
Portfolio selection with commodities

under conditional asymmetric dependence

and skew preferences∗

Carlos González-Pedraz, Manuel Moreno, and Juan Ignacio Peña

May 16, 2012

∗C.G.Pedraz: Department of Business Administration, Universidad Carlos III de Madrid, Getafe 28903,

Spain; e-mail: cugonzal@emp.uc3m.es; phone: +34 91 624 9772. M.Moreno: Department of Economic Anal-

ysis and Finance, Universidad de Castilla La Mancha, Toledo 45071, Spain; e-mail: manuel.moreno@uclm.es.

J.I.Peña: Department of Business Administration, Universidad Carlos III de Madrid, Getafe 28903, Spain;

e-mail: ypenya@eco.uc3m.es. This article is based on a previous text, entitled, “Portfolio selection with en-

ergy futures: unconditional and conditional methods.” The authors are grateful to Michael Brennan, Claude

Crampes, Javier F. Navas, Stefan Straetmans, and seminar participants at the 5th AEEE-IAEE Conference

on Energy Economics, the 9th INFINITI Conference on International Finance, the 18th Conference of the

Multinational Finance Society, and Universidad Carlos III, for helpful comments and suggestions. M.Moreno

gratefully acknowledges financial support by grants P08-SEJ-03917 and JCCM PPII11-0290-0305.



Portfolio selection with commodities under conditional
asymmetric dependence and skew preferences

Abstract

This article solves the portfolio selection problem for an investor with three-moment

preferences, when returns follow a conditional asymmetric t copula with skewed and

fat-tailed marginal distributions. The model can capture the impact on optimal port-

folios of: time-varying investment opportunities, state dependence in the returns’ cor-

relations, and tail dependence. In the empirical test with oil and gold futures and

equity from 1990 to 2010, the portfolios achieve better performance measures than

they would under conventional alternatives. The factors explaining the significant

differences among methods are the univariate process specification, the dynamic de-

pendence, and the presence of tail and asymmetric dependence.

Keywords: Portfolio selection, commodity futures, conditional copulas, and skew

preferences.

JEL classification: C46, G11, and G13.



I. Introduction

In the past ten years, commodities have attracted the attention of many financial investors,

who perceive them as a new asset class. Financial institutions mainly take positions in

commodity futures contracts as a natural way to gain exposure to commodity risk without

owning the physical asset. This recent boom of commodity-related instruments as investment

vehicles, and its economic impact, has been analyzed by Büyüksahin and Robe (2010), Etula

(2010), Hong and Yogo (2012), Singleton (2011), Tang and Xiong (2010), among others.

Previous works, such as Erb and Harvey (2006) and Gorton and Rouwenhorst (2006), in-

stead studied the properties and investment performance of commodity futures, individually

and as an asset class. These works considered fully collateralized commodity futures and

found that historically, such contracts exhibited little co-movements, zero or even negative

correlations with stock returns, and Sharpe ratios fairly close to those of equities. Therefore,

according to traditional portfolio theory, commodities should increase diversification when

included in equity portfolios and may help enhance the portfolio’s risk-return profile. Pos-

sibly boosted by the potential for such diversification benefits, investments in commodity

indexes and related instruments grew quickly after the early 2000s (see Tang and Xiong

(2010)).1 Despite growing interest in commodities as investment vehicles, few recent works

have obtained optimal portfolio allocation by considering the stylized features of commodi-

ties. To fill this gap, we address the portfolio selection problem of an equity investor when

cash-collateralized commodity futures are part of the investment opportunity set.

Most works that analyze portfolios that contain commodities rely on standard mean-

variance frameworks, but such frameworks might not be appropriate for commodity futures

with their returns’ specific distributional characteristics, such as the presence of serial corre-

lation, heavy tails, and skewness (Gorton and Rouwenhorst (2006); Kat and Oomen (2007)).

Instead, we propose a more general and realistic model to be used in the optimal port-
1Investments in commodity index funds increased from around $50 billion, at the end of 2004 to a peak

of $200 billion in 2008; after a drop during the recession, they increased again to a second peak of around

$300 billion at the end of the third quarter of 2010. See Irwin and Sanders (2011).
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folio selection process. Our approach combines a three-moment preferences specification

with time-varying density models that describe the statistical properties of commodities and

equity returns, as well as their interactions.

With respect to the investor’s preferences, we solve an allocation problem in which the

utility function is determined by the mean, variance, and skewness of portfolio returns. With

fairly general assumptions, investors show a preference for positive skewness in return distri-

butions and aversion to downside risk (negative skewness). In our proposed three-moment

preferences specification, the investor is eager to decrease the chance of large negative devi-

ations, which could reduce the final value of the portfolio. Expanding the standard mean-

variance set-up by including a third moment of the portfolio returns similarly has been

investigated for traditional assets, such as stocks, and suggested empirically that asset hold-

ings can be quite different under third-moment preferences compared with their appearance

in the standard mean-variance case.2

As far as we know, the effect of time-varying skew preferences on portfolio selection has

not yet been analyzed. Nonetheless, due to the specific features of commodity assets, skew-

ness seems likely to play a role in the investor’s portfolio decisions. In particular, commodity

prices depend to great extent on supply, demand, and inventories (Routledge, Seppi and

Spatt (2000)). For example, the possibility of shortages in production or stockouts may

produce spikes in commodity prices, leading to skewness in the returns of futures contracts.

Our three-moment preferences assumption can be interpreted in terms of the Taylor series

expansion of a given underlying utility function, as shown by Guidolin and Timmermann

(2008), Harvey, Liechty, Liechty and Müller (2010), and Jondeau and Rockinger (2012).

Finally, as another reason to focus on downside risk, we consider the well-known loss aversion

argument that is pervasive in behavioral finance literature.3

2Some early works on how skewness affects portfolio selection include Samuelson (1970) and Kraus and

Litzenberger (1976). Harvey and Siddique (2000) build on these ideas to provide an empirical test of the effect

of co-skewness on asset prices. Barberis and Huang (2008) and Mitton and Vorkink (2007) also suggest, from

different perspectives, that the skewness of individual assets may also influence investors’ portfolio decisions.
3For empirical support of these theories for traditional financial assets, see Shefrin (2008).
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Regarding the multivariate density model, we offer a flexible approach to specify the joint

distribution of returns using conditional copula models. Copula functions help disentangle

the particular characteristics of the univariate distributions of equity and commodity returns

from their dependence structure. We combine conditional copula theory, as presented in

Patton (2006a,b), with the implicit copula functions of multivariate normal mixtures defined

by Demarta and McNeil (2005) and Embrechts, Lindskog and McNeil (2003). In the most

general case, we consider a conditional skewed t copula with generalized Student’s t marginal

distributions. Thus we can capture time-varying investment opportunities through time-

varying moments and changes in the dependence structure. Furthermore, this copula model

allows for tail dependence and asymmetry (i.e., differential dependence during bear and bull

markets).

We empirically test the model using weekly data from the crude oil and gold futures, as

well as the S&P 500 index, for the period from June 1990 to September 2010. We examine

four primary issues:

(1) Is there asymmetric and tail dependence among commodities and equity returns?

(2) Are there discrepancies in the optimal portfolio allocations between our conditional

copula approach and other more traditional benchmarks, such as the equally weighted

or the Markowitz strategies?

(3) Do these discrepancies translate into economically relevant performance differences

among methods?

(4) Is there a single key factor explaining these discrepancies?

First, we find strong evidence of skewness and tail dependence among equity and com-

modity futures. Second, we also uncover substantial discrepancies between our method’s

portfolio optimal weights and the portfolio weights provided by conventional alternatives.

Third, in most cases, the differences in portfolio weights translate into economically more

profitable investment ratios and relative performance measures with respect to the alterna-

tive procedures. Fourth, no single factor offers a sufficient explanation. Rather, we find many
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explanatory elements, including, in order, the proper specification of time-varying univari-

ate behavior in terms of volatility, skewness, and fat tails; the dynamics in the dependence

among marginal functions; and both asymmetric and extreme dependence.

The remainder of this article is organized as follows: Section II formulates the investor’s

preferences and portfolio choice problem. In Section III, we present the multivariate con-

ditional copula model and the estimation methodology. Section IV describes the empirical

application, before we conclude in Section V. In the online Appendix, we also provide tech-

nical details and additional tables and figures.

II. Portfolio choice with commodity futures and skew

preferences

In this section, we present the portfolio selection problem when commodity futures are part

of the investment opportunity set. Our methodological approach to solve this portfolio choice

problem relies mainly on two points: the inclusion of the third moment of portfolio returns in

the investor’s preferences, and the effect of considering the collateral of commodity futures.

As is well known, returns on financial assets generally deviate from the Gaussian distri-

bution, displaying heavy tails and skewness. This departure from normality is even greater

in the case of commodities, magnified by the well-documented presence of spikes (positive

and negative) in the data-generating process of commodity returns (Casassus and Collin-

Dufresne (2005); Hilliard and Reis (1998)). The fundamentals underlying commodity price

formation are key determinants of these statistical properties. Accordingly, the presence of

jumps can be explained by the convex relations among commodity prices and supply, inven-

tories, and demand (Routledge et al. (2000)). Shocks in supply, demand, or both can have

great impacts on prices, especially when the balance in the market’s supply and demand is

particularly tight. Adding commodity assets to traditional portfolios constitutes a signifi-

cant source of skewness for the portfolio’s returns, increasing the importance of including

the third moment in the portfolio selection problem.

4



With respect to to the second point, the collateral of commodity futures in the portfolio

decision problem reflects the way futures exchanges operate. No money changes hands when

futures are sold or bought; just a margin is posted to settle gains and losses. Without any

upfront payment, it is not clear how to define the rate of return (Dusak (1973)). Taking

collateral in futures contracts into account would affect the computation of their rates of

return and the budget constraint of the investor’s decision process. Following a common

approach to analyze commodity futures as an asset class (Gorton and Rouwenhorst (2006),

Hong and Yogo (2012)), we assume that long and short positions are fully collateralized;

that is, the initial margin deposit corresponds with the overall notional value of the futures

contract.4

With both these considerations, our specification of the investor’s problem with commod-

ity futures extends previous models of portfolio selection with skewness (e.g., Harvey et al.

(2010)), such that the rates of return and budget constraints are determined by the partic-

ular characteristics of commodity futures contracts. Formally, the portfolio choice problem

can be formulated in terms of an investor who maximizes expected utility at period t + 1 by

building at time t a portfolio that includes two group of assets: a group with n commodity

futures contracts, and another group with N − n spot contracts, such as stocks. We assume

that the initial margin deposit of a fully collateralized futures position indicates the initial

capital investment related to that position (long or short). Therefore, the gross return of a

position in the commodity futures contract i at time t + 1 is given by

(1) (1 + Ri,t+1) = Si,t+1

Si,t

(1 + Rf
t+1) , i = N − n + 1, . . . , N ,

where Si,t and Si,t+h are the futures settlement prices at times t and t + 1, respectively, and

(1 + Rf
t+1) is the gross return on cash over the period, or the interest earned on the initial

margin deposit. Finally, for this set of N investment opportunities, wealth at time t + 1
4We thus control for the leverage involved in futures positions, and we can make fair comparisons with

spot contracts. This assumption also can be relaxed, and smaller fractions of the nominal value can be

considered, in the problem set-up.

5



equals the gross return of the portfolio over the period, 1 + Rt+1(ωt), defined as

(2) 1 + Rt+1(ωt) = 1 +
N∑

j=1
ωj

t (exp(rj,t+1) − 1) ,

where ωt = (ω1
t , . . . , ωN−n

t , ωN−n+1
t , . . . , ωN

t )′ is the vector of portfolio weights (for spot and

futures contracts), chosen at time t, and rj,t+1 = log(1 + Rj,t+1) is the continuously com-

pounded return of asset j over the period.

In our approach, the investor’s preferences are determined by the first three moments of

the portfolio returns. Thus, the investor’s objective consists of choosing a portfolio allocation

(ω1
t , . . . , ωN

t ) that maximizes the expected portfolio return, in Equation (2), penalized for

risk (variance of portfolio returns) and negative skewness. That is, for each time t,

(3) max
ωt

(
Et[Rt+1(ωt)] − φV Vart[Rt+1(ωt)] + φS Skewt[Rt+1(ωt)]

)
,

where Et(·), Vart(·), and Skewt(·) are the first three moments of the portfolio returns con-

ditioned on the information set Ft available at time t. The parameters φV ⩾ 0 and φS ⩾ 0

determine the impact of variance (risk aversion) and skewness (loss aversion) on the investor’s

utility. Aversion to risk, in the form of return variability, is a common, well studied feature

of the investor’s preferences. By adding aversion to negative skewness, we acknowledge the

possibility that an investor might accept a lower expected return if there is a chance of high

positive skewness, such as in the form of a large probability of positive jumps.

The maximization problem in Equation (3) is subject to the non linear constraint that

the sum of portfolio weights in spot contracts plus the sum of the absolute value of futures

contracts’ weights must equal 1:

(4)
N−n∑
j=1

ωj
t +

N∑
i=N−n+1

∣∣∣ωi
t

∣∣∣ = 1.

Because both long and short positions in commodity futures contracts require the same

initial collateral, we take the absolute value of the futures weights (ωN−n+1
t , . . . , ωN

t ), such

that short positions in futures contracts cannot be used to leverage holdings of other assets.

The linear utility function in Equation (3) summarizes the investor’s preferences in the

first three moments of the distribution of portfolio returns. Alternatively, the three-moment
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preferences assumption could be interpreted as the expected value of a Taylor series expansion

up to third order of an underlying utility function, as shown by Guidolin and Timmermann

(2008) and Jondeau and Rockinger (2012), for example. In these works, the underlying

utility function is the power utility with a coefficient of relative risk aversion A. Thus, the

impact of variance and skewness in the investor’s decision rule, expressed in our specification

by the parameters φV and φS, would depend on the coefficient of risk aversion A through

the second and third derivatives of the power utility function.

III. Multivariate conditional copula model with asym-

metry

In this section, we describe the model for the multivariate distribution of assets’ log-returns

rt+1 = (r1,t+1, . . . , rd,t+1), where d ⩽ N is the number of risky assets, whether spot or

futures contracts. We employ multivariate conditional copulas to obtain a flexible model

for the joint distribution of asset returns. Every multivariate distribution model consists

of marginal distribution functions that describe each univariate variable, as well as a joint

dependence function that defines the relations among individual processes. Unlike traditional

multivariate distributions, such as the Gaussian and Student’s t distributions, copula models

support the construction of multivariate distributions with arbitrary marginal processes and

dependence.

Formally, a d-variate copula is a d-dimensional distribution function on the unit inter-

val [0, 1]d, that is, a joint distribution with d uniform marginal distributions. Consider a

multivariate conditional distribution Ft(r1,t+1, . . . , rd,t+1) formed by d univariate conditional

distributions Fi,t(ri,t+1), where the subscript t denotes that joint and marginal distributions

are conditioned on the information set Ft available at time t. Following Patton (2006b),

there must exist a function Ct that maps the domain [0, 1]d toward the interval [0, 1], called

the conditional copula, such that

(5) Ft(r1,t+1, . . . , rd,t+1) = Ct (F1,t(r1,t+1), . . . , Fd,t(rd,t+1)) .
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This expression constitutes a d-dimensional extension of Sklar’s (1959) theorem for condi-

tional copulas.5

Using the expression in Equation (5), any copula Ct can be employed to define a joint

distribution Ft(rt+1) with the arbitrary marginal distributions F1,t, . . . , Fd,t. Thus, using a

bottom-up approach, we model the marginal distributions of asset returns, followed by the

conditional copula function that describes their dependence structure.

A. Modeling univariate processes

We first specify the univariate distribution functions of the asset returns rt+1. Our multi-

variate copula model supports the use of various marginal distributions. Thus we can attend

to the particular characteristics of each asset return, which is an useful feature when differ-

ent types of assets appear in the portfolio, such as commodities and stocks. We present a

marginal distribution model that captures individual skewness and heavy tails, as well as

time-varying moments. We build on the autoregressive conditional density models of Hansen

(1994), Harvey and Siddique (1999), and Jondeau and Rockinger (2003), and we propose,

for modeling the conditional univariate distribution, a generalized Student’s t distribution

with possibly time-varying parameters. Thus, the univariate process for each asset returns

ri,t+1 (i = 1, . . . , d) can be expressed as follows:

ri,t+1 = µi,t+1 +
√

σ2
i,t+1 zi,t+1(6)

µi,t+1 ≡ IEt (ri,t+1) = µ0,i + β′
iXt +

p∑
j=1

Φi,jri,t+1−j(7)

σ2
i,t+1 ≡ Vart (ri,t+1) = α0,i + α+

1,i σ2
i,tz

2
i,t 1l{zi,t⩾0} + α−

1,i σ2
i,tz

2
i,t 1l{zi,t<0} + α2,i σ2

i,t,(8)

zi,t+1 ∼ gi,t(zi,t+1 ; νi,t+1 , λi,t+1) ,(9)

5This generalization of Sklar’s theorem is a direct application of the concept of a conditional copula

(Patton (2006b), Theorem 1) to a multivariate case (Nelsen (2006), Theorem 2.10.9), and requires simply that

conditioning variables be the same for all marginal distributions and the copula. If margins are continuous,

this copula is unique.
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where µi,t+1 and σ2
i,t+1 are the mean and variance conditioned on Ft for the i-th asset returns,

and zi,t+1 is the corresponding residual.

The conditional mean, defined in Equation (7), is a linear function of p lagged returns,

ri,t+1−j (j = 1, . . . , p), and m further explanatory variables Xt, with the coefficients Φi,j and

βi, respectively, and the drift parameter µ0,i. This specification can capture the possible

presence of autocorrelation and predictability in asset returns. As the exogenous regressors

Xt, we consider explanatory variables employed in previous literature to predict variation in

stocks and commodity futures returns, including the short rate, default spread, momentum,

basis, and growth in open interest (see Hong and Yogo (2012)).

As we describe in Equation (8), we employ an asymmetric or leveraged GARCH dynamic

for the conditional variance. This specification is designed to account for volatility clustering

and leverage effects, such as possible asymmetric responses to positive and negative shocks

that have occurred in the previous period (Campbell and Hentschel (1992)).6Equation (9)

then denotes that the univariate innovations zi,t+1 are drawn from a generalized Student’s t

distribution, gi,t, which can capture heavy tails and individual skewness through the degrees

of freedom νi and asymmetry parameter λi (Hansen (1994)). The details of the functional

form of this univariate distribution are summarized in the online Appendix A.

Finally, our specification of the marginal distributions addresses the possibility of time-

varying higher moments as follows:

νi,t+1 = Λ(2,∞)
(
δ0,i + δ+

1,i zi,t 1l{zi,t⩾0} + δ−
1,i zi,t 1l{zi,t<0} + δ2,iΛ−1

(2,∞)(νi,t)
)

,(10)

λi,t+1 = Λ(−1,1)
(
ζ0,i + ζ+

1,i zi,t 1l{zi,t⩾0} + ζ−
1,i zi,t 1l{zi,t<0} + ζ2,iΛ−1

(−1,1)(λi,t)
)

,(11)

where δi
0, δi

1, δi
2, ζ i

0, ζ i
1 and ζ i

2 are constant parameters, and y ≡ Λ(l,u)(x) = (u + lex)/(1 + ex)

denotes the modified logistic map designed to keep the transformed variable y in the domain

(l, u) for all x ∈ IR. Thus, shape parameters νi,t+1 and λi,t+1 may depend on their lagged

values and react differently to positive and negative shocks. This general specification also

includes some well-known univariate distributions as particular cases. For instance, if the
6To guarantee positive and stationary volatility, the parameters of the variance dynamics in Equation (8)

must satisfy the following constraints: α0,i > 0; α+
1,i, α−

1,i, α2,i ⩾ 0; and α2,i + (α+
1,i + α−

1,i)/2 < 1 .
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asymmetry parameter goes to 0, we obtain the symmetric Student’s t distribution; as degrees

of freedom tend to infinity, we would converge to a Gaussian distribution.

B. Modeling copula functions

In this section, we present the copula functions that determine the dependence structure

of our model. Following Sklar’s theorem in Equation (5), the copula function acts like a

joint distribution of the probability transformed vector (F1,t(r1,t+1), . . . , Fd,t(rd,t+1)′, where

Fi,t(ri,t+1) are the marginal distribution functions of asset returns ri,t+1, as described in

Equations (6)-(9). In particular, we employ three multivariate copula functions: two well-

known elliptical copulas, the Gaussian and the t copula (Embrechts et al. (2003)), and an

asymmetric copula, the so-called skewed t copula (Demarta and McNeil (2005)). They are

all implicit dependence functions of various multivariate normal mixtures. More specifically,

they are the parametric copula functions contained in the multivariate Gaussian, Student’s

t, and generalized hyperbolic skewed t distributions, respectively.

Through a direct application of Sklar’s theorem, we can obtain these implicit copulas

by evaluating a given multivariate distribution (e.g., generalized hyperbolic skewed t) at the

quantile functions of its corresponding marginal distributions. For example, the skewed t

copula is given by:

(12) CSK( u1, . . . , ud ; P , ν, γ ) = H
(

H−1
1 (u1 ; ν, γ1), . . . , H−1

d (ud ; ν, γd) ; P , ν, γ
)

,

where H(· ; P , ν, γ) is the generalized hyperbolic skewed t distribution with d × d correla-

tion matrix P , degrees of freedom ν, and d-dimensional asymmetry parameter vector γ =

(γ1, . . . , γd). The Hi(· ; ν, γi) are the d univariate skewed t distributions, the H−1
i are the cor-

responding quantile functions, and (u1, . . . , ud)′ is the probability-transformed vector. Simi-

larly, we can extract the Gaussian and t copulas, CG(u1, . . . ud ; P ) and CT(u1, . . . ud ; P , ν),

from their respective multivariate distributions.

In the online Appendix B, we provide more details about the functional forms of these

three copulas, including their density functions. For illustrative purposes, in Figure 1, we
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present the contour plots and probability density functions of these copulas for a two-

dimensional case. Although the examples in Figure 1 are for a bivariate case, a useful

property of all three copulas considered is that they can be employed directly to specify the

dependence structure of an arbitrary number of risky assets.

<Insert Figure 1 about here>

As Figure 1 reveals, using these three copulas, we can model three different types of

dependence. The Gaussian copula, CG(· ; P ), defines linear, symmetric dependence, com-

pletely determined by the correlation matrix P . Thus it is unable to capture tail dependence

or asymmetries. The t copula, CT(· ; P , ν), is also elliptically symmetric but allows for tail

dependence through the degrees-of-freedom parameter, ν. The plots in Figure 1 show that

the t copula assigns more probability to the extremes than does the Gaussian copula. The

greater the degrees of freedom, the smaller the level of tail dependence, converging in the

limit ν → ∞ to the Gaussian copula. Finally, the skewed t copula, CSK(· ; P , ν, γ), can cap-

ture extreme and asymmetric dependence of the asset returns. Through the d-dimensional

vector of asymmetry parameters γ, the skewed t copula can assign more weight to one tail

than the other. For example, in Figure 1, all elements of the asymmetry vector are negative,

and therefore, the density contour is clustered in the negative-negative quadrant. Eventually,

if γ → 0, asymmetric dependence goes to 0, and we recover the symmetric t copula.

Once we have defined the functional forms of the three implicit copulas, we can build the

multivariate distribution model for our vector of asset returns. This multivariate distribution

forms from the marginal distributions of the previous section and one of the implicit copulas

we described previously. In addition, following pioneering works by Patton (2006a,b), we

can parametrize time variation in the conditional copula function of our multivariate model.

For that purpose, and in the spirit of Engle’s (2002) dynamic conditional correlation model,

we extend the notion to other types of dependence beyond the Gaussian one and allow

that the dependence matrix Pt of our conditional copula may evolve over time, according

to some GARCH-type process. In the most general case, the vector of return innovations,
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zt+1 = (z1,t+1, . . . , zd,t+1)′, follows the distribution specification:

(13) zt+1 ∼ CSK
t

(
g1,t(z1,t+1 ; ν1,t+1, λ1,t+1), . . . , gd,t(zd,t+1 ; νd,t+1, λd,t+1) ; Pt+1, ν, γ

)
,

where the gi,t(zi,t+1 ; νi,t+1, λi,t+1) are the conditional univariate distributions in Equation (9),

and the evolution equation for Pt+1 is given by:

(14) Pt+1 = Λ(−1,1)

(
ω0 Pc + ω1

1
M

M∑
m=1

xt+1−m x′
t+1−m + ω2 Pt

)
.

In this case, xt is the vector of transformed variables, (H−1(u1,t; ν, γ1), . . . , H−1(ud,t; ν, γd))′;

Pc is the constant correlation matrix; ω0, ω1 and ω2 are constant parameters; and M is

the number of lags we consider. The modified logistic function Λ(−1,1)(·) ensures that the

elements of Pt+1 remain in the domain (−1, 1).

C. Estimation

Our model structure, formed by the marginal distributions and the copula, allows for a two-

step estimation procedure, similar to the conditional setups of Jondeau and Rockinger (2006)

and Patton (2006a). In the first step, we obtain the maximum likelihood (ML) estimates of

the individual processes; then, we determine the parameter estimates of the copula function.

From this ML approach, we can compute the asymptotic and robust standard errors for the

estimates.7

Formally, this procedure can be expressed as follows: Let r̄T = {r1, . . . , rT } be the sample

of returns of length T , where rt = (r1,t, . . . , rd,t) for i = 1, . . . , T . We want to find the set of

parameter estimates θ̂ that maximizes the log-likelihood function L, that is,

(15) θ̂ ≡ arg max
θ∈Θ

L(θ ; r̄T ) = arg max
θ∈Θ

T∑
t=1

log ft(rt+1; θ) ,

where ft(rt+1; θ) is the probability density function of the multivariate model conditioned

by the information set Ft and parameterized by θ ∈ Θ.
7This procedure is also known as the inference functions for margins method. The two-stage approach

can estimate some multivariate GARCH models, such as constant (CCC) and dynamic (DCC) conditional

correlation models (see Engle and Sheppard (2001)).
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From the assumptions of Sklar’s theorem in Equation (5), we can decompose the log-

likelihood function L in Equation (15) into two parts, the margins and the copula (see the

details in the online Appendix C):

L(θM , θC ; r̄T ) =
d∑

i=1
Li(θi,M ; r̄T ) + LC(θC ; θM , r̄T )(16)

=
d∑

i=1

T∑
t=1

log fi,t(ri,t+1 θi,M) +
T∑

t=1
log ct(u1,t+1, . . . , ud,t+1 ; θC).

where Li and LC are the log-likelihood functions for the i-th marginal process and the

copula. In addition, θM denotes the set of parameters corresponding to the d marginal

distributions, (θ1,M , . . . , θd,M)′, and θC denotes the parameters of the copula function. The

ui,t+1 are the marginal distributions, Fi,t(ri,t+1 ; θi,M), with corresponding marginal density

functions fi,t(ri,t+1 ; θi,M); ct(· ; θC) is the copula density function. The online Appendix B

provides the explicit expressions of the copula densities we consider. Therefore, according to

Equation (16), we can estimate sequentially the d marginal distributions models, then, the

copula function, whose ML estimators are given by θ̂i,M = arg max Li and θ̂C = arg max LC ,

respectively.8

Some remarks should be considered though. First, with regard to the univariate pro-

cesses, the quality of the copula estimation depends strongly on the goodness of fit of the

parametric functions we use for the marginal distributions. Second, for the symmetric and

skewed t copulas, we need extra parameters, apart from the correlation matrix P ; in these

cases, because the objective function often falls in local maximums, convergence difficulties

may arise when maximizing the log-likelihood function directly. To overcome this problem,

we perform the ML estimations of these copula functions in two nested steps. The inner

step maximizes the likelihood with respect to the correlation matrix, given fixed values for

the shape parameters. This conditional optimization is placed within a maximization with

respect to the shape parameters; thus maximizing the likelihood over all copula parameters.9

8Patton (2006a) shows that one-step maximum likelihood estimators and two-stage estimators are equally

asymptotically efficient.
9Furthermore, we employ a global optimization approach, consisting of simulated annealing, to check the

robustness of the local optimization results (Goffe, Ferrier and Rogers (1994)).
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IV. Empirical application

In this section, we first present the data and their main univariate and multivariate statistical

properties. Then, we estimate the conditional copula models and analyze their in-sample

fitting performance. Finally, we solve the portfolio problem for the copula models numerically

and obtain the optimal weights, investment ratios, and relative performance measures over

the out-of-sample period.

A. Data and preliminary analysis

Our empirical application relies on three risky assets: two commodity futures, oil and gold,

and the S&P 500 equity index. The oil futures correspond to West Texas Intermediate (WTI)

crude oil from the New York Mercantile Exchange (NYMEX). The gold futures correspond to

the gold bar, with a minimum of 0.995 fineness, from the New York Commodities Exchange

(COMEX). These futures are two of the most actively traded commodity contracts in the

world, and they do not have tight restrictions on the size of daily price movements.10In both

cases, we employ the most liquid futures contracts, measured by daily trading volume, of

all maturities available. The risk-free rate is computed from the three-month U.S. Treasury

bills provided by the Federal Reserve System. All data are in U.S. dollars and came from

Thomson-Reuters Datastream. The sample period considered ranges from June 20, 1990

to September 8, 2010, for a total of 1056 weekly observations. We divided the sample in

two subperiods, such that the period from June 20, 1990 to June 20, 2006 supported the

in-sample estimation analyses of the models, and the remaining observations from June 20,

2006 to September 8, 2010 were reserved for the out-of-sample portfolio performance exercise.

The online Appendix F contains the tables and figures related to the univariate and

multivariate preliminary analyses.
10At the end of 2011, gold and crude oil futures represented 30% of the Dow Jones-UBS Commodity Index

and 38% of the S&P-Goldman Sachs Commodity Index.
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A.1. Univariate preliminary analysis

We first analyze the univariate behavior of the three asset returns. Appendix Table F.1

reports summary statistics for the weekly returns of the gold and oil futures and the equity

index for the sample periods. With Exhibit 1 of Appendix Figure F.1, we display the relative

price moves of each asset over the full-sample period.

We observe substantial changes in the sample moments of returns over time. The mean

returns are all positive, except for equity during the out-of-sample period (Jun. 2006 – Sep.

2010). Returns volatilities per week for oil, gold, and equity increased from 4.4%, 1.9%,

and 2.1% in the in-sample period to 5.4%, 3.2%, and 3.0% during the out-of-sample period.

Looking at the ratio of the mean over the volatility (Sharpe’s ratio), we find that for the

in-sample observations, equity (0.07) performs better than oil (0.04) and gold (0.03). This

pattern changed during the 2006-2010 period, during which ratios of oil (0.01) and equity

(-0.02) were below their historical average, whereas gold’s ratio (0.11) moved significantly

above its historical average. According to the Ljung-Box (LB) and Lagrange multiplier

(LM) statistics, reported in Table F.1, there is evidence of serial correlation in the returns

and squared returns for all time series (except for oil returns over the in-sample period).

Assets returns are non-normal, skewed, and heavy tailed. According to the Jarque-

Bera (JB) and Kolmogorov-Smirnov (KS) tests, normality in the returns’ unconditional

distribution is strongly rejected for all samples. Skewness and kurtosis of returns differs

across assets and sample periods. From the in-sample to the out-of-sample period, the

equity returns’ skewness grew much more negative, while gold returns changed from positive

to negative skewness, and oil returns from negative to positive. During 2006-2010, the oil

and gold returns’ kurtosis decreased with respect to the previous period, but equity returns’

kurtosis strongly increased, as expected.

A.2. Multivariate preliminary analysis

It is also interesting to describe the interactions observed in the sample among the oil, gold,

and equity index returns. In the online Appendix (Table F.2), we report some multivariate
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statistics and preliminary tests for the three-dimensional vector of asset returns. We first

focus on the characteristics of the linear dependence; then we turn to analyzing non linear

features observed in the vector of returns.

Appendix Table F.2 reports unconditional correlation coefficients. We find a large in-

crease in linear dependence for the 2006-2010 period with respect to historical values. The

sample correlation between oil and gold returns rises from 0.21 to 0.39. Furthermore, equity

index returns, which were negatively correlated with oil (-0.06) and gold (-0.08) in 1990-

2006, became positively correlated with both of these commodity returns over the 2006-2010

period, with coefficients equal to 0.39 and 0.17, respectively. These findings suggest that

dependence between commodities and equity is no longer constant and evolves with time.

To check this assumption, we carry out Engle and Sheppard’s (2001) test for constant corre-

lation. The probabilities of constant correlation (test p-values reported in Panel B of Table

F.2) are less than 0.05 in all cases; therefore, we reject the hypothesis of constant dependence.

Panel C of Table F.2 reports the tri-variate measures of skewness and kurtosis proposed

by Mardia (1970) to test multivariate normality. The corresponding statistics suggest that

the hypothesis of multivariate normality should be rejected for the three sample periods

considered. Following McNeil, Frey and Embrechts (2005) we test whether the standard-

ized vector of returns is consistent with a spherical distribution. The corresponding KS test

statistics, reported in Panel C of Table F.2, reject the ellipticity hypothesis for all samples.

Visually, their associated quantile-quantile plots reveal that multivariate normality and el-

liptical symmetry are strongly rejected for our sample (see Exhibits 2 and 3 of Appendix

Figure F.1).

Finally, to check for the presence of asymmetric dependence between asset returns, we

analyzed the exceedance correlation and tail dependence in our sample. For each pair of asset

returns, Appendix Figure F.2 plots the exceedance correlation function proposed in Ang and

Chen (2002), Longin and Solnik (2001), and Patton (2004), which depicts the correlation

between returns above or below a given quantile. In the case of symmetric dependence, the

correlation for both extremes should be similar and equal to zero for Gaussian dependence.
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According to these plots, any assumptions of normality or symmetry seem unrealistic for

our sample. Oil and gold do not display the same level of diversification for bear and bull

markets, and correlation between oil and equity is highly positive for large negative returns

but smaller for large positive returns. The correlation between gold and equity is close to 0

for large negative returns and significantly positive for very large positive returns. Although

oil and gold are very positively correlated for large negative returns, are not or even are

negatively correlated for large positive returns.

If we estimate the tail dependence of each pair of returns in our sample, we observe an

asymmetric pattern. Panel D of Table F.2 reports the fitted upper and lower tail dependence

parameters, τU and τD, corresponding to the symmetrized Joe-Clayton (SJC) copula, defined

by Patton (2006b). Tail dependence increases over the 2006-2010 period, and lower tail

dependence estimates are generally larger than the upper ones, especially in the last sample

period.

Both univariate and multivariate analyses suggest that the assumptions of normality and

symmetry for the individual processes and dependence functions are very restrictive and

probably should be rejected. A flexible model that captures all the features analyzed in

the data thus is required. In the next section, we estimate the conditional copula model

proposed in Section III for our vector of oil, gold, and equity returns. Subsequently, we

investigate whether capturing these features (e.g., non-normality of the individual processes,

time-varying moments, asymmetric dependence) using the more flexible model leads to eco-

nomically better portfolio decisions.

B. Estimation of the conditional copula model

In this section, we estimate the conditional copula model using the multistage maximum

likelihood procedure explained in Section III.C. We first present the in-sample estimation

and goodness-of-fit test results for the marginal distribution models. In a second stage, we

analyze the results for the copula model.

In the online Appendix F, we provide the tables and figures related to the in-sample
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estimation analyses of the proposed multivariate copula models.

B.1. Models for the marginal distributions

Appendix Table F.3 presents maximum likelihood estimates of the parameters of the marginal

distributions for oil, gold, and equity index returns. We compute robust standard errors of

these estimates and report their corresponding p-values in parentheses. These estimates

correspond to the generalized t marginal distribution function with time-varying moments,

described in Equations (6)-(11) of Section III.A.

In the mean equation, we find that the basis (oil returns) and momentum and risk-free

rate (gold returns) are significant explanatory factors. The results for the variance equation

further show that volatility is strongly persistent for all returns. For equity, only negative

returns have an effect on subsequent variance. This result is consistent with the leverage

effect studied by Campbell and Hentschel (1992), among others. Yet for both commodities,

especially gold, we observe an inverse leverage effect; that is, positive shocks have a stronger

effect on variance than do negative ones of the same size.

Regarding the dynamics of the degrees-of-freedom and asymmetry parameters, we find

that both higher moments are rather persistent for all asset returns over the in-sample

period. Large moves in oil returns, especially negative ones, diminish the posterior degrees

of freedom (δ−
1 = 5.51 > 0, δ+

1 < 0), increasing the likelihood of posterior large shocks.

For equity returns, large moves, especially positive ones, increase the subsequent degrees of

freedom (δ−
1 < 0, δ+

1 = 21.14 > 0), so large returns are less likely. For gold returns, extreme

events are generally more likely to cluster in periods of large positive moves: Positive shocks

are followed by a decrease in posterior degrees of freedom (δ+
1 = −3.63 < 0), whereas negative

shocks generally are followed by an increase (δ−
1 = −3.26 < 0).

In general, lagged values of the asymmetry parameter are more significant for subsequent

parameter values than is the effect of the previous returns shock. Over our study’s in-sample

period, only positive shocks in gold returns (ζ+
1 = −0.90 < 0) and negative shocks in equity

returns (ζ−
1 = −2.55 < 0) seem to have effects of opposite signs on the posterior asymmetry
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parameters. Therefore, for the three assets returns, we find significant time variation in the

moments of the univariate processes. As a benchmark, Table F.3 also reports the degrees-of-

freedom and asymmetry parameters, ηc and λc, of the conditional distribution with constant

shape parameters. We find that for the in-sample period, the left tail of the conditional

distribution of oil and equity returns is fatter than the right tail, with parameters ηc and λc

equal to 11.24 and -0.09 for oil returns, and 12.25 and -0.23 for equity returns. In contrast,

gold returns have positive (though not significant) asymmetry parameters and heavier tails

than oil and equity returns (ηc =4.79).

A reliable estimation of copula models requires an appropriate specification of the uni-

variate density functions (see Patton (2006a,b) and Jondeau and Rockinger (2006)). To

avoid misspecified copula models, we conduct the in-sample goodness-of-fit test suggested

by Diebold, Gunther and Tay (1998) for our estimated marginal distribution models. If

the marginal model is correctly specified, the probability integral transform should be i.i.d.

Uniform(0,1). According to the the LM statistics in Panel A of Appendix Table F.4, we

must reject serial dependence in the first four moments of the probability integral transform

(all p-values > 0.15). In addition, the KS statistics suggest that the shape of the conditional

distribution model is correctly specified for the three returns (p-values > 0.90). Visually,

Figure F.3 of Appendix F also supports these results. The asymmetric marginal model

performs substantially better than the Gaussian and symmetric models, even for constant

higher moments.

Finally, we compare our more general skewed t marginal model against different con-

strained alternative models using likelihood ratio (LR) tests. In Panel B of Table F.4, we

report the LR test statistics for the next four alternative marginal models: the generalized

t distribution with constant parameters, the standard Student’s t distribution with time-

varying and constant degrees of freedom, and the standard Gaussian distribution. In all

cases, we reject the restricted specification in favor of a more general model, at least at a

5% significance level (p-values < 0.05).
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B.2. Models for the copulas

In this second stage, we estimate the dependence function that links the three marginal

distribution models. We analyze the three time-varying or conditional copula functions

described in Section III. B: the Gaussian, t, and skewed t copulas. Appendix Table F.5

presents the in-sample ML estimates of the three conditional copula models, estimated on

the transformed residuals of the generalized t univariate model. This table also reports the

estimates p-values, computed from the asymptotic covariance matrix, and the likelihood

values at the optimum for the conditional and unconditional copulas.11

According to the ML estimates, for all copula models, the dependence coefficient between

oil and gold returns, ρoil,gold, is positive, whereas the dependence coefficient between gold and

equity index returns, ρgold,equity, is negative, and that between oil and equity, ρoil,equity, is in-

significantly different from 0. Therefore, the estimated dependence coefficients are consistent

with the unconditional in-sample correlations reported in Table F.2.

Estimates of the degrees of freedom ν are strongly significant for symmetric and skewed

t copulas, indicating the presence of a significant level of dependence in the extremes. Re-

garding the estimation of the skewed t copula, we find that all elements of the asymmetry

parameters vector (γoil, γgold, γequity) are negative, especially for oil and equity, suggesting

more extreme dependence among returns during extreme depreciations of these assets com-

pared with during bullish markets.

The parameters ω0, ω1, and ω2, which parametrized the dynamic equation of dependence,

are significant for all conditional copulas, showing strong evidence of time variation and

persistence in the conditional dependence. These results regarding the estimates of the

dependence functions are consistent with the preliminary multivariate analysis of Section

IV.A.2.

According to the LR test statistics reported in Appendix Table F.5, we observe, first,

that conditional copulas are preferred over their corresponding unconditional versions (p-
11The conditional dependence follows the dynamics in Equation (14) for M = 4, which are the number of

lags consistent with the autoregressive lags considered in the univariate models.
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values ⩽ 0.05 for the three cases). Second, the presence of tail dependence in the in-sample

data is not negligible. The p-values of the LR test of the conditional and unconditional

t copulas with respect to the more restrictive Gaussian copulas are always less than 0.10.

Third, there is evidence of asymmetry dependence over the in-sample period, captured by

the skewed t copula, but the gains from modeling this asymmetry may not make up for the

penalty associated with the inclusion of more parameters in the model. These gains seem

less significant than those obtained from modeling time-varying and tail dependence.

B.3. Out-of-sample parameters forecasts

We proceed to obtain the optimal portfolio decisions over the out-of-sample period. These

portfolio strategies are based on various multivariate copula models and require the forecasts

of the different parameters at play over the 2006-2010 period. For that purpose, we recur-

sively reestimate the marginal and copula models throughout the out-of-sample period (220

weekly observations) using a rolling window scheme that drops distant observations as more

recent ones are added and therefore keeps the size of the estimation window fixed at 836

observations. Once we reestimated the model for each point in the out-of-sample period, we

constructed the time-series of one-period-ahead parameter forecasts needed for the allocation

stage.

Figure F.4 of the online Appendix shows the output of the forecasts of the conditional

mean, volatility, and skewness of each return process throughout the out-of-sample period.

The volatility forecasts of all asset returns are relatively high, especially around October

2008 (see Exhibit 2). Conditional skewness is negative for equity and oil returns during the

2006-2010 period, but it is positive for gold returns during that period (see Exhibit 3).

Appendix Figure F.5 presents the forecasts of the conditional dependence parameters.

It is worth noting that there is an increase in the fitted correlation coefficients among oil,

gold, and equity from October 2008, especially for oil and equity returns (see Exhibit 1). In

addition, the dependence coefficients seem to evolve more similarly in the latter part of the

sample. The degrees-of-freedom forecasts decrease after August 2007, indicating rising tail

21



dependence since then (see Exhibit 2). In addition, the asymmetry parameter of oil ranges

between -0.6 and -0.2, which implies that extreme dependence seems to be stronger during

large depreciations of oil, compared with large drops in gold or equity, whose asymmetry

parameters range between -0.2 and +0.2 (see the forecast of the asymmetry parameter vector

in Exhibit 3).

In general, during our reestimation of the copula models, we found no evidence to contra-

dict skewed and fat-tailed marginal distributions and asymmetric and extreme conditional

dependence, but strong evidence indicated that Gaussian distribution and elliptical depen-

dence are not the best-fitting models. These results over the allocation period are consistent

with the sample statistics we reported previously.

In summary, the skewed t copula provides a more informative measure of the dependence

between commodities and equity-index returns, even taking into account that part of the

tail behavior is captured by the skewed fat-tailed marginal distribution models. Therefore,

possibly time-varying tail thickness and asymmetry are key factors not taken into account

in a standard elliptical, (à la Markowitz), approach. The extent to which these factors have

a significant impact on the portfolio choice decision is addressed in the next section.

C. Optimal portfolio results

In this section, we compute optimal portfolio decisions driven by the copula models we pre-

sented in the previous sections. We also analyze the portfolio performance of these strategies

over the whole out-of-sample period. We mainly focus on six model-driven portfolio strate-

gies, which can be analyzed from the perspective of copula models and therefore estimated

using the multistage procedure from Section III.C. We also include the equally weighted

portfolio (with and without rebalancing), which is a common benchmark in prior literature.

First, we consider the unconditional multivariate Gaussian model (pure Markowitz), a

constant Gaussian copula with unconditional Gaussian marginal distributions. Second, we

generalize this case by considering two conditional multivariate Gaussian distributions: the

constant conditional correlation (CCC) and the dynamic conditional correlation (DCC). Both
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CCC and DCC specifications are formed by conditional Gaussian marginal distributions with

the conditional means and variances defined in Equations (6) and (8). Third, we compute

portfolio strategies using the conditional copula models of Section III. Thus, we consider the

generalized Student’s t distribution for the marginal models (Equations 6-9) and three types

of conditional dependence functions: the Gaussian, t, and skewed t copulas (Equations 13-

14). With this set of models, we can compare the gains of including more flexible distributions

as a means to compute portfolio decisions.

For each copula model, we obtain the optimal portfolio weights and thus the optimal

portfolio return series, maximizing the investor’s three-moment utility function from Equa-

tion 3. One of the advantages of using these parametric models is that the optimization

problem can be solved numerically using Monte Carlo simulations. Thus, for each period

of the allocation sample, we employ the parameter forecasts to generate 10,000 indepen-

dent paths, according to Equation 12. Then, we compute the moments of the portfolio and

maximize the three-moment utility subject to the non linear budget constraint.12

We solve the optimization problem for different values of the parameters φV and φS,

which define the investor’s three-moment utility (see Equation 3). Following Harvey et al.

(2010), using the different parameterizations of utility, we can account for different impacts

of the portfolio variance and skewness on the investor’s preferences. Some specifications of

the investor’s three-moment utility can be interpreted as the expected value of the third-

order Taylor series approximation of the power utility function; in that case, the value of

parameters φV and φS depend on the coefficient of relative risk aversion A.13

12We conduct the maximization using a sequential quadratic programming method for nonlinearly con-

strained optimizations (Nocedal and Wright (2006)).
13As we mentioned in Section II, under the third-order Taylor approximation, the parameters φV and φS

are given by the second and third partial derivatives of the power utility function (Guidolin and Timmermann

(2008); Jondeau and Rockinger (2012)).
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C.1. Portfolio weights

We first compute and analyze the portfolio strategies over the out-of-sample period driven

by the different copula models. To consider the impact of risk and loss aversions, the optimal

portfolio weights are obtained for different specifications (φV and φS) of the three-moment

preferences. Table 1 reports the mean, standard deviation, and percentiles of the optimal

weights for oil, gold, and equity, obtained using our most general model, the conditional

skewed t copula. In the online Appendix F (Figure F.6), we plot the time series corresponding

to these optimal weights.

<Insert Table 1 about here>

Regarding these results, we observe that under the skewed t copula model, holdings

of oil and gold are positive and their sum is generally greater than 1, leveraged by short

positions in equity. Over the out-of-sample period, mean weights in oil range from 0.41, for

the preferences specification with parameters φV = 1 and φS = 1/2, to 1.06, when φV = 1/4

and φS = 1/2; the average weights of gold range from 0.82 (for φV = 5/2 and φS = 5) to

3.87 (for φV = 1/4 and φS = 1/2); and the mean of equity holdings is between -4.03 (for

φV = 1/4 and φS = 1/2) and -1.16 (for φV = 5/2 and φS = 5).

Thus we find that on average, when the impact of skewness on investor’s preferences (φS)

increases (larger loss aversion), the position in equity diminishes, increasing the holdings of

commodities in the portfolio. For example, when the preference parameter φS doubles its

value from 1/2 to 1, leaving φV equal to 1, the mean weights of oil and gold exhibit a relative

increase of 23% and 13%, whereas the short position in equity increases 27%. In addition,

when the impact of portfolio variance on preferences (φV) increases (larger variance aversion),

the short positions in equity decline on average, and consequently, exposure to commodities

decreases. When the preference parameter φV increases in value from 1/4 to 1, the remaining

φS equal 1/2, the long positions in oil and gold decrease 61% and 59% on average, and the

short position in equity decreases 73%. The intuition is that both commodities are likely

to experience extreme moves (low degrees of freedom in the marginal distribution) and thus
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may be perceived as riskier when variance aversion increases, whereas they become safer

investments, especially gold, in terms of skewness (positive jumps) as loss aversion rises.

From the point of view of a power utility investor, we observe that when the coefficient

of relative risk aversion A increases, the leverage of the portfolio declines, at the expense of

diminishing long positions in gold. The distribution of weights is altered by the combined

effect of larger variance (φV) and loss (φS) aversions: The median of equity weights rises

substantially from -1.29 for A=1 (φV=1/2 and φS=1/3) to 0.21 for A=5 (φV=5/2 and

φS=5), while that of gold weights diminishes from 1.65 to 0.43.

Next we compare the optimal portfolio weights obtained using the different multivariate

copula models. Table 2 reports the summary statistics of the optimal portfolio weights

over the allocation period for the six model-driven portfolio strategies. In this case, the

comparison refers to a fixed level of variance and loss aversion, the preference parameters

are set to φV=1 and φS=1 (A = 2). To address the effects of skewness preferences on the

asset allocation with commodity futures (Panel A), we also report the optimal portfolio

weights for mean-variance preferences (Panel B), that is, when φS is equal to 0. In addition,

in Appendix Figure F.7, we plot the time-series of the allocation differences between the

skewed t copula model and other multivariate specifications.

<Insert Table 2 about here>

The bulk of the difference between portfolios strategies depends on the use of differ-

ent marginal distribution models. Significant discrepancies arise when using time-varying

Gaussian marginal distributions (CCC and DCC models) instead of unconditional Gaussian

ones (Uncond. Gaussian). There are also relevant differences between using Gaussian (CCC

and DCC) and generalized Student’s t distributions (conditional copulas) for modeling the

conditional univariate distributions. The quantiles presented in Table 2 and the plots in

Figure F.6 show that the weights of conditional copula models with skewed and fat-tailed

marginal distributions are more extreme than those with conditional Gaussian univariate

distributions.
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A second source of allocation differences is driven by the various specifications of the

conditional dependence. These discrepancies in optimal weights arise, first, from introduc-

ing a dynamics equation in the dependence structure (e.g., DCC vs. CCC); second, from

considering tail dependence (e.g., t copula vs. Gaussian copula); and, third, from capturing

asymmetric dependence (e.g., skewed t vs. t copula). The statistics in Table 2 show that the

portfolio decisions obtained from the skewed t copula are more aggressive than those from

the Gaussian and t copulas.

For an investor with mean-variance preferences (Panel B of Table 2), there are fewer

allocation differences related to the type of conditional dependence; portfolio weights of

conditional copulas are more similar. In addition, optimal weights from t and skewed t

copula models are less extreme than matched weights under the three-moment preferences.

Comparing the portfolio weights of the skewed t copula under both preference specifications,

we find that long positions in oil and gold decrease 57% and 25% on average when the

investor shows no loss aversion; the short position in equity decreases 60%. That is, there is

less leverage in equity under the mean-variance preferences.

Finally, in Figure 2, we compare the optimal portfolio weights for different copula models

and for different preference parameterizations. This comparison refers to the first period of

the out-of-sample window; to simplify, we just consider three-moment preference specifica-

tions corresponding to the third-order Taylor expansion of the power utility function with

coefficient A. The main differences between the skewed t copula and other multivariate mod-

els emerge at low levels of A (low levels of variance and loss aversion). For Gaussian models,

such as Uncond. Gaussian and DCC, these differences are more pervasive along the A line.

The impact of tail and asymmetric dependence is less significant as long as A is increasing.

Thus, variance aversion seems to dominate loss aversion when A increases, consistent with

the Taylor expansion interpretation, such that the impact of the second-order factor is larger

than that of the third-order one.

<Insert Figure 2 about here>
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C.2. Investment ratios and portfolio performance

We turn to analyze the moments, investment ratios, and performance of the portfolio deci-

sions. Table 3 contains the summary statistics and investment ratios of the realized optimal

portfolios for each allocation strategy and for different specifications of a three-moment in-

vestor’s preferences. We consider three investment ratios: Sharpe, Sortino, and Omega,

given respectively by (µP − rf )/σP , (µP − rf )/
√

ql
2(rf ), and qu

1 (rf )/ql
1(rf ), where µP is the

average portfolio return, σP is the portfolio volatility, rf is the risk-free rate, and ql
m(rf ) and

qu
m(rf ) are the lower and upper partial moments of order m with a given target value equal to

the risk-free rate.14 The Sortino ratio modifies the Sharpe ratio by dividing the excess return

of the portfolio by the downside standard deviation or square root of semi-variance. The

Omega ratio can be interpreted as the probability weighted ratio of gains to losses, relative

to the risk-free rate. The higher the values of these ratios, the better portfolio performance.

The Sharpe, Sortino, and Omega ratios of the equally weighted portfolios are equal ap-

proximately to 0.05, 0.07 and 1.14 (see Table 3). The poor performance of equity markets

and the boom of gold and oil during the 2006-2010 period reveals that these portfolios,

with constant holdings in oil and gold futures, perform remarkably well compared other

strategies based on distribution models. In particular, for almost all three-moment prefer-

ences considered, the mean, skewness, and investment ratios of the unconditional Gaussian

model (Markowitz model) are substantially smaller than those corresponding to the equally

weighted portfolios.

<Insert Table 3 about here>

Yet one of the three conditional copula models with generalized Student’s t marginal

distributions has generally the largest investment ratios, performing better than the multi-

variate conditional Gaussian models. In addition, the conditional t and skewed t copulas
14The lower and upper partial moments of order m for a given target θ are defined as ql

m(θ) =
∫ θ

−∞(θ −

r)mfp(x)dx and qu
m(θ) =

∫∞
θ

(r −θ)mfp(x)dx, where fp(x) is the probability density function of the portfolio

returns.
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have greater Sortino and Omega ratios than do the Gaussian copulas for all the preferences

considered. When we take into account downside risk and the ratio of gains to losses, con-

ditional copulas that capture tail dependence obtain higher investment measures across our

allocation sample. For example, the Sortino and Omega ratios of the skewed t copula range

from 0.10 and 1.20 for the preference parameters φv = 5/2 and φv = 5 (more risk averse)

to 0.18 and 1.38 for the mean-skewness preferences with parameters φv = 0 and φv = 1/4

(only loss aversion). For these preferences, the Sortino and Omega ratios of the DCC model

range from 0.05 and 1.09 to 0.16 and 1.31.

To compare each model-driven portfolio strategy with a benchmark allocation rule related

to the equally-weighted portfolio, we consider three measures of relative performance: the

performance fee (Fee), the Graham-Harvey (GH) measure, and the certainty equivalent

(CEQ). The performance fee or opportunity cost is the amount that must be added to

the return of the benchmark strategy, such that it leaves the investor indifferent to both

strategies. The Graham and Harvey (1997) measure is the difference between the alternative

portfolio returns on the volatility-matched benchmark portfolio. Thus, we lever up/down

the benchmark to match the alternative portfolio’s volatility over the evaluation period to

make both portfolios comparable. Finally, the CEQ denotes the additional wealth, per dollar

of investment, needed to raise the utility of an investor using the equally weighted portfolio

such that it reaches the level of an investor who employs an alternative strategy.

Table 4 reports the relative performance measures (in basis points per week) of the

realized portfolio returns over the allocation period (2006-2010) for different specifications

of the investor’s three-moment preferences. For all the preference parameterizations, the

three relative performance measures indicate the same best performing strategy (see values

in bold in Table 4). We can obtain substantial gains using the portfolio rules based on

conditional copulas with generalized t marginal distributions. In particular, the skewed t

copula outperforms the Gaussian copula in five of the six preference specifications we report.

The opportunity costs of an investor holding the equally weighted portfolio instead of the

portfolio based on the skewed t copula are between 3 and 68 basis points per year. The
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opportunity costs with respect to the Gaussian copula strategy range from -1.5 to 33 basis

points per year.

<Insert Table 4 about here>

The GH measure, which helps us compare alternative strategies with different levels of

risk with respect to the benchmark, shows that conditional copulas that take into account

tail dependence outperform Gaussian dependence in five of the six preferences considered.

Regarding the CEQ, we find similar conclusions about the out-performance of the alternative

portfolios compared with that obtained using the performance fee.

In general, for the skewed t copula model, relative performance measures increase as

variance and loss aversion decrease. As variance and loss aversion increase, skewed t copula

strategies are less likely to produce large differences in terms of relative performance with

respect to the benchmark. These results are consistent with findings previously reported

in portfolio choice literature (e.g., Das and Uppal (2004) for the case of systemic risk and

international portfolio choice).

According to the investment ratios and performance measures, we can conclude that the

univariate higher moments seem to be a key feature in terms of better investment ratios and

out-of-sample performance of the optimal portfolios. The dynamics in dependence among

marginal functions also have an important role in the allocation decision process. Finally,

the asymmetric and extreme dependence modeled in conditional t copulas make a difference

for certain types of risk and loss aversion.

C.3. Robustness checks

In this section, we evaluate the robustness of our results. To test for the significance of the

differences between portfolio strategies in terms of their economic performance, we adopt the

out-of-sample test developed by Hansen (2005) and check jointly the superior performance

ability of the different portfolio strategies during the allocation period. Using the realized

utility as a performance metric or loss function, we can evaluate the various portfolio decisions
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with respect to a chosen benchmark over the entire out-of-sample period (Patton (2004)).

Under the null hypothesis, the benchmark is as good as any alternative model in terms

of performance. Following Hansen (2005), we employ the stationary bootstrap of Politis

and Romano (1994) to derive the distribution of the test statistics. Thus we can obtain a

consistent estimate of the p-value, as well as upper and lower bounds for that value.

Appendix Table F.7 reports these p-values for various benchmark models. When the

equally weighted portfolio and unconditional Gaussian model serve as benchmarks, the null

hypothesis is rejected. We therefore conclude that these portfolio strategies do not perform

as well as the best competing alternative strategy.

In a second analysis, we solve the portfolio decision problem again when a risk-free

asset is part of the investment opportunities. In Table F.8 of the Appendix, we report the

investment ratios of the new portfolio allocations. In this case, we also find that conditional

copulas with tail dependence perform better than traditional Gaussian strategies, when the

investor’s preferences indicate aversion to variance and negative skewness. These differences

in performance are even larger for the Sortino and Omega ratios.

V. Conclusion

This article investigates the portfolio selection problem of an investor with time-varying

three-moment preferences when commodity futures are part of the investment opportunity

set. In our specification, the portfolio returns’ skewness provides a measure of the investor’s

loss aversion. We model the joint distribution of asset returns using a flexible multivariate

copula setting that can disentangle the specific properties of each asset process from its

dependence structure. The more general model we posit consists of a conditional skewed t

copula with generalized Student’s t marginal distributions and time-varying moments. Thus

we can capture the specific distributional characteristics of commodity-futures returns and

focus on their implications for the portfolio selection problem.

The empirical application employs weekly data for oil and gold futures and for the S&P
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500 equity index, from June 1990 to September 2010. Our preliminary statistics and in-

sample estimation suggest the presence of individual skewness in the univariate processes,

as well as evidence of both tail and asymmetric dependence among equity, oil, and gold.

When computing the optimal portfolio weights, we find substantial discrepancies between

the holdings obtained from our conditional copula models and those from more traditional

Gaussian models. These discrepancies translate into economically significant differences in

terms of better investment ratios and relative performance measures.

In order of relevance, the key factors underlying these differences are the proper specifi-

cation of the time-varying univariate processes, followed by the conditional dynamics of the

dependence among marginal distributions, and finally the extreme and asymmetric depen-

dence modeling.
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Table 1. Summary statistics of the optimal portfolio weights for the skewed t copula

This table reports the statistics for the allocation period related to the optimal portfolio weights for the
conditional skewed t copula model. We consider different investors’ preferences. A is the coefficient of
relative risk aversion of power utility functions.

φV = 1/2, φS = 1/3 (A=1) φV = 1, φS = 1 (A=2) φV = 5/2, φS = 5 (A=5)

woil wgold wequity woil wgold wequity woil wgold wequity

Mean 0.694 2.588 -2.382 0.506 1.775 -1.381 0.440 0.821 -1.161
Std. Dev. 1.676 3.169 3.359 1.318 2.607 2.896 2.700 2.509 3.432
pct. 5% 0.000 0.000 -9.454 0.000 0.000 -9.680 0.000 0.000 -10.00
pct. 25% 0.000 0.000 -4.886 0.000 0.000 -2.235 0.000 0.000 -0.681
pct. 50% 0.001 1.654 -1.289 0.017 0.921 -0.421 0.071 0.426 0.206
pct. 75% 0.846 4.647 0.515 0.565 2.994 0.579 0.348 1.121 0.643
pct. 95% 3.031 9.919 1.000 1.483 9.158 1.000 7.048 2.831 0.997

φV = 1/4, φS = 1/4 φV = 1/4, φS = 1/2 φV = 1, φS = 1/2

woil wgold wequity woil wgold wequity woil wgold wequity

Mean 0.895 3.862 -3.758 1.058 3.868 -4.025 0.412 1.572 -1.084
Std. Dev. 1.859 4.084 4.302 2.077 4.234 4.265 1.295 2.201 2.555
pct. 5% 0.000 0.000 -10.00 0.000 0.000 -10.00 0.000 0.000 -9.000
pct. 25% 0.000 0.000 -9.000 0.000 0.000 -9.000 0.000 0.000 -2.115
pct. 50% 0.000 2.052 -2.576 0.004 2.327 -3.176 0.012 0.966 -0.322
pct. 75% 1.000 8.460 0.999 1.006 8.286 0.906 0.417 2.643 0.807
pct. 95% 4.796 10.00 1.000 5.698 10.00 1.000 1.444 5.445 1.000
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Table 2. Summary statistics of the optimal portfolio weights for different strategies

This table reports the statistics for the allocation period related to the optimal portfolio weights for different multivariate models and two preference
specifications. In Panel A, φV = 1 and φS = 1 (i.e., third-order Taylor’s approximation for power utility function with A = 2); in Panel B, φV = 1
and φS = 0 (i.e., second-order Taylor’s approximation for power utility function with A = 2).

Panel A: Mean-variance-skewness preferences.
Uncond. Gaussian CCC DCC Gaussian Copula t copula skewed t copula

woil wgold wequity woil wgold wequity woil wgold wequity woil wgold wequity woil wgold wequity woil wgold wequity

Mean 0.19 0.30 0.52 0.47 0.63 -0.10 0.53 0.65 -0.18 0.51 1.37 -0.97 0.56 1.54 -1.19 0.51 1.78 -1.38
Std. Dev. 0.14 0.29 0.30 0.56 0.84 0.93 0.64 0.89 1.01 1.28 1.96 2.30 1.62 2.29 2.93 1.32 2.61 2.90
pct. 5% 0.00 0.00 0.08 0.00 0.00 -1.86 0.00 0.00 -2.13 0.00 0.00 -4.58 0.00 0.00 -10.00 0.00 0.00 -9.68
pct. 25% 0.07 0.00 0.26 0.00 0.00 -0.70 0.00 0.00 -0.60 0.00 0.00 -1.69 0.00 0.00 -2.00 0.00 0.00 -2.24
pct. 50% 0.18 0.23 0.49 0.29 0.23 0.09 0.18 0.15 -0.19 0.11 0.80 -0.34 0.00 0.77 -0.22 0.02 0.92 -0.42
pct. 75% 0.27 0.54 0.80 0.77 1.07 0.60 1.17 1.13 0.66 0.69 2.32 0.37 0.46 2.41 0.96 0.57 2.99 0.58
pct. 95% 0.45 0.77 1.00 1.49 2.40 1.00 1.63 2.56 1.00 1.64 4.42 1.00 2.62 6.07 1.00 1.48 9.16 1.00

Panel B: Mean-variance preferences.
Uncond. Gaussian CCC DCC Gaussian Copula t copula skewed t copula

woil wgold wequity woil wgold wequity woil wgold wequity woil wgold wequity woil wgold wequity woil wgold wequity

Mean 0.18 0.30 0.52 0.51 0.63 -0.13 0.51 0.68 -0.18 0.23 1.29 -0.52 0.26 1.28 -0.54 0.22 1.33 -0.55
Std. Dev. 0.14 0.29 0.31 0.56 0.83 0.89 0.60 0.90 0.98 0.40 1.44 1.47 0.39 1.47 1.47 0.38 1.50 1.53
pct. 5% 0.00 0.00 0.06 0.00 0.00 -1.83 0.00 0.00 -2.15 0.00 0.00 -3.41 0.00 0.00 -3.48 0.00 0.00 -3.69
pct. 25% 0.06 0.00 0.26 0.00 0.00 -0.66 0.00 0.00 -0.56 0.00 0.00 -1.51 0.00 0.00 -1.42 0.00 0.00 -1.40
pct. 50% 0.17 0.23 0.49 0.35 0.23 -0.02 0.21 0.26 -0.20 0.01 0.79 -0.21 0.01 0.81 -0.12 0.00 0.91 -0.28
pct. 75% 0.27 0.54 0.81 0.86 1.04 0.49 1.05 1.20 0.60 0.33 2.31 0.81 0.54 2.23 0.56 0.34 2.30 0.80
pct. 95% 0.46 0.79 1.00 1.44 2.41 1.00 1.48 2.57 1.00 1.03 3.90 1.00 1.10 3.99 1.00 1.03 4.08 1.00
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Table 3. Investment ratios of the realized portfolio returns.

This table reports the investment ratios of the realized portfolio returns over the allocation (out-of-sample)
period for different specifications of the investor’s preferences (φV and φS) and for different strategies. We
present the Sharpe, Sortino, and Omega ratios, given respectively as (µ − rf )/σ, (µ − rf )/

√
ql

2(rf ), and
qu

1 (rf )/ql
1(rf ), where qu

m(θ) and ql
m(θ) are the upper and lower partial moments of order m for a given target

θ. A is the coefficient of relative risk aversion for power utility functions.

Sharpe Sortino Omega Sharpe Sortino Omega

Equally Weighted 0.050 0.071 1.142 0.050 0.071 1.142
E.W. Buy & hold 0.048 0.067 1.133 0.048 0.067 1.133

pref.: φV = 1/2, φS = 1/3 (A = 1) pref.: φV = 1/4, φS = 1/4

Uncond. Gaussian 0.022 0.029 1.062 -0.011 -0.014 0.967
CCC 0.049 0.083 1.160 0.030 0.048 1.099
DCC 0.061 0.099 1.203 0.063 0.102 1.209
Gaussian copula 0.070 0.115 1.241 0.047 0.072 1.166
t Copula 0.067 0.109 1.246 0.063 0.099 1.227
skewed t copula 0.063 0.104 1.216 0.090 0.147 1.338

pref.: φV = 1, φS = 1 (A = 2) pref.: φV = 1/4, φS = 1/2

Uncond. Gaussian 0.035 0.047 1.100 -0.022 -0.029 0.935
CCC 0.047 0.077 1.144 0.042 0.066 1.137
DCC 0.032 0.051 1.094 0.052 0.085 1.177
Gaussian copula 0.023 0.036 1.070 0.049 0.075 1.172
t Copula 0.080 0.130 1.268 0.042 0.065 1.141
skewed t copula 0.078 0.121 1.253 0.071 0.111 1.259

pref.: φV = 5/2, φS = 5 (A = 5) pref.: φV = 1, φS = 1/2

Uncond. Gaussian 0.047 0.065 1.135 0.031 0.041 1.087
CCC 0.033 0.047 1.091 0.041 0.066 1.124
DCC 0.034 0.049 1.093 0.032 0.049 1.092
Gaussian copula 0.060 0.088 1.173 0.062 0.100 1.201
t Copula 0.045 0.066 1.129 0.089 0.149 1.312
skewed t copula 0.067 0.100 1.198 0.072 0.118 1.235
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Table 4. Performance measures of the realized portfolio returns

This table reports performance measures (in basis points per week) of the realized portfolio returns over the
allocation (out-of-sample) period for different specifications of the investor’s preferences and for six strategies
based on different multivariate conditional and unconditional models. We present the management fee (Fee),
the Graham-Harvey measure (GH ), the utility, and the certainty equivalent (CEQ). All relative performance
measures are computed with respect to the equally weighted strategy. A is the coefficient of relative risk
aversion for power utility functions.

Fee GH Utility CEQ Fee GH Utility CEQ

φV = 1/2, φS = 1/3 (A=1) φV = 1/4, φS = 1/4

Uncond. Gaussian -0,076 -0,094 0,055 -0,088 -0,193 -0,260 -0,053 -0,218
CCC 0,302 -0,012 0,103 -0,040 0,372 -0,339 -0,075 -0,240
DCC 0,442 0,104 0,195 0,052 0,985 0,230 0,482 0,317
Gaussian copula 0,506 0,183 0,291 0,148 0,608 -0,060 0,190 0,025
t Copula 0,458 0,151 0,265 0,122 0,906 0,218 0,455 0,290
skewed t copula 0,436 0,118 0,229 0,086 1,304 0,638 0,917 0,752

φV = 1, φS = 1 (A=2) φV = 1/4, φS = 1/2

Uncond. Gaussian -0,053 -0,041 0,060 -0,040 -0,241 -0,306 -0,102 -0,267
CCC 0,088 -0,015 0,041 -0,059 0,568 -0,143 0,209 0,044
DCC 0,023 -0,097 -0,059 -0,159 0,759 0,027 0,415 0,250
Gaussian copula -0,030 -0,137 -0,086 -0,186 0,636 -0,017 0,269 0,104
t Copula 0,242 0,145 0,202 0,102 0,534 -0,137 0,149 -0,016
skewed t copula 0,118 0,010 0,060 -0,041 0,932 0,310 0,616 0,451

φV = 5/2, φS = 5 (A=5) φV = 1, φS = 1/2

Uncond. Gaussian -0,032 -0,007 0,003 0,033 -0,064 -0,054 0,048 -0,053
CCC -0,048 -0,054 -0,093 -0,064 0,060 -0,046 -0,002 -0,102
DCC -0,047 -0,050 -0,082 -0,052 0,014 -0,097 -0,057 -0,157
Gaussian copula 0,024 0,026 0,005 0,035 0,175 0,061 0,098 -0,002
t Copula -0,014 -0,014 -0,041 -0,011 0,308 0,197 0,237 0,137
skewed t copula 0,049 0,050 0,024 0,054 0,214 0,109 0,155 0,055
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Exhibit 1: Contour plots
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Exhibit 2: Probability density function
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Figure 1. Copula functions.
In Exhibit 1, we show the contour plots of the distribution for three different copulas: Gaussian, t, and skewed t. To compare just the copula function,
all of them are evaluated using standard normal marginal distributions (N(0,1) in xy-axis). In Exhibit 2, we show a bivariate representation of the
probability density function c(u1, u2) for the three copulas. In both exhibits we have employed the next set of parameters: ρ = 0.5 for the Gaussian
copula, ν = 5 and ρ = 0.5 for the t copula, and ν = 5, γ = (−0.5, −0.5)′, and ρ = 0.5 for the skewed t copula.
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Exhibit 1: Uncond. Gaussian vs. skewed t copula Exhibit 3: Gaussian copula vs. skewed t copula
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Exhibit 2: DCC vs. skewed t copula Exhibit 4: t copula vs. skewed t copula
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Figure 2. Optimal weights with respect to risk aversion.
In Exhibits 1 to 4, we compare, for some levels of risk aversion, the optimal portfolio weights of different models with those obtained with the
conditional skewed t copula model. This comparison is realized at time t = 1 of the allocation period.
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Online Appendix

A. The generalized t univariate distribution

In this appendix, we summarize some useful results related to the generalized t distribution

introduced by Hansen (1994) and posteriorly analyzed by Jondeau and Rockinger (2003),

among others. The following presentation is based on these works. Consider a random

variable z that follows a generalized t distribution. Its probability density function g(z; ν, λ)

is defined as

(A.1) g(z; ν, λ) =


b c

 1 + 1
ν − 2

(
b z + a

1 − λ

)2
−(ν+1)/2

z < −a/b

b c

 1 + 1
ν − 2

(
b z + a

1 + λ

)2
−(ν+1)/2

z ⩾ −a/b

,

where 2 < ν < +∞ and −1 < λ < 1, and the constants a, b and, c are given by

(A.2) a = 4 λ c (ν − 2)/(ν − 1), b2 = 1 + 3λ2 − a2, and c = Γ ((ν + 1)/2)√
π(ν − 2) Γ (ν/2)

.

Furthermore, Γ(y) denotes the Gamma function, defined as Γ(y) =
∫∞

0 ty−1e−tdt for ℜ(y) > 0

(see (Abramowitz and Stegun, 1965)).

According to Jondeau and Rockinger (2003, Proposition 1), we can express the the gener-

alized t cumulative distribution function, G(p ; ν, λ), as a function of the standard Student’s

t distribution with ν degrees of freedom, T (p; ν), as follows

(A.3) G(p; ν, λ) =


(1 − λ) T

(√
ν

ν−2
bp+a
1−λ

; ν
)

p < −a/b

(1 + λ) T
(√

ν
ν−2

bp+a
1+λ

; ν
)

p ⩾ −a/b
,

where the standard Student’s t distribution is defined as

(A.4) T (p; ν) =
∫ p

−∞

Γ ((ν + 1)/2)√
πν Γ (ν/2)

(
1 + x2/ν

)−(ν+1)/2
dx.

Finally, the inverse function of the generalized t distribution can be obtained by inverting
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the standard Student’s t distribution, such that

(A.5) G−1(u; ν, λ) =


1
b

[
(1 − λ)

√
ν−2

ν
T −1

(
u

1−λ
; ν
)

− a
]

u < 1−λ
2

1
b

[
(1 + λ)

√
ν−2

ν
T −1

(
u+λ
1+λ

; ν
)

− a
]

u ≥ 1−λ
2

,

where u ∈ [0, 1].

B. Copula functions

This section describes the three implicit copulas we propose as dependence functions of

our multivariate model: the Gaussian, t, and skewed t copulas (see Section III). These

three copulas correspond to the dependence functions contained in three multivariate normal

mixture distributions (see McNeil et al. (2005)). This class of distributions adopts the

following representation:

(B.1) X = µ + Wγ +
√

WZ

where µ and γ are parameter vectors in IRd, Z ∼ N(0, Σ), and W is a random variable

independent of Z. When the mixing random variable W satisfies ν/W ∼ χ2(ν), then the

resulting mixture distribution of the random vector X is denoted as the asymmetric or

skewed t distribution, H(µ, Σ, ν, γ), which belongs to the the wider family of multivariate

generalized hyperbolic distributions.

Applying Sklar’s theorem in Equation (5), we can obtain the skewed t copula function

from the generalized hyperbolic skewed t distribution, H(0, P , ν, γ), defined by µ = 0, and

the correlation matrix P implied by the dispersion matrix Σ.15Then, the skewed t copula is

defined as

(B.2) CSK(u; P , ν, γ ) = H
(

H−1
1 (u1 ; ν, γ1), . . . , H−1

d (ud ; ν, γd) ; P , ν, γ
)

,

where the Hi(· ; ν, γi) are the d univariate skewed t distribution functions, the H−1
i are the

corresponding quantile functions, and u = (u1, . . . , ud)′ is the probability transformed vector.
15The copula function is invariant under any strictly increasing transformation of the marginal distribu-

tions, including the standardization of the components of the random vector X.
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Special cases can be obtained from the normal mixture representation in Equation (B.1).

When γ = 0, we have the multivariate Student’s t distribution; obviously, when W is

constant, we obtain the multivariate Gaussian distribution. Thus, the unique t copula of a

d-variate Student’s t distribution can be expressed as

(B.3) CT(u; P , ν) = T ( T −1(u1; ν), . . . , T −1(ud; ν) ; P , ν) ,

where T (· ; P , ν) is the joint distribution function of a d-variate Student’s t distribution with

ν degrees of freedom and correlation matrix P , and T −1(ui; ν) is the inverse function of the

univariate Student’s t distribution with ν degrees of freedom. In the same way, we can define

the d-variate Gaussian copula as

(B.4) CG(u; P ) = Φ(Φ−1(u1), . . . , Φ−1(ud) ; P ) ,

where Φ(· ; P ) denotes the joint distribution function of the d-variate standard normal dis-

tribution with correlation matrix P , and Φ−1 denotes the inverse of the univariate standard

normal distribution.

We proceed to compute the density functions of the three copulas. The density function

of a parametric copula that is absolutely continuous is given by

(B.5) c(u) = ∂dC(u1, . . . , ud)
∂u1 · · · ∂ud

.

For the case of the three implicit copulas we consider here, the density functions can be

obtained from differentiating Equations (B.2), (B.3), and (B.4). Thus, the density function

of the d-variate skewed t copula can be expressed as

(B.6) cSK(u; P , ν, γ) = h( H−1
1 (u1; ν, γ1), . . . , H−1

d (ud; ν, γd) ; P , ν, γ )
h1(H−1

1 (u1; ν, γ1); ν, γ1) · · · hd(H−1
d (ud; ν, γd); ν, γd)

.

where h(·; P , ν, γ) is the joint density of the multivariate skewed t distribution H, and the

hi(·; ν, γi) are its corresponding marginal density functions. Using the results from McNeil

et al. (2005, Section 3.2.3) for the density functions of generalized hyperbolic distributions,

and some algebra, we explicitly obtain the density function of the d-variate skewed t copula,
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given by

cSK(u; P , ν, γ) =
K ν+d

2

(√
(ν + x′P −1x)γ ′P −1γ

) (√
(ν + x′P −1x)γ ′P −1γ

) ν+d
2 ex′P −1γ

∏d
i=1 K ν+1

2

(√
(ν + x2

i )γ2
i

) (√
(ν + x2

i )γ2
i

) ν+1
2 exiγi

(B.7)

× |P |−1/2
(

Γ(ν
2 )

21−ν/2

)d−1
∏d

i=1

(
1 + x2

i

ν

)(ν+1)/2

(
1 + x′P −1x

ν

)(ν+d)/2 ,

where x = (x1, . . . , xd)′ and xi = H−1
i (ui ; ν, γi).16 In addition, Kη is the modified Bessel

function of the second kind with order η, which can be implemented numerically (see

Abramowitz and Stegun (1965) for more details about the modified Bessel functions of sec-

ond kind and their properties). A similar expression to that in Equation (B.5) can be derived

for the t and Gaussian copulas from their respective joint and marginal density functions.

Thus the density function of the d-variate t copula is given by

(B.8) cT(u; P , ν) = |P |−1/2 Γ
(

ν+d
2

)
Γ
(

ν
2

)d−1

Γ
(

ν+1
2

)d

∏d
i=1

(
1 + x2

i

ν

)(ν+1)/2

(
1 + x′P −1x

ν

)(ν+d)/2 ,

where xi = T −1(ui; ν). Finally, the density function of the d-variate Gaussian copula is

expressed as

(B.9) cG(u; P ) = |P |−1/2 exp
(

−1
2

x′
(
P −1 − IId

)
x
)

,

where xi = Φ−1(ui) and IId denotes the unit matrix of size d.

C. The two-stage log-likelihood function

Following Nelsen (2006, Theorem 2.10.9) and Patton (2006b, Theorem 1), Equation (5)

presents a multivariate and conditional extension to Sklar’s theorem. Then, according to
16In the empirical part of the article, to improve the feasibility of the computations related to the cu-

mulative density and quantile functions, Hi and H−1
i , respectively, we approximate the univariate skewed t

density function hi using cubic splines.
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Equation (5), the conditional density function of the joint distribution Ft(r1,t+1, . . . , rd,t+1; θ)

is given by

(C.1) ft(rt+1; θ) = ∂dFt(rt+1; θ)
∂r1,t+1 · · · ∂rd,t+1

=
d∏

i=1
fi,t(ri,t+1 ; θi,M) · ct(ui,t+1, . . . , ui,t+1 ; θC),

where the ui,t+1 = Fi,t(ri,t+1 ; θi,M) are the marginal conditional distributions; fi,t(ri,t+1 ; θi,M)

are the marginal conditional density functions; and ct(u1,t+1, . . . , ud
d,t+1 ; θC) is the conditional

copula density function (defined in Equation (B.5)).

Taking logarithms in Equation (C.1) and summing for all observations in the sample,

r̄T = {r1, . . . , rT }, we determine that the log-likelihood function of the joint model L(θ ; r̄T )

in Equation (15) can be divided in two terms, as follows:

L(θ ; r̄T ) =
d∑

i=1

T∑
t=1

log fi,t(ri,t+1 ; θi,M) +
T∑

t=1
log ct(u1,t+1, . . . , ud,t+1 ; θC)(C.2)

=
d∑

i=1
Li(θi,M ; r̄T ) + LC(θC ; θM , r̄T ) ,

where Li and LC are the log-likelihood functions for the i-th marginal model and for the

copula function, respectively. Moreover, θM = (θ1,M . . . θd,M)′ is the parameter set of the d

marginal conditional distributions, and θC is the parameter set of the conditional copula.

Therefore, using Equation (C.2), we can separate the maximum likelihood estimation of the

joint model parameters θ into two stages: one for the d marginal conditional distributions,

and the other for the conditional copula. Appendix B provides the explicit expressions of

the copula densities, which we need for the maximum likelihood estimation.

D. Explanatory variables for the mean equation

We include the following explanatory factors in the conditional mean equation of our marginal

distribution model: short rate, default spread, momentum, basis, and growth in open inter-

est.

• The short rate is a proxy for the expected shocks in the economy. We use the weekly

average yield of the three-month T-bills.
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• The default spread is the difference between Moody’s Baa and Aaa corporate bond

yields and should capture the variation in the risk premium. We also employ the

weekly average of this variable.

• Momentum is computed as the moving average of previous returns, and it is employed

to measure the market sentiment. In our empirical application, we compute it using

the weekly returns of previous eight weeks.

• The basis is the relative difference between the six-month-maturity future prices and

the month-ahead futures prices; the basis measures the futures curve slope with respect

to a six-month delivery horizon. For the empirical application, we employ the weekly

average of this measure.

• The dollar open interest is the month-ahead futures price multiplied by the number

of contracts outstanding; thus, growth in open interest measures the capital flow into

commodity markets. Again, to reduce the noise in the measure, we use the weekly

average of this variable.

Although all these variables are considered for the mean equation, we ultimately just

select the exogenous regressors that are statistically significant in our time-series analysis.

E. Multivariate tests

Engle and Sheppard (2001) test for constant correlation Panel B of Table F.2

presents the results of Engle and Sheppard (2001) test for constant correlation for 5, 10,

and 20 lags. This test requires a consistent estimate of the constant conditional correlation

and a vector autoregression. We use the standardized residuals of GARCH(1,1) processes to

estimate the correlation matrix, P , and the diagonal matrix of standard deviations, Dt+1.

Then, under the null hypothesis of constant correlation, all the coefficients in

(E.1) vechu(Yt+1) = α + β1vechu(Yt+1−1) + . . . + βsvechu(Yt+1−s) + ηt
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should be 0; vechu is an operator that selects the upper off-diagonal elements, and Yt+1 is a

symmetric matrix defined by

(P −1/2D−1
t+1rt+1)(P −1/2D−1

t+1rt+1)′ − II.

Under the null hypothesis, the statistic β̂X′Xβ̂′

σ̂2
η

is asymptotically distributed as χ2
s+1, where

X is the vector of regressors, β is the vector of coefficients in the latter regression Equation

(E.1), and σ̂2
η is the unbiased sample variance of the estimated residuals η̂t. All test p-values,

which represent the probability of constant correlation, are all less than 0.05; we reject the

hypothesis of constant correlation for all lags considered and for all sample periods.

Mardia (1970) test of multivariate normality We implement the Mardia (1970) test

of multivariate normality, based on d-variate measures for the skewness and kurtosis of the

vector of returns. These measures are computed using the so-called Mahalanobis angle,

defined as

Dtt′ = (rt − r̄)′S̄−1(rt′ − r̄),

where r̄ and S̄ are the sample mean and covariance estimators. Under this framework,

d-variate skewness and kurtosis are computed as

sd = 1/T 2
T∑

t=1

T∑
t′=1

D3
tt′ and kd = 1/T

T∑
t=1

(D1/2
tt )4 .

Under the null hypothesis of multivariate normality, 1/6Tsd and kd are asymptotically dis-

tributed as a χ2(d(d + 1)(d + 2)/6) and a N(d(d + 2), 8d(d + 2)/T ), respectively. Panel C of

Table F.2 reports these multivariate measures, sd and kd, for our three-dimensional vector

of returns and their corresponding statistics, rejecting the null hypothesis of multivariate

normality for the three sample periods considered.

Test of ellipticity of the vector of returns Following McNeil et al. (2005), we test

for the ellipticity of the vector of returns. This test considers if standardized returns are

consistent with a spherical distribution. Standardized returns zt are defined by the sample
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mean and covariance as follows

zt = S̄−1/2(rt − r̄)

If zt is consistent with the spherical assumption, then the statistic Tellip will be distributed

according to a Beta distribution; that is,

Tellip =
k∑

i=1
z2

i /
d∑

i=1
z2

i ∼ Beta(k/2, (d − k)/2) ,

where d is the dimension of the returns vector (i.e. d = 3), and k is chosen to roughly equal

d − k (see McNeil et al. (2005)). We analyze the results of this test graphically, through the

qq-plot in Exhibit 2 of Figure F.1, and numerically, implementing a Kolmogorov-Smirnov

(KS) test with the data, whose results are reported in Panel C of Table F.2. The curvature

in the qq-plot suggests that the vector of returns is not elliptically distributed for any of the

sample periods considered (we just report the plot for the full-sample period). For the full-

sample period, the KS test statistic equals 0.174, above the critical value (0.048). Therefore,

we reject the elliptical hypothesis. The same conclusion is inferred for the other subsamples.

Exceedance correlation The exceedance correlation is defined as the correlation be-

tween the returns above or below a given quantile. Following Longin and Solnik (2001),

Ang and Chen (2002), and Patton (2004), we use exceedance correlation to investigate the

dependence structure among commodities and equity returns, checking for the presence of

possibly asymmetric interactions. The exceedance correlation at a threshold level q is given

by

ϱ(q) =


Corr

[
ri, rj

∣∣∣ ri ⩽ Qi(q) ∩ rj ⩽ Qj(q)
]

if q ⩽ 0.5

Corr
[
ri, rj

∣∣∣ ri > Qi(q) ∩ rj > Qj(q)
]

if q > 0.5
,

where Qi(q) and Qj(q) are the q-th quantiles of returns ri and rj. Figure F.2 plots exceedence

correlation as a function of returns quantiles. The shape of the exceedance correlation

function depends on the bivariate distribution between each pair of returns; it provides a

means to measure the degree of asymmetry in the joint distribution of these returns. The

exceedance correlation for the extreme returns is 0 for a bivariate normal distribution.
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Patton (2006b)’s Symmetrized Joe-Clayton copula To attend to the tail dependence

of the returns vector, we fit the symmetrized Joe-Clayton (SJC) copula proposed by Patton

(2006b) to our unfiltered sample of returns. The SJC copula is given by:

CSJC(u1, u2; τU , τL) = 1/2
(
CJC(u1, u2; τU , τL) + CJC(1 − u1, 1 − u2; τL, τU) + u1 + u2 − 1

)
.

This copula is a modification of the Joe-Clayton copula CJC:

CJC(u1, u2; τU , τL) = 1 −

1 −
(

1
[1 − (1 − u1)κ]ξ

+ 1
[1 − (1 − u2)κ]ξ

− 1
)−1/ξ

1/κ

where κ = 1/ log2(2 − τU), ξ = −1/ log2(τL), and τU , τL ∈ (0, 1). The parameters τU and

τD are measure of dependence in the extremes, that is,

lim
ϵ→0

IP[U1 ≤ ϵ; U2 ≤ ϵ] = τL and lim
ϵ→1

IP[U1 > ϵ; U2 > ϵ] = τU

By construction, the SJC copula is symmetric when τU = τL and exhibits no upper tail

dependence if τU = 0, or no lower tail dependence if τL = 0. In Panel D of Table F.2,

we report the estimates of the upper and lower tail dependence parameters, τU and τD,

corresponding to the SJC copula.
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F. Additional Tables and Figures

Table F.1. Descriptive statistics for oil, gold, and equity weekly returns

This table reports sample statistics of the weekly returns for the crude oil futures (NYMEX), gold futures
(COMEX), and equity index (SP500). The full sample period ranges from June 1990 to September 2010,
and includes 1056 observations. The in-sample period runs from June 1990 to June 2006 (836 observations)
and the out-of-sample period from June 2006 to September 2010 (220 observations). Mean, Std. Dev.,
Min., Max., and VaR 5% are expressed in weekly percentages. Sharpe is the ratio of mean returns over
the standard deviation. JB and KS refer to the Jarque-Bera and Kolmogorov-Smirnov normality test
statistics, respectively. LB(10) and LM(10) are the Ljung-Box and the Lagrange-Multiplier test statistics,
both conducted using 10 lags, to test for the presence of autocorrelation in returns and squared returns,
respectively. The p-values are reported in parentheses.

Full sample period In-sample period Out-of-sample period
Interval 20-Jun-1990 / 08-Sep-2010 20-Jun-1990 / 21-Jun-2006 21-Jun-2006 / 08-Sep-2010
Assets oil gold equity oil gold equity oil gold equity

Mean 0.136 0.120 0.104 0.163 0.061 0.147 0.033 0.343 -0.059
(0.341) (0.082) (0.145) (0.285) (0.353) (0.045) (0.929) (0.114) (0.766)

Std. Dev. 4.634 2.236 2.326 4.401 1.896 2.129 5.441 3.210 2.958
Min. -36.53 -13.21 -16.45 -36.53 -11.04 -9.04 -16.63 -13.21 -16.45
Max. 23.98 12.88 10.18 14.55 12.88 10.18 23.98 10.92 9.639
Sharpe 0.029 0.054 0.045 0.037 0.032 0.069 0.006 0.107 -0.020
VaR 5% 6.892 3.294 3.744 6.494 2.737 3.483 7.717 4.753 4.931
Skewness -0.598 0.007 -0.552 -0.929 0.102 -0.134 0.114 -0.205 -1.024

(0.000) (0.927) (0.000) (0.000) (0.229) (0.115) (0.489) (0.215) (0.000)
Kurtosis 8.259 7.343 7.238 9.860 8.258 5.000 4.914 4.536 8.012

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
JB 1280 829.8 843.9 1759 964.3 141.9 34.06 23.18 268.7

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.002) (0.000)
KS 0.446 0.467 0.469 0.450 0.473 0.470 0.442 0.459 0.467

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
LB(10) 27.93 25.97 29.98 14.27 29.12 24.05 35.99 17.08 22.55

(0.002) (0.004) (0.001) (0.161) (0.001) (0.007) (0.000) (0.073) (0.013)
LM(10) 90.38 189.6 138.7 54.76 72.11 84.29 39.40 64.06 31.52

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
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Table F.2. Descriptive multivariate statistics for oil, gold, and equity weekly returns

This table reports the descriptive multivariate statistics of crude oil, gold, and equity index weekly returns.
The full sample period ranges from June 1990 to September 2010 and includes 1056 observations. The in-
sample period runs from June 1990 to June 2006, and the out-of-sample period from June 2006 to September
2010. Panel A shows the sample correlation for each period. In Panel B, we present the results of the
Engle and Sheppard (2001) test for constant correlation. The p-values reported in parentheses indicate the
probability of constant correlation. In Panel C, we report the results of the Mardia (1970) test of joint
normality, which is based on the multivariate measures of skewness and kurtosis, denoted by s3 and k3.
In Panel C, we also present the Kolmogorov-Smirnov (KS) statitics associated with the test of ellipticity
(see McNeil et al. (2005)). In Panel D, we present the estimates of the upper and lower tail dependence
parameters, τU and τD, of the symmetrized Joe-Clayton (SJC) copula (Patton (2006b)) for each pair of
asset returns: oil-gold (o-g), oil-equity (o-e), and gold-equity (g-e).

Full sample period In-sample period Out-of-sample period
20-Jun-1990 / 08-Sep-2010 20-Jun-1990 / 21-Jun-2006 21-Jun-2006 / 08-Sep-2010

Panel A: Unconditional correlation
i oil gold equity oil gold equity oil gold equity
ρi,oil 1.000 0.268 0.080 1.000 0.205 -0.061 1.000 0.394 0.393

(0.000) (0.009) (0.000) (0.079) (0.000) (0.000)
ρi,gold 1.000 0.012 1.000 -0.079 1.000 0.165

(0.698) (0.022) (0.014)

Panel B: Test of dynamic correlation

s lags 5 10 20 5 10 20 5 10 20
stat. 28.64 41.79 45.19 15.12 28.22 32.85 16.09 24.84 42.49
(p-val.) (0.000) (0.000) (0.002) (0.019) (0.003) (0.048) (0.013) (0.001) (0.004)

Panel C: Mardia’s test and test of ellipticity

s3 k3 KS s3 k3 KS s3 k3 KS
coeff. 1.318 33.73 1.436 31.62 2.166 26.63
stat. 232.0 55.57 0.174 199.7 43.86 0.168 79.41 15.75 0.216
(p-val.) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Panel D: Tail dependence estimates of SJC copula for each pair of returns

o-g o-e g-e o-g o-e g-e o-g o-e g-e
τU 0.042 0.000 0.000 0.030 0.000 0.000 0.044 0.073 0.041
(p-val.) (0.157) (0.282) (1.000) (0.267) (0.808) (0.704) (0.773) (0.368) (0.684)
τL 0.167 0.061 0.001 0.080 0.000 0.000 0.380 0.321 0.102
(p-val.) (0.000) (0.031) (0.093) (0.031) (0.902) (0.767) (0.000) (0.000) (0.214)
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Table F.3. Results for the marginal distribution models

This table reports the maximum likelihood parameter estimates of the marginal distribution model for
oil, gold, and equity-index returns with generalized Student’s t distribution and time-varying moments.
Parameters of the mean, variance, degrees of freedom, and asymmetry are defined in Equations (6), (8),
(10), and (11), respectively. The results corresponds to the estimation period from June 1990 to June 2006
(836 observations). The p-values of the estimates appear in parentheses and are computed using the robust
standard errors. The logL is the sample log-likelihood of the marginal distribution model. ηc and λc are the
degrees of freedom and asymmetry parameters of the constant version of the model.

oil gold equity
coeff. (p-val.) coeff. (p-val.) coeff. (p-val.)

mean equation
µ (/100) 0.140 (0.316) 0.474 (0.037) 0.130 (0.037)
basist−1 -0.031 (0.216)
momentumt−1 -0.175 (0.153)
rf

t−1 -0.111 (0.013)
rt−1 -0.108 (0.002)
rt−2 -0.041 (0.213)
rt−3 0.050 (0.110)

variance equation
α0 (/1000) 0.025 (0.175) 0.013 (0.012) 0.016 (0.022)
α+

1 0.085 (0.001) 0.183 (0.001) 0.000 (0.956)
α−

1 0.060 (0.030) 0.029 (0.189) 0.145 (0.000)
α2 0.920 (0.000) 0.870 (0.000) 0.890 (0.000)

degrees-of-freedom equation
δ0 0.100 (0.000) 0.025 (0.042) -0.200 (0.054)
δ+

1 -0.732 (0.576) -3.633 (0.000) 21.138 (0.049)
δ−

1 5.514 (0.007) -3.257 (0.002) -2.489 (0.383)
δ2 0.998 (0.000) 1.009 (0.000) 0.966 (0.000)

ηc 11.24 (0.002) 4.792 (0.000) 12.25 (0.009)

asymmetry parameter equation
ζ0 (/10) 0.085 (0.177) 0.088 (0.111) -0.250 (0.099)
ζ+

1 -0.357 (0.313) -0.903 (0.041) -0.374 (0.798)
ζ−

1 0.218 (0.702) 0.592 (0.222) -2.553 (0.034)
ζ2 0.998 (0.000) 1.001 (0.000) 0.981 (0.000)

λc -0.093 (0.070) 0.018 (0.577) -0.230 (0.000)

logL 1,515.4 2,262.7 2,149.6
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Table F.4. DGT and LR tests of the marginal distribution models

In Panel A, we report the statistics and p-values of the Diebold et al. (1998) (DGT) test for the marginal
distribution model for oil, gold, and equity-index returns with generalized Student’s t distribution and time-
varying moments (estimates are in Table F.3). The DGT test consists of two stages: (1) Lagrange multiplier
statistics (LM) over 20 lags for the first four moments of the residuals to test for serial correlation, and
(2) a goodness-of-fit test for the adequacy of the distribution model (see also Figure F.3). In Panel B, we
provide the likelihood ratio test statistics (LR) with respect to different restrictive versions of the marginal
distribution model. All the restrictive models have the same conditional mean and variance dynamics, de-
scribed in Equations (6) and (8), but we consider four conditional distributions: (i) the generalized Student’s
t distribution with constant degree-of-freedom and asymmetry parameters, the Student’s t distribution with
(ii) time-varying and (iii) constant degrees of freedom, and (iv) the univariate Gaussian distribution. The
dof are the number of constraints under the null condition. All the tests results corresponds to the in-sample
period from June 1990 to June 2006 (836 observations).

Panel A: DGT test for the generalized Student’s t

oil gold index
stat. (p-val.) stat. (p-val.) stat. (p-val.)

(1) 1st moment LM(20) 25.39 (0.187) 21.02 (0.396) 21.57 (0.364)
2nd moment LM(20) 23.96 (0.244) 21.49 (0.369) 18.72 (0.54)
3rd moment LM(20) 18.45 (0.558) 21.74 (0.355) 12.97 (0.879)
4th moment LM(20) 24.45 (0.223) 17.66 (0.610) 17.00 (0.653)

(2) Goodness-of-fit test 7.66 (0.990) 11.30 (0.913) 7.80 (0.989)

Panel B: Loglikelihood ratio tests (LR)

oil gold index
dof LR stat. (p-val.) LR stat. (p-val.) LR stat. (p-val.)

(i) generalized t const. par. 6 24.50 (0.000) 19.48 (0.003) 18.16 (0.006)
(ii) t time-varying df. 4 9.794 (0.044) 12.13 (0.016) 31.23 (0.000)
(iii) t constant df. 7 27.71 (0.000) 19.64 (0.006) 38.57 (0.000)
(iv) Gaussian 8 47.00 (0.000) 92.89 (0.000) 52.38 (0.000)
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Table F.5. Results and LR tests for the copula models

This table presents the maximum likelihood parameter estimates of the copula models under different as-
sumptions of the conditional joint dependence. The results corresponds to the period from June 1990 to
June 2006 (836 observations). In each case, the copula is defined by the next set of parameters: the cor-
relation matrix ({ρi,j}), the degrees of freedom (ν), the asymmetry vector (γ), and the parameters of the
dynamics (ω0, ω1, and ω2) (see Equation (14)). For each parameter estimate, we report in parentheses the
p-values computed from the asymptotic covariance matrix. The conditional copula likelihood at the optimum
is denoted by CL, whereas CLuncond reports the likelihood at the optimum of the corresponding uncondi-
tional version of the copula. We also report the likelihood ratio test statistics (LR) for different restrictive
specifications of the copula models.The LR(vs. uncond.) corresponds to the LR test with respect to the
corresponding unconditional version of the copula model. In LR(vs. symmetric), we test with respect to the
conditional t copula. In LR(vs. gaussian) the restrictive model is the conditional Gaussian copula. With
LR(vs. uncond. symmetric) and LR(vs. uncond. gaussian), we test the conditional copulas with respect to
the unconditional t and Gaussian copulas. Finally, with LR(uncond. vs. symmetric) and LR(uncond. vs.
gaussian), we test the unconditional versions of the copulas with respect to the unconditional t and Gaussian
copulas.

Conditional copulas
Gaussian t copula Skewed t

coeff. (p-val.) coeff. (p-val.) coeff. (p-val.)

ρoil,gold 0.159 (0.000) 0.157 (0.000) 0.161 (0.000)
ρoil,equity -0.020 (0.556) -0.016 (0.653) -0.013 (0.653)
ρgold,equity -0.064 (0.064) -0.058 (0.108) -0.057 (0.108)
ν 18.998 (0.025) 19.050 (0.031)
γoil -0.268 (0.027)
γgold -0.018 (0.934)
γequity -0.141 (0.139)
ω0 0.136 (0.223) 0.128 (0.192) 0.127 (0.265)
ω1 0.079 (0.055) 0.069 (0.054) 0.060 (0.082)
ω2 1.647 (0.000) 1.666 (0.000) 1.676 (0.000)

CL 18.680 20.828 23.136

CLuncond 12.453 15.222 18.134

LR(vs. uncond.) 12.454 (0.006) 11.212 (0.011) 10.004 (0.019)
LR(vs. gaussian) 4.296 (0.038) 8.913 (0.063)
LR(vs. symmetric) 4.617 (0.202)
LR(vs. uncond. gaussian) 16.750 (0.002) 21.367 (0.003)
LR(vs. uncond. symmetric) 15.829 (0.015)
LR(uncond. vs. gaussian) 5.538 (0.019) 11.363 (0.023)
LR(uncond. vs. symmetric) 5.826 (0.120)
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Table F.6. Moments and investment ratios of the realized portfolio returns.

This table reports the summary statistics of the realized portfolio returns over the allocation (out-of-sample)
period for different specifications of the investor’s preferences and for different strategies. We present the
weekly mean (in %), standard deviation (in %), skewness, and two risk measures: 1% Value at Risk and 1%
expected shortfall. We also present the Sharpe, Sortino, and Omega ratios, given respectively as (µ − rf )/σ,
(µ − rf )/

√
ql

2(rf ), and qu
1 (rf )/ql

1(rf ), where qu
m(θ) and ql

m(θ) are the upper and lower partial moments of
order m for a given target θ. A is the coefficient of relative risk aversion for power utility functions.

Mean Std.Dev. Skew. VaR 1% ES 1% Sharpe Sortino Omega

Equally Weighted 0.187 2.937 -0.240 8.31 9.66 0.050 0.071 1.142
E.W. Buy & hold 0.176 2.832 -0.432 8.63 9.72 0.048 0.067 1.133

preferences: φV = 1/2, φS = 1/3 (A = 1)

Uncond. Gaussian 0.110 3.294 -0.730 11.10 12.19 0.022 0.029 1.062
CCC 0.489 9.203 1.276 19.68 25.16 0.049 0.083 1.160
DCC 0.628 9.662 0.924 21.97 27.50 0.061 0.099 1.203
Gaussian copula 0.692 9.360 1.150 23.00 30.05 0.070 0.115 1.241
t Copula 0.645 9.045 0.991 22.04 31.80 0.067 0.109 1.246
skewed t copula 0.622 9.268 1.160 19.88 29.61 0.063 0.104 1.216

preferences: φV = 1, φS = 1 (A = 2)

Uncond. Gaussian 0.134 2.702 -0.690 9.18 9.68 0.035 0.047 1.100
CCC 0.274 4.974 0.966 10.68 14.31 0.047 0.077 1.144
DCC 0.209 5.311 0.776 12.90 14.37 0.032 0.051 1.094
Gaussian copula 0.156 5.069 0.975 11.31 15.07 0.023 0.036 1.070
t Copula 0.429 4.880 0.760 10.88 15.96 0.080 0.130 1.268
skewed t copula 0.434 5.079 0.823 10.53 14.86 0.078 0.121 1.253

preferences: φV = 5/2, φS = 5 (A = 5)

Uncond. Gaussian 0.154 2.440 -0.500 8.00 8.47 0.047 0.065 1.135
CCC 0.139 3.058 -0.037 9.07 9.70 0.033 0.047 1.091
DCC 0.140 3.001 0.100 8.07 8.31 0.034 0.049 1.093
Gaussian copula 0.211 2.887 0.073 8.20 8.59 0.060 0.088 1.173
t Copula 0.172 2.940 0.024 8.42 8.64 0.045 0.066 1.129
skewed t copula 0.236 2.930 0.014 8.45 9.32 0.067 0.100 1.198
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Table F.6 (cont.). Moments and investment ratios of the realized portfolio returns.

Mean Std.Dev. Skew. VaR 1% ES 1% Sharpe Sortino Omega

preferences: φV = 1/4, φS = 1/4

Uncond. Gaussian -0.007 4.266 -0.697 16.41 18.31 -0.011 -0.014 0.967
CCC 0.559 17.099 0.662 41.10 51.83 0.030 0.048 1.099
DCC 1.172 17.972 0.620 38.28 50.26 0.063 0.102 1.209
Gaussian copula 0.794 16.233 0.357 44.34 58.25 0.047 0.072 1.166
t Copula 1.092 16.629 0.274 42.33 59.91 0.063 0.099 1.227
skewed t copula 1.491 16.204 0.529 38.73 56.58 0.090 0.147 1.338

preferences: φV = 1/4, φS = 1/2

Uncond. Gaussian -0.055 4.232 -0.751 16.46 17.91 -0.022 -0.029 0.935
CCC 0.754 17.089 0.604 41.88 53.23 0.042 0.066 1.137
DCC 0.945 17.497 0.715 37.84 50.23 0.052 0.085 1.177
Gaussian copula 0.822 15.921 0.240 42.75 58.37 0.049 0.075 1.172
t Copula 0.721 16.297 0.288 42.83 59.07 0.042 0.065 1.141
skewed t copula 1.119 15.317 0.253 37.08 55.23 0.071 0.111 1.259

preferences: φV = 1, φS = 1/2

Uncond. Gaussian 0.123 2.729 -0.686 9.20 9.69 0.031 0.041 1.087
CCC 0.247 5.054 0.847 12.21 14.26 0.041 0.066 1.124
DCC 0.201 5.146 0.785 11.42 14.23 0.032 0.049 1.092
Gaussian copula 0.362 5.206 0.833 12.56 15.81 0.062 0.100 1.201
t Copula 0.495 5.149 0.992 11.18 16.08 0.089 0.149 1.312
skewed t copula 0.401 5.025 0.898 10.02 14.99 0.072 0.118 1.235

preferences: φV = 0, φS = 1/4

Uncond. Gaussian 1.406 40.655 0.125 94.80 107.78 0.034 0.051 1.090
CCC 2.905 40.145 0.736 79.55 97.66 0.072 0.120 1.223
DCC 3.642 41.020 1.481 71.29 75.36 0.088 0.165 1.306
Gaussian copula 3.458 36.578 0.867 76.98 93.38 0.094 0.159 1.317
t Copula 2.782 36.909 0.962 74.73 77.01 0.074 0.126 1.242
skewed t copula 3.816 36.227 0.914 76.98 93.38 0.104 0.181 1.379
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Table F.7. Test for superior portfolio performance using a stationary bootstrap

This table reports the reality check p-values of the Hansen (2005) test for superior portfolio performance for
different benchmark models. We employ the management fee as the performance function in this case. For
small p-values, we reject the hypothesis that the benchmark model performs as well as the best competing
alternative model. The implementation is based on the stationary bootstrap of Politis and Romano (1994).

φV = 1/2, φS = 1/3 (A=1) φV = 1, φS = 1 (A=2) φV = 5/2, φS = 5 (A=5)

Benchmark lower consist. upper lower consist. upper lower consist. upper

Equally Weighted 0.039 0.039 0.039 0.052 0.057 0.057 0.057 0.063 0.063
Uncond. Gauss. 0.039 0.039 0.039 0,050 0,052 0,052 0.062 0.062 0.062
CCC 0.139 0.189 0.189 0.090 0,091 0,091 0.076 0.093 0.093
DCC 0.105 0.129 0.129 0.071 0,071 0,071 0.042 0.076 0.076
Gaussian copula 0.538 0.726 0.726 0.485 0.679 0.679 1.000 1.000 1.000
t copula 0.294 0.442 0.442 0.288 0.438 0.438 0.146 0.206 0.206
skewed t copula 1.000 1.000 1.000 1.000 1.000 1.000 0.345 0.480 0.580

φV = 1/4, φS = 1/4 φV = 1/4, φS = 1/2 φV = 0, φS = 1/2

Benchmark lower consist. upper lower consist. upper lower consist. upper

Equally Weighted 0.011 0.011 0.011 0.040 0.040 0.040 0.084 0.085 0.085
Uncond. Gauss. 0.041 0.043 0.043 0.067 0.070 0.070 0.106 0.106 0.106
CCC 0.095 0.121 0.121 0.105 0.144 0.144 0.209 0.329 0.329
DCC 0.094 0.125 0.125 0.123 0.164 0.164 0.495 0.658 0.658
Gaussian copula 1.000 1.000 1.000 1.000 1.000 1.000 0.520 0.683 0.683
t copula 0.060 0.143 0.143 0.479 0.722 0.798 0.462 0.606 0.606
skewed t copula 0.076 0.138 0.138 0.393 0.568 0.605 1.000 1.000 1.000
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Table F.8. Investment ratios of the realized portfolio returns with risk-free asset.

This table reports the investment ratios of the realized portfolio returns over the out-of-sample period
when a risk-free asset is part of the set of investment opportunities. We consider different specifications of
the investor’s preferences and seven strategies. We present the Sharpe, Sortino, and Omega ratios, given
respectively as (µ − rf )/σ, (µ − rf )/

√
ql

2(rf ), and qu
1 (rf )/ql

1(rf ), where qu
m(θ) and ql

m(θ) are the upper and
lower partial moments of order m for a given target θ. A is the coefficient of relative risk aversion for power
utility functions.

Sharpe Sortino Omega Sharpe Sortino Omega

Equally Weighted 0.050 0.071 1.142 0.050 0.071 1.142
pref.: φV = 1/2, φS = 1/3 (A=1) pref.: φV = 1/4, φS = 1/4

Uncond. Gaussian 0.007 0.009 1.022 0.011 0.014 1.031
CCC 0.077 0.114 1.240 0.057 0.081 1.168
DCC 0.068 0.102 1.204 0.067 0.096 1.204
Gaussian copula 0.103 0.165 1.362 0.118 0.192 1.437
t Copula 0.170 0.300 1.688 0.101 0.165 1.351
skewed t copula 0.122 0.237 1.549 0.199 0.429 1.883

pref.: φV = 1, φS = 1 (A=2) pref.: φV = 1/4, φS = 1/2

Uncond. Gaussian 0.005 0.006 1.014 0.012 0.016 1.036
CCC 0.070 0.104 1.219 0.058 0.084 1.171
DCC 0.046 0.068 1.137 0.049 0.070 1.145
Gaussian copula 0.121 0.201 1.519 0.167 0.277 1.682
t Copula 0.151 0.318 1.778 0.145 0.260 1.563
skewed t copula 0.123 0.260 1.689 0.168 0.327 1.732

pref.: φV = 5/2, φS = 5 (A=5) pref.: φV = 1, φS = 1/2

Uncond. Gaussian 0.007 0.010 1.022 0.010 0.013 1.031
CCC 0.066 0.097 1.211 0.066 0.098 1.198
DCC 0.090 0.134 1.285 0.064 0.094 1.201
Gaussian copula 0.124 0.241 1.840 0.101 0.178 1.432
t Copula 0.158 0.311 2.362 0.091 0.167 1.418
skewed t copula 0.166 0.483 2.750 0.109 0.228 1.584

xviii



Exhibit 1: Relative price movements
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Exhibit 2: qq-plot to test ellipticity

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

Quantiles Beta(k/2, (d−k)/2)

S
am

pl
e 

qu
an

til
es

 

 

theoretical

sample

Exhibit 3: qq-plot to test multivariate normality
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Figure F.1. Descriptive statistics: relative price performace and qq-plots.
Exhibit 1 plots the relative price movement of each asset to compare their performance over the full-sample
period. Exhibit 2 compares the qq-plot of sample against the beta distribution, where d = 3 is the dimension
of the vector of returns, and k is chosen to be roughly equal to d − k (see McNeil et al. (2005)). The
empirical observations are denoted by the solid line; the theoretical quantiles are represented by the dashed
line. Exhibit 3 shows the qq-plot associated with Mardia’s (1970) test of multivariate normality.
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Exhibit 1: Oil-Gold exceedance correlation
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Exhibit 2: Oil-Equity exceedance correlation
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Exhibit 3: Gold-Equity exceedance correlation
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Figure F.2. Descriptive statistics: exceedance correlations.
Exhibits 1, 2, and 3 present the exceedance correlations for each pair of returns (see Longin and Solnik (2001)
and Ang and Chen (2002)). The line with squares represent the actual exceedence correlation, whereas the
dotted line represents the theoretical correlation between simulated normal return exceedances, assuming
a Gaussian return distribution with parameters equal to the sample means and covariance matrix of the
weekly returns (see Table F.1). The x-axis shows the cutoff quantile, and the y-axis presents the correlation
between the two returns, given that both exceed that particular quantile.
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Exhibit 1: generalized Student’s t distribution with time-varying moments
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Exhibit 2: Gaussian distribution
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Figure F.3. Goodness-of-fit test
In this figure, we plot the goodness-of-fit test for the estimates of the density of ui,t, i = 1, 2, 3 and t = 1, ..., T (Diebold et al. (1998)) for two marginal
distribution models for oil, gold, and equity-index weekly returns: one with a generalized Student’s t distribution and time-varying moments (Exhibit
1), and the other with a Gaussian distribution (Exhibit 2). Parameter estimates of the generalized Student’s t distribution are shown in Table F.3.
Dotted line and horizontal dashed lines represent the mean and 95% confidence interval, respectively.
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Exhibit 1: Forecasted mean Exhibit 2: Forecasted volatility Exhibit 3: Forecasted skewness
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Figure F.4. Conditional parameters of the marginal distribution model.
This figure shows the one-step ahead forecasts over the out-of-sample period for the conditional mean, volatility, and skewness of the marginal
distribution model with generalized Student’s t distribution and time-varying moments.
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Exhibit 1: Forecasted correlation coefficients
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Exhibit 2: Forecasted degrees of freedom
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conditional skewed t copula

Exhibit 3: Forecasted asymmetry vector
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Figure F.5. Conditional parameters of the conditional skewed t copula.
This figure shows the one-step ahead forecasts over the out-of-sample period for the correlation coefficients,
degrees of freedom, and asymmetry vector components of the conditional skewed t copula model.
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Exhibit A.1: preferences: φV = 1/2, φS = 1/3 (A=1)
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Exhibit A.2: preferences: φV = 1, φS = 1 (A=2)
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Exhibit A.3: preferences: φV = 5/2, φS = 5 (A=5)
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Figure F.6. Optimal weights for the skewed t copula.
We show the optimal weights over the out-of-sample period for the conditional skewed t copula model.
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Exhibit B.2: skewed t copula – Uncond. Gaussian
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Exhibit B.2: skewed t copula – DCC
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Exhibit B.3: skewed t copula – Gaussian copula
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Figure F.7. Allocation differences with respect to the skewed t copula.
We present the allocation differences between various strategies and the conditional skewed t copula model,
when the investor’s preferences are given by the parameters φV = 1 and φS = 1 (A=2).
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