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ABSTRACT
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weak momentum patterns at the daily frequency. In fact, significant reversal effects are documented at
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of maximizing efficiency and minimizing the bias and the ex-post portfolio turnover.
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1. Introduction

Financial markets historically exhibit strong momentum patterns. Until recently, the “cross-sectional mo-

mentum” effect in equity markets (Jegadeesh and Titman 1993, Jegadeesh and Titman 2001) and in futures

markets (Pirrong 2005, Miffre and Rallis 2007) has received most of the academic interest. Moskowitz,

Ooi and Pedersen (2011) offer the first concrete piece of empirical evidence on “time-series momentum”,

using a broad daily dataset of futures contracts. Time-series momentum refers to the trading strategy that

results from the aggregation of a number of univariate momentum strategies on a volatility-adjusted basis.

The univariate time-series momentum strategy relies heavily on the serial correlation/predictability of the

asset’s return series, in contrast to the cross-sectional momentum strategy, which is constructed as a long-

short zero-cost portfolio of securities with the best and worst relative performance during the lookback

period1. The purpose of this paper is to explore the profitability of time-series momentum strategies for a

broad grid of lookback periods, holding horizons and frequencies of portfolio rebalancing, using a novel

dataset of intra-day quotes of 12 futures contracts for the period between November 1999 and October

2009. Furthermore, we investigate the mechanics of the time-series momentum strategy and in particular

focus (a) on the momentum trading signals and (b) on the volatility estimation that is crucial for the ag-

gregation of the individual strategies. The choice between various available methodologies for these two

components of the strategy heavily affects the ex-post momentum profitability and portfolio turnover and

is therefore very important for a momentum investor.

Following the above, the aim of this paper is to address the following research topics. First, we

focus on the information content of traditional momentum trading signals and also devise new signals

that capture a price trend, in an effort to maximise the out-of-sample performance and to minimise the

transaction costs incurred by the portfolio rebalancing. Second and most importantly, the significance

of time-series momentum patterns is assessed for a broad grid of lookback periods, holding horizons and

frequencies of portfolio rebalancing. Briefly, momentum patterns are indeed found to be strong and robust

at the monthly and weekly frequencies, but relatively weaker at the daily frequency. In fact, there also

exist some signs of very short-term reversal effects. Lastly, we investigate a family of volatility estimators

and assess their efficiency from a momentum investing viewpoint. The availability of high-frequency data

allows the examination of various range and high-frequency volatility estimators.

Regarding the first objective of the paper, the results show that the traditional momentum trading

signal, that of the sign of the past return (Moskowitz et al. 2011) and denoted for convenience by SIGN,

can only provide a rough indication of a price trend. The reason is that it merely constitutes a comparison

between the farthest and most recent price levels, disregarding the information content of the price path

itself throughout the lookback period. For that purpose, we introduce another four methodologies that

focus on the trend behaviour of the price path: (i) a moving average indicator as, for instance, in Han, Yang

and Zhou (2011) and Yu and Chen (2011), (ii) a signal related to the price trend that is extracted using

1In the absence of transaction costs, a cross-sectional momentum strategy needs no capital to be constructed. The short
portfolio finances the long portfolio and each of these two portfolios consists of a fraction of the available M instruments, for
instance when decile portfolios are used, then each of these two portfolios consists of M/10 securities. Instead, a time-series
momentum strategy always consists of M open positions, which in the extreme case can even simultaneously be M long or M
short positions.
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the Ensemble Empirical Mode Decomposition, introduced by Wu and Huang (2009), (iii) the t-statistic

of the slope coefficient from a least-squares fit of a linear trend on the price path and (iv) a more robust

version of the previous signal using the statistically meaningful trend methodology of Bryhn and Dimberg

(2011). For convenience, we call these four signals using the shorthand notations MA, EEMD, TREND,

SMT respectively. We refer to the last two signals, TREND and SMT, as the “trend-related” trading

signals and it is stressed that only these two methodologies from the family of available signals offer a

natural way to decide upon the type of trading activity (long/short position) or the absence of any trading

activity for the forthcoming investment horizon, hence resulting in trading signals of long/inactive/short

type. This is achieved by using the statistical significance of the extracted linear-trend and abstaining from

trading when the significance is weak, in order to avoid eminent price reversals. To give an indication of

the resulting trading activity in the sample, a 12-month lookback period leads to trading activity for about

87% of the time when using the TREND signal and for 63% of the time when using the SMT signal.

This sparse trading activity gives by construction an advantage to the trend-related signals, because it

significantly lowers the turnover of the momentum portfolio, which at times is halved.

For the above family of momentum signals, we study the profitability of the time-series momentum

strategy using monthly, weekly and daily frequencies of portfolio rebalancing and a broad grid of look-

back and holding periods. The results show strong momentum patterns at the monthly frequency for

lookback and holding periods that range up to 12 months. With the passage of time the momentum profits

diminish and the patterns partly reverse for longer holding periods in line with the findings of Moskowitz

et al. (2011). Similar time periods are also associated with the cross-sectional momentum strategy in

futures markets as in Pirrong (2005), Miffre and Rallis (2007), but the time-series momentum is not fully

captured by the cross-sectional patterns following Moskowitz et al. (2011). Regarding higher frequencies

of portfolio rebalancing, relatively strong momentum patterns are documented at the weekly frequency

for lookback and holding periods that range even up to 8 weeks for some trading signals and lastly scarce

momentum patterns on the daily frequency. In fact, significant reversal effects are documented at the

very short-term horizon. Apart from a small number of exceptions, the trend-related trading signals offer

the best out-of-sample momentum performance in terms of mean return, dollar growth and Sharpe ratio

across all frequencies of portfolio rebalancing, all lookback and holding periods.

Quantitatively, the time-series momentum strategy with a 6-month lookback period and a 1-month

holding period generates 28.36% annualised mean return using the SMT signal compared to the 15.97%

of the traditional SIGN signal; both are strongly significant at the 1% level. The growth of an initial

investment of $1 at the beginning of the sample is $11.1 for the SMT signal and only $4 for the SIGN

signal. The difference in the ex-post Sharpe ratio is not so pronounced (1.18 versus 1.00), because of the

increased ex-post volatility of the momentum strategies due to the sparse trading activity of the trend-

related signals. It appears, however, that the increased volatility is the result of successful trend captur-

ing by the trend-related signals and therefore successful momentum bets, which lead to more positively

skewed return distributions. This is desirable from an investment perspective. We compute for the above

strategies the downside-risk Sharpe ratio (Ziemba 2005), which constitutes a modification of the ordinary

Sharpe ratio and treats differently the negative and positive returns by penalizing more the negatively
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skewed return distributions. We find it to be 1.83 for the SMT signal and only 1.38 for the SIGN signal.

That, combined with the significant decline in the portfolio turnover -it is more than halved when using

the SMT signal- renders the trend-related trading signals superior by all metrics.

Additionally, a strategy that is weekly rebalanced and uses a 3-week lookback period and a 1-week

holding period generates annualised return, dollar growth and downside-risk Sharpe ratio equal to 19.99%,

$5.60 and 0.95 for the SMT signal compared to the 10.56%, $2.49 and 0.70 for the SIGN signal, hence

reinforcing our arguments. For the daily frequency of rebalancing, the momentum patterns are in general

relatively weaker, hence the differences across signals regarding the ex-post momentum profitability are

not so pronounced. Instead, the most interesting feature of the daily frequency of portfolio rebalancing is

found for the strategy with a 3-day lookback period and a 1-day holding period. This is the only strategy

across all strategies, signals and frequencies of rebalancing in this paper that generates statistically sig-

nificant and economically important reversal effects. For instance, using the SMT signal, the time-series

momentum strategy loses on average 13.38% annualised and an initial investment of $1 shrinks to $0.21

at the end of the 10-year period of our sample.

Finally, we show that traditional daily volatility estimators, like the standard deviation of daily past

returns, provide relatively noisy volatility estimates, hence worsening the turnover of the time-series

momentum portfolio. In fact, Moskowitz et al. (2011) acknowledge that there exist various more effi-

cient volatility estimators than their simple exponentially-weighted moving average of past daily returns,

without however exploring any of them. Using a 30-minute quote high-frequency dataset on 12 futures

contracts, we provide more efficient volatility estimates by employing a high-frequency volatility estima-

tor, the realized variance by Andersen and Bollerslev (1998) and a family of estimators, known as range

estimators that make use of daily information on open, close, high and low prices. In particular, we em-

ploy the estimators by Parkinson (1980), Garman and Klass (1980), Rogers and Satchell (1991) and Yang

and Zhang (2000). The term “range” refers to the daily high-low price difference and its major advantage

is that it can even successfully capture the high volatility of an erratically moving price path intra-daily,

which happens to exhibit similar opening and closing prices and therefore a low daily return2. Alizadeh,

Brandt and Diebold (2002) show that the range-based volatility estimates are approximately Gaussian,

whereas return-based volatility estimates are far from Gaussian, hence rendering the former estimators

more appropriate for the calibration of stochastic volatility models using a Gaussian quasi-maximum

likelihood procedure.

As expected the realized variance estimator is superior among the volatility estimators. Given the

fact that it uses the complete high-frequency price path information leads to greater theoretical efficiency

(Barndorff-Nielsen and Shephard 2002) and therefore is used as the benchmark for the comparison among

the rest of estimators. It is found that the Yang and Zhang (2000) estimator dominates the remaining es-

timators and is therefore used throughout the paper for the construction of time-series momentum strate-

2As an indicative example, on Tuesday, August 9, 2011, most major exchanges demonstrated a very erratic behaviour, as
a result of previous day’s aggressive losses, following the downgrade of the US’s sovereign debt rating from AAA to AA+ by
Standard & Poor’s late on Friday, August 6, 2011. On that Tuesday, FTSE100 exhibited intra-daily a 5.48% loss and a 2.10%
gain compared to its opening price, before closing 1.89% up. An article in the Financial Times entitled “Investors shaken after
rollercoaster ride” on August 12 mentions that “...the high volatility in asset prices has been striking. On Tuesday, for example,
the FTSE100 crossed the zero per cent line between being up or down on that day at least 13 times...”.
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gies. The reasons for this choice are: (a) it is theoretically the most efficient estimator (after the realized

variance of course), (b) it exhibits the smallest bias when compared to the realized variance and (c) it

generates the lowest turnover, hence minimising the costs of rebalancing the momentum portfolio. It can

be argued that based on the above discussion the optimal choice for volatility estimation would be the

realized variance estimator. It must be stressed that this is indeed the case. We choose to use the Yang

and Zhang (2000) estimator, because it constitutes an optimal tradeoff between efficiency, turnover and

the necessity of high-frequency data, since it can be satisfactorily computed using daily information on

opening, closing, high and low prices. If anything, it is shown that the numerical difference between these

two estimators is relatively small and consequently they lead to statistically indistinguishable results for

the performance of the momentum strategies.

In a nutshell, the above findings document statistically strong and economically important time-series

return predictability and therefore pose a substantial challenge to the random walk hypothesis and the

efficient market hypothesis (Fama 1970, Fama 1991). The objective of this paper is not to explain which

mechanism is at work3, but the fact that the source of this predictability is merely a single firm effect

relates the findings to two strands of literature, namely the rational and the behavioural explanations to

serial correlation in a firm’s return series. Along the first strand and among others, Berk, Green and Naik

(1999) argue that a firm’s optimal investment choices can change its systematic risk and expected return

and consequently allow for return predictability. Based on that, Chordia and Shivakumar (2002) link

time-series momentum to time variation in expected returns that is captured by a set of macroeconomic

variables, related to the business cycle. Johnson (2002) develops a single-firm partial equilibrium model,

under which past performance is correlated with the expected growth rate of the dividend process, which

in turn is monotonically related to risk. Sagi and Seasholes (2007) build a model for a single firm that is

based on revenues, costs, growth options and shutdown options and show how the return autocorrelation

depends on these firm-specific attributes. Finally, from a relatively different perspective, Christoffersen

and Diebold (2006) and Christoffersen, Diebold, Mariano, Tay and Tse (2007) show that there exists a

direct link between volatility predictability and return sign predictability even when there exists no return

predictability. Obviously, return sign predictability is enough to generate time-series momentum trading

signals.

Along the behavioural strand of literature, it should be noted that most theories that have been devel-

oped in order to explain cross-sectional momentum patterns are solely single-firm paradigms that manifest

return predictability and therefore apply more to the time-series momentum explanation. Some indicative

examples of these models of investor sentiment are Barberis, Shleifer and Vishny’s (1998) model, which

incorporates the representativeness heuristic and the conservatism bias and links return autocorrelation

to underreaction effects and Daniel, Hirshleifer and Subrahmanyam’s (1998) model, which incorporates

the overconfidence effect and the biased self-attribution effect of investment outcomes and eventually

links momentum to overreaction effects to private information. Finally, Hong and Stein (1999) justify

momentum profitability by means of investor underreaction caused by the gradual information diffusion.

The rest of the paper is organized as follows. Section 2 provides an overview of the high-frequency

3This would require various theoretical economic models with testable implications.
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dataset, section 3 presents the mechanics of the time-series momentum strategy focusing explicitly on the

trading signal and on the volatility estimation. The empirical results regarding the return predictability

and the time-series momentum profitability are next presented in section 4 and finally section 5 concludes.

2. Data Description

The dataset to be used consists of intra-day futures prices for 6 commodities (Cocoa, Crude Oil, Gold,

Copper, Natural Gas and Wheat), 2 equity indices (S&P500 and Eurostoxx50), 2 FX rates (US Dollar

Index and EUR/USD rate) and 2 interest rates (Eurodollar and 10-year US Treasury Note) spanning a

period of 10 years, from November 1, 1999 to October 30, 2009 (2610 days, 520 weeks, 120 months).

The frequency of intra-day quotes is 30 minutes, hence leading to 48 observations per day and 125280

observations per contract for the entire 10-year period. The dataset is appropriately adjusted for rollovers4

and is provided by a large financial institution. Since the contracts are traded in various exchanges each

with different trading hours and holidays, the data series are appropriately aligned in order to avoid po-

tential lead-lag effects by filling forward any missing asset prices, following Pesaran, Schleicher and

Zaffaroni (2009), and quoted in US dollars using the appropriate exchange rates from Datastream. Fig-

ure 1 presents the time evolution of the futures prices and the respective 60-day running volatility (in

annual terms) computed using the Yang and Zhang (2000) estimator (discussed in the next sections).

[Insert Figure 1 here.]

Using the end-of-month/end-of-Wednesday/end-of-day quotes, we build monthly/weekly/daily data

series. We then construct return series for each contract and each frequency by computing the percentage

change in the closing asset price level. The construction of a return data series for a futures contract does

not have an objective nature and various methodologies have been used in the literature5. Among others,

Bessembinder (1992), Bessembinder (1993), Gorton, Hayashi and Rouwenhorst (2007), Pesaran et al.

(2009) and Fuertes, Miffre and Rallis (2010) compute returns similarly as the percentage change in the

price level, whereas Pirrong (2005) and Gorton and Rouwenhorst (2006) also take into account interest

rate accruals on a fully-collateralized basis. Miffre and Rallis (2007) use the change in the logarithms

of the price level. Lastly, Moskowitz et al. (2011) use the percentage change in the price level in excess

of the risk-free rate. In undocumented results, all the above return definitions have been tried without

significant -qualitative or quantitative- changes in our conclusions; one reason for this is the fact that the

interest rates have been kept to relatively lower historical levels during the period 1999-2009 (on average

less than 3% annually).
4This is the standard methodology when working with futures contracts; see for instance, de Roon, Nijman and Veld (2000)

and Miffre and Rallis (2007).
5As noted by Miffre and Rallis (2007), the term “return” is imprecise for futures contracts, because the mechanics of opening

and maintaining a position on a futures contract involve features like initial margins, potential margin calls, interest accrued
on the margin account and if anything, no initial cash payment at the initiation of the contract. Constructing a data series of
percentage changes in the asset price level implies that initial cash payment takes places, which, in turn, is practically inaccurate.
Following the above discussion, it must be stressed that the use of the term “return” throughout this paper should be interpreted
as a holding period return on a fully-collateralized position (in the sense that the initial margin equals the settlement price at the
initiation of the contract) without any interest rate accruals, hence leading to a more conservative estimate of the return.
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Table 1 presents in Panels A, B and C various summary statistics of monthly, weekly and daily return

series respectively for all contracts. The return series essentially represent the performance of a buy-

and-hold or equivalently a long-only strategy. The mean return, the volatility and the Sharpe ratios are

annualised to allow comparison across panels. The first observation is that there exists a great amount of

cross-sectional variation in mean returns and volatilities, with the commodities being historically the most

volatile contracts, in line with Pesaran et al. (2009) and Moskowitz et al. (2011). The distribution of the

buy-and-hold return series exhibits, except for very few instances, fat tails as deduced by the kurtosis and

the maximum-likelihood estimated degrees of freedom for a Student t-distribution; a normal distribution

is almost universally rejected by the Jarque and Bera (1987) and the Lilliefors (1967) tests of normality.

Interestingly, the fatness of the tails and the departure from normality becomes more pronounced and

aggressive in higher frequencies. The conclusions about potential first-order time-series autocorrelation

using the Ljung and Box (1978) test are mixed, with the daily frequency though exhibiting stronger rejec-

tion of the null hypothesis suggesting serial independence. This could constitute an indirect, elementary

indication of stronger momentum patterns in lower (than daily) frequencies. Additionally, very strong

evidence of heteroscedasticity is apparent across all frequencies with only one and four exceptions in the

weekly and monthly frequency respectively, as deduced by the ARCH test of Engle (1982); this latter

effect of time-variation in the second moment of the return series is also apparent in the volatility plots of

Figure 1.

[Insert Table 1 here.]

The last column of Table 1 presents a modification of the ordinary Sharpe ratio (SR), known as

the downside-risk Sharpe ratio (DR-SR) and introduced by Ziemba (2005), which treats differently the

negative and positive returns6. From an investment perspective, increased volatility generated by positive

returns is desired, however the ordinary SR offers a reward-to-risk ratio that treats equally positive and

negative returns. Ziemba (2005) suggests a reward-to-risk ratio that uses as a measure of the asset variance

(risk) twice the variance generated only by the negative returns. The two ratios are summarized in the

formulas below:

SR =
R̄
σ
, where σ

2 =
1

N−1

N

∑
j=1

(R j− R̄)2 (1)

DR-SR =
R̄√

2σ(−)
, where σ

2
(−) =

1
N−1

N

∑
j=1

(
R j ·1{R j<0}

)2
, (2)

where N denotes the number of trading periods and R̄ = 1
N ∑

N
j=1 R is the average return over these N

periods. Clearly, DR-SR and SR will be very similar for a symmetric distribution, but DR-SR will be

substantially larger for a positively skewed distribution. This is apparent in Table 1, where for instance

for the Eurodollar contract in the monthly frequency, DR-SR is more than twice the ordinary SR. DR-SR

will prove to be a very useful statistic to evaluate the performance of time-series momentum strategies in

6Knight, Satchell and Tran (1995) also acknowledge the necessity for handling positive and negative shocks to returns
differently and introduce a model for asset returns that accounts for such asymmetries.
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the next sections.

3. Methodology

This section presents the building blocks of the methodology: (i) the definition of time-series momentum,

(ii) the family of methodologies that we employ, in order to estimate the realized volatility of the assets

and (iii) the family of methodologies that we employ, in order to capture a price trend and therefore

generate momentum trading signals.

3.1. Time-Series Momentum

Univariate time-series momentum is defined as the trading strategy that takes a long/short position on

an asset based on a metric of the recent asset performance. Let J denote the lookback period over which

the asset’s past performance is measured and K denote the holding period. Throughout the paper, both

J and K are measured in months, weeks or days depending on the rebalancing frequency of interest; for

convenience, this strategy is denoted by the pair (J,K).

In line with Moskowitz et al. (2011), we subsequently construct the return series of the (aggregate)

time-series momentum strategy as the inverse-volatility weighted average return of all available individ-

ual momentum strategies:

RT S (t, t +K) =
M

∑
i=1

Xi (t− J, t) · 10%/
√

M
σi (t;D)

·Ri (t, t +K) , (3)

where M is the number of available assets and σi (t;D) denotes an estimate at time t of the realized

volatility of the ith asset computed using a window of the past D trading days. Xi (t− J, t) is the trading

signal for the ith asset which is determined during the lookback period and in general takes values in the set

{−1,0,1}, which in turn translates to {short, inactive, long}. The scaling factor 10%/
√

M is used in order

to achieve an ex-ante volatility equal to 10% as in Moskowitz et al. (2011)7. The families of volatility

estimators and trading signals that are used in this paper are described in the following subsections.

7This scaling is arguably simplistic as it ignores any covariation among the individual momentum strategies and also ig-
nores any potential changes in the individual volatility processes. In the case that the individual time-series strategies are

mutually independent the resulting portfolio conditional variance at time t is Vart
[
RT S (t, t +K)

]
= ∑

M
i=1 X2

i (t− J, t) · (10%)2/M
σ2

i (t;D)
·

Vart [Ri (t, t +K)] = ∑
M
i=1

(10%)2

M = (10%)2, since X2
i (t− J, t) = 1 and also it can be assumed that Vart [Ri (t, t +K)]≈ σ2

i (t;D),
due to the persistence of the volatility process. Consequently the ex-ante portfolio volatility is the desired 10%. In practice, the
ex-post volatility is not 10% due to time-varying volatility conditions among the portfolio constituents and also due to potential
covariation among them. Nevertheless, such a scaling easies the interpretation of the results as it offers reasonable, real-life
ex-post volatilities. Besides, note that there might exist trading periods when Xi (t− J, t) = 0 for some trading signal X and some
asset i, but the frequency of such events is relatively small, as it is documented later in the paper, to affect the above argument.

7



3.2. Volatility Estimation

The time-series momentum strategy is defined in equation (3) as an inverse-volatility weighted average

of individual time-series momentum strategies. This risk-adjustment (in other words, the use of stan-

dardized returns) across instruments is very common in the futures literature (see e.g. Pirrong (2005)

and Moskowitz et al. (2011)), because it allows for a direct comparison and combination of various

asset classes with very different return distributions (see cross-sectional variation in mean returns and

volatilities in Table 1) in a single portfolio and safeguards against dominant assets in a portfolio with

non-standardized constituents.

The momentum literature to date has used simple ways to estimate asset volatilities, the reason being

that the available data series most frequently consist of daily data and consequently no further efficiency

can be gained out of using intra-day information. Pirrong (2005) uses the standard estimate of volatility,

which is the -equally weighted- standard deviation of past daily returns, whereas Moskowitz et al. (2011)

use an exponentially-weighted measure of squared daily past returns. In fact, Moskowitz et al. (2011) do

insist that “...while all of the results in the paper are robust to more sophisticated volatility models, we

chose this model due to its simplicity...”. Let D denote the number of past trading days that are used to

estimate the volatility and C(t) denote the closing log-price at the end of day t. The above two estimators

are given below.

• Standard Deviation of Daily Returns (STDEV):

The daily log-return at time t is R(t) = C(t)−C(t− 1). Hence, the annualised D-day variance of

returns is given by:

σ
2
STDEV (t;D) =

261
D

D−1

∑
i=0

[R(t− i)− R̄(t)]2 , (4)

where R̄(t) = 1
D ∑

D−1
i=0 R(t− i) and 261 is the number of trading days per year.

• Exponentially-Weighted Moving Average estimator (EWMA):

Moskowitz et al. (2011) use an exponentially-weighted moving average measure of lagged squared

daily returns with the center of mass of the weights being equal to 60 days:

σ
2
EWMA (t;D) = 261

∞

∑
i=0

(1−δ)δ
i [R(t− i)− R̄(t)]2 . (5)

where R̄(t) = ∑
∞
i=0 (1−δ)δiR(t− i) and δ is chosen so that ∑

∞
i=0 (1−δ)δii = δ

1−δ
= 60 (note that

∑
∞
i=0 (1−δ)δi = 1).

The availability of intra-day data allows the employment of volatility estimators that make use intra-

day information for more efficient volatility estimates. As mentioned in section 2, the dataset includes 48

30-minute intra-day data points per contract. Not all of them constitute transaction quotes, since for some

hours during the day the contracts are not traded in the respective exchange or in the respective online
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trading platform8. As it has been mentioned, these entries are filled forward during the construction of

the dataset in order to avoid potential lead-lag effects. Our purpose is to estimate running volatility at the

end of each trading day, after trading in all exchanges has been terminated.

For that purpose, we employ six different methodologies that make use of intra-day information. We

also generate for each contract and trading day four daily price series using this intra-day information,

namely the opening, closing, high and low log-price series. Let Nday(t) denote the number of active price

quotes during the trading day t, hence the intra-day quotes are denoted by S1 (t) ,S2 (t) , · · · ,SNday(t). Then:

Opening price: O(t) = logS1 (t) (6)

Closing price: C (t) = logSNday (t) (7)

High price: H (t) = log
(

max
j=1,··· ,Nday

S j (t)
)

(8)

Low price: L(t) = log
(

min
j=1,··· ,Nday

S j (t)
)

(9)

Normalized Closing price: c(t) = C (t)−O(t) = log
(
SNday (t)/S1 (t)

)
(10)

Normalized High price: h(t) = H (t)−O(t) = log
(

max
j=1,··· ,Nday

S j (t)/S1 (t)
)

(11)

Normalized Low price: l (t) = L(t)−O(t) = log
(

min
j=1,··· ,Nday

S j (t)/S1 (t)
)

(12)

Using the above definitions we describe below the six methodologies of interest.

• Realized Variance/Volatility (RV):

Andersen and Bollerslev (1998) and Barndorff-Nielsen and Shephard (2002) use the theory of

quadratic variation, introduce the concept of integrated variance and show that the sum of squared

high-frequency intra-day log-returns is an efficient estimator of daily variance in the absence of

price jumps and serial correlation in the return series. In fact, theoretically, in the absence of market

microstructure noise effects (lack of continuous trading, bid/ask spread, price discretization), the

daily variance can be estimated arbitrarily well, as long as one can get ultra high-frequency data.

However, the above effects swamp the estimation procedure and in the limit, microstructure noise

dominates the result9. Among others, Hansen and Lunde (2006) show that microstructure effects

start to significantly affect the accuracy of the estimation when the sampling interval of observations

becomes smaller than 5 minutes. On the other hand, intervals between 5 to 30 minutes tend to

give satisfactory volatility estimates, even if the variance of the estimation increases for lower

8For example, the Wheat Futures contract is traded in the Chicago Mercantile Exchange (CME) trading floor from Monday
to Friday between 9:30am and 1.15pm Central Time (CT) and in the electronic platform (CME Globex) from Monday to
Friday between 9:30am and 1.15pm and between 6:00pm and 7:15pm CT. Instead, the Cocoa Futures contract is traded in the
Intercontinental Exchange (ICE) between 4:00am and 2:00pm New York Time, and the Eurostoxx50 Index Futures contract is
traded in Eurex between 07:50am to 10:00pm Central European Time (CET).

9The research on high-frequency volatility estimation and the effects of microstructure noise is currently extremely active.
Among others, see Aı̈t-Sahalia, Mykland and Zhang (2005), Bandi and Russell (2006), Hansen and Lunde (2006), Bandi and
Russell (2008), Andersen, Bollerslev and Meddahi (2011) and Bandi and Russell (2011).
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frequencies.

Following the above, the availability of 30-minute quotes allows the estimation of the daily variance

that is virtually free of microstructure frictions as:

σ
2
RV (t) =

Nday

∑
j=2

[logS j (t)− logS j−1 (t)]
2 . (13)

• Parkinson (1980) estimator (PK):

Parkinson (1980) is the first to propose the use of intra-day high and low prices in order to estimate

daily volatility as follows:

σ
2
PK (t) =

1
4log2

[h(t)− l (t)]2 . (14)

This estimator assumes that the asset price follows a driftless diffusion process and is shown

(Parkinson 1980) to be theoretically around 5 times more efficient than STDEV (Garman and Klass

(1980) compute the efficiency with respect to STDEV to be 5.2 times larger).

• Garman and Klass (1980) estimator (GK):

Garman and Klass (1980) extend Parkinson’s (1980) estimator and include opening and closing

prices in an effort to increase the efficiency of the PK estimator. However, like the PK estimator,

their estimator assumes that the asset price follows a driftless diffusion process and also does not

take into account the opening jump. The GK estimator is given by:

σ
2
GK (t) = 0.511 [h(t)− l (t)]2−0.019{c(t) [h(t)+ l (t)]−2h(t) l (t)}−0.383c2 (t) (15)

Garman and Klass (1980) show that the GK estimator is 7.4 times more efficient than STDEV. The

authors also offer a computationally faster expression that eliminates the cross-product terms, but

still achieves virtually the same efficiency:

σ
2
GK (t) = 0.5 [h(t)− l (t)]2− (2log2−1)c2 (t) (16)

• Yang and Zhang (2000) modification of Garman and Klass (1980) estimator (GKYZ):

Yang and Zhang (2000) modify the GK estimator by incorporating the difference between the cur-

rent opening log-price and the previous day’s closing log-price. This estimator becomes robust to

the opening jump, but still assumes a zero drift in the price process. The estimator is given by:

σ
2
GKYZ (t) = σ

2
GK +[O(t)−C (t−1)]2 (17)

• Rogers and Satchell (1991) estimator (RS):

Rogers and Satchell (1991) are the first to introduce an unbiased estimator that allows for a non-
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zero drift in the price process. However, the RS estimator does not account for the opening jump.

The estimator is given by:

σ
2
RS (t) = h(t) [h(t)− c(t)]+ l (t) [l (t)− c(t)] (18)

The RS estimator is not significantly worse in terms of efficiency when compared to the GK esti-

mator. Rogers and Satchell (1991) show that GK is just 1.2 times more efficient than RS. Besides,

Rogers, Satchell and Yoon (1994) show that the RS estimator can also efficiently deal with time-

variation in the drift component of the price process.

The last five estimators, RV, PK, GK, GKYZ and RS provide daily estimates of variance/volatility. An

annualised D-day estimator is therefore given by the average estimate over the past D days.

σ
2
meth (t;D) =

261
D

D−1

∑
i=0

σ
2
meth (t− i) , where meth = {RV, PK, GK, GKYZ, RS} . (19)

• Yang and Zhang (2000) estimator (YZ):

Yang and Zhang (2000) are the first to introduce an unbiased volatility estimator that is independent

of both the opening jump and the drift of the price process. By construction, such an estimator has to

have a multi-period specification. This estimator is a linear combination of the STDEV estimator,

the RS estimator and an estimator in the nature of STDEV that uses opening prices instead of

closing prices. The YZ estimator is given by:

σ
2
YZ (t;D) = σ

2
OPEN (t;D)+ kσ

2
STDEV (t;D)+(1− k)σ

2
RS (t;D) (20)

where σ2
OPEN (t;D) = 261

D ∑
D−1
i=0

[
O(t− i)−O(t−1− i)− 1

D ∑
D−1
i=0 [O(t− i)−O(t−1− i)]

]2
and k

is chosen so that the variance of the estimator is minimised. Yang and Zhang (2000) show that this

is in practice achieved for k = 0.34
1.34+(D+1)/(D−1) .

The YZ estimator can optimally achieve efficiency of around 14 for D = 2 (i.e. a 2-day estimator)

in comparison to STDEV. Throughout the paper, we use 30-day or 60-day estimates of volatility.

The efficiency of the YZ estimator for these windows is around 8 and 8.110.

Loosely speaking, the only estimator that uses high-frequency intra-day data is the RV11, whereas

the remaining estimators (PK, GK, GKYZ, RS and YZ), also known as “range” estimators12 only need

10Yang and Zhang (2000) show that the efficiency of the YZ estimator in comparison to the STDEV estimator is given by
EffYZ = 1+ 1

k . Hence, for D = 30, k = 0.34
1.34+(D+1)/(D−1) = 0.14 and consequently EffYZ ≈ 8.1. For D = 60, EffYZ ≈ 8.

11There exist several more high-frequency volatility estimators in the literature, most of which constitute improvements of
the original RV estimator, in order to counteract potential market microstructure frictions, like for instance the Two-Scale RV
(Zhang, Mykland and Aı̈t-Sahalia 2005) and the Multi-Scale RV (Zhang 2006). These estimators however are designed for
datasets with sampling intervals that go down to few minutes or even few seconds (these are the frequencies that microstructure
effects are largely pronounced). Our 30-minute intra-day dataset is therefore inadequate for the employment of these techniques.

12Martens and van Dijk (2007) follow the RV rationale and build a more efficient volatility estimator, the Realized Range
(“RR”) estimator, which instead of computing the sum of squared intra-day returns, it computes the sum of squared high-low
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opening, closing, high and low price daily information. Strictly speaking though, the more high-frequent

the dataset, the finer the discretization of the true price process and the more precise the estimation of the

high and low prices. If anything, the discretization of a continuous price process will almost always lead

to an estimate of the maximum (minimum) that resides below (above) the true maximum (minimum) of

the continuous price path. Consequently, the approximated range h(t)− l (t) will always underestimate

the true range and therefore the estimated volatility will be underestimated. See Rogers and Satchell

(1991) for a discussion on this matter and an effort to bias-correct the RS and GK estimators.

On the other hand, the advantage of the range is that it can even successfully capture the high volatility

of an erratically moving price path during a day that simply happens to exhibit similar opening and closing

prices and therefore exhibits a low daily return (this applies for instance to the STDEV and EWMA

estimators, but not to the RV estimator, because of its high-frequency nature). Furthermore, Alizadeh

et al. (2002) show that the range-based volatility estimates are approximately Gaussian, whereas return-

based volatility estimates are far from Gaussian, hence rendering the former estimators more appropriate

for the calibration of stochastic volatility models using a Gaussian quasi-maximum likelihood procedure.

The above methodologies are first applied to the 12 futures contracts using a rolling window of D= 60

trading days. The outcome is plotted in Figure 2 and serves as a visual inspection of the co-movement and

the cross-sectional variation of the various estimators. The degree of co-movement appears to be large,

which is also quantitatively certified by Panel A of Table 2, which presents the average correlation matrix

of the volatility estimators across the 12 futures contracts.

[Insert Figure 2 here.]

[Insert Table 2 here.]

Nevertheless, there exists a great amount of cross-sectional variation in the absolute estimates of

volatility, especially during the first half of the sample for some contracts (e.g. Cocoa, Dollar Index,

Euro, Copper and T-note). In order to quantitatively assess the accuracy of the various estimators, the

bias of the estimators is computed assuming that the true volatility process -given that we do not observe

it- coincides with the RV estimator. The assumption that the RV estimator provides a good proxy of the

volatility process is also made by Brandt and Kinlay (2005) and Shu and Zhang (2006), who present

similar comparison studies for various volatility estimators. Panel B of Table 2 presents for each futures

contract the annualised volatility bias computed as:

Bias =
1

2610−D

2610

∑
t=D

[σRV (t;D)−σmeth (t;D)] , (21)

where meth = {STDEV, EWMA, PK, GK, RS, GKYZ, YZ}, 2610 is the number of trading days in our

sample and D is chosen to be 60 trading days (results for D = 30 are extremely similar).

ranges over the same intra-day intervals. Just as Parkinson’s (1980) estimator (squared daily high-low range) improves the
traditional STDEV estimator (squared daily returns), the RR estimator should theoretically improve the RV estimator. For the
purposes of this paper, we cannot employ the RR estimator, because the 30-minute intra-day quotes do not allow the measurement
of intra-day high-low ranges.
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As it is expected, all five range estimators underestimate on average the RV estimator in all but three

occasions (YZ for Cocoa, YZ and GKYZ for Eurostoxx50), while the two traditional estimators in all but

two contracts (Eurodollar, Wheat) overestimate the RV estimator in line with the findings of Brandt and

Kinlay (2005) and Shu and Zhang (2006). Since there exists a great amount of cross-sectional variation in

the volatility level of the future contracts (see Figure 2), it would be inappropriate to compute the average

bias of each estimator across all instruments. Instead, we sort the absolute biases per contract, hence

assigning a rank score from 1 to 7 to each estimator per contract and then we average across contracts to

deduce the last row of Panel B of Table 2. Clearly, the YZ estimator exhibits on average -and also for

most contracts- the lowest absolute bias followed by EWMA, GKYZ and STDEV estimators. This result

gives the YZ estimator a practical advantage that, in conjunction with its theoretical dominance, renders

it the best candidate for the sizing of our momentum strategies.

From a trading perspective, it is always important to limit a portfolio’s turnover. Lower turnover

means that a smaller part of the portfolio composition changes at each rebalancing date, which, in turn,

lowers the transaction costs that are incurred during rebalancing. This is arguably desirable for the in-

vestor. From equation (3), it is clear that an important determinant of the portfolio turnover is the asset

volatility. In fact, the intertemporal change of the ratio 1
σ

along with the momentum trading signal jointly

determine the portfolio turnover. Clearly, the more persistent the volatility process, the lower the resulting

turnover for the momentum portfolio. Given the fact that the true volatility process is unknown and is

only estimated using various methodologies, the persistence of the estimated path is solely dependent on

the noise that is introduced by the estimation procedure, or equivalently on the efficiency of the estima-

tor13. The more efficient the estimator, the less noisy or in other words the more persistent the estimated

volatility path and therefore the lower the turnover. Hence, it is expected to see the most efficient estima-

tor, the RV estimator, which makes use of high-frequency data, to generate the most persistent volatility

estimates, followed by the range estimators that use intra-day information for high and low prices, with

the worst performing estimators being those that only use daily information in closing prices, i.e. the

STDEV and EWMA estimators.

In order to empirically assess the persistence of the volatility estimates, we compute for each estimator

the following expression:

VTO =
1

2610− (D+1)

2610

∑
t=D+1

∣∣∣∣ 1
σ(t;D)

− 1
σ(t−1;D)

∣∣∣∣ , (22)

which we call for convenience as the volatility turnover (VTO). Panel C of Table 2 presents the VTO for

each futures contract. Arguably, the large cross-sectional variation in the volatility levels leads to a great

variation in the VTO estimates for each contract. As in Panel B, the last row presents the average rank for

each volatility estimators after ranking the VTO’s for each contract. As it is expected, the RV estimator

generates the most persistent volatility estimates and therefore the lowest turnover. Putting aside the RV

estimator, the YZ estimator is, both on a contract-by-contract basis and on average, the estimator that

generates the smoother volatility paths, hence achieving the lowest turnover and subsequently incurring

13we thank Filip Zikes for this observation.
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the lowest transaction costs. On the other hand, the traditional EWMA estimator generates one of the

largest turnovers across all contracts. It is almost universally 1.5 times larger than that of YZ, hence

casting doubts on its practical use due the increased transaction costs.

[Insert Figure 3 here.]

In a nutshell, after conducting a series of tests, it is concluded that the RV estimator is in general

superior to the other estimators. The use of intra-day information gives the RV the advantage of larger

efficiency, because all intra-day price movements are taken into account in the estimation procedure.

Figure 3 summarises the ranks of the remaining volatility estimators from Table 2 in a bar diagram (due

to the fact that the RV estimator is used as the baseline measure for the bias estimation and therefore does

not have a bias rank, we decide to exclude the RV rank estimate for VTO as well in the figure; the VTO

ranks for the remaining estimators are then recomputed). Excluding RV, the YZ estimator dominates

the family of estimators and therefore is used throughout the paper for the construction of momentum

strategies. The reasons for this choice are: (a) it is theoretically the most efficient estimator, (b) it exhibits

the smallest bias when compared to the RV, (c) it generates the lowest turnover, hence minimising the costs

of rebalancing the momentum portfolio and (d) it can be satisfactorily computed using daily information

on opening, closing, high and low prices. One could argue that the use of the RV estimator throughout the

paper would be optimal based on the above discussion, which is indeed a fair point. Instead, we choose

to use the YZ estimator, because it is believed that this estimator constitutes an optimal tradeoff between

efficiency, turnover and the necessity of proper high-frequency data. If anything, our results are more

conservative and in any case the small bias among the YZ and RV estimator leads to very similar results

for the performance of the momentum strategies14.

3.3. Momentum Signals

Five different methodologies are employed, in order to generate momentum trading signals. All method-

ologies focus on the asset performance during the lookback period [t− J, t].

Return Sign (SIGN): The standard measure of past performance in the momentum literature as in Moskowitz

et al. (2011) is the sign of the J-period past return. A positive (negative) past return dictates a long (short)

position:

SIGN(t− J, t) =

{
+1, if R(t− J, t)> 0

−1, otherwise
(23)

Moving Average (MA): The moving average indicator has been extensively used by practitioners as a

way to extract price trends. For the purposes of this study, a long (short) position is determined when the

J-period lagging moving average of the price series lies below (above) a 1-period leading moving average

of the price series. Let S (t) denote the price level of an instrument at time t, NJ (t) denote the number of

14In undocumented results, we have used the RV estimator for the simulations and the conclusions remain both quantitatively
and quantitatively the same.
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trading days in the period [t− J, t] and AJ (t) denote the average price level during the same time period:

AJ (t) =
1

NJ (t)

NJ(t)

∑
i=1

S (t−NJ (t)+ i) . (24)

Hence, the trading signal that is determined at time t is:

MA(t− J, t) =

{
+1, if AJ (t)< A1 (t)

−1, otherwise
(25)

The idea behind the MA methodology is that when a short-term moving average of the price process

lies above a longer-term average then the asset price exhibits an upward trend and therefore a momen-

tum investor should take a long position. The reverse holds when the relationship between the averages

changes. Clearly, this comparison of the long-term lagging MA with a short-term leading MA gives the

MA methodology a market-timing feature15 that the other signals of our paper do not have. The choice

of the 1-period for the short-term horizon is justified, because it captures the most recent trend breaks. In

a similar fashion, Yu and Chen (2011) study the cross-sectional momentum anomaly and try to maximise

the performance by building portfolios based on the comparison between the geometric average rate of

return during the past 12 months and during a shorter period of time; in fact, the authors show that the ex-

post momentum returns are maximised when using a short period of 1 month. Lastly, Harris and Yilmaz

(2009) apply the MA methodology in order to form time-series momentum strategies with currencies.

EEMD Trend Extraction (EEMD): This trading signal relies on some extraction of the price trend during

the lookback period. In order to extract the trend from a price series, we choose to use a recent data-driven

signal processing technique, known as the Ensemble Empirical Mode Decomposition (EEMD), which is

introduced by Wu and Huang (2009) and constitutes an extension of the Empirical Mode Decomposi-

tion16 (Huang, Shen, Long, Wu, Shih, Zheng, Yen, Tung and Liu 1998, Huang et al. 1999). The EEMD

methodology decomposes a time-series of observations into a finite number of oscillating components and

a residual non-cyclical long-term trend of the original series, without virtually imposing any restrictions

of stationarity or linearity upon application17.

Following the above, the stock price process can be written as the complete summation of an arbitrary

15Han et al. (2011) apply the MA methodology to volatility-sorted decile portfolios in order to take advantage of this market-
timing feature and subsequently to maximise the performance of these portfolios.

16The Empirical Mode Decomposition (EMD) (Huang, Shen, Long, Wu, Shih, Zheng, Yen, Tung and Liu 1998, Huang, Shen
and Long 1999) is the first step of an adaptive two-step decomposition transform that captures the instantaneous properties of a
signal, known by the name of Hilbert-Huang Transform (HHT) and introduced by Huang, Shen, Long, Wu, Shih, Zheng, Yen,
Tung and Liu (1998). Further information on the functionality of the HHT can be found in Huang et al. (1999), Rilling, Flandrin
and Gonçalves (2003), Huang and Shen (2005), Kizhner, Blank, Flatley, Huang, Petrick, Hestnes, Center and Greenbelt (2006),
Huang and Wu (2007), Huang and Wu (2008) and Rato, Ortigueira and Batista (2008)

17Examples of EMD/EEMD application to non-stationary and nonlinear datasets include blood pressure (Huang, Shen, Huang
and Fung 1998, Yeh, Lin, Shieh, Chen, Huang, Wu and Peng 2008), ocean waves (Huang et al. 1999), climate variations (Wu,
Schneider, Hu and Cao 2001), heart rate analysis (Echeverrı́a, Crowe, Woolfson and Hayes-Gill 2001), earthquake motion (Asce,
Ma, Asce and Hartzell 2003), molecular dynamics (Phillips, Gledhill, Essex and Edge 2003), ocean acoustic data (Oonincx and
Hermand 2004), solar cycles (Coughlin and Tung 2004), and electrocardiogram (ECG) denoising (Weng, Blanco-Velasco and
Barner 2006).
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number, n, of oscillating components ci (t), for i = 1, · · · ,n and a residual long-term trend p(t),

S (t) =
n

∑
i=1

ci (t)+ p(t) (26)

The focus is on the extracted trend p(t) and therefore an upward (downward) trend during the lookback

period determines a long (short) position:

EEMD(t− J, t) =

{
+1, if p(t)> p(t− J)

−1, otherwise
(27)

Time-Trend t-statistic (TREND): Another way to capture the trend of a price series is through fitting a

linear trend on the J-period price series using least-square. The momentum signal can them be determined

based on the significance of the slope coefficient of the fit. Assume the linear regression model:

S (i)
S (t−NJ (t))

= α+β · i+ ε(i), i = 1,2, · · · ,NJ (t) . (28)

Estimating this model for the asset using all NJ (t) trading days of the lookback period yields an estimate

of the time-trend, given by the slope coefficient β. The significance of the trend is determined by the

t-statistic of β, denoted as t (β), and the cutoff points for the long/short position of the trading signal are

chosen to be +2/-2 respectively:

TREND(t− J, t) =


+1, if t(β)>+2

−1, if t(β)<−2

0, otherwise

(29)

In order to account for potential autocorrelation and heteroscedasticity in the price process, Newey and

West (1987) t-statistics are used. Lastly, notice that the normalization of the regressand in equation (28)

is done for convenience, since it allows for cross-sectional comparison of the slope coefficient, when

necessary; the t-statistic of β is of course unaffected by such scalings.

Statistically Meaningful Trend (SMT): Bryhn and Dimberg (2011) study the statistical significance

of a linear trend and claim that if the number of data points is large, then a trend may be statistically

significant even if the data points are very erratically scattered around the trend line. For that purpose,

they introduce the term of statistical meaningfulness in order to describe a trend that not only exhibits

statistical significance, but also describes the behaviour of the data to a certain degree. The authors

therefore show that a trend is informative and strong if, except for a significant t-statistic (or equivalently

a small p-value), the R2 of the linear regression exceeds 65%. Furthermore, they proceed one step further

and for more robust inference they suggest splitting the dataset of the regression in a certain number

of sub-intervals (usually between 3 to 30 intervals) and re-estimate (28) using as new data points the

average values of the regressand and the regressors (asset price and linear trend respectively) over each

subinterval. This method essentially provides some sort of pre-smoothing in the data before the extraction

of the trend. They conclude that “...if one or several regressions concerning time and values in a time
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series, or time and mean values from intervals into which the series has been divided yields R2 ≥ 0.65 and

p≤ 0.05, then the time series is statistically meaningful”, where p is the p-value of the slope coefficient.

Along these lines, we follow the above methodology and split the lookback period in 4 to 10 intervals (i.e.

7 regressions per lookback period per asset) and decide upon a long/short position only if at least one of

the regressions satisfies the above criteria. Thus:

SMT(t− J, t) =


+1, if tk(β)>+2 and R2

k ≥ 65%, for some k

−1, if tk(β)<−2 and R2
k ≥ 65%, for some k

0, otherwise

(30)

where k denotes the kth regression with k = 1,2, · · · ,7. Notice that SMT and TREND constitute the only

signals in the family of available methodologies that allow for inactivity in the momentum strategy, i.e.

periods when no position is taken due to the nonexistence of a strong price trend and consequently a

strong momentum pattern. Clearly, SMT is a stricter signal than TREND and therefore would lead to

more periods of inactivity.

In order to assess the ability of the above five signals to capture a trending behaviour, they are first

applied to the 12 futures contracts using a 12-month lookback period. For each asset, we construct the

correlation table between the five resulting momentum signals and consequently the correlation matrices

are averaged across all assets. The outcome is presented in Panel A of Table 3. The same panel also

presents a similarly constructed matrix (average over the 12 futures contracts) that presents the number

of time periods of agreement in the long/short position across all possible pairs of momentum signals

divided by the number of active periods (i.e. either +1 or -1) of the signals across the vertical direction;

for instance, the value 61.24 in the first row means that in almost 61% of the periods that the SIGN signal

dictates a long or a short position, the SMT agrees (both in terms of trading activity and direction of

trade).

[Insert Table 3 here.]

As expected, the pairwise correlations between the momentum signals are relatively large ranging

between 0.68 up to 0.89. The smallest correlations with the rest of the signals are exhibited by MA and

SMT; this was partly expected due to the ability to capture a trend break for the former and the strictness

in the trend definition for the latter. Looking across the last row of the second table of Panel A, we realise

that SMT, when active, almost fully agrees with all the rest of the signals. However, looking across the

last column of the same table, it is observed that over the entire trading period, about 40% of the time, the

signals SIGN/MA/EEMD capture a trend that SMT characterises as non statistically meaningful.

Panel B of Table 3 presents the percentage of time periods that each momentum signal dictates a

long or a short position in each of the 12 futures contracts; note that by construction, the percentages

of long and short positions sum up to one for the SIGN, MA and EEMD signals. On average, TREND

generates activity for about 87% of the time and SMT for 63% of the time. This would give a practical

advantage to the trend-related signals, since the sparse activity would lower the portfolio turnover, hence
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the transaction costs. However, the sparse activity could potentially limit the ex-post portfolio mean

return. For that reason, we next estimate for each contract and for each signal an activity-to-turnover

ratio, which is called18 “signal speed” and is computed as the square root of the ratio between the time-

series average of the squared signal value and the time-series average of the squared first-order difference

in the signal value:

SPEEDX =

√√√√ E [X2]

E
[
(∆X)2

] =
√√√√ 1

T−J ∑
T
t=1 X2 (t− J, t)

1
T−J−1 ∑

T
t=1 [X (t− J, t)−X (t−1− J, t−1)]2

. (31)

Clearly, the larger the signal activity and the smaller the average difference between consecutive signal

values (in other words the smoother the transition between long and short positions), the larger the signal

speed. Notice that for the SIGN, MA and EEMD signals the nominator is always equal to 1, because they

constantly jump between long (+1) to short (-1) positions. Figure 4 presents the average speed of each

signal across the 12 futures contracts for various lookback periods at daily (T =2610), weekly (T =520)

and monthly (T =120) frequencies. The trend-related signals exhibit the largest activity-to-turnover ratio,

drawing their advantage from the smoother transition between long and short positions, as there exist

trading periods that these signals remain inactive, while the rest of the signals (SIGN, MA and EEMD)

change erratically between +1 and -1. The worst performer is the MA signal which appears to be the most

aggressively changing signal.

[Insert Figure 4 here.]

4. Time-Series Momentum Strategies

This section focuses on the evaluation of performance of time-series momentum strategies. This is first

achieved by examining the time-series return predictability using a pooled panel regression analysis and

consequently by constructing a series of momentum strategies on a grid of lookback and investment

horizons. We first study the monthly momentum effects and subsequently investigate the weekly and

daily frequencies of portfolio rebalancing.

4.1. Return Predictability

Before constructing momentum strategies, we first assess the amount of return predictability that is inher-

ent in a series of predictors by running a pooled time-series cross-sectional regression of the contempora-

neous standardized return on a lagged return predictor in line with Moskowitz et al. (2011):

R(t−1, t)
σYZ (t−1;D)

= α+βλZ (t−λ)+ ε(t) , (32)

18we thank Yoav Git for sharing with us the practitioner’s view regarding this measure.
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where λ denotes the lag, D = 30 trading days and the regressor Z is chosen from a broad collection of

momentum-related quantities:

Z (t) =

{
R(t−1, t)

σYZ (t−1;D)
, SIGN(t−1, t) , EEMD(t−1, t) ,

β for [t−1, t] , t-stat t (β) for [t−1, t] , TREND(t−1, t) ,

SMT β for [t−1, t] , SMT t-stat tk (β) for [t−1, t] , SMT(t−1, t)} . (33)

Notice that all possible choices are comparable across the various contracts and refer to a single period

J = 1, in order to avoid serial autocorrelation19 in the error term of (32). Moreover, the second and third

rows of regressor choices in (33) are solely related to the TREND and SMT methodologies respectively.

Lastly, notice that the asset volatility, wherever used, is always lagged by one period in order to satisfy

the real-life practice of risk-adjusting the asset position with the ex-ante volatility, as in equation (3).

The regression (32) is estimated for each lag and regressor by pooling all the futures contract together.

Note that all regressor choices are normalized, in order to allow for the pooling across the instruments;

the asset returns are normalized and the β’s have been estimated for normalized price paths in equation

(28).

The quantity of interest in these regressions is the t-statistic of the coefficient βλ for each lag. Large

and significant t-statistics essentially support the hypothesis of time-series return predictability. Each

regression stacks together T = 120−λ monthly returns for each of the N = 12 contracts therefore leading

to 1440− 12λ data points. The t-statistics t (βλ) are computed using standard errors that are clustered

by time and asset20, in order to account for potential cross-sectional dependence (correlation between

contemporaneous returns of the contracts) or time-series dependence (serial correlation in the return series

of each individual contract). Briefly, the variance-covariance matrix of the regression (32) is given by (see

Cameron, Gelbach and Miller 2011, Thompson 2011):

VTIME&ASSET =VTIME +VASSET−VWHITE, (34)

where VTIME and VASSET are the variance-covariance matrices of one-way clustering across time and asset

respectively, and VWHITE is the White (1980) heteroscedasticity-robust OLS variance-covariance matrix.

In fact, Petersen (2009) shows that when T >> N (N >> T ) then standard errors computed via one-way

clustering by time (by asset) are close to the two-way clustered standard errors; nevertheless, one-way

clustering across the “wrong” dimension produces downward biased standard errors, hence inflating the

resulting t-statistics and leading to over-rejection rates of the null hypothesis. We document that for

19Notice that the regression choices do not include the MA signal, because by construction the MA signal compares a J-period
average price level to the last period’s average price level and therefore J must be larger than 1 for the MA signal to make sense.
Choosing a larger J for this particular regressor would result in the error term of the regression (32) having an autoregressive
structure. For that reason and for comparison purposes with the rest of the regressor choices, we refrain from reporting results
for, say, Z (t) = MA(t−2, t), even if they are qualitatively very similar to those that are reported, due to the large commonality
between the momentum signals.

20Petersen (2009) and Gow, Ormazabal and Taylor (2010) study a series of empirical applications with panel datasets and
recognise the importance of correcting for both forms of dependence.
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our dataset where T > N two-way clustering or one-way clustering by time (i.e. estimating T cross-

sectional regressions as in Fama and MacBeth (1973)) produces similar results, whereas clustering by

asset produces inflated t-statistics that are similar to simple OLS t-statistics. One-way clustering by time

is used by Moskowitz et al. (2011) in a similar setting of return predictability in futures markets.

[Insert Figure 5 here.]

Figure 5 presents for each one of the regressors Z, the two-way clustered t-statistics t (βλ) for lags

λ = 1,2, · · · ,24. The t-statistics are almost always positive for the first twelve months for all regressor

choices, hence indicating momentum patterns. However, exactly after the first year there exist strong

signs of return reversal that subsequently attenuate and only seem to gain some significance for a lag of

two years. The first two plots of the first column, where the regressor is the past standardized return and

the sign of it are essentially a replication of the methodology in Moskowitz et al. (2011); the similarities

between this figure and the respective figure in Moskowitz et al. (2011) are large, even if the t-statistics

are generally larger in the latter case, the reason probably being that the dataset of Moskowitz et al. (2011)

includes 58 futures contract over a 45-year period, whereas ours is substantially smaller, consisting of 12

futures contracts over a 10-year period.

The similarity of all plots of Figure 5 offers an additional piece of evidence on the commonality of

all regressor choices to capture trending activity, in line with Panel A of Table 3. Focusing exclusively

on the ability of the trading signals SIGN, EEMD, TREND and SMT to capture return continuation, it is

observed that the first two exhibit stronger patterns for the most recent four months, whereas SMT has a

more widespread ability to capture return continuation, which becomes stronger during the farthest half

of the most recent 12-month period. This observation leads us to expect the momentum strategies with

shorter lookback periods to be more profitable with the SIGN or EEMD signals, whereas the strategies

with longer lookback periods to be more profitable with trend-related trading signals.

Lastly, it must be noted that part of this severe transition from a the largest positive t-statistic to the

largest negative t-statistic after the lag of 12 months can be potentially attributed to seasonal patterns in

the futures returns21. In undocumented results, we repeat the pooled panel regression after removing 4

contracts from the dataset that for various reasons might exhibit seasonality: the agricultural contracts

(Cocoa, Wheat) and the energy-related contracts (Crude Oil, Gas). In general the patterns become rel-

atively less pronounced, but our conclusions remain qualitatively the same and the momentum/reversal

transition is still apparent.

4.2. Momentum Profitability

Having established the return predicability in futures markets, we proceed with the construction of time-

series momentum strategies at the monthly frequency for a grid of lookback (J) and investment periods

(K) both measured in months and for all five different trading signals: SIGN, EEMD, MA, TREND

21we thank Yoav Git for bringing that to our attention.
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and SMT. The return of the aggregate time-series momentum strategy over the investment horizon is the

volatility-adjusted weighted average of the individual time-series momentum strategies and is computed

using equation (3), which is repeated below for convenience:

RT S (t, t +K) =
M

∑
i=1

Xi (t− J, t) · 10%/
√

M
σi (t;D)

·Ri (t, t +K) ,

where M = 12 is the number of the futures contracts and σi (t;D) is chosen to be the YZ ex-ante volatility

estimate for each contract i using a rolling window of D = 30 days. Instead of forming a new momentum

portfolio every K months, when the previous portfolio is unwound, we follow the overlapping method-

ology of Jegadeesh and Titman (2001) and perform portfolio rebalancing at the last trading day of each

month. The monthly return is then computed as the equally-weighted average across the K active portfo-

lios during the month of interest22.

Table 4 presents in five panels -each for different momentum trading signal- various out-of-sample

performance statistics for the (J,K) time-series momentum strategy with K,J = {1,3,6,12,24} months.

The statistics are all annualised and include the mean portfolio return along with the respective Newey

and West (1987) t-statistic, the portfolio volatility, the dollar growth, the Sharpe ration and the downside-

rise Sharpe ratio (Ziemba 2005). For each panel and statistic, we present the largest value in bold and,

especially, for the t-statistic we present in italic the t-statistics that generate p-values larger than 10%

(hence, insignificant at the 10% level).

There appear several commonalities across panels, i.e. trading signals, but there also exist some

interesting features that are next pointed out.

[Insert Table 4 here.]

[Insert Table 5 here.]

First, it is apparent that the time-series momentum strategy generates a statistically and economically

significant mean return, especially, when both the lookback and holding periods are at most equal to 12

months. Except for very few occasions the significance is strong at the 1% significance level. In terms

of mean return, it is maximised for a lookback period of 6 to 12 months and a holding horizon of 1 to

3 months, depending on the trading signal of interest, ranging from 19.34% for the SIGN signal up to

the impressive 28.36% for the SMT signal. These conclusions are in line with Moskowitz et al. (2011),

who base their empirical results solely on the SIGN signal and document similar windows of time-series

momentum significance with their largest t-statistic being observed for the (12,1) strategy. Regarding

the ex-post volatility of the time-series momentum strategies, there exists a general pattern of decreasing

volatility for longer holding periods, and shorter lookback periods. The effects for the former pattern are

22For example if K = 3, at the end of January the Jan-Feb-Mar portfolio (built at the beginning of January) has been active for
one month, the Dec-Jan-Feb portfolio has one more month to be held and the Nov-Dec-Jan portfolio is unwound and its place
is taken by the newly constructed Feb-Mar-Apr. Hence, the January return is measured as the equally weighted average of the
returns of the three portfolios Jan-Feb-Mar, Dec-Jan-Feb and Nov-Dec-Jan.
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more pronounced for shorter lookback periods and for the latter pattern are more pronounced for longer

holding periods. This is apparent from Figure 8, which is discussed later on in the next subsection.

Focusing on the most notable differences among the performance of the momentum strategies across

the trading signals and in particular across the trend-related signals (TREND and SMT) and the other

signals (SIGN, MA, EEMD), note that the former aim to capture only significant price trends and there-

fore, as shown in Panel B of Table 3, refrain from instructing trading activity in transient periods of trend

reversals. In fact, SMT is a stricter version of TREND and generates trading activity only for the 63%

of time in our sample using a 12-month lookback period (87% for TREND and by construction 100%

for the rest). This sparse activity results in increased volatility for momentum strategies based on the

TREND and SMT signals and consequently in limiting the resulting SR to similar values as for the rest of

the signals. However, this “additional volatility” appears to be generated by successful momentum bets

therefore leading to substantially larger mean return and a more positively-skewed return distributions23.

The latter effect is captured by the DR-SR measure, which exceeds the value of 2 for the (3,3) strategy

reaching for the SMT signal the value 2.33, which constitutes the largest value across all strategies of

Table 3.

In order to shed light on the sources of the aggregate time-series momentum profitability, Figure 6

presents the t-statistic and the ex-post Sharpe ratio for the univariate (6,1) and (12,1) strategies for

all trading signals. Except three and two occasions respectively, the time-series momentum patterns

are apparent -though not always strongly significant- in the univariate strategies as well, hence further

supporting the evidence in Moskowitz et al. (2011).

[Insert Figure 6 here.]

Further support to the dominance of the trend-related signals is offered by the growth of $1 invested

in a (6,1) time-series momentum strategy in April 2000; using the SMT signal $1 grows to $11.10 in

October 2009, to $7.92 using the TREND signal and to just $4.02 using the SIGN signal. In order to

visually inspect the wealth accumulation, Figure 7 presents the growth path of the $1 for all five (6,1)

strategies. Clearly, the SIGN signal generates the worst path and lies at all times below every other

momentum strategy. On the other hand, the trend-related signals dominate with the SMT signal achieving

almost three times larger final wealth compared to the SIGN signal.

[Insert Figure 7 here.]

An interesting feature is revealed for the largest lookback period, that of 24 months, for which the

MA and SMT signals do still capture momentum patterns. In particular, the (24,1), (24,3) and (24,6)

strategies based on the MA signal generate relatively large and significant mean returns. The effects are

weaker and remain relatively significant for the SMT signal, but the rest of the signals generate mostly

insignificant mean returns. For example, the (24,1) strategy using the MA signal achieves an annualised

23For instance the (12,1) strategy has a skewness of 0.36 for SIGN and 0.81 for SMT, while the (6,1) has a skewness of 0.35
and 0.79 respectively.
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mean return of 15.72%, significant at the 1% level, with a SR of 0.97; the same strategy for the SMT

signals generates a mean return of 14.96%, significant at the 5% level, with a SR of 0.76. All the other

signals cannot generate significant returns, and even the point estimate of the mean annualised return does

not exceed 7%.

4.3. Investment Implications

Interpreting the above findings from an investment perspective, there exists a clear indication that the

trend-related signals and especially the SMT signal succeed in appropriately filtering strong return con-

tinuation and consequently generating superior and strongly significant out-of-sample momentum perfor-

mance in terms of mean return, DR-SR and dollar growth, even with trading activity that is substantially

less frequent compared to standard trading signals like the SIGN or MA signals.

[Insert Table 6 here.]

In order to further support this conclusion, the turnover of all strategies is presented in Table 5 and

it is expected that the trend-related signals significantly lower the portfolio turnover and subsequently

any transaction costs. The turnover of the momentum portfolio is computed as the equally weighted

average of the turnover of all univariate time-series strategies. The turnover of a univariate strategy is

measured as the percentage change in the number of open positions in the underlying futures contract,

after ignoring positions that mutually cancel each other24. The evidence shows that the trend-related

signals do indeed generate the lowest turnover among all signals, especially for holding horizons between

1 to 6 months, which are the most profitable periods of time-series momentum strategies. The remaining

signals (SIGN, EEMD, MA) have in general very similar turnover estimates to each other, which are

almost always twice as large as those for SMT for the afore mentioned holding horizons. For instance,

the (6,1) strategy generates 19.3% turnover when the SMT signal is used and 44.0% when the SIGN

signal is used. Remember that for the same strategy the two signals exhibit annualised mean returns of

28.36% and 19.34% respectively.

Manifestly, not only does the SMT signal offer a means to superior momentum profitability, but it

also achieves so with the least amount of transaction costs. Regarding the general turnover pattern, it

is observed that in general the longer the lookback period and the shorter the holding horizon the lower

the turnover of the portfolio. This is expected, because longer lookback periods offer a slower-moving

characterisation of the intertemporal performance of the assets, therefore generating lower changes in the

momentum portfolio. Similarly, shorter holding horizons offer the flexibility of maintaining a certain

momentum position only for the period that the momentum pattern is strong.

[Insert Figure 8 here.]

24If, for instance, at a given month there exist four long positions and two short positions on the contract, we ultimately have
two open positions.
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It is important at this point to emphasise that the interpretation of the turnover results has to be done

with the appropriate caution. The fact that the trend-related signals generate lower turnover is partly due

to the fact that, by construction, these signals only instruct trading at times when a significant trend is

identified. Hence, a direct comparison in the turnover among the trend-related signals and the rest of

signals is ex-ante biased towards the former. One could argue that SIGN signal can be altered, so that

it is only instructing investment when the past return is larger/smaller than a certain positive/negative

percentile of the ex-ante return distribution. Similar methodologies could be also devised for the EEMD

and MA signals, but the key point is that these cutoff percentiles have to be ad-hoc chosen and should

be based on historical information, therefore rendering these approaches not as straightforward as the

TREND and SMT methodologies.

Lastly, focusing on the SMT signal and given its superiority across various directions, the methodol-

ogy of Table 4 is repeated for lookback and holding periods ranging between 1 and 24 months. Figure 8

plots the various out-of-sample performance statistics across these two time dimensions. All the identified

patterns that have been discussed so far in the previous and current subsections are visually apparent.

4.4. Towards Weekly and Daily Effects

Having established the strong momentum patterns at the monthly frequency, we then study higher fre-

quencies of portfolio rebalancing and in particular we explore momentum profitability at weekly and

daily frequencies. For brevity, only the results for three momentum signals, SIGN, MA and SMT, are re-

ported, since the EEMD signal behaves very similarly to the SIGN signal and the TREND signal behaves

very similarly to the SMT signal.

Regarding the weekly frequency, the dataset consists of 520 weeks. Using the methodology of the

time-series momentum strategy, we evaluate the performance of various (J,K) momentum strategies at

the end of each Wednesday, where J and K are now measured in weeks. Table 6 shows that momentum

patterns do exist at the weekly frequency. Across all three signals, the mean return is economically and

statistically significant almost for every pair (J,K), except for the shortest lookback and holding periods

of 1 to 2 weeks. The SIGN signal does capture large momentum patterns even for lookback and holding

periods that range up to 8 weeks. The MA signal fails to follow across K = 8, whereas the SMT signal

fails to follow across J = 8. Except for very few occasions, the significance is strong at the 1% level.

[Insert Table 7 here.]

The mean return is in general maximised for a lookback period of 3 to 4 weeks and a holding period

of 1 to 2 weeks. The SIGN signal achieves an annualised return of 15.84% for the (4,1) strategy, with a

SR of 0.95 and a dollar growth of $4.19 at the end of the 10-year period of our dataset. The SMT signal

offers again the best performance across the signals, which is maximised for the (3,1) strategy, reaching

19.99% and a dollar growth of $5.60. Overall, the SMT signal remains the dominant performer, offering

the largest mean return (at times even twice as large as that of the SIGN signal) and SR for most of the

cases, except for the strategies with an 8-week lookback period and a holding horizon of 1 to 3 weeks.
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This latter effect was partly expected from the monthly momentum results, as the above strategies loosely

resemble -except for the feature of weekly rebalancing- a monthly strategy with a 2-month lookback

period and a 1-month holding period, i.e. in the region that the SMT signal performs poorly (see for

instance the (1,1) monthly strategy in Table 4).

Lastly, Table 7 presents the performance statistics for time-series momentum strategies with daily fre-
quency of rebalancing (J and K are now measured in days). A number of new patterns arise. First, there

are very slight signs of daily momentum, which are interestingly scattered in various regions depending

on the trading signal. Using the SIGN signal, significant -even at 1% significance level- momentum pat-

terns are identified when the lookback period is equal to 30 days and the holding horizon is 1, 3 or 5 days.

In contrast, using the SMT signal, momentum patterns are identified for shorter lookback periods that

range between 3 to 15 days and longer holding horizons of 15 or 30 days. Lastly, the MA signal seems

to loosely behave like the SMT signal, but it is indeed the weakest momentum signal for daily strategies

leading on average to insignificant ex-post performance. Contrary to the monthly and weekly frequencies

of portfolio rebalancing, it is not the SMT signal, but the SIGN signal the one that offers the largest mean

return throughout the grid of daily strategies, equal to 13.75% and a SR of 0.83 for the (30,1) strategy.

However, the SMT signal still generates better performance than the SIGN signal in terms of mean return

in 21 out of 30 strategies in the grid, but the differences are relatively smaller compared to the monthly and

weekly results and consequently the SMT strategies are penalized in the SR statistic due to the increased

-by construction- ex-post volatility.

[Insert Table 8 here.]

Second and most importantly, the daily strategies reveal an important feature of time-series strategies,

that of the very short-term reversal. In particular the (3,1) generates a statistically significant -at the 5%

level for the SMT signal and at the 10% level for the SIGN and MA signals- negative return that reaches

even -13.38% annualised for the SMT signal, resulting in an almost 80% decrease of the initial investment

at the beginning of our 10-year period. This is the only instance across all trading signals and rebalancing

frequencies that a statistically and economically significant reversal pattern is documented.

5. Concluding Remarks

The time-series momentum strategy refers to the trading strategy that results from the aggregation of

various univariate momentum strategies on a volatility-adjusted basis. This paper builds on recent work

by Moskowitz et al. (2011) that focuses on the profitability of time-series momentum strategies in futures

markets and extends it by exploring monthly, weekly and daily frequencies of portfolio rebalancing for a

broad grid of lookback and holding periods. The availability of a unique dataset of intra-day quotes for

12 futures contracts allows the investigation of two important aspects of the strategy that have not been

studied in detail in the past, namely the efficiency of the volatility estimation procedure that is crucial

for the aggregation of the univariate strategies and the trading signal that is used to build the univariate

strategies.
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The main findings of the paper are next summarized. First, a novel overview of momentum trading

signals is presented and the results show that the information content of the price path throughout the

lookback period can be used to provide more descriptive indicators of the intertemporal price trends and

therefore to avoid eminent price reversals. Time-series momentum portfolios that are based on trend-

related signals dominate -in terms of ex-post mean return, dollar growth, positive skewness and turnover-

similar portfolios based on the traditional momentum signal, the sign of past return. Second, for a broad

grid of lookback and holding periods, we document strong momentum patterns at the monthly frequency

that partly reverse after the first year of investment, relatively strong momentum patterns at the weekly

frequency for up to 8 weeks of investment and scarce momentum patterns at the daily frequency. In fact,

significant reversal effects are documented for the momentum portfolio that is built using information

from the last 3 days and held only for the following trading day. Finally, it is empirically shown that

the volatility adjustment of the constituents of the time-series momentum is critical for the resulting

portfolio turnover. The use of more efficient estimators like the Yang and Zhang (2000) range estimator

can substantially reduce the portfolio turnover and consequently the transaction costs for the construction

and rebalancing of the portfolio.

Time-series momentum profitability implies strong autocorrelation in the individual return series of

the contracts. From a theoretical perspective, this finding poses a substantial challenge to the random

walk hypothesis and the market efficiency. The objective of this study is not to explain which mechanism

is at work, but the fact that the source of this predictability is merely a single-firm effect relates the

empirical findings of the paper to two strands of literature, namely the rational and behavioural models that

endogenise serial autocorrelation in the return series of an asset. For instance, Berk et al. (1999), Chordia

and Shivakumar (2002) and Johnson (2002) justify the existence of time-series return predictability and

consequently momentum profitability as compensation for bearing time-varying risk. Instead, Barberis

et al. (1998), Daniel et al. (1998) and Hong and Stein (1999) develop theories of investor irrationality and

attribute time-series return predictability to cognitive biases that affect investment decisions. Given the

existence of this broad range of rational and behavioural attempts to explain the momentum patterns, the

need for a unified theoretical explanation remains a fertile ground for future research.

From an investment perspective, the findings of the paper are clearly interesting. Future research on

the appropriate sizing of the univariate time-series momentum strategies, instead of ordinary volatility-

adjusted aggregation, appears fruitful and challenging. Similarly challenging appears to be the part of

research that could optimally combine various frequencies of portfolio rebalancing as this would closer

mimic investor’s behaviour.
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Panel A: Using Monthly Return Series [N=120 observations]

Mean (%) NW t-stat Vol. (%) Skewness Kurtosis JB(p) LF(p) t-DoF LB(p) ARCH(p) SR DR-SR

Cocoa 11.26 1.65 27.74 0.25 3.19 0.41 0.00 16.65 0.02 0.09 0.41 0.47
Crude Oil 8.24 0.86 23.17 -0.40 6.62 0.00 0.32 4.95 0.00 0.00 0.36 0.36
Dollar Index -2.71 -0.94 8.34 0.26 4.22 0.02 0.18 6.05 0.25 0.43 -0.33 -0.31
Euro 3.69 1.06 10.56 -0.05 4.47 0.01 0.08 4.26 0.48 0.46 0.35 0.38
Eurodollar 0.94 2.71 0.92 2.25 10.66 0.00 0.00 2.35 0.08 0.84 1.03 2.07
S&P500 -3.20 -0.57 15.32 -0.63 4.28 0.01 0.00 5.56 0.01 0.00 -0.21 -0.19
Gold 9.00 2.33 14.15 -0.27 5.64 0.00 0.22 5.31 0.15 0.00 0.64 0.73
Copper 36.75 1.95 60.32 1.06 5.92 0.00 0.00 2.82 0.04 0.06 0.61 0.83
Gas -8.37 -0.98 27.52 0.36 5.07 0.00 0.08 4.21 0.67 0.02 -0.31 -0.29
T-Note 10Y 6.37 2.75 8.05 0.14 4.19 0.03 0.26 7.75 0.72 0.67 0.79 0.96
Wheat -4.19 -0.68 19.47 -0.05 5.24 0.00 0.00 2.31 0.89 0.00 -0.22 -0.20
Eurostoxx50 -4.61 -0.56 23.24 -0.25 3.18 0.41 0.09 19.71 0.22 0.19 -0.20 -0.18

Panel B: Using Weekly Return Series [N=522 observations]

Mean (%) NW t-stat Vol. (%) Skewness Kurtosis JB(p) LF(p) t-DoF LB(p) ARCH(p) SR DR-SR

Cocoa 10.85 1.43 25.79 0.08 3.93 0.00 0.04 6.60 0.33 0.05 0.42 0.44
Crude Oil 8.20 1.02 23.19 -0.20 6.09 0.00 0.00 4.11 0.65 0.00 0.35 0.36
Dollar Index -2.68 -0.97 8.44 -0.30 6.09 0.00 0.21 8.43 0.66 0.05 -0.32 -0.30
Euro 3.70 1.08 10.74 0.57 8.17 0.00 0.05 6.95 0.94 0.09 0.34 0.37
Eurodollar 0.94 3.19 0.77 1.09 10.48 0.00 0.00 2.28 0.00 0.00 1.22 1.60
S&P500 -2.70 -0.49 17.92 -0.60 8.46 0.00 0.00 3.52 0.44 0.00 -0.15 -0.14
Gold 9.14 1.97 16.41 -0.01 10.84 0.00 0.00 3.06 0.44 0.00 0.56 0.59
Copper 32.49 2.06 51.58 1.76 17.56 0.00 0.00 4.35 0.07 0.13 0.63 0.75
Gas -8.62 -1.10 26.25 0.51 8.90 0.00 0.00 2.75 0.04 0.06 -0.33 -0.32
T-Note 10Y 6.30 2.46 7.91 -0.10 3.76 0.01 0.23 9.91 0.68 0.05 0.80 0.86
Wheat -3.81 -0.56 21.18 0.71 9.70 0.00 0.00 2.35 0.56 0.00 -0.18 -0.19
Eurostoxx50 -3.54 -0.46 27.17 0.15 7.88 0.00 0.00 4.45 0.00 0.00 -0.13 -0.13

Panel C: Using Daily Return Series [N=2610 observations]

Mean (%) NW t-stat Vol. (%) Skewness Kurtosis JB(p) LF(p) t-DoF LB(p) ARCH(p) SR DR-SR

Cocoa 10.63 1.29 26.07 -0.28 6.30 0.00 0.00 3.71 0.50 0.00 0.41 0.41
Crude Oil 8.21 1.14 24.05 -0.20 6.79 0.00 0.00 3.59 0.02 0.00 0.34 0.34
Dollar Index -2.59 -1.00 8.45 -0.17 4.34 0.00 0.00 6.96 0.41 0.00 -0.31 -0.30
Euro 3.57 1.11 10.41 0.11 4.65 0.00 0.00 5.69 0.49 0.00 0.34 0.35
Eurodollar 0.91 3.62 0.77 0.53 13.28 0.00 0.00 1.62 0.00 0.00 1.18 1.31
S&P500 -1.98 -0.36 21.36 0.53 17.77 0.00 0.00 2.52 0.00 0.00 -0.09 -0.09
Gold 9.00 1.84 16.14 0.14 13.87 0.00 0.00 2.57 0.48 0.00 0.56 0.57
Copper 31.16 2.13 48.64 0.46 7.53 0.00 0.00 3.88 0.12 0.00 0.64 0.68
Gas -8.59 -1.12 25.26 0.42 8.33 0.00 0.00 2.44 0.00 0.00 -0.34 -0.34
T-Note 10Y 6.17 2.57 8.21 -0.07 5.03 0.00 0.00 5.67 0.18 0.00 0.75 0.77
Wheat -3.80 -0.61 20.49 -0.07 8.64 0.00 0.00 2.07 0.49 0.00 -0.19 -0.18
Eurostoxx50 -2.43 -0.31 30.62 0.17 7.05 0.00 0.00 3.34 0.00 0.00 -0.08 -0.08

Table 1: Summary Statistics for Futures Contracts
The table presents summary statistics for the 12 futures contracts of the dataset using monthly (120 ob-
servations; Panel A), weekly (522 observations; Panel B) and daily (2610 observations; Panel C) return
series. The statistics are: mean return, Newey-West t-statistic, volatility, skewness, kurtosis, Jarque-Bera
p-value (H0: normal distribution), Lilliefors p-value (H0: normal distribution), ML-estimated degrees of
freedom for a Student-t distribution, Ljung-Box p-value (H0: no first-order autocorrelation), p-value of
Engle’s ARCH test for heteroscedasticity (H0: no conditional heteroscedasticity), Sharpe ratio (SR) and
downside risk Sharpe ration (DR-SR) by Ziemba (2005). The mean return, the volatility and the Sharpe
ratios are expressed in annual terms (using appropriate scaling) for comparison purposes. The dataset
covers the period November 1, 1999 to October 30, 2009.
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Panel A: Volatility Estimator Correlation Matrix (across the 12 instruments; 60 days of estimation)

RV STDEV EWMA PK GK RS GKYZ YZ

RV 1.000
STDEV 0.937 1.000
EWMA 0.932 0.994 1.000
PK 0.986 0.923 0.918 1.000
GK 0.983 0.899 0.895 0.995 1.000
RS 0.978 0.886 0.881 0.988 0.998 1.000
GKYZ 0.934 0.972 0.965 0.907 0.898 0.894 1.000
YZ 0.934 0.973 0.966 0.907 0.896 0.893 1.000 1.000

Panel B: Average Bias assuming RV is the true volatility

RV STDEV EWMA PK GK RS GKYZ YZ

Cocoa 0.00 5.87 5.38 -3.86 -6.17 -6.90 -0.51 0.04
Crude Oil 0.00 2.13 1.70 -2.83 -4.32 -4.85 -2.40 -2.10
Dollar Index 0.00 0.62 0.47 -1.44 -1.89 -2.04 -0.63 -0.52
Euro 0.00 1.45 1.27 -1.18 -1.79 -2.03 -0.14 -0.04
Eurodollar 0.00 -0.01 -0.02 -0.16 -0.21 -0.23 -0.14 -0.13
S&P500 0.00 1.10 0.76 -2.25 -3.44 -3.83 -2.98 -2.67
Gold 0.00 0.86 0.58 -1.98 -2.90 -3.29 -1.82 -1.65
Copper 0.00 6.19 5.36 -6.96 -9.96 -10.91 -2.16 -1.42
Gas 0.00 3.06 2.54 -2.73 -4.39 -5.12 -2.14 -1.89
T-Note 10Y 0.00 0.69 0.55 -1.12 -1.70 -1.88 -1.04 -0.89
Wheat 0.00 -0.33 -0.69 -7.57 -9.65 -10.58 -1.59 -1.42
Eurostoxx50 0.00 7.71 7.20 -2.76 -4.70 -5.18 1.97 2.56

Avg. RANK - 3.33 2.42 4.25 5.83 6.83 3.17 2.17

Panel C: Average
∣∣∆( 1

σ

)∣∣
RV STDEV EWMA PK GK RS GKYZ YZ

Cocoa 4.64 5.41 6.74 7.42 7.91 9.69 5.45 5.27
Crude Oil 3.91 6.10 7.73 6.09 6.57 8.18 5.42 5.32
Dollar Index 8.96 15.18 19.28 14.92 15.09 17.04 12.05 11.90
Euro 7.69 12.75 16.02 12.43 12.69 14.39 10.09 10.00
Eurodollar 176.49 362.01 430.50 344.58 354.88 375.79 285.62 279.90
S&P500 5.20 9.06 11.33 7.77 7.89 8.78 7.67 7.65
Gold 8.47 11.52 14.41 13.19 13.31 14.81 9.78 9.72
Copper 1.94 2.98 3.76 3.03 3.13 3.57 2.56 2.52
Gas 6.94 8.32 10.22 9.87 10.87 13.11 8.21 8.03
T-Note 10Y 10.48 16.57 20.80 15.08 15.62 18.40 13.77 13.71
Wheat 9.80 9.96 12.27 2.72 2.89 3.28 9.94 9.89
Eurostoxx50 4.32 5.28 6.59 6.64 6.85 8.16 4.70 4.64

Avg. RANK 1.25 5.17 7.17 4.33 5.50 7.00 3.33 2.25

Table 2: Volatility Estimators
The table presents in Panel A the average (across the 12 futures contracts) correlation matrix of eight
different volatility estimators: (a) Realized Volatility (RV), (b) standard deviation of past returns (STDEV),
(c) exponentially-weighted average of past squared returns (EWMA), (d) Parkinson (1980) estimator (PK),
(e) Garman and Klass (1980) estimator (GK), (f) Roger and Satchell (1991) estimator (RS), (g) Garman
and Klass estimator adjusted by Yang and Zhang to allow for opening jumps (GKYZ) and (h) Yang and
Zhang (2000) estimator (YZ). The estimation period is a rolling window of 60 trading days. The RV is
estimated using intra-day 30min returns, whereas all the rest estimators use daily data for opening, closing,
high and low futures prices. Panel B presents the average bias of all estimators for all contracts, assuming
that the RV is the true volatility. The last row presents the average rank of each estimator across the
futures contracts in terms of absolute bias (1: BEST, 7: WORST). Panel C presents the average change
of the ratio 1

σ
for all futures contracts and volatility estimators. The last row presents the average rank of

each estimator across the futures contracts in terms of VTO (1: BEST, 8: WORST). The dataset covers
the period November 1, 1999 to October 30, 2009.
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Panel A: Momentum Signal Correlation and Position Agreement (%) Matrices

SIGN MA EEMD TREND SMT SIGN MA EEMD TREND SMT

SIGN 1.00 - 86.31 90.75 82.19 61.24
MA 0.68 1.00 86.31 - 87.00 79.43 60.55
EEMD 0.78 0.69 1.00 90.75 87.00 - 85.93 62.69
TREND 0.79 0.73 0.89 1.00 94.38 91.32 98.84 - 72.12
SMT 0.71 0.69 0.75 0.82 1.00 97.23 96.20 99.78 99.89 -

Panel B: Percentage of Long and Short Positions

Long Activity Short Activity

SIGN MA EEMD TREND SMT SIGN MA EEMD TREND SMT

Cocoa 56.88 55.05 57.80 48.62 28.44 43.12 44.95 42.20 33.94 12.84
Crude Oil 64.22 67.89 66.97 59.63 51.38 35.78 32.11 33.03 25.69 17.43
Dollar Index 32.11 31.19 32.11 28.44 17.43 67.89 68.81 67.89 63.30 47.71
Euro 68.81 68.81 70.64 62.39 46.79 31.19 31.19 29.36 26.61 15.60
Eurodollar 65.14 63.30 65.14 59.63 51.38 34.86 36.70 34.86 30.28 23.85
S&P500 49.54 47.71 52.29 48.62 34.86 50.46 52.29 47.71 45.87 37.61
Gold 77.98 78.90 79.82 68.81 53.21 22.02 21.10 20.18 13.76 11.01
Copper 57.80 65.14 61.47 53.21 41.28 42.20 34.86 38.53 25.69 14.68
Gas 35.78 33.94 36.70 30.28 23.85 64.22 66.06 63.30 54.13 42.20
T-Note 10Y 83.49 80.73 83.49 76.15 48.62 16.51 19.27 16.51 11.01 5.50
Wheat 34.86 33.94 39.45 33.03 18.35 65.14 66.06 60.55 58.72 45.87
Eurostoxx50 39.45 40.37 39.45 34.86 25.69 60.55 59.63 60.55 50.46 38.53

Average 55.50 55.58 57.11 50.31 36.77 44.50 44.42 42.89 36.62 26.07

Table 3: Momentum Signals
The table presents various properties of the five different momentum signals of interest: (a) SIGN: the
sign of past return, (b) MA: the moving average crossovers between a 12-month lagging indicator and a 1-
month leading indicator, (c) EEMD: the direction of the extracted price trend using the EEMD procedure,
(d) TREND: the t-statistic of the slope coefficient in a regression of the price level on a time trend, (e) SMT:
the t-statistic of a statistically meaningful time trend by Bryhn and Dimberg (2011). The lookback period
is equal to 12 months for the entire table. Panel A presents the correlation and the position agreement
matrices of the momentum signals. Both matrices constitute averages across all 12 futures contracts. The
position agreement matrix denotes the number of time periods of agreement in the long/short positions
across all possible pairs of momentum signals normalized by the number of active periods (i.e. either +1
or -1) of the signals across the vertical direction; for instance, the value 62.69 in the last column means
that in 62.69% of the periods that the EEMD signals a long or a short position, the SMT agrees. Panel B
presents the percentage of time periods that each momentum signal indicates a long or a short position in
the underlying contract; by construction, the percentages of long and short positions sum up to one for the
SIGN, MA and EEMD signals. The dataset covers the period November 1, 1999 to October 30, 2009.
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Panel A: SIGN Trading Signal

K 1 3 6 12 24 1 3 6 12 24 1 3 6 12 24

J Annualized Mean (%) Annualized Volatility (%) NW t-statistic

1 10.43 11.46 9.75 7.58 3.57 15.96 11.82 8.23 7.14 6.46 2.15 2.90 3.55 3.33 1.73
3 15.03 16.57 13.07 8.82 4.59 16.37 14.01 12.48 9.86 8.66 2.90 3.80 3.32 2.83 1.78
6 15.97 13.93 12.69 9.87 5.47 16.02 15.13 13.75 11.81 11.21 3.06 2.77 2.76 2.67 1.57
12 19.34 18.19 16.24 13.44 7.66 18.23 16.49 15.39 14.67 15.26 3.05 3.21 3.41 2.93 1.56
24 5.49 7.36 5.84 1.96 -1.38 15.06 15.05 15.69 16.57 15.99 1.08 1.54 1.24 0.35 -0.25

J Dollar Growth Sharpe ratio Downside-Risk Sharpe ratio

1 2.46 2.88 2.51 2.05 1.39 0.66 0.97 1.19 1.07 0.55 0.82 1.47 1.62 1.56 0.60
3 3.79 4.54 3.30 2.25 1.51 0.92 1.19 1.05 0.90 0.53 1.30 1.83 1.49 1.12 0.57
6 4.02 3.36 3.04 2.39 1.58 1.00 0.92 0.93 0.84 0.49 1.38 1.25 1.22 1.03 0.52
12 4.88 4.52 3.85 3.03 1.79 1.07 1.11 1.06 0.92 0.50 1.50 1.59 1.51 1.20 0.54
24 1.42 1.65 1.45 1.05 0.81 0.37 0.49 0.37 0.12 -0.09 0.43 0.59 0.44 0.13 -0.09

Panel B: EEMD Trading Signal

K 1 3 6 12 24 1 3 6 12 24 1 3 6 12 24

J Annualized Mean (%) Annualized Volatility (%) NW t-statistic

1 10.41 10.44 9.40 7.42 2.65 17.46 12.27 8.81 7.63 6.90 1.95 2.43 3.13 2.97 1.16
3 12.38 14.86 12.02 7.87 3.53 16.10 12.55 11.03 8.97 8.15 2.53 3.76 3.25 2.78 1.47
6 21.82 15.16 11.21 10.48 6.15 16.31 15.10 13.17 11.33 10.77 3.86 3.01 2.67 3.06 1.94
12 17.86 17.24 14.43 11.17 6.48 17.07 16.04 15.12 14.34 14.61 3.07 3.03 2.97 2.51 1.39
24 6.25 8.04 8.25 4.18 -1.09 15.18 15.00 15.50 16.23 16.21 1.23 1.76 1.85 0.78 -0.19

J Dollar Growth Sharpe ratio Downside-Risk Sharpe ratio

1 2.40 2.59 2.42 2.01 1.27 0.60 0.85 1.07 0.98 0.39 0.72 1.24 1.52 1.35 0.38
3 2.94 3.92 3.03 2.07 1.36 0.77 1.19 1.09 0.88 0.43 1.00 1.89 1.56 1.08 0.44
6 6.93 3.77 2.67 2.54 1.70 1.34 1.01 0.86 0.93 0.57 2.18 1.46 1.15 1.20 0.64
12 4.35 4.18 3.29 2.48 1.62 1.05 1.08 0.96 0.78 0.45 1.59 1.59 1.37 0.97 0.48
24 1.50 1.74 1.76 1.26 0.82 0.41 0.54 0.53 0.26 -0.07 0.50 0.67 0.66 0.28 -0.07

Panel C: MA Trading Signal

K 1 3 6 12 24 1 3 6 12 24 1 3 6 12 24

J Annualized Mean (%) Annualized Volatility (%) NW t-statistic

1 - - - - - - - - - - - - - - -
3 13.44 14.61 10.81 6.05 2.62 16.43 12.30 10.50 9.13 8.04 2.60 3.79 3.35 2.13 1.01
6 19.23 16.81 11.27 8.92 5.42 18.04 14.71 12.93 11.07 10.45 3.24 3.45 2.65 2.51 1.55
12 19.58 20.67 17.22 14.27 9.06 17.26 16.00 14.38 13.60 14.78 3.47 3.78 3.62 3.32 1.92
24 15.72 13.30 10.43 6.72 0.44 16.29 15.66 15.32 15.78 16.84 2.71 2.42 2.11 1.29 0.07

J Dollar Growth Sharpe ratio Downside-Risk Sharpe ratio

1 - - - - - - - - - - - - - - -
3 3.24 3.84 2.71 1.73 1.25 0.82 1.19 1.03 0.67 0.33 1.09 1.81 1.36 0.75 0.32
6 5.29 4.43 2.69 2.20 1.59 1.07 1.15 0.88 0.81 0.52 1.57 1.76 1.17 0.96 0.54
12 5.06 5.67 4.26 3.31 2.04 1.14 1.30 1.20 1.05 0.62 1.76 1.96 1.73 1.45 0.65
24 3.15 2.62 2.09 1.55 0.92 0.97 0.85 0.68 0.43 0.03 1.37 1.15 0.89 0.48 0.03

(Continued on next page)
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Panel D: TREND Trading Signal

K 1 3 6 12 24 1 3 6 12 24 1 3 6 12 24

J Annualized Mean (%) Annualized Volatility (%) NW t-statistic

1 7.09 11.24 11.34 8.62 2.42 19.60 15.43 11.06 8.87 7.46 1.14 2.12 3.05 3.08 0.93
3 14.36 20.32 14.36 8.27 4.15 20.17 14.27 12.88 11.06 10.42 2.16 4.62 3.52 2.36 1.25
6 23.82 16.99 11.27 10.70 6.18 19.57 16.27 14.17 12.46 12.37 3.57 3.09 2.34 2.80 1.63
12 22.47 22.29 16.04 12.61 7.49 19.00 17.49 15.89 15.51 16.48 3.60 3.63 3.06 2.56 1.40
24 6.66 5.70 8.83 4.50 -1.73 16.84 16.16 15.98 17.08 17.37 1.27 1.14 1.87 0.76 -0.28

J Dollar Growth Sharpe ratio Downside-Risk Sharpe ratio

1 1.67 2.69 2.86 2.24 1.23 0.36 0.73 1.03 0.98 0.33 0.43 1.02 1.38 1.27 0.32
3 3.32 6.49 3.72 2.11 1.42 0.72 1.43 1.12 0.75 0.40 0.88 2.26 1.54 0.86 0.39
6 7.92 4.40 2.65 2.56 1.67 1.22 1.05 0.80 0.86 0.50 1.84 1.41 1.03 1.07 0.52
12 6.36 6.40 3.76 2.78 1.73 1.19 1.28 1.01 0.82 0.46 1.79 1.89 1.37 1.00 0.47
24 1.52 1.42 1.83 1.27 0.77 0.40 0.35 0.56 0.26 -0.10 0.48 0.43 0.70 0.29 -0.10

Panel E: SMT Trading Signal

K 1 3 6 12 24 1 3 6 12 24 1 3 6 12 24

J Annualized Mean (%) Annualized Volatility (%) NW t-statistic

1 8.50 11.47 11.24 9.30 2.34 21.84 16.74 12.40 10.11 9.26 1.18 2.09 2.84 2.88 0.71
3 14.10 22.17 13.99 8.63 3.47 23.82 15.96 13.43 12.08 11.94 1.86 4.29 3.15 2.29 0.90
6 28.36 18.71 12.72 11.01 4.64 24.18 19.04 16.16 13.43 13.12 3.51 2.94 2.50 2.66 1.18
12 24.56 19.08 16.11 12.69 6.55 23.44 18.99 18.04 17.06 17.06 3.13 2.93 2.83 2.45 1.28
24 14.96 9.15 10.93 6.22 -1.25 19.66 19.35 17.91 18.50 19.48 2.15 1.46 1.90 0.95 -0.18

J Dollar Growth Sharpe ratio Downside-Risk Sharpe ratio

1 1.83 2.70 2.79 2.37 1.20 0.39 0.69 0.91 0.92 0.25 0.45 0.96 1.24 1.13 0.23
3 3.00 7.58 3.57 2.16 1.31 0.59 1.39 1.05 0.72 0.29 0.68 2.33 1.42 0.79 0.28
6 11.10 4.95 2.95 2.60 1.43 1.18 0.99 0.79 0.82 0.36 1.83 1.35 1.00 1.00 0.37
12 7.09 4.71 3.67 2.74 1.58 1.05 1.01 0.90 0.75 0.39 1.63 1.45 1.22 0.95 0.41
24 2.83 1.79 2.11 1.43 0.77 0.76 0.48 0.61 0.34 -0.06 1.01 0.60 0.79 0.38 -0.06

Table 4: Time-Series Momentum with Monthly Portfolio Rebalancing
The table presents the annualised mean return, the annualised volatility, the Newey and West (1987) t-
statistic of the mean return, the dollar growth, the annualised Sharpe ratio and the annualised downside-
risk Sharpe ratio by Ziemba (2005) for various (J,K) time-series momentum strategies, where J denotes
the lookback period and K denotes the investment horizon, both measured in months. The portfolio
rebalancing takes place at the end of each month and the momentum signals are: (a) SIGN: the sign
of past return, (b) MA: the moving average crossovers between a J-month lagging indicator and a 1-
month leading indicator, (c) EEMD: the direction of the extracted price trend using the EEMD procedure,
(d) TREND: the t-statistic of the slope coefficient in a regression of the price level on a time trend, (e)
SMT: the t-statistic of a statistically meaningful time trend by Bryhn and Dimberg (2011). The time-
series momentum strategy is the volatility-adjusted (using the 30-day Yang and Zhang (2000) estimator)
weighted average of the individual momentum strategies. The dataset covers the period November 1, 1999
to October 30, 2009.
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Monthly Portfolio Turnover (%)

K 1 3 6 12 24 1 3 6 12 24

J SIGN EEMD

1 102.2 109.7 803.1 412.1 571.2 105.0 125.4 587.4 394.8 76.9
3 62.4 129.4 167.3 123.2 60.7 65.9 98.1 725.0 90.4 175.5
6 44.9 98.7 439.0 87.6 50.2 43.2 66.0 153.1 81.8 80.0
12 31.5 37.4 75.9 58.3 47.1 29.5 54.8 70.8 58.2 43.8
24 23.0 30.5 39.0 53.7 162.1 20.5 25.1 50.2 31.3 115.5

J MA

1 - - - - -
3 74.05 93.2 363.3 102.1 104.4
6 49.8 69.8 241.5 270.2 41.0
12 33.2 48.4 111.6 42.4 76.8
24 23.4 25.7 44.2 32.51 28.5

J TREND SMT

1 68.2 539.9 238.7 183.2 112.2 55.6 417.4 194.4 141.8 86.9
3 41.6 351.3 147.2 90.8 72.7 30.4 344.7 377.6 223.8 693.5
6 24.3 193.0 163.3 92.0 121.8 19.3 47.2 83.0 87.1 69.6
12 18.0 62.2 57.7 70.0 47.1 15.6 22.5 38.3 58.4 85.6
24 14.2 18.6 39.8 57.2 33.8 11.6 13.9 15.0 47.7 51.6

Table 5: Monthly Portfolio Turnover for Time-Series Momentum Strategies
The table presents the monthly portfolio turnover for various (J,K) time-series momentum strategies,
where J denotes the lookback period and K denotes the investment horizon, both measured in months.
The portfolio turnover is computed as the percentage change in the aggregate number of open positions
in futures contracts. The portfolio rebalancing takes place at the end of each month and the momentum
trading signals are: (a) SIGN: the sign of past return, (b) MA: the moving average crossovers between
a 12-month lagging indicator and a 1-month leading indicator, (c) EEMD: the direction of the extracted
price trend using the EEMD procedure, (d) TREND: the t-statistic of the slope coefficient in a regression
of the price level on a time trend, (e) SMT: the t-statistic of a statistically meaningful time trend by Bryhn
and Dimberg (2011). The time-series momentum strategy is the volatility-adjusted (using the 30-day Yang
and Zhang (2000) estimator) weighted average of the individual momentum strategies. The dataset covers
the period November 1, 1999 to October 30, 2009.
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Panel A: SIGN Trading Signal

K 1 2 3 4 8 1 2 3 4 8 1 2 3 4 8

J Annualized Mean (%) Annualized Volatility (%) NW t-statistic

1 3.33 4.38 9.04 8.24 6.67 16.46 11.58 10.22 9.36 7.78 0.69 1.25 3.18 2.95 2.67
2 5.53 7.21 7.55 6.41 4.78 16.32 14.29 12.76 11.79 9.59 1.14 1.71 2.04 1.78 1.58
3 10.56 10.41 9.40 8.00 5.94 16.38 14.78 13.95 13.29 10.85 2.18 2.39 2.23 1.98 1.72
4 15.89 13.08 11.28 8.99 8.21 16.75 15.57 14.95 14.60 12.33 3.20 2.82 2.44 1.96 2.01
8 12.03 10.18 10.46 9.69 10.62 17.15 16.82 16.42 16.07 14.49 2.31 1.93 2.01 1.89 2.25

J Dollar Growth Sharpe ratio Downside-Risk Sharpe ratio

1 1.22 1.44 2.32 2.16 1.88 0.20 0.38 0.89 0.88 0.86 0.21 0.40 0.96 0.94 0.94
2 1.51 1.85 1.95 1.76 1.53 0.34 0.51 0.59 0.54 0.50 0.35 0.52 0.60 0.56 0.52
3 2.49 2.51 2.30 2.02 1.70 0.65 0.70 0.67 0.60 0.55 0.70 0.75 0.71 0.64 0.58
4 4.19 3.24 2.74 2.19 2.09 0.95 0.84 0.76 0.62 0.67 1.03 0.90 0.82 0.67 0.74
8 2.84 2.38 2.46 2.29 2.57 0.70 0.61 0.64 0.60 0.73 0.75 0.64 0.68 0.64 0.81

Panel B: MA Trading Signal

K 1 2 3 4 8 1 2 3 4 8 1 2 3 4 8

J Annualized Mean (%) Annualized Volatility (%) NW t-statistic

1 - - - - - - - - - - - - - - -
2 6.12 9.61 8.88 7.19 4.58 16.35 13.92 12.21 11.19 8.89 1.29 2.32 2.57 2.18 1.66
3 6.72 8.88 7.47 6.80 4.19 16.73 15.03 13.60 12.72 9.96 1.43 2.18 2.02 1.88 1.34
4 8.28 9.37 7.31 6.49 4.06 16.49 15.37 14.28 13.70 11.15 1.81 2.21 1.82 1.63 1.14
8 12.52 10.51 8.97 8.39 8.07 17.03 16.46 16.04 15.65 13.41 2.55 2.16 1.85 1.75 1.87

J Dollar Growth Sharpe ratio Downside-Risk Sharpe ratio

1 - - - - - - - - - - - - - - -
2 1.60 2.35 2.24 1.92 1.51 0.37 0.69 0.73 0.64 0.52 0.38 0.72 0.77 0.69 0.55
3 1.69 2.15 1.91 1.81 1.44 0.40 0.59 0.55 0.54 0.42 0.41 0.62 0.56 0.56 0.44
4 1.98 2.25 1.86 1.73 1.41 0.50 0.61 0.51 0.47 0.36 0.52 0.63 0.53 0.49 0.38
8 2.98 2.47 2.14 2.03 2.03 0.74 0.64 0.56 0.54 0.60 0.79 0.68 0.59 0.57 0.65

Panel C: SMT Trading Signal

K 1 2 3 4 8 1 2 3 4 8 1 2 3 4 8

J Annualized Mean (%) Annualized Volatility (%) NW t-statistic

1 2.60 7.26 9.62 8.67 7.40 21.79 16.27 14.27 12.66 10.32 0.41 1.51 2.16 2.11 2.17
2 12.76 14.60 14.78 11.01 9.14 22.73 18.65 16.16 15.32 12.68 1.91 2.66 3.33 2.40 2.24
3 19.99 18.29 13.31 9.70 10.74 22.58 19.18 17.17 16.26 13.55 3.07 3.29 2.62 1.98 2.40
4 18.65 14.93 10.53 9.83 7.23 22.85 20.02 18.35 17.17 14.40 2.79 2.61 1.93 1.83 1.50
8 9.76 6.21 8.32 9.79 12.24 24.34 21.76 20.30 19.32 15.91 1.24 0.90 1.31 1.67 2.28

J Dollar Growth Sharpe ratio Downside-Risk Sharpe ratio

1 1.02 1.80 2.34 2.18 1.97 0.12 0.45 0.67 0.69 0.72 0.12 0.47 0.71 0.71 0.76
2 2.73 3.57 3.79 2.65 2.28 0.56 0.78 0.92 0.72 0.72 0.59 0.86 0.98 0.76 0.77
3 5.60 5.08 3.23 2.29 2.64 0.89 0.95 0.78 0.60 0.79 0.95 1.01 0.83 0.64 0.88
4 4.89 3.60 2.40 2.29 1.85 0.82 0.75 0.57 0.57 0.50 0.92 0.82 0.63 0.65 0.56
8 1.95 1.46 1.85 2.18 2.96 0.40 0.29 0.41 0.51 0.77 0.40 0.29 0.42 0.52 0.85

Table 6: Time-Series Momentum with Weekly Portfolio Rebalancing
The table presents the annualised mean return, the annualised volatility, the Newey and West (1987) t-statistic of the mean return,
the dollar growth, the annualised Sharpe ratio and the annualised downside-risk Sharpe ratio by Ziemba (2005) for various (J,K)

time-series momentum strategies, where J denotes the lookback period and K denotes the investment horizon, both measured in
weeks. The portfolio rebalancing takes place at the end of each Wednesday and the momentum signals are: (a) SIGN: the sign
of past return, (b) MA: the moving average crossovers between a J-month lagging indicator and a 1-month leading indicator, (c)
SMT: the t-statistic of a statistically meaningful time trend by Bryhn and Dimberg (2011). The time-series momentum strategy is the
volatility-adjusted (using the 30-day Yang and Zhang (2000) estimator) weighted average of the individual momentum strategies.
The dataset covers the period November 1, 1999 to October 30, 2009.
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Panel A: SIGN Trading Signal

K 1 3 5 10 15 30 1 3 5 10 15 30 1 3 5 10 15 30

J Annualized Mean (%) Annualized Volatility (%) NW t-statistic

3 -8.92 -0.54 1.04 2.01 3.04 2.84 16.08 11.67 9.65 7.17 6.18 5.09 -1.89 -0.16 0.36 0.98 1.62 1.84
5 -1.60 2.76 3.07 3.59 5.00 3.81 16.47 14.19 12.30 9.71 8.49 6.97 -0.32 0.65 0.84 1.25 1.93 1.79
10 3.39 3.48 3.28 4.60 5.87 3.89 16.19 15.08 14.31 12.86 11.71 9.72 0.69 0.79 0.76 1.17 1.65 1.29
15 4.88 4.02 4.73 5.69 6.12 4.04 16.44 15.35 14.90 14.13 13.37 11.36 0.96 0.85 1.04 1.35 1.52 1.13
30 13.75 12.73 10.05 7.24 7.29 6.04 16.62 16.23 16.07 15.79 15.44 13.96 2.71 2.57 2.06 1.50 1.52 1.35

J Dollar Growth Sharpe ratio Downside-Risk Sharpe ratio

3 0.35 0.88 1.06 1.20 1.34 1.32 -0.55 -0.05 0.11 0.28 0.49 0.56 -0.55 -0.05 0.11 0.28 0.50 0.56
5 0.74 1.20 1.27 1.38 1.61 1.44 -0.10 0.19 0.25 0.37 0.59 0.55 -0.10 0.20 0.25 0.37 0.60 0.55
10 1.24 1.27 1.26 1.47 1.70 1.42 0.21 0.23 0.23 0.36 0.50 0.40 0.21 0.23 0.23 0.36 0.50 0.40
15 1.43 1.34 1.45 1.62 1.71 1.42 0.30 0.26 0.32 0.40 0.46 0.36 0.30 0.26 0.32 0.41 0.46 0.35
30 3.54 3.22 2.45 1.85 1.87 1.68 0.83 0.78 0.63 0.46 0.47 0.43 0.86 0.81 0.64 0.46 0.47 0.43

Panel B: MA Trading Signal

K 1 3 5 10 15 30 1 3 5 10 15 30 1 3 5 10 15 30

J Annualized Mean (%) Annualized Volatility (%) NW t-statistic

3 -8.04 -0.68 2.89 3.25 3.99 3.53 15.68 12.32 10.71 8.21 7.14 5.92 -1.70 -0.19 0.91 1.35 1.85 1.94
5 -2.69 4.27 5.20 4.76 5.74 4.13 15.93 13.54 12.16 10.01 8.94 7.51 -0.54 1.07 1.45 1.61 2.13 1.79
10 1.47 3.28 3.62 4.46 6.21 4.17 16.12 14.61 13.65 12.22 11.34 9.72 0.29 0.75 0.89 1.21 1.81 1.37
15 5.00 4.86 5.07 6.00 6.72 4.35 16.20 15.04 14.37 13.41 12.70 11.13 0.99 1.06 1.16 1.48 1.74 1.24
30 8.88 7.83 7.70 7.62 8.04 6.82 16.32 15.66 15.39 14.91 14.45 13.18 1.73 1.62 1.64 1.68 1.80 1.62

J Dollar Growth Sharpe ratio Downside-Risk Sharpe ratio

3 0.39 0.86 1.27 1.35 1.47 1.41 -0.51 -0.05 0.27 0.40 0.56 0.60 -0.50 -0.06 0.27 0.39 0.56 0.60
5 0.67 1.41 1.58 1.55 1.73 1.48 -0.17 0.32 0.43 0.48 0.64 0.55 -0.17 0.32 0.44 0.48 0.65 0.55
10 1.02 1.25 1.32 1.46 1.77 1.46 0.09 0.22 0.27 0.37 0.55 0.43 0.09 0.23 0.27 0.36 0.55 0.43
15 1.46 1.46 1.51 1.68 1.83 1.47 0.31 0.32 0.35 0.45 0.53 0.39 0.32 0.33 0.35 0.44 0.53 0.39
30 2.17 1.97 1.95 1.95 2.05 1.84 0.54 0.50 0.50 0.51 0.56 0.52 0.56 0.51 0.50 0.51 0.55 0.51

Panel C: SMT Trading Signal

K 1 3 5 10 15 30 1 3 5 10 15 30 1 3 5 10 15 30

J Annualized Mean (%) Annualized Volatility (%) NW t-statistic

3 -13.38 -0.35 1.97 2.85 3.98 3.64 18.96 13.49 11.34 8.48 7.35 6.05 -2.31 -0.09 0.58 1.16 1.80 1.96
5 0.77 3.90 3.54 4.89 6.83 5.63 21.66 17.67 15.10 12.36 11.08 9.46 0.11 0.71 0.76 1.29 2.02 1.95
10 2.63 7.33 5.71 7.84 10.78 5.77 22.15 19.20 17.62 15.36 14.17 12.58 0.39 1.26 1.06 1.62 2.45 1.45
15 7.02 7.42 5.79 10.59 9.83 7.59 22.88 20.43 18.97 16.87 15.65 13.82 1.01 1.18 0.99 2.09 2.06 1.75
30 11.67 11.92 10.91 5.00 3.52 5.71 23.51 21.92 20.80 18.96 17.84 16.00 1.62 1.81 1.74 0.84 0.63 1.10

J Dollar Growth Sharpe ratio Downside-Risk Sharpe ratio

3 0.21 0.88 1.15 1.29 1.46 1.42 -0.71 -0.03 0.17 0.34 0.54 0.60 -0.71 -0.03 0.18 0.34 0.55 0.60
5 0.85 1.27 1.28 1.53 1.89 1.70 0.04 0.22 0.23 0.40 0.62 0.60 0.04 0.22 0.24 0.40 0.63 0.60
10 1.02 1.75 1.53 1.98 2.72 1.66 0.12 0.38 0.32 0.51 0.76 0.46 0.12 0.39 0.33 0.51 0.77 0.46
15 1.57 1.73 1.50 2.56 2.41 1.97 0.31 0.36 0.31 0.63 0.63 0.55 0.31 0.37 0.31 0.64 0.63 0.55
30 2.48 2.65 2.45 1.39 1.22 1.57 0.50 0.54 0.52 0.26 0.20 0.36 0.50 0.55 0.53 0.26 0.20 0.36

Table 7: Time-Series Momentum with Daily Portfolio Rebalancing
The table presents the annualised mean return, the annualised volatility, the Newey and West (1987) t-
statistic of the mean return, the dollar growth, the annualised Sharpe ratio and the annualised downside-risk
Sharpe ratio by Ziemba (2005) for various (J,K) time-series momentum strategies, where J denotes the
lookback period and K denotes the investment horizon, both measured in days. The portfolio rebalancing
takes place at the end of each day and the momentum signals are: (a) SIGN: the sign of past return, (b)
MA: the moving average crossovers between a J-month lagging indicator and a 1-month leading indicator,
(c) SMT: the t-statistic of a statistically meaningful time trend by Bryhn and Dimberg (2011). The time-
series momentum strategy is the volatility-adjusted (using the 30-day Yang and Zhang (2000) estimator)
weighted average of the individual momentum strategies. The dataset covers the period November 1, 1999
to October 30, 2009.
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Figure 1: Futures Prices and Running Annualized Volatilities
The figure presents in the first column the time evolution of the futures prices for the 12 instruments
of the dataset and in the second column the annualised estimates of the volatility for each instrument
respectively. The volatilities are estimated using the Yang and Zhang (2000) estimator with a rolling
window of 60 days. The sample period of the graphs is November 1, 1999 to October 30, 2009.
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Figure 2: Running Annualized Volatilities using various Volatility Estimators
The figure presents the volatility estimates for the 12 futures contracts of the dataset using eight different
volatility estimators: (a) Realized Volatility (RV), (b) standard deviation of past returns (STDEV), (c)
exponentially-weighted average of past squared returns (EWMA), (d) Parkinson (1980) estimator (PK),
(e) Garman and Klass (1980) estimator (GK), (f) Roger and Satchell (1991) estimator (RS), (g) Garman
and Klass estimator adjusted by Yang and Zhang to allow for opening jumps (GKYZ) and (h) Yang and
Zhang (2000) estimator (YZ). The estimation period is a rolling window of 60 trading days. The RV
is estimated using intra-day 30min returns, whereas all the rest estimators use daily data for opening,
closing, high and low futures prices. The dataset covers the period November 1, 1999 to October 30,
2009.
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Figure 3: Ranks of Volatility Estimators
The bar diagram presents the average (across the 12 futures contracts) rank with respect to the abso-
lute bias (BIAS) from the Realized Variance estimator (RV) and the volatility turnover (VTO) (i.e. the
absolute change of 1

σ
) for seven different volatility estimators: (a) standard deviation of past returns

(STDEV), (b) exponentially-weighted average of past squared returns (EWMA), (c) Parkinson (1980)
estimator (PK), (d) Garman and Klass (1980) estimator (GK), (e) Roger and Satchell (1991) estimator
(RS), (f) Garman and Klass estimator adjusted by Yang and Zhang to allow for opening jumps (GKYZ)
and (g) Yang and Zhang (2000) estimator (YZ). The estimation period is a rolling window of 60 trading
days. The dataset covers the period November 1, 1999 to October 30, 2009.
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Figure 4: Speed Rank for Various Frequencies and Lookback Periods
The figure presents the speed of the five momentum signals of interest: (a) SIGN: the sign of past
return, (b) MA: the moving average crossovers between a J-period lagging indicator and a 1-period
leading indicator, (c) EEMD: the direction of the extracted price trend using the EEMD procedure,
(d) TREND: the t-statistic of the slope coefficient in a regression of the price level on a time trend,
(e) SMT: the t-statistic of a statistically meaningful time trend by Bryhn and Dimberg (2011). The
lookback period (J) is measured in days, weeks and months in the first, second and third row re-
spectively. The signal speed is computed for every of the 12 futures contracts of our dataset as

SPEEDX =
√

1
T−J ∑

T
t=1 X2 (t− J, t)/ 1

T−J−1 ∑
T
t=1 [X (t− J, t)−X (t−1− J, t−1)]2, where T is the num-

ber of trading periods and X (t− J, t) denotes the momentum signal taking values -1, 0 or +1 at the end
of period t. The aggregate speed of each signal is computed as the average speed across the 12 futures
contracts. The sample period is November 1, 1999 to October 30, 2009.
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Figure 5: Return Predictability using a family of Predictors
The figure presents the t-statistics of the βλ coefficient for the pooled panel linear regression R(t−1,t)

σYZ(t−1;D) =

α+ βλZ (t−λ)+ ε(t) for lags λ = 1,2, · · · ,24 months and a broad collection of regressors Z. The t-
statistics are computed using standard errors clustered by asset and time (Cameron, Gelbach and Miller
2011, Thompson 2011). The volatility estimates are computed using the Yang and Zhang (2000) esti-
mator on a D = 30 day rolling window. The regressors are: column 1: (a) the standardized level of past
return, (b) the trading signal SIGN, and (c) the trading signal EEMD; column 2: (a) the slope coefficient
from fitting a time trend to the normalized asset path over the lagged month of interest, (b) the Newey
and West (1987) t-statistic of the afore-mentioned slope coefficient and (c) the trading signal TREND;
column 3: similar to column 2 but instead of using the simple linear fit of a time trend, the statistically
meaningful trend (SMT) by Bryhn and Dimberg (2011) is employed. The colouring of the various figures
is done in order to visually group together quantities that relate to each other on the basis of a certain
methodology, e.g. the second column involves quantities that are related to the TREND signal methodol-
ogy. The dashed (dot-dashed) lines represent significance at the 5% (10%) level. The dataset covers the
period November 1, 1999 to October 30, 2009.
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Figure 6: Univariate (6,1) and (12,1) Time-Series Momentum Strategy
The figure presents the Newey-West t-statistics and annualised Sharpe ratios of the univariate (6,1) and
(12,1) time-series momentum strategy for the 12 futures contracts of the dataset. The momentum strate-
gies are built based on five trading signals: (a) SIGN: the sign of past return, (b) MA: the moving average
crossovers between a J-month lagging indicator and a 1-month leading indicator, (c) EEMD: the direction
of the extracted price trend using the EEMD procedure, (d) TREND: the t-statistic of the slope coeffi-
cient in a regression of the price level on a time trend, (e) SMT: the t-statistic of a statistically meaningful
time trend by Bryhn and Dimberg (2011). All futures positions have been scaled by the 30-day ex-ante
volatility that is estimated using the Yang and Zhang (2000) methodology. The red dashed line in the
t-statistics plots represents significance at the 10% level. The dataset covers the period November 1, 1999
to October 30, 2009.
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Figure 7: Dollar Growth for the (6,1) Time-Series Momentum Strategy
The figure presents the growth of $1 invested in five (6,1) time-series momentum strategies, each one of
which is using a different trading signal: (a) SIGN: the sign of past return, (b) MA: the moving average
crossovers between a 6-month lagging indicator and a 1-month leading indicator, (c) EEMD: the direction
of the extracted price trend using the EEMD procedure, (d) TREND: the t-statistic of the slope coefficient
in a regression of the price level on a time trend, (e) SMT: the t-statistic of a statistically meaningful time
trend by Bryhn and Dimberg (2011). The dataset covers the period November 1, 1999 to October 30,
2009. The plot starts from the end of April 2000, since the first 6 months from November 1999 to April
2000 are used as the initial lookback period.
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Figure 8: Time-Series Momentum using SMT Signal with Monthly Portfolio Rebalancing
The plots present the annualised mean return, the annualised volatility, the Newey and West (1987) t-
statistic of the mean return, the dollar growth, the annualised downside-risk Sharpe ratio by Ziemba
(2005) and the monthly turnover for the (J,K) time-series momentum strategies, where J = 1,2, · · · ,24
denotes the lookback period and K = 1,2, · · · ,24 denotes the investment horizon, both measured in
months. The portfolio rebalancing takes place at the end of each month and the momentum signal is
the SMT, i.e. the sign of the t-statistic of a statistically meaningful time trend by Bryhn and Dimberg
(2011). The time-series momentum strategy is the equally-weighted average of the return series across
all futures contracts. All futures positions have been scaled by the 30-day ex-ante volatility that is esti-
mated using the Yang and Zhang (2000) methodology. The dataset covers the period November 1, 1999
to October 30, 2009.
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