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1 Introduction

Under the assumption of complete markets, every contingent claim can be replicated by a portfolio

formed of the underlying basic assets of the market. In this case, the equivalent martingale measure

and the market price of risk are unique and, then, the price of any security is uniquely determined

by this martingale measure. Nevertheless, in the real world this situation barely happens and there

can be (infinitely) many equivalent martingale measures.

When there are sources of risk that are not directly traded (such as stochastic volatility, jumps

or weather) the assumption of complete market fails. Staum (2008) surveys many approaches to

pricing and hedging derivative securities under incomplete markets. As there will not exist a unique

martingale measure, there will exist infinitely many arbitrage-free price processes for a certain finan-

cial security. Then, it can be interesting to derive no-arbitrage bounds on asset prices and obtain a

no-arbitrage interval where the price of the asset should lie.

Several papers have computed bounds on option prices. For instance, Basso and Pianca (2001)

consider a state-preference approach and provide lower and upper bounds for European option prices

by solving a non-linear optimization problem. No-arbitrage bounds can also be computed using

information about prices of other options on the same underlying asset, see Bertsimas and Popescu

(2002) or d’Aspremont and El Ghaoui (2006), among others. Working in discrete-time, Reynaerts

et al. (2006) focus on the Cox, Ross and Rubinstein (1979) model with daily time step and derive

bounds on prices for arithmetic Asian options with discrete sampling. These bounds can also be

obtained assuming an incomplete knowledge of the underlying price distribution. For example,

Zuluaga et al. (2009) derive closed-form semi-parametric bounds for the payoff of a European call

option, given up to third-order statistical moments for the underlying asset distribution at maturity.

Considering incomplete markets, Bernardo and Ledoit (2000) and Cochrane and Saá-Requejo

(2000) try to find no-arbitrage bounds on prices as tight as possible using the stochastic discount

factor (SDF) as starting point.1 Then, both papers restrict the pricing kernel to derive these bounds.

Extracting a paragraph from Franke et al. (2007, p. 215), “Cochrane and Saá-Requejo (2000) show

that the option price can be bounded by limiting the variance of the pricing kernel. In similar vein,

Bernardo and Ledoit (2000) show that the option price can be bounded by limiting the convexity

of the pricing kernel.” The intuition behind these two papers is that investors will choose a trading

asset price according to some optimality criterion. As mentioned in Pinar et al. (2010, p. 771), “in

Cochrane and Saá-Requejo (2000), the absence of arbitrage is replaced by the concept of a good deal,

defined as an investment with a high Sharpe ratio. While they do not use the term “good-deal”,

Bernardo and Ledoit (2000) replace the high Sharpe ratio by the gain-loss ratio.”
1The SDF was introduced in Hansen and Jaganathan (1991) who demonstrated that a bound on the maximum

available Sharpe ratio is equivalent to a bound on the volatility of the admissible SDF.
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In more detail, Bernardo and Ledoit (2000) analyze different investment opportunities using

the gain-loss ratio as a performance measure using a benchmark or reference asset pricing model.

They demonstrate that a high gain-loss ratio is related to SDF’s that are “specially” far from the

benchmark SDF. In this way, an appropriate benchmark SDF can tighten the no-arbitrage bounds

and the corresponding no-arbitrage interval. Inspired by this paper, Pinar et al. (2010) apply

linear programming to price and hedge contingent claims in a multi-period setting and propose

an optimality criterion, the “λ gain-loss ratio”, that treats asymmetrically gains and losses. The

pricing bounds obtained are tighter than the no-arbitrage ones and, as expected, converge to the

no-arbitrage ones as the gain-loss preference parameter tends to infinity. These authors also show

that a unique claim price may be found for a limiting case of the risk aversion parameter.

Alternatively, Cochrane and Saá-Requejo (2000) also measure the attractiveness of an investment

but using the Sharpe ratio and suggested to rule out usual arbitrage opportunities with too high

Sharpe ratios. Thus, they obtain tighter price bounds that are named benchmark good-deal (BGD)

bounds. Several authors have dealt with this approach and proposed different methodologies to

compute this type of bounds. For instance, Cerny and Hodges (2002) present the theory of good-

deal pricing in financial markets and shows that “any such technique can be seen as a generalization

of no-arbitrage pricing and that, with a little bit of care, it will contain the no-arbitrage and the

representative agent equilibrium as the two opposite ends of a spectrum of possible no-good-deal

equilibrium restrictions.” In a related paper, Cerny (2003) replaces the Sharpe ratio (connected to

quadratic utility) with a generalized Sharpe ratio based on an arbitrary increasing smooth utility

function and shows that “for Itô processes the Cochrane and Saá-Requejo (2000) bounds are invariant

to the choice of the utility function, and that in the limit they tend to a unique price determined by

the minimal martingale measure.”

Björk and Slinko (2006) extend the setting in Cochrane and Saá-Requejo (2000) by studying

arbitrage-free good-deal pricing bounds for derivative assets and presented results for the Merton-

jump diffusion model. Additionally, they derive extended Hansen-Jagannathan bounds for the

Sharpe Ratio process in the point process setting. Albanese and Tompaidis (2008) consider the

good-deal pricing literature and perform a dynamic risk-reward analysis for a type of time-based

hedging strategies in the presence of transaction costs. Pinar (2008) uses an arbitrage-adjusted

Sharpe-ratio criterion and convex optimization and provides bounds on contingent claim prices that

are tighter than the no-arbitrage ones. Finally, Bondarenko and Longarela (2009) present asset price

bounds as the result of an optimization problem over a set of admissible SDF’s. They consider the

option pricing model presented in Heston (1993) and assume certain limits for the volatility risk

premium. They derive closed-form solutions for the BGD bounds and for a particular case, standard

good-deal (GD) bounds, showing that the former are much tighter than the latter.
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Continuing with this research area, our paper focuses on computing and analyzing BGD and

GD bounds for different asset prices under two stochastic volatility option pricing models, that

introduced in Heston (1993) and an extension of that posited in Schöbel and Zhu (1999). In this

way, we can get an insight into the effects of different specifications for the stock volatility process

on the aforementioned bounds.

Heston (1993) generalizes the classical model for stock prices presented in Black and Scholes

(1973) allowing the stock volatility to follow a “square-root” (CIR-type) stochastic process as pre-

sented in Cox, Ingersoll and Ross (1985). Additionally, Schöbel and Zhu (1999) extended the stochas-

tic volatility model of Stein and Stein (1991) where the stock volatility follows an Ornstein-Uhlenbeck

process. They allow correlation to exist between the underlying stock returns and the instantaneous

volatility and found a closed-form expression for option prices.

As these two models deal with stochastic volatility, markets are incomplete. However, both pro-

vide unique closed-form expressions for the prices of certain securities assuming a certain functional

form of the market price(s) of risk of the corresponding factor(s). In fact, each functional form is

associated to a martingale measure and, thus, to a price for the security.

This paper contributes to the existing literature in three ways: firstly, we analyze deeply Bon-

darenko and Longarela (2009) and fix different errors in their numerical analysis. One of our main

results is that, now, the difference between GD and BGD bounds is stronger than that previously

reported by these authors. Secondly, we extend the Schöbel and Zhu (1999) model allowing the

market price of risk of the volatility to be different from zero. In this extended model, with no

new mathematical ideas, we also obtain analytical expressions for option prices and their bounds.

Numerical illustrations are shown for all the bounds obtained.

Our final contribution is that, for both models, extensive sensitivity analysis are carried out

studying how changes in the models’ parameters affect prices and bounds. Additionally, we also

implement a hedging analysis by computing several Greeks for prices and bounds. Computation

of these Greeks is relevant because, as shown in Carr (2001), these amounts can be interpreted as

the values of certain quantoed contingent claims. Besides, as this author states, “this interpreta-

tion allows one to transfer intuitions regarding values to these Greeks and to apply any valuation

methodology to determine them”.

The structure of the paper is as follows. Section 2 describes the theoretical framework that is

needed to find the bounds on option prices. Stochastic volatility models are presented in Section

3. Section 4 derives analytical expressions for option prices and their bounds under these models.

A deep analysis of the properties of option prices and bounds involving a sensitivity analysis and

derivation of Greeks for both option prices and bounds is included in Section 5. Finally, Section 6

summarizes the main findings and conclusions.
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2 Theoretical Framework

We present now our theoretical framework. Consider a probability space (Ω, F, P ) with the corre-

sponding filtration {Ft}t≥0. Assume that we have a bond that pays the risk-free rate rt, a risky asset

St (stock), and one (non-tradable) state variable Vt. Let (W s
t ,W

v
t ) be two standard and independent

Brownian motions and let ht = (hst , h
v
t ) be an adapted two dimensional process, which satisfies the

Novikov condition. Departing from the probability measure P , we define the measure Q via the

Radon-Nikodim derivative, that is,
dQ

dP
= ξT

where, for all t,

ξt = exp
[
−
∫ t

0
hudWu −

1
2

∫ t

0
‖hu‖2du

]
and ξ is a P -martingale with expected value equal to one. The SDF process is defined as

Λt = Btξt

where Bt = exp
(
−
∫ t

0 rudu
)

. Applying Itô’s lemma, we get that

dΛt
Λt

= −rtdt− h′tdWt

We can define the benchmark model in terms of the vector process h∗t = (h∗st , h
∗v
t ) with the corre-

sponding martingale measure, Q∗, and the SDF process, Λ∗. Now, we will mention some important

statements and restrictions that are necessary for our purposes.

By definition, Λ prices the risk-free bond and also the risky asset if it satisfies

EPt

[
d(ΛtSt)

ΛtSt

]
= −δtdt

where δt is the continuous dividend yield. The market price of risk of the stock is given by

λst =
µt − rt
σt

where µt and σt denote the expected instantaneous rate of return and the instantaneous volatility

of the stock, respectively. We now establish the set of admissible SDF’s as stated in this Lemma.2

Lemma 1 The SDF process Λ prices the stock if and only if it has an associated process satisfying

hs = λs.
2This result corresponds to Lemma 1 in Bondarenko and Longarela (2009).
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For a fixed benchmark SDF process, Λ∗, the volatility constraint in continuous time is given by

EQ
∗

t

[
d (Λt/Λ∗t )

Λt/Λ∗t

]2

≤ A2
tdt (1)

where At is some adapted process. Using that the change of measure does not affect the volatility

process, the left-hand side of (1) can be simplified as

EQ
∗

t

[
d (Λt/Λ∗t )

Λt/Λ∗t

]2

= EPt

[
d (Λt/Λ∗t )

Λt/Λ∗t

]2

= EPt

[
dΛt
Λt
− dΛ∗t

Λ∗t

]2

= ‖ht − h∗t ‖2dt (2)

Lemma 1 implies that, for an admissible SDF process, it holds that

‖ht − h∗t ‖2 = (λst − hs∗t )2 + (hvt − hv∗t )2 (3)

Using (1)-(3), the volatility constraint becomes

(hvt − hv∗t )2 ≤ A2
t − (λst − hs∗t )2 (4)

In most applications, the benchmark is usually an admissible SDF. In this case, the volatility con-

straint discards those SDF processes for which |hvt −hv∗t | ≥ At. At ≡ A is sometimes called a ceiling

process.

We can now define the BGD bounds for asset prices. Consider an asset that pays a stream of

dividends given by an adapted process X and a terminal payoff XT . Its price Ct under a candidate

SDF process Λ is given by

Ct(h) = EPt

(∫ T

t

Λu
Λt
Xudu

)
+ EPt

(
ΛT
Λt
XT

)
Let Hv be the set of processes hv which satisfy (4) on the interval [0,T]. The lower bound is defined

by the solution of a certain minimization problem, namely,

C0(h∗) = min
hv

C0(hv, h∗, A)

The equivalent maximization problem provides the corresponding upper bound. Formally, we can

state the following Proposition.3

Proposition 1 The BGD bounds are given by

C0(h∗) = C0(hv), C0(h∗) = C0(hv)

where

hvt = hv∗t +
√
A2
t − (λst − hs∗t )2, hvt = hv∗t −

√
A2
t − (λst − hs∗t )2

Remark 1 The GD bounds are derived as a particular case of the BGD bounds with h∗t = (0, 0).
3This result corresponds to Proposition 5 in Bondarenko and Longarela (2009).
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3 Stochastic Volatility Models

3.1 The Heston (1993) Model

Heston (1993) proposes to model the stock price evolution in time in a more general form than the

standard classical model proposed in Black and Scholes (1973). In more detail, this author assumes

a Geometric Brownian motion for the stock price evolution with the addition of a second state

variable, namely, the variance of the stock return. Then, under the true probability measure P , the

processes for the stock price St and for the variance of the stock return Vt are given by

dSt
St

= (r + sVt)dt+
√
VtdW

S
t (5)

dVt = (α− βVt)dt+ σ
√
Vt (ρdWS

t +
√

1− ρ2dW V
t ) (6)

where r, s, α, β, σ, and ρ are constants and WS
t and W V

t are two uncorrelated standard Brownian

motions. Then, the stock variance Vt follows the square-root mean-reverting process posited in

Cox et al. (1985). In more detail, Vt converges to a long-run mean α/β with a certain speed of

adjustment β. Additionally, the diffusion of the process is proportional to the variance level. The

restriction σ2 ≤ 2α guarantees the positiveness of Vt. By construction, both processes are correlated

with corr(dSt/St, dVt) = ρ.4

Standard arbitrage arguments show that the price at time t of any derivative asset on the stock,

U(S, V, t), must satisfy the following partial differential equation (PDE)

1
2
V S2USS + ρσV SUSV +

1
2
σ2V UV V + rSUS + [α− βVt − λ(S, V, t)]UV − rU + Ut = 0

where subscripts indicate the corresponding partial derivative and with λ(S, V, t) denoting the market

price of risk related to the stock volatility.5 Moreover, similarly to Cox et al. (1985), we will assume

that the risk premium of the variance is proportional to the variance level, that is,

λ(S, V, t) = λVt (7)

This implies that, under the risk-neutral probability measureQ, the variance follows a mean-reverting

process with long-run mean α/(β + λ) and speed of adjustment (β + λ).

Under these assumptions, Heston (1993) derived a closed-form expression for the price of a

European call stock option via Fourier inversion of the conditional characteristic functions. The

Heston theoretical price at time t = 0 of this option will be denoted as

CH0 (λ) = CH(K,T, S0, V0, t = 0, θ, λ)
4Broadie and Kaya (2006) suggest a method based on Fourier inversion techniques and conditioning arguments for

the exact simulation of equations (5)-(6). See also Andersen (2008) that proposes new algorithms for time-discretization

and Monte Carlo simulation of this model.
5Lamoureux and Lastrapes (1993) present empirical evidence on the significativeness of this term for equity options.
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where θ = (α, β, σ, ρ) is the set of parameters included in the process for the variance of the stock

return, Vt. As shown in Heston (1993), the expression for this price is stated as follows.

Proposition 2 Under the Heston (1993) model, the closed-form expression for the price at time t

of a European call stock option is given as

CH(K,T, St, Vt, t, θ, λ) = StP1 − e−r(T−t)KP2

where, for j = 1, 2, we get

Pj(St, Vt, τ,K) =
1
2

+
1
π

∫ ∞
0

Re

(
e−iφ ln(K)Fj(St, Vt, τ, φ)

iφ

)
dφ

Fj(St, Vt, τ,K) = exp {Cj(τ, φ) +Dj(τ, φ)Vt + iφ ln(St)}

Cj(τ, φ) = rτφi+
α

σ2

(
(βj − ρσφi+ hj)τ − 2 ln

(
1− gjehjτ

1− gj

))
Dj(τ, φ) =

βj − ρσφi+ hj
σ2

1− ehjτ

1− gjehjτ

gj =
βj − ρσφi+ hj
βj − ρσφi− hj

hj =
√

(ρσφi)2 − σ2(2ujφi− φ2)

where τ = T − t, u1 = 0.5, u2 = −0.5, β1 = β + λ− ρσ, β2 = β + λ.

3.2 Extended Schöbel and Zhu (1999) Model

Now we will study the stochastic volatility model presented in Schöbel and Zhu (1999) in which

the volatility follows an Ornstein-Uhlenbeck (O-U) process. Under the risk-neutral measure Q, the

processes for the logarithm of the stock price and the volatility for the stock return are given as

dxt =
(
r − 1

2
v2
t

)
dt+ vtdW̃ s

t (8)

dvt = κ(θ − vt)dt+ σ (ρdW̃ s
t +

√
1− ρ2dW̃ v

t ) (9)

where W̃ s
t and W̃ V

t denote independent standard Brownian motions under the measure Q. Hence,

both processes are correlated with corr(dxt, dvt) = ρ. The stock volatility tends to a long-term value

θ with speed κ. As the volatility is a non-traded asset, the measure Q is not unique and depends on

the market price of volatility, λt, which is implicity determined by the market participants. Schöbel

and Zhu (1999) assumed λt = 0. Considering now that λt 6= 0 (further on we will assume that (7)

holds), we can rewrite the processes (8)-(9) in terms of the stock price and variance to get

dSt
St

= rdt+
√
VtdW̃

s
t (10)

dVt = (2κ
√
Vt(θ −

√
Vt) + σ2 − λt)dt+ 2σ

√
Vt (ρdW̃ s

t +
√

1− ρ2dW̃ V
t ) (11)
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Thus, we have generalized the model of Schöbel and Zhu (1999). In this general model, we can

obtain analytically the option price as stated in the following Proposition.

Proposition 3 Under the extended Schöbel and Zhu (1999) model, the closed-form expression for

the price at time t of a European call stock option is given as

COU (K,T, S0, V0, t, θ, λ) = StP1 − e−r(T−t)KP2

where the probabilities Pj , j = 1, 2 are given by

Pj =
1
2

+
1
π

∫ ∞
0

Re

(
e−iφ ln(K)fj(φ)

iφ

)
dφ, j = 1, 2

where

f1(φ) = EQ[exp(−r(T − t)− x(t) + (1 + iφ)x(T ))]

= exp
{
iφ(r(T − t) + x(t))− 1

2
(1 + iφ)ρ

[
σ−1v2(t) + σ(T − t)

]}
× exp

{
1
2
D(t, T, s1, s3)v2(t) +B(t, T, s1, s2, s3)v(t) + C(t, T, s1, s2, s3)

}
with

s1 = −1
2

(1 + iφ)2(1− ρ2) +
1
2

(1 + iφ)(1− 2(κ+ λ′)ρσ−1)

s2 = (1 + iφ)κθρσ−1

s3 =
1
2

(1 + iφ)ρσ−1

λ′ =
λ

2

and

f2(φ) = EQ[exp {iφx(T )}]

= exp
{
iφ(r(T − t) + x(t))− 1

2
iφρ

[
σ−1v2(t) + σ(T − t)

]}
× exp

{
1
2
D(t, T, ŝ1, ŝ3)v2(t) +B(t, T, ŝ1, ŝ2, ŝ3)v(t) + C(t, T, ŝ1, ŝ2, ŝ3)

}
with

ŝ1 =
1
2
φ2(1− ρ2) +

1
2
iφ(1− 2(κ+ λ′)ρσ−1)

ŝ2 = iφκθρσ−1

ŝ3 =
1
2
iφρσ−1
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Finally,6

D(t, T ) =
1
σ2

(
κ+ λ′ − γ1

sinh {γ1(T − t)}+ γ2 cosh {γ1(T − t)}
cosh {γ1(T − t)}+ γ2 sinh {γ1(T − t)}

)

B(t, T ) =
1

σ2γ1

(
κθγ1 − γ2γ3 + γ3 (sinh {γ1(T − t)}+ γ2 cosh {γ1(T − t)})

cosh {γ1(T − t)}+ γ2 sinh {γ1(T − t)}
− κθγ1

)
C(t, T ) = −1

2
ln (cosh {γ1(T − t)}+ γ2 sinh {γ1(T − t)}) +

1
2

(κ+ λ′)(T − t)

+
κ2θ2γ2

1 − γ2
3

2σ2γ3
1

(
sinh {γ1(T − t)}

cosh {γ1(T − t)}+ γ2 sinh {γ1(T − t)}
− γ1(T − t)

)

+
(κθγ1 − γ2γ3)γ3

σ2γ3
1

(
cosh {γ1(T − t)} − 1

cosh {γ1(T − t)}+ γ2 sinh {γ1(T − t)}

)
with7

γ1 =
√

2σ2s1 + (κ+ λ′)2, γ2 =
1
γ1

[
κ+ λ′ − 2σ2s3

]
, γ3 = (κ+ λ′)κθ − s2σ

2

In this Proposition, for getting the probabilities P1 and P2, we derive their corresponding charac-

teristic functions and follow the same schedule as Schöbel and Zhu (1999) until reaching the previous

expressions in which the market price of risk of the volatility appears now explicitly.

Firstly, for deriving the characteristic functions, we need the volatility process. Applying the

Itô’s lemma to the variance process (11), we get

dvt = κ

[
θ −

(
1 +

λ

2κ

)
vt

]
dt+ σ

(
ρdW̃ s

t +
√

1− ρ2dW̃ v
t

)
Secondly, the obtention of the characteristic functions is similar to that shown in Schöbel and Zhu

(1999) and involves solving the following system of ordinary differential equations

Dt = −σ2D2 + 2(κ+ λ′)D + 2s1

Bt =
[
κ+ λ′ − σ2D

]
B − κθD + s2

Ct = −1
2
σ2B2 − κθB − 1

2
σ2D

subject to the terminal conditions D(T, T ) = 2s3, B(T, T ) = C(T, T ) = 0.

Comparing the results obtained in Schöbel and Zhu (1999) with our Proposition, we can see that

s1 and ŝ1 have changed, thus the functions D(t, T ), B(t, T ), and C(t, T ) have changed. Additionally,

note that γ1, γ2, and γ3 have also changed.
6Note that we are using interchangeably the notation for the functions B(·), C(·) and D(·) for f1 and f2 with more

arguments than right now. This is just to emphasize the variables that affect these functions.
7In a similar way, we can define γ̂i, i = 1, 2, 3 for the function f2.
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4 Computation of Bounds for Option Prices

In this section we will apply our general theoretical framework to obtain analytically bounds on call

option prices in the previous stochastic volatility models. We start with the Heston (1993) model.

4.1 Bounds for the Heston (1993) Model

Consider an adapted process ht = (hst , h
v
t ), the associated martingale measure Q = Q(h), and the

SDF process Λ, where
dΛt
Λt

= −rdt− hstdW s
t − hvt dW v

t

Under the risk-neutral measure Q, the stock price and variance processes (see (5)-(6)) are given as

dSt
St

= (r + sVt − λst
√
Vt)dt+

√
VtdW̃

S
t (12)

dVt = (α− βVt − λt)dt+ σ
√
Vt

(
ρdW̃S

t +
√

1− ρ2dW̃ V
t

)
(13)

The market price of risk of the variance is assumed to be

λt = σ
√
Vt(ρhst +

√
1− ρ2hvt ) (14)

for certain processes hst and hvt to be obtained. By Lemma 1, it is known that hst = λst and, for

making the process (12) risk-neutral, λst has to satisfy λst = s
√
Vt. Hence,

hst = s
√
Vt (15)

Following equation (15), we get an expression of the form in (7) if

hvt = v
√
Vt (16)

for some constant v. Replacing (15)-(16) in (14), we get that λ = σ(sρ+ v
√

1− ρ2).

The problem for the lower bound for a European call option with strike K and maturity T is

C0 = minC0(h) = minEP0

[
ΛT
Λ0

max {0, ST −K}
]

for some h ∈ Hv where Hv is the set of processes ht = (s
√
Vt, h

v
t ) for which the volatility constraint

in (4) is satisfied. Then, our benchmark is assumed to be of the form h∗1 = (s
√
Vt, v

∗√Vt) for some

constant v∗, which will be chosen afterwards. This benchmark is admissible and it satisfies (7), so

Heston’s formula applies. For the special case of standard GD bounds, we set h∗2 = (0, 0) and apply

this to all the previous expressions wherever it is necessary.

Cochrane and Saá-Requejo (2000) consider a case where, in the volatility constraint, A is a

positive constant. We assume the ceiling process is proportional to Vt, that is,

At = A
√
Vt (17)
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where A is a positive constant. This specification allows us to derive the analytical expression for

the BGD bounds via the Heston (1993) formula.

According to the benchmark, as stated in Proposition 1, to compute the upper and lower bounds,

we need two processes in which hvt = v
√
Vt, hvt = v

√
Vt, with v and v certain constants.

For the BGD bounds, where h∗1 = (s
√
Vt, v

∗√Vt), from Proposition 1 we can derive v = v∗+A and

v = v∗−A. Similarly, for the GD bounds, where h∗2 = (0, 0), we get v =
√
A

2 − s2, v = −
√
A

2 − s2.

In both cases, the proper values for A will be chosen later. With this result and Proposition 1, we

are able to enunciate the following Proposition.8

Proposition 4 The lower and upper bounds for the price of a European call option are written as

C0(h∗) = CH0 (λ), C0(h∗) = CH0 (λ)

where λ = σ(sρ+ v
√

1− ρ2) and λ = σ(sρ+ v
√

1− ρ2).

Consider a trader who wants to compute the call option price and the bounds for this price.

However, she is concerned about the potential misspecification of the unobservable variance risk

premium λt in (14). In this case, she can allow some uncertainty assuming that the true variance

risk premium is bounded as follows:

λlVt ≤ λVt ≤ λhVt (18)

where λl and λh are constants given by λj = σ(sρ+
√

1− ρ2vj), j = l, h and

vl = v − 0.5∆, vh = v + 0.5∆ (19)

with ∆ > 0 indicating the distance between vh and vl. Obviously, setting λl = λh, we get the Heston

(1993) theoretical call price. The inequalities in (18) define the whole set of “plausible” candidate

processes h, which produce a range of candidate call prices. As it is natural, we would like to have

the price bounds as tight as possible.

It is easy to verify analytically that the optimal choices for A for BGD bounds and GD bounds

are, respectively, A = max {|vl − v∗|, |vh − v∗|} and A =
√
s2 + max

{
v2
l , v

2
h

}
.

We will use Proposition 4 to compute analytically the bounds on call option prices, when ∆ =

0, 2, 4. Similarly to Bondarenko and Longarela (2009), we analyze the effect of correlation on the

price bounds considering ρ = −0.1, −0.53, −0.9. We use their parameters r = 0.05, S0 = 100, V0 =

α/β = 0.0137, T = 0.25, and v∗ = −22.6 to compute the BGD bounds for the process h∗1. The

remaining parameters (α = 0.097, β = 7.1, σ = 0.32, s = 8.6, v = −22.6) are based on Pan (2002),

who fits the Heston (1993) model to a sample of S&P 500 index options over the period 1989-1996.9

8This result corresponds to Proposition 7 in Bondarenko and Longarela (2009).
9The parameter v for the variance risk premium is the hardest one to estimate as the variance is a non-traded asset.

However, the remaining parameters can be easily estimated as the stock price process St can be observed.
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Table 1 shows the price bounds for call options with strikes from 85 to 115 and for the three

correlations aforementioned. We notice analytically that if ∆ = 0, the BGD bounds are equal to the

theoretical call price. Moreover, it is also easy to prove that the upper GD bounds coincide with

the upper BGD bounds. Looking at the Heston prices, C0, we see that correlation affects ITM and

OTM options in a different way. As ρ increases in absolute value, OTM option prices decrease, while

ITM option prices first increase and then decrease. The same happens for BGD bounds and thus

for upper GD bounds. The behavior of lower GD bounds is different: as |ρ| gets higher, bounds on

ITM option prices increase while, for OTM options, these bounds first decrease and then increase.

[INSERT TABLE 1 AROUND HERE]

Note that the lower GD bounds, C0
GD, included in this Table are much smaller than those

reported in Table 1 in Bondarenko and Longarela (2009). For example, if ρ = −0.10,K = 100,

we obtain the values 2.5238, 2.5092, 2.4949 for ∆ = 0, 2, 4, respectively. On the contrary, the

corresponding values reported by these authors are 2.977, 2.951, and 2.916. The same happens for

all the correlations, strikes, and values of ∆ we are considering. Thus our case of BGD versus GD

bounds is now stronger, that is, the benchmark good-deal bounds are even tighter than the standard

good-deal ones than previously illustrated by these authors.10

For the three cases of correlation and three values of ∆, Figure 1 presents the difference between

the bounds, C0 and C0, and the Black-Scholes price CBS0 , in which the volatility is set to
√
V0.

[INSERT FIGURE 1 AROUND HERE]

Figure 2 shows the size of bounds, that is, the difference between the bounds C0 and C0. As the

graph shows, the largest size of the bounds corresponds to near at-the-money options.

[INSERT FIGURE 2 AROUND HERE]

It can be clearly seen that the bounds for h∗1 are considerably tighter than those for h∗2. This

is particulary pronounced when ∆ approaches zero, as the size of bounds is zero for h∗1 and strictly

positive for h∗2. As expected, as ∆ increases, the size of bounds increases as we are separating bounds

further from the theoretical price.

As the correlation increases in absolute value, the bounds shrink in both GD and BGD bounds.

It could be said that the larger |ρ| is, the tighter the sizes of bounds are. For complete markets

(|ρ| = 1), it can be proved analytically that the size of bounds turns zero. Intuitively, although the
10The reason for these differences is due to some mistakes that, after code comparison, were identified in the

programming codes of Bondarenko and Longarela (2009). We thank both authors for helpful interaction with us. We

also thank an anonymous referee for highlighting us this issue.
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volatility is a “virtual” product, we know its behavior as changes in stock prices would transmit to

changes in the volatility. To sum up, stochastic volatility involves incomplete market when |ρ| < 1.

Economically, we could deduce some results. The BGD bounds determine the range of possible

prices for which the admissible SDFs lie in the “neighborhood” of a given benchmark. The “radius”

of this neighborhood is determined by the ceiling A. The ceiling must contain all the SDFs for

which the variance risk premium is bounded as in (18). For the GD bounds, the neighborhood is

symmetric with respect to the shock dW V
t . Hence, even for ∆ = 0, their neighborhood must include

some SDFs that are economically implausible. Thus, the GD bounds are wider even when there is

no uncertainty about the variance risk premium.

4.2 Bounds for the Extended Schöbel and Zhu (1999) Model

Now, we follow the same procedure as in the Heston (1993) model to compute the option prices

and their bounds in the extended Schöbel and Zhu (1999) model. Under this extended model, the

theoretical price of a European call option at time t = 0 is denoted as COU0 (λ). We deduce from (11)

that the market price of volatility will have the form λt = 2σ
√
Vt(ρhst+

√
1− ρ2hvt ) for some processes

hst and hvt to be obtained. As the spot price process is already risk-neutral we get λst = 0 = hst where

the second equality comes from Lemma 1. As we want to obtain the form of the market price of

volatility as in (7), we assume again (16). Thus, it is easy to verify that λ = 2σ
√

1− ρ2v.

Remember the form of the ceiling process in (17) and that λt lies as in (18) so as to contain all

the plausible candidate processes h that generate the candidate call prices, where (19) holds.

Following Proposition 1, we will substitute hvt = v
√
Vt and hvt = v

√
Vt for computing the bounds.

Moreover, for the case of BGD bounds, h∗1 = (0, v∗
√
Vt), thus we get v = v∗ −A and v = v∗ +A. In

a similar way, for GD bounds, h∗2 = (0, 0) and we obtain v = −A and v = A.

Then, we can state the next Proposition that arises directly from Proposition 1.

Proposition 5 The lower and upper bounds for the price of a European call option are written as

C0(h∗) = COU0 (λ), C0(h∗) = COU0 (λ)

where λ = 2σ
√

1− ρ2v and λ = 2σ
√

1− ρ2v.

As λt lies as in (18), it is easy to prove that the optimal choice for the ceiling process for the

BGD and GD bounds are, respectively, A = max {|vh − v∗|, |vl − v∗|} and A = max {|vh|, |vl|}.
We will compute the prices and bounds for European call options. Following Schöbel and Zhu

(1999), we consider the parameters t = 0, T = 0.5, r = 0.093, κ = 4, θ = 0.2, σ = 0.1 while, for

computing the bounds, we choose v = v∗ = −22.6 in line with Bondarenko and Longarela (2009).

Additionally, we analyze a range of strikes K from 90 to 120 and correlations ρ = −0.25,−0.5,−0.75.
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Table 2 show prices and bounds for these correlations. As |ρ| increases, prices and bounds

decrease, except for the lower GD bounds that increase except for the very deep OTM options.

[INSERT TABLE 2 AROUND HERE]

Figure 3 graphs the difference between bounds and Black-Scholes prices for these correlations.

The Black-Scholes prices will be denoted AVBS as they are based on the expected average variance

AV that, as stated in Schöbel and Zhu (1999), is given by

AV =
σ2

2κ
+ θ2 +

1− e−κ(T−t)

T − t

(
2θ
κ

(vt − θ)−
σ2 − 2κ(vt − θ)2

4κ2

(
1 + e−κ(T−t)

))
This Figure shows that, as |ρ| increases, the size of bounds minus the AVBS prices shrinks. Moreover,

the bounds for the BGD case are much tighter than for the GD one.

[INSERT FIGURE 3 AROUND HERE]

Figure 4 shows the size of bounds. We see that as |ρ| increases, the size of the bounds shrinks

as we are closer to a complete market. If |ρ| = 1, we would be in the case of perfect correlation, and

the market is complete as we explained for the Heston (1993) model.

[INSERT FIGURE 4 AROUND HERE]

If we compare Figures 1 and 3 and Figures 2 and 4, the size of bounds decreases as |ρ| gets closer

to one. Moreover, BGD bounds are always tighter than GD ones.

After having shown numerically and graphically these results, we will perform a more detailed

analysis of the properties of option prices and their bounds.

5 Properties of Option Prices and Bounds

This Section includes the computation of several Greeks for option prices and a detailed sensitivity

analysis with respect to some parameters for the previous stochastic volatility models.11 In addi-

tion, we also provide closed-form expressions and discussion of Greeks for bounds on option prices.

Concretely, we focus on delta, gamma, and vega as traders and institutions use to design hedging

schemes that involve these Greeks. The delta (vega) of an option indicates the rate of change in

the option price with respect to the underlying price (volatility). The option’s gamma measures the

rate of change in the option delta with respect to the underlying price.
11For the sake of brevity, Tables and Figures illustrating numerically and graphically the analytical expressions are

not reported here and are available in Marroqúın-Mart́ınez and Moreno (2010).
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5.1 Analysis for the Heston (1993) Model

5.1.1 Greeks for the Heston (1993) Model

As shown in Proposition 2, this model provides a closed-form expression for the call option price

that includes explicitly two probabilities P1 and P2. Let C denote the call option price at time t.

Then, we can compute analytically several Greeks as stated in the next Proposition.

Proposition 6 Under the Heston (1993) model, the deltas and gammas for the call option are

deltaS(St, Vt, t, T ) =
∂C

∂St
= P1 (20)

deltaV (St, Vt, t, T ) =
∂C

∂Vt
= St

∂P1

∂Vt
− e−r(T−t)K∂P2

∂Vt
(21)

ΓS(St, Vt, t, T ) =
∂2C

∂S2
t

=
∂P1

∂St
(22)

ΓV (St, Vt, t, T ) =
∂2C

∂V 2
t

= St
∂2P1

∂V 2
t

− e−r(T−t)K∂2P2

∂V 2
t

(23)

where for h = St, Vt, j, n = 1, 2

∂nPj
∂hn

=
1
π

∫ ∞
0

Re

(
e−iφ ln(K)

iφ

∂nFj
∂hn

)
dφ

and

∂Fj
∂St

= Fj

(
iφ

1
St

)
∂2Fj
∂S2

t

= Fj
φ

S2
t

(−φ− i)

∂nFj
∂V n

t

= FjD
n
j

In addition, applying the chain rule, the vega of the call option, ν, is given as

ν(St, Vt, t, T ) =
∂C

∂vt
= 2vt

∂C

∂Vt
= 2vt deltaV (St, Vt, t, T )

We have illustrated graphically how these Greeks work. We check that as K decreases, deltaS
approaches faster to one confirming that, as expected, the option price is more sensitive to the

underlying one for deeper ITM options. In addition, we also find that the highest values of both

gamma and vega take place when the option is near ATM, indicating that (a) delta is highly sensitive

to small changes in the underlying price and (b) the investor is concerned about moving to the ITM

or OTM area, respectively. As in Black-Scholes (1973), the underlying price that maximizes both

Greeks is always lower than the strike.
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5.1.2 Sensitivity Analysis for the Heston (1993) Model

Now we compute the sensitivities of the call option with respect to the parameters α, β, σ, ρ, and

V0. The most cumbersome expressions are those for the sensitivities with respect to ρ and σ. The

analytical formulas in a general form are stated in the following Proposition.

Proposition 7 The sensitivities of the call option with respect to the parameters α, β, σ, ρ, and

V0 are given by
∂C

∂h
= St

∂P1

∂h
− e−r(T−t)K∂P2

∂h

for h = α, β, σ, ρ, V0, where for j = 1, 2, we get

∂Pj
∂h

=
1
π

∫ ∞
0

Re

(
e−iφ ln(K)

iφ

∂Fj
∂h

)
dφ

For the particular case of the sensitivity with respect to ρ, we get

∂Fj
∂ρ

= Fj

(
∂Cj
∂ρ

+
∂Dj

∂ρ
Vt

)
and

∂Cj
∂ρ

=
α

σ2

[(
β′j(ρ)− σφi+ h′j(ρ)

)
T − 2

(
ehjT (−g′j(ρ)− gjh′j(ρ)T )(1− gj) + g′j(ρ)(1− gjehjT )

(1− gj)(1− gjehjT )

)]

∂Dj

∂ρ
=

1
σ2

[
(β′j(ρ)− σφi+ h′j(ρ))

(
1− ehjT

1− gjehjT

)
+ (βj − ρσφi+ hj)

]
×

[(
−h′j(ρ)TehjT (1− gjehjT ) + (g′j(ρ)ehjT + gjh

′
j(ρ)TehjT )(1− ehjT )

(1− gjehjT )2

)]

h′j(ρ) =
(ρσφi− βj)(σφi− β′j(ρ))√

(ρσφi− βj)2 − σ2(2ujφi− φ2)

g′j(ρ) =
(β′j(ρ)− σφi+ h′j(ρ))(βj − ρσφi− hj)− (β′j(ρ)− σφi− h′j(ρ))(βj − ρσφi+ hj)

(βj − ρσφi− hj)2

taking in account that

β′1(ρ) = λ′(ρ)− σ, β′2(ρ) = λ′(ρ)

It can be shown analytically that the call price is always increasing in σ, V0, α and decreasing in

β. However, the correlation affects options in a different way depending on their moneyness degree.

Our graphs (not included here) show that, when ρ > 0, the correlation affects less when the option
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is deep OTM. As ρ tends to one, the call price decreases. But when ρ < 0, the correlation affects

in a different way depending on how deep OTM the options are. For negative enough values of the

correlation, the highest increase in call prices correspond to the smallest strike (K=105).

Taking the parameter values of the previous sections as point of reference, we have built several

Tables and Figures that illustrate changes in theoretical call prices and bounds when varying a model

input parameter, remaining all the other constant. A qualitative discussion of the results follows:

• Parameter α: increasing α, the mean reversion level of volatility increases and also do prices

and bounds. This is logical as, if this mean reversion level is higher, the volatility of the model

will become higher at some point in the future. This introduces more uncertainty to the model

and then, prices and bounds increase. In fact, the higher α is, the higher the distance between

the theoretical call price and the lower GD bounds is. Thus, for higher values of α, the lower

GD bound become less informative. If we decrease α, then the opposite happens.

• Speed of adjustment of the variance, β: starting from our initial speed (7.1), a decrease

in β leads to higher theoretical call prices and bounds. This happens because the variance

process will be slower in reaching the mean reversion level, adding more uncertainty to the

model. We also find that, for small values of β, the lower GD bound is less informative, hence

less useful. On the contrary, if we increase β, the opposite happens.

• Initial variance, V0: if this value increases, theoretical prices, bounds, and the length of the

interval, C(GD)−C(GD), increase. Although V0 changes, the mean reversion level of volatility

keeps constant. Then, starting from a higher V0, the model incorporates more volatility as the

variance process will not experiment big changes. Thus, we will have higher option prices and

bounds. If V0 decreases, the opposite happens. In both cases, the length of the interval for

the BGD bounds does not change remarkably. Finally, for higher values of V0, the lower GD

bound is less informative.

• Volatility of the volatility, σ: if we change σ, then λ, λ, and λ also change and, con-

sequently, theoretical prices and bounds. In more detail, if we increase σ, λ’s become more

negative and theoretical prices and bounds increase. But if σ decreases, λ’s turn higher and the

opposite happens. We can mention that a higher value of σ implies higher volatility with two

opposite effects: (a) it directly increases the call price and (b) as we are considering negative

values of ρ, a higher volatility implies an smaller underlying price, and then an smaller call

price. In our case, the first effect weights more than the second one.
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5.2 Analysis for the Extended Schöbel and Zhu (1999) Model

As shown in Proposition 3, this model provides closed-form expressions for call option prices. Then,

we can compute analytically the Greeks and different sensitivities with respect to the model pa-

rameters. Following the formulas for the Greeks expressed for the Heston (1993) model, we need

to calculate the partial derivatives for the characteristic functions f1 and f2 in this case. Then, we

obtain the following.

Proposition 8 Under the extended Schöbel and Zhu (1999) model, the deltas and gammas for the

call option are given by equations (20)-(23) where, for h = St, Vt, j, n = 1, 2,

∂nPj
∂hn

=
1
π

∫ ∞
0

Re

(
e−iφ ln(K)

iφ

∂nfj(φ)
∂hn

)
dφ

and

∂fj
∂St

= fjiφ
1
St
, j = 1, 2

∂2fj
∂S2

t

= fj
φ

S2
t

(−φ− i), j = 1, 2

∂f1

∂Vt
= f1

(
− (1 + iφ) ρσ−1Vt +D(t, T )Vt +B(t, T )

)
∂2f1

∂V 2
t

= f1

([
− (1 + iφ) ρσ−1Vt +D(t, T )Vt +B(t, T )

]2 − (1 + iφ)ρσ−1 +D(t, T )
)

∂f2

∂Vt
= f2

(
−iφρσ−1Vt +D(t, T )Vt +B(t, T )

)
∂2f2

∂V 2
t

= f2

([
−iφρσ−1Vt +D(t, T )Vt +B(t, T )

]2 − iφρσ−1 +D(t, T )
)

Similarly to the Heston (1993) model, the vega of the call option is given as

ν(St, Vt, t, T ) = 2vt deltaV (St, Vt, t, T )

As we did for the Heston (1993) model, we have illustrated numerically and graphically these

Greeks jointly with additional sensitivity measures. The main conclusion is that results do not

change qualitatively with respect to those for the Heston (1993) model.

5.3 Greeks for Bounds

We will compute several Greeks for the bounds and graph some of the results. For computing these

Greeks we apply the same expressions as those for the theoretical ones, but replacing the input

variable λ by λ and λ as stated in the following Proposition. We report just the expressions for the

upper bound as those for the lower bound are completely similar.
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Proposition 9 Under the Heston(1993) and extended Schöbel and Zhu (1999) models, the Greeks

for the upper bound of the call option are given by

deltaS(St, Vt, t, T ) =
∂C

∂St
= P1(λ)

ΓS(St, Vt, t, T ) =
∂2C

∂S2
t

=
∂P1(λ)
∂St

deltaV (St, Vt, t, T ) =
∂C

∂Vt
= St

∂P1(λ)
∂Vt

− e−r(T−t)K∂P2(λ)
∂Vt

and, for computing the vega, the chain rule is needed:

ν(St, Vt, t, T ) =
∂C

∂vt
= 2vt

∂C

∂Vt
= 2vt deltaV (St, Vt, t, T )

where C denotes the upper bound obtained for each model. Obviously, this bound presents a different

closed-form expression in each model.

The results will be reported in detail for the Heston (1993) model as we have obtained similar

conclusions for the extended Schöbel and Zhu (1999) model.12

Figure 5 presents, for different correlations, deltas for BGD and GD bounds as a function of the

underlying price. Although it is hard to see the lines, going deeply into the graphs, we can see that

deltaS is above deltaS (delta for the lower bound) just in the OTM area. Besides, it is clear that

the theoretical deltaS is always between deltaS and deltaS . We have also checked that increasing

the strike moves the graph to the right, keeping the same form and characteristics.

[INSERT FIGURE 5 AROUND HERE]

Figure 6 shows gammas for bounds as a function of the underlying price. When the option is

deep OTM or deep ITM, ΓS > ΓS > ΓS (gamma for the lower bound). However, when the call

option is near ATM, the opposite happens. In the case of GD bounds, the lower ones for ∆ = 2, 4

take similar values and then, it is not possible to distinguish them visually. This Figure also shows

that the maximum ΓS is achieved in the OTM area. If we increased the strike, the graph moves to

the right, maintaining the same shape and features except for the value that maximizes ΓS . As K

increases, we have checked that the maximum ΓS decreases, similarly to the Black-Scholes model.

[INSERT FIGURE 6 AROUND HERE]

Finally, Figure 7 presents vegas for BGD and GD bounds for different correlations. These Greeks

respect the expected order, this is, ν is always above ν (vega for the lower bound) and the theoretical

vega ν is always located between the vegas for bounds.
12Results are available upon request.
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[INSERT FIGURE 7 AROUND HERE]

Graphing these vegas for bounds on options with different strikes, we have also checked that

higher values of K provide results that are qualitatively similar to those obtained for gammas for

bounds except that the maximum ν increases with K.

Summarizing, we could say that Greeks for bounds do not behave exactly as bounds for prices.

Sometimes what we have called “Greek for the upper bound” takes the place of the “Greek for the

lower bound” and viceversa. Anyway, as expected, the theoretical Greek is always located between

both. However, the two main conclusions observed for the bounds for prices keep for the Greeks for

bounds. First of all, BGD bounds are much tighter than GD ones. Secondly, as |ρ| increases, the

size of the Greeks for bounds decreases and bounds get tighter. Thus, as |ρ| gets closer to one, we

are closer to a complete market, hence, both size of bounds and Greeks for bounds tend to zero.

6 Conclusions

As stated in the previous literature, it is possible to find an arbitrage-free interval for bounds

of option prices under incomplete markets. In this framework, we have analyzed the stochastic

volatility models proposed in Heston (1993) and an extension of that introduced in Schöbel and

Zhu (1999). Both models provide unique closed-form expressions for the prices of certain securities

assuming a certain functional form of the market price of risk of the corresponding factors. In fact,

each functional form is associated to a martingale measure and, thus, to a price for the security.

These analytical expressions are relevant from both practical and theoretical perspectives as they

allow us to compute easily the bounds on option prices, to perform a sensitivity analysis over the

parameters involved in these bounds, and to design the corresponding hedging strategy.

Following the research area initiated in Cochrane and Saá-Requejo (2000), for both models,

we have obtained analytical expressions for BGD and GD bounds and have performed a detailed

sensitivity and hedging analysis for prices and bounds. In both cases, the main qualitative conclusion

is that BGD bounds are much tighter than GD ones. This also happens for Greeks for bounds.

Therefore, the answer for the question in the paper’s title is that the specification of the stochastic

volatility does not seem to be relevant in qualitative terms when computing bounds on option prices

and their Greeks. Moreover, as expected, approaching to the perfect correlation case (that is,

complete markets), the size of bounds becomes smaller.

Comparing the results obtained in both models for our chosen parameters, we notice that the

correlation affects option prices in a different way depending on the degree of moneyness for the

Heston (1993) model. Nevertheless, for the extended Schöbel and Zhu (1999) model, the correlation

treats option prices in a similar way regardless the moneyness degree.
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The main contributions of the paper are as follows: compared to Bondarenko and Longarela

(2009), we have enlarged the analysis of bounds for option prices in the Heston (1993) model and

fixed some errors in their numerical analysis finding now higher differences between GD and BGD

bounds. Afterwards, we have extended the Schöbel and Zhu (1999) model and obtained analytical

expressions for option prices and bounds. Our final contribution is that, for both models, we have

performed extensive sensitivity and hedging analysis showing, respectively, the effect of changes in

the model parameters on these bounds and the risk management properties of these bounds.

More concretely, the sensitivity analysis for the Heston (1993) model has illustrated that, as the

mean reversion level of the volatility, the volatility of the volatility, or the initial variance increase

(and the speed of adjustment of the variance decreases), all the bounds increase and the distance

between upper and lower GD bounds increases. The intuition behind these results is that, in these

cases, we have a wider no-arbitrage interval for option prices. Hence, we have less information about

the unique price we would find in complete markets. This analysis has also shown that BGD bounds

are tighter than GD ones. The analysis for the extended Schöbel and Zhu (1999) model provided

similar qualitative conclusions.

A possible extension of this paper involves computing bounds on option prices using another

pricing models that also provide closed-form expressions for option prices. For instance, some pos-

sible pricing techniques and candidate models are the following: a) the stochastic volatility model

presented in Jizba et al. (2009) that applies a Mellin transform to obtain a generalized Black-Scholes

formula assuming that the log-returns are given by a superposition of Gaussian distributions and

the variance follows a Gamma distribution, b) Chiu et al. (2010) that applies asymptotic techniques

to price European options whose underlying asset follows a mean-reverting log-normal process with

(a two-factor) stochastic volatility, c) the fuzzy approach employed in Nowak and Romaniuk (2010)

assuming that the underlying asset follows a Levy process with jumps, and d) Wong and Lo (2010)

applied the Fourier transform to value analytically European options whose underlying asset follows

a mean-reverting log-normal process with stochastic volatility. A final alternative is Pillay and O’

Hara (2011) that considers a process for the underlying asset similar to that in Wong and Lo (2010)

but enlarged with jumps. This issue is left as avenue for further research.
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Appendix of Tables

Table 1: BGD and GD bounds for the Heston (1993) model.

K C0 C0
BGD C0

BGD
C0

GD C0
GD

∆ = 2 ∆ = 4 ∆ = 2 ∆ = 4 ∆ = 0 ∆ = 2 ∆ = 4 ∆ = 0 ∆ = 2 ∆ = 4

ρ = -0.10

85 16.1421 16.1348 16.1281 16.1500 16.1586 16.0571 16.0570 16.0569 16.1421 16.1500 16.1586

90 11.4383 11.4193 11.4014 11.4584 11.4798 11.1376 11.1364 11.1354 11.4383 11.4584 11.4798

95 7.1796 7.14254 7.1068 7.2184 7.2587 6.3876 6.3812 6.3750 7.1796 7.2184 7.2587

100 3.8190 3.7677 3.7181 3.8720 3.9267 2.5238 2.5092 2.4949 3.8190 3.8720 3.9267

105 1.6997 1.6520 1.6059 1.7492 1.8004 0.5714 0.5601 0.5492 1.6997 1.7492 1.8004

110 0.6601 0.6286 0.5986 0.6932 0.7280 0.0780 0.0746 0.0713 0.6601 0.6932 0.7280

115 0.2372 0.2207 0.2052 0.2549 0.2739 0.0080 0.0074 0.0069 0.2372 0.2549 0.2739

ρ = -0.53

85 16.2056 16.1966 16.1881 16.215 16.2252 16.0641 16.0636 16.0631 16.2056 16.2151 16.2252

90 11.5578 11.5386 11.5202 11.5779 11.5989 11.1769 11.1744 11.1720 11.5578 11.5779 11.5989

95 7.3249 7.2915 7.2592 7.3594 7.3950 6.5131 6.5050 6.4970 7.3249 7.3594 7.3950

100 3.8715 3.8271 3.7839 3.9171 3.9640 2.6652 2.6504 2.6358 3.8715 3.9171 3.9640

105 1.5757 1.5347 1.4950 1.6180 1.6616 0.5587 0.5480 0.5376 1.5757 1.6180 1.6616

110 0.4749 0.4509 0.4280 0.5001 0.5267 0.0454 0.0432 0.0411 0.4749 0.5001 0.5267

115 0.1133 0.1040 0.0954 0.1234 0.1343 0.0017 0.0015 0.0014 0.1133 0.1234 0.1343

ρ= -0.9

85 16.1933 16.1894 16.1857 16.1973 16.2013 16.1030 16.1023 16.0999 16.1933 16.1973 16.2013

90 11.5131 11.5049 11.4970 11.5214 11.5299 11.2749 11.2753 11.2755 11.5131 11.5214 11.5299

95 7.1997 7.1855 7.1716 7.2141 7.2287 6.7268 6.7198 6.7136 7.1997 7.2141 7.2287

100 3.6020 3.5829 3.5640 3.6213 3.6410 2.9465 2.9338 2.9211 3.6020 3.6213 3.6410

105 1.1679 1.1509 1.1343 1.1851 1.2027 0.6411 0.6346 0.6281 1.1679 1.1851 1.2027

110 0.1439 0.1379 0.1321 0.1503 0.1568 0.0094 0.0080 0.0066 0.1439 0.1503 0.1568

115 0.0029 0.0026 0.0023 0.0033 0.0037 0.0061 0.0068 0.0075 0.0029 0.0033 0.0037

This Table reports BGD and GD bounds for the Heston (1993) model. Strikes K range from 85 to 115.

ρ = −0.1, −0.53, −0.9. When ∆ = 0, lower and upper BGD bounds are equal to the theoretical call price

C0, that is why are not reported. α = 0.097, β = 7.1, σ = 0.32, s = 8.6, v = v∗ = −22.6. The remaining

parameters are set as r = 0.05, S0 = 100, V0 = α/β = 0.0137, T = 0.25.
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Table 2: BGD and GD bounds for the extended Schöbel and Zhu (1999) model.

K C0 C0
BGD C0

BGD
C0

GD C0
GD

∆ = 2 ∆ = 4 ∆ = 2 ∆ = 4 ∆ = 0 ∆ = 2 ∆ = 4 ∆ = 0 ∆ = 2 ∆ = 4

ρ = -0.25

90 16.7217 16.6236 16.5292 16.8239 16.9301 14.6130 14.5966 14.5809 16.7217 16.8239 16.9301

95 13.3648 13.2459 13.1309 13.4877 13.6150 10.5046 10.4761 10.4484 13.3648 13.4877 13.6150

100 10.4519 10.3179 10.1880 10.5900 10.7325 6.9961 6.9565 6.9177 10.4519 10.5900 10.7325

105 7.9990 7.8576 7.7203 8.1447 8.2948 4.2683 4.2236 4.1798 7.9990 8.1447 8.2948

110 5.9943 5.8534 5.7168 6.1396 6.2895 2.3688 2.3274 2.2870 5.9943 6.1396 6.2895

115 4.4028 4.2696 4.1408 4.5405 4.6830 1.1936 1.1617 1.1307 4.4028 4.5405 4.6830

120 3.1736 3.0534 2.9377 3.2984 3.4281 0.5478 0.5268 0.5067 3.1736 3.2984 3.4281

ρ = -0.5

90 16.5714 16.4911 16.4136 16.6545 16.7406 14.7034 14.6864 14.6701 16.5714 16.6545 16.7406

95 13.1468 13.0489 12.9538 13.2477 13.3517 10.6303 10.6025 10.5754 13.1468 13.2477 13.3517

100 10.1650 10.0539 9.9458 10.2791 10.3964 7.1294 7.0918 7.0550 10.1650 10.2791 10.3964

105 7.6519 7.5342 7.4195 7.7728 7.8969 4.3715 4.3295 4.2882 7.6519 7.7728 7.8969

110 5.6049 5.4877 5.3737 5.7252 5.8490 2.4193 2.3802 2.3421 5.6049 5.7252 5.8490

115 3.9942 3.8842 3.7776 4.1074 4.2242 1.1965 1.1665 1.1372 3.9942 4.1074 4.2242

120 2.7700 2.6724 2.5780 2.8711 2.9758 0.5259 0.5065 0.4879 2.7700 2.8711 2.9758

ρ = -0.75

90 16.2462 16.1948 16.1446 16.2990 16.3532 14.8551 14.8390 14.8232 16.2462 16.2990 16.3532

95 12.7146 12.6506 12.5881 12.7800 12.8469 10.8450 10.8203 10.7960 12.7146 12.7800 12.8469

100 9.6333 9.5598 9.4877 9.7084 9.7849 7.3777 7.3454 7.3137 9.6333 9.7084 9.7849

105 7.0438 6.9654 6.8885 7.1238 7.2053 4.6027 4.5670 4.5318 7.0438 7.1238 7.2053

110 4.9556 4.8779 4.8018 5.0349 5.1158 2.5880 2.5545 2.5216 4.9556 5.0349 5.1158

115 3.3452 3.2735 3.2034 3.4185 3.4936 1.2874 1.2612 1.2355 3.3452 3.4185 3.4936

120 2.1609 2.0992 2.0393 2.2243 2.2893 0.5559 0.5388 0.5223 2.1609 2.2243 2.2893

This Table reports BGD and GD bounds for the extended Schöbel and Zhu (1999) model. Strikes K range

from 90 to 120. ρ = −0.25, −0.5, −0.75. When ∆ = 0, lower and upper BGD bounds are equal to the

theoretical call price C0, that is why are not reported. The parameters are t = 0, T = 0.5, r = 0.093, κ =

4, θ = 0.2, σ = 0.1, v = v∗ = −22.6.
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Appendix of Figures

Figure 1: Difference between option price bounds and Black-Scholes prices versus strike for the Heston

(1993) model. Strikes K range from 80 to 120. We consider correlations ρ = −0.1,−0.53,−0.9. ∆ = 0

(dashed lines), ∆ = 2 (dotted lines), and ∆ = 4 (solid lines). The left and right panels are for h∗1 and h∗2,

respectively. α = 0.097, β = 7.1, σ = 0.32, s = 8.6, v = v∗ = −22.6. The remaining parameters are set as

r = 0.05, S0 = 100, V0 = α/β = 0.0137, T = 0.25.
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Figure 2: Size of bounds C0 − C0 versus strike K. Heston (1993) model. Strikes K range from 80 to 120.

ρ = −0.1,−0.53,−0.9. ∆ = 0 (dashed lines), ∆ = 2 (dotted lines), and ∆ = 4 (solid lines). The left and

right panels are for h∗1 and h∗2, respectively. α = 0.097, β = 7.1, σ = 0.32, s = 8.6, v = v∗ = −22.6. The

remaining parameters are set as r = 0.05, S0 = 100, V0 = α/β = 0.0137, T = 0.25.
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Figure 3: The difference between the option price bounds and the AVBS price versus strike K. Extended

Schöbel and Zhu (1999) model. Strikes K range from 90 to 120. ρ = −0.25,−0.5,−0.75. ∆ = 0 (dashed

lines), ∆ = 2 (dotted lines), and ∆ = 4 (solid lines). The left and right panels are for h∗1 and h∗2, respectively.

t = 0, T = 0.5, r = 0.093, κ = 4, θ = 0.2, σ = 0.1, v = v∗ = −22.6.
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Figure 4: Size of bounds C0−C0 versus strike K. Extended Schöbel and Zhu (1999) model. Strikes K range

from 90 to 120. ρ = −0.25,−0.5,−0.75. ∆ = 0 (dashed lines), ∆ = 2 (dotted lines), and ∆ = 4 (solid lines).

The left and right panels are for h∗1 and h∗2, respectively. t = 0, T = 0.5, r = 0.093, κ = 4, θ = 0.2, σ =

0.1, v = v∗ = −22.6.
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Figure 5: Deltas for bounds versus S0. Heston (1993) model. K = 100. ρ = −0.1,−0.53,−0.9. ∆ = 0

(dashed line), ∆ = 2 (dotted lines), and ∆ = 4 (solid lines). The left and right panels are for h∗1 and h∗2,

respectively. α = 0.097, β = 7.1, σ = 0.32, s = 8.6, v = −22.6, v∗ = −22.6. The remaining parameters are

set as r = 0.05, V0 = α/β = 0.0137, T = 0.25.
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Figure 6: Gammas for bounds versus S0. Heston (1993) model. K = 100. ρ = −0.1,−0.53,−0.9. ∆ = 0

(dashed line), ∆ = 2 (dotted lines), and ∆ = 4 (solid lines). The left and right panels are for h∗1 and h∗2,

respectively. α = 0.097, β = 7.1, σ = 0.32, s = 8.6, v = v∗ = −22.6. The remaining parameters are set as

r = 0.05, V0 = α/β = 0.0137, T = 0.25.
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Figure 7: Vegas for bounds versus S0. Heston (1993) model. K=100. ρ = −0.1,−0.53,−0.9. ∆ = 0 (dashed

line), ∆ = 2 (dotted lines), and ∆ = 4 (solid lines). The left and right panels are for h∗1 and h∗2, respectively.

α = 0.097, β = 7.1, σ = 0.32, s = 8.6, v = −22.6, v∗ = −22.6. The remaining parameters are set as

r = 0.05, V0 = α/β = 0.0137, T = 0.25.
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