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1. INTRODUCTION

The U.S. mutual fund industry continues to grow significantly, from total net assets of 5 791 B$ in
December 1998 to 10 349 B$ in December 20081, in spite of the so-called “dotcom” financial crisis of
2000, the “9/11” crisis of 2001 and the “subprime” crisis of 2008. The vast majority of the funds advocate
active management strategies to generate added value compared to their benchmark index. The
performance evaluation of these funds is one of the most long-standing issues in finance, starting with the
classic contributions of Jensen (1968), Sharpe (1966), Treynor (1965) and Treynor and Mazuy (1966).

There are now a large number of ways to measure the performance, with, for example, more than
100 ways compiled by Cogneau and Hibner (2009a, 2009b). Yet the empirical results are difficult to
reconcile as the performance evaluation may change significantly across models and other methodological
choices, as first emphasized by Lehmann and Modest (1987). Furthermore, the many ways to measure the
performane produce results that are inevitably subject to the benchmark choice or “bad model” problems.
(See Roll, 1978; Dybvig and Ross, 1985a, 1985b; Green, 1986; Chen and Knez, 1996; Fama, 1998; and
Ahn, Cao and Chrétien, 2009.) Ultimately, such issues call for the developpment of strategies to evaluate
the performance measures themselves.

This paper uses simulations, controlling explicitly for the manager’s ability, to evaluate the
performance of performance measures. The main advantage of such an experiment is that it allows us a
cleaner comparison of the quality of different performance measures, a difficult task with real mutual
funds as their true ability is unknown. Given the large number of existing ways to measure the
performance, this paper focuses on measures of the market timing activities of portfolio managers that
include a square benchmark return term in the spirit of Treynor and Mazuy (1966). We study the measures
in terms of their ability to both significantly detect and correctly rank the performance of simulated
portfolio managers. Our simulation setup and choice of models further reflect three important

considerations.

! Statistics from the 2009 Investment Company Fact Book, p. 9.



First, as a mismatch between the frequency of informed trading and the frequency of timing
measurement is potentially problematic (Goetzmann, Ingersoll and Ivkovi¢, 2000), we consider two
different classes of informed managers (daily and occasional timers) as well as daily and monthly timing
and global performance measurements. In our setup, the daily timers receive signals every day on future
returns while the occasional timers receive similar signals twice per month on random days. The signals
can be at worst random to at best perfect, depending on pre-specified managers’ ability levels, and
motivate the timers to trade. The resulting portfolio returns are then evaluate daily and monthly to identify
the ability levels needed for the different measures to detect significantly the performance or rank
correctly the timers.

While performance studies using monthly data are widespread, there is relatively little evidence
on the impact of using daily data. Bollen and Busse (2001) examine the market timing ability of equity
funds and argue that the daily performance measures produce estimates that are more precise than their
monthly counterparts, with a greater number of funds with positive evaluation. Bollen and Busse (2004)
furthermore show that detecting persistence in the best equity funds is possible when they are evaluated
with daily data. They do so by proposing a global performance measure that complements the market
timing measure in the Treynor-Mazuy CAPM-based framework.? The findings of these studies suggest
that measurement frequency and the use of global performance measures are issues that need to be further
examined.

Second, as market timing activities induce time-varying risk exposures, we examine conditional
versus unconditional measures. Conditional measures have been first proposed by Chen and Knez (1996)
and Ferson and Schadt (1996) to account for public information and time-varying betas in performance
evaluation. In a generalization, Christopherson, Ferson and Glassman (1998, hereafter CFG) also
introduce time-varying alphas. Ferson and Schadt (1996) show that the evaluation can be biased when
time-varying betas are assumed fixed as they are in unconditional measures. In this light, the findings of

Bollen and Busse (2001, 2004), for example, could be problematic as they rely on unconditional measures

2 Their global performance measure combines stock picking and market timing skills.



to evaluate market timing strategies that have time-varying betas. Comparing conditional and
unconditional measures thus appear important in our context.

One article that considers both conditional measures and daily data is Beaulieu, Coggins and
Gendron (2009). They propose measures based on a bivariate GARCH framework that estimates the time-
varying betas and volatilities as functions of the public information aggregated in past error terms.® Their
results show that GARCH-type performance evaluations are usually higher than their competitors and
significantly decrease the number of extreme (positive or negative) performance compared to daily
unconditional measures. These findings suggest that some results of Bollen and Busse (2001) on the
impact of using daily versus monthly data can be attributed to a misspecified periodic risk assessment.

Based on this literature, this paper examines Treynor-Mazuy-type market timing and global
performance measures based on four models: the unconditional CAPM, the unconditional multi-index or
style benchmark of Sharpe (1992), which is popular in practice, the conditional CFG model from
Christopherson, Ferson and Glassman (1998) and the BIiGARCH model of Beaulieu, Coggins and
Gendron (2009). Ultimately, we feel that the selection of these two unconditional and two conditional
models relevant for estimation with daily and monthly data is consistent with our first two considerations.

As our third consideration, in an attempt to generate realistic market timing strategies, we design
our portfolio construction to emulate a typical asset allocation choice faced by balanced mutual funds.
Specifically, based on their simulated trading signals, our timers allocate their portfolios between three
asset classes, namely a stock index, a bond index and a money market index, so that the maximum
allocation in a single class is 50%. We choose this strategy in order to get portfolios that more closely
resemble real-life portfolios compared to the in-and-out, stock-index-versus-risk-free-asset-only portfolio
choices common in the academic literature. We feel that the resulting comparison of performance
measures should be more relevant. Studies dealing specifically with balanced funds are relatively rare.

Treynor and Mazuy (1966), Becker, Ferson, Myers and Schill (1999), Ferson and Qian (2004), Aragon

% See McCurdy and Morgan (1992) for another financial application of this framework. They also provide a
BiGARCH software that is used for part of our results.



(2004), Comer (2006) and Comer, Larrymore and Rodriguez (2009) are some examples using real data.
Given that the skills involved in balanced funds management is precisely to time the evolution of different
markets, we propose a first look at the ability of market timing and global performance measures for such
type of funds.

Some authors have studied the performance of performance measures with simulations, but in
different contexts than ours. Goetzmann, Ingersoll and Ivkovi¢ (2000) show that monthly market timing
measures applied to fictitious managers changing their risk exposure daily are biased downwards. They
however do not consider conditional measures and occasional-type traders, and focus exclusively on the
timing of the stock market. Kothari and Warner (2001) and Kosowski, Timmermann, Wermers and White
(2006) investigate more specifically equity asset selectivity performance measures. While the first study
shows that selectivity measures are severely biased, the second reveals that there are nevertheless skilled
managers whose performance cannot be attributed to luck.

Coles, Daniel and Nardari (2006) propose the study perhaps the closest to ours. Calibrating their
simulations on real equity mutual funds returns, they analyze the effectiveness of market timing measures
when the unconditional models or reference portfolios are misspecified. Their results show that such
misspecification leads to important biases in market timing measures, especially when they are estimated
with daily data. In this paper, we look at these issues for unconditional and conditional measures using
purely fictitious managers. Our simulation setup is more in line with the one proposed by Farnsworth,
Ferson, Jackson and Todd (2000), who study monthly performance measures for equity funds using
stochastic discount factors.

Our main empirical results highlight the joint importance of the trading frequency of the fictitious
timer and the data sampling frequency for model estimation. In particular, timing measures are relatively
inefficient in both detecting performance and ranking when estimated with a data sampling frequency
different from the active trading frequency. Global measures generally fare better, a superiority that is
amplified when the manager’s active trading frequency is much higher than the measurement frequency.

Specifically, for the daily timers, the daily market timing measures still work relatively well, with the



conditional BIGARCH model being the best. However, for the occasional timers, the global performance
measures perform much better as they show more robustness to differences in trading and data sampling
frequencies. We finally find that conditional measures do not generally improve upon unconditional ones.
The rest of the paper is divided as follow. The next section provides the theoretical context,
including the setup for generating the simulated timers with varying ability and details on the performance
measures under investigation. Section 3 describes the methodology for examining if the measures can
detect significantly and correctly rank the performance of the simulated portfolios, as well as the data for

portfolio construction. Section 4 presents and interprets the empirical results. Section 5 concludes.

2. THEORETICAL CONTEXT
This section first presents how we generate portfolio returns from private signals designed to capture the
managers’ ability. We then discuss the conditional or unconditional, daily or monthly measures considered
for performance evaluation and ranking.
2.1. RETURNS OF SIMULATED TIMERS WITH VARYING ABILITY LEVELS
The timing experiment investigated in this paper is based on signals that allow two types of fictitious
portfolio managers, denoted daily timers and occasional timers, to rank the assets under consideration in
terms of their future returns compared to their average returns. This subsection details our setup and
highlights the portfolio choices made in an attempt to produce a market timing strategy relevant for
balanced mutual funds.

On each trading day, we consider timers who receive an investment signal for each asset with an
accuracy that depends on their pre-specified ability to forecast the asset return until the next trading day.

Specifically, inspired by Farnsworth, Ferson, Jackson and Todd (2002), we establish the signal as follows:

T, B
signal,, =7(Q_R,, ~T, R )+@-7)®-|T, -0, ®
t,=1

where:



Signal;;, = The signal at day t-1 on the return of asset i over the next T days;
y = The ability level of the timer, which can vary between 0 and 1;
R, = The log return of asset i at day t,;

"p
ﬁi = The full-sample mean of the daily log returns of asset i;

® = An independent N(0,1) random number;
o, = The full-sample standard deviation of the daily log returns of asset i.

According to this equation, a timer with perfect skills (y = 1) receive a signal for each asset that
corresponds precisely to the asset’s future return in terms of deviation from its mean. Oppositely, a timer
without any skill (y = 0) receive a completely random signal with a volatility increasing in the asset’s
standard deviation. A timer with ability level between 0 and 1 thus receives a “mixed” signal that becomes
better as y increases.

Apart from considering timers with varying ability levels, the above equation allows us to create

two types of timers to account for two frequencies of informed trading. The first type, denoted the daily
timers, receives daily signals on the next day’s return (so thatT, = 1) and trades every day. The daily

timers are thus high-frequency traders. The second type, denoted the occasional timers, receives two
signals per month on random days and trades only on those two days. Specifically, we draw randomly two

days of trading in each month of our sample. The signal for each asset is then based on the cumulative
return from one transaction date to the next (so that the value of T, changes randomly twice per month

according to the number of days between two consecutive transaction dates). The occasional timers not
only trade more infrequently than the daily timers, but they also receive their information randomly.
Hence, they do not have a clear pattern of informed trading, a further difficulty in measuring their ability.
Equipped with their signalling information, the timers then rank the assets according to their
signals to form their investment portfolios. To reproduce the investment opportunities faced by balanced
mutual funds, we assume that the timers receive signals on three assets, namely a stock index, a bond

index and a money market index. In effect, the signals thus help the managers time the evolution of three



major asset classes (stock, bond and money markets) and classified them from the most advantageous to
the least advantageous. At each transaction date, the timers invest 50% in the first index (or highest

signal), 33% in the second index and 17% in the third index (or lowest signal) to form their actively
managed portfolios. The return of this portfolio in excess of the risk-free rate is denoted by r, , to explicitly
account for the ability levels y of the managers under consideration. The reference portfolio excess return
used in the performance measures, denotedr,  hereafter, assumes an allocation of 33.3% in each index,

which can be interpreted as the strategic allocation target of the timers, whose active portfolio weights
range from 17% to 50%.

2.2. PERFORMANCE MEASURES

To evaluate the performance of the simulated timers, we use Treynor-Mazuy-type market timing and
global performance measures based on four models: the unconditional CAPM, the unconditional multi-
index or style benchmark of Sharpe (1992), the conditional CFG model from Christopherson, Ferson and
Glassman (1998) and the BIGARCH model of Beaulieu, Coggins and Gendron (2009). Each measure is
presented in details below.

2.2.1. UNCONDITIONAL MEASURES WITH THE CAPM

Treynor and Mazuy (1996) first propose to measure the market timing ability of managers by adding a
guadratic term to the CAPM of Sharpe (1964), Lintner (1965) and Mossin (1966). This idea is the basis of
our first unconditional measure. However, with daily returns, Scholes and Williams (1977) indicate that
the gradual incorporation of information in prices through non-synchronous trading and other
microstructure effects implies that betas at day t are better estimated by the sum of the coefficients
associated with the market premium at days t and t-1. In this context, Chen, Ferson and Peters (2010)
suggest a daily measure of market timing that also corresponds to the sum of the market timing
coefficients for days t and t-1. The diffusion process for the daily returns of a timer’s managed portfolio

can therefore be written as follows:
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where:

r,+ = The excess return of the timer’s portfolio with ability level y at day t;
.. = The excess return of the reference portfolio r at day t;
rft = The squared excess return of the reference portfolio r at day t;

€,= The error term of the timer’s portfolio with ability y at day t.

Hereafter, for simplicity, we refer to this form as the CAPM model. The parameters «,and S, are

estimated by OLS with Newey and West (1987) standard errors to correct for autocorrelation and

heteroskedasticity in error terms. Following Chen, Ferson and Peters (2010), the daily CAPM market

timing measure is given by B, + ,,. The CAPM global performance of Bollen and Busse (2004) is

given by a, + (8,3 + ﬂ74)rr2,t , Where rrz,t is the average squared excess return of the reference portfolio over
the sample. When evaluated with monthly data, the model does not include the t-1 variables. Hence,

B,2 = B,, =0and the CAPM market timing and global performance measures correspond respectively to

Baanda, +fs T .

2.2.2. UNCONDITIONAL MEASURES WITH A MULTI-INDEX MODEL

We also analyze the unconditional performance measures with a multi-index model as proposed by Sharpe
(1992). This technique, also known as a style analysis, is popular in practice. Rather than use a single
reference portfolio as risk factor, we regress the returns of the simulated timers on the returns of three
market indexes while restricting the sum of the coefficients to be equal to 1, which reflects the average
styles of the managed portfolios. When using daily data, still accounting for the gradual incorporation of

information, the diffusion process becomes:
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where:

f's.t = The excess return of the stock index;
I'h.t = The excess return of the bond index;

I'm,t = The excess returns of the money market index.

Hereafter, we refer to this form as the Multi-Index model. The Multi-Index market timing and

global performance measures are then defined in the same way as those of the CAPM model, i.e. 8,7 + B,5

anda, +(B,7 + ﬁyg)rrz,t , respectively. With monthly data, we eliminate the t-1 variables and restrict to one

the sum of the coefficients of the three index returns at period t. The Multi-Index market timing and global

2 . . .
performance measures become ,Bﬂ and &, +ﬂy7 “Trt , with parameters «,and g, still estimated by

OLS with Newey and West (1987) standard errors.*
2.2.3. CONDITIONAL MEASURES FROM CHRISTOPHERSON, FERSON AND GLASSMAN (1998)

As in Christopherson, Ferson and Glassman (1998) (CFG, subsequently), we define the conditional alpha

and beta as linear functions of predetermined financial information variables [z;, ,].° These variables are

defined as deviations from their sample average, [z;, , =Z;,; — E(Z)]. The diffusion process for daily

returns then becomes:

* We also investigate the unconditional non-traded factors model examined by Farsnworth, Ferson, Jackson and
Todd (2002), a model that included bond factors (Thill yield, Default, Slope, Convexity) and equity factors (SMB,
HML). We do not report its results as the specification appears problematic in our sample and the parameters are
poorly estimated and unreliable.

> The information variables that show the most explanatory power for the market premium in our sample are the

variation in the short-term interest between t-2 and t—l[zl,t_l] and a measure of liquidity defined as the difference

between the yield on AA commercial papers and the short-term interest rate (Gatev and Strahan, 2006) [ZZH} .



N N
2 2
Li=a,0+ Zizla}/i “Zigq bl + Zizlb;/i (Ziga®N )+ Balria+ Baliy + Boaliia+Uy:  (5)

Parameters are estimated by OLS with the Newey and West (1987) correction. Thea ; andb,; are
respectively measuring the sensitivity of the conditional alpha and beta to the differentz;, , . The average

conditional alpha and beta are provided bya,,andb,,, respectively. With daily data, the CFG market
timing and global measures correspond respectively to S,; + §,,anda o + (8,5 + 74) . With monthly

data, these CFG conditional measures become f,;and a , + /3,5 E since B,, = B,, =0 in equation (5).

2.2.4. CONDITIONAL MEASURES WITH A BIGARCH SPECIFICATION

In the CAPM context with a bivariate GARCH conditional specification of the risk measures, we can
obtain the performance evaluation through the joint estimation of a system of equations. Equations (6) and
(7) describe the diffusion processes for the excess returns of the reference portfolio and the managed
portfolio with ability level y, respectively. Equation (8) shows the bivariate GARCH specification of the
seconds moments proposed by Engle and Kroner (1995) and Kroner and Ng (1998)°, and applied to

performance measurement by Beaulieu, Coggins and Gendron (2009).

N
rp=2ar+ Zarizi,t—l temt, (6)
i=1
7t— y0+z |t1+_(ar+zar| |t1)+ﬁy2rrtl+ﬂy3rrt+ﬂy4rrt 1+e ) (7)
i=1
h;/,t hyr,t ' ! - ' ' '
Ht = h h = C C + Aet_let_1A+ B Ht—lB + G 77t_177t_1G , (8)
yrt rt

where:

® This model was first introduced by Baba, Engle, Kraft and Kroner (1990) and is known as the BEKK model.

10



a; = The constant for the reference portfolio r;
a; = The parameters of sensitivity to the information variables z, _, for portfoliosk =y or r,

a,, = The mean conditional alpha with GARCH second moments specification;
H, = The matrix of conditional second moments for the error terms of portfolios y and r at t;

hyr,t = The conditional covariance between the error terms of portfolios y and r;
hy t = The conditional variance of the error terms of portfolio r;

hy,t = The conditional variance of the error terms of portfolio y;

C = The 2x 2 triangular matrix with parameters capturing the constant GARCH effect;

A = The 2x 2 symmetric matrix with parameters capturing the ARCH effect;

B = The 2x2 symmetric matrix with parameters capturing the GARCH effect;

G = The 2x 2 symmetric matrix with parameters capturing the asymmetric ARCH effect;

€, = The vector of stacked error terms (e,.e,,) ;
1, = The vector (nr't,fy%t)' where . ; = max [0,—e, ] and n,,= Max [0,—%]-

In this form, referred to the BIGARCH model hereafter, the error termse€, follow a bivariate
normal distribution N(0, H, ). A GARCH specification for the second moments is widely used in financial

literature and it represents a relevant choice in the conditional approach proposed by Beaulieu, Coggins
and Gendron (2009). This system of equations allows to condition on public information the expected

reference portfolio premium, as well as the specific risk [h”] and beta of portfolio y. The beta is
represented by the ratio of the conditional covariance between the returns on portfolios y and r [h, ] to
the conditional variance of the returns of portfolio r [h,¢]. The risk measures are implicit functions of all
public information aggregated in past error terms’ and the expected reference portfolio premium depends

on the same pre-determined information variablesz;, , used in the CFG model of equation (5). The

conditional alpha is a function of different information variables z{,_,, namely the error term €, _; as well

as dummies for the January and week-end effects (French, 1980).

’ Since GARCH (1,1) models condition the second moments on the error term and second moment of the previous
period, they can be seen as ARCH(o0) models. Accordingly, the risk measures are not only functions of the error
term of the previous period, but, recursively, they also become functions of all past error terms.

11



This system of equations is estimated by quasi-maximum likelihood with robust standard errors

following Bollerslev and Wooldridge (1992). With daily data, we define the conditional BIGARCH

market timing and global measures as respectively S, + S ,anda o +(B,;+ B,,)r:, . We do not

consider an estimation with monthly data since the GARCH specification is more appropriate for high-

frequency returns and large number of observations (Nelson, 1990, 1992).

3. COMPARATIVE METHODOLOGY AND DATA

This section presents the methodology for comparing the performance of the different market timing and
global measures as well as the data used for the empirical results.

3.1. METHODOLOGY TO COMPARE THE PERFORMANCE OF THE MARKET TIMING MEASURES

We examine the performance of the performance measures in two ways. First, we study their ability to
detect significant performance. For each ability level y, we simulate the signals needed to form the returns
of 180 daily timers and 180 occasional timers. We then assess their performance with every measure. If
the measure properly account for the market timing activities, it should be able to detect significant
performance at a low ability level y. A less effective performance measure should detect a significant
performance only at a higher ability level y. For each performance measure and each ability level y, we
summarize the results by computing a t-statistic on the significance of the mean performance value across
the 180 evaluations.

Second, we verify if the ranking of the timers according to each performance measure corresponds
to the expected classification based on the ability level y. A good performance measure should rank the
timers according to their pre-specified ability, while a bad measure should instead classify them randomly.
We validate the ability of the performance measures to correctly rank the timers by using the index of
coincidence [IC] of Friedman (1920). This test allows to explicitly check whether the ranking based on a
performance measure and the one based on the true ability level y are dissimilar (the null hypothesis), or if

they are sufficiently comparable to reject the null. The test is calculated as follows:

12



Zklz(Ranki —%)2
IC = il l (9)
k(k +1)/12

where k is the number of ranked timers and Ranki is the average, for timer i, of his rank based on a
performance measure and his rank based on the true ability level. If the two rankings are opposite, the
average of the ranks for each timer will tend to be equal to the same value, approximately (k+1)/2. The IC
statistic follows a Chi-square distribution with k-1degrees of freedom. For each performance measure and
each ability level y, we summarize the results by providing the mean p-value associated with the IC
statistics across the 180 evaluations.
3.2. DATA
This study examines the performance of simulated timers who allocate their assets between a stock index,
a bond index and a money market index. The stock index is the CRSP value-weighted index of U.S. stocks
from the web site of Kenneth R. French. The bond index is the Aggregate U.S. Bond Index from Barclay’s
Capital. The money market index is derived from the 3-month U.S LIBOR rate® available on Bloomberg.
The data cover the period beginning on January 2, 2003, and ending on July 31, 2009, for a total of 1,694
daily observations. Table 1 presents some daily descriptive statistics on the variables used in this study.
Panel A examines the portfolio returns of the daily timers, who trade every day, or the occasional
timers, who trade twice per month on random days. The statistics are global averages across all 180
simulations for each ability level and all ability levels considered. The daily timers are assumed to have
ability levels varying from y = 0 to y = 0.15 by 0.01 and the occasional timers are assumed to have ability
levels varying from y = 0 to y = 0.35 by 0.01.° The results highlight that, even with much lower ability
levels considered, the daily timers enjoy a much larger number of opportunities to time the indexes,

resulting in a higher mean return than the occasional timers.

® For an example on using this rate to form a money market index, see McCauley (2001).

% A gamma of 0.35 for our best occasional timers corresponds to a skill level slightly superior to the one for the best
funds evaluated by Farnsworth, Ferson, Jackson and Todd (2002). Similarly, a gamma of 0.15 for our best daily
timers also generates performances slightly better than those in their article.

13



Descriptive statistics on the returns of the reference portfolio, the stock index, the bond index, the
money market index and the risk-free asset, and on the lagged information variables are shown in Panel B.
Although the sample contains the recent “subprime” recession, the data produce the expected risk-return
tradeoff between the markets. The mean stock index return (0.0307%) is higher than the mean bond index
return (0.0178%), which is in turn higher than the mean money market return (0.0121%). In addition, the
standard deviation of returns is greater for stocks (0.0136%) compared to bonds (0.0026%) and money
market (0.0016%).

For all variables, the Jarque-Bera tests reject normality at the 1% significance level, which implies
asymmetric and/or fat-tails distributions. Also, the Ljung-Box Q tests and Q2 tests show evidence of
autocorrelations in the values of the variables (except for the bond index returns) and their square values at
the 1% significance level. Models that take into account the autocorrelation and heteroskedasticity in error

terms, like the BIGARCH model, should be relevant.

4. EMPIRICAL RESULTS
This section presents the empirical results for the unconditional and conditional monthly performance
measures estimated with daily or monthly data.
4.1. DESCRIPTIVE STATISTICS OF THE PERFORMANCE MEASURES
Table 2 gives descriptive statistics on the performance measures (market timing and global) of the
simulated market timers with daily transactions (panel A) or occasional transactions (panel B). The
measures are estimated with either daily data or monthly data and consider timing ability levels between y
=0 and y = 0.15 for daily timers and between y = 0 and y = 0.35 for occasional timers. The table provides
overall statistics (mean, standard deviation, maximum and minimum) as well as the mean and standard
deviation conditional on pre-specified ranges of timing ability.

Panel A shows that the average market timing measures are generally similar across models, with
values around 0.75 with daily data and 0.30 with monthly data. The only notable exception is the

BiGARCH model which obtains average timing measures that are approximately 0.1 greater than the other

14



models. The result for this conditional model is in accordance with a common finding in the literature that
conditional performance measures produce higher evaluation than their unconditional counterparts for
mutual funds (Ferson and Schadt, 1996; Beaulieu, Coggins and Gendron, 2009). However, we do not find
such a result for the other conditional measures we consider, namely the BiIGARCH global measures and
the CFG timing and global measures, or when we examine the results for the occasional market timers.
Throughout our results, the BIGARCH timing measure is better at evaluating the ability of daily market
timers than the other timing measures. Focusing on the global measures, all measures are similar as well,
producing average values around 0.017 with daily data and between 0.32 and 0.48 with monthly data.
While the daily global performance measures are very close across models, they vary more when
estimated with monthly data. Given the samples of 1694 daily observations versus 79 monthly
observations for the estimation, the daily performance measures are estimated more precisely than the
monthly ones.

For the occasional timers examined in panel B, the results show that the market timing measures
estimated with monthly data better capture the managers’ timing ability than the ones estimated with daily
data. The global measures are similar across models.

4.2. FORMAL COMPARISON OF PERFORMANCE EVALUATION DETECTION
Table 3 shows the t-statistics of the performance measures (market timing and global) for the daily market
timers with varying ability levels. Shaded statistics indicate significance at the 5% level.

First, the timing measures estimated with daily data require lower ability levels before capturing
significantly the ability of daily market timers than their equivalent estimated with monthly data. This
finding suggests that the timing measures estimated with a data sampling frequency the same as the
manager’s active trading frequency allow a better assessment of the performance.

Second, the global performance measures are useful in detecting the timing ability as we obtain
significant values at lower ability levels than with the market timing measures. This more powerful

detection is particularly important for the monthly measures, suggesting than the use of global (as opposed

15



to market timing) performance measures is needed when the manager’s active trading frequency is much
higher than the measurement frequency.

Third, comparing the models, the timing measure of the BIGARCH model requires the smallest
ability level, specifically y = 0.05, for a significant market timing performance. The BiGARCH timing
measure thus appears the best specified in our setup. The global measures of all the models perform
relatively similarly, with significant detection at y = 0.05. The BIGARCH model is the only model under
comparison for which its global measure does not improve upon its timing measure in detecting an
abnormal performance.

Using the format of table 3, table 4 provides the t-statistics of the performance measures in the
case of the occasional market timers, with significant statistics at the 5% level still shaded.

First, in contrast to the results in table 3, the monthly timing measures now require lower ability
levels than the daily timing measures for capturing a significant timing performance. Thus, for the
occasional managers, who trade twice per month on random days, the daily timing measures are less
powerful than the monthly timing measures.

Second, similar to the results for the daily timers, the market timing measures for the occasional
timers become significant at higher ability levels than the global measures. However, looking at
magnitudes, the global measures now appear much more powerful than the timing measures, with
significant detections starting at y = 0.16 for the best global measures compare to y = 0.25 for the best
timing measures. The timing measures are thus relatively inefficient when estimated with a data sampling
frequency different from the active trading frequency. The global measures estimated at any frequency
appear able to compensate for this inefficiency.

Third, comparing the models, the most powerful models in properly detecting significant timing
ability for the occasional timers are the two unconditional models (CAPM and Multi-Index), which
produce similar results. The conditional models (CFG and BiGARCH) perform relatively poorly compare
to the unconditional models, a difference that was not observed for the daily timers. This poor

performance is particularly strong for the measures estimated with daily data, suggesting that considering
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conditioning variables that controls for the public information at the wrong frequency might be more
hurtful than helpful.® This issue calls for further investigation.

4.3. FORMAL COMPARISON OF OBSERVED VERSUS EXPECTED RANKINGS

Tables 5 and 6 show the average p-values of tests on the equality between the observed performance
ranking from the performance measures (market timing and global) and the expected performance ranking
from the ability levels. The tests are based on the index of coincidence statistics IC proposed by Friedman
(1920). In the results tabulated in the y = 0.04 row, the tests look at the performance ranking of the five
timers generated by varying the ability levels from y = 0 to y = 0.04 by 0.01. In each subsequent row, the
number of ranked timers is increased by one following the ability level. Thus, for example, in the results
tabulated in the y = 0.14 row, the tests look at the ranking of the 15 timers generated by varying the ability
levels from y = 0 to y = 0.14 by 0.01. A low p-value indicates that a model has a high ability to rank the
managers correctly. It is more likely when a large cross-section of ability levels is considered. Tables 5
and 6 provide the average results for the 180 daily and occasional market timers, respectively. Shaded p-
values indicate significance at the 5% level.

Tables 5 and 6 provide findings on performance ranking similar to the ones reached from tables 3
and 4 on performance detection. In table 5, the timing measures estimated with daily data require lower
ability levels before ranking correctly, at the 5% significance level, the ability of daily market timers than
their equivalent estimated with monthly data. Also, the global performance measures are useful in ranking
correctly the timing ability as they produce significant values at lower ability levels than the market timing
measures. Finally, the global measures perform relatively similarly across models, while the timing
measure of the BIGARCH model needs the smallest ability level of all the timing measures to rank
correctly the daily timers.

In table 6, the monthly timing measures require lower ability levels than the daily timing measures

for ranking correctly the occasional timers at the 5% significance level. Furthermore, the ranking p-values

19 As pointed out by Farnsworth, Ferson, Jackson and Todd (2002), it is possible that low correlations between the
variables taken into account in the models and the simulated portfolio returns generate greater variability in the
performance measures, leading to insignificantly different from zero values.
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of the market timing measures become significant at much higher ability levels than the ones of the global
measures. Finally, comparing the models, the most powerful models in properly ranking the occasional
timers are the two unconditional models (CAPM and Multi-Index), with once again the two conditional
models (CFG and BiGARCH) performing relatively poorly.

The most important difference in results between this section and the previous one is that the
measures require higher ability levels to rank correctly the timers than to detect significantly their
performance. For example, for the daily timers and the daily timing measures, the CAPM, Multi-Index
CGF and BiGARCH models detect significant performance with ability levels starting at 0.07, 0.07, 0.08
and 0.05, respectively, while they rank the timers correctly with ability levels starting at 0.14, 0.15, 0.15
and 0.13, respectively. For the occasional timers and the monthly global measures, the CAPM, Multi-
Index and CGF models detect significant performance with ability levels starting at 0.17, 0.16 and 0.21,
respectively, while they rank the timers correctly with ability levels starting at 0.23, 0.23, and 0.27,
respectively. This finding is consistent with the literature on the difficulty of precisely ranking mutual
funds (See Roll, 1978; Dybvig and Ross, 1985; Green, 1986; Lehmann and Modest, 1987; Chen and
Knez, 1996; and Ahn, Cao and Chrétien, 2009).

Even if tests on significant performance appear more powerful than tests on correct ranking, it is
interesting to note that the conclusions are similar for the two methodologies. In particular, timing
measures are relatively inefficient in both detecting performance and ranking when estimated with a data
sampling frequency different from the active trading frequency. Global measures generally fare better, a
superiority that is amplified when the manager’s active trading frequency is much higher than the
measurement frequency. Finally, conditional measures that account for information at another frequency

that the one considered by the market timers might be problematic.

5. CONCLUSION
In the literature, several models have been proposed to evaluate the performance of portfolio managers.

The objective of our study is to evaluate the performance of those performance models. We focus on
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selected measures of market timing ability in an environment where the ability to time the stock, bond and
money markets is controlled through simulations in a setup inspired by Farnsworth, Ferson, Jackson and
Todd (2002). We are interested in the conditional or unconditional performance measures evaluated with
daily or monthly data from four different models. We study either market timing measures with a square
reference portfolio term, in the spirit of Treynor and Mazuy (1966), or global performance measures
following Bollen and Busse (2004). We analyze the ability of the different performance measures to detect
significant performance and to rank performance correctly. We consider daily timers, who receive a
trading signal every day, and occasional timers, who trade two times per month on random days.

Our results show that the more comprehensive global measures perform better than the more
standard timing measures. This finding is particularly true when there is a mismatch between the trading
frequency of the simulated timers and the estimation frequency of the performance measures. For the daily
timers, the daily market timing measures still work relatively well, with the conditional BIGARCH model
being the best. However, for the occasional timers, the global performance measures perform much better
as they show more robustness to differences in trading and data sampling frequencies. We finally find that
conditional measures do not generally improve upon unconditional ones, and that our conclusions are

unaffected by whether we examine performance detection or ranking.
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Table 1: Descriptive Statistics of Daily Data

Mean S.D. Max Min JB Test Qtest Q° test
(x100) (x100) (x100) (x100) (K=10) (K=10)
Panel A: Descriptive statistics the daily and occasional timers
Daily timers 0.0369 0.4991 57748  -4.5262 31720.90 s+ 4234  xxx 58335  xxx
Occasional timers 0.0234 0.4927 5.7748  -4.5262 24814.09 =~ 54.86 = 1203.86
Panel B: Factor and index descriptive statistics
A. Index:
Rr 0.0201 0.4494 3.8560  -3.0212 875291 = 4519 s 175850 e
Stocks Market 0.0307 1.3663 115130 -8.9970 8754.11 =~ 44,90 -+ 1654.10 =
Bonds Market 0.0178 0.2536 1.3260 -1.2619 303.82 w1293 193.01  ww
Money Market 0.0121 0.0135 0.1209  -0.0611 6128.98 = 1986.70 *x 415.03
Rf 0.0030 0.0015 0.0051  0.0000 100.31 wxx 16437.53 #+x 15338.42 wxx
B. Lagged Instruments:
Delta on 3M Rates -0.0006 0.0071 0.7600  -0.8100 93133.69  wxx 12577 =+ 1084.07 =
Liquidity Prime 0.4287 0.5411 3.7300  -0.0300 4916.45  »=+ 13811.87 =+ 991597 =

NOTES: This table presents descriptive statistics of the daily data series. These series include 1694 observations over a period of
six and a half years, from January 1, 2003, to July 31, 2009. Panel A shows average statistics for the daily portfolio returns,
generated with varying ability levels y, of the daily timers, who trade every day, or the occasional timers, who trade twice per
month on random days. Panel B presents the statistics for the daily index returns (in A) and lagged information variables (in B).
The statistics are the mean, standard deviation, minimum, maximum, as well as the values of the Jarque-Bera normality test (JB-
Test) and the Ljung-Box tests on the autocorrelation of the variables (Qtest) or the squared variables (Q? test) at K=10 lags. The
Jarque-Bera and the Ljung-Box statistics follow Chi-square distributions with respectively 2 and 10 degrees of freedoms. ***
denotes significance at the 1% level.
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Table 2: Performance Evaluation of Simulated Market Timing Portfolios

Panel A: A Descriptive statistics by group of daily timers

CAPM Multi-Index CFG BiGARCH
Y TdCAPM Tn(]IAPM GdCAPM G%APM TdMI Tn’:/” GE',V" GmMI TdCFG T”(IZFG GEFG GranG TdBiGARCH GéaiGARCH
Mean 0.744 0.304 0.017 0.483 0.709 0.295 0.017 0.438 0.754 0.255 0.017 0.320 0.840 0.018
S.D. 0.388 0.188 0.005 0.171 0.388 0.184 0.007 0.148 0.395 0.204 0.005 0.160 0.348 0.006
Max 2.139 1.014 0.049 1.386 2.101 0.985 0.055 1.264 2.228 0.943 0.048 1.064 2.670 0.050
Min -1.088 -0.471 -0.013 -0.532 -1.130 -0.453 -0.016 -0.454 -1.292 -0.522 -0.012 -0.474 -0.850 -0.015
Gl 0<y=<0.05 0.289 0.096 0.005 0.153 0.254 0.093 0.006 0.138 0.309 0.078 0.006 0.095 0.367 0.007
(0.437)  (0.201)  (0.006) (0.183)  (0.436) (0.195) (0.007)  (0.157)  (0.443) (0.217) (0.006)  (0.161)  (0.363)  (0.007)
G2 0.06<y<0.1 0.788 0.322 0.018 0.510 0.754 0.313 0.018 0.463 0.802 0.271 0.018 0.339 0.871 0.019
(0.393) (0.189) (0.005) (0.175) (0.392) (0.184) (0.007)  (0.151) (0.395)  (0.204) (0.005)  (0.165)  (0.351)  (0.006)
G3 0.11<y<0.15 1.245 0.535 0.030 0.852 1.211 0.519 0.030 0.773 1.239 0.452 0.030 0.573 1.377 0.030
(0.325) (0.173)  (0.005) (0.154) (0.325) (0.169) (0.006)  (0.134) (0.336) (0.189) (0.005)  (0.155)  (0.328)  (0.006)
Panel B: Descriptive statistics by group of occasional timers
CAPM Multi-Index CFG BiGARCH
v TdCAPM TW?APM GdCAPM Gr(n:APM TdMl Tnl:/ll GQ’" Grrr\]/ll TdCFG Trf]:FG GgFG G%FG TPGARCH G BIGARCH
Mean 0.122 0.141 0.009 0.209 0.091 0.140 0.009 0.203 0.080 0.072 0.005 0.168 0.076 0.002
S.D. 0.133 0.151 0.005 0.123 0.133 0.149 0.006 0.113 0.319 0.182 0.010 0.130 0.252 0.004
Max 0.458 0.645 0.028 0.690 0.423 0.640 0.032 0.683 0.998 0.745 0.037 0.696 1.185 0.020
Min -0.329 -0.508 -0.013 -0.334 -0.364 -0.507 -0.018 -0.307 -0.946 -0.581 -0.026 -0.364 -0.955 -0.016
Gl 0<vy<0.05 0.048 0.003 0.001 0.015 0.012 0.003 0.001 0.016 0.019 -0.006 0.000 0.011 0.009 -0.001
(0.136)  (0.145)  (0.005)  (0.121) (0.137)  (0.143) (0.006) (0.112)  (0.303) (0.178)  (0.009)  (0.130)  (0.254)  (0.004)
G2 0.06<y<0.11 0.083 0.062 0.004 0.096 0.050 0.061 0.004 0.092 0.052 0.031 0.002 0.077 0.032 0.000
(0.132) (0.154)  (0.005) (0.125) (0.133) (0.152) (0.006)  (0.114) (0.332) (0.186) (0.010)  (0.131)  (0.245)  (0.004)
G3 0.12<y<0.17 0.103 0.108 0.007 0.164 0.071 0.107 0.007 0.159 0.053 0.042 0.004 0.124 0.056 0.001
(0.127)  (0.153)  (0.005)  (0.119) (0.128) (0.151) (0.006)  (0.110) (0.321) (0.182) (0.010) (0.130)  (0.253)  (0.005)
G4 0.18<y<0.23 0.138 0.164 0.010 0.240 0.108 0.163 0.011 0.234 0.086 0.086 0.006 0.195 0.104 0.003
(0.120)  (0.144)  (0.005)  (0.113) (0.120) (0.143) (0.005)  (0.104) (0.302) (0.175) (0.009) (0.122)  (0.241)  (0.004)
G5 024<y<0.29 0.165 0.220 0.014 0.322 0.136 0.218 0.014 0.313 0.113 0.111 0.008 0.257 0.119 0.003
(0.104)  (0.133) (0.004) (0.105) (0.104) (0.131) (0.005)  (0.098)  (0.290)  (0.160) (0.009)  (0.118)  (0.229)  (0.004)
G6 030<y<0.35 0.197 0.288 0.018 0.417 0.171 0.286 0.019 0.406 0.159 0.166 0.012 0.342 0.136 0.005
(0.092) (0.130) (0.004) (0.100) (0.092) (0.129) (0.005) (0.095) (0.272) (0.163) (0.008) (0.121) (0.215)  (0.004)

NOTES: This table shows descriptive statistics on the values of the market timing (T;) and global (G;) performance measures
estimated with daily data (i = d) or monthly data (i = m) for different models. The models are the unconditional CAPM (CAPM),
the unconditional multi-index model (M), the conditional model of Christophersen, Ferson and Glassman (1998) (CFG) and the
conditional BIGARCH model (BiGARCH). Panel A gives the results for all the daily timers with ability levels varying fromy =0
to y = 0.15 and for three groups (G1, G2, G3) based on increasing levels of ability. Panel B gives the results for all the occasional
timers with ability levels varying from y = 0 to y = 0.35 and for six groups (G1, G2, G3, G4, G5, G6) based on increasing levels of
ability. The statistics are the mean, standard deviation, maximum, minimum, as well as the mean and standard deviation
conditional on the ability groups. The simulation procedure and performance evaluation measures are described in section 2. The

data are presented in table 1.
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Table 3: Evaluation Ability of the Performance Measures for the Daily Timers

CAPM Multi-Index CFG BiGARCH
Y TdCAPM T n?APM GéIAPM G%APM TdMI T I_|r1\/|| G cl;/ll Gn'\]'" TdCFG T rT(]:FG Gé:FG Gr%FG TRGARCH G BIGARCH
0 0.189 0.028 0.037 0.031 0.113 0.024 0.083 0.022 0.214 0.026 0.095 -0.096 0.461 0.371
0.01 0.344 0.183 0.363 0.301 0.268 0.180 0.319 0.307 0.379 0.127 0.420 0.106 0.670 0.643
0.02 0.471 0.435 0.755 0.695 0.386 0.439 0.614 0.730 0.518 0.342 0.805 0.662 0.766 0.890
0.03 0.817 0.528 1222 0.985 0.741 0.523 0.993 1.032 0.885 0.378 1.262 0.616 1212 1.285
0.04 0.944 0.857 1.411 1.336 0.856 0.860 1127 1.389 0.946 0.689 1.447 1122 1.275 1.499
0.05 1.283 0.887 1.749 1.204 0.881 1.660 1.850 1.342 0.632 1177 1713 1.923
0.06 1.368 1.400 1.287 1.398 1.818 1.377 1.140 1.638 1778
0.07 1.782 1.301 1.295 1.648
0.08 1.795 1.799
0.09 1.881 1.874
0.1
011
0.12
0.13
0.14
0.15

NOTES: This table presents the t-statistics on the significance of the evaluation of the market timing (T;) and global (G;)
performance measures estimated with daily data (i = d) or monthly data (i = m) for the daily timers with ability levels y varying
from y = 0 to y = 0.15 and different models. The models are the unconditional CAPM (CAPM), the unconditional multi-index
model (MI), the conditional model of Christophersen, Ferson and Glassman (1998) (CFG) and the conditional BIGARCH model
(BIGARCH). The simulation procedure and performance evaluation measures are described in section 2. The t-statistics are defined
in section 3.1. The data are presented in table 1. Shaded statistics indicate significance at the 5% level (lightest shade), the 2.5%
level (middle shade) or the 1% level (darkest shade).
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Table 4: Evaluation Ability of the Performance Measures for the Occasional Timers

CAPM Multi-Index CFG BiGARCH
Y TdCAPM T n(]:APM G é:APM G r%APM TdM| T rr’;/” G cl;/ll Gn"{" TdCFG T n?FG Gé?FG G n(iFG TRGARCH G BIGARCH
0 0317  -0226 -0062 -0.143 0059 -0.226 -0050 -0.136 0279  -0098 0103  -0025 0093  -0.223
0.01 0281 0026 0050 -0012 -0.003 0034 0033 0026 0003 0069 -0009 0018 0117  -0.134
0.02 0211 0057 0151 0422 -0.053 0057 0111 0123  -0.067 -0051  -0068 0050  -0085 -0.331
0.03 033  -0007 0213 0165 0087 -0.013 0161 0150 0193  -0.105 0138 0090 0012  -0.235
0.04 0425 0021 0318 0235 0157 0020 02904 0250 -0016 -0.107 -0.047 0095  -0.008 -0.252
0.05 053 0232 0400 0347 0286 0233 0373 0372 0063 0096 0023 0245 0088  -0.064
0.06 0584 0246 0498 0459 0303 0245 0472 0477 0145 0101 0142 0305 0066  -0.023
0.07 0568 0261 0674 0598 0312 0260 0543 0618 0157 0095 0197 0457 0305  0.229
0.08 0662 0443 0756 0733 0397 0442 0714 0760 0129 0179 0184 0568 0110  -0.008
0.09 0674 0289 0865 0705 0424 0295 0854 0784  -0005 0103 0118 0618 0148 0046
01 0655 0530 0976 0930 0417 0531 0915 1001 0107 0282 0212 0789 0088 0065
011 0619 0685 1138 1168 038 0682 1015 1201 0427 0250 0546 084 0065 0107
0.12 0716 0668 1315 1256 0467 0668 1200 1297 0219 0195 0376 0812 0095 009
013 0749 0450 1227 1077 0501 0452 1036 1155 0107 0139 0292 0820 0178  0.270
0.14 0770 0521 1357 1232 0509 0524 1226 1275 0422 0116 0395 0870 0216 0247
0.15 0926 0775 1481 1427 0662 0778 1399 1516 0185 0297 0334 1005 0297  0.274
0.16 0862 0880 1730 1640 0608 0882 1528 1698 0124 0302 0382 1080 0327 0341
017 0867 0983 1845 1701 0608 0992 1660 1811 0229 0366 0545 1176 0230 0343
0.18 0993 0959 1940 1809 0743 0966 1740 1915 0196 035 0508  1.339 0372 0505
0.19 0987 1061 1939 0745 1067 1823 0311 0574 0700 1502 0323  0.536
0.2 1100 1114 0851 1116 0412 0478 0731 1516 0392  0.569
0.21 1316 1014 1029 1.023 1863 0132 0493 0579 1648 0499  0.679
0.22 1277 1198 1014 1201 0278 0409 0695 1595 0519 0612
0.23 1314 1514 1051 1519 0382 062 0873 0472 0611
0.24 1379 1378 1103 1.377 0329 0509 0845 1839 0499  0.623
0.25 1519  1.692 1254 1.700 0381 0649 0953 0431 0597
0.26 1518 1484 1221 1485 033 0658 0904 0517  0.756
0.27 1547 1786 1206 1776 0534 0768 1037 0545 0733
0.28 1817 1734 1531 1735 0406 0663  1.044 0.602  0.808
0.29 1729  1.891 1455  1.901 0359 0965 1076 0539 0945
03 1.832 1760  1.830 0518 0852 1232 0536  0.898
031 1710 1821 0494 0867  1.306 0620  1.099
0.32 1.781 0575 0986 1448 0669  1.041
0.33 1.773 0464 1080 1353 0716  1.287
0.34 0691  1.074 1709 0542 1180
0.35 0799 1274 1937 0720 1313

NOTES: This table presents the t-statistics on the significance of the evaluation of the market timing (T;) and global (G;)
performance measures estimated with daily data (i = d) or monthly data (i = m) for the occasional timers with ability levels y
varying from y = 0 to y = 0.35 and different models. The models are the unconditional CAPM (CAPM), the unconditional multi-
index model (M), the conditional model of Christophersen, Ferson and Glassman (1998) (CFG) and the conditional BIGARCH
model (BiGARCH). The simulation procedure and performance evaluation measures are described in section 2. The t-statistics are
defined in section 3.1. The data are presented in table 1. Shaded statistics indicate significance at the 5% level (lightest shade), the
2.5% level (middle shade) or the 1% level (darkest shade).
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Table 5: Ranking Ability of the Performance Measures for the Daily Timers

CAPM Multi-Index CFG BiGARCH

Y TdCAPM Tn?APM GEAPM G%APM —I—dMI Tn'Y” Gé\/ll Gn'\1/” TdCFG TI%IFG GdCFG G[%FG TdBiGARCH GEiGARCH
0.04 0.324 0.321 0.232 0.246 0.322 0.323 0.272 0.242 0.331 0.350 0.230 0.263 0.315 0.272
0.05 0.283 0.292 0.186 0.208 0.281 0.295 0.225 0.201 0.289 0.324 0.182 0.239 0.262 0.231
0.06 0.256 0.243 0.154 0.169 0.255 0.246 0.185 0.163 0.261 0.282 0.151 0.202 0.226 0.186
0.07 0.215 0.217 0.118 0.135 0.215 0.217 0.149 0.128 0.219 0.262 0.117 0.175 0.182 0.152
0.08 0.185 0.184 0.093 0.108 0.185 0.185 0.119 0.102 0.190 0.227 0.092 0.143 0.153 0.120
0.09 0.149 0.157 0.072 0.083 0.149 0.159 0.090 0.078 0.153 0.201 0.071 0.115 0.119 0.092
0.1 0.126 0.129 0.056 0.065 0.126 0.131 0.073 0.060 0.132 0.171 0.056 0.091 0.101 0.074
0.11 0.099 0.109 0.044 0.050 0.099 0.111 0.057 0.047 0.107 0.151 0.044 0.070 0.078 0.059
0.12 0.081 0.087 0.035 0.040 0.081 0.088 0.046 0.038 0.087 0.122 0.035 0.055 0.062 0.047
0.13 0.064 0.071 0.028 0.032 0.064 0.071 0.036 0.030 0.068 0.103 0.028 0.044 0.048 0.037
0.14 0.050 0.056 0.025 0.050 0.056 0.029 0.055 0.083 0.035 0.039 0.029
0.15 0.039 0.044 0.040 0.045 0.044 0.068 0.028 0.031

NOTES: This table presents the average p-values from the IC statistics of Friedman (1920) on the significance of the ranking of the
market timing (T;) and global (G;) performance measures estimated with daily data (i = d) or monthly data (i = m) for the daily
timers with ability levels y varying from y = 0 to y = 0.15 and different models. The models are the unconditional CAPM (CAPM),
the unconditional multi-index model (M), the conditional model of Christophersen, Ferson and Glassman (1998) (CFG) and the
conditional BIGARCH model (BiGARCH). The simulation procedure and performance evaluation measures are described in
section 2. The p-values and IC statistics are defined in section 3.1. The data are presented in table 1. Shaded statistics indicate
significance at the 5% level (lightest shade), the 2.5% level (middle shade) or the 1% level (darkest shade).
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Table 6: Ranking Ability of the Performance Measures for the Occasional Timers

CAPM Multi-Index CFG BiGARCH
Y TdCAPM T[;ZAPM GEAPM GgAPM TdMI TmMI GdMI G,T'\{” TdCFG Tn(q:FG GEFG GﬁFG TdBIGARCH Gg&iGARCH
0.04 0.446 0.420 0.393 0.381 0.447 0.419 0.413 0.385 0.462 0.475 0.459 0.438 0.492 0.484
0.05 0.415 0.399 0.371 0.356 0.411 0.401 0.381 0.358 0.462 0.445 0.445 0.422 0.479 0.447
0.06 0.412 0.402 0.358 0.351 0.408 0.402 0.357 0.350 0.460 0.435 0.433 0.404 0.468 0.422
0.07 0.403 0.387 0.332 0.327 0.395 0.388 0.344 0.323 0.447 0.431 0.412 0.379 0.439 0.386
0.08 0.39%4 0.360 0.302 0.300 0.387 0.361 0.314 0.292 0.448 0.427 0.400 0.342 0.448 0.385
0.09 0.381 0.360 0.275 0.285 0.372 0.361 0.285 0.275 0.459 0.426 0.412 0.323 0.446 0.390
0.1 0.372 0.337 0.251 0.256 0.365 0.339 0.265 0.245 0.455 0.407 0.404 0.296 0.450 0.385
0.11 0.362 0.310 0.226 0.223 0.355 0.308 0.234 0.211 0.425 0.398 0.367 0.273 0.456 0.383
0.12 0.356 0.288 0.198 0.197 0.347 0.286 0.208 0.186 0.420 0.394 0.356 0.255 0.459 0.380
0.13 0.347 0.286 0.181 0.184 0.338 0.286 0.198 0.172 0.426 0.403 0.357 0.245 0.456 0.358
0.14 0.337 0.283 0.160 0.167 0.330 0.282 0.179 0.155 0.428 0.403 0.343 0.228 0.449 0.345
0.15 0.323 0.270 0.147 0.154 0.316 0.269 0.164 0.140 0.426 0.391 0.343 0.218 0.429 0.332
0.16 0.317 0.245 0.126 0.131 0.309 0.244 0.140 0.120 0.429 0.384 0.340 0.201 0.416 0.318
0.17 0.309 0.222 0.113 0.119 0.300 0.220 0.127 0.108 0.423 0.365 0.320 0.186 0.414 0.309
0.18 0.295 0.206 0.097 0.105 0.286 0.205 0.108 0.093 0.422 0.354 0.310 0.165 0.400 0.289
0.19 0.283 0.190 0.086 0.093 0.273 0.189 0.097 0.082 0.416 0.331 0.291 0.143 0.391 0.271
0.2 0.271 0171 0.072 0.077 0.261 0.170 0.084 0.068 0.403 0.318 0.278 0.125 0.378 0.252
0.21 0.251 0.165 0.063 0.068 0.241 0.164 0.075 0.059 0.409 0.307 0.274 0.111 0.361 0.235
0.22 0.239 0.155 0.055 0.060 0.229 0.154 0.066 0.052 0.406 0.308 0.263 0.101 0.345 0.223
0.23 0.223 0.133 0.045 0.048 0.213 0.131 0.054 0.042 0.392 0.287 0.244 0.085 0.334 0.209
0.24 0.217 0.124 0.037 0.042 0.207 0.123 0.046 0.036 0.388 0.285 0.232 0.076 0.326 0.199
0.25 0.204 0.108 0.029 0.032 0.193 0.107 0.037 0.028 0.381 0.270 0.216 0.063 0.322 0.191
0.26 0.193 0.093 0.026 0.182 0.092 0.030 0.377 0.259 0.205 0.055 0.313 0.180
0.27 0.182 0.083 0.170 0.082 0.025 0.357 0.244 0.185 0.045 0.302 0.169
0.28 0.168 0.073 0.156 0.072 0.348 0.236 0.171 0.039 0.292 0.160
0.29 0.156 0.064 0.144 0.063 0.348 0.217 0.163 0.032 0.283 0.147
0.3 0.140 0.055 0.129 0.055 0.336 0.201 0.150 0.028 0.280 0.134
0.31 0.126 0.049 0.115 0.049 0.328 0.192 0.136 0.267 0.120
0.32 0.116 0.041 0.105 0.041 0.315 0.177 0.121 0.256 0.109
0.33 0.106 0.036 0.095 0.035 0.313 0.164 0.113 0.247 0.097
0.34 0.098 0.030 0.087 0.029 0.298 0.153 0.098 0.246 0.001
0.35 0.088 0.078 0.283 0.139 0.085 0.010 0.235 0.079

NOTES: This table presents the average p-values from the IC statistics of Friedman (1920) on the significance of the ranking of the
market timing (T;) and global (G;) performance measures estimated with daily data (i = d) or monthly data (i = m) for the
occasional timers with ability levels y varying from y = 0 to y = 0.35 and different models. The models are the unconditional
CAPM (CAPM), the unconditional multi-index model (MI), the conditional model of Christophersen, Ferson and Glassman (1998)
(CFG) and the conditional BIGARCH model (BIGARCH). The simulation procedure and performance evaluation measures are
described in section 2. The p-values and IC statistics are defined in section 3.1. The data are presented in table 1. Shaded statistics
indicate significance at the 5% level (lightest shade), the 2.5% level (middle shade) or the 1% level (darkest shade).
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