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Abstract

I develop and test a parsimonious contingent claim model for cross-sectional stock re-

turns. By incorporating the KMVmethod into generalized method of moments (GMM),

I perform a structural estimation for stock portfolios sorted on market leverage, book-

to-market ratio, asset growth rate and equity size. My model outperforms the CAPM

and the Fama-French model across all the testing portfolios. In my model stock returns

are cash flow rates scaled by the sensitivity of stocks to operating cash flows. Empir-

ically, I demonstrate that stocks are more sensitive to the changing cash flows in bad

times than in good times. While the large spread in the stock-cash flow sensitivities

explains the value, leverage and asset growth premiums, the spread in the cash flow

rates accounts for the size premium.
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1 Introduction

Equity is a residual claim contingent on a firm’s assets (Merton, 1974). I build a parsimo-

nious contingent claim model for cross-sectional stock returns. My model outperforms the

capital asset pricing model (CAPM) and the Fama-French three-factor model in explaining

stock returns of portfolios formed on market leverage, book-to-market equity, asset growth

rate and market capitalization. I contribute the better performance of my model to its

ability to capture the sensitivity of stocks to the underlying operating cash flows.

Following Cochrane (1996) and Liu, Whited, and Zhang (2009), I test my model via

the Generalized Method of Moments (GMM). In my structural estimation I match average

predicted returns with realized returns for four sets of equal-weighted quintile portfolios.1

The first set included in this study is market leverage portfolios. They are natural choices

for testing portfolios because equity is a contingent claim of operating cash flows after

contractual debt payments. Consistent with my expectation, my model performs well in

explaining the cross-sectional returns of the market leverage portfolios. The pricing error

of the high-minus-low (H-L) portfolio is 1.94% per year, lower than 11.7% from the CAPM

and 3.09% from the Fama-French model. The mean absolute error (m.a.e.) is 1.02% per

year, compared with 6.84% from the CAPM and 3.67% from the Fama-French Model.

I take book-to-market and size portfolios as my next two sets of testing portfolios for

two reasons. First, both value and size premiums are related to a firm’s debt financing

policy. Gomes and Schmid (2010) demonstrate that firms with high book-to-market equity

are mature firms that have accumulated their debt during their expansions and hence have

high financial leverage. Second, both value and size premiums have been found being asso-

ciated with default risk because Fama and French (1996). Griffin and Lemmon (2002) and

Vassalou and Xing (2004) document that both value and size premiums are more significant

in firms with high default risk. Garlappi and Yan (2011) and Avramov, Chordia, Jostova,

1Different from Liu, Whited, and Zhang (2009), Liu and Lu (2011) and Li and Liu (2011) in their
investment models, I use five portfolios to ensure that my structural model is solvable for all portfolio-
year observations. There is no solution for certain observations with extremely high market leverage if ten
portfolios were considered.
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and Philipov (2011) further associate the value premium with default risk. Because the

contingent claim model is the standard valuation framework for default risk, it is inter-

esting to examine its performance for these two sets of portfolios. My model successfully

captures the value and size premiums. For the book-to-market portfolios, the pricing error

of the H-L portfolio from my model is 1.07% per year, lower than 6.77% from the CAPM

and 3.90% from the Fama-French model. For the size portfolios, the pricing error of the

small-minus-big (S-B) portfolio from my model is 1.28% per year, which is much lower than

10.73% from the CAPM and 5.84% from the Fama-French model.

The last set of portfolios of interest is asset growth portfolios.2 The reason for including

the asset growth portfolios is because the low-asset-growth firms are more likely to be the

mature firms with high book equity in place and default risk. Additionally, Avramov,

Chordia, Jostova, and Philipov (2011) show that the asset growth premium is associated

with financial distress risk. The pricing error of the H-L portfolio from my model is -5.04%

per year. Although it is the greatest among the four sets of testing portfolios, this error is

still considerably lower than -11.71% from the CAPM and -10.61% from the Fama-French

model.

In the model stock returns are cash flow rates scaled by the stock-cash flow sensitivity.

My model is parsimonious in the sense it has only one state variable and two unknown

policy parameters that determine the stock-cash flow sensitivity. The only state variable

with uncertainty is the operating cash flows. Instead of looking for an unobservable market

return (Roll, 1977), I take the observable cash flows as my state variable. My specification

simply assumes that the states of economy and market movements are efficiently reflected

in the changing operating cash flows. My choice of the observable state variable is the

same idea as in Liu, Whited, and Zhang (2009). They essentially use observable investment

returns as their main state variable.

The two policy parameters are related to dividend payout and strategic default policies,

2Cooper, Gulen, and Schill (2008) show that firms with low asset growth rates outperform their counter-
parts with high growth rates by 8% per year for value-weighted portfolios and 20% per year for equal-weighted
portfolios.
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through which equity holders determine their own exposure (or sensitivity) to the changing

cash flows. While the cash flow rates can be estimated from the data, the stock-cash flow

sensitivity is difficult to measure. This sensitivity is also related to firm characteristics,

such as financial leverage, book-to-market equity ratio, size and asset growth rate. Firms

with different characteristics have different payout and strategic default policies. While the

dividend payout policy determines how much stock holders can claim on cash flows when

the firms are solvent, the strategic default policy affects how much they receive through debt

renegotiation at bankruptcy. Therefore, both policies have an impact on the sensitivities of

stock holders to the changing cash flows. Garlappi and Yan (2011) and Favara, Schroth, and

Valta (2011) derive theoretical implications of the strategic default policy for stock returns

and test their predictions in a reduced form. In contrast, I directly evaluate both policies

in a structural estimation and then estimate their impacts on time-varying stock-cash flow

sensitivities and cross-sectional stock returns.

My work contributes to an emerging literature on dynamic contingent claim models

that investigate cross-sectional stock returns. The first theoretical paper that applies a

contingent claim model to studying asset prices can be dated back to Galai and Masulis

(1976). Ferguson and Shockley (2003) extend their work and augment the CAPM with

financial leverage and distress factors. Since Berk, Green, and Naik (1999), recent research

papers that take a dynamic model to study cross sectional returns either use the simulated

method of moments to estimate the model or test their predications in a reduced form.3

Different from them, I perform a structural estimation via the GMM. To the best of my

knowledge, my work is the first study that performs a direct test of a contingent claim

model for cross-sectional stock returns.

My main empirical contributions and results can be summarized as follows. First, I

propose an empirical procedure that embeds the KMV method (Crosbie and Bohn, 2003)

3A nonexclusive list that relates equity risk to firm characteristics in a dynamic model includes Gomes,
Kogan, and Zhang (2003), Carlson, Fisher, and Giammarino (2004), Gomes and Schmid (2010), Bhamra,
Lars-Alexander, and Strebulaev (2009), Eisfeldt and Papanikolaou (2010), and Ai and Kiku (2011). My
paper is also related to the recent literature on dynamic models of capital structure in the contingent claim
framework. A partial list of recent papers includes Goldstein, Ju, and Leland (2001), Strebulaev (2007),
Chen (2009), Morellec, Nikolov, and Schurhoff (2008) and Glover (2011).
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into the GMM framework in my structural estimation. I estimate the latent risk neutral

rate and cash flow volatility, and then use them to estimate the time-varying stock-cash

flow sensitivity. Second, I find that the spreads in the stock-cash flow sensitivities are able

to explain a large portion of cross-sectional stock returns for the market leverage, book-

to-market and asset growth portfolios, while the spread in the cash flow rates plays an

important role for the size portfolios. Third, stocks are more sensitive to cash flows during

bad times, when cash flows rates are low, than they are in good times, when cash flows

rates are high. However, the covariance between the cash flow rates and the stock-cash flow

sensitivity makes a negligible contribution to the average stock returns.

The remainder of this paper proceeds as follows. Section 2 presents the simple contingent

claim model. Section 3 explains the empirical specifications and procedures. Section 4

describes the data and the empirical measures. Section 5 uses the GMM to estimate the

model, analyzes the cross-section and the time series of stock-cash flow sensitivity and

examines the impacts of the sensitivities on average stock returns. Section 6 concludes the

paper.

2 A Parsimonious Contingent Claim Model

I consider an economy with a large number of firms, indexed by subscript i. Assets are

traded continuously in arbitrage-free markets. Under a risk neutral probability measure,

the operating cash flow Xit is governed by

dXit

Xit

= µidt+ σX
i dWit, (1)

where µi is a expected growth rate, σX
i is a constant volatility, and Wit is a standard

Brownian motion. The counterpart of µi under the physical probability measure is µ̂i =

r + λi, where r is a constant risk-free rate common to all firms and λi is an individual risk

premium. It is worth noting I do not explicitly specify the risk premium throughout this
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study.4 The cash flow is independent of capital structure choices and investment policies.

At the beginning of time t, the firm i finances its asset investments with equity and

debt. It issues a consol bond of Bi with a fixed coupon payment of Ci. After the firm

pays coupons and government taxes, it distributes a fraction θ of its net income back to its

equity holders, where θ ≤ 1 is the dividend-net income ratio, and the remainder of the net

income is used for capital investments, cash retention and etc. I assume that the payout

policy θ and a simple tax structure for all firms. The cash flow is taxed at a rate of τc,

dividend is taxed at τd and interest income is taxed at τi. Hence, the effective tax rate is

τeff = 1− (1−τc)(1−τd) and the final payoff that accrues to equity holders is the dividend,

Dit = θ(Xit − Ci)(1− τeff ).

When the firm’s condition deteriorates, it has an option to go bankrupt, which leads to

immediate liquidation or debt renegotiation. Upon liquidation debt holders take over the

remaining assets and liquidate them at a fractional cost of α. Renegotiation costs a constant

fraction κ < α of the assets. Because liquidation is more costly than renegotiation, debt

holders are willing to renegotiate with equity holders. The renegotiation surplus α− κ > 0

is shared between equity and debt holders.5 Given their bargaining power η ≤ 1, equity

holders are able to extract a fraction η of the renegotiation surplus (α− κ).

Anticipating the outcome of renegotiation, equity holders determine an optimal bankruptcy

threshold XiB to maximize the equity value Eit(Xit) according to the following conditions:

Eit(XiB) = η(α − κ)
XiB

r − µi

(2)

∂Eit

∂Xit

∣∣∣
Xit=XiB

= η(α − κ)
1

r − µi

, (3)

Equation (2) is the value matching condition, which states that equity holders extract

η(α−κ)XiB from the renegotiation surplus at bankruptcy XiB. Equation (3) is the smooth

4In a CAPM setup, a risk premium could be specified as λi = βiλM , where βi is the market beta for
firm i and λM is the market premium. I do not measure the market premium in this study because it is
empirically unobservable (Roll, 1977).

5Recent studies that make the same assumption include Fan and Sundaresan (2000), Garlappi and Yan
(2011), Morellec, Nikolov, and Schurhoff (2008) and Favara, Schroth, and Valta (2011).
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pasting condition that enables equity holders to choose the optimal XiB to exercise their

bankruptcy option. When the costs of paying interests to keep the firm alive exceed the

benefits from debt renegotiation and the future tax benefits, equity holders decide to declare

bankruptcy at XiB (Leland, 1994).

Proposition 1 For Xit > XiB, at time t the contingent-claim (CC) stock return rccit of a

firm, i, is

rccit = rdt+ ǫit(r
X
it − µidt), (4)

where rXit = dXit/Xit is the operating cash flow rate, ǫit is the sensitivity of stocks to cash

flows

ǫit =
Xit∂Eit

Eit∂Xit

=1 +
Ci/r

Eit
θ(1− τeff )

︸ ︷︷ ︸
Financial leverage

+
(ωi − 1)

Eit

[
Ci

r
θ +

XiB

r − µi
(η(α − κ)− θ)

]
(1− τeff )(

Xit

XiB
)ωi

︸ ︷︷ ︸
Option to go bankrupt

,
(5)

and Eit(Xit) is the equity value

Eit(Xit) =

[
(

Xit

r − µi
−

Ci

r
)θ + (

Ci

r
θ +

XiB

r − µi
(η(α− κ)− θ))(

Xit

XiB
)ωi

]
(1− τeff ). (6)

The optimal bankruptcy threshold XiB and ωi are provided in Appendix A.

Proof: See Appendix A.

Equation (4) states that the instantaneous stock return rccit in this contingent claim

framework is the risk free rate rdt plus an excess cash flow rate scaled by the stock-cash

flow sensitivity ǫit. The excess cash flow rate is the physical cash flow rate rXit , defined in

equation (A1), in excess of the expected risk neutral rate µidt. Unlike Garlappi and Yan

(2011) and Favara, Schroth, and Valta (2011), I do not call ǫit the market beta because the

market return is unobservable (Roll, 1977) and I do not assume any market model in this

study.

The stock-cash flow sensitivity ǫit plays an important role in characterizing the stock
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return in equation (5), it consists of three components: The first component is the cash flow

sensitivity normalized to one. The second component is the well-known financial leverage

effect because Ci/r is equivalent to the value of a risk-free perpetual bond. Intuitively, the

greater coupon payments Ci equity holders distribute back to debt holders, the less residual

claim Dit they can receive. Hence, the stock-cash flow sensitivity increases with the coupon

payments. More importantly, the dividend-net income ratio, θ, amplifies this financial

leverage effect. The more dividends equity holders claim on the residual income after their

debt service, the more cautious they become about their contractual coupon payment and

the more sensitive they are to the after-coupon cash flows. To illustrate the impact of the

dividend-net income ratio on the stock-cash flow sensitivity, I calibrate this simple model

with standard parameter values from the literature. Panel A of Figure 1 shows that the

stock-cash flow sensitivity significantly increases with the dividend-net income ratio, thereby

confirming our intuition.

The last component of equation (5) is the option to go bankrupt. The equity holders’

strategic default policy, XiB , is affected by their bargaining power at bankruptcy. Because

of the costly liquidation following bankruptcy, debt holders are willing to share the renegoti-

ation surplus with equity holders. The more bargaining power equity holders have, the more

asset value they can extract through debt renegotiation at bankruptcy. Hence, equity hold-

ers with greater bargaining power are willing to file for bankruptcy earlier than others with

lower power. Because such equity holders with greater power extract more rents from debt

holders at bankruptcy, they have less exposure to downside risk and, consequently, become

less sensitive to the changing cash flows. Garlappi and Yan (2011) show that the bargaining

power help us understand the hump-shaped relationship between default probability and

cross-sectional stock returns. Favara, Schroth, and Valta (2011) provide international ev-

idence regarding the negative impact of bargaining power on equity risk. Consistent with

the reasoning and the literature, the stock-cash flow sensitivity declines monotonically with

the bargaining power as shown in Panel B of Figure 1.
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3 Empirical Specification and Design

I test the equality between the observed stock returns, rSit+1, and the contingent-claim-based

returns, rccit+1, at time t+ 1 at the portfolio level as follows:

E[rSit+1 − rccit+1] = 0, (7)

where E[.] is the unconditional mean operator for a time series. I incorporate the KMV

method (Crosbie and Bohn, 2003) into the GMM to test the model.

To calculate rccit+1 as in equation (4), Xit, Eit and Ci, are directly observed from the

data and r, α, κ are drawn from the existing literature. The two important parameters, θ

and α, are to be estimated because they are the determinants of the residual cash flows

stock holders can receive when the firm is solvent and at bankruptcy, respectively. Given

the estimated optimal θ and α, the risk-neutral rate µi and the cash flow volatility σX
i are

calculated. Finally, ǫit+1 and rccit+1 are obtained.

In empirical implementation, I assume that the firms restructure their debt at time t.

Hence, the model prediction in equation (4) holds for each period t and for every state.

Given the state variable Xit the observed coupon payment, Cit, is chosen optimally for

each period t and I use the observed, time-varying Cit in my empirical design. It is worth

noting that the time-varying Eit and Cit are not additional state variables because both

are determined by Xit.
6 I provide robustness check in Internet Appendix when the optimal

coupon is implied from the observed debt.

3.1 Latent Risk-Neutral Cash Flow Rate and Volatility

The latent parameters, expected risk neutral rate µi and volatility σX
i , are not observable.

Following the literature (Vassalou and Xing (2004), Bharath and Shumway (2008) and

Davydenko and Strebulaev (2007)), I take the widely accepted KMV method (Crosbie

and Bohn, 2003) to calculate these two latent variables. Using the current accounting

6The derivation of the optimal coupon could be found in Goldstein, Ju, and Leland (2001).
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information and the historical stock volatility, this procedure obtains estimates of µit+1 ≡

Et[µit+1] and σX
it+1 ≡ Et[σ

X
it+1] at time t.7 The cash flow rate and the volatility parameter

estimated from this procedure are expected values because the observed equity value is

the present value of future cash flows discounted by the expected discount rate. I assume

that their unconditional expectation converge to their true values, µi and σX
i , respectively.

Although this procedure suffers from measurement errors, it is consistent with the standard

portfolio formation in this study.

To estimate the expected cash flow volatility σX
it+1, I need the historical stock volatility

σS
it as well. I use the past one-year daily stock returns to estimate σS

it as in the literature.8

Conditional on the set of information Θt = (Xit, Eit, Cit, σ
S
it, r, α, κ, θ, η) up to time t, I solve

the following system of equations to obtain µit+1 and σX
it+1

σS
it = Et[σ

X
it+1ǫit+1] ≡ σX

it+1ǫit+1 (8)

Eit =

[
(

Xit

r − µit+1
−

Cit

r
)θ + (

Cit

r
θ +

XiB

r − µit+1
(η(α− κ)− θ))(

Xit

XiB
)ωit+1

]
(1− τeff ), (9)

where the expected stock-cash flow sensitivity is

ǫit+1 = 1+
Cit/r

Eit
θ(1−τeff)+

(ωit+1 − 1)

Eit

[
Cit

r
θ +

XiB

r − µit+1
(η(α − κ)− θ)

]
(1−τeff )(

Xit

XiB
)ωit+1 .

(10)

and ωit+1 is the negative root of the following equation

1

2
(σX

it+1)
2ωit+1(ωit+1 − 1) + µit+1ωit+1 − r = 0. (11)

7An alternative choice is the maximum likelihood method proposed by Duan (1994). For each firm,
the maximum likelihood method takes the time series of the equity and debt values to obtain two point

estimates for µi, σ
X
i . However, I test the model at the portfolio level. The maximum likelihood procedure

is not consistent with the standard portfolio formation procedure in Fama and French (1992). Because the
maximum likelihood method uses the entire data sample to estimate these parameters, these two estimates
contain information beyond time t when I form the portfolio and use them to calculate the predicted stock
returns. Hence, although the maximum likelihood method involves less computation, it is not appropriate
for this study when the portfolio formation is based on the observed accounting information. While Ericsson
and Reneby (2005) demonstrate that the maximum likelihood method is more efficient, Duan, Gauthier,
and Simonat (2004) show that the two methods are equivalent for the Merton’s model.

8Strictly speaking, σX

it+1 is not the expected cash flow volatility because we use the historical stock
volatility in calculation.

10



Equation (8) is implied by Ito’s lemma. Equation (9) is to calculate the equity value

Eit, defined in equation (6), given the information set Θt. The time-varying sensitivity ǫit+1

is a expected value as well because both µit+1 and σX
it+1 are estimated conditional on the

set of information up to time t when the portfolios are formed.

3.2 GMM Testing Framework

Given the time-varying estimates of µit+1 and σX
it+1, the discrete-time version of the contingent-

claim-based return from equation (4) is

rccit+1 = r∆t+ ǫit+1(
∆Xit+1

Xit

− µit+1∆t). (12)

The model is tested at the annual frequency. Hence, ∆t = 1. From equation (12), the

conditional expectation of the instantaneous contingent-claim-based return is

Et[r
cc
it+1] = r + Et[ǫit+1(

∆Xit+1

Xit
− µit+1)]. (13)

This empirical version is close to the conditional version of the CAPM in Jagannathan

and Wang (1996), although I do not take the market factor as the state variable in this

study. In addition to potential specification errors, this discretization and the time-varying

estimates of µi and σX
i might suffer from measurement errors (Lo, 1986). It is worth noting

that because I assume that the firm lives infinitely when deriving the equity value (Leland,

1994), the nonlinear function of ǫit+1 in equation (10) is independent of time and free of

time discretization errors. However, I can still test the weaker condition of equations (7) as

in Cochrane (1991) and Liu, Whited, and Zhang (2009). Therefore, the expected pricing

error for each portfolio i is

ecci = E[rSit+1 − Et[r
cc
it+1]]

= E[rSit+1 − (r + ǫit+1(r
X
it+1 − µit+1))].

(14)
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according to the law of iterated expectation.

The sample moments of pricing errors are gT = [ecc1 ...eccn ]′, where n is the number of

testing portfolios. If the model is correctly specified and if empirical measures are accurate,

gT converges to zero, theoretically, given an infinite sample size. Both measurement and

specification errors contribute to the expected pricing errors. Under the weak condition

of equation (7), the objective of the GMM procedure is to choose a parameter vector,

b ≡ [θ, η]′, to minimize a weighted sum of squared errors (Hansen, 1982)

JT = g′

TWgT ,

s.t. 0 < θ ≤ 1,

0 < η ≤ 1.

where W is a positive-definite symmetric weighting matrix. Until the optimal parameter

vector b ≡ [θ, η]′ is found, both µit+1 and σX
it+1 are recalculated for each trial set of b

in the GMM optimization procedure. Following Cochrane (1991) and Liu, Whited, and

Zhang (2009), I choose an identity matrix W = I in one-stage GMM. By weighting the

pricing errors from individual portfolios equally, the identity weighting matrix preserves the

economic structure of the testing assets (Cochrane, 1996).

4 Data

The data universe for this study includes daily and monthly stock returns from the Center

for Research in Security Prices (CRSP) as well as the Compustat annual industrial files

from 1963 to 2009. I exclude firms from the financial (SIC 6000 - 6999) and utility (SIC

4900 - 4999) sectors and include all the common stocks listed on the NYSE, AMEX, and

NASDAQ with CRSP codes 10 or 11. For the Compustat data, I restrict my sample of

annual data to firm-year observations with non-missing values for operating income, debt

and total assets and with positive total assets and debt.
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4.1 Variable Measurement and Parameter Values

I follow Fama and French (1995) and Liu, Whited, and Zhang (2009) and aggregate firm-

specific characteristics to portfolio-level characteristics. The most important state variable

in this study is the operating cash flowsXit. Following Glover (2011), I use operating income

after depreciation (Compustat item OIADP) to proxy for the operating cash flows with-

out considering capital depreciation.9 Because of their importance, the operating income

observations are trimmed at the upper and lower one-percentiles to eliminate the outliers

and eradicate errors . Eit is the equity value (price per share times the number of shares

outstanding) and Coupon Cit is the total interest expenses (item XINT). Xit, Eit and Cit

in year t are aggregated for all the firms in portfolio i formed in June of year t. rXt+1 is the

percentage change of the aggregate operating cash flows from year t to year t+ 1.

The corporate tax rate is set to τc = 35% and the tax rates on dividend and interest

income are set to τd = 11.5% and τi = 29.3%, respectively. The renegotiation cost is small

and is set to κ = 0. The after-tax annual risk-free rate, r, is 3.65% and the Fama-French

factors are obtained from Kenneth French’s website. The expected default cost is set to

α = 0.45 according to the estimate by Glover (2011).10

4.2 Testing Portfolios

I employ four sets of testing portfolios: five market leverage portfolios, five book-to-market

portfolios, five asset growth portfolios and five size portfolios. I choose five portfolios for

each asset pricing anomaly to ensure that the simultaneous equations (8) and (9) are solvable

9Another work using earnings as a state variable is by Savor and Wilson (2011). They augment the
CAPM with the firms’ earning announcement factor. However, they execute their exercise in a reduced-
form regression and for earning announcement only.

10Additionally, following Morellec, Nikolov, and Schurhoff (2008), I calculate the default costs for all the
firms as follows:

α = 1 - Tangibility/Total Assets,

where Tangibility = cash (Compustat item CHE) + 0.715*Receivables (item RECT) + 0.547*Inventory
(item INVT) + 0.535*Capital (item PPENT). The average value of α is 0.49 in my sample, close to their
value of 0.51. Other studies that use the same formula to determine liquidation costs include Almeida and
Campello (2007) and Hahn and Lee (2008).
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for all portfolio-year observations. All the portfolios are equal-weighted as in Liu, Whited,

and Zhang (2009).

I take standard procedures to calculate ranking variables and form stock portfolios

(Fama and French, 1992, 1993). The first ranking variable is market leverage measured as a

ratio of total debt over the sum of total debt and the market value of equity. It is calculated

as book debt for the fiscal year ending in calendar year t - 1 divided by the sum of book

debt and market equity (ME) at the end of December of year t - 1. Book debt is the sum

of short term debt (Computstat item DLC) and long term debt (item DLTT). ME is price

per share (CRSP item PRC) times the number of shares outstanding (item SHROUT).

Book-to-market equity ratio is the second variable of interest for the BE/ME portfolios.

It is the ratio of book equity (BE) of the fiscal year ending in calendar year t - 1 over the ME

at the end of December of year t - 1. The BE is the book value of equity (Computstat item

CEQ), plus balance sheet deferred taxes (item TXDB) and investment tax credit (ITCB,

if available), minus the book value of preferred stock. Depending on availability, I use

redemption (item PSTKRV), liquidation (item RSTKL), or par value (item PSTK) in that

order to estimate the book value of preferred stock. Observations with negative BE/ME

are excluded.

The third variable considered is asset growth rate for the asset growth portfolios. Follow-

ing (Cooper, Gulen, and Schill, 2008), the asset growth rate is calculated as the percentage

change in total assets (Compustat item AT). The growth rate for year t−1 is the percentage

change from fiscal year ending in calendar year t− 2 to fiscal year ending in calendar year

t− 1.

The last ranking variable is market equity (ME) for the size portfolios. The ME is

obtained at the end of each December of calendar year t− 1.

I follow Fama and French (1992) and construct stock portfolios with NYSE breakpoints

for every set of portfolios. Based on the ranking variables calculated at the end of year t -

1, I first sort firms into quintiles to form equal-weighted portfolios at the end of each June

of year t. Then, I rebalance them each June. Raw returns of equal-weighted portfolios are

14



computed from July of year t to June of year t + 1.

To match the observed stock returns rSit+1 with the predicted returns rccit+1 from my

model, I need to align the state variable and firm characteristics with the observed stock

returns. The state variable Xit in the model is a flow variable. The operating cash flow

rate rXit+1 is calculated as the percentage change from the end of year t and t + 1. Hence,

the cash flow rates largely matches with the stock returns. Appendix B contains further

details for the timing alignment.

5 Empirical Results

In this section I take the model to the data. I perform the structural estimation by in-

corporating the KMV method into the GMM framework. After fitting the model into

cross-sectional stock returns, I use the estimated policy parameters to calculate the ex-

pected risk neutral rate and cash flow volatility, and then analyze the cross sectional and

time series properties of stock-cash flow sensitivity. Finally, in my decomposition of the

expected stock returns and my comparative statics analysis, I demonstrate that the spread

in stock-cash flow sensitivities is crucial for us to understanding the cross sectional stock

returns.

5.1 Pricing Errors from Traditional Models

I first confirm the well-known pricing errors in my data sample. Table 1 reports the average

returns in annual percent for equal-weighted quintile portfolios, sorted on the increasing

rank of the anomaly variables, and for the high-minus-low (H-L) and small-minus-big (S-B)

hedge portfolios. The pricing errors, such as eC from the CAPM and eFF from the Fama-

French model, are estimated by regressing the time series of portfolio returns on the market

factor and on the Fama-French three factors.

Market leverage portfolio – Panel A shows that stocks with high market leverage earn

12.21% per year more than do stocks with low leverage. The pricing error of the H-L
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portfolio from the CAPM is 11.75% (t = 4.03). This error decreases to 3.09% (t = 1.51)

and becomes statistically insignificant for the Fama-French model. This significant drop is

consistent with the conclusion of Fama and French (1992) that the book-to-market factor is

capable to explain the cross-sectional returns of the market leverage portfolios. Additionally,

the mean absolute errors (m.a.e.) is 6.84% per year for the CAPM and decreases to 3.67%

for the Fama-French model.

BE/ME portfolios – The average returns in Panel B monotonically increase with the

book-to-market ratio from 12.60% to 26.70% per year. After controlling for the market

factor, the H-L portfolio earns 14.81% (t = 5.96) per year and the m.a.e. is 6.77%. The

performance of the Fama-French model improves as its error of the H-L portfolio decreases

to 7.53% (t = 4.14) and its m.a.e. declines to 3.90%.

Asset growth portfolios – As shown in Panel C, high-growth firms earn 12.10% lower

stock returns per year than low-growth firms.11 This finding can not be explained by

the standard CAPM and the Fama-French model. The errors of the H-L portfolio from

the CAPM and the Fama-French model are -11.71% (t = -6.15) and -10.61% (t = -4.89),

respectively. The m.a.e.’s for asset growth portfolios are the greatest among all the four sets

of testing portfolios. The m.a.e. is 7.09% from the CAPM and 4.22% from the Fama-French

model.

Size portfolios – Panel D confirms the size effect. Small firms earn 12.58% greater returns

per year than big firms. The decrease in average returns with the equity size remains the

same after controlling the market factor and Fama-French three factors. The errors of the

small-minus-big (S-B) portfolio from the CAPM and the Fama-French model are 10.73%

(t = 3.00) and 5.84% (t = 3.13), respectively. The m.a.e. is 4.64% for the CAPM and is

2.53% for the Fama-French model.

Overall, I demonstrate that the well-documented pricing errors from the traditional

models are largely the same in my data sample as in the literature. In the next two sections,

I summarize the model inputs and compare the traditional models with my model.

11The difference is smaller than the difference of 20% per year documented by Cooper, Gulen, and Schill
(2008) because my sample requires positive debt and has other restrictions.
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5.2 Summary Statistics of Model Inputs and Portfolio Characteristics

Table 2 reports portfolio characteristics for the four sets of quintile portfolios. Instead of

reporting the dollar amount for Xit, Cit and Eit, I report the earnings-price ratio Xit/Eit

and the interest coverage ratio Xit/Cit. Xit/Eit is considered because the equity value Eit

is contingent on the underlying earning Xit in the model. Xit/Cit measures the financial

health of the firms and provides preliminary information about the financial leverage effect

on stock-cash flow sensitivity, according to the second component of equation (5).

Market leverage portfolios – Unlike the monotonically increasing stock returns across the

market leverage portfolios, the average cash flow rates rXt+1 and their correlations with the

stock returns rSt+1 are slightly U-shaped. More interestingly, the correlations between them

are relatively weak. While Xit/Eit increases from 0.09 to 0.23, Xit/Cit dramatically declines

from 20.53 to 2.13 with market leverage. It is interesting to note that the stock volatility

σS
it of the low-leverage portfolio is 26.34% per year is almost identical to that of the high-

leverage portfolio. This result suggests that debt financing behavior is more complicated

than our conventional wisdom that stock volatility increases with financial leverage (Gomes

and Schmid, 2010).

BE/ME portfolios – Similar to the market leverage portfolios, both rXt+1 and σS
it are

slightly U-shaped. The magnitude of the increase in the earnings-price ratio across the

book-to-market portfolios is comparable to that across the market leverage portfolios as

well. The interest coverage ratio declines from 9.70 to 3.18. Hence, the decrease in Xit/Cit

in the BE/ME portfolios is considerably smaller than the decline in the market leverage

portfolios.

Asset growth portfolios – The patterns of portfolio characteristics in the asset growth

portfolios are generally contrary to those observed in the book-to-market portfolios. The

difference occurs because the firms with a low asset growth rate are more likely to be the

firms with more book equity-in-place. The increment in the interest coverage ratio from

the low-growth firms to the high-growth firms is only 1.58, the smallest change among the

four sets of portfolios.
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Size portfolios – Different from all other three sets of portfolios, rXit+1 declines signifi-

cantly from 21% to 7.57% per year across the size portfolios. The magnitude of the decrease

in cash flow rates is comparable that in stock returns. Its correlation with the stock returns

decrease as well. The monotonic decline in σS
it is the most evident among the four sets

of portfolios. While the earnings-price ratio slightly decreases, the interest coverage in-

creases significantly with the market capitalization. This contrast implies that small firms

face greater interest payment pressures and are more likely to become distressed. This

observation is consistent with Vassalou and Xing (2004).

In short, the average cash flow rates increase or decrease in the same direction as the

average stock returns do with the ranking variables for all the four sets of portfolios. Except

for the size portfolios, the magnitude of the changes in the average cash flow rates are

considerably smaller than that in the average stock returns, and the stock volatilities are all

slightly U-shaped for the other three sets of portfolios. Moreover, the decline in the interest

coverage ratio is the most evident for the market leverage portfolios.

5.3 Model Estimation and Pricing Errors from Structural Model

I estimate two parameters, dividend-net income ratio θ and shareholder bargaining power

η, for this parsimonious contingent claim model within the GMM framework.

Table 3 reports the parameter estimates and χ2 statistics for model fitness when match-

ing the predicted returns with the observed returns as in equation (7). The estimates of θ

for the market leverage, BE/ME and asset growth portfolios suggest that 88–100% of the

net incomes are distributed back to equity holders. The associated t-statistics indicate that

these point estimates are statistically significant at a 95% confidence level. In contrast, the

estimate of θ for the size portfolios is only 0.24 and is statistically insignificant.

The estimates of η are 0.58 for all the market leverage, BE/ME and asset growth port-

folios. This value is slightly above the Nash equilibrium value of 0.5 chosen by Morellec,

Nikolov, and Schurhoff (2008) and close to the value of 0.6 assumed in Favara, Schroth,

and Valta (2011). For the size portfolio, the estimate is only 0.25 and is not statistically
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significant.

The χ2 statistic, which tests whether all model errors are jointly zero, gives an overall

evaluation of the model performance. For the four sets of portfolios, the degrees of freedom

(d.f.) are three because the number of the moments (or portfolios) is five and the number of

parameters is two. The p-values of the χ2 tests indicate that the model can not be rejected

for all the four sets of testing portfolios, with the asset growth portfolios having the lowest

p-value. Compared to those in Liu, Whited, and Zhang (2009), the p-values are relatively

low in my setting. This difference could result from my smaller data sample as each set in

my estimation has only five portfolios .

Overall, the model performs well for all the sets of testing portfolios with a modest

performance for the asset growth portfolios. Given the optimal estimates of θ and η, I

construct the contingent-claim-based returns rccit+1 as in equation (12) and calculate the

expected pricing error ecci as in equation (14) for each individual portfolio.

Market leverage portfolios – The first row of Table 4 shows that the pricing errors vary

from -1.76% to -0.57% per year. Additionally, the pricing error of the H-L portfolios is

1.19% (t = -1.02) and is not statistically significant. This error is smaller than 11.75% from

the CAPM and 3.09% from the Fama-French model in Table 1. Figure 3 visually illustrates

the model fitness and pricing errors. I plot the average predicted returns against their

realized returns for the contingent claim model, the CAPM and the Fama-French model.

If a model fits the data perfectly, all the predicted returns should lie on the 45-degree line.

As shown in the scatter plot in Panel A, the predicted average returns from the contingent

claim model reside on the 45-degree line. In contrast, the predicted returns from the CAPM

in Panel B are almost flat. Although the predicted returns from the Fama-French model in

Panel C show some improvement, none of the predicted returns lie on the 45-degree line.

BE/ME portfolios – From the third row, the H-L portfolio has a pricing error of 3.12%

per year, which is smaller than 14.81% in the CAPM and 7.53% per year in the Fama-French

model. This error is mostly due to the large deviation of 2.40% from the growth portfolio.

The mean absolute error (m.a.e) is 1.16% per year, much lower than 6.77% from the CAPM
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and 3.90% from the Fama-French model. Figure 4 provides a visual confirmation. As shown

in Panel A, the largest deviation from the 45-degree line is from the growth portfolio. The

predicted returns from the CAPM are almost horizontal in Panel B and those from the

Fama-French model in Panel C are quite similar.

Asset growth portfolios – The difference in the pricing errors between the high- and low-

growth portfolios is -5.48% per year, which however is much less than -11.71% from the

CAPM and -10.61% from the Fama-French model in Table 1. Panel A of Figure 5 shows

that the average predicted returns generally align with the realized returns. The predicted

returns for the low- and high- growth portfolios are slightly out of line. In a sharp contrast,

the predicted returns from the CAPM and the Fama-French model are almost flat.

Size portfolios – The pricing errors range from -0.80% to 2.67%. The greatest error of

2.67% is from the big portfolios with a t-statistic of 1.80. The error of the S-B portfolio is

-3.46% per year. It is evident that, in Panel A of Figure 6, the predicted returns are aligned

very well with the realized stock returns, particulary for the portfolio of small stocks. The

performance of the CAPM remains poor, as shown by the horizonital line of its predicted

returns. Although the Fama-French model performs much better than the CAPM, it still

fails to capture a big outlier from the small portfolio.

In summary, my model does a good job for all the sets of portfolios and outperforms the

CAPM and the Fama-French model. The model performs the best for the market leverage

portfolios. Although the model does not fit the asset growth portfolios very well, it gives a

much better fit than the CAPM and the Fama-French model.

5.4 Cross-Section of Risk Neutral Rates, Volatility and Stock-Cash Flow

Sensitivities

Given the optimal estimates of θ and η, I calculate the implied risk neutral rate µit+1

and cash flow volatility σX
it+1 according to equations (8) and (9) for each portfolio-year

observation. Then, I calculate the stock-cash flow sensitivity ǫit+1 as in equation (10).

It is worth noting that µit+1 does not contain information on the riskiness of the un-
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derlying operating cash flows and that it is negatively correlated with the stocks returns

according to equation (4). Table 5 reports the distribution of the estimates of three param-

eters.

Market leverage portfolios – Three observations are from Panel A. First, the means and

medians of µit+1’s are all small and negative. Their median decreases from -0.33% to -

0.93% per year along with the increasing rank of the debt ratios. The small and negative

average risk neutral rates are generally consistent with the results obtained by Glover (2011).

Second, the fact that σX
it+1 declines with leverage confirms our conventional wisdom that

firms with low operating risk have better access to debt markets and therefore have greater

financial leverage. However, the decreasing cash flow volatility differs from the U-shaped

stock volatility in Table 1. This difference implies that the stock volatility is not necessarily a

good proxy for the underlying cash flow volatility. Third, the median of ǫit+1’s dramatically

increases from 1.04 to 1.71 with market leverage due to the financial leverage effect in

equation (5).

BE/ME portfolios – Both the estimated mean and median of µit+1’s decrease with the

book-to-market ratio. The means are lower than the medians. The patterns and magnitudes

of σX
it+1 and ǫit+1 for the BE/ME portfolios are very similar to those for the market leverage

portfolios. These similarities are a manifestation of the portfolio characteristics in Table 1.

Because investment and debt financing are positively correlated, firms with relatively more

(safe) book assets and fewer (risky) growth opportunities have higher financial leverage

(Gomes and Schmid, 2010).

Asset growth portfolios – The differences in µit+1, σ
X
it+1 and ǫit+1 between the low- and

high-asset-growth portfolios are relatively small. The implied cash flow volatility increases

with the asset growth rate because high-asset-growth firms are more likely to engage in risky

projects and have more volatile cash flows. The stock-cash flow sensitivity in low growth

firms is higher than that in high-growth firms. This decrease in the average sensitivities is

the same as that in average stock returns.

Size portfolios – Unlike the negative rates in the other three sets of portfolios, the
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average µit+1’s in Panel D are about 2.26% per year. Small firms have more volatile cash

flows than big firms. However, the median of σX
it+1’s decreases from 21.90% to 18.77%

per year, sharing the same decreasing pattern with that of σS
it but with a much smaller

magnitude. Consequently, due to the small differences in µit+1 and σX
it+1, the spread in

ǫit+1 between the small and big portfolios is only 0.7, the smallest difference among all the

sets of testing portfolios.

The main results from the section can be summarized as follows. First, compared with

the physical cash flow rate rXit+1, all the expected risk neutral rates, µit+1, are fairly small,

implying that the risk premiums are relatively large for all the 20 individual portfolios.

Except for the size portfolios, the risk neutral rates are negative in the other three sets of

portfolios. Second, the implied cash flow volatility, σX
it+1, declines sharply with the ranking

variable across the market leverage and book-to-market portfolios, but the observed stock

volatility σS
it is slightly U-shaped. Third, both the average stock-cash flow sensitivities

and the average stock returns increase or decrease in the same direction with the ranking

variables across all the four sets of portfolios. The sensitivity values are all greater than one.

Last, and most important, the spread in ǫit+1 between the high and low quintile portfolios

is sizable in the market leverage portfolios and BE/ME portfolios but is relatively small in

the asset growth and size portfolios. Through a comparative statics analysis in Section 5.7,

I further show that the spread in the sensitivities is the key to understanding the value,

size, leverage and asset growth premiums.

5.5 Time Series of Stock-Cash Flow Sensitivities

After investigating the cross sectional properties of the stock-cash flow sensitivity, I turn to

its time series properties over business cycles. I use NBER recession years to classify the

cycles.

Figure 7 plots the times series of the stock-cash flow sensitivity. It is evident that,

in Panel A, high-leverage firms are considerably more sensitive to cash flows than low-

leverage firms, particularly in NBER recession years. Panel B shows that the stock-cash
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flow sensitivity of book-to-market portfolios shares the same pattern with market portfolios

but with a slightly smaller magnitude. The highest sensitivity of value stocks is about 2.4

in the early 1980’s. Intuitively, both value firms and high-leverage firms have more debt

and coupon payments so that they have substantially greater sensitivity to the changing

cash flow in recessions than growth firms and low-leverage firms as suggested by equation

(5).

As shown in Panel C, low-growth firms are more sensitive to the business cycles because

they are more likely to the matures firms that have accumulated high debt during their

expansions. However, the difference in stock sensitivity between the high- and low-growth

firms is not as significant as that in the market leverage and book-to-market portfolios.

Panel D confirms that the spread in stock-cash flow sensitivity between the small and big

portfolios is the smallest, compared with the other three sets of portfolios. The maximum

spread is only about 0.2 in the 1980’s.

Overall, the results from the time series of stock-cash flow sensitivities are consistent with

their cross-sectional properties in Table 5. The difference in the sensitivities between the

small and big portfolios is the smallest among all the testing sets of portfolios. Additionally,

stocks are more sensitive to the underlying operating cash flows during business recessions

when cash flow rates are low than during expansions when cash flow rates are high.

5.6 Decomposition of Expected Claim-Claim-Based-Returns

Jagannathan and Wang (1996) show that a conditional version of the CAPM can help ex-

plain cross sectional stock returns when the market beta is time varying. However, Lewellen

and Nagel (2006) present evidence that the covariance between the time-varying beta and

the market risk premium is too small to explain the cross-sectional variation of stock re-

turns. The empirical implementation of my contingent claim model in equation (13) has

a similar form to the conditional CAPM of Jagannathan and Wang (1996). Hence, given

the counter-cyclical stock-cash flow sensitivity shown in the previous section, it is worth-

while to investigate whether the covariance between cash flow rates and stock sensitivities
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contributes to the expected stock returns.

I decompose the contingent claim based return rccit+1 in excess of the risk free rate r

into four components and examine their individual contributions. From equation (13),

the unconditional excess stock returns predicted from the contingent claim model can be

decomposed into four components:

E[rccit+1 − r] = E[ǫit+1(r
X
it+1 − µit+1)]

= E(rXit+1)E(ǫit+1)− E(µit+1)E(ǫit+1) + cov(rXit+1, ǫit+1)− cov(µit+1, ǫit+1)

(15)

The contributions of each of the four components to the expected rccit+1 are defined as

follows:

ρ1 =
E(rXit+1)E(ǫit+1)

E(rccit+1)− r
,

ρ2 =
E(µit+1)E(ǫit+1)

E(rccit+1)− r
,

ρ3 =
cov(rXit+1, ǫit+1)

E(rccit+1)− r
,

ρ4 =
cov(µit+1, ǫit+1)

E(rccit+1)− r
,

and ρ1 − ρ2 + ρ3 − ρ4 = 1.

Table 6 presents the decomposition of the expected contingent claim return. The contri-

bution from the product of the expected cash flow rates and the expected stock sensitivities,

ρ1, is the greatest among the four components for all four sets of portfolios. It accounts

for at least 82% of the average predicted returns. Interestingly, in Panel D, ρ1’s in the size

portfolios increases from 114.2% to 152.5.1%. However, the excess contribution from ρ1’s

in the size portfolios are almost completely canceled out by the second componet, ρ2, the

product of the expected risk-neutral rates and the expected stock-cash flow sensitivities.

The pervasive negative ρ3’s in 19 out of the 20 testing portfolios imply that the cash

flow rates rXit+1 are negatively correlated with the sensitivity ǫit+1, confirming the visual
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illustration in Figure 7 that stocks are more sensitive to the changes in the underlying cash

flows when the firms experience negative cash flows. Similarly, the negative ρ4’s suggest that

stocks are more sensitive to the expected risk-neutral rates in bad times as well. However,

both the values of ρ3 and ρ4 are less than 1% among all the 20 testing portfolios. This result

is similar to the conclusion by Lewellen and Nagel (2006) that the covariance of the CAPM

β and the market risk premium are not large enough to explain asset pricing anomalies.

In short, my results suggest that the product of the average cash flow rates and the

average stock-cash flows accounts for at least 82% of the average predicted stock returns.

The covariance between the cash flow rates and the stock-cash flow sensitivities has at most

1.3% contribution to the average predicted stock returns.

5.7 Pricing Errors from Comparative Statics Analysis

After examining the cross-sectional and time series properties of stock-cash flow sensitivity,

I follow Liu, Whited, and Zhang (2009) and perform a comparative statics analysis to

further examine impacts of the sensitivity on the pricing errors relative to the other portfolio

characteristics. A large increase in the expected pricing errors implies that this certain input

(or portfolio characteristic) is important for predicting stock returns.

Aside from the state variable Xit, the main inputs of my model are rXit+1,σ
S
it, Cit and

Eit. For r
X
it+1, I set it to its cross sectional average r̃Xit+1 each year. Then, I use its average

and the parameter estimates from Table 3 to recalculate rccit+1 , while keeping all the other

model inputs unchanged.

I repeat the same procedure for σS
it, Cit and Eit. However, after changing their values to

their cross-sectional averages, I need to use the new inputs and the parameter estimates to

recalculate µit+1 and σX
it+1 before I construct ǫit+1 and rccit+1. For Cit and Eit, rather than

fixing them to their cross sectional averages, I set Eit = Xit/X̃it/Eit and Cit = Xit/X̃it/Cit,

where X̃it/Eit and X̃it/Cit are the cross-sectional earnings-price ratio and interest coverage

ratio, respectively.12

12I use the ratios instead of the amount because I need to recalculate µit+1 and σX
it+1 after fixing the
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Lastly, to evaluate the importance of ǫit+1, I use its cross-sectional average directly from

the benchmark estimation without recalculating µit+1 and σX
it+1. Because both of them

do not need to invoke the recalculations of µit+1 and σX
it+1, this exercise provides a direct

comparison between ǫit+1 and rXit+1.

Market leverage portfolios – It is evident that the stock-cash flow sensitivity is the most

important determinant and the earnings-price ratio the second in Panel A. By removing the

cross-sectional variation of ǫit+1, the pricing error of the H-L portfolio increases to 10.46%

per year from 1.194% per year in the benchmark model. The m.a.e. increases from 1.09% to

3.55%. The effects from the cash flow rates, interest coverage ratios, and stock volatilities

are much smaller.

BE/ME portfolios – Similar to the market leverage portfolios, the stock-cash flow sen-

sitivity dominates the other model inputs. The lack of cross-sectional variation in ǫit+1

increases the m.a.e. from 1.16 to 3.32. The lowest impact is observed when the cross-

sectional average of stock volatility is an input.

Asset growth portfolios – Consistent with the modest performance of my model for the

asset growth portfolios shown in Table 3, the effects of eliminating the cross-sectional vari-

ations of model inputs or portfolio characteristics are relatively small. The most important

effect is still from the stock-cash flow sensitivity. After fixing ǫit+1 to its cross sectional

average, the m.a.e. increases to 3.25 from 1.74 in the benchmark model.

Size portfolios – The cash flow rate plays a crucial role in fitting the size portfolios

into the model and the stock-cash flow sensitivity the second. By fixing rXit+1 to its cross

sectional average each year, the pricing error of the S-B portfolio surges to 11.49% per

year from -3.46% in the benchmark estimation and the m.a.e. increases from 1.28 to 2.95.

Compared with its role in other three portfolios, ǫit+1 becomes much less important for the

size portfolios. Fixing ǫit+1 to its cross-sectional average each year, the m.a.e. increases

slightly from 1.28 to 1.78. Hence, the increased pricing error caused by the stock-cash flow

variables to its cross-sectional average. For instance, if I fix the amount of interest expense Cit to its cross-
sectional average instead of its average interest coverage ratio, its average amount could exceed Xit for a
given portfolio-year observation, which cause the system of equations (8) and (9) to become unsolvable.
However, the equations are solvable for observations with an average interest coverage ratio.
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sensitivity for the size portfolios is much smaller than it is for the other portfolios. The

difference occurs because the decreasing slope in the cash flow rates is very close to that

in the stock returns across the size portfolios. Therefore, the stock-cash flow sensitivity

becomes critical in matching the observed stock returns with the predicted returns.

In summary, while the cross sectional variation in the stock-cash flow sensitivity is the

most important determinant for alleviating the pricing error for the market leverage, book-

to-market and asset growth portfolios, the cash flow rate is the one for the size portfolios.

Moreover, the cross sectional variation of the historical stock volatility has the least impact

on the expected pricing errors among all the inputs I consider.

6 Conclusion

I develop a parsimonious contingent claim model for cross-sectional stock returns with only

one state variable and two policy parameters. The state variable is the operating cash flow

and the two policy parameters are related to the dividend payout and strategic default

policies. I estimate these two parameters and fit the model into stock returns of equal-

weighted portfolios formed on firm characteristics, such as market leverage, book-to-market

equity ratio, asset growth rate and market capitalization. My model outperforms the CAPM

and the Fama-French three-factor model.

I contribute the success of my model to the right choice of the state variable and the

correct measurement of the stock-cash flow sensitivity. Through my examination on the

cross section and time series of stock-cash flow sensitivity, I find that the sensitivities of

value stocks, high-leverage stocks and low-asset-growth stocks are substantially higher than

those of growth stocks, low-leverage stocks and high-asset-growth stocks, particularly in

recessions. It is the large spreads in the stock-cash flow sensitivity help explain the cross-

sectional spreads in stock returns for the market leverage, book-to-market and asset growth

portfolios, except for the size portfolios that rely on the spreads in the cash flow rates.

However, in my decomposition of the expected stock returns predicted from the model,
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the covariance between cash flow rates and stock-cash flow sensitivities has a very trivial

contribution to the expected stock returns, while the product of their expected values

explains a large portion of the cross-sectional variations for the four sets of portfolios.

28



References

Ai, Hengjie, and Dana Kiku, 2011, Growth to value: Option exercise and the cross-section

of equity returns, Working Paper, Duke University.

Almeida, Heitor, and Murillo Campello, 2007, Financial constraints, asset tangibility, and

corporate investment, Review of Financial Studies 20, 1429–1460.

Avramov, Doron E., Tarun Chordia, Gergana Jostova, and Alexander Philipov, 2011,

Anomalies and financial distress, Working Paper.

Berk, Jonathan B., Richard C. Green, and Vasant Naik, 1999, Optimal investment, growth

options and security returns, Journal of Finance 54, 1553 – 1607.

Bhamra, Harjoat S., Kuehn Lars-Alexander, and Ilya A. Strebulaev, 2009, The levered eq-

uity risk premium and credit spreads: A unified framework, Review of Financial Studies,

forthcoming.

Bharath, Sreedhar T., and Tyler Shumway, 2008, Forecasting default with the merton

distance to default model, Review of Financial Studies 21, 1339–1369.

Carlson, Murray, Adlai Fisher, and Ron Giammarino, 2004, Corporate investment and

asset price dynamics: Implications for the cross-section of returns, Journal of Finance

59, 2577–2603.

Chen, Hui, 2009, Macroeconomic conditions and the puzzles of credit spreads and capital

structure, Journal of Finane, forthcoming.

Cochrane, John H., 1991, Production-based asset pricing and the link between stock returns

and economic fluctuations, Journal of Finance 46, 209–237.

, 1996, A cross-sectional test of an investment-based asset pricing model, Journal

of Political Economy 104, 572–621.

29



Cooper, Michael J., Huseyin Gulen, and Michael J. Schill, 2008, Asset growth and the

cross-section of stock returns, Journal of Finance 63, 1609–1651.

Crosbie, Peter, and Jeff Bohn, 2003, Modeling default risk, working Paper, Moody’s KMV.

Davydenko, Sergei A., and Ilya A. Strebulaev, 2007, Strategic actions and credit spreads:

An empirical investigation, The Journal of Finance 62, 2633–2671.

Duan, Jin-Chuan, 1994, Maximum likelihood estimation using price data of the derivative

contract, Mathematical Finance 4, 55–167.

, Genevieve Gauthier, and Jean-Guy Simonat, 2004, On the equivalence of the

kmv and maximum likelihood methods for structural credit risk models, Working Paper,

University of Toronto.

Eisfeldt, Andrea L.;, and Dimitris Papanikolaou, 2010, Organization capital and the cross-

section of expected returns, Working Paper.

Ericsson, Jan, and Joel Reneby, 2005, Estimating structural bond pricing models, The

Journal of Business 78, 707–735.

Fama, Eugene F., and Kenneth R. French, 1992, The cross-section of expected stock returns,

Journal of Finance 47, 427–465.

, 1993, Common risk factors in the returns on stock and bonds, Journal of Financial

Economics 33, 3–56.

, 1995, Size and book-to-market factors in earnings and returns, Journal of Finance

50, 131–155.

, 1996, Multifactor explanations of asset pricing anomalies, Journal of Finance 51,

55–84.

Fan, Hua, and Suresh M. Sundaresan, 2000, Debt valuation, renegotiation, and optimal

dividend policy, Review of Financial Studies 13, 1057–1099.

30



Favara, Giovanni, Erique Schroth, and Philp Valta, 2011, Strategic default and equity risk

across countries, Journal of Finance, Forthcoming.

Ferguson, Michael F., and Richard L. Shockley, 2003, Equilibrium ”anomalies”, Journal of

Finance 58, 2549–2580.

Galai, Dan, and Ronald W. Masulis, 1976, The option pricing model and the risk factor of

stock, Journal of Financial Economics 3, 53–81.

Garlappi, Lorenzo, and Hong Yan, 2011, Financial distress and the cross section of equity

returns, Journal of Finance 66, 789 – 822.

Glover, Brent, 2011, The expected cost of default, Working Paper, Carnegie Mellon Uni-

versity.

Goldstein, Robert, Nengjiu Ju, and Hayne Leland, 2001, An ebit-based model of dynamic

capital structure, The Journal of Business 74, 483–512.

Gomes, João F., Leonid Kogan, and Lu Zhang, 2003, Equilibrium cross section of returns,

Journal of Political Economy 111, 693–732.

Gomes, Joao F., and Lukas Schmid, 2010, Levered returns, The Journal of Finance 65,

467–494.

Griffin, John M., and Michael L. Lemmon, 2002, Book-to-market equity, distress risk, and

stock returns, Journal of Finance 57, 2317–2336.

Hahn, Jaehoon, and Hanyong Lee, 2008, Financial constraints, debt capacity, and the cross

section of stock returns, Journal of Finance, forthcoming.

Hansen, Lars Peter, 1982, Large sample properties of generalized method of moments esti-

mators, Econometrica 50, 1029–1054.

Jagannathan, Ravi, and Zhenyu Wang, 1996, The conditional capm and the cross-section

of expected returns, The Journal of Finance 51, 3–53.

31



Leland, Hayne E., 1994, Corporate debt value, bond covenants, and optimal capital struc-

ture, Journal of Finance 49, 1213–1252.

Lewellen, Jonathan, and Stefan Nagel, 2006, The conditional capm does not explain asset-

pricing anomalies, Journal of Financial Economics 82, 289–314.

Li, Erica X.N., and Laura X.L. Liu, 2011, Intangible assets and cross-sectional stock re-

turns:evidence from structural estimation, Working Paper, University of Michigan.

Liu, LauraXiaolei, ToniM Whited, and Lu Zhang, 2009, Investmentbased expected stock

returns, Journal of Political Economy 117, 1105–1139.

Liu, Laura X.L., and Zhang Lu, 2011, A model of momentum, Working Paper, Ohio State

University.

Lo, Andrew W, 1986, Statistical tests of contingent-claims asset-pricing models: A new

methodology, Journal of Financial Economics 17, 143–173.

Merton, Robert C., 1974, On the pricing of corporate debt: The risk structure of interest

rates, Journal of Finance 29, 449–470.

Morellec, Erwan, Boris Nikolov, and Norman Schurhoff, 2008, Corporate governance and

capital structure dynamics: Evidence from a structural estimation, AFA meeting paper.

Roll, Richard, 1977, A critique of the asset pricing theory’s tests part i: On past and

potential testability of the theory, Journal of Financial Economics 4, 129–176.

Savor, Pavel, and Mungo Wilson, 2011, Earning announcement and systematic risk, Work-

ing Paper, Wharton School.

Strebulaev, Ilya A., 2007, Do tests of capital structure theory mean what they say?, Journal

of Finance 62, 1747–1787.

Vassalou, Maria, and Yuhang Xing, 2004, Default risk in equity returns, Journal of Finance

59, 831–868.

32



Appendix

A Proof for Proposition 1

Under a physical probability measure the operating incomes Xit is governed by

dXit

Xit
= µ̂idt+ σX

i dWt, (A1)

where µ̂i is the physical growth rate of cash flows for firm i. I drop the subscripts i and t

for ease of notation in this appendix.

Ito’s lemma implies that the equity value E satisfies

dE

E
=

1

E
(
∂E

∂t
+ µ̂x

∂E

∂X
+

σ

2
X2 ∂

2E

∂X2
)dt+

1

E
Xσ

∂E

∂X
. (A2)

The standard non-arbitrage argument gives us the following partial differential equation

(PDE)

∂E

∂t
+ µX

∂E

∂X
+

σ2

2
X2 ∂

2E

∂X2
− rE +D = 0. (A3)

Plugging the above equation back to equation (A2), we obtain the following

dE

E
=

1

E
[(µ̂ − µ)X

∂E

∂X
+ rE −D]dt+

1

E
Xσ

∂E

∂X
dW. (A4)

Simple algebraic manipulation yields

dE +Ddt

E
− rdt =

1

E
[(µ̂ − µ)X

∂E

∂X
]dt+

1

E
Xσ

∂E

∂X
dW, (A5)

and

dE +Ddt

E
− rdt =

X

E

∂E

∂X
(µ̂dt+ σdW − µdt). (A6)

Hence, the relation between the stock return and the cash flow rate is established as
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follows:

dE +Ddt

E
− rdt =

X

E

∂E

∂X
(
∂X

X
− µdt). (A7)

Adding back the subscripts of i and t, we have our equation (4) proofed. Next, I provide

the derivation of equity value E(X) and its sensitivity to cash flows X. The general solution

for equity value E(X) to equation (A3) is

E(X) = (
X

r − µ
−

c

r
)θ(1− τeff ) + g1X

ω + g2X
ω′

(A8)

where ω < 0 and ω′ > 1 are the roots of the following quadratic equation:

1

2
(σX)2ω(ω − 1) + µω − r = 0. (A9)

The standard no-bubble condition, limX→∞E(X)/X < ∞, implies g2 = 0. The value

matching condition in equation (2) gives

g1 = [(
1

XB
)ω(

c

r
θ +

XB

r − µ
(η(α − κ)− θ)](1− τeff ). (A10)

Hence, before bankruptcy X > XB , equity value is

E =

[
(

X

r − µ
−

c

r
)θ + (

c

r
θ +

XB

r − µ
(η(α − κ)− θ))(

X

XB

)ω
]
(1− τeff ). (A11)

The smooth pasting condition in equation (3) gives the optimal bankruptcy threshold

XB =
θωC

r(ω − 1)

r − µ

θ − η(α− κ)
. (A12)

It is easy to show that XB decreases with θ because the more dividend equity holders

receive the greater incentive they have to keep the firm alive. Hence, they delay bankruptcy

if dividend-net income ratio is high. Moreover, XB increases with η. Intuitively, if equity

holders have bargaining power, they are willing to file for bankruptcy early in order to
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extract rents from debt holders through debt renegotiation.

Using the same approach for deriving the equity value, I obtain the market value of debt

B(X) = (1− τi)
C

r
+

[
−(1− τi)

C

r
+ (1− κ− η(α− κ))(1 − τeff )

XB

r − µ

]
(
X

XB
)ω. (A13)

The sensitivity of stocks to operating cash flows X is

ǫ =
X∂E

E∂X

=
1

E
[
θX

µ
(1− τeff ) + g1ωX

ω]

=
1

E
[E +

c

r
θ(1− τeff )− g1X

ω + g1ωX
ω]

=1 +
c/r

E
θ(1− τeff ) +

(ω − 1)

E
g1X

ω

=1 +
c/r

E
θ(1− τeff ) +

(ω − 1)

E

[
c

r
θ +

XB

r − µ
(η(α − κ)− θ)

]
(1− τeff )(

X

XB
)ω.

(A14)

Adding back the subscripts of i and t, we have have the time-varying stock-cash flow

sensitivity ǫit as in equation (5) for each firm i.

B Timing Alignment

As shown in Figure 2, the timing alignment in my study is largely consistent with Liu,

Whited, and Zhang (2009) except that I need to incorporate the KMV procedure. The

portfolio formation follows the standard Fama-French portfolio approach. I sort firms into

quintiles at the end of June of each year t based on the ranking variables for the fiscal year

ending in calendar year t - 1. Stock portfolio returns, rSit+1, are calculated from July of year

t to June of year t+1.

To construct the annual contingent claim returns, rccit+1, I need to obtain the operating

cash flow rate rXit+1 and estimate the expected stock-cash flow sensitivity ǫit+1 . To calculate

rXit+1, I use the operating income reported at the end of year t and year t + 1 because

operating incomes are realized over the course of a year. Therefore, rXit+1 largely matches
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with rSit+1. To estimate ǫit+1, I use the KMV procedure to obtain µit+1 and σX
it+1 . The

stock price for calculating the equity value is at the end of June of year t and the stock

volatility σS
it+1 is the annualized standard deviation of the daily stock returns from the

beginning of July of year t-1 to the end of June of year t. All the accounting variables used

for the KMV procedure, including Xit and Cit, are at the end of year t.

The changes in stock composition due to portfolio rebalancing in a given portfolio need

more attention. In the Fama-French portfolio approach, the set of firms in a given portfolio

formed in year t is fixed from July of year t to June of year t+1 for each portfolio. The

stock composition changes only at the end of June of year t+1 when the portfolios are

rebalanced. Hence, I keep the same set of firms in the portfolio in the formation year t until

the rebalancing year t + 1.

C GMM Procedure

Let D = ∂gT /∂b and S a consistent estimate of the variance-covariance matrix of the

sample error gT . I use a standard Bartlett kernel with a window length of five to estimate

S.

The estimate of b, denoted b̃, is asymptotically normal-distributed.

b̃ ∼ N(b,
1

T
(D′WD)−1D′WSWD(D′WD)−1) (A1)

If W = S−1, the GMM estimator is optimal or efficient in the sense that the variance is as

small as possible.

To make statistical inferences for the pricing errors of individual portfolios or groups of

pricing errors, I construct the variance-covariance matrix for the pricing errors gT

var(gT ) =
1

T
[I −D(D′WD)−1D′W]S[I −D(D′WD)−1D′W]′. (A2)
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To test whether all the pricing errors are jointly zero, I perform the χ2 test as follows:

g′

T var(gT )
+gT ∼ χ2(d.f. = #ofmoments−#ofparameters). (A3)

where the superscript + denotes pesudo-inversion.
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Figure 1: Sensitivity of Stocks to Operating Cash Flows

This figure plots the stock-cash flow sensitivity ǫi against dividend-net income ratio θ (in
Panel A) and shareholder bargaining power η (in Panel B). Parameters are r = 3.6%, τc =
35%, τd = 11.5%, τi = 29.3%, µi = 0, σX

i = 0.25, α = 0.45, and κ = 0. Xi is normalized
to one.
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t t+1 t+2

December/January December/January December/January

June/July June/July June/July

rS
it+1

rX
it+1

rcc
it+1

= ǫit+1(r
X
it+1

− µit)

σS
it

ǫit+1

Eit, Xit, Cit Xit+1

Figure 2: Timing Alignment

rXit+1 is the rate of operating cash flows and rSit+1 is the return of a stock portfolio from July
of year t to June of year t+1. Eit is the equity value at the end of June of year t, Xit is the
operating cash flows and Cit is the interest expenses at the end of year t. Stock volatility
σS
it is the annualized standard deviation of the daily stock returns from the beginning of

July of year t-1 to the end of June of year t. ǫit+1 is the expected stock-cash flow sensitivity
given the information up to the end of June of each year t.
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Figure 3: Market Leverage Portfolios: Average Predicted Stock returns versus

Average Realized Returns

This figure plots the time series averages of predicted returns from the contingent claim
model, the CAPM and the Fama-French model against the average realized returns. In the
contingent claim model, the predicted returns are calculated based on equation (12) using
the parameter estimates from Table 3 as well as the implied values of µit+1 and σX

t+1 from
Table 5. High denotes the high leverage quintile and low denotes the low leverage quintile.
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Figure 4: Book-to-Market Portfolios: Average Predicted Stock returns versus

Average Realized Returns

This figure plots the time series averages of predicted returns from the contingent claim
model, the CAPM and the Fama-French model against the average realized returns. In the
contingent claim model, the predicted returns are calculated based on equation (12) using
the parameter estimates from Table 3 as well as the implied values of µit+1 and σX

t+1 from
Table 5. High denotes the high BE/ME quintile and low denotes the low BE/ME quintile.
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Figure 5: Asset Growth Portfolios: Average Predicted Stock returns versus Av-

erage Realized Returns

This figure plots the time series averages of predicted returns from the contingent claim
model, the CAPM and the Fama-French model against the average realized returns. In the
contingent claim model, the predicted returns are calculated based on equation (12) using
the parameter estimates from Table 3 as well as the implied values of µit+1 and σX

t+1 from
Table 5. High denotes the high asset-growth quintile and low denotes the low asset-growth
quintile.
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Figure 6: Size Portfolios: Average Predicted Stock returns versus Average Re-

alized Returns

Each panel of this figure plots the time series averages of predicted returns from the con-
tingent claim model, the CAPM and the Fama-French model against the average realized
returns. In the contingent claim model, the predicted returns are calculated based on equa-
tion (12) using the parameter estimates from Table 3 as well as the implied values of µit+1

and σX
t+1 from Table 5. Small denotes the low market capitalization quintile and big denotes

the high market capitalization quintile.
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Figure 7: Time series of Stock-Cash Flow Sensitivity

Each panel of this figure plots a time series of stock-cash flow sensitivity, ǫit, against years.
The shaded areas are for NBER recession years. The stock-cash flow sensitivity is calculated
based on equation (10) using the parameter estimates from Table 3 as well as the implied
values of µit+1 and σX

t+1 from Table 5. The thick, solid lines are for the cross-sectional
averages of the stock-cash flow sensitivity across all the quintile portfolios. The lines with
dots (–.) are for the first quintile portfolio, the lines with circles (-o) for the third quintile
portfolio and the lines with stars (-*) for the fifth quintile portfolio.
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Table 1: Pricing Errors of Testing Portfolio Returns from Traditional Models

This table reports in annual percent the annualized average stock return ,rsit, the pricing
error from the CAPM regression, eCi , and the error from the Fama-French (FF) three-factor
regression, eFF

i for each quintile portfolio over the period of 1965 to 2009. The H-L portfolio
is long in the high portfolio and short in the low portfolio. The t-statistics for the pricing
errors are reported in brackets. m.a.e. is the mean absolute error in annual percent for each
set of testing portfolios.

Panel A. Market Leverage Portfolios
Low 2 3 4 High H-L m.a.e.

rS
i

13.25 15.55 17.37 20.05 25.46 12.21
eCi 1.66 4.29 6.26 8.58 13.41 11.75 6.84
(t) (0.70) (2.21) (2.98) (3.49) (4.11) (4.03)
eFF
i

3.12 2.70 2.88 3.43 6.21 3.09 3.67
(t) (1.82) (1.96) (2.31) (2.23) (3.48) (1.51)

Panel B. BE/ME Portfolios

rS
i

12.60 14.52 17.58 19.81 26.70 14.11
eCi 0.55 3.26 6.20 8.46 15.36 14.81 6.77
(t) (0.22) (1.69) (2.81) (3.53) (5.18) (5.96)
eFF
i

1.95 1.29 2.97 3.83 9.48 7.53 3.90
(t) (1.25) (0.99) (2.16) (2.65) (5.19) (4.14)

Panel C. Asset Growth Portfolios

rS
i

25.51 19.87 17.01 16.83 13.40 -12.10
eCi 13.43 8.89 6.05 5.35 1.72 -11.71 7.09
(t) (4.57) (3.96) (3.15) (2.68) (0.77) (-6.15)
eFF
i

10.49 4.52 3.14 2.84 -0.12 -10.61 4.22
(t) (5.19) (3.21) (2.16) (2.15) (-0.09) (-4.89)

Panel D . Size Portfolios
Small 2 3 4 Big S-B m.a.e.

rS
i

24.61 15.47 14.10 13.91 12.04 12.58
eCi 12.22 3.63 3.04 2.82 1.49 10.73 4.64
(t) (3.44) (1.50) (1.59) (1.72) (1.50) (3.00)
eFF
i

7.81 0.56 0.65 1.67 1.98 5.84 2.53
(t) (4.42) (0.36) (0.51) (1.10) (1.70) (3.13)
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Table 2: Summary Statistics of Portfolio Characteristics

This table presents summary statistics for the characteristics of portfolios formed on market
leverage, book-to-market equity, asset growth rate and market capitalization. rXit+1 is the
time series average of cash flow rates in annual percent from time t to time t+1 after portfo-
lios are formed at time t, corr(rXit+1, r

S
it+1) is the time series correlation coefficient between

rXit+1 and rSit+1, and σS
it is the time series average of annualized daily stock volatility in

percent calculated from one-year daily stock returns before the portfolio formation. Xit/Eit

is the time series average of earnings-price ratios and Xit/Cit is the time series average of
interest coverage ratios.

Panel A. Market Leverage Portfolios
Low 2 3 4 High

rX
it+1 10.16 7.54 9.14 8.71 11.34
corr(rX

it+1,r
S
it+1) 0.17 0.04 0.06 0.08 0.18

Xit/Eit 0.09 0.12 0.15 0.18 0.23

Xit/Cit 20.53 8.63 5.62 3.68 2.13

σS
it

26.34 23.91 23.72 24.05 26.47

Panel B. BE/ME Portfolios

rX
it+1 9.85 7.96 7.71 10.27 12.41
corr(rXit+1,r

S
it+1) 0.15 -0.08 0.00 0.15 0.18

Xit/Eit 0.09 0.13 0.16 0.17 0.20

Xit/Cit 9.70 6.29 5.09 4.18 3.18

σS
it

28.20 25.09 24.20 23.98 25.42

Panel C. Asset Growth Portfolios

rX
it+1 11.88 10.56 7.72 7.91 9.16
corr(rX

it+1,r
S
it+1) 0.17 0.10 0.00 0.08 0.01

Xit/Eit 0.15 0.14 0.13 0.12 0.11

Xit/Cit 3.93 5.18 6.37 7.07 5.51

σS
it

26.59 22.45 22.15 23.50 27.38

Panel D . Size Portfolios
Small 2 3 4 Big

rX
it+1 21.00 13.65 11.52 9.90 7.57
corr(rXit+1,r

S
it+1) 0.17 0.18 0.16 0.08 0.03

Xit/Eit 0.15 0.16 0.15 0.14 0.12

Xit/Cit 2.61 3.55 4.36 5.04 6.56

σS
it

28.07 26.79 25.27 23.62 21.50
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Table 3: Parameter Estimates and Model Fitness

This table reports the parameter estimates from one-stage GMM with an identity weighting
matrix. The first moment conditions E[rsit+1 − rccit+1] = 0 is tested for all the quintile
portfolios, in which E[.] is the sample mean of the series in brackets. θ is the dividend-net
income ratio and η is the shareholder bargaining power. Their associated t-statistics are
reported in brackets. The χ2-statistics are reported with the associated degrees of freedom
(d.f.) and p-values.

Leverage BE/ME Asset Growth Size
θ 0.92 0.88 1.00 0.24

(2.15) (2.16) (2.37) (0.83)
η 0.58 0.58 0.58 0.25

(1.44) (0.59) (0.19) (0.12)
χ2 4.08 3.16 5.07 3.73
d.f. 3.00 3.00 3.00 3.00
p-value 0.25 0.37 0.17 0.29

Table 4: Expected Pricing Errors from Fitted Models

This table presents the pricing errors for each quintile portfolio from one-stage GMM with
an identity weighting matrix. The expected return errors are defined as ecci = E[rsit+1−rccit+1],
in which E[.] is the sample mean of the series in brackets. The H (B) denotes the highest
(biggest) quintile portfolio and the L (S) denotes the lowest (smallest) quintile portfolio.
The H-L (S-B) portfolio is long in the high (small) portfolio and short in the low (big)
portfolio. The heteroscedasticity-and-autocorrelation-consistent t-statistics for the model
errors are reported in brackets. m.a.e. is the mean absolute error for each set of testing
portfolios.

Low 2 3 4 High H-L m.a.e.
Market Leverage -1.76 1.35 -0.49 1.29 -0.57 1.19 1.09

(-1.38) (1.48) (-0.47) (1.02) (-3.44) (1.03)
BE/ME -2.40 -0.70 1.57 -0.43 0.72 3.12 1.16

(-1.83) (-0.77) (1.27) (-0.37) (2.76) (2.63)
Asset Growth 2.56 -0.25 1.29 1.71 -2.92 -5.48 1.74

(8.23) (-0.27) (1.53) (1.62) (-1.77) (-3.44)

Small 2 3 4 Big S-B m.a.e.
Size -0.80 -1.34 -0.22 1.63 2.67 -3.46 1.33

(-2.23) (-1.32) (-0.21) (3.28) (1.80) (-2.95)
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Table 5: Cross Section of Cash Flow Rate, Volatility, and Stock-Cash Flow Sen-

sitivity

This table reports the distribution of the expected cash flow rate µit+1 and volatility σX
it+1

in annual percent, given the estimates of θ and η from Table 3. The expected stock-cash
flow sensitivity ǫit+1 is calculated according to equation (5). The H (B) denotes the highest
(biggest) quintile portfolio and the L (S) the lowest (smallest) quintile portfolio.

Panel A. Market Leverage Portfolios

µit+1 σX
it+1 ǫit+1

Mean Median SD Mean Median SD Mean Median SD
Low -0.23 0.33 1.69 25.05 23.71 8.19 1.05 1.04 0.03
2 -1.25 -0.54 1.76 20.68 20.37 5.94 1.16 1.15 0.05
3 -1.77 -0.81 1.99 18.76 17.81 5.95 1.27 1.26 0.09
4 -1.87 -0.93 2.20 17.06 15.95 6.16 1.42 1.42 0.13
High -1.59 -0.93 2.22 15.46 13.29 6.51 1.72 1.70 0.19

Panel B. BE/ME Portfolios
Mean Median SD Mean Median SD Mean Median SD

Low -0.00 0.46 1.42 25.58 24.01 7.83 1.11 1.11 0.04
2 -1.26 -0.45 1.97 20.86 19.71 5.95 1.20 1.19 0.06
3 -1.67 -0.90 2.04 18.87 17.80 6.38 1.29 1.30 0.09
4 -1.63 -0.84 2.16 17.50 15.80 6.40 1.38 1.38 0.15
High -1.64 -0.97 2.18 16.51 14.59 7.07 1.55 1.55 0.20

Panel C. Asset Growth Portfolios
Mean Median SD Mean Median SD Mean Median SD

Low -1.49 -0.59 2.22 19.32 17.56 7.22 1.40 1.38 0.17
2 -1.74 -0.93 1.93 17.23 15.85 6.13 1.32 1.31 0.11
3 -1.66 -0.98 1.72 17.81 16.50 5.74 1.25 1.25 0.09
4 -1.33 -0.50 1.89 19.65 18.82 6.19 1.20 1.19 0.08
High -0.96 -0.43 1.70 22.40 21.46 7.29 1.24 1.21 0.10

Panel D . Size Portfolios
Mean Median SD Mean Median SD Mean Median SD

Small 2.41 2.81 0.98 24.17 21.90 8.51 1.16 1.13 0.07
2 2.26 2.63 0.86 23.69 22.90 6.77 1.13 1.11 0.05
3 2.29 2.62 0.74 22.79 21.06 6.68 1.11 1.09 0.05
4 2.35 2.62 0.63 21.61 20.15 6.68 1.09 1.08 0.04
Big 2.58 2.78 0.57 20.16 18.77 6.36 1.07 1.06 0.03
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Table 6: Decomposition of Contingent-Claim-Based Returns

This table reports individual contributions of cash flow rates rXit+1, risk-neutral rates
µit+1 and stock-cash flow sensitivities, ǫit+1, to the expected stock returns rccit+1 pre-
dicted from the contingent claim model. The four components are defined as fol-
lows: ρ1 = [E(rXit+1)E(ǫit+1)]/[E(r

cc
it+1) − r], ρ2 = [E(µit+1)E(ǫit+1)]/[E(r

cc
it+1) − r], ρ3 =

cov(rXit+1, ǫit+1)/[(E(r
cc
it+1)−r], ρ4 = cov(µit+1, ǫit+1)/[E(r

cc
it+1)−r] and ρ1−ρ2+ρ3−ρ4 = 1.

The H (B) denotes the highest (biggest) quintile portfolio and the L (S) denotes the lowest
(smallest) quintile portfolio.

Panel A. Market Leverage Portfolios
Low 2 3 4 High

ρ1 0.978 0.861 0.841 0.843 0.891
ρ2 -0.022 -0.142 -0.162 -0.181 -0.125
ρ3 -0.004 -0.010 -0.008 -0.028 -0.013
ρ4 -0.004 -0.006 -0.004 -0.004 0.004
ρ1 − ρ2 + ρ3 − ρ4 1.000 1.000 1.000 0.999 1.000

Panel B. BE/ME Portfolios
ρ1 0.999 0.861 0.834 0.881 0.880
ρ2 -0.000 -0.136 -0.180 -0.140 -0.116
ρ3 -0.003 -0.004 -0.020 -0.020 0.010
ρ4 -0.004 -0.007 -0.005 0.001 0.006
ρ1 − ρ2 + ρ3 − ρ4 1.000 1.000 1.000 1.000 1.000

Panel C. Asset Growth Portfolios
ρ1 0.883 0.867 0.827 0.861 0.924
ρ2 -0.110 -0.143 -0.178 -0.145 -0.097
ρ3 0.007 -0.012 -0.010 -0.014 -0.028
ρ4 -0.000 -0.002 -0.005 -0.008 -0.007
ρ1 − ρ2 + ρ3 − ρ4 1.000 1.000 1.000 1.000 1.000

Panel D. Size Portfolios
Small 2 3 4 Big

ρ1 1.142 1.210 1.247 1.319 1.525
ρ2 0.131 0.200 0.248 0.313 0.519
ρ3 -0.013 -0.013 -0.002 -0.008 -0.009
ρ4 -0.002 -0.003 -0.003 -0.002 -0.003
ρ1 − ρ2 + ρ3 − ρ4 1.000 1.000 1.000 1.000 1.000
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Table 7: Expected Pricing Errors from Comparative Statics Analysis

This table reports the pricing errors from a comparative statics analysis. For rXit+1, σ
S
it and

ǫit+1 I set them to their cross sectional averages each year for each quintile portfolio. For Cit

and Eit, instead of fixing them to their cross sectional averages, I set Eit = Xit/X̃it/Eit and

Cit = Xit/X̃it/Cit and use the parameters reported in Table 3 to recalculate µit+1 and σX
it+1,

where X̃it/Eit and X̃it/Cit are the cross-sectional earnings-price ratio and interest coverage
ratio respectively. Then, I reconstruct the theoretical return rccit , while keeping all the other
parameters unchanged. I report the expected return errors, defined as eri = E[rsit+1 − rccit+1],
and the mean absolute errors (m.a.e.) for each quintile portfolio and for the high-minus-low
(H-L) and small-minus-big (S-B) hedging portfolios. The H-L (S-B) portfolio is long in the
high (small) portfolio and short in the low (big) portfolio.

Panel A. Market Leverage Portfolios
Low 2 3 4 High H-L m.a.e.

r̃X
it+1 -0.94 -0.77 -0.72 0.23 2.86 3.80 1.11

Xit/X̃it/Eit -5.23 -0.27 -0.73 2.41 2.89 8.12 2.31

Xit/X̃it/Cit -2.12 1.34 -0.17 1.74 1.30 3.42 1.33

σ̃S
it

-1.76 1.36 -0.46 1.25 -0.79 0.97 1.12
ǫ̃it -4.09 1.55 1.17 4.56 6.37 10.46 3.55

Panel B. BE/ME Portfolios

r̃X
it+1 -2.14 -2.69 -1.01 0.53 5.42 7.56 2.36

Xit/X̃it/Eit -5.40 -1.47 1.86 0.44 3.21 8.61 2.48

Xit/X̃it/Cit -2.73 -0.73 1.69 0.05 2.90 5.63 1.62

σ̃S
it

-2.40 -0.69 1.57 -0.40 0.50 2.90 1.11
ǫ̃it -4.19 0.11 3.59 2.28 6.41 10.60 3.32

Panel C. Asset Growth Portfolios

r̃X
it+1 6.16 1.17 -0.84 -0.11 -3.39 -9.55 2.34

Xit/X̃it/Eit 3.46 0.41 1.31 1.03 -3.89 -7.35 2.02

Xit/X̃it/Cit 3.77 -0.04 1.21 1.58 -3.02 -6.79 1.92

σ̃S
it

2.36 -0.22 1.32 1.72 -2.91 -5.27 1.70
ǫ̃it 6.16 2.22 2.98 2.69 -2.21 -8.36 3.25

Panel D. Size Portfolios
Small 2 3 4 Big S-B m.a.e.

r̃X
it+1 8.67 -0.36 -1.49 -1.42 -2.81 11.49 2.95

Xit/X̃it/Eit -0.85 -1.11 -0.11 1.60 2.30 -3.15 1.19

Xit/X̃it/Cit 0.17 -1.15 -0.19 1.55 2.60 -2.43 1.13

σ̃S
it

-0.94 -1.36 -0.22 1.64 2.67 -3.61 1.37
ǫ̃it -2.07 -3.30 -2.47 -0.87 -0.19 -1.87 1.78
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Internet Appendix: Robustness Check

A Two-Stage GMM

Table B.1 reports the parameter estimates from a two-stage GMM estimation using an

inverse variance-covariance weighting matrix. The estimates are very close to those from

the one-stage GMM estimation, but with greater t-statistics. The difference arises because

the two-stage GMM is more efficient in terms of the smaller variance. Table B.2 presents

the pricing errors and Figure B.1 plots average predicted stock returns against observed

returns. The model performs well for all the four sets of testing portfolios. The results are

very similar to those generated from the one-stage GMM estimation.

B Implied Interest Expenses

My model assumes a perpetual bond, different from corporate bonds with finite maturities

in the data. Equation (A13) gives a relation between the coupon payment and the market

value of a perpetual bond. Assuming bonds are issued at par, I could infer interest expenses

for a perpetual bond instead of using the observed coupons for short- and long-term bonds

from the Compustat. Following Liu, Whited, and Zhang (2009), I use the book value of

total debt to proxy for its market value and solve the following system of three equations

for µit+1, σ
X
it+1, and Cit simultaneously.

σS
it = Et[σ

X
it+1ǫit+1] ≡ σX

it+1ǫit+1 (B.1)

Eit =

[
(

Xit

r − µit+1
−

Cit

r
)θ + (

Cit

r
θ +

XiB

r − µit+1
(η(α − κ)− θ))(

Xit

XiB
)ωit+1

]
(1− τeff ),

(B.2)

Bit = (1− τi)
Cit

r
+

[
−(1− τi)

Cit

r
+ (1− κ− η ∗ (α− κ))(1 − τeff )

XiB

r − µit+1

]
(
Xit

XiB

)ω

(B.3)
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where Bit is the observed book value of total debt at year t. The first two equations are

the same as in the benchmark model and the third one is the valuation function for debt

from equation (A13).

Table B.3 reports the parameter estimates when Cit are implied from the book value

of Bit. The estimates are very close to those from one-stage GMM estimation except that

the estimate of η for the BE/ME portfolios hits the low bound of zero. Table B.4 and

Figure B.2 show that the performance of this modified model is comparable to that of the

benchmark model for all the four sets of testing portfolios.
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Table B.1: Parameter Estimates and Model Fitness from Two-Stage GMM

This table reports the parameter estimates from two-stage GMM with an inverse variance-
covariance weighting matrix. The first moment conditions E[rsit+1 − rccit+1] = 0 is tested
across all quintile portfolios, in which E[.] is the sample mean of the series in brackets. θ is
the dividend-net income ratio and η is the shareholder bargaining power. Their associated
t-statistics are reported in brackets. The χ2-statistics are reported with the associated
degrees of freedom (d.f.) and p-values.

Leverage BE/ME Asset Growth Size
θ 1.00 0.92 1.00 0.37

(2.53) (2.71) (2.62) (1.58)
η 0.60 0.44 0.58 0.54

(1.66) (0.39) (0.28) (1.09)
χ2 1.24 3.16 4.95 3.68
d.f. 3.00 3.00 3.00 3.00
p-value 0.74 0.37 0.18 0.30

Table B.2: Expected Pricing Errors from Fitted Models from Two-Stage GMM

The table presents the pricing errors for each quintile portfolio from two-stage GMM esti-
mation with an inverse variance-covariance weighting matrix. The expected return errors
are defined ecci = E[rsit+1 − rccit+1], in which E[.] is the sample mean of the series in brackets.
The H (B) denotes the highest (biggest) quintile portfolio and the L (S) denotes the lowest
(smallest) quintile portfolio. The H-L (S-B) portfolio is long in the high (small) portfolio
and short in the low (big) portfolio. The heteroscedasticity-and-autocorrelation-consistent
t-statistics for the model errors are reported in brackets. m.a.e. is the mean absolute error
for each set of testing portfolios.

Low 2 3 4 High H-L m.a.e.
Market Leverage -2.19 0.77 -1.21 0.49 -1.62 0.57 1.26

(-1.18) (0.76) (-0.50) (0.36) (-0.58) (0.27)
BE/ME -2.67 -1.09 1.11 -1.05 -0.47 2.21 1.28

(-1.15) (-0.60) (0.45) (-0.58) (-0.13) (1.01)
Asset Growth 2.56 -0.25 1.29 1.71 -2.92 -5.48 1.74

(3.29) (-0.25) (2.25) (1.81) (-1.16) (-1.69)

Small 2 3 4 Big S-B m.a.e.
Size -2.22 -2.74 -1.52 0.39 1.67 -3.89 1.71

(-1.24) (-1.14) (-1.48) (0.26) (0.68) (-1.18)
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Table B.3: Parameter Estimates and Model Fitness When Coupon Payments are

Implied from Debt Values

This table reports the parameter estimates from one-stage GMM when the coupon pay-
ments are implied from the system of equations (B.1), (B.2) and (B.3). The first moment
conditions E[rsit+1 − rccit+1] = 0 is tested across all quintile portfolios, in which E[.] is the
sample mean of the series in brackets. θ is the dividend-net income ratio and η is the
shareholder bargaining power. Their associated t-statistics are reported in brackets. The
χ2-statistics are reported with the associated degrees of freedom (d.f.) and p-values.

Leverage BE/ME Asset Growth Size
θ 0.92 0.83 1.00 0.26

(2.24) (2.18) (2.48) (0.89)
η 0.57 0.00 0.59 0.23

(2.23) (0.00) (0.14) (0.06)
χ2 4.04 3.05 5.22 3.79
d.f. 3.00 3.00 3.00 3.00
p-value 0.26 0.38 0.16 0.29

Table B.4: Expected Pricing Errors from Fitted Models When Coupon Payments

are Implied from Debt Values

The table presents the pricing errors for each quintile portfolio from one-stage GMM when
the coupon payments are implied from the system of equations (B.1), (B.2) and (B.3). The
expected return errors are defined ecci = E[rsit+1 − rccit+1], in which E[.] is the sample mean
of the series in brackets. The H (B) denotes the highest (biggest) quintile portfolio and the
L (S) denotes the lowest (smallest) quintile portfolio. The H-L (S-B) portfolio is long in
the high (small) portfolio and short in the low (big) portfolio. The heteroscedasticity-and-
autocorrelation-consistent t-statistics for the model errors are reported in brackets. m.a.e.
is the mean absolute error for each set of testing portfolios.

Low 2 3 4 High H-L m.a.e.
Market Leverage -1.75 1.35 -0.47 1.09 -0.46 1.29 1.02

(-1.34) (1.45) (-0.45) (0.93) (-3.87) (1.06)
BE/ME -2.08 -0.42 1.72 -0.14 0.23 2.30 0.92

(-1.58) (-0.47) (1.48) (-0.13) (1.00) (2.00)
Asset Growth 2.85 -0.14 1.28 1.70 -3.00 -5.85 1.79

(10.29) (-0.14) (1.60) (1.62) (-1.72) (-3.36)

Small 2 3 4 Big S-B m.a.e.
Size -0.67 -1.50 -0.31 1.48 2.52 -3.19 1.30

(-1.63) (-1.53) (-0.29) (3.13) (1.80) (-2.91)
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Figure B.1: Average Predicted Stock returns versus Average Realized Returns, Two-Stage GMM

This figure plots the time series averages of predicted returns from the contingent claim model against the average realized returns
for the market leverage, book-to-market equity (BE/ME), asset growth and size portfolios. When the two-stage GMM procedure
is employed, the predicted returns are calculated based on equation (12) using the estimates from Table B.1.
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Figure B.2: Average Predicted Stock returns versus Average Realized Returns when Coupons are Implied from

Debt Values

This figure plots the time series averages of predicted returns from the contingent claim model against the average realized returns
for the market leverage, book-to-market equity (BE/ME), asset growth and size portfolios. The predicted returns are calculated
based on equation (12) using the estimates from Table B.3 and the implied coupon from the system of equations (B.1), (B.2) and
(B.3).
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