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ABSTRACT

We study the predictability of S&P500 returns using short term expected risk premia as a
conditioning variable. We construct short term expected risk premia by combining dividend
prices implied by futures markets with a simple model of dividend expectations. Regression
results for forecasting horizons from 1 to 4 quarters show that time variation in risk premia
captures time variation in realized excess returns, albeit with the wrong sign. Counter to the
intuition that a high price of risk commands high returns, we find that high expected returns
predict low returns. The economic significance is strong: a one standard deviation rise in
expected risk premia decreases realized excess returns by 0.16 (0.34) standard deviations at
quarterly (annual) horizons. No asset pricing model is able to generate these patterns of
predictability.
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I Introduction

In this paper we construct an empirical proxy for short term expected risk premia and study its

empirical properties. Understanding the properties of risk premia is one of the most important yet

challenging tasks in asset pricing. One of the challenges is related to the fact that, in general, it

is difficult to identify risk premia demanded by investors: they cannot be directly observed when

the timing and magnitudes of dividends are unknown. A stock index pays uncertain dividends at

uncertain times over a life of uncertain duration. Investors form expectations about future cash

flows and use a set of discount rates to determine the value. All information is then aggregated by

a tatonnement and the econometrician can only observe a time series of stock prices. This “loss”

of information is a binding constraint for our understanding of asset prices; its limits are laid bare

when contrasted to our understanding of discount rates in fixed income markets. In the fixed

income literature, the term structure of interest rates is an observable entity with two important

roles. First, it encodes information about the dynamics of the stochastic discount factor (yields

are risk adjusted expectations of future short rates). Second, it provides a host of restrictions that

allow to better discriminate among alternative models. If equity discount rates were observable,

we could learn about their dynamics and generate additional restrictions that asset pricing models

have to satisfy.

How can we construct a measure of expected returns? We follow the pioneering work of Van

Binsbergen et al. (2011) and address this challenge by using observations on dividend prices.

Dividend prices can be obtained by imposing a simple no-arbitrage pricing restriction on cash and

derivatives markets. The prices of dividends carry information on both future expected dividend

and risk premia. By modeling expectations about short term dividends, we are able to identify the

short term risk premium component embedded in dividend prices. We investigate the properties

of these market-implied short term risk premia (erxST
t hence). In particular, we are interested in

the relationship between erxST
t and longer maturity discount rates. We explore this relationship

indirectly by running predictive regressions of realized excess returns on lagged short term risk
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premia. Since realized excess returns reveal changes in equity discount rates at all maturities,

these regressions allow us to uncover the dynamic link among short- and long-term discount rates.

We ask to what extent the dynamics of risk premia on short term dividends help to explain index

returns and which asset pricing model can be consistent with some of its basic properties.

We test the null hypothesis of no predictability by projecting realized excess returns on short

term expected risk premia. Our results can be summarized as follows. We find that short term

expected returns predict realized returns over short horizons. The economic significance is strong:

a one standard deviation rise in expected risk premia decreases realized excess returns by 0.16

(0.34) standard deviations at quarterly (annual) horizons. The predictive power of expected

returns over short horizon is over and above that of dividend yields: expected returns detect high

frequency predictability components in stock returns that dividend yields do not capture. Even

more interesting, the sign of the slope coefficient is negative: higher market-implied risk premia at

time t are followed by lower excess returns at time t + h. We control for the overlapping nature of

the regressions, and verify that the results are robust to potential mis-specification of the model

for expected dividends. The results are difficult to be reconciled with leading asset pricing models,

at least in their traditional specifications. These models generate risk premia dynamics and term

structures of expected equity returns that are too restrictive. We identify the two ingredients that

are necessary for a model to be able to explain this type of predictability: shocks to dividends must

be priced, and there must be a multivariate state vector driving the term structure of expected

risk premia.

Our first empirical exercise is a regression of excess returns on expected one year risk premia:

can theory say something about the sign and magnitude of the slope coefficient? The problem can

be best understood by means of an analogy to fixed income securities. We can think of an equity

index as a long maturity bond (say, 30 years) that pays coupons (i.e. dividends), and we can

think of short term expected risk premia as the yield on a short maturity (say, 1 year) zero coupon

bond. The issue we address is akin to the question: can one year yields predict one-year holding
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period returns on a 30 years maturity bond? A rigorous answer to the question involves specifying

a term structure model that: i) derives the price of a bond as a function of state variables, and

ii) determines expected risk premia by modeling the covariance between shocks to bond prices

and shocks to the stochastic discount factor. To the extent that the yield on the 1 year bond

reveals the state variable, it is also possible to form expectations about the 1 year holding period

return of the 30 year maturity bond. An equity index is like a coupon-bearing bond, except that

is has infinite maturity and cash flow risk. Just like a coupon-bearing bond can be thought of as

a portfolio of zero coupons, an equity index is a portfolio of “zero coupon” dividend strips, i.e.

claims to dividends payable at future dates. The term structure model of dividend strips we adopt

is the one developed in Lettau and Wachter (2007). Lettau and Wachter (2007) show that short

term expected risk premia (our regressor) identify the price of risk up to a scaling factor, and that

expected returns on dividend strips with longer maturities are positive functions of the price of

risk. Since the return on the index is the sum of returns on dividend strips of all maturities, the

model provides a tight link between the left and right hand side variables of our regression, and

motivates its predictive power.

This work is especially related to Van Binsbergen et al. (2011) study of equity yields. Equity

yields are the ratio of the futures price of dividend futures to the current dividend. Time variation

in equity yields reflects time variation in dividend growth expectations and/or risk premia. The

authors test the predictive power of equity yields, and use a VAR to separate the dividend growth

from the risk premia components. They find that equity yields are good forecasters of dividend

and consumption growth, and that risk premia are counter cyclical. Our analysis is different from

Van Binsbergen et al. (2011) in two respects. First, instead of looking at the predictability of

dividend growth, we focus on the predictability of returns. Second, we exploit the predictability

of returns conditional on short term risk premia to uncover the dynamics and time dependence of

the term structure of equity risk premia.
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II A Motivating Example

As a motivation for the regressions that follow, we use the term structure model of dividend prices

developed by Lettau and Wachter (2007) to shed light on the relationship between short term

expected risk premia and index returns. The logarithm of dividend growth dt+1 = log(Dt+1/Dt)

and its conditional mean zt+1 are assumed to follow

∆dt+1 = g + zt + σdεt+1

zt+1 = φzzt + σzεt+1.

(1)

The price of risk is driven by a state variable xt that evolves according to

xt+1 = (1 − φx)x̄ + φxxt + σxεt+1,

where εt+1 is a 3 × 1 vector of independent standard normal shocks, so that the “shock loadings”

σd, σz, σx are 1×3 row vectors. Note that the conditional volatility of each variable is given by the

norm of the vector of shock loadings, while the conditional covariance between any two variables

is given by the inner product of the respective vectors of shock loadings. Since only dividend risk

is assumed to be priced, and the (log) risk free rate rf = log Rf is assumed to be constant, the

stochastic discount factor equals

Mt+1 = exp
{
− rf − 1

2
x2

t − xt
σd

||σd||
εt+1

}
.

Let Pt,n be the price of a claim that pays the aggregate dividend n periods from now, and let

Rn,t+1 = Pt+1,n−1/Pt,n denote the return on holding the dividend claim for one period. Note that

by no arbitrage, it must be that Pt,0 = Dt. Lettau and Wachter (2007) show that under these

assumptions both the price-to-dividend ratio and the expected excess return on dividend claims
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are exponential-affine functions of the state variables:

log Pt,n = log Dt + A(n) + Bx(n)xt + Bz(n)zt

log Et

[
Rn,t+1/R

f
]

=
(
σd + Bx(n − 1)σx + Bz(n − 1)σz

) σ′
d

||σd||
xt, (2)

where the values of the coefficients A(n), Bz(n), and Bx(n) are given by the boundary condition

for n = 0

A(0) = Bz(0) = Bx(0) = 0,

and, for n > 0, by the recursions

A(n) = A(n − 1) − rf + g + Bx(n − 1)(1 − φx)x̄ +
1

2
Vn−1V

′
n−1

Bz(n) =
1 − φn

z

1 − φz

Bx(n) = Bx(n − 1)

(
φx − σx

σ′
d

||σd||

)
− (σd + Bz(n − 1)σz)

σ′
d

||σd||
.

Since an index can be thought of as a portfolio of dividend claims, its value today is equal to the

sum of the prices of the dividend strips

Pt =
∞∑

n=1

Pt,n,

and the expected excess return it generates is a weighted average of dividend risk premia across

the range of maturities

log Et

[
Rt+1/R

f
]

= log

(
∞∑

n=s

wn exp
{

(σd + Bx(n − 1)σx + Bz(n − 1)σz)
σ′

d

||σd||
xt

})
, (3)

where wn = Pn,t/Pt and s = 1 (s = 2) for cum-dividend (ex-dividend) returns.

Equations (2) and (3) allow us to gain insight into the relationship between short term expected
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risk premia (the right hand side of our regression) and index returns (the left hand side of our

regression). Short term expected risk premia are the empirical counterpart to (2) for n = 1

log Et

[
R1,t+1/R

f
]

= ||σd||xt. (4)

Equation (4) says that expected risk premia backed out of short term dividend expectations and

prices are a constant multiple of the latent factor xt. Since the expected return on the index is

also a function of xt, its derivative with respect to ||σd||xt is different from zero

β1 =
∂ log Et

[
Rt+1/R

f
]

∂||σd||xt

. (5)

Defining β0 = log Et

[
Rt+1/R

f
]
− β1||σd||xt, and letting {ut} denote a white noise process orthog-

onal to xt, one can see that the model imposes a restriction on the coefficients of the regression

log(Rt+1/R
f ) = β0 + β1||σd||xt + ut+1, (6)

and suggests that expected risk premia on short term dividends can predict future realized returns.

Equations (??) is the core regression of our empirical exercise. The relationship lends itself to a

simple interpretation. The only risk involved in buying a claim to one-year forward dividends is

dividend volatility, so that short term expected risk premia are proportional to the latent factor

that drives the price of risk. Since the price of risk is a state variable for the entire term structure of

dividend strips, variation in short term expected risk premia captures variation in realized returns.

III Data

This section describes the data set. All data are at quarterly frequency and span the period from

1986 : 1 to 2011 : 4. The reason behind picking 1986 as a start year is data availability: since

we construct short term expected risk premia from dividend prices implied by index futures, we

can only study the period over which S&P500 futures are traded. The use of futures data also
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motivates the choice of sampling frequency: since contract maturities are in the March quarterly

cycle, quarterly observations dispense us with the need to obtain constant maturity contracts. As

an alternative to backing out dividend prices indirectly from index futures via the cost of carry,

we could have obtained direct observations from dividend swaps, as in Binsbergen et al. (2011).

Dividend swaps have the advantage of being traded for a large range of maturities, but, at the

same time, they are OTC contracts with counter-party risk and have gained in popularity quite

some time after index futures. Also, dividend prices implied by dividend swaps are potentially

subject to price pressure owing to institutional hedging.1 Since our intention is to construct short

term expected risk premia, the trade-off between the two datasets is biased in favor of futures

data.

A Derivation of Expected Risk Premia

The price of a stock is the sum of the prices of the dividends it will pay in the future. By combining

dividend prices with dividend expectations of different maturities, it is possible to back out a term

structure of discount rates. Dividend expectations can be recovered either directly (from analysts’

forecasts) or indirectly (via an econometric model). Dividend prices on the other hand are implicit

in the spread between cash and (discounted) futures prices. More formally, consider a dividend-

paying financial asset with time t price St and a forward contract written on the asset with delivery

n periods in the future. Define Pt,n as the value that makes the cost of carry formula true:

Ft,n = [St − Pt,n] enrt,n ,

where rt,n is a (continuously compounded) risk-free rate appropriate to discount t + n cash flows

back to t. The expression can be re-written in terms of Pt,n

Pt,n = St − Ft,ne
−nrt,n . (7)

1Investment banks typically sell derivatives whose payoffs are ex-dividend; hedging these derivatives requires a
position in the underlying, which gives rise to a long exposure to dividend risk. If dividend risk is too high, the
investment bank might have the incentive to sell dividend derivatives at particularly attractive prices.
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By no arbitrage Pt,n must be the price that markets are willing to pay for the dividend stream

between t and t + n. Equation (6) thus provides a means to infer the price of dividend claims

from spot and futures market data. Let Dt+n denote the dividend that the asset will pay at t+n.

Since Dt+n is a random variable at t, its price today is equal to its expected value discounted by

a risk free rate and an appropriate risk premium µt,n

Pt,n = Et [Dt+n] e−n(rt,n+µt,n).

Re-arranging terms, time t expected risk premia for t + n cash flows can be expressed as

µt,n =
log Et[Dt+n] − log Pt,n

n
− rt,n. (8)

The following sections explore the data counterparts to equations (6) and (7).

B S&P500 Dividend Prices

In order to construct term structures of dividend prices using (6) we need the time series of spot

prices St, futures prices Ft,n, and interest rates rt,n that are appropriate to discount time t + n

cash flows to t. S&P500 futures trade on the Chicago Mercantile Exchange (CME). Available

maturities vary within the sample. When S&P500 futures started trading in 1982, available

maturities included the first 4 months in the March cycle. Ever since, the number of available

contracts has increased progressively.2 All open positions are settled in cash at close of the last

day of trading (3:15 p.m. on Thursday prior to third Friday of the contract month) to the Special

Opening Quotation (SOQ). The SPQ is calculated using normal index procedures except that the

prices used are the actual opening values of the constituents. Since securities might start trading

minutes or hours after the opening bell of the NYSE, the SPQ can be significantly different than

the published opening value of the index. The SPQ is used because it represents actionable values

and thus ensures convergence of cash and futures markets.

2As of March 2012, available maturities include 11 contracts in the March cycle.
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Both futures and spot data are taken from Thomson Datastream. There is a slight mismatch

in the timing of index and futures close prices. CME sets settlement prices for the day equal to

midpoint of the closing range based on pit trading activity between 15:14:30-15:15:00 Central Time.

S&P indices on the other hand are computed using New York Stock Exchange (NYSE) close prices

at 16:00:00, Eastern Time. The implicit assumption is that the 15 minutes mismatch in quotes

can be treated as white noise. To compute dividend prices, we use equation (6) by combining

underlying and futures prices with interest rates data from IvyDB (Optionmetrics). The database

contains (annualized, continuously compounded) zero curves derived from LIBOR rates from the

British Bankers Association (BBA) and settlement prices of Chicago Mercantile Exchange (CME)

Eurodollar futures. For a given futures contract, the appropriate interest rate corresponds to the

zero-coupon rate that has a maturity equal to the futures’ expiration date, and is obtained by

linearly interpolating between the two closest zero-coupon rates on the zero curve. 3 At the end

of each quarter, we obtain the prices of cumulative dividends for different maturities. Since we

use quarterly data, the maturities of the dividend prices we obtain are constant over time; this

allows us to dispense with the need of interpolation techniques to obtain constant maturity prices,

which would be necessary with higher sampling frequency. The number of maturities depends

on the set of available contracts. Ideally, we would like to exploit the information of the entire

term structure of dividend prices, and back out a term structure of expected risk premia. This

approach, however, has three limitations. First, the depth of the term structure varies over time,

as argued above. Second, even though the use of quarterly data virtually eliminates the possibility

of stale prices, dividend prices might still reflect, to some extent, the different levels of liquidity of

the futures contracts used to construct them. Third, the prices of short-maturity dividends may

inherit the seasonality of dividend payments. Bearing these considerations in mind, we construct

dividend prices using the third available contract, which is the longest maturity contract available

over the entire sample.

3IvyDB data starts in 1996. Between 1986 and 1996, we use the term structure of monthly LIBOR rates
(obtained from Datastream).
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C S&P500 Dividend Expectations

In order to construct dividend expectations, we work under the null hypothesis that (log) dividend

growth is equal to a constant plus a white noise process. This assumption is well defended by a

large body of empirical literature. Many authors (see Cochrane, 2005, for a review) have found that

time variation in dividend yields can forecast future excess returns. It can be easily shown that,

in rational economies without bubbles, this empirical finding, coupled with an accounting identity

that relates current prices to future cash flows and discount rates, implies the absence of dividend

growth predictability (see, for instance, Cochrane 2006 and references therein). Absence of divi-

dend growth predictability can be understood as the consequence of dividend smoothing corporate

policies; importantly, it implies that time variation in the value of dividend claims is dominated by

revisions in the ”quantity” and ”price” of risk. If (log) dividend growth is equal to a constant plus

white noise, ∆dt+1 = g + σdεt+1, the level of future dividends is Dt+1 = Dt exp (g + σdεt+1), and

expected future dividends are equal to Et[Dt+1] = Dt exp
(
g + 1

2
||σd||

)
. We use current dividends

Dt as a proxy of dividend expectations. The term g + 1
2
||σd|| is a constant that is absorbed by the

intercept of our regression since we take logs of the RHS. IBES dividend forecasts would be an

ideal measure of model-free, forward-looking dividend expectations. Unfortunately, dividend per

share forecast data are well populated only since 2004. In the robustness section, however, we re-

run predictive regressions using expected risk premia constructed from IBES consensus forecasts,

and show that the results are robust. The assumption that dividend growth is a constant plus a

white noise process seems not to be rejected in our sample: the plot of ∆dt+1 in figure 1 resembles

a white noise process.

D S&P500 expected risk premia, realized returns, and dividend yields

In order to construct excess expected and realized returns, we need data on risk free rates. We

take the 3 month US Treasury rate from Datastream. Rates are quoted on a discount basis,

annualized using the 30/360-day-count convention, and expressed in percentage points. We convert

all rates to their annualized, continuously compounded equivalents using the Actual/360-day-count
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convention. 4 We compute one-year forward expected risk premia erxST
t by combining one-year

forward dividend expectations and prices with 12 month risk-free rates via (7). Figure 2 plots the

time series of erxST
t . The plot peaks in December 2000 at a level that is economically unreasonable,

so in the analysis that follows we exclude this observation (the inclusion of the observation has the

only effect of strengthening all results). Table I reports the sample statistics: expected risk premia

are generally high (the mean is 31%) and volatile (26% standard deviation). Consistent with the

findings of Van Binsbergen et al. (2010), our measure of expected returns documents that risk

premia on short term cash flows are considerably higher than the risk premium earned historically

on the S&P500. Finally, realized excess returns rxt,t+h are constructed as the (annualized) cum-

dividend (log) return on the index between t and t + h, minus the (annualized) 3 month Treasury

rate prevailing at time t.

IV Forecasting regressions

A Baseline model

The reduced-form model presented in the first section suggests that one year expected returns

predict realized returns with a positive sign. To investigate this link empirically we run regressions

of realized excess returns on expected one-year risk premia over different forecasting horizons h:

rxt+h = β
(h)
0 + β

(h)
1 erxST

t + ε
(h)
t+h. (9)

When data sampling is finer than forecasting horizons, predictive regressions are overlapping.

The overlap causes regression errors to be serially correlated even under the null hypothesis of no

predictability: estimates of the covariance matrix of coefficients based on the classic assumption of

homoskedasticity and no autocorrelation overstate the statistical significance of the estimates. In

order to rule out spurious statistical significance, we estimate the covariance matrix of coefficients

4Let R be the discount yield on a bond due in τ days. The annualized, continuously compounded, rate associated
with R is equal to r = (365/τ) log (1 + (R/100) × (τ/360)).
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in two ways: Newey and West (1987), and Hansen and Hodrick (1980). The two methods can be

understood as instances of the GMM framework for different choices of the long run covariance

matrix of sample moments. To illustrate, let β denote a (K × 1) vector of OLS coefficients in

the forecasting regression yt+h = xtβ
′
t + εt+h for t = 1, . . . , T + h. Since the OLS estimate of β

satisfies E[εt+h ⊗ xt] = 0, E[εt+h ⊗ xt] = 0 is the equivalent GMM moment condition. The benefit

of working with GMM is that it only assumes that errors are orthogonal to the regressors. The

covariance matrix of OLS estimates is

V ar [β] = E[xtx
′
t]
−1SE[xtx

′
t]
−1,

where

S =
∞∑

j=−∞

E
[
εt+hxtx

′
t−jεt−j+h

]
.

Henceforth, we will denote Newey and West (1987) and Hansen and Hodrick (1980) errors by NW

and HH, respectively. The difference is based on alternative methods to estimate the (asymptotic)

covariance matrix of coefficients in regression (8), taking the overlaps into account.5 We consider

four forecasting horizons: 1, 2, 3, 4 quarters. For each forecasting horizon, we test for the marginal

significance of slope coefficients using NW and HH errors.

Table II contains the output of the regressions. With the exception of very short horizons, the

statistical significance of the loadings of realized excess returns on expected risk premia is high.

While the significance of the slope coefficient for one quarter horizons is just below 10%, all other

t-statistics, computed using both NW and HH errors, are significant at the 5% level. Statistical

significance tends to be increasing in forecasting horizon, and peaks at forecasting horizons of

three quarters, achieving −3.45 (NW errors) and −3.14 (HH errors). Also the adjusted R2 are

5The two methods differ in the estimation of S. Newey and West (1987) propose to underweight higher order
sample autocorrelations: S =

∑l
j=−l

(
h−|j|

h

) (
1
T

∑T+h
h εt+hxtxt+h−jεt+h−j

)
, where the maximum number of

lags l is constrained by sample size lmax = T + h − 1. Hansen and Hodrick (1980) suggest to correct only for
the MA(h − 1) structure introduced by the overlap, and to weight autocorrelations equally: S =

∑h−1
j=−h+1

1
T∑T+h

h εt+hxtxt+h−jεt+h−j .
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increasing in maturity: they range from 1.37% to 10.91%. Given the simplicity of the econometric

model and the high noise in realized returns, the degree of predictability we find is interesting.

The most striking feature of the results relates to its economic significance. Since both regres-

sands and regressors are standardized, the coefficients can be interpreted as standard deviation

changes in realized excess returns caused by a one standard deviation change in expected risk pre-

mia.The estimated coefficients over the four forecasting horizons are −0.16,−0.23,−0.30,−0.34.

In order to facilitate comparability across forecasting horizon, consider the annualized slope co-

efficients: −0.64,−0.46,−0.23,−0.34. The magnitudes are economically significant. Importantly,

contrary to the predictions of the model of Lettau and Wachter (2007), the estimated slope coef-

ficients are negative: higher levels of expected risk premia are associated with lower subsequent

realizations of excess returns.

B Horse races

A natural question is whether expected risk premia feature explanatory power over and above

that of traditional predictive variables studied by the empirical literature. A popular strand of

literature, for instance, looks at the predictive power of dividend yields. These regressions have

a strong theoretical motivation: under the assumption of rationality and non bubbles, it can be

easily shown that dividend yields can vary over time only if either dividend growth or excess

returns are predictable. Many authors find evidence that the dividend yield is a predictor of

future excess returns, and that the predictive power rises in the forecasting maturity (see, for

instance, Campbell 1991 and Cochrane 1992). Examining the joint predictive power of expected

risk premia and dividend yields is interesting for two reasons. First, since the two variables capture

time variation of future excess returns at different frequencies (we find that expected risk premia

forecast excess returns over short horizons, while dividend yields are known to have predictive

power over long horizons), a model that includes both variables can lead to better forecasting

performance. Second, by controlling for time varying expectations about all future excess returns,
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the inclusion of dividend yields allows to isolate the role of short term expected risk premia.

Table III summarizes the evidence about dividend yield predictability in our sample, by showing

the output of forecasting regressions of realized excess returns on lagged dividend yields. (We also

include 3-month treasury rates because Ang and Bekaert (2006) find that it improves the short

term forecasting power of dividend yields). The results are consistent with the empirical literature.

Dividend yields predict excess returns with a positive sign (low prices relative to dividends capture

high discount rates, rather than low dividend growth), and forecasting power builds over longer

maturities: both the t-statistics and adjusted R2 rise monotonically with the forecasting horizon.

On the other hand, contrary to the finding of Ang and Bekaert (2006), we find that 3-month

Treasury rates do not have marginal significance.

Having run univariate regressions on erxST
t and dyt separately, we analyze their combined

predictive power in bivariate regressions:

rxt+h = β
(h)
0 + β

(h)
1 erxt + β

(h)
2 dyt + β

(h)
3 rft + ε

(h)
t+h. (10)

Table IV summarizes the regression results. While the inclusion of dividend yields seem to absorb

some of the forecasting power of erxST
t , the statistical significance of expected risk premia over

horizons of three and four quarters remains high: slope coefficients are significant at least at the

5% level. Controlling for dividend yields, the economic significance is only marginally affected: the

slope coefficients remain negative. The estimated coefficients over the four forecasting horizons

are −0.12,−0.18,−0.23,−0.27, or, expressed on a per annum basis, −0.48,−0.36,−0.17,−0.27:

relative to the baseline case, we still find that the annualized loadings are decreasing (in absolute

value) in the forecasting horizons, but this effect is slightly accentuated by the inclusion of dividend

yields. The loadings on dividend yields, on the other hand, still feature a statistical significance

that increases in the forecasting horizon; erxST
t seems to absorb part of its forecasting power: the

null hypothesis that the estimated slope coefficient on dyt is equal to zero can be rejected only for
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annual horizons. The loadings on dyt are increasing in the horizon 0.09, 0.15, 0.20, 0.26.

There are three main lessons to be learned from the results of regressions 8 and 9. First,

the finding that higher expected risk premia predict lower subsequent excess returns features high

statistical and economic significance. Importantly, the finding is robust to the inclusion of dividend

yields and interest rates. Second, while expected risk premia and dividend yields feature some

commonality, marginal significance statistics suggest that they carry different information. Third,

differences in the patterns of loadings across maturities suggest that time variation in erxST
t and

dyt captures high (low) frequency components of future realized returns.

C Bond predictability

To the extent that short term risk premia on short term dividends capture the compensation

that investors require on short-term investments, it is reasonable to conjecture that they possess

forecasting ability for other asset classes. We test this conjecture by looking at the ability of short

term risk premia to predict excess returns on Treasury securities. We consider Treasury securities

for two reasons. First, bonds have a fixed maturity, so the decomposition of their returns into

short- and long-term shocks to discount factors is easier than for equities. Second, the absence of

cash flow risk allows us to focus on the “discount rate risk” component of short term risk premia.

We follow the empirical fixed income literature and run predictive regressions of annual bond

excess returns constructed from the Fama-Bliss dataset (from WRDS). Unfortunately, data lim-

itations do not allow us to consider shorter forecasting horizons. The annual excess return on a

bond with maturity n is defined as p
(n−1)
t+1Y − p

(n)
t − y

(1)
t , where p

(n)
t denotes the time t log-price

of a zero discount bond with maturity in n years, and y
(n)
t is the yield associated with maturity

n at time t, i.e. y
(n)
t = −(1/n)p

(n)
t . Since n -year forward spreads are known to have predictive

power for the annual returns of n-year bonds (Fama and Bliss, 1987), we include forward spreads

as controls. The n-year forward spread is defined as f
(n)
t − y

(1)
t , where f

(n)
t = p

(n−1)
t − p

(n)
t .
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Table V contains the results of the predictive regressions. The loadings on short term risk

premia feature high statistical significance for short maturity bonds. For 2− and 3− years maturity

bonds the null hypothesis of no predictability can be rejected at the 5% level of significance; for

4− and 5− years, on the other hand, erxST
t seems to lose its predictive power. This pattern of

statistical significance is flipped for forward-spot spreads, the classic forecasting variable in the

empirical fixed income literature: its loadings are not significant, except for long maturity bonds.

Importantly, contrary to what we find in the equity forecasting regressions, the loadings on short

term expected risk premia are positive. The size of the loadings is economically significant, and

decreasing in the bond maturity. Overall, we find that short term risk premia predict bond

returns with a positive sign, a result which is consistent with the intuition that high ex-ante risk

premia should command, on average, high realized excess returns; also, we find that this result

is weaker, both statistically and economically, as we increase the maturity of the bond. These

results, coupled with the findings about equity return predictability, suggest that the negative sign

in equity forecasting regressions might be traced back to the dynamics of cash flow expectations.

D Robustness

We use current dividends as an instrument for expectations of future dividends. In order to

assess the robustness of our results, we use construct short term risk premia by using consensus

dividend forecasts from IBES. IBES data are ideal instruments of dividend expectations: they are

model-free, forward-looking, and surmount the classic problems features by econometric models

(omitted variables and time varying parameters, to name a few). Unfortunately, IBES database

is well populated with dividend forecasts on S&P500 firms only from 2004 onwards. Forecasting

regressions with quarterly data and 7 years of data are clearly hopeless. In order to increase

the number of observations, we sample data at the daily frequency and run regressions for up to

6 monthly horizons. We aggregate firm level one-year forward dividend forecasts to reflect the

procedure followed by Standard & Poor’s: we use float-adjusted market capitalization weights

and standardize the resulting value by the index divisor. In order to obtain dividend prices
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with constant time to maturity, we interpolate linearly between available contracts. Table VI

summarizes the results: the slope coefficients on erxST
t are statistically significant and negative.

Bearing in mind the short span of the sample and the high frequency of the regressions, also

these regressions confirm the robustness of our results to potential misspecification of the model

of dividend expectations.

V Understanding predictability

The finding that expected risk premia predict realized returns with a negative sign is puzzling as

it suggests that higher levels of the price of risk tend to be accompanied by lower realized returns.

In this section we make this observation precise by investigating whether any of the leading asset

pricing models explored by the literature imply negative forecasting power of short term expected

risk premia. We evaluate the implications of three asset pricing models: the reduced form model

of Lettau and Wachter (2007), consumption habit (Campbell and Cochrane, 1999), and long run

risk (Bansal and Yaron, 2004). The main conclusion of the section is that none of these models is

able to generate the predictability patterns that we find in the data.

A Time varying expected dividends

We start by considering the implications of the model by Lettau and Wachter (2007), introduced

above as a motivating example. What range of regression coefficients does the model imply?

Equation (5) provides a means to answer this question. Unfortunately, the expression requires to

compute the derivative of a complex function involving non-linearities and an infinite series, so an

analytical expression for β1 cannot be found. Even though we cannot pin down the magnitude of

β1, we can say something about the loading of expected returns of individual dividend strips on

||σd||xt via (2). Computation of (2) requires a parametrization of the model. We follow Lettau

and Wachter (2007) in part, by considering annual frequency and setting rf = 1.93%, g = 2.28%,

φz = 0.91, φx = 0.87, x̄ = 0.625, ||σd|| = 0.145, ||σz|| = 0.0032, ||σx|| = 0.24. We depart from

Lettau and Wachter (2007) in the parametrization of σd, σz, and σx. Lettau and Wachter (2007)
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assume that dividend shocks are correlated with shocks to dividend expectations, but not with

shocks to the price of risk. These assumptions, together with the estimates of the conditional

volatilities, imply the following specification for Σ = [σ′
d σ′

z σ′
x]

′


σdd 0 0

σzd σzz 0

0 0 σxx

 ,

where

σdd = ||σd||

σzd = ρz,d||σz||

σzz =
√
||σz||2 − ρ2

z,d||σz||2

σxx = ||σx||,

and

ρz,d =
σzσ

′
d

||σz||||σd||
.

As Lettau and Wachter (2007) note, the assumption of no conditional correlation between dividend

and price of risk shocks is not innocuous and implies assumptions about more primitive features

of the economy. Instead of choosing a particular specification, we explore model predictions for

a variety of combinations of ρzd and ρxd. The characterization differs from Lettau and Wachter

(2007) only in the choice of σx

σx = [σxd 0 σxd] ,

where

σxd = ρx,d||σz||

σxx =
√
||σx||2 − ρ2

x,d||σx||2.

18



Not all combinations of ρzd and ρxd are allowed: restrictions have to be imposed to ensure that Pt

converges for all zt and xt and that σzz and σxx are real. The appendix explores the derivation of

these restrictions in detail. Figure 3 shows which combinations of correlation coefficients ensure

the convergence for our choice of parameters. It is interesting to note that for this specific choice

of parameter values, the “binding constraint” comes in the form of a lower bound for ρx,d around

−0.3. In figure 4, each panel shows the loadings on xt of expected returns (equation (2)) for

a fixed maturity and different combinations of ρzd and ρxd. The figures exhibit clear patterns.

The key “driver” of the loadings is the correlation between shocks to the price of risk and to

realized dividends. For a fixed combination of ρxd and ρzd, the loadings barely change across

maturities. Fixing maturity, the loadings decrease from approximately 0.8 for high values of ρxd,

to approximately 0.20 for low values of ρxd. The sign of the loadings is positive for all maturities:

an increase in the price of risk raises expected excess returns at all horizons. Since the expected

return on the index is a weighted sum of the expected returns on its dividend strips, the graphs

suggest that a regression of realized excess returns on expected risk premia should yield a positive

slope coefficient.

B Long run risk

In the appendix we show that the model explored by Bansal and Yaron (2004) implies that the

risk premium on short term dividends is equal to zero: long run risk models rule out the possibility

that erxt has any predictive power with regards to future returns. The intuition of this result is

simple. In long run risk models, agents are fearful about states of the world in which expected

growth prospects are low and economic uncertainty is high. A short maturity dividend claim is

exposed to the risk that realized dividends undershoot expectations, but it is virtually not affected

by long run growth prospects and economic uncertainty. Since shocks to realized dividends are not

priced in this economy, agents demand zero risk premia to hold short maturity dividend claims.
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C Habit formation

Also a simple habit formation model will find it difficult to explain the data. As habit implies

that dividend shocks are negatively correlated with innovations to the price of risk, the model can

be (somewhat) casted in the context of Lettau and Wachter (2007) specification with ρxd < 0. In

this case, however, the lower the correlation between realized dividends and the price of risk, the

higher the implied slope coefficient.

The asset pricing models presented above fail to capture the predictability we find in the data.

The mechanics of the failures are precious because they shed light on the direction of improvement

that future models will have to pursue to match the empirical evidence of short term predictability.

Bansal and Yaron (2004) on one side, and Lettau and Wachter (2007) and Campbell and Cochrane

(1999) on the other, fail to capture predictability for two different reasons. Long run risk models

deny the existence of predictability conditional on erxST
t because short term dividends are not

exposed to the two sources of priced risk of the economy, i.e. long run economic uncertainty and

growth prospects. The reduced form model by Lettau and Wachter (2007), on the other hand,

does allow for predictability conditional on erxST
t , but implies a positive slope coefficient. The

intuition behind this result is simple. Expected returns are increasing in the price of risk, which is

revealed, up to a scaling factor, by the expected returns on the short term asset (via equation (2)).

If the price of risk is the only state variable driving the term structure of expected returns and

follows a persistent process, an increase in short term expected risk premia (i.e. the price of risk)

will raise expected excess returns at all horizons, yielding a positive slope coefficient in regressions

of realized returns on erxST
t . Hence, we learn that two ingredients have to co-exist in a model for

it have a chance to rationalize our empirical findings. First, shocks to realized dividends must be

priced. Second, the term structure of expected risk premia must be driven by a multivariate state

vector.
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D Epilogue

Having shown that leading asset pricing are unable to explain our empirical findings, we study

the implications for the dynamics of agents’ subjective expectations. In running the predictive

regressions above

Pt+1 + Dt+1

Pt

− Rf
t = α + β

(
Et[R1,t+1] − Rf

t

)
+ εt+1,

we have implicitly assumed that the subjective measure of the representative agent used in the

computation of Et[R1,t+1] coincides with the objective measure. Consider now what happens if the

subjective and objective measures differ. In particular, let E∗
t [·] denote the expectation operator

associated with the subjective probability measure of the representative agent. Expectations under

the subjective and physical measure are related by the equation

E∗
t [R1,t+1] = Et[ηt+1R1,t+1],

where ηt+1 is the Radon-Nikodym derivative (dQ∗/dQ) of the subjective measure with respect to

the physical measure. If we allow for subjective probabilities to differ from physical probabilities,

the regression we run should be written as

Pt+1 + Dt+1

Pt

− Rf
t = α + β

(
Et[ηt+1R1,t+1] − Rf

t

)
+ εt+1.

Under the assumption that realized returns are i.i.d. under the objective measure, and that

agents are overly optimistic about short term expected returns in good times, i.e., when stock

excess return are high (∂ηt+1

∂rxt
> 0), the regression can yield a negative coefficient. To see the

intuition behind this claim, let us consider the case where expected returns are zero. Suppose
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that realized excess return at time t are positive. Since expected excess returns are zero, this

realization is just a “lucky draw”. The agent, however, upon observing rxt > 0, assigns more

probability weight to states with high returns (i.e. ∂ηt+1

∂rxt
> 0), thus raising the expected risk

premium via erxt = log (R1,t+1) − log(Rf
t ). Since the average return realization at time t + 1 is

zero, regressions of realized returns on expected risk premia can generate a negative coefficient

under these assumptions.

VI Conclusion

We construct short horizon expected risk premia by combining dividend prices with dividends

expectations, and find evidence that expected risk premia capture short horizon predictability in

S&P500 realized excess returns. The results are robust to the inclusion of dividend yields in the

conditioning information set. The slope coefficients of the predictive regressions are difficult to

reconcile with the predictions of leading asset pricing models. The failure of these models may

be the consequence of their inability to produce a multi-factor structure for the term structure of

equity risk premia and/or to the fact that they fail to capture the slow moving dynamics of risk

premia.
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VII Appendix

A Parameter restrictions for Lettau and Wachter (2007)

We impose two restrictions in order to derive the set of admissible combinations of ρz,d and ρx,d:

Pt must converge for all zt and xt, and σzz and σxx must be real. Lettau and Wachter (2007) show

that the price of equity converges to a finite value if and only if the following three conditions are

satisfied:

1. |φz| < 1.

2. |φx − σx
σd

||σd||
| < 1.

3. −r + g + B̄x(1 − φx)x̄ + 1
2
V̄ V̄ ′ < 0.

where

B̄x = −

(
σd + σz

1−φz

)
σd

||σd||

1 −
(
φx − σxσd

||σd||

) ,

and

V̄ = σd +
σz

1 − φz

+ B̄xσx.

Condition 1 is satisfied because we set φz = 0.91. Condition 2 can be rewritten as follows

|φx − ρxd||σx||| < 1 →
∣∣∣∣ρxd −

φx

||σx||

∣∣∣∣ <
1

||σd||
,

which implies the following condition for ρxd

ρxd =

(
φx

||σx||
− 1

||σd||
,

φx

||σx||
+

1

||σd||

)
.

For the set of admissible ρxd derived above, we evaluate condition 3 numerically and rule out the

ρzd that do not satisfy it.

We assume that Σ = [σ′
d σ′

z σ′
x]

′ equals:
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σdd 0 0

σzd σzz 0

σxd 0 σxx

 .

The unknown parameters can be computed from the knowledge of the conditional volatilities

and pairwise correlations. We have:

1. σdd = ||σd||.

2. Since ρzd =
σzσ′

d

||σz ||·||σd||
= σzd

||σz || , we have σzd = ρzd||σz||.

3. σzz =
√

||σz||2 − σ2
zd.

4. The same argument as point 2 leads to: σxd = ρxd||σx||.

5. σxx =
√
||σx||2 − σ2

xd.

Points 3 and 5 show that ρzd and ρxd must be such that the argument of the square roots is

positive: we rule out all combinations of correlations that do not satisfy this condition.

B Short horizon expected risk premia in Bansal and Yaron (2004)

The model specifies a process for (log) dividend growth, (log) consumption growth, the conditional

expected growth rate, and economic uncertainty:

∆dt+1 = µd + φzt + wdσtεd,t+1

∆ct+1 = µc + zt + wcσtεc,t+1

zt+1 = φzzt + wzσtεz,t+1

σ2
t+1 = µσ + v

(
σ2

t − σ2
)

+ wσ + εσ,t+1,
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where εd,t+1, εc,t+1, εz,t+1, and εσ,t+1 are i.i.d. N(0, 1). The equilibrium log return on the market

asset is given by

rt+1 = ∆dt+1 + k1A1,mzt+1 − A1,mzt + k1,mA2,mσ2
t+1 − A2,mσ2

t , (11)

where a complete characterization of A1,m, A2,m, k1 and k1,m is provided by Bansal and Yaron

(2004). The expected risk premium on the first dividend strip erxST
t is given by log Et[Dt+1] −

log Pt,1 − rf
t . Let Mt+1 denote the stochastic discount factor between t and t + 1, i.e. Pt,1 =

Et[Mt+1Dt+1]. By the properties of normal variables, we have

log Et[Dt+1] = log DtEt[exp(∆dt+1)]

=dt + Et[∆dt+1] + 0.5V art[∆dt+1]

log Pt,1 = log DtEt[exp(mt+1 + ∆dt+1)]

=dt + Et[mt+1] + Et[∆dt+1]

+ 0.5
(
V art[mt+1] + V art[∆dt+1] + 2Covt[mt+1, ∆dt+1]

)

rf
t = − log Et[exp(mt+1)]

= − Et[mt+1] − 0.5V art[mt+1].

Hence, the expression for erxST
t simplifies to

log Et[Dt+1] − log Pt,1 − rf
t = −2Covt[mt+1, ∆dt+1],
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i.e. the expected risk premium depends on the covariance between mt+1 and ∆dt+1. The innova-

tions to the SDF are equal to

mt+1 − Et[mt+1] = λmcσtεc,t+1 − λmzσtεz,t+1 − λmσσtεσ,t+1,

where expressions for the prices of risk λmc, λmz, λmσ are given in the original paper. Since

innovations to ∆dt+1 are equal to

∆dt+1 − Et[∆dt+1] = wdσtεd,t+1,

it follows that Covt[mt+1, ∆dt+1] = 0 and erxST
t = 0.
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Table I – Expected risk premia: sample statistics

Mean Stdev AR(1)
0.31 0.26 0.55

Table II – Univariate forecasting regressions

This table reports estimates from OLS univariate regressions of S&P500 (t → t + h) excess
returns on time t expected risk premia: rxt+h = β

(h)
0 + β

(h)
1 erxST

t + ε
(h)
t+h. The holding

period h ranges from one to four quarters. For each horizon considered, the first row (in
grey) contains OLS estimates of the coefficients and the adjusted R2. The rows below feature
the t-statistics of the coefficients, computed with NW and HH errors respectively. All errors
are estimated with h lags. Two (one) stars indicate significance at the 5% (10% significance
level.

Horizon(h) const erxST
t R̄2

1Q -0.00 -0.16 1.37%
-0.00 -1.61
-0.00 -1.61

2Q 0.00 -0.23 4.31%
0.00 -2.19∗∗

0.00 -1.98∗∗

3Q 0.00 -0.30 7.82%
0.00 -3.45∗∗

0.00 -3.14∗∗

4Q -0.00 -0.34 10.91%
-0.00 -2.90∗∗

-0.00 -2.49∗∗
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Table III – Bivariate forecasting regressions without expected risk premia

This table reports estimates from OLS univariate regressions of S&P500 (t → t + h) excess
returns on time t (log) dividend yield and the 3-month (log) Treasury rate: rxt+h = β

(h)
0 +

β
(h)
1 dyt + β

(h)
2 rft + ε

(h)
t+h. The holding period h ranges from one to four quarters. For each

horizon considered, the first row (in grey) contains OLS estimates of the coefficients and the
adjusted R2. The rows below feature the t-statistics of the coefficients, computed with NW
and HH errors respectively. All errors are estimated with h lags. Two (one) stars indicate
significance at the 5% (10% significance level.

Horizon(h) const dyt rft R̄2

1Q 0.00 0.15 0.01 0.28%
0.00 1.40 0.06
0.00 1.40 0.06

2Q 0.00 0.23 -0.02 3.01%
0.00 1.90∗ -0.12
0.00 1.66∗ -0.11

3Q 0.00 0.30 -0.05 6.41%
0.00 2.22∗∗ -0.29
0.00 1.85∗ -0.26

4Q 0.00 0.36 -0.09 10.08%
0.00 2.42∗∗ -0.58
0.00 1.99∗∗ -0.53

80 83 86 89 92 95 98 01 04 07 10

−0.1

−0.05

0

0.05

0.1

0.15

 

 
Realized dividend growth

Figure 1 – Log Dividend Growth
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Table IV – Bivariate forecasting regressions with expected risk premia

This table reports estimates from OLS univariate regressions of S&P500 (t → t + h) excess
returns on time t expected risk premia, (log) dividend yield, and 3-month Treasury (log)
rate: rxt+h = β

(h)
0 + β

(h)
1 erxST

t + β
(h)
2 dyt + β

(h)
3 rft + ε

(h)
t+h. The holding period h ranges

from one to four quarters. For each horizon considered, the first row (in grey) contains OLS
estimates of the coefficients and the adjusted R2. The rows below feature the t-statistics of
the coefficients, computed with NW and HH errors respectively. All errors are estimated
with h lags. One and two stars indicate significance at the 10% and 5% significance level
respectively.

h const erxST
t dyt rft R̄2

1Q 0.00 -0.12 0.09 0.04 0.25%
0.00 -1.21 0.78 0.32
0.00 -1.21 0.78 0.32

2Q 0.00 -0.18 0.15 0.02 4.36%
0.00 -1.75∗ 1.25 0.13
0.00 -1.61 1.11 0.11

3Q 0.00 -0.23 0.20 -0.02 8.98%
0.00 -2.54∗∗ 1.41 -0.15
0.00 -2.40∗∗ 1.24 -0.14

4Q 0.00 -0.27 0.26 -0.10 14.43%
0.00 -2.50∗∗ 1.85∗ -0.70
0.00 -2.30∗∗ 1.64∗ -0.66

1986:1 1989:1 1992:1 1995:1 1998:1 2001:1 2004:1 2007:1 2010:1
−0.5

0

0.5

1

1.5

2

2.5

3

 

 
Expected risk premium

Figure 2 – Expected risk premia
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Table V – Bond forecasting regressions

This table reports estimates from OLS univariate regressions of n-year Treasury securities
annual ((t → t + 4)) excess returns on time t expected risk premia and the n-year forward
spot spread

(
f

(n)
t − y

(1)
t

)
: rxt+4 = β

(n)
0 + β

(n)
1 erxST

t + β
(n)
2

(
f

(n)
t − y

(1)
t

)
+ ε

(h)
t+h. The bond

maturity n ranges from two to five years. For each maturity considered, the first row (in
grey) contains OLS estimates of the coefficients and the adjusted R2. The rows below feature
the t-statistics of the coefficients, computed with NW and HH errors respectively. All errors
are estimated with 6 lags (equivalent to 1.5 years). One and two stars indicate significance
at the 10% and 5% significance level, respectively.

Bondmaturity(n) const erxST
t

(
f

(n)
t − y

(1)
t

)
R̄2

2 years 0.00 0.30 0.18 7.88%
0.00 2.57∗∗ 1.22
0.00 2.22∗∗ 1.48

3 years -0.00 0.26 0.17 6.96%
-0.00 2.18∗∗ 1.18
-0.00 1.85∗ 1.61

4 years 0.00 0.22 0.22 6.78%
0.00 1.84∗ 1.55
0.00 1.58 2.22∗∗

5 years 0.00 0.17 0.18 3.73%
0.00 1.44 1.38
0.00 1.24 1.98∗∗
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Table VI – Univariate forecasting regressions (daily frequency)

This table reports estimates from OLS univariate regressions of S&P500 (t → t + h) excess
returns on time t one-year-forward expected risk premia: rxt+h = β

(h)
0 + β

(h)
1 erxt + ε

(h)
t+h.

The holding period h ranges from one to six months. For each horizon considered, the first
row (in grey) contains OLS estimates of the coefficients and the adjusted R2. The rows below
feature the t-statistics of the coefficients, computed with NW and HH errors respectively.
All errors are estimated with h lags. One (two) stars indicate significance at the 0.05 (0.01)
level.

Horizon (h) Constant erxST
t R̄2

1 month 0.00 -0.03 1.17%
0.59 -1.26
0.51 -1.06

2 months 0.01 -0.07 4.37%
1.25 -1.88
1.01 -1.60

3 months 0.02 -0.11 7.37%
1.30 -2.16∗

1.05 -1.83
4 months 0.03 -0.14 8.02%

1.21 -2.25∗

1.00 -2.00∗

5 months 3.32 -0.17 8.01%
1.22 -2.37∗

1.08 -2.41∗

6 months 0.04 -0.21 8.30%
1.27 -2.59∗∗

1.21 -3.16∗∗
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Figure 3 – Admissible correlations

The region on the right of the line is the set of (ρx,d, ρz,d) =
(

σxσ′
d

||σx||||σd|| ,
σzσ′

d

||σz||||σd||

)
that

ensure that: i) the price to dividend ratio of dividend strips converges for any maturity, and
ii) the values of σzz and σxx are real.
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Figure 4 – Loadings of expected returns on xt

The graphs illustrate the loadings of expected returns of dividend strips of maturity N on the
price of risk xt for a variety of (ρx,d, ρz,d) combinations. The lines are contours connecting
the (ρx,d, ρz,d) pairs with the same loading xt; the number on each contour indicates its
level.
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