examines Treynor-Mazuy-type market timing and global 

performance measures based on four models: the unconditional CAPM, the unconditional multi-index or 

style benchmark of Sharpe (1992), which is popular in practice, the conditional CFG model from 

Christopherson, Ferson and Glassman (1998) and the BiGARCH model of Beaulieu, Coggins and 

Gendron (2009). Ultimately, we feel that the selection of these two unconditional and two conditional 

models relevant for estimation with daily and monthly data is consistent with our first two considerations.  

As our third consideration, in an attempt to generate realistic market timing strategies, we design 

our portfolio construction to emulate a typical asset allocation choice faced by balanced mutual funds. 

Specifically, based on their simulated trading signals, our timers allocate their portfolios between three 

asset classes, namely a stock index, a bond index and a money market index, so that the maximum 

allocation in a single class is 50%. We choose this strategy in order to get portfolios that more closely 

resemble real-life portfolios compared to the in-and-out, stock-index-versus-risk-free-asset-only portfolio 

choices common in the academic literature. We feel that the resulting comparison of performance 

measures should be more relevant. Studies dealing specifically with balanced funds are relatively rare. 

Treynor and Mazuy (1966), Becker, Ferson, Myers and Schill (1999), Ferson and Qian (2004), Aragon 

                                                 
3
 See McCurdy and Morgan (1992) for another financial application of this framework. They also provide a 

BiGARCH software that is used for part of our results. 
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(2004), Comer (2006) and Comer, Larrymore and Rodriguez (2009) are some examples using real data. 

Given that the skills involved in balanced funds management is precisely to time the evolution of different 

markets, we propose a first look at the ability of market timing and global performance measures for such 

type of funds.  

Some authors have studied the performance of performance measures with simulations, but in 

different contexts than ours. Goetzmann, Ingersoll and Ivković (2000) show that monthly market timing 

measures applied to fictitious managers changing their risk exposure daily are biased downwards. They 

however do not consider conditional measures and occasional-type traders, and focus exclusively on the 

timing of the stock market. Kothari and Warner (2001) and Kosowski, Timmermann, Wermers and White 

(2006) investigate more specifically equity asset selectivity performance measures. While the first study 

shows that selectivity measures are severely biased, the second reveals that there are nevertheless skilled 

managers whose performance cannot be attributed to luck.  

Coles, Daniel and Nardari (2006) propose the study perhaps the closest to ours. Calibrating their 

simulations on real equity mutual funds returns, they analyze the effectiveness of market timing measures 

when the unconditional models or reference portfolios are misspecified. Their results show that such 

misspecification leads to important biases in market timing measures, especially when they are estimated 

with daily data. In this paper, we look at these issues for unconditional and conditional measures using 

purely fictitious managers. Our simulation setup is more in line with the one proposed by Farnsworth, 

Ferson, Jackson and Todd (2000), who study monthly performance measures for equity funds using 

stochastic discount factors. 

Our main empirical results highlight the joint importance of the trading frequency of the fictitious 

timer and the data sampling frequency for model estimation. In particular, timing measures are relatively 

inefficient in both detecting performance and ranking when estimated with a data sampling frequency 

different from the active trading frequency. Global measures generally fare better, a superiority that is 

amplified when the manager’s active trading frequency is much higher than the measurement frequency. 

Specifically, for the daily timers, the daily market timing measures still work relatively well, with the 
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conditional BiGARCH model being the best. However, for the occasional timers, the global performance 

measures perform much better as they show more robustness to differences in trading and data sampling 

frequencies. We finally find that conditional measures do not generally improve upon unconditional ones.  

 The rest of the paper is divided as follow. The next section provides the theoretical context, 

including the setup for generating the simulated timers with varying ability and details on the performance 

measures under investigation. Section 3 describes the methodology for examining if the measures can 

detect significantly and correctly rank the performance of the simulated portfolios, as well as the data for 

portfolio construction. Section 4 presents and interprets the empirical results. Section 5 concludes.   

 

2. THEORETICAL CONTEXT 

This section first presents how we generate portfolio returns from private signals designed to capture the 

managers’ ability. We then discuss the conditional or unconditional, daily or monthly measures considered 

for performance evaluation and ranking.  

2.1. RETURNS OF SIMULATED TIMERS WITH VARYING ABILITY LEVELS 

The timing experiment investigated in this paper is based on signals that allow two types of fictitious 

portfolio managers, denoted daily timers and occasional timers, to rank the assets under consideration in 

terms of their future returns compared to their average returns. This subsection details our setup and 

highlights the portfolio choices made in an attempt to produce a market timing strategy relevant for 

balanced mutual funds.  

On each trading day, we consider timers who receive an investment signal for each asset with an 

accuracy that depends on their pre-specified ability to forecast the asset return until the next trading day. 

Specifically, inspired by Farnsworth, Ferson, Jackson and Todd (2002), we establish the signal as follows: 
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 Signali,t-1 = The signal at day t-1 on the return of asset i over the next pT days; 

 γ = The ability level of the timer, which can vary between 0 and 1; 

pti
R

,
= The log return of asset i at day pt ; 

iR = The full-sample mean of the daily log returns of asset i; 

  = An independent N(0,1) random number; 

i = The full-sample standard deviation of the daily log returns of asset i. 

 

According to this equation, a timer with perfect skills (γ = 1) receive a signal for each asset that 

corresponds precisely to the asset’s future return in terms of deviation from its mean. Oppositely, a timer 

without any skill (γ = 0) receive a completely random signal with a volatility increasing in the asset’s 

standard deviation. A timer with ability level between 0 and 1 thus receives a “mixed” signal that becomes 

better as γ increases.  

Apart from considering timers with varying ability levels, the above equation allows us to create 

two types of timers to account for two frequencies of informed trading. The first type, denoted the daily 

timers, receives daily signals on the next day’s return (so that pT = 1) and trades every day. The daily 

timers are thus high-frequency traders. The second type, denoted the occasional timers, receives two 

signals per month on random days and trades only on those two days. Specifically, we draw randomly two 

days of trading in each month of our sample. The signal for each asset is then based on the cumulative 

return from one transaction date to the next (so that the value of pT changes randomly twice per month 

according to the number of days between two consecutive transaction dates). The occasional timers not 

only trade more infrequently than the daily timers, but they also receive their information randomly. 

Hence, they do not have a clear pattern of informed trading, a further difficulty in measuring their ability.  

Equipped with their signalling information, the timers then rank the assets according to their 

signals to form their investment portfolios. To reproduce the investment opportunities faced by balanced 

mutual funds, we assume that the timers receive signals on three assets, namely a stock index, a bond 

index and a money market index. In effect, the signals thus help the managers time the evolution of three 
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major asset classes (stock, bond and money markets) and classified them from the most advantageous to 

the least advantageous. At each transaction date, the timers invest 50% in the first index (or highest 

signal), 33% in the second index and 17% in the third index (or lowest signal) to form their actively 

managed portfolios. The return of this portfolio in excess of the risk-free rate is denoted by tr , to explicitly 

account for the ability levels γ of the managers under consideration. The reference portfolio excess return 

used in the performance measures, denoted trr , hereafter, assumes an allocation of 33.3% in each index, 

which can be interpreted as the strategic allocation target of the timers, whose active portfolio weights 

range from 17% to 50%.  

2.2. PERFORMANCE MEASURES 

To evaluate the performance of the simulated timers, we use Treynor-Mazuy-type market timing and 

global performance measures based on four models: the unconditional CAPM, the unconditional multi-

index or style benchmark of Sharpe (1992), the conditional CFG model from Christopherson, Ferson and 

Glassman (1998) and the BiGARCH model of Beaulieu, Coggins and Gendron (2009). Each measure is 

presented in details below.  

2.2.1. UNCONDITIONAL MEASURES WITH THE CAPM 

Treynor and Mazuy (1996) first propose to measure the market timing ability of managers by adding a 

quadratic term to the CAPM of Sharpe (1964), Lintner (1965) and Mossin (1966). This idea is the basis of 

our first unconditional measure. However, with daily returns, Scholes and Williams (1977) indicate that 

the gradual incorporation of information in prices through non-synchronous trading and other 

microstructure effects implies that betas at day t are better estimated by the sum of the coefficients 

associated with the market premium at days t and t-1. In this context, Chen, Ferson and Peters (2010) 

suggest a daily measure of market timing that also corresponds to the sum of the market timing 

coefficients for days t and t-1. The diffusion process for the daily returns of a timer’s managed portfolio 

can therefore be written as follows: 
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2 2
, 1 , 2 , 1 3 , 4 , 1 ,t r t r t r t r t tr r r r r                  , (2) 

 

where: 

 

tyr , = The excess return of the timer’s portfolio with ability level γ at day t;  

trr , = The excess return of the reference portfolio r at day t; 

2
,trr = The squared excess return of the reference portfolio r at day t; 

ty , = The error term of the timer’s portfolio with ability γ at day t. 

 

 Hereafter, for simplicity, we refer to this form as the CAPM model. The parameters  and  are 

estimated by OLS with Newey and West (1987) standard errors to correct for autocorrelation and 

heteroskedasticity in error terms. Following Chen, Ferson and Peters (2010), the daily CAPM market 

timing measure is given by 43    . The CAPM global performance of Bollen and Busse (2004) is 

given by 2
3 4 ,( ) r tr      , where 

2
,r tr is the average squared excess return of the reference portfolio over 

the sample. When evaluated with monthly data, the model does not include the t-1 variables. Hence, 

042    and the CAPM market timing and global performance measures correspond respectively to

3 and
2

3 ,r tr    .  

2.2.2. UNCONDITIONAL MEASURES WITH A MULTI-INDEX MODEL 

We also analyze the unconditional performance measures with a multi-index model as proposed by Sharpe 

(1992). This technique, also known as a style analysis, is popular in practice. Rather than use a single 

reference portfolio as risk factor, we regress the returns of the simulated timers on the returns of three 

market indexes while restricting the sum of the coefficients to be equal to 1, which reflects the average 

styles of the managed portfolios. When using daily data, still accounting for the gradual incorporation of 

information, the diffusion process becomes: 
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, (3) 

 

where: 

 

,s tr = The excess return of the stock index;  

,b tr = The excess return of the bond index; 

,m tr = The excess returns of the money market index. 

 

 Hereafter, we refer to this form as the Multi-Index model. The Multi-Index market timing and 

global performance measures are then defined in the same way as those of the CAPM model, i.e. 7 8  

and
2

7 8 ,( ) r tr      , respectively. With monthly data, we eliminate the t-1 variables and restrict to one 

the sum of the coefficients of the three index returns at period t. The Multi-Index market timing and global 

performance measures become 7  and
2

7 ,r tr    , with parameters  and  still estimated by 

OLS with Newey and West (1987) standard errors.4  

2.2.3. CONDITIONAL MEASURES FROM CHRISTOPHERSON, FERSON AND GLASSMAN (1998) 

As in Christopherson, Ferson and Glassman (1998) (CFG, subsequently), we define the conditional alpha 

and beta as linear functions of predetermined financial information variables [ 1, tiz ].5 These variables are 

defined as deviations from their sample average, [ )(1,1, ZEZz titi   ]. The diffusion process for daily 

returns then becomes: 

                                                 
4
 We also investigate the unconditional non-traded factors model examined by Farsnworth, Ferson, Jackson and 

Todd (2002), a model that included bond factors (Tbill yield, Default, Slope, Convexity) and equity factors (SMB, 

HML). We do not report its results as the specification appears problematic in our sample and the parameters are 

poorly estimated and unreliable.  
5
 The information variables that show the most explanatory power for the market premium in our sample are the 

variation in the short-term interest between t-2 and t-1 1, 1tz  
  and a measure of liquidity defined as the difference 

between the yield on AA commercial papers and the short-term interest rate (Gatev and Strahan, 2006) 2, 1tz  
  . 
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 Parameters are estimated by OLS with the Newey and West (1987) correction. The ia and ib  are 

respectively measuring the sensitivity of the conditional alpha and beta to the different 1, tiz . The average 

conditional alpha and beta are provided by 0a and 0b , respectively. With daily data, the CFG market 

timing and global measures correspond respectively to 43    and 2
0 3 4 ,( ) r ta r     . With monthly 

data, these CFG conditional measures become 3 and 2
0 3 ,r ta r   since 042     in equation (5). 

2.2.4. CONDITIONAL MEASURES WITH A BIGARCH SPECIFICATION 

In the CAPM context with a bivariate GARCH conditional specification of the risk measures, we can 

obtain the performance evaluation through the joint estimation of a system of equations. Equations (6) and 

(7) describe the diffusion processes for the excess returns of the reference portfolio and the managed 

portfolio with ability level γ, respectively. Equation (8) shows the bivariate GARCH specification of the 

seconds moments proposed by Engle and Kroner (1995) and Kroner and Ng (1998)6, and applied to 

performance measurement by Beaulieu, Coggins and Gendron (2009). 
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where: 

 

                                                 
6
 This model was first introduced by Baba, Engle, Kraft and Kroner (1990) and is known as the BEKK model.   
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ra = The constant for the reference portfolio r; 

kia = The parameters of sensitivity to the information variables 1, ti
z for portfolios k = γ or r; 

0a = The mean conditional alpha with GARCH second moments specification;  

tH = The matrix of conditional second moments for the error terms of portfolios γ and r at t; 

,r th = The conditional covariance between the error terms of portfolios γ and r; 

,r th = The conditional variance of the error terms of portfolio r;  

,th = The conditional variance of the error terms of portfolio γ; 

C = The 22 triangular matrix with parameters capturing the constant GARCH effect; 

A = The 22 symmetric matrix with parameters capturing the ARCH effect; 

B  = The 22 symmetric matrix with parameters capturing the GARCH effect; 

G = The 22 symmetric matrix with parameters capturing the asymmetric ARCH effect; 

te = The vector of stacked error terms '
, ,( , )r t te e ; 

t = The vector '
, ,( , )r t t   where ,r t = max [ ,0, r te ] and

t, = max [
te ,,0  ]. 

 

 In this form, referred to the BiGARCH model hereafter, the error terms te follow a bivariate 

normal distribution N(0, tH ). A GARCH specification for the second moments is widely used in financial 

literature and it represents a relevant choice in the conditional approach proposed by Beaulieu, Coggins 

and Gendron (2009). This system of equations allows to condition on public information the expected 

reference portfolio premium, as well as the specific risk [
th ,
] and beta of portfolio γ. The beta is 

represented by the ratio of the conditional covariance between the returns on portfolios γ and r [ ,r th ] to 

the conditional variance of the returns of portfolio r [ ,r th ]. The risk measures are implicit functions of all 

public information aggregated in past error terms7 and the expected reference portfolio premium depends 

on the same pre-determined information variables 1, tiz used in the CFG model of equation (5). The 

conditional alpha is a function of different information variables , 1
a
i tz  , namely the error term , 1te   as well 

as dummies for the January and week-end effects (French, 1980).  

                                                 
7
 Since GARCH (1,1) models condition the second moments on the error term and second moment of the previous 

period, they can be seen as ARCH( ) models. Accordingly, the risk measures are not only functions of the error 

term of the previous period, but, recursively, they also become functions of all past error terms.  
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This system of equations is estimated by quasi-maximum likelihood with robust standard errors 

following Bollerslev and Wooldridge (1992). With daily data, we define the conditional BiGARCH 

market timing and global measures as respectively 43    and
2

,430 )( tmra    . We do not 

consider an estimation with monthly data since the GARCH specification is more appropriate for high-

frequency returns and large number of observations (Nelson, 1990, 1992). 

 

3. COMPARATIVE METHODOLOGY AND DATA 

This section presents the methodology for comparing the performance of the different market timing and 

global measures as well as the data used for the empirical results.  

3.1. METHODOLOGY TO COMPARE THE PERFORMANCE OF THE MARKET TIMING MEASURES 

We examine the performance of the performance measures in two ways. First, we study their ability to 

detect significant performance. For each ability level γ, we simulate the signals needed to form the returns 

of 180 daily timers and 180 occasional timers. We then assess their performance with every measure. If 

the measure properly account for the market timing activities, it should be able to detect significant 

performance at a low ability level γ. A less effective performance measure should detect a significant 

performance only at a higher ability level γ. For each performance measure and each ability level γ, we 

summarize the results by computing a t-statistic on the significance of the mean performance value across 

the 180 evaluations.  

Second, we verify if the ranking of the timers according to each performance measure corresponds 

to the expected classification based on the ability level γ. A good performance measure should rank the 

timers according to their pre-specified ability, while a bad measure should instead classify them randomly. 

We validate the ability of the performance measures to correctly rank the timers by using the index of 

coincidence [IC] of Friedman (1920). This test allows to explicitly check whether the ranking based on a 

performance measure and the one based on the true ability level γ are dissimilar (the null hypothesis), or if 

they are sufficiently comparable to reject the null. The test is calculated as follows:  
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where k is the number of ranked timers and iRank is the average, for timer i, of his rank based on a 

performance measure and his rank based on the true ability level. If the two rankings are opposite, the 

average of the ranks for each timer will tend to be equal to the same value, approximately (k+1)/2. The IC 

statistic follows a Chi-square distribution with k-1degrees of freedom. For each performance measure and 

each ability level γ, we summarize the results by providing the mean p-value associated with the IC 

statistics across the 180 evaluations.  

3.2. DATA 

This study examines the performance of simulated timers who allocate their assets between a stock index, 

a bond index and a money market index. The stock index is the CRSP value-weighted index of U.S. stocks 

from the web site of Kenneth R. French. The bond index is the Aggregate U.S. Bond Index from Barclay’s 

Capital. The money market index is derived from the 3-month U.S LIBOR rate8 available on Bloomberg. 

The data cover the period beginning on January 2, 2003, and ending on July 31, 2009, for a total of 1,694 

daily observations. Table 1 presents some daily descriptive statistics on the variables used in this study.  

Panel A examines the portfolio returns of the daily timers, who trade every day, or the occasional 

timers, who trade twice per month on random days. The statistics are global averages across all 180 

simulations for each ability level and all ability levels considered. The daily timers are assumed to have 

ability levels varying from γ = 0 to γ = 0.15 by 0.01 and the occasional timers are assumed to have ability 

levels varying from γ = 0 to γ = 0.35 by 0.01.9 The results highlight that, even with much lower ability 

levels considered, the daily timers enjoy a much larger number of opportunities to time the indexes, 

resulting in a higher mean return than the occasional timers.  

                                                 
8
 For an example on using this rate to form a money market index, see McCauley (2001). 

9
 A gamma of 0.35 for our best occasional timers corresponds to a skill level slightly superior to the one for the best 

funds evaluated by Farnsworth, Ferson, Jackson and Todd (2002). Similarly, a gamma of 0.15 for our best daily 

timers also generates performances slightly better than those in their article.  
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Descriptive statistics on the returns of the reference portfolio, the stock index, the bond index, the 

money market index and the risk-free asset, and on the lagged information variables are shown in Panel B. 

Although the sample contains the recent “subprime” recession, the data produce the expected risk-return 

tradeoff between the markets. The mean stock index return (0.0307%) is higher than the mean bond index 

return (0.0178%), which is in turn higher than the mean money market return (0.0121%). In addition, the 

standard deviation of returns is greater for stocks (0.0136%) compared to bonds (0.0026%) and money 

market (0.0016%).  

 For all variables, the Jarque-Bera tests reject normality at the 1% significance level, which implies 

asymmetric and/or fat-tails distributions. Also, the Ljung-Box Q tests and Q² tests show evidence of 

autocorrelations in the values of the variables (except for the bond index returns) and their square values at 

the 1% significance level. Models that take into account the autocorrelation and heteroskedasticity in error 

terms, like the BiGARCH model, should be relevant. 

 

4. EMPIRICAL RESULTS 

This section presents the empirical results for the unconditional and conditional monthly performance 

measures estimated with daily or monthly data.  

4.1. DESCRIPTIVE STATISTICS OF THE PERFORMANCE MEASURES 

Table 2 gives descriptive statistics on the performance measures (market timing and global) of the 

simulated market timers with daily transactions (panel A) or occasional transactions (panel B). The 

measures are estimated with either daily data or monthly data and consider timing ability levels between γ 

= 0 and γ = 0.15 for daily timers and between γ = 0 and γ = 0.35 for occasional timers. The table provides 

overall statistics (mean, standard deviation, maximum and minimum) as well as the mean and standard 

deviation conditional on pre-specified ranges of timing ability.  

 Panel A shows that the average market timing measures are generally similar across models, with 

values around 0.75 with daily data and 0.30 with monthly data. The only notable exception is the 

BiGARCH model which obtains average timing measures that are approximately 0.1 greater than the other 
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models. The result for this conditional model is in accordance with a common finding in the literature that 

conditional performance measures produce higher evaluation than their unconditional counterparts for 

mutual funds (Ferson and Schadt, 1996; Beaulieu, Coggins and Gendron, 2009). However, we do not find 

such a result for the other conditional measures we consider, namely the BiGARCH global measures and 

the CFG timing and global measures, or when we examine the results for the occasional market timers. 

Throughout our results, the BiGARCH timing measure is better at evaluating the ability of daily market 

timers than the other timing measures. Focusing on the global measures, all measures are similar as well, 

producing average values around 0.017 with daily data and between 0.32 and 0.48 with monthly data. 

While the daily global performance measures are very close across models, they vary more when 

estimated with monthly data. Given the samples of 1694 daily observations versus 79 monthly 

observations for the estimation, the daily performance measures are estimated more precisely than the 

monthly ones.  

 For the occasional timers examined in panel B, the results show that the market timing measures 

estimated with monthly data better capture the managers’ timing ability than the ones estimated with daily 

data. The global measures are similar across models.  

4.2. FORMAL COMPARISON OF PERFORMANCE EVALUATION DETECTION 

Table 3 shows the t-statistics of the performance measures (market timing and global) for the daily market 

timers with varying ability levels. Shaded statistics indicate significance at the 5% level.  

First, the timing measures estimated with daily data require lower ability levels before capturing 

significantly the ability of daily market timers than their equivalent estimated with monthly data. This 

finding suggests that the timing measures estimated with a data sampling frequency the same as the 

manager’s active trading frequency allow a better assessment of the performance.  

Second, the global performance measures are useful in detecting the timing ability as we obtain 

significant values at lower ability levels than with the market timing measures. This more powerful 

detection is particularly important for the monthly measures, suggesting than the use of global (as opposed 
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to market timing) performance measures is needed when the manager’s active trading frequency is much 

higher than the measurement frequency.  

Third, comparing the models, the timing measure of the BiGARCH model requires the smallest 

ability level, specifically γ = 0.05, for a significant market timing performance. The BiGARCH timing 

measure thus appears the best specified in our setup. The global measures of all the models perform 

relatively similarly, with significant detection at γ = 0.05. The BiGARCH model is the only model under 

comparison for which its global measure does not improve upon its timing measure in detecting an 

abnormal performance.  

Using the format of table 3, table 4 provides the t-statistics of the performance measures in the 

case of the occasional market timers, with significant statistics at the 5% level still shaded.  

First, in contrast to the results in table 3, the monthly timing measures now require lower ability 

levels than the daily timing measures for capturing a significant timing performance. Thus, for the 

occasional managers, who trade twice per month on random days, the daily timing measures are less 

powerful than the monthly timing measures.  

Second, similar to the results for the daily timers, the market timing measures for the occasional 

timers become significant at higher ability levels than the global measures. However, looking at 

magnitudes, the global measures now appear much more powerful than the timing measures, with 

significant detections starting at γ = 0.16 for the best global measures compare to γ = 0.25 for the best 

timing measures. The timing measures are thus relatively inefficient when estimated with a data sampling 

frequency different from the active trading frequency. The global measures estimated at any frequency 

appear able to compensate for this inefficiency.  

 Third, comparing the models, the most powerful models in properly detecting significant timing 

ability for the occasional timers are the two unconditional models (CAPM and Multi-Index), which 

produce similar results. The conditional models (CFG and BiGARCH) perform relatively poorly compare 

to the unconditional models, a difference that was not observed for the daily timers. This poor 

performance is particularly strong for the measures estimated with daily data, suggesting that considering 
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conditioning variables that controls for the public information at the wrong frequency might be more 

hurtful than helpful.10 This issue calls for further investigation.  

4.3. FORMAL COMPARISON OF OBSERVED VERSUS EXPECTED RANKINGS 

Tables 5 and 6 show the average p-values of tests on the equality between the observed performance 

ranking from the performance measures (market timing and global) and the expected performance ranking 

from the ability levels. The tests are based on the index of coincidence statistics IC proposed by Friedman 

(1920). In the results tabulated in the γ = 0.04 row, the tests look at the performance ranking of the five 

timers generated by varying the ability levels from γ = 0 to γ = 0.04 by 0.01. In each subsequent row, the 

number of ranked timers is increased by one following the ability level. Thus, for example, in the results 

tabulated in the γ = 0.14 row, the tests look at the ranking of the 15 timers generated by varying the ability 

levels from γ = 0 to γ = 0.14 by 0.01. A low p-value indicates that a model has a high ability to rank the 

managers correctly. It is more likely when a large cross-section of ability levels is considered. Tables 5 

and 6 provide the average results for the 180 daily and occasional market timers, respectively. Shaded p-

values indicate significance at the 5% level.  

 Tables 5 and 6 provide findings on performance ranking similar to the ones reached from tables 3 

and 4 on performance detection. In table 5, the timing measures estimated with daily data require lower 

ability levels before ranking correctly, at the 5% significance level, the ability of daily market timers than 

their equivalent estimated with monthly data. Also, the global performance measures are useful in ranking 

correctly the timing ability as they produce significant values at lower ability levels than the market timing 

measures. Finally, the global measures perform relatively similarly across models, while the timing 

measure of the BiGARCH model needs the smallest ability level of all the timing measures to rank 

correctly the daily timers.  

 In table 6, the monthly timing measures require lower ability levels than the daily timing measures 

for ranking correctly the occasional timers at the 5% significance level. Furthermore, the ranking p-values 

                                                 
10

 As pointed out by Farnsworth, Ferson, Jackson and Todd (2002), it is possible that low correlations between the 

variables taken into account in the models and the simulated portfolio returns generate greater variability in the 

performance measures, leading to insignificantly different from zero values. 
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of the market timing measures become significant at much higher ability levels than the ones of the global 

measures. Finally, comparing the models, the most powerful models in properly ranking the occasional 

timers are the two unconditional models (CAPM and Multi-Index), with once again the two conditional 

models (CFG and BiGARCH) performing relatively poorly.  

 The most important difference in results between this section and the previous one is that the 

measures require higher ability levels to rank correctly the timers than to detect significantly their 

performance. For example, for the daily timers and the daily timing measures, the CAPM, Multi-Index 

CGF and BiGARCH models detect significant performance with ability levels starting at 0.07, 0.07, 0.08 

and 0.05, respectively, while they rank the timers correctly with ability levels starting at 0.14, 0.15, 0.15 

and 0.13, respectively. For the occasional timers and the monthly global measures, the CAPM, Multi-

Index and CGF models detect significant performance with ability levels starting at 0.17, 0.16 and 0.21, 

respectively, while they rank the timers correctly with ability levels starting at 0.23, 0.23, and 0.27, 

respectively. This finding is consistent with the literature on the difficulty of precisely ranking mutual 

funds (See Roll, 1978; Dybvig and Ross, 1985; Green, 1986; Lehmann and Modest, 1987; Chen and 

Knez, 1996; and Ahn, Cao and Chrétien, 2009).  

 Even if tests on significant performance appear more powerful than tests on correct ranking, it is 

interesting to note that the conclusions are similar for the two methodologies. In particular, timing 

measures are relatively inefficient in both detecting performance and ranking when estimated with a data 

sampling frequency different from the active trading frequency. Global measures generally fare better, a 

superiority that is amplified when the manager’s active trading frequency is much higher than the 

measurement frequency. Finally, conditional measures that account for information at another frequency 

that the one considered by the market timers might be problematic.  

 

5. CONCLUSION 

In the literature, several models have been proposed to evaluate the performance of portfolio managers. 

The objective of our study is to evaluate the performance of those performance models. We focus on 
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selected measures of market timing ability in an environment where the ability to time the stock, bond and 

money markets is controlled through simulations in a setup inspired by Farnsworth, Ferson, Jackson and 

Todd (2002). We are interested in the conditional or unconditional performance measures evaluated with 

daily or monthly data from four different models. We study either market timing measures with a square 

reference portfolio term, in the spirit of Treynor and Mazuy (1966), or global performance measures 

following Bollen and Busse (2004). We analyze the ability of the different performance measures to detect 

significant performance and to rank performance correctly. We consider daily timers, who receive a 

trading signal every day, and occasional timers, who trade two times per month on random days.  

Our results show that the more comprehensive global measures perform better than the more 

standard timing measures. This finding is particularly true when there is a mismatch between the trading 

frequency of the simulated timers and the estimation frequency of the performance measures. For the daily 

timers, the daily market timing measures still work relatively well, with the conditional BiGARCH model 

being the best. However, for the occasional timers, the global performance measures perform much better 

as they show more robustness to differences in trading and data sampling frequencies. We finally find that 

conditional measures do not generally improve upon unconditional ones, and that our conclusions are 

unaffected by whether we examine performance detection or ranking. 
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Table 1: Descriptive Statistics of Daily Data 

 

 

 
 

NOTES: This table presents descriptive statistics of the daily data series. These series include 1694 observations over a period of 

six and a half years, from January 1, 2003, to July 31, 2009. Panel A shows average statistics for the daily portfolio returns, 

generated with varying ability levels γ, of the daily timers, who trade every day, or the occasional timers, who trade twice per 

month on random days. Panel B presents the statistics for the daily index returns (in A) and lagged information variables (in B). 

The statistics are the mean, standard deviation, minimum, maximum, as well as the values of the Jarque-Bera normality test (JB-

Test) and the Ljung-Box tests on the autocorrelation of the variables (Qtest) or the squared variables (Q² test) at K=10 lags. The 

Jarque-Bera and the Ljung-Box statistics follow Chi-square distributions with respectively 2 and 10 degrees of freedoms. *** 

denotes significance at the 1% level.  

Mean S.D. Max Min JB Test Qtest Q
2
 test

(x100) (x100) (x100) (x100) (K=10) (K=10)

Panel A: Descriptive statistics the daily and occasional timers

Daily timers 0.0369 0.4991 5.7748 -4.5262 31720.90 *** 42.34 *** 583.35 ***

Occasional timers 0.0234 0.4927 5.7748 -4.5262 24814.09 *** 54.86 *** 1203.86 ***

Panel B: Factor and index descriptive statistics

A. Index:

Rr 0.0201 0.4494 3.8560 -3.0212 8752.91 *** 45.19 *** 1758.50 ***

Stocks Market 0.0307 1.3663 11.5130 -8.9970 8754.11 *** 44.90 *** 1654.10 ***

Bonds Market 0.0178 0.2536 1.3260 -1.2619 303.82 *** 12.93 193.01 ***

Money Market 0.0121 0.0135 0.1209 -0.0611 6128.98 *** 1986.70 *** 415.03 ***

Rf 0.0030 0.0015 0.0051 0.0000 100.31 *** 16437.53 *** 15338.42 ***

B. Lagged Instruments:

Delta on 3M Rates -0.0006 0.0071 0.7600 -0.8100 93133.69 *** 125.77 *** 1084.07 ***

Liquidity Prime 0.4287 0.5411 3.7300 -0.0300 4916.45 *** 13811.87 *** 9915.97 ***
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Table 2: Performance Evaluation of Simulated Market Timing Portfolios 

 

 

 
 

NOTES: This table shows descriptive statistics on the values of the market timing (Ti) and global (Gi) performance measures 

estimated with daily data (i = d) or monthly data (i = m) for different models. The models are the unconditional CAPM (CAPM), 

the unconditional multi-index model (MI), the conditional model of Christophersen, Ferson and Glassman (1998) (CFG) and the 

conditional BiGARCH model (BiGARCH). Panel A gives the results for all the daily timers with ability levels varying from γ = 0 

to γ = 0.15 and for three groups (G1, G2, G3) based on increasing levels of ability. Panel B gives the results for all the occasional 

timers with ability levels varying from γ = 0 to γ = 0.35 and for six groups (G1, G2, G3, G4, G5, G6) based on increasing levels of 

ability. The statistics are the mean, standard deviation, maximum, minimum, as well as the mean and standard deviation 

conditional on the ability groups. The simulation procedure and performance evaluation measures are described in section 2. The 

data are presented in table 1.  

γ

Mean 0.744 0.304 0.017 0.483 0.709 0.295 0.017 0.438 0.754 0.255 0.017 0.320 0.840 0.018

S.D. 0.388 0.188 0.005 0.171 0.388 0.184 0.007 0.148 0.395 0.204 0.005 0.160 0.348 0.006

Max 2.139 1.014 0.049 1.386 2.101 0.985 0.055 1.264 2.228 0.943 0.048 1.064 2.670 0.050

Min -1.088 -0.471 -0.013 -0.532 -1.130 -0.453 -0.016 -0.454 -1.292 -0.522 -0.012 -0.474 -0.850 -0.015

G1 0 ≤ γ ≤ 0.05 0.289 0.096 0.005 0.153 0.254 0.093 0.006 0.138 0.309 0.078 0.006 0.095 0.367 0.007

(0.437) (0.201) (0.006) (0.183) (0.436) (0.195) (0.007) (0.157) (0.443) (0.217) (0.006) (0.161) (0.363) (0.007)

G2 0.06 ≤ γ ≤ 0.1 0.788 0.322 0.018 0.510 0.754 0.313 0.018 0.463 0.802 0.271 0.018 0.339 0.871 0.019

(0.393) (0.189) (0.005) (0.175) (0.392) (0.184) (0.007) (0.151) (0.395) (0.204) (0.005) (0.165) (0.351) (0.006)

G3 0.11 ≤ γ ≤ 0.15 1.245 0.535 0.030 0.852 1.211 0.519 0.030 0.773 1.239 0.452 0.030 0.573 1.377 0.030

(0.325) (0.173) (0.005) (0.154) (0.325) (0.169) (0.006) (0.134) (0.336) (0.189) (0.005) (0.155) (0.328) (0.006)

γ

Mean 0.122 0.141 0.009 0.209 0.091 0.140 0.009 0.203 0.080 0.072 0.005 0.168 0.076 0.002

S.D. 0.133 0.151 0.005 0.123 0.133 0.149 0.006 0.113 0.319 0.182 0.010 0.130 0.252 0.004

Max 0.458 0.645 0.028 0.690 0.423 0.640 0.032 0.683 0.998 0.745 0.037 0.696 1.185 0.020

Min -0.329 -0.508 -0.013 -0.334 -0.364 -0.507 -0.018 -0.307 -0.946 -0.581 -0.026 -0.364 -0.955 -0.016

G1 0 ≤ γ ≤ 0.05 0.048 0.003 0.001 0.015 0.012 0.003 0.001 0.016 0.019 -0.006 0.000 0.011 0.009 -0.001

(0.136) (0.145) (0.005) (0.121) (0.137) (0.143) (0.006) (0.112) (0.303) (0.178) (0.009) (0.130) (0.254) (0.004)

G2 0.06 ≤ γ ≤ 0.11 0.083 0.062 0.004 0.096 0.050 0.061 0.004 0.092 0.052 0.031 0.002 0.077 0.032 0.000

(0.132) (0.154) (0.005) (0.125) (0.133) (0.152) (0.006) (0.114) (0.332) (0.186) (0.010) (0.131) (0.245) (0.004)

G3 0.12 ≤ γ ≤ 0.17 0.103 0.108 0.007 0.164 0.071 0.107 0.007 0.159 0.053 0.042 0.004 0.124 0.056 0.001

(0.127) (0.153) (0.005) (0.119) (0.128) (0.151) (0.006) (0.110) (0.321) (0.182) (0.010) (0.130) (0.253) (0.005)

G4 0.18 ≤ γ ≤ 0.23 0.138 0.164 0.010 0.240 0.108 0.163 0.011 0.234 0.086 0.086 0.006 0.195 0.104 0.003

(0.120) (0.144) (0.005) (0.113) (0.120) (0.143) (0.005) (0.104) (0.302) (0.175) (0.009) (0.122) (0.241) (0.004)

G5 0.24 ≤ γ ≤ 0.29 0.165 0.220 0.014 0.322 0.136 0.218 0.014 0.313 0.113 0.111 0.008 0.257 0.119 0.003

(0.104) (0.133) (0.004) (0.105) (0.104) (0.131) (0.005) (0.098) (0.290) (0.160) (0.009) (0.118) (0.229) (0.004)

G6 0.30 ≤ γ ≤ 0.35 0.197 0.288 0.018 0.417 0.171 0.286 0.019 0.406 0.159 0.166 0.012 0.342 0.136 0.005

(0.092) (0.130) (0.004) (0.100) (0.092) (0.129) (0.005) (0.095) (0.272) (0.163) (0.008) (0.121) (0.215) (0.004)

Panel B: Descriptive statistics by group of occasional timers

CAPM Multi-Index  CFG BiGARCH

Panel A: A Descriptive statistics by group of daily timers
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BiGARCH
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dGCAPM
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mT
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mT

MI
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mGMI

dG NTFmG
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dG
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NTF
dT

CFG
dT

CFG
mT CFG

mG
CFG
dG
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dT BiGARCH
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dT
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mGCAPM
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mT
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mT

MI
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MI
mGMI

dG NTFmG
NTF
dG
NTF
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NTF
dT
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CFG
mT CFG
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Table 3: Evaluation Ability of the Performance Measures for the Daily Timers 

 

 

 
 

NOTES: This table presents the t-statistics on the significance of the evaluation of the market timing (Ti) and global (Gi) 

performance measures estimated with daily data (i = d) or monthly data (i = m) for the daily timers with ability levels γ varying 

from γ = 0 to γ = 0.15 and different models. The models are the unconditional CAPM (CAPM), the unconditional multi-index 

model (MI), the conditional model of Christophersen, Ferson and Glassman (1998) (CFG) and the conditional BiGARCH model 

(BiGARCH). The simulation procedure and performance evaluation measures are described in section 2. The t-statistics are defined 

in section 3.1. The data are presented in table 1. Shaded statistics indicate significance at the 5% level (lightest shade), the 2.5% 

level (middle shade) or the 1% level (darkest shade).  

γ

0 0.189 0.028 0.037 0.031 0.113 0.024 0.083 0.022 0.214 0.026 0.095 -0.096 0.461 0.371

0.01 0.344 0.183 0.363 0.301 0.268 0.180 0.319 0.307 0.379 0.127 0.420 0.106 0.670 0.643

0.02 0.471 0.435 0.755 0.695 0.386 0.439 0.614 0.730 0.518 0.342 0.805 0.662 0.766 0.890

0.03 0.817 0.528 1.222 0.985 0.741 0.523 0.993 1.032 0.885 0.378 1.262 0.616 1.212 1.285

0.04 0.944 0.857 1.411 1.336 0.856 0.860 1.127 1.389 0.946 0.689 1.447 1.122 1.275 1.499

0.05 1.283 0.887 2.133 1.749 1.204 0.881 1.660 1.850 1.342 0.632 2.169 1.177 1.713 1.923

0.06 1.368 1.400 2.237 2.117 1.287 1.398 1.818 2.209 1.377 1.140 2.283 1.638 1.778 2.162

0.07 1.782 1.301 3.070 2.518 1.698 1.295 2.330 2.644 1.863 0.945 3.067 1.648 2.278 2.550

0.08 2.025 1.795 2.997 2.822 1.934 1.799 2.472 2.936 2.053 1.437 3.079 2.035 2.404 2.822

0.09 2.425 1.881 4.276 3.537 2.342 1.874 3.283 3.743 2.485 1.419 4.315 2.280 3.109 3.601

0.1 2.530 2.189 3.948 3.685 2.440 2.185 3.081 3.827 2.475 1.745 4.045 2.631 2.886 3.379

0.11 3.088 2.398 5.236 4.647 2.998 2.382 3.994 4.842 3.011 1.815 5.176 3.102 3.590 4.169

0.12 3.254 2.775 4.926 4.648 3.151 2.764 3.800 4.820 3.124 2.293 5.023 3.467 3.896 4.464

0.13 3.838 2.993 6.234 5.619 3.738 2.974 5.027 5.858 3.773 2.289 6.080 3.624 4.229 5.196

0.14 4.310 3.650 6.181 6.111 4.205 3.640 4.921 6.340 4.057 2.890 6.189 4.144 4.299 4.902

0.15 4.966 3.769 7.362 6.928 4.850 3.734 6.122 7.108 4.727 2.796 7.185 4.101 5.063 6.160

CAPM Multi-Index  CFG BiGARCH
BiGARCH

dT BiGARCH
dGCAPM

dT
CAPM
mGCAPM

dGCAPM
mT

MI
mT

MI
dT

MI
mGMI

dG NTFmG
NTF
dG
NTF
mT
NTF
dT

CFG
dT

CFG
mT CFG

mG
CFG
dG
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Table 4: Evaluation Ability of the Performance Measures for the Occasional Timers 

 

 

 
 

NOTES: This table presents the t-statistics on the significance of the evaluation of the market timing (Ti) and global (Gi) 

performance measures estimated with daily data (i = d) or monthly data (i = m) for the occasional timers with ability levels γ 

varying from γ = 0 to γ = 0.35 and different models. The models are the unconditional CAPM (CAPM), the unconditional multi-

index model (MI), the conditional model of Christophersen, Ferson and Glassman (1998) (CFG) and the conditional BiGARCH 

model (BiGARCH). The simulation procedure and performance evaluation measures are described in section 2. The t-statistics are 

defined in section 3.1. The data are presented in table 1. Shaded statistics indicate significance at the 5% level (lightest shade), the 

2.5% level (middle shade) or the 1% level (darkest shade).  

 

γ

0 0.317 -0.226 -0.062 -0.143 0.059 -0.226 -0.050 -0.136 0.279 -0.098 0.103 -0.025 0.093 -0.223

0.01 0.281 0.026 0.050 -0.012 -0.003 0.034 0.033 0.026 0.003 0.069 -0.009 0.018 0.117 -0.134

0.02 0.211 0.057 0.151 0.122 -0.053 0.057 0.111 0.123 -0.067 -0.051 -0.068 0.050 -0.085 -0.331

0.03 0.330 -0.007 0.213 0.165 0.087 -0.013 0.161 0.150 0.193 -0.105 0.138 0.090 0.012 -0.235

0.04 0.425 0.021 0.318 0.235 0.157 0.020 0.294 0.250 -0.016 -0.107 -0.047 0.095 -0.008 -0.252

0.05 0.536 0.232 0.400 0.347 0.286 0.233 0.373 0.372 0.063 0.096 0.023 0.245 0.088 -0.064

0.06 0.584 0.246 0.498 0.459 0.303 0.245 0.472 0.477 0.145 0.101 0.142 0.305 0.066 -0.023

0.07 0.568 0.261 0.674 0.598 0.312 0.260 0.543 0.618 0.157 0.095 0.197 0.457 0.305 0.229

0.08 0.662 0.443 0.756 0.733 0.397 0.442 0.714 0.760 0.129 0.179 0.184 0.568 0.110 -0.008

0.09 0.674 0.289 0.865 0.705 0.424 0.295 0.854 0.784 -0.005 0.103 0.118 0.618 0.148 0.046

0.1 0.655 0.530 0.976 0.930 0.417 0.531 0.915 1.001 0.107 0.282 0.212 0.789 0.088 0.065

0.11 0.619 0.685 1.138 1.168 0.388 0.682 1.015 1.201 0.427 0.250 0.546 0.824 0.065 0.107

0.12 0.716 0.668 1.315 1.256 0.467 0.668 1.200 1.297 0.219 0.195 0.376 0.812 0.095 0.096

0.13 0.749 0.450 1.227 1.077 0.501 0.452 1.036 1.155 0.107 0.139 0.292 0.820 0.178 0.270

0.14 0.770 0.521 1.357 1.232 0.509 0.524 1.226 1.275 0.122 0.116 0.395 0.870 0.216 0.247

0.15 0.926 0.775 1.481 1.427 0.662 0.778 1.399 1.516 0.185 0.297 0.334 1.005 0.297 0.274

0.16 0.862 0.880 1.730 1.640 0.608 0.882 1.528 1.698 0.124 0.302 0.382 1.080 0.327 0.341

0.17 0.867 0.983 1.845 1.701 0.608 0.992 1.660 1.811 0.229 0.366 0.545 1.176 0.230 0.343

0.18 0.993 0.959 1.940 1.809 0.743 0.966 1.740 1.915 0.196 0.355 0.508 1.339 0.372 0.505

0.19 0.987 1.061 2.115 1.939 0.745 1.067 1.823 2.037 0.311 0.574 0.700 1.502 0.323 0.536

0.2 1.100 1.114 2.244 2.154 0.851 1.116 2.072 2.272 0.412 0.478 0.731 1.516 0.392 0.569

0.21 1.316 1.014 2.080 1.975 1.029 1.023 1.863 2.094 0.132 0.493 0.579 1.648 0.499 0.679

0.22 1.277 1.198 2.452 2.303 1.014 1.201 2.149 2.421 0.278 0.409 0.695 1.595 0.519 0.612

0.23 1.314 1.514 2.724 2.651 1.051 1.519 2.532 2.786 0.382 0.622 0.873 2.017 0.472 0.611

0.24 1.379 1.378 2.787 2.629 1.103 1.377 2.460 2.722 0.329 0.509 0.845 1.839 0.499 0.623

0.25 1.519 1.692 3.264 3.065 1.254 1.700 3.062 3.214 0.381 0.649 0.953 2.108 0.431 0.597

0.26 1.518 1.484 3.213 2.866 1.221 1.485 3.005 3.001 0.334 0.658 0.904 2.117 0.517 0.756

0.27 1.547 1.786 3.414 3.302 1.296 1.776 3.136 3.459 0.534 0.768 1.037 2.346 0.545 0.733

0.28 1.817 1.734 3.574 3.387 1.531 1.735 3.162 3.485 0.406 0.663 1.044 2.243 0.602 0.808

0.29 1.729 1.891 3.322 3.143 1.455 1.901 3.188 3.305 0.359 0.965 1.076 2.407 0.539 0.945

0.3 2.043 1.832 3.517 3.356 1.760 1.830 3.301 3.419 0.518 0.852 1.232 2.216 0.536 0.898

0.31 2.008 1.825 3.882 3.516 1.710 1.821 3.506 3.649 0.494 0.867 1.306 2.601 0.620 1.099

0.32 2.078 2.301 4.530 4.381 1.781 2.281 4.118 4.489 0.575 0.986 1.448 3.002 0.669 1.041

0.33 2.068 2.189 4.320 3.978 1.773 2.193 4.166 4.160 0.464 1.080 1.353 2.925 0.716 1.287

0.34 2.403 2.508 5.053 4.851 2.068 2.495 4.593 4.929 0.691 1.074 1.709 2.948 0.542 1.180

0.35 2.347 2.761 5.309 5.242 2.033 2.759 4.727 5.385 0.799 1.274 1.937 3.412 0.720 1.313
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dT
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Table 5: Ranking Ability of the Performance Measures for the Daily Timers 

 

 

 
 

NOTES: This table presents the average p-values from the IC statistics of Friedman (1920) on the significance of the ranking of the 

market timing (Ti) and global (Gi) performance measures estimated with daily data (i = d) or monthly data (i = m) for the daily 

timers with ability levels γ varying from γ = 0 to γ = 0.15 and different models. The models are the unconditional CAPM (CAPM), 

the unconditional multi-index model (MI), the conditional model of Christophersen, Ferson and Glassman (1998) (CFG) and the 

conditional BiGARCH model (BiGARCH). The simulation procedure and performance evaluation measures are described in 

section 2. The p-values and IC statistics are defined in section 3.1. The data are presented in table 1. Shaded statistics indicate 

significance at the 5% level (lightest shade), the 2.5% level (middle shade) or the 1% level (darkest shade).  

 

γ

0.04 0.324 0.321 0.232 0.246 0.322 0.323 0.272 0.242 0.331 0.350 0.230 0.263 0.315 0.272

0.05 0.283 0.292 0.186 0.208 0.281 0.295 0.225 0.201 0.289 0.324 0.182 0.239 0.262 0.231

0.06 0.256 0.243 0.154 0.169 0.255 0.246 0.185 0.163 0.261 0.282 0.151 0.202 0.226 0.186

0.07 0.215 0.217 0.118 0.135 0.215 0.217 0.149 0.128 0.219 0.262 0.117 0.175 0.182 0.152

0.08 0.185 0.184 0.093 0.108 0.185 0.185 0.119 0.102 0.190 0.227 0.092 0.143 0.153 0.120

0.09 0.149 0.157 0.072 0.083 0.149 0.159 0.090 0.078 0.153 0.201 0.071 0.115 0.119 0.092

0.1 0.126 0.129 0.056 0.065 0.126 0.131 0.073 0.060 0.132 0.171 0.056 0.091 0.101 0.074

0.11 0.099 0.109 0.044 0.050 0.099 0.111 0.057 0.047 0.107 0.151 0.044 0.070 0.078 0.059

0.12 0.081 0.087 0.035 0.040 0.081 0.088 0.046 0.038 0.087 0.122 0.035 0.055 0.062 0.047

0.13 0.064 0.071 0.028 0.032 0.064 0.071 0.036 0.030 0.068 0.103 0.028 0.044 0.048 0.037

0.14 0.050 0.056 0.023 0.025 0.050 0.056 0.029 0.024 0.055 0.083 0.023 0.035 0.039 0.029

0.15 0.039 0.044 0.019 0.021 0.040 0.045 0.023 0.020 0.044 0.068 0.019 0.028 0.031 0.024
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Table 6: Ranking Ability of the Performance Measures for the Occasional Timers 

 

 

 
 

NOTES: This table presents the average p-values from the IC statistics of Friedman (1920) on the significance of the ranking of the 

market timing (Ti) and global (Gi) performance measures estimated with daily data (i = d) or monthly data (i = m) for the 

occasional timers with ability levels γ varying from γ = 0 to γ = 0.35 and different models. The models are the unconditional 

CAPM (CAPM), the unconditional multi-index model (MI), the conditional model of Christophersen, Ferson and Glassman (1998) 

(CFG) and the conditional BiGARCH model (BiGARCH). The simulation procedure and performance evaluation measures are 

described in section 2. The p-values and IC statistics are defined in section 3.1. The data are presented in table 1. Shaded statistics 

indicate significance at the 5% level (lightest shade), the 2.5% level (middle shade) or the 1% level (darkest shade). 

  

 

γ

0.04 0.446 0.420 0.393 0.381 0.447 0.419 0.413 0.385 0.462 0.475 0.459 0.438 0.492 0.484

0.05 0.415 0.399 0.371 0.356 0.411 0.401 0.381 0.358 0.462 0.445 0.445 0.422 0.479 0.447

0.06 0.412 0.402 0.358 0.351 0.408 0.402 0.357 0.350 0.460 0.435 0.433 0.404 0.468 0.422

0.07 0.403 0.387 0.332 0.327 0.395 0.388 0.344 0.323 0.447 0.431 0.412 0.379 0.439 0.386

0.08 0.394 0.360 0.302 0.300 0.387 0.361 0.314 0.292 0.448 0.427 0.400 0.342 0.448 0.385

0.09 0.381 0.360 0.275 0.285 0.372 0.361 0.285 0.275 0.459 0.426 0.412 0.323 0.446 0.390

0.1 0.372 0.337 0.251 0.256 0.365 0.339 0.265 0.245 0.455 0.407 0.404 0.296 0.450 0.385

0.11 0.362 0.310 0.226 0.223 0.355 0.308 0.234 0.211 0.425 0.398 0.367 0.273 0.456 0.383

0.12 0.356 0.288 0.198 0.197 0.347 0.286 0.208 0.186 0.420 0.394 0.356 0.255 0.459 0.380

0.13 0.347 0.286 0.181 0.184 0.338 0.286 0.198 0.172 0.426 0.403 0.357 0.245 0.456 0.358

0.14 0.337 0.283 0.160 0.167 0.330 0.282 0.179 0.155 0.428 0.403 0.343 0.228 0.449 0.345

0.15 0.323 0.270 0.147 0.154 0.316 0.269 0.164 0.140 0.426 0.391 0.343 0.218 0.429 0.332

0.16 0.317 0.245 0.126 0.131 0.309 0.244 0.140 0.120 0.429 0.384 0.340 0.201 0.416 0.318

0.17 0.309 0.222 0.113 0.119 0.300 0.220 0.127 0.108 0.423 0.365 0.320 0.186 0.414 0.309

0.18 0.295 0.206 0.097 0.105 0.286 0.205 0.108 0.093 0.422 0.354 0.310 0.165 0.400 0.289

0.19 0.283 0.190 0.086 0.093 0.273 0.189 0.097 0.082 0.416 0.331 0.291 0.143 0.391 0.271

0.2 0.271 0.171 0.072 0.077 0.261 0.170 0.084 0.068 0.403 0.318 0.278 0.125 0.378 0.252

0.21 0.251 0.165 0.063 0.068 0.241 0.164 0.075 0.059 0.409 0.307 0.274 0.111 0.361 0.235

0.22 0.239 0.155 0.055 0.060 0.229 0.154 0.066 0.052 0.406 0.308 0.263 0.101 0.345 0.223

0.23 0.223 0.133 0.045 0.048 0.213 0.131 0.054 0.042 0.392 0.287 0.244 0.085 0.334 0.209

0.24 0.217 0.124 0.037 0.042 0.207 0.123 0.046 0.036 0.388 0.285 0.232 0.076 0.326 0.199

0.25 0.204 0.108 0.029 0.032 0.193 0.107 0.037 0.028 0.381 0.270 0.216 0.063 0.322 0.191

0.26 0.193 0.093 0.023 0.026 0.182 0.092 0.030 0.022 0.377 0.259 0.205 0.055 0.313 0.180

0.27 0.182 0.083 0.019 0.022 0.170 0.082 0.025 0.019 0.357 0.244 0.185 0.045 0.302 0.169

0.28 0.168 0.073 0.016 0.017 0.156 0.072 0.021 0.015 0.348 0.236 0.171 0.039 0.292 0.160

0.29 0.156 0.064 0.013 0.014 0.144 0.063 0.017 0.012 0.348 0.217 0.163 0.032 0.283 0.147

0.3 0.140 0.055 0.010 0.012 0.129 0.055 0.014 0.010 0.336 0.201 0.150 0.028 0.280 0.134

0.31 0.126 0.049 0.008 0.010 0.115 0.049 0.011 0.008 0.328 0.192 0.136 0.023 0.267 0.120

0.32 0.116 0.041 0.007 0.008 0.105 0.041 0.009 0.006 0.315 0.177 0.121 0.018 0.256 0.109

0.33 0.106 0.036 0.005 0.006 0.095 0.035 0.007 0.005 0.313 0.164 0.113 0.015 0.247 0.097

0.34 0.098 0.030 0.004 0.005 0.087 0.029 0.006 0.004 0.298 0.153 0.098 0.012 0.246 0.091

0.35 0.088 0.025 0.003 0.004 0.078 0.024 0.004 0.003 0.283 0.139 0.085 0.010 0.235 0.079
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