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Abstract

This paper systematically calibrates a series of long-run risks (LRR) models to describe

market aggregate behavior. We show that the fitted models can simultaneously explain

many central features in asset pricing such as high equity premiums, long-range dependence

in stock volatility, and high variance risk premiums — the difference between the option-

implied variance and the expected realized variance of the underlying equity index. Our

models improve on standard LRR models by adding two key features: jumps in the fun-

damental state variables and a two-factor volatility structure. Both features are crucial to

successfully explain the key stylized facts of the U.S. stock and option markets. Moreover,

the fundamental jump risk constitutes up to 45% of the equity premium, which reveals an

important connection between equity excess returns and the variance risk premium. Fi-

nally, contributing to the growing literature of stock-return predictability by the variance

risk premium, we find that the test results depend on the sample period, how the variance

risk premium is measured and how the regression test is conducted. When the variance risk

premium is measured based on the HAR-RV (Heterogenous Autoregressive Model of the

Realized Volatility) method, the regression statistics are imputed from the univariate VAR

analysis, and the time period is from 1990 to 2007, the LRR models can fit the data quite

well.

1 Introduction

The Long Run Risks (LRR) model, originally proposed by Bansal and Yaron (2004)(BY), has

attracted a lot of interest recently. One of the few leading candidate models to explain high

and volatile equity risk premiums and low and smooth risk free rates, the LRR model features

∗The views presented in this paper are those of the author’s and are not necessarily shared by the Bank of
Canada.
†Bank of Canada, Ottawa, ON, email: jinj@bankofcanada.ca
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a small but persistent component in consumption and dividend growth rates (the so-called

long-run risk factor), a representative agent who has Epstein-Zin-Weil type recursive utility,

and a time-varying (and persistent) stochastic volatility in consumption and dividend growth

processes.

Recently, there have been a lot of studies based on LRR models attempting to explain the

co-existence of large equity and variance risk premiums. Variance risk premium refers to the

difference between the risk-neutral and physical expected variances of stock returns. The two

premiums are usually studied separately. But a general-equilibrium model such as the LRR

model offers a unified approach to understanding the relationship between them (Bollerslev et

al. 2010,Drechsler et al. 2009).

The main purpose of this paper is to provide more evidence of the strengths and limitations

of the LRR model, especially in the context of understanding the relationship between the

equity and variance risk premiums. To do so, we systematically calibrate a series of LRR-based

models against a broad set of asset classes, including equity indices, short-term interest rates

and variance swap rates. One particular difference between our study and previous studies

is that we consider it an important matter to calibrate the model so that it can describe the

persistence of stock realized volatility in the short and long run.

The main findings of this paper can be summarized as follows. First, we find that af-

ter certain extensions to the original BY model, the generalized LRR models can qualitatively

explain the high variance risk premium and the long-range dependence in option-implied volatil-

ity.1 Features such as jumps and two-volatility factor structures are essential for the model to

achieve a good fit. Additionally, we compare two channels that can both explain the existence

of large variance risk premiums. One channel involves jumps in the long-run risk factor and

the other involves jumps in the volatility of the long-run risk factor. We find that the former

channel is more effective than the latter in generating large variance risk premiums. However,

the former channel will induce a low persistence in realized volatility, while the latter channel

can maintain the high persistence reasonably well. Such comparisons would be diffi cult to make

in previous studies because the persistence of stock volatility is not considered in the calibration

process.

Secondly, we find that jump risks in the long-run component explain a significant fraction

of the unconditional equity risk premium. For models with jumps in the long-run risk factor,

the fraction can be as large as 45%; for models with jumps in the volatility of the long-run risk

factor, the fraction can still be as high as 20%. Our results suggest a close connection between

the variance risk premium and the equity risk premium because the variance risk premiums

are almost solely contributed by jumps. This conclusion is consistent with the non-parametric,

1The option-implied volatility is defined as the square-root of the expected risk neutral variance. In practice,
it is measured as the level of the VIX index from the CBOE(Chicago Board of Exchange).
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high-frequency-based study of Bollerslev et al.(2010).

Thirdly, the variance risk premium’s predictability of stock excess returns is closely exam-

ined. First of all, we find that the empirical association between the variance risk premium

and excess returns clearly depends on what sample period is used, how the variance risk pre-

mium is measured and what regression method is used. Additionally, we find that including

the second persistent volatility factor generally increases the predictability of stock returns by

the variance risk premium. Finally, we find that our best calibrated LRR model can match a

selected predictability pattern reasonably well.

Finally, we need to point out that there are several discrepancies between model and data

that we cannot explain yet. The most important difference is the predictability of consumption

and dividend growth by price-dividend ratios. Empirical evidence for consumption and dividend

growth predictability is scarce; however, the calibrated models suggest strong predictability for

both consumption and dividend. Furthermore, there is also a conflict between model and data

about the predictability of the volatilities of stock returns, consumption, and dividend. Even

though the models imply strong predictability for all of them, the data do not. To be fair to

the LRR model, we clearly set up a high standard for it, so we view all these drawbacks as

inspirations for future research rather than critiques.

This paper is closely related to a growing literature that links the equity risk premium

and the variance risk premium in a general equilibrium framework. Both Bollerslev et al.

(2009) and Zhou (2010) explore the variance risk premium’s predictability for short-run stock

returns. These two studies propose a recursive utility representative investor framework where

the variance-of-variance of consumption growth serves as the driving source of the variance risk

premium. Alternatively, Benzoni et al. (2010) show that jumps in the long-run component of

consumption growth can have a large impact on the short maturity options’implied volatility

skew.2 Similarly, Drechsler and Yaron (2009) show that jumps in the long-run component can

explain the large and time-varying variance risk premium, which can predict stock returns in

the short run.3

In addition to these models, jumps in consumption volatility have also been proposed as a

major channel for generating the variance risk premium. Eraker (2008) proposes a reduced form

model by directly imposing jumps on the volatility processes. Shaliastovich (2009) considers a

more structural LRR model in which investors face uncertainty when estimating the long-run

consumption growth. The volatility of the long-run component therefore can be interpreted

as the confidence interval for investors. The model in Shaliastovich (2009) is also related to

Drechsler (2008), who finds that the time-varying model uncertainty of investors can explain

2They further show that the updating of beliefs on the probability of jumps can explain the sharp steepening
in the volatility skew following the 1987 stock market crash.

3Bollerslev et al. (2009) omit the LRR component but show that under the recursive utility framework, the
variance-of-variance of consumption growth can explain the dynamic behavior of variance risk premium.
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the variance risk premium.

Following these studies, we adopt a classic recursive utility formula and a reduced-form

model of consumption volatility. In some models, the coeffi cient describing the long-run com-

ponent volatility is different from the consumption volatility. The former factor can be loosely

interpreted as the investor’s subjective uncertainty of long-run consumption growth, the latter

corresponds to the volatility of consumption growth in the short run. In other models, the long-

run component and the total consumption share the same volatility factor, while that volatility

factor mean-reverts to another stochastic volatility factor. This structure is proposed in Duffi e

et al. (2000).

Our calibration explores the conditional information from option markets in estimating the

LRR model, similar strategies have been adopted in Shaliastovich (2009) and Eraker (2008).

Shaliastovich (2008) introduces cross-sectional option prices to extract the latent state variable.

Cross-sectional option data certainly contain rich information on the investors’attitudes towards

market risk, yet individual option pricing, especially in the in-the-money(ITM) or deep out-of-

the-money(OTM) ranges, can be subject to large biases due to possible model-pricing errors.

A better alternative, which is adopted in our model, is to use variance swap rates that are

constructed in a "model-free" way.

Our work is also inspired by several studies that emphasize the importance of including

a second volatility factor in stock volatility (Chernov et al. 2003, Chacko et al. 2003, Engle

et al. 1999). In the option literature, Bates (2000) and Duffi e et al. (2000) suggest that

multiple volatility factors can be important in explaining the skew and term structure of option-

implied volatility. In the LRR literature, there have been a few studies that use a two-factor

structure in their models, such as Drechsler and Yaron (2009), Shaliastovich (2009), Bansal

and Shaliastovich (2009), Bollerslev et al. (2009), and Zhou and Zhu (2009). We adopt the

two-factor structure mainly to enable the model to describe the long-memory feature in the

model, while the previous studies fail to address this concern.

The main body of this chapter is organized as follows: Section 2 introduces the model setup,

equilibrium solution, calibration strategy, and data; Section 3 reports the results; Section 4

concludes.
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2 Model

2.1 Model Setup

Preferences

Following the standard LRR literature, we assume that investors have Epstein-Zin-Weil prefer-

ences. Under the continuous-time framework, the recursive utility function is

U(t) = {(1− e−(ln δ)dt)C
1− 1

ψ

t + (e−(ln δ)dt)Et(U(t+ dt)1−γ)
1− 1

ψ
1−γ }

1
1−1/ψ , (1)

where ln δ is the compound discount rate, γ is the degree of risk aversion, and ψ represents the

elasticity of intertemporal substitution (EIS).

For the conventional CRRA power utility function, the risk aversion coeffi cient γ is restricted

to be the reciprocal of the EIS coeffi cient ψ. It implies that investors require no premium for

facing uncertainties in consumption growth. When γ < 1
ψ , investors prefer late resolution of

uncertainty in consumption growth. When γ > 1
ψ , which is the case for a typical LRR model

setup, investors prefer early resolution of uncertainties in consumption growth. The level of

ψ is also critical in deciding investors’behavior towards the consumption growth path. When

ψ > 1, the LRR model implies that when the long-run consumption growth rate gets higher,

the value of the consumption-claimed asset increases.

The continuous-time dynamics of the log of the Intertemporal Marginal Rate of Substitu-

tion(IMRS) mt is close to its discrete-time analog, i.e.

dmt = θ ln δdt− θ

ψ
dct − (1− θ)drc,t, (2)

where θ = (1 − γ)/ (1− 1/ψ), dct is the growth rate of log consumption. drc,t represents the

log of the instantaneous return of an asset which is a claim on the consumption steam:

drc,t = ln
P cont+dt + Ct+dt

P cont

, (3)

where P cont can be interpreted as investors’aggregate wealth at time t.

Analogously, the log of the instantaneous return of an asset that is a claim on the dividend

stream is defined as drd,t, where drd,t = ln
Pt+dt+Dt+dt

Pt
represents the market return on dividend-

claim assets.

Under the standard Campbell-Shiller log-linearization approximation, both drc,t and drd,t
are expressed as linear functions of the log wealth-consumption ratio vct and the log price-
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dividend ratio vdt , i.e.

drc,t = k0dt+ k1dv
c
t − (1− k1)vctdt+ d logCt (4)

drd,t = k0ddt+ k1ddv
d
t − (1− k1d)vdt dt+ d logDt, (5)

where vct = log(P cont /Ct), and vdt = log(Pt/Dt). dvct and dv
d
t represent the instantaneous changes

of the two log ratios. k1, k0, k1d, and k0d are constants determined by the unconditional means

of vct and v
d
t . The detail of the derivations can be found in Eraker and Shaliastovich (2008) and

Appendix A.

Economic Fundamentals

We follow the standard LRR literature to assume that investors make decsions under a continuous-

time, real endowment economy where consumption and dividend are correlated but separate

processes. The growth dynamics of logCt and logDt can be written as

d logCt = (µC + xt −
1

2
(δc1V

f
t + (1− δc1)V p

t )dt+

√
δc1V

f
t + (1− δc1)V p

t dWc,t (6)

d logDt = (µD + φDxt −
1

2
ϕ2d(δc1V

f
t + (1− δc1)V p

t )dt+ (7)

ϕd

√
δc1V

f
t + (1− δc1)V p

t (ρdcdWc,t +
√

1− ρ2dcdWd,t)

where µC and µD are the unconditional growth rates of the log consumption and log dividend

respectively; V f
t and V

p
t are two volatility factors (either of which might not be both present in

certain models); 12(δc1V
f
t +(1− δc1)V p

t ) and 1
2ϕ

2
d(δc1V

f
t +(1− δc1)V p

t ) are adjustment terms for

Jensen’s inequality; xt represents the small, persistent component embedded in the expected

consumption and dividend growth, we will call it the "long-run risk factor" in the following

sections; φD characterizes the sensitivity of dividend growth on xt; the scaling factor ϕd is

used to capture the higher volatility of the dividend relative to consumption; dWc,t and dWd,t

are independent Brownian motions; ρdc characterizes the correlation betwen the two Brownian

motion parts in consumption and dividend.

The latent state variable dyanmics follow stochastic processes:

dxt = −κxxtdt+ ϕe

√
V f
t dWx,t + ξxdNx (8)

dV f
t = [κfv (af1V

p
t + (1− af1)V̄ f

t − V
f
t )]dt+ (9)

σfw

√
V f
t (ρxfdWxt +

√
1− ρ2xfdW

f
v,t) + ξV fdNV f − E(ξV f )E(dNV f )

dV p
t = κpv(V̄p − V

p
t )dt+ σpw

√
V p
t dW

p
v,t (10)
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where κx,κ
f
v , and κ

p
v are mean-reverting coeffi cients, ρxf is the diffusion correlation between xt

and V f
t , ϕe, σ

f
w and σ

p
w are diffusion parameters for the state variables, ξxdNx and ξV fdNV f

represent jump processes, E(ξV f )E(dNV f ) is the compensation term. Finally, af1 controls the

long-run mean of V f
t , which is V

p
t when af1 is 1.

Following Drechsler and Yaron (2009), we assume that the intensities of jumps in the long-

run component follow Poisson distributions with time-varying intensities i.e.

Prob(dNx = 1|It) = lXV V
f
t dt

Prob(dNV f = 1|It) = lV V
f
t dt (11)

where lXV and lV are constants. This reflects the state-dependent feature of the jump process,

when high-volatility state indicates a high probability of a sudden change in the expected long-

run consumption growth rate. This specification is similar to Drechsler et al. (2009) and Eraker

(2008).

We assume the jump size of xt to be a left-skewed Gamma distribution:

ξx ∼ −Γ(γx,
µx
γx

) + µx (12)

which means that xt has many small positive jumps and a few large negative jumps, and the

mean jump size is zero.

We also assume the jump size of the short-run volatility factor V f
t to be right skewed Gamma

distribution

ξV ∼ Γ(γV ,
µV
γV

). (13)

In both distributions, the γx and γV are shape parameters and are set to the standard value of

1 and µx and µV are scale parameters to characterize the magnitude of the jumps.

We investigate several different specifications of the LRRmodel with each set of (δc1, af1, lXV , lV )

indicating one particular type of the model. When af1 = 1, and jumps are excluded, the model

becomes quite similar to that in Bansal and Yaron (2004). Since this model features stochastic

volatility in both consumption and dividend processes and has only one volatility factor, we

label it as the SV1F model. When we assume that the volatility factor V f
t of the expected

long-run growth rate xt is mean-reverting to another time-varying volatility factor V
p
t , which

also controls the diffusion term in consumption and dividend growth processes, the model now

has two stochastic volatility factors and no jump, and we label it as the SV2F model.

Furthermore, similar to Benzoni et al. (2010) and Drechsler et al. (2008), we consider an

extended version of the SV1F model with jumps in xt, if the volatility factor of xt is mean-

reverting to a constant level, the model is labeld as the SVJ1F_X model. On the other hand,

if the volatility factor of xt is mean-reverting to another time-varying volatilitly factor, then
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the model is labeled as the SVJ1F_X_SM model. The definitions of the SVJ1F_V model and

the SVJ1F_V_SM model are similar to the SVJ1F_X and SVJ1F_X_SM model respectively,

except that there are jumps in the volatility factor of the long-run risk factor.

The most generalized model assumes that diffusion terms of consumption and dividend are

controlled by the long-run volatility factor V p
t , the diffusion term of the long-run component

xt is controlled by the short-run volatility factor V
f
t , and V

f
t mean-reverts to V p

t . There are

jumps for both the long-run risk factor xt and the short-run volatility factor V
f
t . This model

is labeled as the SVJ2F model.

All these specifications can be expressed in an affi ne form that was discussed by Eraker

et al.(2008), where the economic fundamental variables (logCt, logDt) and state variables

(xt, V
f
t , V

p
t ) can be expressed as a vector Yt

dYt = (M +K ′Yt)dt+ Σ(Yt)dWt + ξt · dNt, (14)

where M ∈ R5×1, K ∈ R5×5, Σ(Yt) × Σ(Yt)
′ = h +

∑
i
HiYt, and (h,H) ∈ R5×5 × R5×5×5. At

the same time, the jump intensity coeffi cient describing the Poisson distribution of dNt can be

written as l(Yt) = l0 + l1Yt, where (l0, l1) ∈ R5 ×R5×5. In our specification, we set l0 all to be
zero. As shown in Appendix A, such an affi ne representation greatly simplifies the equilibrium

solution expression.

Under the risk-neutral measure, the dynamics of the state variables can be expressed as

dY Q
t = (MQ +KQYt)dt+ Σ(Yt)dW

Q
t + ξQt · dN

Q
t . (15)

The details of the transformation between the P and Q measures are shown in Appendix A.

Solving the Model

The model solution is based on solving the Euler equation

Et[exp(mt + ri,t)] = 1, i ∈ {c, d} (16)

where rc,t and rd,t are the instantaneous returns of assets with claims on consumption stream

and dividend stream respectively from time t to t+ dt.

As shown in Appendix A, we follow the standard guess-and-verify procedure to solve the

Euler equation. Both the log wealth-consumption ratio vct and the log price-dividend ratio v
d
t

are affi ne functions of stationary state variables xt, V
f
t , V

p
t . For Yt = [logCt, xt, V

f
t , V

p
t , logDt]

′,
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the equilibrium log wealth-consumption and price-dividend ratios can therefore be written as:

vct = A+B′Yt (17)

vdt = Ad +B′dYt,

where A,B,Ad, Bd are functions of k1, k0, k1d, and k0d. A and Ad are scalars and B and B′

are vectors.4 The affi ne structure of the solution process is valid under the Campbell-Shiller

log-linearization approximation. As shown by Bansal et al. (2007b), as long as the EIS is not

significantly higher than 2 (which is satisfiled in our study), this log-linear approximation yields

a result quite close to the more accurate numerical solution to the Euler equation.

The real risk-free rate can also be expressed as an affi ne function of the state variables

rt = Φ0 + Φ′1Yt, (18)

where Φ0 is a scalar and Φ1 is an n × 1 vector. The calculation of Φ0 and Φ1 follows the

procedure in Eraker (2008). Details are in Appendix A.

The instantaneous expected equity risk premium can be written using the formula suggested

in Drechsler et al. (2009) as an affi ne function of the two volatility factors V f
t and V

p
t :

Et(rm,t+dt − rf,t) + 0.5V art(rm,t+dt) (19)

= −Covt(mt+dt − Et(mt+dt), rm,t+dt − Et(rm,t+dt))

where bothmt+dt−Et(mt+dt) and rm,t+dt−Et(rm,t+dt) are linear functions of continuous shocks
dWc,t,dWxt,dWvf , dWvp, and jump shocks ξxdNx − E(ξxdNx) and ξvfdNvf − E(ξvfdNvf ),i.e.

mt+dt − Et(mt+dt) = m1dWc,t +m2dWxt + (20)

m3dWvf +m4dWvp +

m5[ξxdNx − E(ξxdNx)]

+m6[ξvfdNvf − E(ξvfdNvf )]

and

rm,t+dt − Et(rm,t+dt) = r1dWc,t + r2dWxt + (21)

r3dWvf + r4dWvp +

r5[ξxdNx − E(ξxdNx)]

+r6[ξvfdNvf − E(ξvfdNvf )]

4Since k1, k0, k1d,k0d are determined by unconditional means of the log wealth-consumption ratio vct and log
price-dividend ratio vdt , Equation (16) needs to be iteratively run until a consistent solution is reached.
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where mi and ri are constants.

The instantaneous return can therefore be calculated,

Et(rm,t+dt − rf,t) + 0.5V art(rm,t+dt) =

4∑
i=1

miri +m5r5V art(ξxdNx) (22)

+m6r6V art(ξvfdNvf ) (23)

where each term in the right side represents the risk premium demanded for each individual

risk source.

As suggested in Duffi e et al. (2000) and Eraker (2008), we can take advantage of the

fact that log stock prices are affi ne functions of the state variables so the moment generating

functions for both P and Q measures can be expressed in a semi-closed form:

ψi(u, Yt, 0, T ) = Ei0 exp(u lnST ) (24)

= eαi(u,T )+βi(u,T )Yt , i ∈ {P,Q},

where αi(u, t) and βi(u, t) satisfies

∂βi
∂t

= Ki′β +
1

2
β′Hβ + li

′
1 (%i(β)− 1) (25)

and
∂αi
∂t

= M i′β +
1

2
β′hβ + li

′
0 (%i(β)− 1), (26)

with the initial conditions of αi(u, 0) = 0 and βi(u, 0) = u.

The one-month ahead conditional variances in risk-neutral and physical measures can there-

fore be written as

V arit[lnR
i
t,t+1] =

∂2 lnψi(u, Yt, t, t+ 1)

∂u2
|u=0

= α′′i (0, 1) + β′′i (0, 1)Y i
t , i ∈ P,Q. (27)

The expectation of stock return quadratic variations under both physical and risk-neutral

measures can be approximately calculated as the integrated conditional variance, i.e.

Ei[QV i
t,t+1] ' Ei[

M∑
n=1

V arit+ n
M

[lnRt+ n
M
,t+n+1

M
]] (28)

' V arit[lnRt,t+1], i ∈ P,Q. (29)

The risk-neutral expected variance corresponds to the short-term variance swap rate, which

can be represented by the square of the VIX index provided by CBOE(Chicago Board Options
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Exchange). The physical expected variance can be estimated based on the high-frequency S&P

500 future data. The advantage of using future instead of cash index data is that the former

avoids the stale price issue at high frequencies. Hence the variance risk premium (V RP ) is

defined as the difference between the expected variance under the two measures; i.e.,

V RP = EQ[QV Q
t,t+1]− EP [QV P

t,t+1] (30)

It is apparent that under the two-factor model, the variance risk premium is an affi ne function

of the short-run and long-run volatility factors V f
t and V p

t , while under the one-factor model,

it is an affi ne function of the single volatility factor Vt.

2.2 Data

The data used in this paper are constructed based on various sources. The annual consumption

data are obtained from BEA (The Bureau of Economic Analysis) and defined as the sum of per

capita services and non-durable goods. The dividend, stock price, and short-term interest rates

are from CRSP(The Center of Research in Security Prices) and COMPUSTAT. The cash divi-

dend is calculated based on the difference in CRSP value-weighted market returns including and

excluding dividends. The total dividend is constructed by adding stock repurchases to the cash

dividend series. The method to estimate stock repurchases is the same as that used in Boudoukh

et al. (2007).5 The dividend is then adjusted to real terms based on Consumption Price Index

(CPI). The high-frequency realized variance data are based on S&P 500 future obtained from

CME (Chicago Mercantile Exchange). The VIX data is obtained from CBOE(Chicago Board

of Exchange). The CPI(Consumption Price Index) data are obtained from BEA. Part of the

expected inflation is constructured based on SPF(The Survey of Professional Forecasters).

[ insert Table 3 about here]

[ insert Figure 1 about here]

The upper panel in Table 3 reports the annual consumption and dividend growth from

1951 to 2010. The squared brackets record the 90% bootstrap confidence intervals. For the

purpose of comparison, we also include the cash dividend data. As can be seen, aggregate

consumption follows a smooth process with an average annual growth rate of approximately

2%. The standard deviation is about 1%. The consumption process also displays a slightly

negative skewness and positive excess kurtosis and a moderate first autocorrelation of 0.38.

The two dividend measures have significantly different characteristics. The average sample
5Since stock repurchasing data are only available after 1971, we do not adjust dividends for the period before

1971. As shown in Boudoukh et al. (2007), before 1971, payouts to investors were mainly in the form of cash
dividends.
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growth rate of the repurchase-adjusted dividend is 2.6%, much higher than the growth rate

of 1% of the cash dividend. This reflects the well-known trend that firms are increasingly

using stock repurchases as substitutes for cash dividends for tax and other reasons in the last

twenty years. Moreover, the repurchase-adjusted dividend is much more volatile, leptokurtic,

and persistent than the cash dividend.

Asset pricing data (except high-frequency and VIX) are in monthly frequency from January

1951 to July 2010.6 The nominal risk-free rate is the yields on the three-month T-Bill, which

are provided by the Fama Risk-free Rate Data Set in CRSP. The price-dividend ratios are

constructed based on the log of the ratio of the end-of-month S&P 500 index to the trailing

12 month dividends. The inclusion of stock repurchases significantly decreases the growth of

price-dividend ratios in recent years. As seen in Figure 1, the log price-dividend ratio with

repurchase adjustment displays a stable movement from 1951 to 2010. On the other hand, the

log price-dividend ratio without adjustment displays a clear upward trend after 1990 that may

be unstationary. The monthly excess returns are measured by substracting the nominal risk

free rate from the returns of S&P 500 index plus the cash dividend yield.

[ insert Figure 2 about here]

All the nominal quantities except for the risk-free rates are adjusted to real terms based on

the ex post monthly inflation rate provided by the CRSP. The adjustment of nominal risk-free

rates is mostly based on SPF(The Survey of Professional Forecasters) because of the significant

measurement noise in the ex post inflation shock. For the 1951-1967 part of the sample, we use

the smoothed trend of the realized inflation as the approximation of forecasted inflation; for the

1968-2010 part of the sample, we use the forecasted GDP inflation index as the approximation

of the expected inflation rate.7 The survey based on the GDP deflator provides a longer

sample(since 1968) than what is available for the CPI inflation (available since 1981). For most

of the postwar period, the GDP deflator tracks the consumer price index (CPI) quite closely,

as can be seen in Figure 2.8

Before 1990, the monthly realized variance is calculated by summing the daily squared

returns over a month. After 1990, the realized variance is calculated based on the 5-min

intraday trades of S&P 500 futures. The realized variance is first construted over a trading day

6We started the sample period in 1951 because there was a large degree of uncertainty in the economy during
the Depression and World War II. Monthly inflation was also extremely volatile during the period from 1946 to
1950, making real risk-free rate estimation quite diffi cult.

7The SPF asks professional forecasters to submit their forecasts at the beginning of the second month of each
quarter. The result is published in the middle of the same month. The content of the survey is clearly affected
by the numbers published by the BEA report at the end of the first month of each quarter. To simplify, we
assume that the forecasts for the current quarter are mostly made at the end of the last quarter.

8 In an unpublished study, we also compare the surveyed inflation rate of the GDP price index and the surveyed
CPI price index from 1981 to 2010. The difference in mean is only 0.24% annually, and the standard deviation,
skewness, and kurtosis between these two measures are close as well.
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and then aggregated over a month. We choose using S&P 500 futures as it has fewer problems

with stale prices than high-frequency S&P 500 index.

The middle panel of Table 3 reports the summary statistics for asset prices. As can be seen,

the risk-free rate is quite low and smooth, the log price-dividend ratio is quite stable, the equity

premium is as high as 6.70% annually from 1951 to 2010, and the realized variance of the equity

return is much higher than that of the consumption, dividend and the risk free interest rate.

The bottom panel of Table 3 reports the summary statistics for the monthly realized vari-

ance, VIX2, and the associated variance risk premiums from 1990 to 2010. The calculation

of variance risk premiums involves measuring the expected physical realized variance of stock

return. To do so, the HAR-RV approach (Corsi (2009), Andersen et al. (2007)) is adopted.

This approach involves conducting an in-sample regression of logRVt on the realized variance

of past day, week, month, quarter, and half-year, in a monthly unit, expressed as

logRVt,t+22 = β0 + β1 logRVt−1,t + β2 logRVt−5,t (31)

+β3 logRVt−22,t + β4 logRVt−132,t + εt,

and then construcing the expected realized variance based on the regression. Studies in Corsi

(2009) and Andersen et al. (2007) suggest that the simple HAR-RV approach is at least on

par with a much more sophisticated volatility forecasting model, and sometimes even performs

better.

The summary statistics for the variance risk premiums suggests that they are on average

positive, with high volatility and significantly large right tails. This is not surprising given the

reported huge VIX spikes during times of financial crisis. Another salient feature is that both

the physical volatility and option-implied volatility display a non-trivial correlation even at lags

as long as 12 months. This is consistent with the "long-memory" characteristics of volatility

that have been confirmed by more rigorous statistical tests.

2.3 Calibration Strategy

To calibrate the model parameters, we choose a systematic strategy based on the Simulated

Methods of Moments (SMM) (Duffi e et al.1993 , Gourieroux et al.1996 ).9 Here is the procedure

for carrying out the SMM calibration.

Step 1: Collecting the target moments of the data. We split the moments into two parts,

the first part are moments that are based on the data from 1951 to 2010, while the second part

are moments based on the volatility data from 1990 to 2010. Specially, we write the vector of

moments ỹ(t) as

ỹ(t) = [ỹ1(t), ỹ2(t)]

9Part of my code is adapted from Fackler and Tastan (2008).
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where

ỹ1(t) =


Rft, (p− d)t, (

√
RV )t

[Rft−E(Rft)]
2, [(
√
RV )t−E(

√
RV )]2

[(p− d)t−E(p− d)]2

[Rft−E(Rft)][Rf,t−1−E(Rft)]


and

ỹ2(t)=


V IXt, [V IXt−E(V IX)]2),

[V IXt−E(V IX)][V IXt−1−E(V IX)]

[V IXt−E(V IX)][V IXt−6−E(V IX)],

[V IXt−E(V IX)][13
∑13

n=11 V IXt−n−E(V IX)]

 ,

the first set of moments ỹ1(t) includes the first and second moments of the risk-free rate, the log

price-dividend ratio, and the realized volatility together with the first autocovariance moment

of the risk-free rate, while the second set of ỹ2(t) includes the moments based on the VIX data

including the lag-1, lag-6 and lag-12 autocovariances ( the lag-12 autocovariances are estimated

by averaging lag-11, lag-12, and lag-13 autocovariances).

To overcome the issue of the shorter periods of option data compared to other asset market

data, a procedure from Singleton (2006) is adopted to construct an overidentification vector

of MOID(m, ỹt) which includes data from both periods. The estimated moments minimize the

objective function

m̃(ỹdatat ) = arg min
m=[m1,m2]

MOID(m, ỹdatat )′WTMOID(m, ỹdatat ),

where MOID(m, ỹdata) = [ 1T1
∑T1
1 ỹdata1 (t)−m1,

1
T2

∑T1+T2
T1+1

ỹdata1 (t)−m1,
1
T2

∑T2
1 ỹdata2 (t)−m2]

is the overidentification vector. The estimation of WT follows a standard two-stage process.

Table 4 reports the estimated moments based on our sample. The biggest change is that

after adjustment, the average realized volatility and VIX are markably lower than the simple

sample means. For example, the sample average of the realized volatility reported in Table 3 is√
19.78%× 12 = 15.41% and the sample average of the VIX is 21.84%. After the adjustment,

the sample average of the realized volatility and the VIX are 13.86% and 18.11%, respectively.

This is due to the fact that the volatility prior to 1990 is lower than that in the post-1990

period.

[ insert Table 4 about here]

Step 2: For a given parameter set θ, the state variable dynamics are discretized and simu-

lated and the corresponding asset prices such as the short rates and the price dividend ratios

are calculated based on the equilibrium solution at each period. Each simulation contains a

sample size of 10,000 months. In the simulation, the same proportion of the VIX data is ignored
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the same inference procedure is conducted as in the real data.10

Step 3: The overidentification vector MOID(m̃(ỹt, ŷsimu(θ)) is constructed and the optimal

calibration θ0 is the solution to minimize the criteria function

MOID(m̃(ỹt), ŷsimu(θ))′ΩTMOID(m̃(ỹt), ŷsimu(θ)).

Here the optimal weighting matrix of ΩT is estimated using a Newey-West estimator and a

Bartlett weighting scheme with a lag length of 10.

Step 4: To compare the quality of fit across different models, we calculate the overidentifica-

tion J-statistics and adjust them based on the fact that the moments are obtained by simulation

instead of analytial solution.The typical adjustment based on the ratio of the simulated data

length (10,000 months) to the realized data length (about 720 months) is applied. Since the

simulation length is more than 10 times that of the actual data length, the adjustment is fairly

small.

3 Results

3.1 Calibrated Models

For each calibrated model, we split the parameters into two groups. The parameters in the

first group are preset at values consistent with most of the previous LRR studies. These

parameters include the subjective discount factor (δ), the unconditional consumption growth

rate(µC), the unconditional dividend growth rate(µD), the loading factor of dividend growth

on the long-run consumption growth(φd), the correlation coeffi cient between consumption and

dividend shocks(ρdc), the correlation coeffi cient between the shocks of the long-run risk factor

and its volatility (ρxf ), the jump intensity parameters (lXV and lV ), and the jump distribution

parameters (γx and γV ).

All the other parameters are chosen as the solution which optimizes the fit between the

model and the selected moments of the sample data. Among the second group of parameters,

the loading factor of the dividend growth on the volatility factor ϕd is chosen among discrete

values of 5, 6.5, 8, 9.5, and 11. For each candidate value, we optimize the objective function

and we choose a ϕd that enables the model to achieve the best fit.

10We use the Euler scheme to discretize the continuous time dynamics. The time interval is at a frequency
of 1/20 of a month, roughly corresponding to a daily frequency. The simulated variables are then aggregated
at a monthly level.To ensure that the discretizaton error is small, we compare the simulation result of 1/20 of
a month and that of 1/40 of a month to find that results are quite similar. We also compare the simulated
option price based on discretization of 1/40 of a month with one based on a semi-closed form, continuous time
calculation, and the two prices are also quite close, again confirming the adequacy of my discretization choice.
During the simulation, we start with the initial state variables at their unconditional means and then discard the
first 1 million steps. This is a practical way of randomizing the initial condition so that the simulated process
will be stationary.

15



[ insert Table 5 about here]

Table 5 reports our calibration results for several specifications of the long-run risk models.

Seven different models are considered here. The first two are the SV1F and SV2F models,

introduced in the previous section; these two models are diffusion models with one or two

volatility factors. The next two models are the SVJ1F_X and SVJ1F_V models. They are

similar to the classic SV1F model except that we assume that there are jumps in either the long-

run risk factor (SVJ1F_X) or the volatility of the long-run risk factor (SVJ1F_V). The next

two models, the SVJ1F_X_SM and SVJ1F_V_SM models are extensions of the SVJ1F_X

and SVJ1F_V models respectively. These two models assume that the long-run mean of the

volatility factor Vf is not constant but follows a time-varying stochastic process (SM stands for

"stochastic mean"). The last model is the most generalized model, in which we assume that

there are two volatility factors Vft and V
p
t . The former controls the volatility of the long-run

risk factor and the latter controls the volatility of consumption and dividend. At the same

time, Vpt is the long term mean of Vft . Not surprisingly, one would expect V
f
t to have a much

higher mean-reverting speed than V p
t .

The first panel in Table 5 reports the preset parameters for all models. Most of the pa-

rameters are the same across different models. One exception is the unconditional dividend

growth rate µd, which is set at 0.002 in the SV1F and SV2F models and set at 0.0028 in the

other models. However, µd is mainly used to fit the unconditional growth rates of dividends,

and its impact on other moments is relatively small. Another parameter is the jump intensity

lV for the volatility factor. In the SVJ2F model, we set lV at 4000, while in the SVJ1F_V and

SVJ1F_V_SM models we set it at 500. As we will discuss later, exactly identifying the jump

intensity is extremely hard given the data, the impact of different jump intensities can be offset

by different jump size distributions. However, our experience with jump-in-volatility models is

that a lower jump intensity is able to accommodate a larger jump size in volatility, which is

necessary for jump-in-volatility models to fit data moments well.

The second panel in Table 5 presents optimized parameters for the model to achieve the

best sample fit. Overall, the SV1F and SV2F models fit the data poorly with large J-statistics

and the SVJ2F model achieves the best in-sample fit. Including jump process is crucial for

the model to fit the moments and including the second volatility factor also matters. Given

that everything else is equal, the fit for jump-in-volatility models is slightly worse than that of

jump-in-long-run-risk models.

The table also suggests that the loading parameter ϕd, the risk aversion parameter γ, the

EIS parameter ψ, the persistence of the long-run risk factor κx and the diffusion coeffi cients ϕe
are more or less similar across different models. They are also similar to the values provided

in previous studies. This similarity mostly comes from the requirement for the model to fit

the first and second moments of risk free rates, price-dividend ratios, and stock volatility. The
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mean-reverting parameter κfv of the volatility factor V
f
t varies across different models. But they

are typically larger than the previously reported mean-reverting coeffi cient. This is because the

goal of our model is to fit the persistence of expected variance at the monthly level instead of

the annual level. The mean-reverting parameter κpv for the volatility factor V
p
t , is as small as

0.01, corresponding to a half decaying period of up to 70 months. Similarly persistent volatility

has also been found in Egloff et al. (2010) whose estimation is based on the term-structure of

variance swap rates. When V f
t and V

p
t are both present in the model, the diffusion parameter

V f
t is generally a magnitude larger than the diffusion parameter of V p

t . Given the fact that

both factors have similar long-term mean (in two-factor models, they are the same), it suggests

that the volatility of V f
t is much higher than that of V p

t . However, when the model includs

large jumps in volatility, the volatility of V f
t is much smaller than other models. For example,

in the SVJ1F_V_SM model, σfw is 3.26× 10−4, quite similar to σpw which is 2.73× 10−4.

[insert Table 6 about here]

Table 6 and Table 7 report moment matches between the calibrated models and the data.

The model implied moments are medians of the 1000 simulations with each simulation spanning

a period of 60 years. Long-term simulation, not reported here, suggests that these medians are

also jointly close to the moments of a long-period simulation moments. The numbers in brackets

correspond to the 5% and 95% quantiles of the finite sample simulation.

Table 6 reports the moment match of the SV1F and SV2F models. These two models

achieve decent fits to the first and second moments of interest rates, price-dividend ratios, and

historical stock volatility. But the model-implied risk-neutral volatility(VIX) is significantly

lower than the sample mean. As a consequence, these two models both generate variance risk

premiums that are one magnitude smaller than the sample. In addition, the autocorrelation of

the expected risk neutral volatility (VIX) in the SV1F model decays quickly as lag increases

while the SV2F model demonstrates a long range dependence in expected risk neutral volatility

which is more consistent with the data. This is presumably why the SV2F model achieves a

better overall fit to the data than the SV1F model.

Table 7 reports the moment match for the models including jumps. The same as Table 6,

the value reported is the median of 1000 simulations of 60 years (the VIX only has 20 years of

observations) and the brackets contain five and ninety-five percent quantiles.

Similar to the SV1F and SV2F models, all the jump models display remarkable in-sample

fit for the first and second moments of risk free rates, price-dividend ratios, and historical

volatility. When jump are included, all the models display significant variance risk premiums.

Nevertheless, models with jumps in long-run risk factors generally generate higher variance

risk premiums than models with jumps in volatility. Furthermore, all models generate smaller

variance risk premiums than the sample data. Aside from possible model misspecification, it
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is partially due to that fact that our models are calibrated to fit the estimated unconditional

moments based on long and short periods of data jointly rather than based on the short-period

of data over the last 20 years.

[insert Table 7 about here]

As for the long-range dependence in risk-neutral volatilities, we find that only the SVJ1F_V_SM

model generates satisfying long-range dependence. This seems to be surprising initially, as long-

time simulation suggests that the SVJ2F, SVJ1F_V_SM and SVJ1F_X_SM models display

autocorrelation close to 0.30 for the lag of 12 months, and the SVJ1F_X and SVJ1F_V models

display negligible autocorrelation at such a long lag. Hence, it is likely that the statistics in the

finite sample seem to deviate from that trend. In fact, in the SVJ1F_V model the 12-month

autocorrelation in the VIX is as high as 0.27, even higher than 6-month autocorrelation, which

is clearly counterfactual. The difference between the finite sample statistics and population sta-

tistics indicates that our simple estimation of the long lag autocorrlation in the VIX is subject

to robustness issues. Although sample autocorrelation estimation may not be robust against

the finite sample effect, the long memory feature of stock volatility has been demonstrated by

more robust statistical models and against long period data. So any models that are short of

long-memory characteristics are subject to model misspecification to some degree. Establishing

a more robust sample statistics describing the feature of long-memory is desirable.

Another important moment match, though not considered when calibrating the model, is

the persistence of the realized volatility. The cost of assuming too large a jump in the long-run

risk factor is that the model does not display the GARCH effect. This is because when there

is a jump in the long-run risk factor (including occasionally a large negative jump), the sudden

price movement is not accompanied by a change in volatility factor. Consequently, the volatility

of the future price movement is not affected by the jump in the long-run risk factor at all. For

example, in the SVJ2F model, the model-implied autocorrelation for the realized volatility is

0.36, much smaller than the sample correlation of 0.63. On the other hand, the problem seems

to be much smaller for the SVJ1F_X_SM and SVJ1F_V_SM models. This is partly due to

the fact that these two models generate much smaller variance risk premiums than the SVJ2F

model.

To summarize, the assumption of jumps is crucial for the long-run risk models to generate

large variance risk premiums. The jump-in-long-run-growth models are generally more effective

at generating large variance risk premiums than jump-in-volatility models. However, the cost

of assuming jumps in long-run growth is the reduced persistence in realized volatility. Finally,

including a second volatility factor enables the model to display long-range dependence in the

risk-neutral expected volatility.
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3.2 Consumption and Dividend

Although we do not directly include the data regarding consumption and dividend growth in

our calibration, it is interesting to compare the implied consumption and dividend of the LRR

models and the annualized data. Table 8 reports such a comparison.

For the annual consumption, all models match the mean of the annual consumption growth

very well. Yet they all generate a slightly higher volatile consumption process than the sample

counterpart. The models also imply that the distribution of consumption is more normal than

the sample. The medians of skewness are all very small and the medians of the kurtosis are

close to 3, in contrast to the negative sample skewness of -0.59 and the high kurtosis of 3.47.

However, the sample values are still included in the 90% confidence interval of all models,

as the unconditional skew and kurtosis is hard to estimate robustly. As for the first order

autocorrelation, the SVJ2F model implies a more persistent consumption process, while all the

other models displays mild first order persistence and the value is close to the sample.

For the annual dividend, all the models display a relatively higher dividend growth rate than

the data, partly because we set a high unconditional dividend growth rate. All the models imply

lower dividend volatility than the sample data. This is because in our calibration, we find that

increasing the dividend volatility parameter ϕd typically makes the fit for asset pricing moments

worse even though it brings the dividend volatility closer to the sample. The sample dividend

growth displays a small positive skewness and large kurtosis. They are generally within the

90% confidence intervals generated by the models. Finally, the autocorrelation of the dividend

growth is matched by the models reasonably well.

[ insert Table 8 about here]

3.3 Robustness Check

Since our models have many preset parameters, it is important to check whether changing these

parameters would produce significantly different results.

• Discount factor and dividend dynamics

In our calibration, we set the discount factor at 0.999 and chosse the dividend dynamics

parameters close to Bansal et al. (2007a). In our study, we have tried four different subjective

discount factors (δ = 0.999, 0.9985, 0.998, 0.997) and find that only the discount factor of 0.999

allows the model to fit interest rates and price-dividend ratios simultaneously well. We have also

tested several values of φd, (the dividend growth’s loading factor on xt). At least from 2.5 to 3.5,

we find that similar sample moments can be achieved by small adjustments of other parameters.

Parameter ϕd directly control the volatility of dividend process. As we have mentioned, during
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our calibration process, we have varied ϕd from 5 to 11 to check their impacts on the model

fit. We find that as ϕd gets larger than 8, the fit for the model typically gets worse, but the

dividend volatility is closer to the sample data. So whether we can fit both the moments of the

dividend process and the moments of asset prices is still an open question. Finally, we test how

changing the coeffi cient ρdc would impact the model results. We choose a typical value of 0.4,

but varying it from 0.2 to 0.6 does not materially impact the quality of the model fit, as other

parameters can be adjusted in response to the change in ρdc.

• Leverage-effect coeffi cient

In our model, we restrict the shock correlation coeffi cients ρxf to -0.8. We find that this

coeffi cient has little effect on monthly aggregate asset moments; however, setting ρxf to -0.8 can

potentially significantly improve the model’s description of daily dynamics dependence between

stock returns and the VIX index.

• Jump intensity and jump size

We also test whether the calibrated jump parameters will affect the result of estimation.

In the SVJ2F, SVJ1F_X, and SVJ1F_X_SM models, the parameters of the jump intensity

coeffi cients lXV and lV are both set to be 4000. While in the SVJ1F_V and SVJ1F_V_SM

the coeffi cient of lV is set to be 500. It is extremely hard to identify jump intensity and jump

size jointly. Our experiments suggest that if jump intensity is only varied by order of 50%, then

the impact on sample moments can be largely offset by changes in jump size parameters (i.e.

lower jump intensity requires higher jump skewness).

We also assume that the jump size for the long-run risk factor is negatively Gamma dis-

tributed. We experiment with setting the jump as exponentialy distributed to test whether

particular jump size distribution is affecting the result. Consistent with Drechsler et al. (2009),

the difference between the exponentialy distributed jump and Gamma distributed jump mainly

lies in their effectiveness in generating the variance risk premium. It is generally more diffi cult

for an exponentialy distributed jump in the long-run component to generate a large variance

risk premium.

• A different volatility setup

In the SVJ2F model, we assume that the volatility of short-run consumption growth is con-

trolled by the persistent volatility factor, while the long-run consumption growth is controlled

by the non-persistent volatility factor. Here we test a slightly different volatility setup, in which

the persistent volatility factor V p
t controls the diffusion term of the long-run risk factor, while

the fast mean-reverting factor V f
t controls the diffusion term of the short-run consumption and
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dividend. This specification is similar to Bansal et al. (2010). However, we find that the model

cannot achieve a reasonable fit to to the data moments, therefore, we believe it is unlikely to

be a realistic specification.

3.4 Predictability of Growth Rate,Return, and their Volatility

Bansal and Yaron(2004) suggest that the LRR model can generate the strong predictability of

excess stock returns by price-dividend ratios. The conclusion is further supported by Drechsler

and Yaron (2009). However, Beeler and Campbell (2009) raise doubts about the reliability of

this result and other counterfactual implications of the LRR model. Since the work of Beeler

and Campbell (2009) is based on the canonical model of Bansal and Yaron (2004), whether the

conclusion holds for more general models remains in question. Here using our newly calibrated

model we reinvestigate this issue and show that the conclusions reached by Beeler et al. (2009)

are largely intact.

The predictive regression for H periods future compound excess stock returns is:

H−1∑
i=0

(lnRt+i,t+i+1 − lnRf,t+i) = α+ βpred(p− d)t + εHt, H ≥ 1 (32)

where Rt+i,t+i+1 represents the market return from the period t+ i to the period of t+ i+ 1.

Similarly, the predictive regressions for log consumption and log dividend growth rates are:

H−1∑
i=0

(4ct+i,t+i+1) = αc + βpred_c(p− d)t + εHct (33)

H−1∑
i=0

(4dt+i,t+i+1) = αd + βpred_d(p− d)t + εHdt.

While the regressions of consumption and dividend growth are based on quarterly data; the

regression for excess stock returns is based on the monthly bivariate Vector Autoregressive

Regression (VAR) model with lag order of 1. Hodrick (1992) shows that the VAR model can

reduce the bias brought by finite sample and overlapping returns.

Furthermore, we examine whether the model and data would agree on the predictability

of stock realized volatility, consumption volatility, and dividend volatility by price-dividend

ratios. The return volatility is measured as the log of the aggregate realized volatility over the

predictive horizon, specifically, the dependent variable is defined as

V olt+1,t+H =
1

2
ln ΣH

h=0|RVt+h−1,t+h|,

where RVt−1,t = [ΣK−1
k=0 (pt−1+ k+1

K
−pt−1+ k

K
)2] is the realized variance in month t.
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The consumption and dividend volatilities are measured based on the non-parametric method

proposed in Bansal et al. (2005). Specifically, for each variable yt (which can be quarterly con-

sumption or dividend), AR(1) regressions of consumption and dividend are run and the absolute

values of the residuals εct and εdt are used to characterize the realized volatilities of the consump-

tion and dividend respectively. So the H-quarter realized volatility of consumption or dividend

is defined as the sum of the quarterly realized volatility:V olt+1,t+H = ΣH
h=1|εy,t+h|, y ∈ (c, d).

Then the volatility predictive regression is:

ln[V olt+1,t+H ] = βv0 + βv1(p− d)t + ξHt. (34)

Table 9 Panel A reports the regression coeffi cients, t-ratios, and R2s of the regressions of

returns and growth rates at horizons of four, twelve, and twenty quarters. As shown in the

three columns at the left, the regression results based on the data are largely consistent with

what is found in the literature, i.e. price-divided ratios strongly predict stock returns but have

weak or no predictability on consumption and dividend growth rates.

Right to the empirical regression results are the regression results based on the simulated

data from all the models including jumps. For the predictability of excess returns, we find

that the R2 of the regression steadily increases from left to right. This trend suggests that

model-implied price-dividend ratios’predictive power gets stronger when the multiple volatility

factors are included. However, even the largest R2 generated by the model is still significantly

smaller than what is found in the empirical study. The R2 in our model is also consistently

smaller than the model-implied R2 in other studies such as Drechsler et al. (2009)(see Table

IX, median value). As suggested in Drechsler et al. (2009), the model implies a large finite

sample fluctuation in the value of R2. Another important reason is that compared to Drechsler

et al. (2009), we put more constraints on the persistence structure of the market volatility.

The model does a poor job in matching the predictive regression results for consump-

tion/dividend growth. Specifically, all the models imply that price-dividend ratios strongly

predict the growth of consumption and dividend, especially at long horizons. Our results es-

sentially replicate the critiques raised by Beeler and Campbell (2009). However, we note that

the results here need to be interpreted with caution. Although it could be true as Beeler and

Campbell (2009) suggest that the long-run component indeed does not exist in consumption

and dividend, it may be equally true that the consumption and dividend used to test these

models are seriously mismeasured. Currently consumption is measured as the sum of service

and non-durable goods, yet durable goods can also play an important role in asset pricing (e.g.

Yang 2009). Furthermore, the consumption of the stock participants may be a better measure

of consumption for pricing assets (see Vissing-Jorgenson 2002)11. Using dividends to represent

11Several other theories are also able to explain the mismatch regarding the predictability of consumption
growth. Bonomo et al. (2009) suggest that using Generalized Disappointment Aversion to characterize investors
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corporate cash flows might also be subject to biases, as dividends can be affected by shifts in

corporate financial policy. Several studies reveal important connections between asset prices

and earnings (see Longstaff and Piazzesi 2004, Bansal et al. 2005). In fact, although our model

is not calibrated based on earnings of the market, the SVJ1F_V_SM model implies that the

R2 of one year horizon of the price-dividend ratios’predictictive power is 0.07, quite close to the

predictability of earning growth by price-earning ratios from 1949 to 1999, as shown in Table

6 of Bansal et al. (2005). Therefore, it is quite possible that earnings also play an important

role for investors to value assets.

When comparing the regression results between the data and the model regarding the pre-

dictability of the volatility of growth rates and returns by price-dividend ratios, as reported

in Panel B of Table 9, we again find large mismatches. In the empirical side, we find that

the price-dividend ratio with dividend adjusted by stock repurchases cannot predict volatility

of consumption, dividend and stock returns. On the other hand, all the models suggest that

price-dividend ratios can strongly predict all volatilities. How to reconcile this discrepancy is a

largely open question.

3.5 Unconditional Decomposition of Equity Risk Premium

Table 10 reports the results for decomposing the instantaneous expected equity risk premium

into parts that are attributed to different risk resources. The first row reports the unconditional

mean of the equity risk premiums for all models. The second to fifth rows record the premiums

attributed to diffusion risks in (short-run) consumption, long-run risk factor, short-run volatility

factor, and long-run volatility factor. The sixth and seventh rows record the equity premiums

contributed by jumps in the long-run factor and the volatility of the long-run factor.

For the SV1F and SV2F models, the diffusion risk associated with the LRR component xt
constitutes most of the equity risk premium commanded by investors, both close to 90%. When

jumps are included, the risk premium attributed long-run risk is significantly reduced, except

for the SVJ1F_V model the percentage is typically not more than 50%. Investors command

significant equity premiums to compensate risks in jumps. For jump-in-volatility models, the

jump risks contribute to about 20% of the equity risk premium. In jump-in-long-run-factor

models, the percentage reaches as high as 46% (for the SVJ2F model).

[ insert Table 10 about here]

Table 10 reveals quantitatively how much risk premiums can jump risks account for. As

almost all of the variance risk premium is due to the jump. This indirectly suggests that

utility function can explain the low predictability in the consumption growth implied by the LRR model. Hansen
and Sargent (2009) propose that model uncertainty for investors can lead investors to choose to believe that a
long-run risk component exists in consumption dynamics.
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variance risk premiums are closely associated with equity premiums. Our result is consistent

with what Bollerslev et al. (2010) find. Using non-parametric methods, they find that the risk

aversion associated with the tail events not only generates the large variance risk premium,

but also constitutes more than 60% of the equity risk premium. Furthermore, our conclusion is

consistent with both theoretical and empirical studies that suggest that the risk premium in the

option market illustrates the importance of compensation for risks associated with rare events.

Barro (2006) documents an internationally nontrivial probability of rare disasters that can

cause a crash in consumption growth. Gabaix (2008) further extends the model and shows that

the rare disaster model can generate a high implied volatility skew, which is closely related to

variance risk premium. In our LRR models, the infrequent large negative jump in the long-run

growth rate/volatility indeed shares certain characteristics of a rare disaster, however, in the

LRR model the immediate impact on the economy is much smaller. Since this drop occurs in

the expected consumption growth rate instead of in consumption itself, the model can generate

a large price drop when consumption has relatively little change, which is at least consistent

with what we have observed in the U.S. economy.

3.6 Variance Risk Premium’s Predictability of Stock Returns

We now turn to the predictability of stock excess returns by the variance risk premium. Both

Bollerslev et al. (2009) and Drechsler et al. (2009) find that the variance risk premiums can

forecast future stock returns at short to medium horizons.12 The sample periods in these

studies typically end in 2007, just before the financial crisis. In addition to this period, we also

investigate the period that includes the financial crisis and post-crisis periods ending in July

2010. To calculate the variance risk premium, we estimate the expected realized variance based

on the HAR-RV method.13 The univariate regression is

J∑
j=1

(rm,t+j − rf,t) = β0 + β1V RPt + εt, (35)

where J represents the forecasting horizon. Here we obtain the regression statistics implied by

the VAR forecasting model for predicting compound returns at the horizon of one, three, six,

nine, and twelve months. The VAR analysis has been proved to be able to reduce biases caused

by finite sample and overlapping returns. To compare, in the empirical analysis part we also

add the results based on OLS regression with t-ratios adjusted as Hodrick (1992). The standard

variance risk premium is measured based on HAR-RV method; to compare, we also add the

12They define the return for horizon h months as the mean returns from month t+ 1 to month t+ h
13 In Bollerslev et al. (2009), the measure of the variance risk premium is the difference of VIX2 and the lagged

realized variance. In Drechsler et.al. (2008), the expected variance is estimated based on running a regression of
realized variance on the past month’s realized variance and the VIX2.
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case when the variance risk premium is measured based on the difference between expected

model-free implied variance and lagged realized variance, as in Bollerslev et al. (2009).

At the model side, we only use the VAR based analysis as OLS regression gives qualitatively

similar result for long simulation. However, we use various methods to measure the variance

risk premium in the simulated data, aside from using the true expected physical expected

variance, we also use the HAR-RV method and Bollersleve et al. (2009)’s method to estimate

the expected variance.

In both empirical and model-implied data, we compare the predictability of excess returns

based on the model-free implied variance, measured as the VIX2.

[ insert Table 11 about here]

Table 11 reports the empirical regression results. The main message reflected in this table is

that the predictability of excess returns by the variance risk premium is sensitive the estimation

period, the way the variance premium is measured, and the way the regression analysis is

conducted. The upper panel of Panel A reports the regression coeffi cients and the R2 implied

by the monthly VAR analysis, when the physical expected variance is estimated by the HAR-RV

method. From 1990 to 2007, the variance risk premium indeed has a short-run predictability

on variance risk premium, with the strongest predicting power at a horizon of three months.

For the 1990-2010 period, however, the predictability largely disappears. In the bottom panel

of Panel A, the variance risk premium is based on using the lagged realized variance as the

physical expected variance, and it has no predictability on excess returns from 1990 to 2007

and weak predictability from 1990 to 2010.

In Panel B, we conduct the OLS regression to investigate the predictability of excess returns

by the variance risk premium. We find that when the variance risk premium is constructed

based on the HAR-RV method, the predictability pattern is similar to that in Panel A, i.e.

there is statistically significant predictability from 1990 to 2007 and no predictability from 1990

to 2010. When the variance risk premium is estimated based on lagged realized variance, there

is significant predictability in both periods.

From the comparison, we can see that both the financial crisis and the short-time span

make inference significantly diffi cult, however, we believe that the HAR-RV method is a more

appropriate method to estimate the expected variance, VAR method is more robust against

finite sample, and the period from 1990 to 2007 represents a more normal market condition.

Therefore, our conclusion is that the variance risk premium can predict excess returns at short

horizon. Finally, Panel C illustrates that VIX2 cannot predict excess returns in both periods,

which is consistent with most previous studies such as Bollerslev et al. (2009).

[ insert Table 12 about here]
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Table 12 reports the predictability test based on long period simulations from different LRR

models. The upper panel reports the regression result when the physical expected variance is

constructed by the "true" expected variance deduced from the model. The second part reports

the regression results when the physical expected variance is estimated using the HAR-RV

method. The third part reports the regression results when the lagged realized variance is used

as the physical expected variance. The bottom part is the regression results when VIX2 is used

as the regressor variable.

For the first measure of the variance risk premium, all regressions suggest that the variance

risk premium can strongly predict excess stock returns. For the second measure, the predictabil-

ity power generally decreases, especially for long horizon forecasting. Yet the SVJ1F_V_SM

model generates regression coeffi cients and R2s that are quite close to the empirical regression

results in the upper left part of Pane A in Table 11. For the third measure, where the lagged

realized variance is used, all models imply large R2s at short horizons but R2 decreases fast as

horizon increases. The t-ratios, however, are significant at all horizons. This pattern clearly is

different with what is observed in the data.

Although the SVJ1F_V_SM model can match the predictive pattern of excess returns, it

still has serious limit. As shown in the bottom panel, all models, including the SVJ1F_V_SM

model imply that the expected risk-neutral variance can strongly predict excess returns, which

is in sharp contrast with the data. This is not surprising to some extent, as in all jump-based

long run risks models, the conditional variance in risk-neutral measure or physical measure

and expected stock returns are linear functions of the multiple volatility factors V f
t and V p

t .

Therefore, the variance risk premium is also a linear function of these two volatility factors.

When the variance risk premium predict excess returns, so do the expected variance under the

risk-neutral measure. To fully explain the predictability of returns by the variance risk premium

but no predictability of returns by VIX2, we probably need to relax the implicit assumption

that conditional variance and equity premium both have constant loadings on volatility factors.

4 Concluding Remarks

In this study, we develop several alternative continuous-time long-run risks models and inves-

tigate the relationship between the equity risk premium and the variance risk premium. The

central building blocks of the most successful models are the assumptions of jumps and multiple

volatility factors. When jumps are assumed, the model can qualitatively generate many key

features in asset markets, especially the large variance risk premium coexisting with the high

equity risk premium in the market. The assumption of the second volatility factor enables the

model to capture the long-range dependence in stock return volatility and stronger predictabil-

ity of stock returns by key variables such as price-dividend ratios and the variance risk premium
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in the variance swap markets. Although models with jumps in long-run risk factors generate

variance risk premium more effectively than models with jumps in volatility, they generate a

persistence in realized volatility much smaller than that found in the data.

Although the LRR model achieves a reasonably good fit in the unconditional moments of

both the fundamental data and asset pricing data, there are still several discrepancies between

model and data that need to be explained. Firstly, the data suggests no strong predictability

of consumption and dividend by price-dividend ratios, in contrast to what models implied.

Secondly, the data suggests no predictability of volatility of returns, consumption and dividend,

but all models suggest strong predictability. Thirdly, the data imply that the variance risk

premium can strongly predict excess returns while the expected variance cannot; but all models

suggest that both the variance risk premium and the expected variance can strongly predict

excess returns. Despite these drawbacks, we think the long-run risks models do an admirable

job in describing the market dynamics.

There are many interesting questions that remain to be answered. In the current models,

we still assume that investors have constant utility functions and their sensitivity to volatility

factors is constant over time. However, it is well-known that during crisis times investors might

be more sensitive to uncertainties in the economy. Therefore, it might be desirable to establish

a LRR model in which investors display a time-varying or state-dependent risk aversion.

Additionally, the current model assumes that "uncertainty in the long-run consumption

growth" is the main driver of short-term volatility. However, as we all know, there are many

other factors that contribute to short term volatility, such as liquidity and inflation uncertainties.

These short-term volatilities may well be an integral part in explaining the large magnitude

of the variance risk premium. The model established by Calvet and Fisher (2008) offering a

promising solution to this problem.

Finally, though the LRR model has been quite powerful in explaining asset dynamics, we

are aware that there is a lack of direct evidence for such a long-run component in aggregate

consumption. Several theories are proposed to solve this puzzle. The first theory suggests that

the measurement of consumption that is more relevant to pricing asset should either include

durable goods or account for the limited stock market participation effect (Vissing-Jorgenson

2002Vissing-Jørgensen (2002)). The second theory suggests that the long-run risk assumption

may originate from the model uncertainty of investors (Hansen et al.2010). The third theory

suggests that the low predictability in consumption growth can be explained by generalized

disappointment aversion (Bonomo et al. 2010). We expect to continue our investigations and

gain more insight into which of these explanations is correct.
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Appendix

A. Solving the Equilibrium Model

A.1 Fundamental and Pricing Kernel Dynamics

The vector Yt = [logCt, xt, V
f
t , V

p
t , logDt]

′ includes all the variables of interest in our study.

Following Eraker and Shaliastovich (2008), the dynamics of Yt is:

dYt = µ(Yt)dt+ Σ(Yt)dWt + ξt · dNt (A.1)

where

µ(Yt) = M +KYt

Σ(Yt)Σ(Yt)
′ = h+

∑
HiYt.

Here M is a n×1 vector, K is a n×nmatrix, h is a n×nmatrix, andHi∈{1,...n} are n×nmatrices.
dWt is a Brownian motion vector, dNt = [0, dNx, dNV , 0, 0, 0] represents the jump intensity state

variables. They are governed by Poisson processes, with Prob(dNx = 1|zt) = lXV V
f
t dt and

Prob(dNV = 1|zt) = lV V
f
t dt. ξt = [0, ξx, ξV , 0, 0] represents the jump size. The jump size in

xt follows a compensated negative Gamma distribution, i.e.

ξx ∼ −Γ(µx, γx) + µx

The jump size in V f
t follows a standard Gamma distribution:

ξV ∼ Γ(µV , γV )

We assume the representative agent has a recursive utility function as follows:

Ut = {(1− e−(ln δ)dt)C1−ρt + (e−(ln δ)dt)Et(U(t+ dt)1−γ)
1−ρ
1−γ }

1
1−ρ

where ρ = 1
ψ .

We get the formula describing the dynamics of d logMt as:

d logMt + (1− θ)drt +
θ

ψ
d logCt = (log δ)θdt (A.3)

which is similar to the evolution of the pricing kernel under discrete time

logMt+1 = log(δ)θ − θ

ψ
4 ct+1 + (θ − 1)ra,t+1
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A.2 Solving the Model

Under the equilibrium, for the consumption-claim asset (wealth), we have

d(log(MtRc,t)) = θ(d log(P/C)t + d logCt +
dt

(P/C)t
) (A.4)

− θ
ψ
d logCt + log(δ)θdt

= 0

For the dividend-claim based asset (equity), we have

d(log(MtRd,t)) = θ(d log(P/D)t + d logDt +
dt

(P/D)t
) (A.5)

− θ
ψ
d logDt + (log δ)θdt

= 0

Under the log-linear approximation, we have

drc,t = k0dt+ k1dv
c
t − (1− k1)vctdt+ d logCt

drd,t = k0ddt+ k1ddv
d
t − (1− k1d)vdt dt+ d logDt

Assuming vct = A+BYt, vdt = Ad +BdYt. Substituting into the Euler equation A.4 and A.5

above, we get

K ′χ− θ(1− k1)B + 0.5χ′Hχ+ l
′
1(%(χ)− 1) = 0 (A.5)

θ(ln δ + k0 − (1− k1)A) +M ′χ = 0 (A.6)

K ′χd + (θ − 1)(k1 − 1)B + (k1d − 1)Bd + 0.5χ′dHχd + l
′
1(%(χd)− 1) = 0 (A.7)

θ(ln δ − (θ − 1)(ln k1 + (k1 − 1)B′µY )− (ln k1d + (k1d − 1)B′dµY (A.8)

+M ′χd + 0.5χ′dhχd + l0[ρ(χd)− 1] = 0

Ad +B′dµY = ln
κ1,d

1− κ1,d
. (A.9)

Here χ = θ((1 − ρ)δc + k1B), χd = δd + k1dBd − (γδc + (1 − θ)k1B), µY is the unconditional

mean of state variables (for logCt, logDt, the unconditional mean is set to zero).

The coeffi cients k0, k1,k0d, k1d are not known initially, but we can assume the value and

recursively solve them using the relation:

k1 =
exp(E(vct ))

1 + exp(E(vct ))
(A.10)
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k0 = − ln[(1− k1)1−k1kk11 ]

and

k1d =
exp(E(vdt ))

1 + exp(E(vdt ))

k0d = − ln[(1− k1)1−k1kk11 ]

A.3 Risk-free Rate

Using the fact that Mte
∫ t
0 r(s)ds is a martingale, with Ito’s lemma, we can derive the instanta-

neous risk-free interest rate as

rt = Φ0 + Φ1Yt (A.11)

here

Φ0 = θβ + (θ − 1)(ln k1 + (k1 − 1)B′µYt) +M ′λ− 1

2
λ′hλ,

and

Φ1 = (1− θ)(k1 − 1)B +K ′λ− 1

2
λ′Hλ− l′1(%(−λ)− 1)

where λ = γδc + (1− θ)k1B is the price of risks. The calculation of Φ0 and Φ1 follows Eraker

(2008)

A.4 Risk Neutral Dynamics

The risk neutral dynamics of state variables can be expressed as

dYt = (MQ +KQYt)dt+ Σ(Yt)dW
Q
t + ξQt · dN

Q
t (A.12)

where

MQ = M − hλ

KQ = K −Hλ

dWQ
t = dWt + Λtdt,

where λ = γδc + (1 − θ)k1B. λ reflects how different shocks of state variables can affect the
change in the stochastic discount factor. Λt = Σ(Xt)

′λ can be understood as the price of the

diffusion shock.

The jump arrival intensity transformation under risk neutral measure follows

lQxV = exp(−λxµx)(1− λxµx
γx

)−γx lxV , (A.13)
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lQV = (1 +
λvµv
γv

)−γv lV

For jump size distribution, we get the risk neutral moment generating function as

%Qx (u) = exp(µxu)(1 +
µQx u

γQx
)−γ

Q
x

%QV (u) = (1− µQV u

γQV
)−γ

Q
V

here γQx = γx, µ
Q
x = µxγx

γx+λxµx
, γQV = γV , µ

Q
V = µV γV

γV +λV µV

A.5 Calculation of the Risk Neutral Expected Variance (VIX2)

For a large enough n, we can calculate VIX2 as:

V IX2 = EQt [
n∑
j=1

V arQ
t+ j−1

n

(pt+ j
n
− pt+ j−1

n
)] (A.14)

=

n∑
j=1

EQt [V arQ
t+
j−1
n

(pt+ j
n
− pt+ j−1

n
)]

=

n∑
j=1

EQt [α
′′
(0,

1

n
) + β

′′
(0,

1

n
)Xt+ j−1

n
]

= α′′Q(0,
1

n
) + β′′Q(0,

1

n
)

n∑
j=1

EQt (Xt+ j−1
n

)

Here αQ(u, t) and βQ(u, t) satisfies

β̇Q = KQ′β +
1

2
β′Hβ + lQ

′

1 (%Q(β)− 1)

α̇Q = MQ′β +
1

2
β′hβ

with initial condition α(u, 0) = 0 and β(u, 0) = u.

As mentioned above, in our model, we find that n = 1 can provide a good approximation

of the risk neutral expectation of the model.
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Table 1: Different specifications studied in this paper

SV1F SV2F SVJ1F_X SVJ1F_V SVJ1F_X_SM SVJ1F_V_SM SVJ2F
δc1 1 0 1 1 1 1 0
af1 0 1 0 0 1 1 1
lXV 0 0 >0 0 >0 0 >0
lV 0 0 0 >0 0 >0 >0
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Table 2: Description of Data Sets

Cash Flow:
Annual Consumption: non-durable and service real consumption per capita, 1951-2010
Annual Cash Dividend: Dividend deduced from CRSP value-weighted market returns with
without dividend
Annual Adjusted Dividend: Cash dividend plus payout to shareholders in the form of share repurchases,
using formula in Boudoukh (2007)

Asset Prices (from January 1951 to July 2010)
Monthly Real interest Rates: Nominal interest rate (measured by 3 month Treasury Bill) adjusted by forecasted
inflation rate (before 1967, measured by 3 month moving average of ex post inflation, since 1967, measured
by GDP deflator obtained from Survey of Professional Forecasters)
log price-dividend ratios: log of the ratio of monthly real S&P 500 index price and the
sum of the dividend paid over the past 12 months.
Monthly Market Excess Returns: the difference between market returns (measured by the sum of S&P index returns
and cash dividend yield) and nominal risk free rate (measured by 3-month treasury bond), adjusted by ex post inflation.
Monthly aggregate realized variance: before 1990, measured by aggregated daily squared return;
after 1990, measured by aggregate realized variance based on 5-min returns for S&P 500 futures.

Aggregate Variance Data January 1990- July 2010
Monthly Aggregate Realized Variance(RVpost): aggregate realized variance based on 5-min S&P 500 futures.
Monthly option-implied variance (VIX2): squared VIX reported by CBOE at the end of each month.
Monthly Variance Risk Premium based on HAR-RV(VRPHAR): the difference between monthly
option-implied variance and physical expected variance (measured by HAR-RV method)

34



Table 3: Summary Statistics

This table presents the summary statistics of the data used in estimation and further analysis.
The numbers in parenthesis indicates the sample bootstrap confidence interval. All variables
are reported in annualized percentage form whenever appropriate except that RV, VIX2, and
VRPHAR are recorded in units of 1/12 of annual variance.

Annual: 1951-2010
Mean Std.dev. Skewness Kurtosis AC(1)

∆c 2.03 1.22 -0.59 3.47 0.38
[1.71,2.35] [0.96,1.46] [-1.11,0.04] [1.86,4.75] [0.13,0.63]

∆dcash 1.00 6.90 0.42 4.85 0.18
[-0.79,2.81] [5.12,8.54] [-0.71,1.38] [2.45,6.60] [-0.07,0.44]

∆dpayout 2.52 12.52 0.18 5.51 0.35
[-0.51,5.62] [8.87,15.79] [-1.01,1.50] [2.95,7.43] [0.10,0.61]

Monthly: 1951m1 to 2010m7
Mean Std.dev. Skewness Kurtosis AC(1)

Rf 1.68 2.03 0.06 3.49 0.88
[1.53,1.82] [1.90,2.15] [-0.20,0.31] [2.96,3.98] [0.80,0.95]

log(P/D) 3.17 0.29 -0.24 2.04 0.98
[3.15,3.20] [0.28,0.30] [-0.37,-0.13] [1.89,2.20] [0.91,1.00]

Rm-Rf 6.70 14.76 -0.40 4.68 0.05
[2.97,10.39] [13.73,15.72] [-0.78,-0.01] [3.13,6.09] [0.02,0.12]

RV 19.78 39.87 11.32 166.21 0.40
[16.89,22.66] [20.45,57.15] [5.84,14.86] [38.58,263.05] [0.33,0.47]

Monthly: 1990m1-2010m7
Mean Std.dev. Skewness Kurtosis AC(1)

RVpost 29.71 49.36 7.98 87.2 0.55
[23.72,35.45] [19.04,73.95] [1.83,10.82] [0,129.4] [0.42,0.67]

VIX2 39.75 36.47 3.33 18.92 0.82
[35.23,44.21] [26.52,45.26] [1.98,4.23] [6.74,27.2] [0.69,0.94]

VRPHAR 13.87 23.70 4.37 35.68 0.38
[10.97,16.67] [14.91,31.33] [1.04,6.33] [0.78,54.7] [0.25,0.50]
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Table 4: Adjusted Sample Moments
This table presents the adjusted moments used in calibration.

Mean Std AC(1) AC(6) AC(12)
Rf 1.51 1.61 0.95 - -
log(P/D) 3.19 0.27 - - -
RVol 13.86 7.91 - - -
VIX 18.11 7.67 0.86 0.58 0.48
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Table 5: Calibration and Estimation of the Long-run Risks Model

This table reports calibration and estimates of various long-run risks models. Panel A reports
the parameters that are calibrated. Panel B reports the estimation result. The optimal
weighting matrix is calculated based on the Newey-West method with Bartlett kernel lag
length of 10. The table also reports the overidentifing J-statistics along with the associated
p-value. All the parameter units are at monthly frequencies.

Panel A: Preset Parameters

Parameter SV1F SV2F SVJ1F_X SVJ1F_V SVJ1F_X_SM SVJ1F_V_SM SVJ2F
δ 0.999 0.999 0.999 0.999 0.999 0.999 0.999
µc 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017
µd 0.002 0.002 0.0028 0.0028 0.0028 0.0028 0.0028
φd 3 3 3 3 3 3 3
ρdc 0.4 0.4 0.4 0.4 0.4 0.4 0.4
ρxf -0.8 -0.8 -0.8 -0.8 -0.8 -0.8 -0.8
lXV 0 0 4000 0 4000 0 4000
γx 1 1 1 1 1 1 1
lV 0 0 0 500 0 500 4000
γV 1 1 1 1 1 1 1

Panel B: Systematically calibrated parameters

Parameter SV1F SV2F SVJ1F_X SVJ1F_V SVJ1F_X_SM SVJ1F_V_SM SVJ2F
ϕd 6.5 6.5 6.5 6.5 8 6.5 5
γ 9.32 7.15 7.40 7.24 8.06 7.98 6.01
ψ 1.54 1.71 1.65 1.37 1.75 1.42 1.55
κx 0.003 0.009 0.009 0.005 0.005 0.005 0.016
ϕe 0.016 0.014 0.022 0.022 0.023 0.021 0.053

σfw(×104) 32.2 15.28 20.96 2.05 20.06 3.26 37.5

κfv 0.28 1.40 0.30 0.35 0.23 0.18 0.50
V̄f (×105) 2.18 2.43 2.34 - - -
V̄p(×105) - 0.15 - - 0.83 1.80 1.65
σpw(×104) - 3.04 - - 1.78 2.73 2.52

κpv - 0.064 - - 0.018 0.01 0.01
µx(×104) - - 3.73 - 3.15 - 8.79
µV (×105) - - - 18.44 - 17.15 2.44
OID 677.1 515.3 133.0 185.7 112.5 139.2 75.1
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Table 6: Match in Moments SV Model

This table displays matches in key moments between the estimated models and the monthly
U.S. data. Panel A includes the moments that are included in the SMM estimation. Panel B
includes the moments that are not included in the estimation. I then report the population
statistics estimated SV1F, SV2F, SVJ1F_X, and SVJ2F models. The reported population
values are calculated from a simulation of 100,000 months for each model.

Data SV1F SV2F
E(Rf ) 1.68 1.47 1.84

[0.40,2.52] [1.02,2.54]
σ(Rf ) 2.03 1.21 0.93

[0.98,1.52] [0.71,1.32]
AC1(Rf ) 0.88 0.79 0.90

[0.72,0.86] [0.68,0.90]
E(p-d) 3.17 2.85 3.24

[2.54,3.15] [2.99,3.45]
σ(p-d) 0.29 0.16 0.22

[0.10,0.27] [0.14,0.34]
E(RVol) 13.38 12.72 11.92

[11.79,13.68] [10.58,13.65]
AC(RVol) 0.70 0.65

[0.64,0.74] [0.58,0.72]
E(VIX) 20.35 13.64 12.62

[12.25,15.03] [10.59,15.44]
AC1(VIX) 0.86 0.72 0.78

[0.63,0.80] [0.66,0.87]
AC6(VIX) 0.51 0.13 0.48

[-0.04,0.34] [0.25,0.67]
AC12(VIX) 0.39 0.00 0.27

[-0.16,0.18] [0.01,0.51]
Rm−Rf 0.07 0.07 0.05

[0.05,0.10] [0.03,0.08]
V RP 13.87 1.98 0.81

[-0.51,2.44] [-2.40,3.54]
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Table 7: Match in Moments SVJ Model

This table displays matches in key moments between the estimated models and the monthly
U.S. data. Panel A includes the moments that are included in the SMM estimation. Panel B
includes the moments that are not included in the estimation. we then report the population
statistics estimated SV1F, SV2F, SVJ1F_X, and SVJ2F models. The reported population
values are calculated from a simulation of 100,000 months for each model.

Data SVJ1F_X SVJ1F_V SVJ1F_X_SM SVJ1F_V_SM SVJ2F
E(Rf ) 1.68 1.63 2.07 1.47 2.04 1.89

[0.81,2.35] [0.98,3.08] [0.68,2.11] [1.16,2.78] [0.94,2.94]
σ(Rf ) 2.03 1.01 1.33 1.08 1.05 1.38

[0.80,1.38] [0.98,1.64] [0.83,1.42] [0.63,1.57] [0.97,2.06]
AC1(Rf ) 0.88 0.85 0.79 0.83 0.81 0.89

[0.79,0.92] [0.72,0.86] [0.77,0.89] [0.74,0.91] [0.81,0.94]
E(p-d) 3.17 3.22 3.21 3.17 3.17 3.22

[2.99,3.42] [2.86,3.55] [2.88,3.41] [2.86,3.42] [3.03,3.37]
σ(p-d) 0.29 0.21 0.23 0.20 0.22 0.22

[0.14,0.32] [0.16,0.37] [0.13,0.33] [0.14,0.35] [0.15,0.35]
E(RVol) 13.38 14.52 14.67 13.40 13.47 14.37

[13.56,15.51] [13.98,14.89] [11.61,15.41] [11.34,16.48] [12.06,17.38]
AC(RVol) 0.63 0.45 0.50 0.62 0.55 0.36

[0.29,0.58] [0.44,0.57] [0.39,0.73] [0.43,0.71] [0.17,0.55]
E(VIX) 20.35 18.10 16.88 16.85 16.69 18.59

[16.61,19.81] [16.73,17.09] [13.71,20.74] [12.84,21.58] [14.38,24.32]
AC1(VIX) 0.86 0.72 0.75 0.78 0.89 0.70

[0.62,0.79] [0.72,0.77] [0.69,0.86] [0.79,0.96] [0.58,0.80]
AC6(VIX) 0.51 0.12 0.21 0.25 0.57 0.19

[-0.05,0.31] [0.14,0.27] [0.03,0.47] [0.27,0.83] [-0.01,0.44]
AC12(VIX) 0.39 0.00 0.27 0.09 0.48 0.12

[-0.17,0.19] [0.22,0.32] [-0.13,0.32] [0.17,0.74] [-0.07,0.38]
Rm−Rf 0.07 0.07 0.06 0.07 0.07 0.07

[0.04,0.10] [0.03,0.10] [0.05,0.10] [0.04,0.10] [0.04,0.10]
V RP 13.87 9.80 5.68 8.67 7.91 11.81

[6.04,14.08] [5.07,7.83] [1.91,18.69] [-0.14,21.38] [2.13,28.11]
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Table 8: Comparison of Consumption and Dividend Growth Dynamics

This table displays the moments and quantile distribution of consumption and dividend
growth in the annual U.S data and in the data simulated from the SVJ2F model. For the
model I report the population and the finite sample percentile statistics. Population values
are calculated from a model simulation of 100,000 months. The percentiles of the statistics are
based on 1000 model simulations with each simulation spanning a period of 720 months.

data SVJ1F_X SVJ1F_V SVJ1F_X_SM SVJ1F_V_SM SVJ2F
E(∆c) 2.03 2.08 2.04 2.05 2.05 2.09

[0.77,3.16] [0.53,3.41] [0.93,3.02] [0.87,3.20] [0.69,3.31]
σ(∆c) 1.22 1.73 1.65 1.06 1.35 1.97

[1.35,2.28] [1.31,2.17] [0.79,1.52] [1.04,1.88] [1.39,2.92]
Skew.(∆c) -0.59 -0.15 0.00 -0.17 -0.01 -0.23

[-0.75,0.44] [-0.83,0.74] [-0.92,0.53] [-0.82,0.89] [-1.05,0.50]
Kurt.(∆c) 3.47 2.90 3.03 3.02 3.15 2.94

[2.22,4.43] [2.22,6.04] [2.18,5.01] [2.23,6.39] [2.16,4.70]
AC1(∆c) 0.38 0.47 0.45 0.53 0.44 0.65

[0.23,0.69] [0.19,0.67] [0.24,0.74] [0.17, 0.68] [0.41,0.81]
E(4d) 2.52 2.94 2.81 2.94 2.99 3.33

[-1.39,6.97] [-2.25,7.62] [-0.87,6.42] [-0.93,6.93] [-0.01,7.00]
σ(∆d) 12.52 9.50 9.26 7.88 7.80 7.47

[7.87,11.51] [7.58,11.63] [6.22,10.05] [5.97,10.28] [5.58,10.17]
Skew.(∆d) 0.18 -0.10 -0.08 -0.15 -0.04 -0.14

[-0.77,0.51] [-1.16,-0.96] [-0.97,0.72] [-1.19,0.96] [-0.84,0.55]
Kurt.(∆d) 5.51 3.10 3.36 3.60 3.43 2.99

[2.33,4.75] [2.35,7.43] [2.51,6.16] [2.45,7.63] [2.23,4.48]
AC1(∆d) 0.35 0.30 0.30 0.27 0.30 0.49

[0.09,0.50] [0.06,0.51] [0.06,0.48] [0.06,0.50] [0.24,0.70]
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Table 10: Equity Premium Decomposition

This table presents the average contributions to the instantaneous equity risk premium by
short-run and long-run consumption growth risks, the long-run growth jump risks, short-run
and long-run volatility diffusion risks, and volatility jump risks. The total premium is
recorded in annual term.

SV1F SV2F SVJ1F_X SVJ1F_V SVJ1F_X_SM SVJ1F_V_SM SVJ2F
Total Premium (%) 7.00 5.39 6.56 5.94 6.91 6.31 6.79
(Rm −Rf )dWc 9.10% 0.61% 8.47% 8.74% 4.36% 6.95% 4.35%
(Rm −Rf )dWx 87.71% 92.05% 46.10% 71.72% 53.24% 52.61% 35.11%
(Rm −Rf )dWvf

3.20% 0.13% 0.95% 0.00% 2.13% 0.00% 0.28%
(Rm −Rf )dWvp - 7.20% - - 7.19% 20.42% 13.53%
(Rm −Rf )dNx - - 44.48% - 33.08% - 46.41%
(Rm −Rf )dNvf - - - 19.53% - 20.02% 0.33%
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Table 11: Empirical Predictability of Stock Returns by Variance Risk Premium

The coeffi cients, t-statistics, and R2s are imputed from the monthly VAR regression based on
monthly data from 1990 to 2007 and from 1990 to 2010. The returns are defined as the
aggregate return with horizon of 1 month, 3 months, 6 months, 9 months and 12 months.

Panel A. VAR regression

Periods 1990-2007 1990-2010
β̂data t̂data R̂2data(%) β̂data t̂data R̂2data(%)
VRP measure based on HAR-RV (VAR)

month 1 0.037 1.67 2.3 -0.001 -0.06 0.0
month 1-3 0.064 1.93 2.4 0.005 0.17 0.0
month 1-6 0.069 1.93 1.5 0.005 0.20 0.0
month 1-9 0.069 1.92 1.0 0.006 0.20 0.0
month 1-12 0.069 1.92 0.8 0.006 0.20 0.0

VRP measure based on lagged RV (VAR)
month 1 0.022 1.28 0.8 0.023 2.33 2.2
month 1-3 0.021 1.29 0.3 0.028 2.20 1.0
month 1-6 0.021 1.29 0.1 0.029 2.17 0.5
month 1-9 0.021 1.33 0.1 0.029 2.17 0.3
month 1-12 0.021 1.29 0.1 0.029 2.17 0.2

Panel B: OLS regression

Periods 1990-2007 1990-2010
β̂data t̂data R̂2data(%) β̂data t̂data R̂2data(%)
VRP measure based on HAR-RV (OLS)

month 1 0.037 0.13 2.3 -0.001 -0.003 0.0
month 1-3 0.107 2.24 6.9 0.021 0.61 0.4
month 1-6 0.140 2.14 6.1 0.047 0.83 0.9
month 1-9 0.136 1.76 3.7 0.068 1.01 1.2
month 1-12 0.114 1.16 1.8 0.070 0.93 0.9

VRP measure based on lagged RV (OLS)
month 1 0.022 0.11 0.8 0.023 0.16 2.3
month 1-3 0.069 1.88 2.9 0.071 2.64 6.3
month 1-6 0.079 1.53 2.0 0.063 1.61 2.2
month 1-9 0.079 1.23 1.3 0.042 1.01 0.6
month 1-12 0.080 1.07 0.9 0.039 0.87 0.4
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Table 11: continued

Panel C: Regression on VIX2

Periods 1990-2007 1990-2010
β̂data t̂data R̂2data(%) β̂data t̂data R̂2data(%)

month 1 0.08 1.46 1.2 -0.001 -0.13 0.0
month 1-3 0.044 1.53 2.5 0.003 0.13 0.0
month 1-6 0.066 1.52 3.0 0.007 0.20 0.0
month 1-9 0.076 1.50 2.8 0.009 0.22 0.1
month 1-12 0.081 1.49 2.5 0.010 0.23 0.1
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Figure 1: log P/D ratio with and without Stock Repurchase Adjustment

This figure illustrates the log P/D ratio based on cash dividend and adjusted with repurchase. Since the
repurchase data is only available since 1971, the two series are the same before 1971. The log P/D ratio denotes
the log of the ratio between S&P 500 index and the total dividend (including repurchase) paid over the last 12
months.
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Figure 2: GDP Deflator and Consumption Price Index

This figure illustrates the quarterly GDP deflator and the consumer price index (CPI) from Q1:1951 to
Q2:2010. The data is collected from the BEA
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