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Abstract

The aim of this paper is to empirically examine the economic mechanisms underlying the

correlation of stock and bond returns. Using a Campbell-Shiller decomposition we express

unexpected stock and bond returns into news components related to macroeconomic fun-

damentals. The variance and covariance of these news components constitute the variance

and covariance of stock and bond returns. We therefore attempt to use time-varying co-

movement among the innovations to shed light on the economic mechanisms driving the

time variation in the realised second moments of stock and bond returns. Using survey

forecast data for the macroeconomic components we show that the uncertainty in cash

flow and excess stock returns is able to explain the variation in excess stock variance up to

an R2 of 24%. The variation in excess bond variance can be attributed to the uncertainty

in real short-term interest rates and excess bond returns up to an R2 of 16%. As for the

covariance between stock and bond returns, it is determined by the interaction between

several of the macroeconomic news components and we are able to account for up to 24%

of the variation. Our findings highlight the importance of the interaction between cash

flow news and inflation news for negative stock-bond correlation.
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1 Introduction

It has been well documented that there is substantial time variation in the correlation

between the US stock market and long-term government bond returns, including periods

of negative correlation. The mechanisms of this time variation however are far less under-

stood. This is an important question since stock-bond correlation plays a pivotal role in

most investors’ asset allocation decisions and their portfolio’s diversification benefits. It

seems that investors are keenly aware of this since Agnew and Balduzzi [2006] empirically

document that investors re-balance between stocks and bonds in response to price changes

in these markets. In this paper, we aim to explore the economic mechanism that is driving

the time variation in stock-bond correlation.

[Figure 1 about here.]

Correlation is a function of the covariance of returns and the respective volatilities. We

make this distinction to highlight the importance of the respective components. Figure 1

plots the monthly realised volatility, covariance and correlation of the US stock and 10-

year US Treasury bond returns. It is clear from this that for an investor with a portfolio

of stocks and bonds any diversification benefits being sought by the investor will depend

crucially on both the covariance and the volatility of returns. For instance, in the early

1990’s when the covariance remained fairly constant but volatility changes across these

markets were highly correlated; as can be seen from figure 1 the correlation was affected.

We therefore concentrate our study on explaining the time variation in the covariance and

variances of stock and bond returns.

We use the Campbell-Shiller (1988) decomposition as a theoretical framework to express

unexpected stock and bond returns as components related to economic fundamentals.

The decomposition uses an accounting identity to decompose unexpected stock returns

into changing expectations (i.e. unexpected values) of future real cash flow, future real

short-term interest rates and the future excess returns on stocks (stock risk premium).

Unexpected bond returns are decomposed into changing expectations of future inflation

rates (this determines the real value of the nominal bond payments), future real short-term

interest rates and future excess returns on long-term bonds (bond risk premium). Since

the variance and covariance of these components constitute the variance and covariance

of stock and bond returns, we attempt to use time-varying comovement among the funda-
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mental components to shed light on the economic mechanisms driving the time variation

in the realised second moments of stock and bond returns.

Campbell and Ammer [1993] use such a framework within a vector autoregressive (VAR)

model. They estimate their model implicitly assuming that the stock-bond correlation is

time-invariant1, contrary to Figure 1. Recently, several studies including Chen and Zhao

[2009] show that use of a VAR model is extremely sensitive to the choice of state vari-

ables and can thus lead to differing conclusions depending on the choice of state variables.

Recently, Piazzesi and Schneider [2011] show that investors’ actual historical predictions

(from survey forecast data) are different from the in-sample statistical predictions obtained

from using a VAR model. Thus by using actual historical forecasts rather than statistical

forecasts to obtain the expected values of the decomposed components, our method can

better help to understand the true nature of asset pricing puzzles such as the time varia-

tion in stock-bond correlation.

Our novel approach consists of using survey forecast data from the BlueChip Economic

Indicators (BCEI) survey to obtain a time-series of expected values for the fundamental

components of the decomposition, namely cash flow, short-term interest rate and excess

bond returns. To our knowledge this data has not been used before to study stock-bond

correlation. Forecasts for the inflation rate are obtained from a structural model developed

at the Federal Reserve Bank of Cleveland by Haubrich and Bianco [2010] and forecasts of

excess stock returns are obtained by using a predictive linear model on a range of state

variables known in the literature to display some predictability for stock returns. We doc-

ument the approach in more detail in the subsequent sections. Once we have a time-series

of forecasts for the decomposed components together with knowing the realised values,

time-series of the unexpected values (news) of these components are easily obtained. We

then use the Dynamic Conditional Correlation (DCC) model introduced by Engle [2002]

to describe the time-varying comovement among these news components and look at the

extent to which these explain the time variation in the second moments of stock and bond

returns.

1They use a Generalised Method of Moments (GMM) approach correcting for the heteroskedasticity and
autocorrelation of the pricing errors but which ultimately assumes a constant variance-covariance matrix
of the pricing errors.
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Before we report our findings as to the economic mechanisms driving the second mo-

ments of stock and bond returns, we examine other variables that have been highlighted

in the literature as being related to the stock-bond correlation. The work by Chordia et al.

[2005] and Goyenko [2006] conclude that stock-bond comovement is due to time variation

in investors’ liquidity needs. Since stock and bond markets are highly integrated, the

author’s argue that liquidity has a cross-market effect which they attribute to trading ac-

tivity across these markets. More recently, Baele et al. [2010] use a dynamic factor model

to find that liquidity plays an important role while macroeconomic factors contribute very

little to movements in second moments of stock-bond returns. Viceira [2010] also reports

that financial variables such as the yield spread and the short term nominal rate are able

to positively forecast the stock-bond covariance. Works by Gulko [2002], Connolly et al.

[2005] and Connolly et al. [2007] study the effect of a flight-to-quality in asset markets on

stock-bond comovement. Generally they find that rising stock market uncertainty2 tends

to decrease the comovement between stock and bond markets, thus causing a decoupling

of these asset classes.

Our empirical investigation uncovers several new results and also confirms several previ-

ous findings. We find that uncertainty in real cash flow and uncertainty in future excess

returns are able to explain up to 24% in the time variation of stock variance. The dynam-

ics between these two uncertainties also contributes to stock market volatility. Such an

observation appears plausible if one considers the large cash flow shocks observed in the

recent financial crisis and the corresponding volatility of the stock markets. As for the

bond market, uncertainty in future excess returns and the real interest rate are able to

contemporaneously explain up to 16% of the variation in bond variance across time. We

find that the interaction between the uncertainties also plays a significant role in explaining

bond variance. Uncertainty in the inflation rate seems to play minor role in the volatility

of bond returns since during our sample period, the inflation rate was relatively low and

stable. The real interest rate news on the other hand appears important since unexpected

decreases of the real interest rate during the recent financial would have pushed bond

prices up which would have been accompanied by an increase in bond market variance.

2This is often proxied for by using a market volatility index such as CBOE’s VIX Index, which measures
the implied volatility of options on the Standard & Poor’s 500 stock index. It is often called the “fear
index” by market practitioners. For more details on the history and purposed of this index see Whaley
[2009].
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Regarding the covariance between stock and bond returns, it is the uncertainty of the

real cash flow, inflation rate and the real interest rate that can explain up to 22% of the

variation in the covariance. Indeed we find that the covariance between real cash flow news

and inflation news is a mechanism by which the stock-bond covariance turns negative, a

finding consistent with David and Veronesi [2008]. A possible reason for this is that an

unexpected increase in the inflation rate is bad news for bond returns, while an unex-

pected increase in cash flow is good news for stock returns. This causes investors to sell

their bonds in favour of stocks, thus driving the correlation to be negative. Our results

generally highlight that macroeconomic factors do have the ability to partially explain

the time variation in the second moments of stock and bond returns. This allows us to

investigate the economic mechanism that drive the (co)variance of stock and bond returns.

Our research is related to three streams of the literature with three resulting contribu-

tions. First, similar to Campbell and Ammer [1993] we employ a dynamic accounting

framework using the Campbell-Shiller decomposition in order to directly investigate the

role of macroeconomic factors in changing stock and bond prices. Campbell and Ammer

[1993] use a VAR model and examine the offsetting effects on the variances and covariance

of stock and bond returns. They find that while unexpected shocks of the real interest rate

drive returns of stocks and bonds in the same direction, expected inflation increases excess

stock returns and lowers excess bond returns. However, Campbell and Ammer [1993] focus

on the unconditional moments and thus implicitly assume that the stock-bond correlation

is time invariant. We contribute to this strand of literature by using analyst forecasts

to generate a time-series of forecasts for the decomposed components of stock and bond

returns and are thus able to investigate the time variation of the conditional stock-bond

correlation. Indeed, we believe we are among the first to demonstrate the informational

content of survey forecasts for the variation in stock-bond correlation.

Second, our paper is related to previous theoretical work which has attempted to shed

light on the underlying economic linkages that tie fundamentals to stock-bond return

volatilities and covariances. For instance, Barsky [1989] was amongst the first to investi-

gate this by proposing a general equilibrium model to show that unconditional stock-bond
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covariance is state-dependent3. Other studies have adopted the approach of using a stock-

bond pricing model incorporating various economic mechanisms in order to explain the

time variation of the correlation. Bekaert et al. [2010] employ a model where agents who

are pricing stocks and bonds have a stochastic risk aversion, David and Veronesi [2008]

base their model on investors learning about the expected components of earnings and

inflation from other fundamental components, while Campbell et al. [2009b] propose a

pricing model with a latent factor to capture the covariance between inflation and the real

economy to create a model with the ability to generate time varying stock-bond covari-

ance. Since all these economic models have limited success in fully explaining the time

variation of stock and bond (co)variance, our contribution to this strand is to empirically

demonstrate the economic mechanisms that drive changes in the volatility and correlation

of stock and bons returns over time.

Third, econometric tools have been developed to acknowledge and describe the time vari-

ation in correlation. Specifically for stock and bond returns, De Goeij and Marquering

[2004] and Cappiello et al. [2006] both develop and estimate dynamic correlation models.

We contribute to this strand of literature by adopting Engle [2002] Dynamic Conditional

Correlation (DCC) model to explicitly obtain the (co)variance time series of stock and

bond return news components, allowing us to investigate the components theoretically

motivated significance on explaining stock-bond (co)variance. Such a tool allows us to ex-

tend the work done by Viceira [2010] to directly explore the time variation in the covariance

of the news components of both stock and bond returns4, hence directly investigating the

role of the interaction of macroeconomic factors on stock-bond correlation.

The rest of the paper is structured as follows. Section 2 presents the theoretical ex-

pressions of the second moments of stock and bond returns using the Campbell-Shiller

decomposition. Section 3 outlines the raw data sources for our survey forecasts and his-

torical data. Section 4 details the method of construction for the component news time

3He found that low productivity growth and high market risk are likely to lower both corporate profits
and the real interest rate, which propels stock and bond prices in opposite directions. Note that similarly to
Campbell and Ammer [1993], this study also implicitly assumes that the stock-bond correlation is constant
over time.

4Viceira [2010] use a VAR approach to study the covariance of bond return news components with the
short term nominal rate and yield spread. By using excess stock returns as one of the state variables,
the role of the short rate and yield spread on stock-bond correlation was also examined. Our paper
instead focuses on the interaction of news components to contemporaneously explain the time variation in
stock-bond correlation.
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series. Discussion of our results and some concluding remarks are made in sections 5 and

6 respectively.

2 Theoretical stock-bond correlation

The decomposition of Campbell and Shiller [1988] and Campbell and Ammer [1993] pro-

vide a convenient theoretical framework for our empirical work. Their methodology al-

lows us to express the innovation to a long-term asset return as the sum of revisions in

the expected decomposed components. In the next sections we show how the conditional

stock-bond correlation can be written as various components on stock and bond return

innovations. First we decompose innovations to stock returns into their constituent parts.

2.1 Surprises in stock returns

Stocks have claim to stochastic real cash flows. Appendix A derives the innovation to

stock returns as changing expectations of future real dividend growth, future real interest

rates and future excess stock returns:

eSt+1 − Et[eSt+1] = (Et+1 − Et)

 ∞∑
j=1

ρj∆dt+j −
∞∑
j=1

ρjrt+j −
∞∑
j=2

ρjeSt+j

 (1)

where eSt is the log excess stock return at time t, rt is the log real short term interest

rate, ρ is a constant discount factor, dt is the log real dividend paid at time t and ∆ is

the one-period backwards difference. This equation for stock returns relates the unex-

pected stock return at time t + 1 to changes in rational expectations (otherwise known

as surprises, innovations or news) of future dividends, future expected interest rates and

future excess returns. Note that Et denotes the expectation formed at time t, conditional

on an information set that includes the history of stock prices, short term interest rates

and dividends up to time t. Equation 1 is an identity which is obtained through imposing

internal consistency on expectations to rule out the possibility of a asset pricing bubble.

We can write it more simply as:

ẽSt+1 = S̃CF,t+1 − S̃r,t+1 − S̃e,t+1 (2)

where the tilde is used to denote a surprise to a component and the subscript is used to

denote the respective components and the time at which the surprise occurs. Equation
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2 neatly states that if for example the unexpected return to stocks is positive, assuming

that the short-term interest rate is deterministic, then either the expected future dividends

must be higher or expected future excess returns are lower, or a bit of both. From this

simple example, it is clear that the new information used in each time period to update the

forecasts of future dividends, short term interest rate and excess returns, is what drives

the surprises in stock returns.

It has been suggested that earnings rather than dividends should be used as the ap-

propriate measure of cash flow, as earnings are more stable than dividends, less affected

by financial policy or share repurchases and that Modigliani-Miller’s propositions on the

irrelevance of dividend policy gives no theoretical reason to expect managers to pursue

any particular dividend policy. We therefore choose to adapt the cash flow component in

equation 1 according to:

S̃CF,t+1 = (Et+1 − Et)
∞∑
j=1

ρj∆dt+j = (Et+1 − Et)
∞∑
j=1

ρj∆et+j (3)

where ∆et+j is the growth in (log) real earnings at time t+ j, which we can express more

simply as:

∆et+j = log

(
1 +

Et+j
Et+j−1

)
(4)

where Et is defined as the real earnings at time t. Equation 4 therefore implies that

innovations to real dividend growth and real earnings growth over an infinite horizon

contain the same information. Using this alternative expression we can therefore use

forward-looking earnings forecasts to proxy for the news of the cash flow component.

More details on the construction of all the news components are outlined later.

2.2 Surprises in bond returns

Government bonds are subject to fixed nominal cash flows. We can thus derive an expres-

sion for bonds which holds exactly5:

e
B,(N)
t+1 − Et[e

B,(N)
t+1 ] = (Et+1 − Et)

− N∑
j=1

πt+j −
N∑
j=1

rt+j −
N∑
j=2

eBt+j

 (5)

5See Appendix A for details of the decomposition.
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where eBt is the log excess bond return at time t (similarly defined as the log holding

period return in excess of the short term interest rate) and πt is the inflation rate at time

t. Changes in expected inflation alter the real value of the fixed nominal payoff on the

bond, so can cause capital gains or losses even if the expected future return on the bond

is constant6. Similarly to above, we can write equation 5 more simply as:

ẽBt+1 = −B̃π,t+1 − B̃r,t+1 − B̃e,t+1 (6)

If we were to assume B̃e,t+1 = 0, i.e. that the bond risk premium is constant, we could

recover the expectations hypothesis of the term structure. However, we leave Equation 6

free from restrictive assumptions and obtain a time series for all of the news components.

2.3 Stock-bond correlation

Using Equations 2 and 6 the conditional variance of excess stock and bond returns can be

decomposed as:

vart(ẽ
S
t+1) = vart(S̃CF,t+1) + vart(S̃r,t+1) + vart(S̃e,t+1)− 2covt(S̃CF,t+1, S̃r,t+1)

− 2covt(S̃CF,t+1, S̃e,t+1) + 2covt(S̃r,t+1, S̃e,t+1) (7)

vart(ẽ
B
t+1) = vart(B̃π,t+1) + vart(B̃r,t+1) + vart(B̃e,t+1) + 2covt(B̃π,t+1, B̃r,t+1)

+ 2covt(B̃π,t+1, B̃e,t+1) + 2covt(, B̃r,t+1, B̃e,t+1) (8)

The conditional covariance between excess stock and bond returns can therefore be written

as:

covt(ẽ
S
t+1, ẽ

B
t+1) =− covt(S̃CF,t+1, B̃π,t+1)− covt(S̃CF,t+1, B̃r,t+1)− covt(S̃CF,t+1, B̃e,t+1)

+ covt(S̃r,t+1, B̃π,t+1) + covt(S̃r,t+1, B̃r,t+1) + covt(S̃r,t+1, B̃e,t+1)

+ covt(S̃e,t+1, B̃π,t+1) + covt(S̃e,t+1, B̃r,t+1) + covt(S̃e,t+1, B̃e,t+1)

(9)

6Note that in this case the maturity of the bond decreases as time passes, so the relevant expectations
are taken over the maturity length. The summation is from 1 to N which represents the maturity of the
bond.
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The conditional correlation between returns thus being a function of Equations 7, 8 and

9 through:

corrt(ẽ
S
t+1, ẽ

B
t+1) =

covt(ẽ
S
t+1, ẽ

B
t+1)√

vart(ẽSt+1)vart(ẽBt+1)
(10)

2.4 Component expectations

Our aim is to explore the economic mechanisms that drive the time variation in second

moments of stock and bond returns through examining the time variation in the variance

and covariance of the decomposed news components, namely cash flow news, real interest

rate news, inflation news and excess stock and bond return news. In order to obtain a

time-series of news components, we need a method to obtain a time-series of expected val-

ues for these components. There are three potential methods to obtain such expectations

as we outline below.

Model-implied: A common method is to build a predictive model for the variable of

interest (either structural or reduced form) using state variables known to exhibit some

predictability. After estimating the model using actual data, the model can then be used

to generate expected values of the variable N periods ahead. For example, one commonly

used model is the VAR system as used by Campbell and Ammer [1993] for the Campbell-

Shiller style decompositions of Equations 2 and 6 above. For this particular method

however, Welch and Goyal [2008] and Chen and Zhao [2009] find that VAR models are

sensitive to the sample period and the choice of state variables. The model’s conclusions

can change as a result of the choice of sample period and state variables. The VAR model’s

results and the model-implied approach are thus dependent on the validity of the model’s

assumptions, construction and conclusions.

Market-implied: By using market data it may be possible to back out the “market’s

expectation” of the variable. For example, a popular market measure of expected infla-

tion is the break-even inflation rate defined as the difference between equivalent-maturity

yields on nominal Treasury bonds and Treasury inflation protected securities (TIPS). The

problem with such an approach is that it is often influenced by other factors such as liq-

uidity and risk. For the case of the breakeven rate, Campbell et al. [2009a] show that

liquidity differences between nominal and TIPS bonds, and an inflation risk premium bias

the level of the expected inflation rate obtained from TIPS. Such a method to generate

9



the expected value of the variable may therefore not provide a precise expectation value

for that variable.

Survey data: A recent trend within the literature is to use professional forecast data as a

direct measure of the expectation of the variable of interest. Ang et al. [2007] find that

professional forecasts significantly outperform time series, Philips curve and term structure

models for predicting inflation out of sample. Piazzesi and Schneider [2011] also note that

investors’ actual historical predictions are different from the in-sample predictions found

by statistical models such as the VAR model. They comment quite validly that investors

ex-ante may not recognise the same patterns that we observe today with the benefit of

hindsight (ex-post). Professional forecast data therefore seems like a promising method

to generate direct expectations of the decomposed components of Equations 2 and 6 above.

In our work, we use mainly professional survey forecasts but also model implied forecasts.

Expectations of cash flow, the short term interest rate and long-term bond returns are

obtained from forecasts made by a panel of economists from the BlueChip Economic Indi-

cators (BCEI) survey database on corporate profits, 3-month T-Bills and 10-year Treasury

bonds. Expectations of the inflation rate are obtained from a structural model developed

at the Federal Reserve Bank of Cleveland by Haubrich and Bianco [2010] which provides

monthly forecasts of the inflation rate over the next 10 years. Lastly, expectations of

excess stock returns are obtained from the well-adopted method of using a predictive re-

gression on a battery of state variables known in the literature to have some predictive

power (Fama and Schwert [1977], Fama and French [1988], Campbell and Shiller [1988],

Cochrane and Piazzesi [2005]). We outline our data sources in more detail in the next

section.

After backing-out the news time-series from the forecasts and actual (realised) values

of the components, we employ the Dynamic Conditional Correlation (DCC) model of En-

gle [2002] to describe the conditional variance and covariance of these news components7.

We then look to the explanatory power of these conditional second moments of the de-

composed news components to explain the time variation in the second moments of stock

and bond returns.

7As a robustness check we use a Exponentially Weighted Moving Average(EWMA) model to describe the
conditional variance and covariance of the news components. Our findings remain qualitatively unchanged.
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3 Data

Our study uses monthly data on U.S. stock market returns, U.S. 10-year Treasury bond

returns, survey forecasts of corporate profits, the 3-month Treasury bill yield, the 10-year

Treasury bond yield and model-implied forecasts of inflation rates and stock returns. We

also obtain the actual (realised) time-series of all the forecasted variables above. Our data

series go from July 1984 to December 2009, a total of 306 observations. We proxy for

the U.S. stock market by using the aggregate value-weighted return index of the stocks

traded in the NYSE, AMEX and Nasdaq markets from the Centre for Research in Security

Prices (CRSP). We proxy for the U.S. bond market by the 10-year Treasury bond, since

monetary policy has less of an impact on long-term government bonds than on short-term

bonds. The nominal zero-coupon yield for the 10-year bond is obtained from the daily

off-the-run Treasury yield curves constructed by Gurkaynak et al. [2007]8. We also require

the nominal 3-month yield which is obtained from the Federal Reserve System’s H.15 Re-

lease9. The monthly Treasury yields are observed as of the last trading day of each month.

Survey forecasts for the future level of corporate profits, 3-month nominal yield and the 10-

year T-Bond yield come from the BlueChip Economic Indicators (BCEI) database which

surveys approximately 50 economists employed by financial institutions, non-financial cor-

porations and research organisations. At the beginning of each month participants forecast

future values of various variables for the current calendar year and for the next calendar

year. From this we back-out the one-year ahead forecast for our variables10. Each month

we obtain the ‘consensus’ forecast which is the mean of the participants’ forecast as the

1-year ahead expected value of the level of corporate profits, the 3-month T-Bill yield and

the 10-year T-Bond yield.

We note that forecasts of corporate profits from BCEI are forecasts of the level of corpo-

rate earnings before-tax with inventory valuation and capital consumption adjustment for

the National Income and Product Accounts (NIPA) at the Bureau of Economic Analysis

(BEA). This represents an aggregate measure of cash flow to US firms from current pro-

duction. Although this is based on all US firms that are required to file Federal corporate

8Their daily Treasury yield curves are available from 1961 to the present at
http://www.federalreserve.gov/econresdata/researchdata.htm.

9Available from http://www.federalreserve.gov/releases/h15/data.htm
10For more details on the procedure see Appendix B.
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tax returns and so includes both public and private firms, we use this variable as the

proxy for aggregate cash flow to compare its validity with the more traditional sources of

earnings forecasts from IBES.

Since this survey is not anonymous, the career concerns of the respondents may influ-

ence their official stated forecast. We address this concern by comparing the BCEI data

to the Survey of Professional Forecasters (SPF) data11. We find that the mean and median

forecasts from SPF are similar to those from the BCEI. This robustness check is reassuring

since Ang et al. [2007] find that forecasts from SPF significantly outperform a variety of

other methods for predicting inflation. Since the participants in the BCEI survey have

qualifications similar to those of the SPF participants, it is likely that the BCEI forecasts

also exhibit these attractive features for corporate profits and interest rate forecasts.

Forecasts of the inflation rate are directly from the Federal Reserve Bank of Cleveland

(Cleveland FED) who generate the expected values of the inflation rate through estimat-

ing a structural model on the real and nominal term structures. The work by Haubrich

and Ritchken [2011] at the Cleveland FED estimate their model using nominal Treasury

yields, SPF survey forecasts of inflation and inflation swap rates12. We are therefore con-

fident that the expected inflation rate implied by this model is the best of the survey and

market-implied measures of future inflation rates. For this reason we therefore use the

model-implied data for our expected inflation measure13.

To obtain a model-implied forecast of stock returns, we use a predictive linear model

based on state variables known in the literature to display some predictability. These

variables include the dividend yield, term spread, default spread and the Cochrane and

Piazzesi [2005] factor. The data to construct these variables was obtained from both CRSP

and DataStream. For further details on the data sources and construction, see Appendix

B.

11SPF forecasts are quarterly and cover a range of forecast horizons that overlap with those obtain from
BCEI. The data is obtained directly from the Philadelphia FED.

12These are obtained from derivative securities known as zero coupon inflation swaps. They are the most
liquid inflation derivative contracts and trade in the over-the-counter market.

13The data is available directly from http://www.clevelandfed.org/research/index.cfm
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4 Empirical proxies of news components

We now outline in detail the method for constructing each of the news components. We

note that as we are considering a 10-year Treasury bond, the summations in Equation

5 pertain to a 10-year horizon (N = 10), with the revisions calculated over monthly in-

tervals. Henceforth, to prevent confusion in the notation, t refers to the month in which

we are taking the expectation, whilst j refers to the yearly horizon of the forecast value

(expected value) that we require. Using the inflation rate as an example, with j = 2,

πt+12j denotes the 2-year forecast of the annual inflation rate at month t. We therefore

express the expectation at month t of the total future inflation rate over the next 10-years

as: Et
(∑10

j=1 πt+12j

)
. This analogy applies similarly to the other expected components

that we consider.

Note also that the summations of the components for the innovation of excess stock returns

in Equation 1 have an infinite horizon. For the purposes of this study, we set the horizon

of the summations for Equation 1 to be the same as those in Equation 5 of N = 10. This

implicitly assumes that near term revisions carry more weight than long-term revisions,

which we believe is not an unreasonable assumption in order to obtain the news time series

of each component.

4.1 Cash flow news

We construct the cash flow news proxy using the BCEI forecast of corporate profits.

Denoting the 1-year forecast of real earnings at month t as:

Et+12|t =
CP1t

(1 + Inf1t)
(11)

where CP1t is the month t 1-year forecast of annualised corporate profits (earnings) from

the BCEI survey and Inf1t is the month t 1-year forecast of the annualised inflation rate

from the Cleveland FED model. Subsequently, we express the 1-year forecast for real

earnings growth in month t as:

∆et+12|t = log

(
1 +

Et+12|t

Et

)
(12)
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where Et is the actual value of real annualised corporate earnings at month t defined

as CP0t
1+Inf0t

, with Inf0t being the realised annualised inflation rate and CP0t being the

realised annualised corporate profits, both at month t. From Equation 3 it is clear that

we require further forecasts of real earnings growth at longer horizons. Since this data is

not available from the BCEI database, we therefore need a method to generate forecasts

of the annualised growth in corporate profits over the following 9 years. Using a similar

methodology to Pástor et al. [2008] we assume that the annualised growth in earnings

linearly mean-reverts to a steady state over the following 9 years in which the forecasts

are being extended. We believe that by using such a method we do not bias the subsequent

forecasts in any direction and so by assuming a mean-reverting process for the subsequent

forecasts, we conservatively extended the forecast horizons. The steady state of earnings

growth g∆e is computed as the rolling average of the growth in real (annualised) corporate

profits starting from 1948 to the prior month in which we require the expected value of

the level of corporate profits. The subsequent forecasts can thus be expressed as:

∆et+12j|t = ∆et+12j−12|t +
g∆e
t −∆et+12|t

9
where j = 2, ..., 10. (13)

We can then express the total forecast of the growth in corporate profits over the next 10

years at month t as:

Et

 10∑
j=1

ρj∆et+12j

 =
10∑
j=1

ρj∆et+12j|t (14)

We assume that ρ = 0.96 in line with the literature 14. In order to obtain the unexpected

value (news) to cash flow, we obtain the total forecast of the growth in corporate profits

over the next 10 years from month t, taking the expectations from month t+1, i.e. knowing

the actual (realised) corporate profits growth between month t and t+ 1:

∆et+12|t+1 = log

(
1 +

Et+1

Et

)
(15)

∆et+24|t+1 = log

(
1 +

Et+12|t+1

Et+1

)
(16)

∆et+12j|t+1 = ∆et+12j−12|t+1 +
g∆e
t+1 −∆et+24|t+1

8
where j = 3, ..., 10. (17)

14We note that as a robustness check if we instead assume that ρ = 1, we obtain very similar results.
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We therefore obtain the cash flow news time series through:

S̃CF,t+1 =
10∑
j=1

ρj∆et+12j|t+1 −
10∑
j=1

ρj∆et+12j|t (18)

It is clear that the approach above is limited by the nature of the survey forecast data

which provides at each month t only a forecast of earnings at a 1-year horizon. This

method necessarily imposes some assumptions and structure on the expected real growth

in corporate profits at longer horizons which we believe compliments the 1-year rolling

forecast.

4.2 Real interest rate news

Survey data from BCEI gives us the 1-year forecast of the annual average nominal rate

of returns on 3-month Treasury bills. Similarly to the approach adopted to extend the

horizon of the earnings growth forecasts, we generate forecasts of the annual average rate

on these bills over the following 9 years by assuming that the forecasts mean-revert to a

steady state over the following periods. For the case of the 3-month T-Bills, we denote

TBill0t as the actual (realised) annual nominal rate of return on the T-Bills at month t

and TBill1t as the 1-year forecast of the nominal return on the 3-month T-Bills. Note

that that the forecast for the real return on 3-month T-bills are defined as the forecast

for the nominal return on 3-month T-Bills less the corresponding inflation rate forecast

obtained from the Cleveland FED model, which is shown clearly below. The steady state

value gTBill is computed as the rolling average of the real 3-month T-bill rate starting

from 1925 to the prior month in which we require the expected value of the T-bill rate.

Mathematically:

rt+12|t = TBill1t − Inf1t (19)

rt+12j|t = rt+12j−12|t +
gTBillt − rt+12|t

9
where j = 2, ..., 10. (20)

where Inf1t is the month t 1-year forecast of the annualised inflation rate. The total

forecast of the future T-bill rate over the next 10 years at month t can therefore be

expressed as:

Et

 10∑
j=1

rt+12j

 =

10∑
j=1

rt+12j|t (21)
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Taking expectations from the following month, t+ 1, when the information from month t

to t+ 1 becomes available, we write:

rt+12|t+1 = TBill0t+1 − Inf0t+1 (22)

rt+24|t+1 = TBill1t+1 − Inf1t+1 (23)

rt+12j|t+1 = rt+12j−12|t+1 +
gTBillt+1 − rt+24|t+1

8
where j = 3, ..., 10. (24)

where Inf0t+1 is the realised annualised inflation rate at month t+1. Therefore, obtaining

the expectation from month t + 1 of the total future T-bill rate over the next 10 years

from month t:

Et+1

 10∑
j=1

rt+12j

 =

10∑
j=1

rt+12j|t+1 (25)

The real interest rate news for both stocks and bonds can be constructed as:

S̃r,t+1 = B̃r,t+1 =

10∑
j=1

rt+12j|t+1 −
10∑
j=1

rt+12j|t (26)

We note that we set the real interest rate news for stocks and bond to be the same due to

the earlier assumption of the horizon for the summations of Equation 1 being the same as

that for equation 5, of N = 10. Indeed if we include ρ in the calculation of real interest

rate news for stocks, the correlation between this measure and that above is 0.99. We

therefore choose to have the one time series to represent our news to the real interest rate

for both stocks and bonds.

4.3 Excess stock return news

Using Equation 1 we can back out the excess future stock return news from knowing the

unexpected stock returns, cash flow and real interest rate news. We obtain unexpected

stock returns by using a predictive linear regression to model at a monthly frequency the

1-year expected excess return. We use the usual battery of predictive variables known to

the literature such as the dividend yield, term spread, default spread, lagged returns and

nominal return on the 3-month Treasury bills. Cochrane and Piazzesi [2005] also suggest

a factor (CP factor henceforth) constructed from a linear combination of forward rates

which seems to have significant predictive power for both future bond and stock returns.

Interestingly, the significance of the CP factor as a forecasting variable for stock returns
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has changed since the work by Cochrane and Piazzesi [2005]. Note that we use the well-

adopted parsimonious modeling approach as opposed to simply data mining within our

sample period to produce a model with the highest possible fit, so that in our work we use

a flexible general model that has been widely used and accepted by other authors and in

different sample periods to ours.

Table 1 evaluates the forecast of excess stock returns. We only include those variables

from the list above that show reasonable significance in the regressions. We run the pre-

dictive regression of the 1-year ahead annualised excess stock returns on the dividend

yield d/p, term spread y(5) − y(1) and the CP-factor γT f . Dividend yield is defined as

the log dividend payments over the past year minus the log price level; the term spread is

defined as the difference in yields between the 5 year and 1-year zero coupon bond; and

the CP factor is a single tent-shaped linear combination of forward rates. We perform the

regression:

eSt+12 = α+ β1dpt + β2

(
y(5) − y(1)

)
t
+ β3

(
γT f

)
t
+ εt+12 (27)

where t+ 12 monthly observations ahead implies the 1-year ahead excess stock return15.

[Table 1 about here.]

Regressions 1, 2 and 4 from Table 1 display the well-known result of the dividend yield

and term spread forecasting different components of returns, since the coefficients are

relatively unchanged in multiple regressions and with the R2 increasing. We also notice

from regression 5 that the term spread is driven out by the CP-factor, which makes sense

since the information content of the CP-factor subsumes that of the term spread, since

both are from zero-coupon bond yields. However, it seems as if the recent financial crisis

has restored the forecastability of the dividend yield since in regressions 6 and 7, it drives

out the CP-factor. We use the coefficients from regression 4 to produce a model-implied

expectation for excess stock returns 1 year from now. Knowing the actual (realised) excess

stock returns, we are able to work out the unexpected excess stock returns series via:

ẽSt+1 =
1

12
eSt+1 −

11

12
Et
(
eSt+12

)
(28)

15We note that the (restricted) CP-factor was constructed using the Fama-Bliss zero coupon bond yields
obtained from CRSP from January 1964 to November 2009 to recover the well-known tent-shape for the
coefficients on the respective combination of forward rates. Only using data from June 1984 to November
2009 would not produce the tent shaped structure.
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where eSt+1 is the realised annual excess returns to stocks in month t+ 116.

[Figure 2 about here.]

Panel A of Figure 2 plots the forecasted excess returns on stocks versus the actual returns.

Unexpected stock returns is essentially the vertical distance between the realised and

forecasted curves. From this returns to stocks are somewhat hard to predict at a monthly

frequency using the state variables that we have stated above.

4.4 Inflation news

Model-implied data from the Cleveland FED gives us forecasts of the annual rate of

inflation for the next 10 years at a monthly frequency. Denoting Inf1t as the 1-year

forecast of the annual inflation rate at month t, with the number changing depending on

the horizon of the forecast. Writing an expression for the average forecasted (expected)

future inflation rate over the next 10 years at month t as:

InfTotal10t =
1

10
(Inf1t + Inf2t + Inf3t + Inf4t + Inf5t + Inf6t

+ Inf7t + Inf8t + Inf9t + Inf10t) (29)

Naturally we can write:

Et

 10∑
j=1

πt+12j

 = 10InfTotal10t (30)

From Equation 5, we also need the total inflation rate over the next 10 years from month t

but taking expectations from month t+1: Et+1

(∑10
j=1 πt+12j

)
. This implies that we have

one month of realised information available to us, so that we know the realised inflation

rate from month t to month t + 1, which we denote as Inf0t+1
17. Therefore, taking

expectations from month t+1 of the total future inflation rate over the next 10 years from

month t:

Et+1

 10∑
j=1

πt+12j

 = 10

(
1

12
Inf0t+1 +

11

12
InfTotal10t+1

)
(31)

16Annual excess returns means that this is the excess returns over the past 12 months
17This is an annual rate and is constructed as the year-on-year percentage change in the CPI level.
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We therefore express the news to the inflation rate as18:

B̃π,t+1 = Et+1

 10∑
j=1

πt+12j

− Et

 10∑
j=1

πt+12j

 (33)

4.5 Excess bond return news

Similarly to obtaining excess future stock return news above, we can use Equation 5 to

back out the excess future bond return news from unexpected bond returns, inflation and

real interest rate news. Instead of obtaining unexpected bond returns through assuming a

model for expected excess bond returns as we did for excess stock returns above, we utilise

the 1-year forecast of the 10-year T-bond yield from the BCEI forecast survey database.

Note that the forecast for the 10-year T-Bond is from a survey question that asks for a

constant-maturity Treasury yield expectation. As we proxy for the long-term bond using

the 10-year nominal zero coupon bond, to obtain the yield expectation implied by the

surveys for this bond, we first compute the expected change in the 10-year Treasury bond

yield and then add the expected change to the current 10-year zero coupon bond yield,

which we denote as TBond1t, that is the 1-year forecast of the nominal return on the

10-year zero-coupon T-Bond at month t. We can then express the expected excess bond

returns in one year as:

Et
(
eBt+12

)
= TBond1t − TBill1t (34)

where similarly to above TBill1t represents the 1-year forecast of the nominal return on

the 3-month T-Bills. Knowing the actual (realised) excess bond returns, we are able to

naturally back out the unexpected returns to the 10-year T-Bond through:

ẽBt+1 =
1

12
eBt+1 −

11

12
Et
(
eBt+12

)
(35)

where eBt+1 is the realised annual excess returns to the 10-year T-Bond in month t + 119.

Panel B of Figure 2 plots the forecast of excess bond returns versus the actual returns in

that month. The vertical distance between the forecast and the realised values makes up

18We also consider an alternative way to construct inflation rate news as:

B̃π,t+1 = Inf0t+1 +
9

10
InfTotal10t+1 − Inf1t −

9

10
InfTotal10t (32)

The correlation between these two measures is 0.995. We therefore don’t consider this measure going
forward.

19Similarly to that above, annual excess returns means the excess returns over the previous 12 months.
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the news. It is clear that the survey forecasts for bond returns is a much better predictor

than the model-implied forecasts for stock returns in our sample period. This should

theoretically imply that the risk premium to bonds should be somewhat lower that the

risk premium to stocks. Our particular interest is to study the role of the news of the risk

premiums in explaining the time variation of stock-bond volatility and covariance, as we

shall see in the next section.

5 Results

5.1 Realised second moments

Figure 1 plots the monthly realised second moments of stock and bond returns. Following

the approach of Schwert [1989] we construct these based on daily returns within a month. If

we denote rSi,t and rBi,t as the daily stock and bond returns on day i in month t respectively,

the realised variance of stock and bond returns are computed as the sum of squared daily

returns20:

σ2
S,t =

Nt∑
i=1

(rSi,t)
2, σ2

B,t =

Nt∑
i=1

(rBi,t)
2

where Nt is the number of daily returns in month t. The monthly realised covariance

between stock and bond returns is obtained from:

covt(S,B) =

Nt∑
i=1

rSi,tr
B
i,t

We note the inherent noise in the estimate of monthly variance from just 22 daily obser-

vations. Ideally we would employ a method similar to Bollerslev and Zhou [2006] which

uses higher-frequency intra-day data to estimate the variance. However intra-day data

over the time period that we require for both stocks and bonds is difficult to obtain. We

therefore continue to use daily returns to construct our variance and covariance measures.

Panel A of Figure 1 shows that the stock market was very volatile during the stock

market crash of 1987, during the Asian financial crisis, the Russian government’s debt de-

fault and the collapse of the hedge fund Long-Term Capital Management (LTCM) during

1997-1998, the bursting of the internet bubble in 2001 and during the more recent financial

20We do not subtract the sample mean from each daily return to compute monthly second moments as
this is a very minor adjustment.
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crisis in 2007-2009. In contrast looking at panel B the bond market has been relatively

more stable. The notable exceptions being the volatility around the stock market crash of

1987, between 1997-2001 and during the recent financial crisis.

Panel C of Figure 1 shows that the stock-bond covariance is large in magnitude around

increased stock and bond market volatility. Interestingly, before 1998 during periods of

increased volatility the covariance remained positive. It is only from 1998 until the end of

the sample period that we observe the covariance between stocks and bond becomes neg-

ative when financial turmoil occurs. Naturally the same pattern is observable from Panel

D for the correlation. It is clear that there is substantial time variation, with most of the

movement occurring around the periods of increased stock market volatility. This could

imply that before 1998, long-term bonds did not necessarily provide the diversification

that investors sought when shifting from stocks to bonds, but after 1998 the role of bonds

changed.

5.2 Descriptive statistics of news components

Figure 3 displays the time series of the news components constructed in section 4 and

highlights that the forecasting errors fall in a small range around zero. This is confirmed

by the mean values of the forecasting errors as shown by the descriptive statistics in Table

2, implying the use of well performing forecasts for the components.

[Figure 3 about here.]

Table 2 reports the correlation matrix of the return components estimated from the news

time series over the full sample. Several observations are apparent. First, shocks to

excess stock returns and to excess bond returns have a positive correlation of 0.43. The

convention that long-term assets tend to move together holds here, however we note that

Campbell and Ammer [1993] find this particular correlation to be above 0.80 in all of their

subsamples. They attribute this to the notion that similar variables are able to forecast

both stock and bond returns as shown by Fama and French [1993]. The lower correlation

in our sample period is possibly because the role and risk profile of bonds has changed to

those of hedging instruments for stock market risk as highlighted by Connolly et al. [2005]

and Campbell et al. [2009b] among others.

[Table 2 about here.]
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Second, we notice that future excess stock return news has a slight positive correlation of

0.10 with the news to long-horizon forecasts of the inflation rate. This means that when

investors learn that the long run-inflation will be higher than expected, they also tend

to learn that the stock risk premium (future excess stock returns) will be higher than

expected. Assuming that inflation risk is priced in the stock market (Chen et al. [1986]),

this increase in the stock risk premium could imply compensation for an investor who is

willing to bear inflation risk when holding stocks for the long-run. This observation is in

line with that by Campbell and Ammer [1993].

On the other hand, excess bond return news and inflation news are negatively corre-

lated, thus when investors learn that the long-run inflation will be higher than expected,

they learn that excess bond returns will be lower than expected. Since zero-coupon bonds

have fixed nominal payoffs, the capital loss from higher expected inflation will be offset

by the capital gains from the lower bond risk premium (expected excess bond returns).

This does not necessarily imply that bonds are contemporaneously able to hedge inflation

shocks since it depends on the magnitudes of these capital losses and gains 21.

Third, we also note that innovations to future excess stock and bond returns are strongly

negatively correlated to real short-term interest rate news. Lastly, similar to what Vuolteenaho

[2002] finds at a firm-level, we find that at the aggregate-level the correlation between cash

flow news and excess stock return news is positively correlated at 0.37. Such a result will

be useful when looking at which components drive aggregate-level stock returns.

We note that all the news time series appear to be stationary in our sample period.

Dickey-Fuller tests and augmented Dickey-Fuller tests with 5 lags reject the unit root hy-

pothesis at the 5% level or better. This suggests that stationary asymptotic distributions

are likely to approximate well the finite sample distributions of the coefficients and test

statistics for the regressions that we perform later.

Given the short sample period that we use for our study, we choose not to do a sub-

period analysis since we have no natural break point and do not wish to data mine our

21Indeed we find the contemporaneous correlation between the one-period inflation news and unexpected
(one-period) bond returns in our data is −0.10, indicating that bonds are not able to contemporaneously
hedge inflation shocks.
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results. Instead, we compare our findings with those who have performed similar studies

in different sample periods (Campbell and Ammer [1993]) and at different data frequencies

(Lan and Balduzzi [2011]).

5.3 Unconditional variance decompositions

Table 3 reports the (unconditional) variance decomposition for excess stock returns, excess

bond returns and the (unconditional) covariance decomposition between excess stock and

bond returns based on the unconditional expressions of Equations 7, 8 and 9. The table

reports the (co)variances of the different news components that make up the (co)variance

equations of excess stock and bond returns. These numbers are normalised by the (co)variance

of the return innovation itself, so that the numbers sum to one for each decomposition.

We also present the comparative results from Campbell and Ammer [1993] and Lan and

Balduzzi [2011] in the table.

[Table 3 about here.]

5.3.1 Variance decomposition for excess stock returns

Panel A reports that the variance of stock returns is mainly attributable to the variance

of future excess stock return news followed by the variance of future real cash flow news.

We also find that changing expected real interest rates contributes 23% to the variance

of stock returns in our sample period. Our results in a relative sense are similar to both

those of Campbell and Ammer [1993] and Lan and Balduzzi [2011] in that uncertainty of

excess stock returns followed by uncertainty of real cash flow account for a majority of

the total stock variance. The slight difference in magnitude of the coefficients is due to

the method in which we obtain excess stock return news. Since we back-out this news

proxy from the unexpected (one-period) stock returns less the real cash flow news and real

short term interest rate news, this may exaggerate the effect of excess stock return news

in explaining the stock market variance, as we can see from our coefficient of 1.44.

Campbell and Ammer [1993] state that the real interest rate news plays a relatively minor

role in explaining the variance of stock returns as even though there is time variation in

the ex-ante real short-term interest rate, any changes are largely transitory and thus do

not cumulate over time. Therefore in their sample period the expected real interest rate
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is precisely measured with the variance of the real interest rate news being small. This is

surprising given the inflationary environment during their sample period being high and

uncertain. Unless the uncertainty of the long-run expected nominal interest rate was offset

by the uncertainty of the long-run expected inflation rate in their sample period, we find

their result somewhat puzzling. Such a result could be due to the use of a VAR model to

generate their expectations.

Although we can also claim that the real interest rate news plays a relatively small role,

examining Panel B of Figure 3 we see that the variation in real interest rate news is

somewhat large. This is especially true at the beginning of our sample period when the

Federal Reserve changed their operating procedures within the money markets leading

to increased uncertainty about nominal interest rates and the inflation rate, the latter of

which can be seen from Panel D of Figure 3.

We note that the variance terms of the decomposition sum to greater than 1, this is

accommodated by the negative covariance terms of the decomposition. Intuitively, this

indicates to us that the covariance terms, which are often overlooked, do have a role to

play in explaining the variance of stock returns. We investigate this further when we

perform the conditional variance decompositions.

5.3.2 Variance decomposition for excess bond returns

The variance decomposition of bond returns in Panel B of Table 3 highlights the impor-

tance of changing future excess bond returns on the variance of bond returns, accounting

for 94%. Changing future real interest rates attribute 29% while the variance of inflation

news has a lesser role to play with it accounting for 12% of the variance in bond returns.

The large role that the real interest rate news seems to have does not increase the overall

variance of bond returns because the real interest rate news is negatively correlated to both

excess bond return news and inflation news, the covariance terms of which thus reduce

the variance of bond returns. Also as we saw above, the correlation between excess bond

return news and inflation news is negative, the covariance between these components thus

also having the effect of reducing the bond return variance because the capital loss from

higher expected inflation is partly offset by a capital gain from lower expected excess bond

returns.
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These results are similar to those of Lan and Balduzzi [2011] but differ with respect to

the role of inflation news and real interest rate news when comparing with Campbell and

Ammer [1993]. The former difference is because our sample period is from 1984 to 2009

when the inflation rate is relatively stable whereas Campbell and Ammer [1993] study a

period between 1952 and 1987 when inflation was known to be high and uncertain. This

would have naturally magnified the role of inflation news on the variance of bond returns

in their results. As for the real interest rate news, its increased importance in our sample

period could be due to the expected long-run real interest rate having a persistent effect

on changes to bond returns and thus on the volatility of bond returns.

5.3.3 Covariance decomposition for excess stock and bond returns

From Panel C of Table 3 we report the covariance of unexpected stock returns with each of

the decomposed components of unexpected bond returns and vice versa. We find that the

covariance between stock and bond returns is determined by the interaction between sev-

eral offsetting forces. Looking first at how unexpected stock returns and the components

of unexpected bond returns affect the stock-bond covariance, we find that the covariation

between unexpected stock returns and inflation news mildly drives stock and bond returns

in opposite directions, contrary to the results of Campbell and Ammer [1993]. We again

note however the difference of the inflationary environments in the sample periods that our

studies are performed over. This mildly negative effect is offset by a dominant positive

covariance between unexpected stock returns and changing future excess bond returns,

driving stocks and bonds in the same direction. As for the covariance between unexpected

stock returns and real interest rate news, this reduces the covariance of stock and bond

returns.

As for how unexpected bond returns and the components of unexpected stock returns

affect the stock-bond covariance, we find that the coefficients are are similar in magnitude

but of an opposite sign to those of Campbell and Ammer [1993]. This naturally implies

to us that the role of bonds have changed since the period of 1952 to 1987. Such a finding

supports the notion of the changing risks of nominal bonds as investigated by Campbell

et al. [2009b].
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Panel D from Table 3 reports the role of covariances between respective stock and bond

news components on stock-bond covariance. Such a decomposition is more revealing since

we can directly examine the contemporaneous effect of the covariance between the news

components on stock-bond covariance. Interestingly, Campbell et al. [2009b] motivate in

their work that the covariance between real and inflation rate shocks is the cause of the

negative correlation between stock and bond returns. Our results support this statement

with both the covariance of future real cash flow shocks and future real interest rate inno-

vations with inflation shocks being negative and significant, implying that the dynamics

between these shocks push stocks and bonds in the opposite direction. We also find that

the covariance between real interest rate shocks and excess future stock and bond return

shocks play a similar role. We note that Barsky [1989] highlighted the importance of the

real short-term interest rate for stock-bond correlation. Contrary to Campbell and Ammer

[1993] we find that real interest rate changes are important for the co-movement of stock

and bond prices.

The negative covariance causing forces are offset by three large positive forces causing

stocks and bonds to move in the same direction: the covariance between real interest rate

shocks on stocks and bonds, the covariance between excess stock return news and inflation

news and lastly the covariance between shocks on excess stock and bonds. Although there

are fewer of these positive forces, they are generally larger in magnitude and thus cause

stocks and bond to move in the same direction with more force than those forces that

work to decouple the stock and bond markets.

5.4 Conditional (co)variance regressions

In order to get a sense of the contemporaneous role that the news components have in

explaining the time variation of the second moments of stock and bond returns according to

Equations 7, 8 and 9, we use the Dynamic Conditional Correlation (DCC) model of Engle

[2002] to compute the conditional (co)variances of the news components. It is estimated in

two-stages: The first to estimate the variance of the residual for each news component using

a univariate GARCH specification. The second to estimate the parameters of the time-

varying correlation matrix22. We now look to the explanatory power of these conditional

second moments of the decomposed news components in explaining the time variation of

22For more details on the estimation, refer to Appendix C.
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realised stock and bond return variance and covariance respectively.

5.4.1 Variance of excess stock returns

We regress realised stock market variance on the conditional stock variance news com-

ponents as specified by Equation 7. Theoretically the coefficients on these components

should all be 1. To compare the importance of the uncertainty in real cash flow, real inter-

est rates and excess stock returns on stock market variance, we run univariate regressions

on each of the conditional variance components as well as multivariate regressions with

all the components from Equation 7. Table 4 reports that uncertainty in real cash flow

explains up to 10% of the time variation in stock market volatility, with a 1% increase in

the volatility of real cash flow news leading to an approximate increase of 1.5% in stock

market volatility. The coefficient is significant at the 5% level. We also find that the

uncertainty in future excess returns is able to explain up to 4% in stock market variance.

The increase in stock volatility from a 1% increase in the volatility of future excess returns

is approximately 0.8%, with the coefficient again highly significant. In both cases the

coefficients are different from the theoretical value of 1. Lastly, uncertainty of the real

interest rate seems not to have any explanatory power in a univariate context.

[Table 4 about here.]

As for the multivariate regressions, we find that the significance of uncertainty in future

excess stock returns is driven out by the uncertainty in real cash flow. The variability

of the real interest rate news seems to again have not much of an economic or statisti-

cal significance. Regressions 8 and 9 report the estimated coefficients of the regressions of

realised stock variance on all the 6 (co)variance components. Since some of these 6 compo-

nents are highly correlated and may cause collinearity problems when used as regressands.

In regression 9 we thus use as regressands the 3 conditional variance components and or-

thogonalized conditional covariance components. Specifically, we project the 3 conditional

covariance components on the 3 conditional variance components and use the residuals as

orthogonalized conditional covariance components to run in the regressions.

Uncertainty of real cash flow remains consistently significant in all the regressions, with

the coefficients always being positive and greater than the theoretical value of 1. This

highlights the role, both economically and statistically that uncertainty in real cash flow
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has on stock market variance. This comes at no surprise given the cash flow surprises that

we observed during the 2007-2009 financial crisis and the increased stock market volatility

during this period. David and Veronesi [2008] among others have established the impor-

tant of real cash flow news in explaining and forecasting the variance of stock returns

and thus its importance within stock pricing models. Indeed, the work by Bansal et al.

[2006] and Hansen et al. [2008] has shown that in the long-run cash flow news entirely

explains changes in stock prices23. Our empirical results are in line with these conclusions.

From regression 9 we notice that the covariance between cash flow news and future excess

stock return news plays a significant economic and statistical role in explaining the varia-

tion in stock market variance. Indeed the R2 increases by 14% between regression 7 and 9

when we add the covariance terms to the multivariate regressions. Baele et al. [2010] find

that non-macroeconomic factors play a much more significant role than macroeconomic

factors when explaining the variation in stock variance. Comparing the results from Tables

?? and 4 we see that this is not necessarily the case. We show that real cash flow news,

future excess stock return news and the covariance between the two play an important

role in explaining stock market variance. An innovation of our work is highlighting the

significance of the covariance terms. We believe that future asset pricing models should

therefore include the dynamics of these covariance terms in order to capture the empirical

observation of time varying stock volatility.

5.4.2 Variance of excess bond returns

Table 5 reports the results of the regressions of realised bond variance on the conditional

(co)variance of the news components in Equation 8. Theoretically the coefficients on

these components should all be 1. We immediately notice from regressions 1 and 3 that

uncertainty in the long-run inflation rate and future excess bond returns effect the variance

of bond returns both economically and statistically, although the latter seems to explain

more of the time variation than the former with a difference in R2 of 6%. As for their

coefficients, for the variance of inflation news it is greater than the theoretical value of 1,

implying that a small fluctuation of inflation news has the ability to explain large variation

in bond variance. The opposite is observed for excess bond return news, its coefficient

23Also, the importance of cash flow news for stock returns at both the firm and aggregate level has been
well established in the literature (Vuolteenaho [2002] and Chen and Zhao [2009]).

28



being 0.53. Similarly for stock variance, uncertainty of the long-run real interest rate is

not significant in a univariate context.

[Table 5 about here.]

The multivariate regressions 4 to 7 show that uncertainty of future excess bond returns

and long-run inflation news continue to have significant explanatory power. We note the

increased significance of real interest rate news in the multivariate context which is to be

expected given the modest negative correlation of real interest news with both inflation

and excess return news. In regressions 8 we include all the covariance terms of Equation 8.

Due to the issue of collinearity all the coefficients are large and significant. In regression

9 we therefore correct for the collinearity of the last 3 regressands by projecting the 3

conditional covariance components on 3 conditional variance components to obtain the

residuals and use these as the orthogonalized conditional covariance components.

Regression 9 reports some interesting results. The variance of inflation news is no longer

statistically significant, its economic influence also being reduced. The regression brings

out the importance of the uncertainty of the real interest rate for the variation in bond

variance. A 1% increase in the volatility of the real interest rate news seems to decrease the

volatility of bond returns by 0.9%. The importance of excess bond return news remains

significant in all of the regressions. Comparing regressions 8 and 9 we can see reducing

the collinearity helps to identify the true economic scale of the news component on ex-

plaining the magnitude of the variance of bond returns. Also adding the covariance terms

to the regression increases the R2 to a relatively large 16%, highlighting the important

role that these terms play theoretically in explaining the time variation in bond variance.

Indeed, Campbell et al. [2009b] find that the covariance between real and inflation shocks

is important in explaining the change in risk premia of nominal bonds. From regression

9 we empirically find that this component is significant both economically and statistically.

Lastly, both David and Veronesi [2008] and Baele et al. [2010] find that economic fac-

tor models have a harder time explaining bond volatility than stock volatility, our results

show that this is indeed the case. We are able to explain up to 21% of the time variation

in stock variance but only 16% of the variation in bond variance.
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5.4.3 Covariance of excess stock and bond returns

Table 6 reports the results of the regressions of realised stock-bond covariance on the con-

ditional covariance of the news components from Equation 9. Theoretically the coefficients

on these components should be equal to 1. From the univariate regressions 4 covariance

components display both economic and statistical significance: The covariance between

real cash flow news and inflation news; the covariance between real cash flow news and

excess bond return news; the covariance between excess stock return news and inflation

news; and the covariance between excess stock and bond return news. These results are in

line with the findings from the covariance decompositions above, with the exception of the

role of the covariance components that involve the real interest rate news. Besides this,

the covariance components involving real cash flow news, inflation news and risk premium

news all seem to play a significant role contemporaneously for the variation in stock-bond

covariance.

[Table 6 about here.]

For the multivariate case, regression 7 shows that only three of the covariance components

remain significant for the variation in stock-bond covariance. The first being the covariance

between real cash flow news and inflation news. This component has consistently been

significant within the unconditional decompositions and now the conditional regressions.

Its coefficient is close to its theoretical value of 1. David and Veronesi [2008] find that a

positive correlation between earnings and inflation is able to explain negative stock-bond

correlation. Our results confirm this since we find a positive correlation between earnings

and inflation news from Table 2. The coefficient of 1.19 on the covariance between real

earnings and inflation news implies that the component contemporaneously plays an im-

portant role in decreasing the stock-bond correlation24, thus driving stocks and bond in

the opposite direction.

The second component, which becomes significant in the multivariate regressions after

displaying little explanatory power in the univariate regressions is the covariance between

real interest rate news and inflation news. This component must capture some variation

in the stock-bond covariance that the others do not. The coefficient is 5.46 implying that

24This is because we use the term −cov(S̃CF , B̃π) in the regressions. Thus a coefficient of 1.19 implies
−1.19cov(S̃CF , B̃π) which naturally means it reduces the value of the dependent variable covt(S,B) when
the covariance between the real cash flow news and inflation news is positive.
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a small covariation between the news components is able to explain a large variation in

the stock-bond covariance. The last component that remains significant is the covariance

between excess stock return news and inflation news. Unconditionally these news com-

ponents have a positive correlation and its covariance seems to increase the correlation

between stock and bond returns. The coefficient is again larger than the theoretically

value of 1. These three components are able to explain up to 22% of the monthly varia-

tion stock-bond covariance.

As previously mentioned, Campbell et al. [2009b] find that the covariance between real

and inflation shocks are able to explain the negative correlation between stock and bond

returns. The conditional regressions reported in Table 6 have shown that the covari-

ance components important for explaining the time variation in stock-bond covariance

involve those between real and inflation variables. However, the only covariance term

that demonstrates that it is able to cause the stock-bond covariance to become negative

is the covariance between real cash flow news and the long-run inflation news. Theoret-

ically from Equation 9 this what it should do and we empirically demonstrate that this

is indeed the case. This leaves some scope for the role of “flight-to-safety” and “flight-to-

liquidity” when trying to explain the occurrence of negative covariance. Comparing Tables

?? and 6 we find contrary to Baele et al. [2010] that uncertainty of our macroeconomic

factors are able to explain more of the time variation in stock-bond covariance than the

non-macroeconomic factors that we use.

5.4.4 Robustness check

We use the Dynamic Conditional Correlation (DCC) model of Engle [2002] to compute the

conditional variance and covariance of the news components for use within the regressions

to investigate the role of these news components in explaining the time variation in the

second moments of stock and bond returns. We found significant results that we were

able to link to both theoretical and empirical papers on stock-bond correlation. In order

to check that these results were not simply an artifact of the DCC model we were using,

here we compute the conditional variance and covariance of the news components using

the Exponentially Weighted Moving Average (EWMA) (co)variance model25. In a similar

fashion to that above, we then regress the realised second moments of stock and bond

25For further details of the model and our estimation methodology, see Appendix C.
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returns on the conditional variances and covariances of the news components. We report

the results for the stock-bond covariance regression in Table 7 below.

[Table 7 about here.]

Comparing the significance of the coefficients, both the economic and statistic, with those

in Table 6 where we use the DCC model, we see that the results are fairly similar. Al-

though the R2 are slightly larger, we are encouraged that the same coefficients that were

significant when using the DCC model are also significant when using another conditional

covariance model. This robustness check supports are results of the role of macroeconomic

components being able to explain the time variation in the second moments of stock and

bond returns.

6 Conclusion

In this paper we conduct an empirical investigation into the time variation of the second

moments of stock and bond returns. Using a Campbell and Shiller [1988] decomposition

we are naturally able to identify and investigate the economic mechanisms on the variation

of stock-bond correlation. Our first innovation to the literature is the use of survey forecast

data on these economic components to back out a time series of unexpected values (news)

for these components. Our second innovation is the use of conditional volatility models to

generate (co)variance time series for the news of the economic components. This allows us

to perform regressions of realised second moments on the (co)variances of the decomposed

economic news components in order to investigate the role of the economic components in

explaining the time variation in the volatility and correlation of stock and bond returns,

this being our third innovation.

Conducting an unconditional variance decomposition, we find somewhat similar results

to those of Campbell and Ammer [1993] and Lan and Balduzzi [2011]. A large part of

the variance of excess stock returns is attributed to changing expectations of future excess

stock returns following by changing expectations of future real cash flow. As for the vari-

ance of excess bond returns, it seems that changing future excess bond returns dominate

the other components. An important finding that is different from the current literature

is the role of the covariance terms in the decompositions. For both excess stock and bond

returns, certain covariance components are important contributors for the volatility of
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returns. As for the covariance, the decomposition reveals that it is determined by the

interaction between several offsetting forces. Importantly, our findings agree with the

observation by Campbell et al. [2009b] in that the covariance between real and inflation

shocks lead to decreases in the stock-bond covariance.

Complementary to the unconditional decompositions we find that uncertainty of real cash

flow, uncertainty of excess stock returns and the covariance between real cash flow news

and excess stock return news are all significant for explaining the time variation of stock

return variance. Our findings add to the literature that cash flow news obtained from

survey forecasts are informative for stock pricing(Pástor et al. [2008]). Variation in bond

returns can be explained by uncertainty of the future excess bond returns and the future

real short-term interest rate. Another important finding is that the covariance terms also

have a significant role in explaining the variation in bond returns. As for the variation

in stock-bond covariance, we report that the covariance of cash flow news and inflation

news is important for contributing to the occurrence of a negative correlation between

stocks and bonds. We also empirically document Campbell et al. [2009b] findings of the

importance of real and inflation shocks for stock-bond covariance. We note that we are

among the first to demonstrate the informational content of survey forecasts for stock-

bond correlation.

The caveats of our work are two fold. The first being the lack of longer range forecasts

for the economic components. Since the decompositions of the long-term assets require

expected values of the components over a number of horizons, we therefore have to impose

a model in order to generate the longer-horizon forecasts. Although every effort was taken

to ensure the model would only complement the forecast data that we did have from the

surveys, the possibility of measurement error from using such a model therefore exists26.

The second being the use of a conditional volatility model to generate the time varying

(co)variances of the news components. Since higher frequency (i.e. daily) forecasts and

actual values for the economic components do not exist, we are unable to generate realised

news time series from which we can construct realised monthly (co)variances of the news

26We attempt to address this concern by regressing the realised second moments of stock and bond
returns on (co)variances of the one-period news time series, i.e. generated from the realised value less the
forecasted value without use of a model to extend the forecast horizon. We still find that the (co)variances
of the news time series are able to explain a portion of the variation in stock-bond second moment. These
results are available from the author on request.
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components. Thus, use of a conditional volatility model to generate the (co)variance time

series is as good as we can achieve27.

Contrary to Baele et al. [2010] we show that macroeconomic factors are able to explain

time variation in the second moments of stock and bond returns. We note that economic

models are only as good as the factors that are used in the models. Our factors are theo-

retically motivated and seem to do well at explaining some portion of the time variation

in the second moments of stock and bond returns, although not all of it. Indeed we be-

lieve the phenomena of flight-to-quality and flight-to-liquidity in our sample period would

have hampered the effectiveness of our news components in explaining changing stock and

bond prices. One way to extend the research in order to proxy for this dynamic would

be a time series measure of the cross-sectional dispersion of the analysts’ forecasts for the

economic components. The additional explanatory power that such a measure would have

in the regressions we have performed would be very interesting, especially for the periods

of negative correlation. Also, given the inherent noise in our estimation of the realised

volatility and correlation of stock and bond returns, we suggest the use of intra-day data

in order to obtain a more accurate monthly estimate of the second moments. We leave all

this as a suggestion for future work.

27Again, we attempted to address this concern by performing robustness checks of using a different form
of conditional volatility model. We found that our results were still present in this case.
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7 Appendix A: Theoretical return expressions

Surprises in stock returns

Using the well-known identity expression of stock returns:

RSt+1 =
Pt+1 +Dt+1

Pt

where RSt+1 is the holding period return for stocks from period t to t+ 1, Pt+1 is the price

and Dt+1 is the dividend paid, all at time t+ 1. Rearranging the equation above, taking

logs and then log-linearizing we can approximately write the continuously compounded

returns as:

rSt+1 ≈ k + ρ (pt+1 − dt+1) + (dt+1 − dt)− (pt − dt)

≈ k + ρ (pt+1 − dt+1) + ∆dt+1 − (pt − dt)

where lowercase letters refer to logs, k is a constant of linearization, ρ is a discount

factor which is slightly below 1 and ∆ represents a one-period backward difference. Log-

linearization is a type of series expansion where the log of the sum is approximately a

weighted average of the log of the components of the sum. The approximation is good if

we assume that the log dividend-price ratio does not follow an explosive process so that we

can impose the terminal condition limj→∞ ρ
j (pt+j − dt+j) = 0. Rearranging the equation

in terms of (pt − dt) to solve the equation forward and taking expectations at time t we

obtain:

pt − dt ≈
k

1− ρ
+ Et

∞∑
j=1

ρj−1
(
∆dt+j − rSt+j

)
Note that Et denotes the expectation formed at the end of period t conditional on the

information set that includes the history of stock prices and dividends up to period t.

We get returns from price changes or dividends. Using equation 7 we can therefore relate

changes in returns to changes in rational expectations of future dividend growth and future

stock returns. Ignoring the constant, thus treating the variables as deviations from the

mean, we can define in general the unexpected return as:

rt+1 − Et[rt+1] = Et+1[pt+1]− Et[pt+1]
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This is simply just taking expectations with respect to the information set in the previous

period so as to obtain the one-step ahead predictor of prices. Plugging in equation 7 into

equation 7 we obtain:

rSt+1 − Et[rSt+1] = (Et+1 − Et)

 ∞∑
j=1

ρj−1∆dt+j −
∞∑
j=2

ρj−1rSt+j


Decomposing stock returns into excess stock returns and the short-term interest rate we

can write:

rSt+1 = eSt+1 + rt+1

where eSt+1 is the log real excess stock returns and rt+1 is the log real short term interest

rate. Combining with equation 7 leads to:

eSt+1 − Et[eSt+1] = (Et+1 − Et)

 ∞∑
j=1

ρj−1∆dt+j −
∞∑
j=1

ρj−1rt+j −
∞∑
j=2

ρj−1eSt+j


Surprises in Bond Returns

Defining the log price of an nominal N-period zero-coupon bond at time t as p
(N)
t , in a

similar spirit to that above, the log holding period return on such a bond, which is held

from t to t+ 1 can be written as:

r
(N)
t+1 = p

(N−1)
t+1 − p(N)

t

This can be thought as a difference equation in the log bond price. Solving this equation

forward to the maturity date of the bond, where at maturity the bond price is at par

(which we set equal to 1 so that the log of the price is zero, i.e. p
(0)
t+N = 0), we obtain:

p
(N)
t = −

[
r

(N)
t+1 + r

(N−1)
t+2 +· · ·+ r

(1)
t+N

]
= −

N∑
j=1

r
(N+1−j)
t+j

This equation holds ex-post but can also hold ex-ante. Taking expectations at time t:

p
(N)
t = −Et

N∑
j=1

r
(N+1−j)
t+j
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where we obtain an expression that states that the log price of an N-period zero-coupon

bond at time t is a sum of the expected future returns. Substituting this into equation 7

we can write:

r
(N)
t+1 − Et[r

(N)
t+1 ] = −

N∑
j=2

(Et+1 − Et)r
(N+1−j)
t+j

This equation states that as the nominal returns to a zero-coupon bond are known over

the life of the bond, any unexpected nominal return gains that we see today must be offset

by decreases in expected future nominal returns, and vice versa. As we shall be comparing

the returns on stocks to those on bonds, we need to work with real returns. As above, we

further decompose bond returns into excess bond returns and a short-term interest rate

since it will be more useful for our purposes. We therefore write:

eBt+1 = r
(N)
t+1 − πt+1 − rt+1

where πt+1 is the inflation rate at time t+ 1 and as above, rt+1 is the log real short term

interest rate. Substituting this into equation 7 we obtain:

eBt+1 − Et[eBt+1] = (Et+1 − Et)

− N∑
j=1

πt+j −
N∑
j=1

rt+j −
N∑
j=2

eBt+j



8 Appendix B: Data construction

Our data runs from July 1984 to December 2009 since this is the period in which we have

forecast data from the BlueChip Economic Indicators (BCEI) database. As one of the

innovations to the literature, we use a monthly frequency in the paper, whilst most other

empirical work studying stock-bond correlation use quarterly data.

Stock data

Stock market index: We use the CRSP value-weighted market index comprising of the

stocks traded in the NYSE, AMEX and NASDAQ as the market portfolio. Excess returns

are defined as returns over the past 12 months less the rolling 3-month Treasury Bill yield

over the same holding period.
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Earnings: These are from the National Income and Product Account (NIPA) tables (Table

1.12, line 13). We use corporate earnings before-tax with IVA and CCadj. This data is

quarterly so to construct monthly earnings data we use a linear interpolation scheme.

Bond data

Bond market index: We use the monthly 10-year zero-coupon bond yield from the daily

off-the-run Treasury yield curves constructed by Gurkaynak et al. [2007] which is available

from the Fed webpage. If we let e
(n)
t+1 denote the continuously compounded log excess

return on an n year discount bond in period t + 1. Bond excess returns are then defined

as e
(n)
t+1 ≡ r

(n)
t+1 − y

(1)
t , where r

(n)
t+1 is the log holding period return from buying an n year

bond at time t and selling it at t + 1 as an n − 1 year bond. y
(1)
t is the log yield on a

rolling 3-month Treasury bill held for one year.

Cochrane and Piazzesi [2005] factor: Following their procedure, we construct 1 through

5 year forward rates from the nominal bond yields, as well as 2 through 5 year excess

returns. We then regress the average of the 2 through 5 year excess return on a constant,

on the one year yield and the 2 through 5 year forward rates. The CP factor is then the

fitted value of this regression.

Empirical proxies for decomposed components

The BlueChip Economic Indicators (BCEI) database provides survey forecasts on an in-

dividual level of various macroeconomic variables. Two kinds of monthly forecasts are

obtained from participants, one for the current calendar year and one for the next calen-

dar year. For instance, in January 2009, participants provide a 12-month forecast for the

value of the macro-variable at the end of the current year 2009, and a 24-month forecast

for the variable at the end of the next calendar year 2010. Thus, for February 2009, the

forecast horizon for 2009 is now only 11 months while for 2010 it is 23 months, and so on.

In order to obtain a constant and consistent time-series of expected values, the forecast

for the current year and the next year are weighted together to create a rolling constant

horizon 12-month forecast:

Et→t+12 =
m

12
Et,C +

12−m
12

Et,N
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where Et→t+12 denotes the 12-month forecast/expectation of the variable at time t, Et,C

and Et,N are the respective expectations of the variable for the current and next year at

time t and m is the number of remaining months during the current year. For each year

being forecasted, 24 forecasts with horizons varying from 1 month to 24 months are made.

The constant horizon forecast that we extract from the data therefore displays seasonality.

To mitigate this problem of seasonality, we adjust the series with a X-12 ARIMA filter28.

9 Appendix C: Conditional (co)variance models

Dynamic Conditional Correlation (DCC) model

The Dynamic Conditional Correlation (DCC) model proposed by Engle [2002] is a gener-

alisation of the Constant Conditional Correlation (CCC) model by Bollerslev [1990]. It is

thus a simplified multivariate Generalised AutoRegressive Conditional Heteroskedasticity

(GARCH) model which has the flexibility of a univariate GARCH model together with a

parsimonious correlation specification without having the traditional computational diffi-

culties associated with multivariate GARCH models.

Assuming a random variable xt as an n-dimensional multivariate normal process with

zero mean and variance-covariance matrix Ht, we write:

xt | Ft−1 ∼ N (0, Ht)

We can also write this in terms of a “mean equation”:

xt ≡
√
Htεt

where εt ∼ N (0, 1) which are the standardised normal distributed disturbances. We

express the variance-covariance matrix as:

Ht = Et−1(xtx
′
t) = DtRtDt

28See http://www.census.gov/srd/www/x12a/ for more details.
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where Dt = diag(
√
Ht) whose diagonal elements are the time-varying standard deviation

of the residuals of the mean equation for each of the n processes which we assume all

respectively follow a GARCH(1,1) model:

Ht,ii = Et−1(x2
t ) = ωi + αix

2
i,t−1 + βiHt−1,ii

After estimating this model to obtain the conditional variance for each process, the stan-

dardised residuals are then defined by:

εt = D−1
t yt

In contrast to the CCC model the correlation matrix Rt = Et−1(εtε
′
t) is now allowed to be

time-dependent. Thus a quasi-correlation matrix for the standardised residuals is proposed

as a stochastic process for a matrix Q that is an approximation to the correlation matrix.

We use a mean-reverting model for the correlation process analogous to the GARCH(1,1)

process:

Qt = R̄+ α(εt−1ε
′
t−1 − R̄) + β(Qt−1 − R̄)

where R̄ ≡ 1
T ΣT

t=1εtε
′
t is the unconditional correlation of the standardised residuals. Thus,

the conditional correlation depends on the common GARCH parameters α and β and

on the unconditional correlation between the standardised residuals. The matrix Q is

guaranteed to be positive definite if α, β and (1 − α − β) are all positive and if the

initial value, Q1 is positive definite. This is because each subsequent value of Q is a

weighted average of positive semi-definite and positive-definite matrices, and thus it is

positive-definite. This produces a process for the matrix Q that delivers a positive-definite

quasi-correlation matrix for each time period. It does not ensure however that this is a

conventional correlation matrix. Thus to convert these Q processes into correlations, it is

rescaled according to:

Rt =
√
diag(Qt)Qt

√
diag(Qt)

In order to estimate the variance and correlation parameters, a Maximum Likelihood

Estimation (MLE) method can be employed. Such a technique uses trial and error to

determine the optimal parameter value that maximises the likelihood of the data to occur
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for the particular model. We can write the log-likelihood for the data set {x1...xT } as:

L = −1

2

T∑
t=1

(
n log(2π) + log|DtRtDt|+ x

′
tD
−1
t R−1

t D−1
t xt

)
= −1

2

T∑
t=1

(
n log(2π) + 2 log|Dt|+ log|Rt|+ ε

′
tR
−1
t εt

)
= −1

2

T∑
t=1

(
n log(2π) + 2 log|Dt|+ x

′
tD

2
t x

′
t − ε

′
tεt + log|Rt|+ ε

′
tR
−1
t εt

)

As outlined in Engle [2009], the log-likelihood can simply be maximised with respect to all

the parameters in the model. However the log-likelihood can also be decomposed into two

parts. The first containing the variance parameters and the data; the second containing

the correlation parameters and the standardised residuals:

L = Lvol + Lcorr

Lvol = −1

2

T∑
t=1

(
n log(2π) + 2 log|Dt|+ x

′
tD
−2
t xt

)
Lcorr = −1

2

T∑
t=1

(
log|Rt|+ ε

′
tR
−1
t εx − ε

′
tεr

)

This can then be estimated using a two-step procedure. The first-step is to maximise the

variance part of the likelihood function, Lvol, by computing the univariate GARCH models

for each of the series and taking the sum of these likelihood functions. The second-step is

to then take the standardised residuals from the first-step and maximise the correlation

log-likelihood function, Lcorr, with respect to the correlation parameters. The term ε
′
tεt

can be ignored as it does not depend on the parameters being optimised.

Exponentially Weighted Moving Average (EWMA) model

An Exponentially Weighted Moving Average (EWMA) model can also be used for the

conditional variance-covariance matrix. Assuming the same distribution as above for the
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random variable x ∼ N (0, Ht), we define the EWMA variance-covariance model as:

Ht = λHt−1 + (1− λ)xt−1x
′
t−1

λ > 0

where λ is the weight assigned to the lagged variance-covariance matrix; it is also known as

a decay rate since the weight assigned to the x2 terms decline exponentially as one moves

back through time. Note that the same value of λ should be used for both the variance

and covariance series in order to ensure consistency of the combined variance-covariance

matrix. We similarly estimate λ using the MLE technique. The log-likelihood can thus

similarly be written as:

L = −1

2

T∑
t=1

(
n log(2π) + log|Ht|+ x

′
tH
−1
t xt

)

In the usual fashion as above, we determine the value of λ using an iterative procedure to

maximize this log-likelihood.
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Figure 1: Panel A plots the monthly time series of realised volatility of stock and bond
returns, computed as the annualised standard deviation of daily returns within the month.
Panels B and C plot the realised covariance and correlation between stock and bond
returns, also computed from daily data within the month. All plots are overlaid with
NBER recession bands. Stock returns are based on the value-weighted return index of
stocks traded in the NYSE, AMEX and Nasdaq markets from the Centre for Research in
Security Prices (CRSP). Bond returns are based on the US 10-year Treasury bond yields
obtained from daily off-the-run Treasury yield curves constructed by Gurkaynak et al.
[2007].
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Figure 2: Plots of the forecasted versus the realised excess stock and bond returns
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Figure 3: Time series plots of the news components from the Campbell-Shiller decompo-
sition.
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Table 1: Forecasts of excess stock returns

All variables are in percentage points and the coefficients are estimated using OLS based
on data from June 1984 to November 2009 (306 observations). We do not present the
estimated regression intercept α. Returns are based on overlapping monthly observations
of annual returns. The dividend price ratio, d/p, is based on the return with and without
dividends for the preceding year. Term spread, y(5) − y(1), is the yield on the 5-year zero-
coupon bond above the yield on the 1-year zero-coupon bond. The CP-factor, γT f , is
constructed from from a linear combination of forward rates. Note that the standard errors
are corrected for overlapping observations and heteroskedasticity by GMM. The critical
value of the t-statistic at which we reject the null hypothesis of β = 0 at significance level
of 5% is |t| > 1.96.

Regression d/p (t-stat) y(5) − y(1) (t-stat) γT f (t-stat) R2

1 4.88 (1.81) 0.07
2 3.20 (1.04) 0.02
3 2.16 (1.63) 0.05
4 4.56 (1.73) 2.24 (0.76) 0.08
5 -0.44 (-0.11) 2.30 (1.30) 0.05
6 3.78 (1.16) 1.14 (0.74) 0.07
7 4.02 (1.17) 1.21 (0.27) 0.72 (0.31) 0.08
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Table 2: Descriptive statistics of the news components

Descriptive statistics of the news time series based on the Campbell-Shiller decomposi-
tion. Panel A shows the sample mean and standard deviation of each of the news series
respectively. Panel B gives the correlation between the news series and panel C presents
the first 5 lags in the autocorrelation of the news time series.

S̃CF S̃r & B̃r S̃e B̃π B̃e

Panel A: Mean & Std Dev
Mean −0.002 0.007 −0.010 −0.003 −0.007
Std Dev 0.026 0.022 0.062 0.017 0.019

Panel B: Correlation

S̃CF 1.000 0.046 0.374 0.061 0.055

S̃r & B̃r 1.000 −0.396 −0.548 −0.627

S̃e 1.000 0.104 0.430

B̃π 1.000 −0.212

B̃e 1.000

Panel C: Autocorrelation
Lags
1 0.784 0.255 0.245 0.307 0.266
2 0.731 0.292 0.121 0.190 0.223
3 0.648 0.295 0.098 0.217 0.239
4 0.578 0.250 0.107 0.184 0.168
5 0.547 0.317 0.074 0.088 0.187
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