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Abstract

We propose a unified structural credit risk model incorporating insolvency, recov-

ery and rollover risks. The firm finances itself mainly by issuing short- and long-term

debt. Short-term debt can have either a discrete or a more realistic staggered tenor

structure. We show that a unique threshold strategy (i.e., a bank run barrier) exists

for short-term creditors to decide when to withdraw their funding, and this strategy

is closely related to the solution of a non-standard optimal stopping time problem

with control constraints. We decompose the total credit risk into an insolvency com-

ponent and an illiquidity component based on such an endogenous bank run barrier

together with an exogenous insolvency barrier.

Key words: Structural credit risk model, bank run, rollover risk, first passage time,

optimal stopping time
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1 Introduction

The recent financial crisis has dramatically shown that financial markets are not

ideal. In particular, refinancing in periods of financial distress can be extremely costly

or even impossible due to liquidity drying up in the market. It has been shown, for ex-

ample by Adrian and Shin (2008, 2010) and Brunnermeier (2009), that the heavy use of

short-term debt was a key contributing factor to the credit crunch of 2007/2008. Finan-

cial institutions, however, often prefer short-term debt financing as it is cheaper than

long-term debt. Moreover, as argued by He and Xiong (2012b), short-term debt can

also be regarded as a disciplinary device for firms and can be used to mitigate adverse

selection problems and reduce the cost of auditing firms. Hence, several reasons support

the use of short-term financing. However, most of the existing credit risk models do not

take into account the rollover risk inherent in short-term debt financing. It is the aim

of this paper to provide a unified framework that incorporates rollover risk, as well as

insolvency and recovery risks, into structural credit risk modeling.

The structural credit risk models were initiated by Merton (1974) and Black and

Cox (1976). In these models, the default happens if the firm fundamental falls below

some exogenous default barrier. The crucial assumption is the exogenously given default

barrier that often relates to the firm’s debt level. Most of the existing work on structural

credit risk modeling focuses on how to model such an exogenous default barrier, as in

Longstaff and Schwartz (1995) and Briys and de Varenne (1997), among others1. In the
1Optimal capital structural models are regarded as the second generation of structural credit risk

models, which were initiated by Leland (1994, 1998), and Leland and Toft (1996). Therein the firm

defaults when its equity value drops to zero, and the default barrier is determined endogenously by its

equity holders. He and Xiong (2012a) extends this framework by including an illiquid debt market.
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following we will call this exogenous default barrier the insolvency barrier. In this paper

we further determine an endogenous threshold value at which short-term creditors decide

to withdraw their funding, i.e., to run on the bank, and we will call this barrier the bank

run barrier. There is a third barrier, called the illiquidity barrier, which represents the

critical value when the financial institution is unable to pay off its creditors in case of a

bank run, and which is determined endogenously from the bank run barrier. In addition,

we show that the bank run barrier always dominates the illiquidity barrier, which in turn

dominates the insolvency barrier. This relationship among all three barriers not only

helps to decompose the total credit risk into an insolvency component and an illiquidity

component, but also illustrates the phenomenon that most financial institutions have

defaulted due to illiquidity rather than to insolvency in the recent credit crunch.

Our first contribution is the provision of a rigorous formulation for a class of struc-

tural credit risk models that study bank runs. The classical bank run model of Diamond

and Dybvig (1983) features a static setting where all the depositors simultaneously de-

cide whether or not to withdraw their demand deposits from a solvent but illiquid bank.

Ericsson and Renault (2006) and Goldstein and Pauzner (2005) provide further exten-

sions that are, however, still in the static setting. In this paper, we consider bank runs

from a dynamic viewpoint. The dynamic bank run model introduced by Morris and Shin

(2010) focuses on a two-period setting where short-term creditors face a binary decision

in terms of global games at an interim time point. Liang et al. (2012) provide a struc-

tural credit risk model that also takes liquidity risk into account, as short-term creditors

can decide at a finite number of decision dates whether to roll over or to withdraw their

funding. They derive a bank run barrier based on the comparison of binary strategies for

a representative short-term creditor. Technically, the generalization from the two-period
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setting of Morris and Shin (2010) towards the multi-period setting of Liang et al. (2012)

relies on the dynamic programming principle (DPP). In Liang et al. (2012) the DPP

was only applied informally by comparing the expected returns for the two investment

options of creditors at the rollover dates. In this paper, by introducing an appropriate

value function for a representative short-term creditor, which describes the discounted

expected return over the remaining rollover periods and is calculated based on the DPP,

we derive the unique threshold strategy, i.e., the bank run barrier. The representative

creditor decides to withdraw her funding if the firm’s fundamental falls below this bar-

rier at any decision date. In contrast to Liang et al. (2012), the corresponding dynamic

programming equations presented in this paper are more generic and transparent, which

in particular allows us to introduce flexible debt maturity structures into our model.

The second contribution of this paper is the imbedding of flexible debt tenor struc-

tures into structural credit risk models. In Liang et al. (2012) a discrete tenor structure

is assumed such that the rollover dates of short-term debt are given by a sequence of

deterministic numbers. This implies that all short-term debt expires and can be rolled

over at the same time. The problem is therefore equivalent to a one-creditor prob-

lem. In reality, however, firms typically stagger the maturities for short-term debt to

finance their long-term risky assets. Rollover risk is partially reduced in this way as

at each maturity date only a fraction of total debt is due. Nevertheless, due to the

maturity mismatch between the assets and the liabilities sides, the firm is still exposed

to significant liquidity risk. Our model covers both the discrete tenor structure and the

staggered tenor structure. The latter was first introduced by Leland (1994, 1998), and

Leland and Toft (1996), with Hilberink and Rogers (2002) and Chen and Kou (2009)

providing further technical details. The main idea is to assume a random duration of
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debt in order to reflect the maturity mismatch. Recently, He and Xiong (2012b) applied

the staggered maturity structure to the bank run literature where debt maturities are

modelled as arrival times of a Poisson process, whose intensity can then be interpreted

as the inverse of average debt duration. In this paper, we utilize a more general and

flexible Cox process to model the staggered tenor structure. The economic intuition of

using the Cox maturity structure is that the average duration of the short-term debt

which a firm issues should fluctuate and depend on some economic factors such as the

firm fundamental or even the underlying systemic risk from the market.

The third contribution of this paper is that it answers the question whether the rep-

resentative short-term creditor’s rollover decision is indeed optimal. This question also

arises in the existing dynamic bank run models such as those in He and Xiong (2012b),

Morris and Shin (2010), and Liang et al. (2012), but has so far not been answered. In

both the discrete and the staggered tenor structures, we show that the decision prob-

lem of the representative short-term creditor is equivalent to a non-standard optimal

stopping time problem with control constraints. At each rollover date the representative

creditor faces the risk that the firm may fail due to a bank run. If the firm survives, the

creditor can then decide whether to withdraw her funding (stop) or to roll over her con-

tract (continue). If the firm fails due to other creditors’ runs, the representative creditor

is forced to stop and face the recovery risk from bankruptcy. Therefore, the decision

time for the representative creditor must exclude the default time due to bank runs. For

the case of the staggered tenor structure, since the maturity dates are the arrival times

of a Cox process, the representative creditor is only allowed to stop (i.e., to withdraw

her funding) at a sequence of Cox arrival times rather than at any stopping time. In

the literature, such kind of optimal stopping at Poisson-type arrival times has been used
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to solve the standard optimal stopping time problem by Krylov (2008) as the so-called

randomized stopping time technique.

Finally, our fourth contribution is the incorporation of possible feedback effects of

the bank run barrier on the representative creditor’s beliefs about the behavior of other

creditors. In Morris and Shin (2010) and Liang et al. (2012) the beliefs are modeled

exogenously. The creditor is assumed to believe that the proportion of creditors not

rolling over their debt is uniformly distributed. Using global games theory this assump-

tion implies a partial equilibrium in our model. In this paper, by taking into account

the possibility that the creditor might update her beliefs about the behavior of other

creditors based on the derived bank run barrier, our endogenous bank run barrier can

be interpreted as a general equilibrium.

The paper is organized as follows. Section 2 describes the assumptions on the firm’s

capital structure and explains the rollover decision of short-term creditors in the bench-

mark model. We also present the rigorous formulation of the rollover decision problem

in terms of dynamic programming equations. In section 3 we use the creditor’s value

function derived in the dynamic programming equations to determine the short-term

creditor’s bank run barrier as well as the firm’s illiquidity barrier in case of both the dis-

crete and the staggered debt structures. We reformulate the creditor’s decision problem

in terms of the associated optimal stochastic control problem in section 4. Further-

more, we derive an endogenous bank run barrier and illiquidity default time in section 5,

where we take into account the fact that the creditor might update her beliefs about the

behavior of other creditors. Section 6 summarizes the related literature and concludes.
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2 Benchmark Model

In this section, we propose a bank run model that incorporates rollover risk into the

structural credit risk framework.

2.1 Capital Structure of a Financial Institution

Consider a financial market defined over a complete probability space (Ω,G,P), which

supports a standard Brownian motion (Wt)t≥0 with its natural filtration {Ft} after

augmentation.

The market interest rate r is assumed to be constant. In this market, consider a

financial institution, which we call a firm hereafter, whose fundamental value of assets

follows
dVt

Vt
= rV dt + σdWt,

with constant volatility σ > 0. The constant rV denotes the expected return on the

firm’s risky assets. We assume that the firm fundamental is publicly observable.

The firm finances its asset holdings in the duration [0, T ] by issuing short-term debt,

such as asset-backed commercial papers and overnight repos, long-term debt such as

corporate bonds, and equities and others. At initiation time T0 = 0 an amount L0 is

invested long-term at rate rL until fixed maturity T > 0. Moreover, an amount S0 is

invested short-term at rate rS until maturity T1. When short-term debt matures it can

be successively rolled over until the next rollover date. This produces a sequence of

maturity dates (or rollover dates) 0 = T0 < T1 < T2 · · · < T∞ = ∞ for short-term debt.

For the moment, we do not impose any structural conditions on the short-term debt

maturities {Tn}n≥1. They could be either deterministic or random. Table 1 shows the

stylized balance sheet of the firm.
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Table 1: Balance sheet of the firm at time t

Assets Liabilities

Firm’s assets Vt Short-term debt St

Long-term debt Lt

Equities and others Et

Vt St + Lt + Et

If there is no default, the value of short-term debt follows

dSt = rSStdt,

and the value of long-term debt follows

dLt = rLLtdt.

The ratio of long-term debt over short-term debt Lt/St is denoted by lt and follows

dlt = (rL − rS)ltdt.

Moreover, we introduce a process Xt as the ratio of the firm’s asset value over the

short-term debt value Xt = Vt/St. Hence, Xt follows

dXt

Xt
= (rV − rS)dt + σdWt.

Short-term creditors have the opportunity to withdraw their funding at the rollover

dates. When the firm is under distress or when an outside investment opportunity is

more attractive they will make use of this option. Long-term creditors, however, are

locked in once they lend money to the firm. They are exposed to a higher risk, and

therefore, should also be rewarded with a higher interest rate. Moreover, since creditors
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are exposed to the firm’s default risk, a risk premium should be paid on top of the market

interest rate. We have the following assumption on different interest rates.

Assumption 2.1 The long-term interest rate rL is strictly greater than the short-term

interest rate rS, while the latter is strictly greater than the market interest rate r, i.e.,

we assume rL > rS > r.

2.2 The Rollover Decision of a Representative Short-Term Creditor

Short-term creditors choose whether to renew their contracts when these expire, that

is, they need to decide whether to roll over or to withdraw their funding (i.e., to run) at

the maturity times.

Consider the decision problem of a representative short-term creditor. Her beliefs on

whether or not the firm will survive from bank runs at each of the rollover dates Tn is

certainly one of the key factors to determine her rollover decision. Assume the creditor

believes that the proportion of short-term creditors not rolling over their funding at

each of the rollover dates Tn is uniformly distributed on the interval [0, 1]. The firm will

survive bank runs if the proportion not rolling over their funding is less than

θ(XTn) = min
{

1,
ψVTn

STn

}
= min{1, ψXTn},

where the constant ψ denotes the fire-sale rate2. Due to the uniform distribution as-

sumption, the creditor will expect this to occur with the probability θ(XTn), which is

called the survival probability of bank runs. This assumption on the survival probability
2The constant ψ is the fire-sale rate of the firm fundamental when the firm is in a distress state, so

it represents the amount that can be borrowed by pledging one unit of the risky asset as collateral. For

a detailed discussion of how to endogenously determine the fire-sale rate by the leverage of the firm, we

refer to Liang et al. (2012).
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of bank runs can be justified by arguments from global games theory even with unob-

servable firm fundamental for which we refer to Morris and Shin (2010). If the firm

survives a bank run at maturity Tn with probability θ(XTn), the creditor then faces two

choices: either roll over her funding to the next maturity Tn+1 or withdraw her funding.

The second key factor to determine the representative short-term creditor’s rollover

decision is the insolvency risk stemming from the deterioration of the firm fundamental.

To include this factor, we follow the classic first-passage-time framework (see for example

Black and Cox (1976)) by assuming an exogenously given insolvency barrier

DIns
t = Stβ(lt),

where β : (0,∞) → (0,∞) is a safety covenant function of the ratio lt = Lt/St. As long

as the asset value Vt at any time t is greater than or equal to the total value of debt

St + Lt, the firm can be considered solvent. Hence, it is natural to assume that

β(lt) ≤ (1 + lt) (2.1)

such that

DIns
t = Stβ(lt) ≤ St(1 + lt) = St + Lt.

The bankruptcy time due to insolvency is then given by the following first-passage-time

τ Ins = inf{t ≥ 0 : Vt ≤ DIns
t } = inf{t ≥ 0 : Xt ≤ β(lt)}.

The third key factor for the representative short-term creditor’s rollover decision is

the recovery rate when the firm defaults due to either bank runs or insolvency. If the

firm defaults at some time t ∈ [0, T ], the firm is exposed to certain bankruptcy costs.

Suppose these are proportional to the firm fundamental value and that αVt is the firm

value after having paid the bankruptcy costs for α ∈ (0, 1). Then, the value αVt will
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be divided among all the creditors, so the representative short-term creditor obtains the

proportion of her funding and she gets at most her debt value back. Thus, we define the

recovery rate as

Rt = min
{

1,
αVt

St + Lt

}
= min

{
1,

αXt

1 + lt

}
. (2.2)

Note that in case of a default due to a bank run, it can happen that the asset value

is larger than St + Lt. Therefore, we have to cut off the recovery rate by 1. However,

if the firm defaults due to insolvency at the first-passage-time τ Ins, the asset value by

definition equals the insolvency barrier DIns
τIns . In this case the recovery rate equals

RτIns =
αDIns

τIns

SτIns + LτIns

=
αβ(lτIns)
1 + lτIns

which is less than 1 by condition (2.1) for any α ∈ (0, 1).

We assume that rollover decisions are solely determined by the aforementioned fac-

tors, which we summarize as follows.

Assumption 2.2 The following three factors determine the rollover decision of a rep-

resentative short-term creditor.

(i) Rollover risk is reflected by the representative short-term creditor’s beliefs about

the survival probability from bank runs θ(XTn).

(ii) Insolvency risk is reflected by the first-passage-time τ Ins when the firm’s asset value

falls below the insolvency barrier DIns
t .

(iii) Recovery risk is reflected by the fraction Rt of funding that the representative short-

term creditor obtains in case of a default at time t.

We further impose the following condition on the safety covenant function for tech-

nical convenience.
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Assumption 2.3 The safety covenant function β(lt) in the definition of the insolvency

barrier DIns
t has the linear form β(lt) = βlt for some positive constant β ≤ (1/lt + 1).

2.3 Dynamic Programming Equations

In this section we derive dynamic programming equations for the short-term cred-

itor’s rollover problem. We consider a representative short-term creditor who invests

an amount normalized to 1 monetary unit at time t ∈ [0, T ]. Her discounted expected

return over the remaining time period (t, T ] is described by the value function U(t, x)

and depends on the current ratio Xt = x of asset value over short-term debt value. Here

we discount at the market rate r. To investigate the creditor’s value function we go

backwards in time starting with her last rollover date prior to terminal time T . Suppose

that her N th rollover date is the closest one prior to the maturity T of long-term debt,

that is, TN ≤ T and TN+1 ≥ T .

At the terminal time T , the representative short-term creditor faces the insolvency

risk that the firm may not pay back her funding, and her value function at the terminal

time is3

U(T, x) = RT = min
{

1,
x

1 + lT

}
. (2.3)

During the last time period (TN , T ), all the creditors are locked in, so there is no rollover

risk, and the representative short-term creditor only faces the insolvency risk with the

associated recovery risk. Her value function for t ∈ (TN , T ) is

U(t, x) = Ex
t

{
1{t≤τIns<T}e

−r(τIns−t) · erS(τIns−t)RτIns

+ 1{τIns≥T}e
−r(T−t) · erS(T−t)U(T, XT )

}
, (2.4)

3The probability of the insolvency time τ Ins equal to the terminal time T is zero, so at the terminal

time T the firm only faces the insolvency stemming from the final workout of the firm’s risky project.

For this reason the recovery rate R at time T is redefined as RT = min{1, XT /(1 + lT )}.
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where the first term in the bracket captures the insolvency risk from the firm fundamental

falling below the insolvency barrier DIns
t during the time period (t, T ), and the second

term captures the insolvency risk from the final workout of the firm’s risky project at

time T .

To determine the value function at t = TN we take a closer look at the rollover

decision problem. At the rollover date TN , if the firm survives from a bank run, the rep-

resentative short-term creditor will compare the expected return from rolling over her

funding with the expected market return, and will choose whatever results in a higher

return for her. If the firm defaults due to a bank run, she will receive the recovery

value RTN
in any case, regardless of whether she decides to roll over her funding or not.

Hence, the current rollover risk at rollover date TN will not influence her rollover deci-

sion. Therefore, the value function given in equation (2.4) also describes her discounted

expected return at time t = TN for the remaining time period (TN , T ).

In general, during the time period [Tn, Tn+1) for n = 0, 1, . . . , N − 1, the represen-

tative short-term creditor is exposed not only to the insolvency risk arising from the

deterioration of the firm fundamental in the period [TN , Tn+1) but also to the rollover

risk caused by other creditors’ rollover decisions at time Tn+1. Table 2 summarizes her

payoff at maturity Tn+1.

Table 2: Representative creditor’s aggregate payoff from Tn to Tn+1

Decision Solvency in [Tn, Tn+1] Solvency in [Tn, Tn+1] Insolvency in [Tn, Tn+1]

at Tn+1 and not successful run at Tn+1 but successful run at Tn+1

Run erS(Tn+1−Tn) · 1 erS(Tn+1−Tn) ·RTn+1 erS(τIns−Tn)RτIns

Rollover erS(Tn+1−Tn) · U(Tn+1, XTn+1) erS(Tn+1−Tn) ·RTn+1 erS(τIns−Tn)RτIns
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At maturity Tn+1 if there is no default, the representative short-term creditor ei-

ther withdraws her funding to get erS(Tn+1−Tn) · 1 or renews her contract to receive

erS(Tn+1−Tn) · U(Tn+1, XTn+1). If the firm defaults due to a bank run at time Tn+1, the

creditor just gets the fraction RTn+1 of her funding erS(Tn+1−Tn) back. Since the creditor

believes that the firm survives a bank run at time Tn+1 with probability θ(XTn+1), her

discounted expected return at time t ∈ [Tn, Tn+1) over the remaining time period [t, T ]

can be described by the following value function

U(t, x) = Ex
t

{
1{t≤τIns<Tn+1}e

(rS−r)(τIns−t)RτIns + 1{τIns≥Tn+1}e
(rS−r)(Tn+1−t)·

· [θ(XTn+1)max
{
1, U(Tn+1, XTn+1)

}
+ (1− θ(XTn+1))RTn+1

]}
. (2.5)

The first term on the right hand side captures the insolvency risk within the time period

[t, Tn+1), whereas the second term captures the rollover risk at time Tn+1 as well as the

insolvency and rollover risks in [Tn+1, T ].

The dynamic programming equations (2.4) and (2.5) for the value function U(t, x) are

the key drivers to determine the bank run barrier in our model, which will be discussed

later. By the Feynman-Kac formula, we have the following partial differential equation

(PDE) representation for the value function U(t, x).

Proposition 2.1 Suppose Assumptions 2.1, 2.2, and 2.3 are satisfied. For n = 0, 1, . . . , N−

1, let Wn(t, x) be the unique solution to the following PDE Dirichlet problem on [Tn, Tn+1]×

[βlt,∞) 



∂Wn
∂t + LWn + (rS − r)Wn = 0

Wn(t, βlt) = αβlt/(1 + lt)

Wn(Tn+1, x) = θ(x)max {1,Wn+1(Tn+1, x)}

+(1− θ(x))αx/(1 + lTn+1),

(2.6)
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and for n = N , let WN (t, x) be the unique solution to the following Dirichlet problem on

[TN , T ]× [βlt,∞) 



∂WN
∂t + LWN + (rS − r)WN = 0

WN (t, βlt) = αβlt/(1 + lt)

WN (T, x) = min {1, x/(1 + lT )} ,

(2.7)

where L is the infinitesimal generator for the ratio process X given by

L =
1
2
σ2x2 ∂2

∂x2
+ (rV − rS)x

∂

∂x
.

Then the value function U(t, x) is given by concatenating Wn(t, x) together

U(t, x) = Wn(t, x) for t ∈ [Tn, Tn+1).

Based on the Green’s function technique, we further have the following analytical

representation for the value function U(t, x̄) where x̄ = x/(βlt).

Proposition 2.2 (Green’s Representation) For n = 0, 1, . . . , N , denote Pn and Φn re-

spectively as the boundary condition and the terminal condition of the corresponding PDE

for the value function U(t, x̄) on [Tn, Tn+1), where TN+1 = T for convenience. Then

U(t, x̄) =
∫ ∞

1
Pn(ξ)G(t, x̄;Tn+1, ξ)dξ +

1
2
σ2

∫ Tn+1

t
Φn(η)

∂

∂ξ

{
ξ2G(t, x̄; η, ξ)

}∣∣
ξ=1

dη

(2.8)

on [Tn, Tn+1), where G(t, x̄; η, ξ) is the Green’s function for the operator Lv defined as

Lv =
∂

∂t
+

1
2
σ2x̄2 ∂2

∂x̄2
+ (rV − rL)x̄

∂

∂x̄
+ (rS − r)

on the domain [Tn, Tn+1]× [1,∞) given by

G(t, x̄;Tn+1, ξ) =
e(rS−r)(Tn+1−t)

ξσ
√

2π(Tn+1 − t)
exp




−

[
log x̄

ξ + (rV − rL − 1
2σ2)(Tn+1 − t)

]2

2σ2(Tn+1 − t)





×
[
1− exp

{
2 log 1

ξ log x̄

σ2(Tn+1 − t)

}]
.
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Proof. See Appendix A.1.

3 Bank Run Barrier and Illiquidity Barrier

In this section, we use the value function U(t, x) in the dynamic programming equa-

tions (2.4) and (2.5) to determine the bank run barrier as well as the illiquidity barrier

for the representative short-term creditor. Our main objective is to show the monotone

relationship among the bank run barrier, the illiquidity barrier, and the exogenously

given insolvency barrier.

3.1 Discrete Tenor Structure

In this subsection, we extend the main results in Liang et al. (2012) to our general

setup. Liang et al. (2012) show that there exists a threshold, called the bank run barrier,

such that the representative short-term creditor will withdraw her funding whenever the

firm fundamental falls below this barrier at a rollover date. The bank run barrier is only

a finite sequence of numbers, since the creditor only has a finite number of rollover dates

to decide whether to run or not. In our general setting we define the bank run barrier

DRun
Tn

for any n = 0, 1, . . . , N as the critical asset value such that the representative

short-term creditor is indifferent in terms of running or rolling over her debt, i.e., it is

defined via the unique value x∗Tn
such that 1 = U(Tn, x∗Tn

) in the maximum term in

dynamic programming equation (2.5). The bank run barrier DRun
Tn

is then determined

by

DRun
Tn

= x∗Tn
STn = x∗Tn

S0e
rSTn , for n = 0, 1, . . . , N.

In the following, we show that such a bank run barrier always dominates the insol-

vency barrier. Note that the value function U(t, x) is obviously increasing with respect
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to x, and when the firm goes bankrupt due to insolvency at a rollover date Tn = τ Ins,

the value function is

U(Tn, βlTn) = RTn = αβlTn/(1 + lTn).

Due to Assumption 2.3 we have β ≤ (1/lTn + 1) so that RTn = αβlTn/(1 + lTn) ≤ 1.

Hence we have βlTn ≤ x∗Tn
since U(Tn, x∗Tn

) = 1. This means the insolvency barrier DIns
t

at any rollover date t = Tn is dominated by the bank run barrier, i.e., DIns
Tn

≤ DRun
Tn

for

n = 0, 1, . . . , N. Note that this dominance always holds in Liang et al. (2012), since the

recovery rate Rt is assumed to be zero therein.

A bank run does not necessarily trigger a default, for example in the case where the

firm can raise enough funding to pay off all its creditors. We assume that in case of a

bank run the firm has the option to issue collateralized debt by pledging its assets as

collateral. The collateral value of the assets is expressed in terms of the fire-sale price

ψVTn for ψ ∈ (0, 1), such that the funds that can be raised in this way are at most ψVTn

at rollover date Tn. If ψVTn ≥ STn + LTn the firm can raise enough funds to pay off all

its creditors, and a potential bank run at time Tn would not lead to a default. Motivated

by this observation we introduce a third barrier, which we call an illiquidity barrier and

which is denoted by DIll
t in the following. As an illiquidity default only occurs if there

is a bank run and the firm is not able to raise enough funds to pay off its creditors, the

illiquidity barrier is naturally defined as

DIll
Tn

= min
{
DRun

Tn
, (STn + LTn)/ψ

}
, for n = 0, 1, . . . , N. (3.1)

Again by Assumption 2.3 we have β ≤ (1/lt + 1) so that βltSt ≤ (St + Lt), which means

the insolvency barrier DIns
t at t = Tn is also dominated by the illiquidity barrier, i.e.,

DIns
Tn

≤ DIll
Tn

for n = 0, 1, . . . , N.

In summary, we have the following relationship among the three barriers.
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Theorem 3.1 Suppose that Assumptions 2.1, 2.2, and 2.3 are satisfied. Then at any

maturity Tn, the bank run barrier is no less than the illiquidity barrier, while the latter

is no less than the insolvency barrier, i.e.,

DIns
Tn

≤ DIll
Tn
≤ DRun

Tn
for n = 0, 1, . . . , N.

Figure 1 illustrates different scenarios in our bank run model with the discrete tenor

structure for three simulated asset value paths. Here we assume N = 4 rollover dates

at times t = 2, 4, 6, and 8. The dotted line shows the bank run barrier, the dashed line

the illiquidity barrier, and the dashed-dotted line the insolvency barrier. Note that in

this discrete setting, the bank run barrier and the illiquidity barrier are not continuous

functions. They consist only of the marked points. The middle grey asset value path

falls below the insolvency barrier shortly before t = 4. At the only rollover date prior to

this time, the asset value is larger than the bank run barrier. Hence, in this simulation

the firm would have defaulted shortly before t = 4 due to insolvency. The black path

falls below the illiquidity barrier at the third rollover date at time t = 6. It always stays

above the insolvency barrier. Thus, in this simulation the firm defaults due to illiquidity

at time t = 6. Finally, the light grey graph shows a scenario where a bank run occurs at

the last rollover date at time t = 8. At that time, however, the asset value is still larger

than the illiquidity barrier, meaning that the firm is able to raise enough funds to pay

off its creditors. Hence, the firm survives the bank run.

[Insert Figure 1 here.]

3.2 Staggered Tenor Structure

In Liang et al. (2012) it is assumed that short-term debt rollover dates are given by a

deterministic sequence of numbers and that they are the same for all short-term creditors.
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This assumption is rather restrictive. The firm is highly exposed to rollover risk in such

a setting where all short-term funding expires at the same date. In practice, however,

firms tend to spread out their debt expirations across time to reduce their exposure

to liquidity risk. In this paper, we introduce a more flexible debt maturity structure.

Among others, Leland (1994, 1998) and Leland and Toft (1996) introduced the so-called

staggered maturity structure to capture this fact. The idea is to use the arrival times

of a Poisson process to model the maturities of short-term debt. In other words, the

duration of short-term debt T1 − T0, T2 − T1, . . . has an exponential distribution. While

the random duration assumption appears different from the standard debt contract with

a predetermined maturity, it captures the staggered debt maturity structure of a typical

firm. For the application of such a Poisson maturity structure in the literature of bank

runs, we refer to the recent work by He and Xiong (2012b).

The crucial parameter under the aforementioned Poisson maturity structure frame-

work is the intensity λ. Its inverse 1/λ can be interpreted as the average duration of

short-term debt. In this section, we consider a Cox maturity structure, meaning that the

maturity of short-term debt follows a more general and flexible Cox process. Recall that

a Cox process is a generalization of Poisson processes in which the intensity is allowed to

be random but in such a way that if we condition on a particular realization λt(ω) of the

intensity, the process becomes an inhomogeneous Poisson process with intensity λt(ω).

The economic intuition of using the Cox maturity structure is that the average duration

of the short-term debt that the firm issues should depend on some time-dependent eco-

nomic factors such as the firm fundamental V , the ratio X of the firm fundamental over

the short-term debt, or even some underlying systematic risk factors from the market.

In the following we therefore assume that the average maturity is a function of the ratio

process X.
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We construct the short-term debt maturities {Tn}n≥1 by so-called canonical con-

struction. Let {En}n≥1 be a sequence of independent identically distributed (i.i.d.)

exponential random variables on some complete probability space (Ω̃, F̃ , P̃), and define

the enlarged probability space by

Ω̄ = Ω× Ω̃, Ḡ = F ⊗ F̃ , and Q = P⊗ P̃.

We assume the intensity has the form λt = g(Xt), where g : (0,∞) → (0,∞) is a smooth

function with compact support. Then the maturities of short-term debt are constructed

recursively as

T0 = 0 and Tn = inf

{
t ≥ Tn−1 :

∫ t

Tn−1

g(Xs)ds ≥ En

}
, forn ≥ 1.

The original Brownian filtration is enlarged by Gt = Ft∨Ht for t ≥ 0 with Ht = σ({T1 ≤

u} : u ≤ t). We summarize the above construction in the following assumption.

Assumption 3.1 (Cox maturity structure) The maturities of the short-term debt {Tn}n≥1

are the arrival times of a Cox process with intensity g(Xt).

Under the Cox maturity structure, we still employ the representative short-term cred-

itor’s dynamic programming equations (2.4) and (2.5) to determine her value function

U(t, x). Letting the ratio process start from Xt = x and the short-term debt maturities

start from T0 = t, we synthesize the dynamic programming equations (2.4) and (2.5) for

any t ∈ [0, T ) into the following succinct form

U(t, x) = Ex
t

{
1{t≤τIns<T}

[
1{t<T1<τIns}e

(rS−r)(T1−t) [θ(XT1)max {1, U(T1, XT1)}+ (1− θ(XT1))RT1 ]

+1{T1≥τIns}e
(rS−r)(τIns−t)RτIns

]

+ 1{τIns≥T}
[
1{t<T1<T}e(rS−r)(T1−t) [θ(XT1)max {1, U(T1, XT1)}+ (1− θ(XT1))RT1 ]

+1{T1≥T}e(rS−r)(T−t) min {1, XT /(1 + lT )}
]}

. (3.2)
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Using properties for the first arrival time (i.e., the first short-term debt maturity) T1

and the intensity g(Xt), and applying the Feynman-Kac formula, we derive the following

PDE representation for the value function U(t, x) under the Cox maturity structure.

Proposition 3.2 Suppose that Assumptions 2.1, 2.2, 2.3 and 3.1 are satisfied. Then

the value function U(t, x) satisfies the following semi-linear PDE Dirichlet problem on

[0, T ]× [βlt,∞):




∂U
∂t + LU + (rS − r − g(x))U

+g(x)[θ(x)max{1, U}+ (1− θ(x))αx/(1 + lt)] = 0

U(t, βlt) = αβlt/(1 + lt)

U(T, x) = min {1, x/(1 + lT )} .

(3.3)

Proof. See Appendix A.2.

In Appendix B, we provide a numerical algorithm to approximate the solution of the

above PDE (3.3). In the rest of this section, we show that PDE (3.3) implies a unique

threshold for the representative short-term creditor, i.e., there exists a unique bank run

barrier DRun
t such that she will run on the firm whenever both the firm’s asset value

falls below such a barrier and her contract expires at some maturity Tn. Thus, the bank

run time in our model is characterized endogenously by the following first-passage-time

τRun = inf{Tn : XTn ≤ x∗(Tn)} ∧ T,

where x∗(t) is the threshold we shall derive in the remainder of this section. Recall that

Xt = Vt/St is the ratio of the firm fundamental over the short-term debt, so the bank

run barrier DRun
t should be given as

DRun
t = x∗(t)St = x∗(t)S0e

rSt.
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We derive a free-boundary problem to determine first the threshold x∗(t) and sec-

ondly the bank run barrier DRun
t based on the semi-linear PDE (3.3).

(i) If x > x∗(t), the representative short-term creditor will keep lending her money to

the firm because either the debt is not due yet or if the debt is due she decides to

roll over her funding. Her value function U(t, x) > 1, and (3.3) reduces to

∂U

∂t
+LU + (rS − r− g(x))U + g(x)θ(x)U + g(x)(1− θ(x))αx/(1 + lt) = 0. (3.4)

The third term in the above equation represents the creditor’s premium of the

return, the fourth term represents the expected effect of the rollover risk if the

creditor rolls over her funding, and last term represents the expected effect of

recovery risk associated with a potential bank run.

(ii) If x < x∗(t), the representative short-term creditor will run on the firm if the debt

is due. Her value function U(t, x) < 1, and (3.3) reduces to

∂U

∂t
+ LU + (rS − r − g(x))U + g(x)θ(x) + g(x)(1− θ(x))αx/(1 + lt) = 0. (3.5)

While the third term and the last term in (3.5) have the same meanings as those

in (3.4), the fourth term captures the expected effect of rollover risk from the

representative short-term creditor’s own run.

(iii) Finally, by the continuity of U(t, x), the creditor’s value function U(t, x) at the

threshold x∗(t) should be equal to 1, and the following smooth-pasting condition

should be satisfied

Ux+0(t, x∗(t)) = Ux−0(t, x∗(t)).

In summary, we obtain the following two-phase free-boundary problem to determine

the threshold (i.e., the bank run barrier) of the representative short-term creditor.
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Proposition 3.3 Suppose that Assumptions 2.1, 2.2, 2.3, and 3.1 are satisfied. Then

the bank run barrier DRun
t is given by

DRun
t = x∗(t)S0e

rSt,

where x∗(t) is the free-boundary of the following two-phase free-boundary problem




∂U
∂t + LU + (rS − r − g(x))U + g(x)θ(x)U + g(x)(1− θ(x))αx/(1 + lt) = 0, for x > x∗(t),

U(t, x) > 1, for x > x∗(t),

U(t, x) = 1, for x = x∗(t),

Ux(t, x) is continuous, for x = x∗(t),

∂U
∂t + LU + (rS − r − g(x))U + g(x)θ(x) + g(x)(1− θ(x))αx/(1 + lt) = 0, for βlt < x < x∗(t),

U(t, x) < 1, for βlt < x < x∗(t),

U(t, x) = αβlt/(1 + lt), for x = βlt,

U(T, x) = min{1, x/(1 + lT )}.
(3.6)

Proof. We only need to prove the smooth-pasting condition, which is straightforward

since PDE (3.3) admits a unique classical solution.

Similar to the case of the discrete tenor structure as in section 3.1, a bank run does

not necessarily trigger the firm’s default. Bank runs are not successful if the firm can

raise enough funding to pay off all its creditors, i.e., if the fire-sale price of the firm’s

asset satisfies ψVTn ≥ STn + LTn . Therefore, we define the firm’s illiquidity barrier as

DIll
t = min

{
DRun

t , (St + Lt)/ψ
}

for t ∈ [0, T ),
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and we have a similar relationship among the barriers as in the case of the discrete tensor

structure.

Theorem 3.4 Suppose that Assumptions 2.1, 2.2, 2.3, and 3.1 are satisfied. Then at

any time t ∈ [0, T ), the bank run barrier is greater than or equal to the illiquidity barrier,

while the latter is greater than or equal to the insolvency barrier

DIns
t ≤ DIll

t ≤ DRun
t for t ∈ [0, T ).

The above relationship gives us the following four possible scenarios at any rollover

date Tn.

(i) VTn ≤ DIns
Tn

: Default due to insolvency;

(ii) DIns
Tn

< VTn ≤ DIll
Tn

: Bank run occurs and triggers a default due to illiquidity;

(iii) DIll
Tn

< VTn ≤ DRun
Tn

: Bank run occurs, but not a successful run;

(iv) DRun
Tn

< VTn: The creditor rolls over to the next maturity Tn+1.

Proof. The proof is essentially the same as the proof for Theorem 3.1, so we omit

it.

Figure 2 illustrates different scenarios in our bank run model with a staggered tenor

structure for three simulated asset value paths. Here the intensity of the Cox process is

chosen to be g(x) = 0.4. The dotted line shows the bank run barrier, the dashed line

the illiquidity barrier and the dashed-dotted line the insolvency barrier, all of which are

continuous functions in this model setting. The marked times T1, T2, and T3 are the

arrival times of the Cox process, which are smaller than the final date T = 10. At these

times the representative short-term creditor can decide whether or not to roll over her

funding. At the first rollover date T1 all three asset value paths are above the bank run
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barrier. Hence, the creditor decides to roll over her contract. The middle grey asset value

path falls below the insolvency barrier shortly before the second rollover date T2. Hence,

the firm will default at that time point, and the creditor is left with the corresponding

recovery value. At the second rollover date T2, the light grey asset value path falls below

the bank run barrier but is still above the illiquidity barrier. This means that a bank

run occurs at that date, but the firm is able to pay off its creditors and survives. The

black asset value path is above the bank run barrier at T2. At the last rollover date T3

the middle grey and the black asset value paths are below the illiquidity barrier, which

means that a bank run occurs and the firm is not able to pay off all its creditors, such

that the bank run actually triggers an illiquidity default and the creditor receives the

corresponding recovery value. Note that all three paths fall below the bank run and the

illiquidity barriers already much earlier in time. However, as these times are not rollover

dates for the representative short-term creditor, she cannot withdraw her funding at

those dates.

The figure also illustrates the relation between different barriers, which has been

theoretically proved in Theorem 3.4; the bank run barrier is always greater than or

equal to the illiquidity barrier, which in turn is always greater than or equal to the

insolvency barrier.

[Insert Figure 2 here.]

Table 3 shows the frequency of illiquidity defaults, insolvency defaults, and survival

scenarios out of 10 000 asset value simulations in case of the staggered tenor structure

model for different initial asset values V0. The parameters used are the same as for

Figure 2. The second row provides the number of simulations leading to an illiquidity

default, whereas the fourth row gives the number of insolvency default simulations where

the initial asset value varies from 10 to 22. Moreover, the table states the number of
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simulations where the firm survives, which are distinguished between the situation where

a bank run occurs but does not trigger an illiquidity default (3rd row) and those scenarios

where the firm’s asset value always stays above the bank run barrier (5th row). The

results show that the number of illiquidity defaults and the total number of bank runs

decrease in initial asset value as one would expect. Analogously, insolvency defaults

become less likely with increasing V0. Hence, the firm is more likely to survive with

higher initial asset value V0.

Table 3: Simulations of different scenarios in the staggered tenor structure model

Of a total number of 10 000 simulations and for different initial asset values V0, the table provides

the number of simulations leading to an illiquidity default (2nd row) or to an insolvency default

(4th row) as well as the number of simulations where the firm survives, which are distinguished

between the situation where a bank run occurred but did not trigger an illiquidity default (3rd

row) and the scenarios where the firm’s asset value always stayed above the bank run barrier

(5th row). Parameters are the same as in Figure 2.

XXXXXXXXXXXXXXXXXXX

Illiquidity, Run
and Insolvency

Inital Assets (V0)
10 12 14 16 18 20 22

Illiquidity 5456 5126 4693 4491 4149 3757 3612

Run 2641 2387 2266 2021 1934 1793 1694

Insolvency 298 256 238 204 176 159 133

None of them 1605 2231 2803 3284 3741 4291 4561

4 Optimal Stochastic Control Formulation

In this section we are concerned with whether the representative short-term creditor’s

decision is optimal. Intuitively, since the creditor’s decision follows the DPP, her decision
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should be optimal. The question then is, what is the corresponding optimal stochastic

control problem? To answer this question we first investigate the case of the discrete

tenor structure and then discuss the staggered debt structure.

4.1 Optimal Stopping Time with Control Constraints

Let us first consider the case of the discrete tenor structure, i.e., short-term debt

maturities {Tn}n≥1 are a sequence of deterministic numbers. Recall that at each rollover

date Tn, the creditor believes that there is a probability (1− θ(XTn)) that the firm may

default due to a successful bank run. Let T∗ denote the time that the firm defaults due

to a bank run. Hence, T∗ is a random time taking value in {Tn}n≥1.

Let τ ∈ {Tn}n≥1\T∗ be the time at which the representative short-term creditor

decides to withdraw her funding and to run on the firm. This is an Ft-stopping time.

We first consider the case {τ Ins < T}, i.e., the firm fails due to insolvency before its

project expires. If τ < T∗ ∧ τ Ins, the creditor withdraws her funding before a successful

bank run or an insolvency happens. In this case she will obtain the payoff

1{τ<T∗∧τIns}e
rSτ .

If T∗ < τ ∧ τ Ins, the firm fails due to a successful bank run before the creditor decides to

withdraw her money and before an insolvency happens. Hence, the creditor will obtain

the payoff

1{T∗<τ∧τIns}e
rST∗RT∗ .

Finally, if τ Ins ≤ T∗∧ τ , the firm defaults due to insolvency before a successful bank run

takes place and before the creditor decides to withdraw her funding. Then, the creditor

will obtain the payoff

1{τIns≤T∗∧τ}e
rSτIns

RτIns .
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On the other hand, on the event {τ Ins ≥ T}, i.e., no insolvency happens before the

project ends, the creditor will obtain the payoff

1{τ<T∗∧T}erSτ + 1{T∗<τ∧T}erST∗RT∗ + 1{T≤T∗∧τ}erST min{1, XT /(1 + lT )}.

Table 4 summarizes the aggregate payoff of the representative creditor.

Table 4: Representative creditor’s aggregate payoff

Insolvency time τ Ins Decision time τ Payoff

τ Ins < T τ < T∗ ∧ τ Ins erSτ · 1
T∗ < τ ∧ τ Ins erST∗ ·RT∗

τ Ins ≤ T∗ ∧ τ erSτIns ·RτIns

τ Ins ≥ T τ < T∗ ∧ τ Ins erSτ · 1
T∗ < τ ∧ T erST∗ ·RT∗

T ≤ T∗ ∧ τ erST ·min{1, XT /(1 + lT )}

For any 0 ≤ t ≤ t̂ ≤ T , we define the aggregate discounted payoff from time t to t̂

as4

At,t̂ = 1{t<τ<T∗∧t̂}e
(rS−r)(τ−t) + 1{t<T∗<τ∧t̂}e

(rS−r)(T∗−t)RT∗ + 1{t<t̂≤T∗∧τ}e
(rS−r)(t̂−t)Rt̂.

The creditor will choose an optimal Ft-stopping time to maximize her expected payoff

sup
τ∈{Tn}n≥1\T∗

Ex
0

{
1{τIns<T} · A0,τIns + 1{τIns≥T} · A0,T

}
. (4.1)

We have the following theorem that shows the creditor’s value function U(t, x) defined

by the dynamic programming equations (2.4) and (2.5) is indeed optimal.

4Recall that RT = min{1, XT /(1 + lT )} as defined in (2.3).
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Theorem 4.1 The value of the optimal stopping time problem (4.1) is given by the value

function U(0, x) in the dynamic programming equation (2.5). The optimal stopping time

is given by the earliest maturity date at which the firm fundamental falls below the bank

run barrier determined in section 3.1, i.e.,

τRun = inf{Tn : VTn ≤ DRun
Tn

, n = 0, 1, . . . , N} ∧ T.

Proof. See Appendix A.3.

Next we consider the case of the staggered tenor structure, i.e., the maturities

{Tn}n≥1 are the arrival times of a Cox process with intensity g(Xt). Similar to the

discrete tenor structure, we define T∗ as the default time due to a successful bank run.

Since T∗ is chosen among the Cox arrival times {Tn}n≥1 with probability (1− θ(XTn)),

it is well known that T∗ is the first arrival time of another Cox process with intensity

g(Xt)(1− θ(Xt)). Let τ ∈ {Tn}n≥1\T∗ again denote the rollover date at which the rep-

resentative short-term creditor decides to withdraw her funding and to run on the firm.

This is a Gt = Ft ∨ Ht-stopping time under the staggered tenor structure, i.e., τ must

be chosen from the arrival times of the Cox process.

The representative short-term creditor will choose an optimal Gt-stopping time to

maximize her expected payoff

sup
τ∈{Tn}n≥1\T∗

Ex
0

{
1{τIns<T} · A0,τIns + 1{τIns≥T} · A0,T

}
. (4.2)

In contrast to the previous section on the discrete tenor structure, the optimal stopping

time problem (4.2) can now only be stopped at the Cox random times {Tn}n≥1\T∗.

Hence, knowing only the Brownian filtration {Ft} is certainly not enough to decide

when to stop; one has to know the additional filtration Ht from the Cox process in order

to determine when to stop. Similar to the case of the discrete tenor structure, we can
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show that the solution to this optimal stopping time problem is given by the dynamic

programming equation (3.2).

Theorem 4.2 The value of the optimal stopping time problem (4.2) is given by the value

function U(0, x) in the dynamic programming equation (3.2). The optimal stopping time

is given by the earliest maturity date such that the firm fundamental falling below the

bank run barrier in Proposition 3.3:

τRun = inf{Tn : VTn ≤ DRun
Tn

} ∧ T.

Proof. See Appendix A.4.

4.2 Comparison of the Discrete and the Staggered Tenor Structures

This section compares different debt tenor structures, i.e., the discrete and the stag-

gered tenor structures. A natural question to ask is, what will happen with the discrete

tenor structure when the number of rollover dates increases to infinity, meaning that

creditors can decide to roll over or to withdraw their funding at any time t ∈ [0, T ]?

Intuitively, one would expect that with increasing rollover frequency, one should ap-

proximate the staggered tenor structure model. However, there is another important

difference between the two debt tenor structures. In the case of the discrete tenor struc-

ture we implicitly assume that all creditors have the same rollover dates, whereas in the

staggered tenor structure model at each rollover date, corresponding to a Cox arrival

time, only a fraction of total debt is due. Different short-term creditors hence have

different rollover dates in that situation.

In the following, we will first study the impact of the intensity λt = g(Xt) of the Cox

process on the creditor’s value function. We assume the function g(Xt) to be constant

and thus independent of the ratio process Xt. The intensity of the Cox process not
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only specifies the creditor’s rollover dates but also affects the average duration of short-

term debt. For g(Xt) ≡ g ∈ R+ the average duration of debt is equal to 1/g, and in an

infinitesimal time interval [t, t+dt] a fraction gdt of debt is maturing. The larger g that is

chosen, the more debt is maturing at the same rollover date and the larger is the rollover

frequency of short-term debt. Therefore, for large enough g the staggered tenor structure

model and the discrete tenor structure model should result in approximately the same

value function U(t, x) for the short-term debt. This result is empirically validated in

Figure 3. The number of rollover dates in the discrete tenor structure model is fixed at

N = 1000, and the intensity of the Cox process in the staggered tenor structure model

varies from g = 0.2 to g = 200.

[Insert Figure 3 here.]

In section 3.1, we derived the bank run barrier for the discrete tenor structure by

determining the threshold ratio x∗ such that U(t, x∗(t)) = 1, i.e., the creditor is in-

different on whether to roll over or to withdraw her funding. Similarly in Proposition

3.3, we derived the bank run barrier for the staggered tenor structure by solving the

free-boundary problem (3.6). Next, we will investigate in Figure 4 the impact of the

Cox intensity g and the rollover frequency N on the bank run barrier. The graphs show

that the discrete tenor structure model with high rollover frequency N approximates the

staggered tenor structure model with large intensity g(x).

[Insert Figure 4 here.]

5 The Survival Probability of Bank Runs

In our benchmark model, the survival probability of bank runs θ(XTn) = min{1, ψXTn}

at each maturity date Tn is given exogenously based on the assumption that each short-
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term creditor believes that the proportion of short-term creditors not rolling over their

funding is uniformly distributed on the interval [0, 1]. This is also the crucial assumption

in the bank run models of Morris and Shin (2010) and Liang et al. (2012). The merit of

this assumption is that the system is then an open loop.

Recall that in this open loop system, the bank run barrier is given by DRun
Tn

= x∗Tn
STn ,

where x∗Tn
is determined by letting the value function U(Tn, x∗Tn

) in Proposition 2.1 be

equal to 1. The illiquidity barrier is then given by DIll
Tn

= min{DRun
Tn

, (STn + LTn)/ψ}.

Both of the barriers depend on the survival probability of bank runs θ(XTn) but not vice

versa. Algorithm 5.1 illustrates how the bank run barrier and the illiquidity barrier are

determined in this bank run model.

Algorithm 5.1: Computation of bank run and illiquidity barrier.
Inputs: fire-sale rate ψ, safety covenant parameter β, bankruptcy cost parameter α,

short-term rate rS , long-term rate rL, expected return rate rV , firm volatility σ,

and market interest rate r

for n = N, . . . , 1 do
1) Set survival probability of bank runs equal to θ(XTn) = min{1, ψXTn}.
2) Calculate value function U(Tn, XTn) by PDEs (2.6) and (2.7).

3) Determine bank run barrier DRun
Tn

= x∗Tn
STn by condition U(Tn, x∗Tn

) = 1.

4) Compute illiquidity barrier DIll
Tn

as DIll
Tn

= min{DRun
Tn

, (STn
+ LTn

)/ψ}.

The likelihood θ(XTn), which the representative creditor assigns to the firm’s survival

probability of bank runs, is determined solely from the current ratio of asset value over

short-term debt XTn . Since the representative creditor determines at each rollover date

a threshold value at which she decides to withdraw her money, it seems natural to

investigate whether there is a feedback effect from this illiquidity barrier on the survival

probability θ of bank runs. In the following we discuss how the representative short-
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term creditor can update her beliefs about the survival probability of bank runs θ(XTn)

based on the derived illiquidity barrier DIll
Tn

at each rollover date, i.e., we investigate the

feedback effect between the survival probability of bank runs and both the bank run

barrier and the illiquidity barrier. The system then becomes a closed loop and allows to

endogenously determine the time τ Ill = T∗ of a successful bank run.

We only discuss the discrete tenor structure; the staggered tenor structure can be

analyzed in the same spirit, but it involves additional technical difficulties. We drop the

uniform distribution assumption on the proportion of short-term creditors not rolling

over their debt, and assume that the survival probability of bank runs is a function of

time t and ratio Xt, i.e., θ(·, ·) : [0, T ]× (0,∞) → [0, 1], which is to be determined. The

corresponding illiquidity barrier and the bank run barrier are denoted by D̄Ill
Tn

and D̄Run
Tn

,

respectively.

We again proceed backwards to determine the survival probability of bank runs.

First, we define the ratio of the illiquidity barrier over the short-term debt as

x̄Ill
Tn

= D̄Ill
Tn

/STn = min{x̄∗Tn
, (1 + lTn)/ψ}, for n = 0, 1, . . . , N.

where x̄∗Tn
= D̄Run

Tn
/STn . Since there is no rollover risk in the last time period [TN , T ),

the ratio of the illiquidity barrier over short-term debt at the last rollover date TN is

independent of the survival probability of bank runs, and should be the same as the one

in the open loop system

x̄Ill
TN

= min{x̄∗TN
, (1 + lTN

)/ψ} = min{x∗TN
, (1 + lTN

)/ψ},

where x∗TN
is calculated as the solution of PDE (2.7). The survival probability of bank

runs at time TN is then given by

θ(TN , x) = Ex
TN

{
1{XTN

≥x̄Ill
TN
}
}

= 1{x≥x̄Ill
TN
}.
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Based on the above updated survival probability of bank runs, we calculate the ratio of

the illiquidity barrier over short-term debt at the last but one rollover date TN−1 as

x̄Ill
TN−1

= min{x̄∗TN−1
, (1 + lTN−1

)/ψ},

where x̄∗TN−1
is calculated as the solution of PDE (2.6) but with the updated survival

probability of bank runs θ(TN , x) in the terminal condition. The survival probability of

bank runs at the last but one rollover date TN−1 is then given by

θ(TN−1, x) = Ex
TN−1

{
1{XTN−1

≥x̄Ill
TN−1

}

}
= 1{XTN−1

≥x̄Ill
TN−1

}.

In general, the survival probability of bank runs and the illiquidity barrier are computed

backwards recursively for n = 0, 1, . . . , N − 1, according to the following procedure.

(i) Compute the ratio of the illiquidity barrier over short-term debt

x̄Ill
Tn

= min{x̄∗Tn
, (1 + lTn)/ψ},

where x̄∗Tn
is calculated as the solution of PDE (2.6) with the survival probability

of bank runs θ(Tn+1, x) at time Tn+1.

(ii) Compute the survival probability of bank runs as

θ(Tn, x) = 1{x≥x̄Ill
Tn
}.

Algorithm 5.2 demonstrates the mechanism of our bank run model incorporating the

feedback effect on the creditor’s beliefs about the survival probability of bank runs.
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Algorithm 5.2: Computation of endogenous illiquidity barrier.
Inputs: fire-sale rate ψ, safety covenant parameter β, bankruptcy cost parameter α,

short-term rate rS , long-term rate rL, expected return rate rV , firm volatility σ,

and market interest rate r

Calculate value function U(TN , x) by PDE (2.7).

Determine illiquidity barrier x̄Ill
TN

= min{x̄∗TN
, (1 + lTN

)/ψ} where U(TN , x̄∗TN
) = 1.

Compute survival probability of bank runs θ(TN , x) = 1{x≥x̄Ill
TN
}.

for n = N − 1, . . . , 1 do
1) Calculate value function U(Tn, x) by PDE (2.6) with θ(Tn+1, x).

2) Determine illiquidity barrier x̄Ill
Tn

= min{x̄∗Tn
, (1 + lTn

)/ψ} where U(Tn, x̄∗Tn
) = 1

3) Compute survival probability of bank runs

θ(Tn, x) = 1{x≥x̄Ill
Tn
}.

6 Discussion and Conclusion

In this paper, we provide a rigorous formulation for a class of structural credit risk

models that take into account not only insolvency risk but also illiquidity risk due to

possible bank runs. We show that there exists a unique threshold strategy, i.e., a bank

run barrier for short-term creditors to decide when to withdraw their funding. This

allows us to decompose the total credit risk into an illiquidity component based on

the endogenous bank run barrier and an insolvency component based on the exogenous

insolvency barrier. Our approach is based on the DDP and represents a dynamic bank

run model that incorporates both discrete and staggered tenor structures for short-term

debt. In this aspect, our paper is closely related to the existing dynamic bank run models

of He and Xiong (2012b), Morris and Shin (2010), Liang et al. (2012), and Cheng and
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Milbradt (2012). The main characteristics of these models are summarized in Table 5

and are further discussed in the following.

Table 5: Comparisons of dynamic bank run models

He&Xiong Morris&Shin Liang et al Cheng&Milbradt Current paper

Time horizon infinite two periods finite infinite finite

Tenor structure Poisson No discrete Poisson discrete/Cox

Decision makers creditors creditors creditors creditors/equity holders creditors/equity holders

Dynamics DPP No DPP DPP DPP/optimal stopping time

Beliefs endogenous exogenous exogenous endogenous exogenous/endogenous

Equilibrium general partial partial general partial/general

In dynamic bank run models, one crucial assumption is the maturity structure of

short-term debt. Both He and Xiong (2012b) and Cheng and Milbradt (2012) utilize the

Poisson random maturity assumption to capture the staggered tenor structure, whereas

Liang et al. (2012) assume a sequence of deterministic rollover dates generalizing the

two-period model of Morris and Shin (2010). In this paper, we consider both discrete

and staggered tenor structures. Moreover, we show that the two tenor structures con-

verge to each other when the rollover frequency goes to infinity.

The default mechanism in dynamic bank run models is mainly triggered by creditors’

runs as shown in He and Xiong (2012b), Morris and Shin (2010), and Liang et al. (2012).

This is different from traditional structural credit risk models where the default mech-

anism is usually triggered by equity holders as they either exogenously set a default

barrier or endogenously determine an optimal default barrier5. Cheng and Milbradt

(2012) consider decision problems of both creditors and equity holders in the dynamic
5Structural credit risk models with an exogenous default barrier are also dubbed first-passage-time
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bank run setting. In this paper, we consider that the equity holders exogenously set the

insolvency barrier, while the creditors endogenously determine the bank run barrier and

the illiquidity barrier. Most of dynamic bank run models are based on the DPP. In this

paper, we further prove that the DPP is in fact derived from an optimal stopping time

problem with control constraints.

Last but not least, the representative creditor’s beliefs about other creditors’ behav-

ior also characterizes a dynamic bank run model. In Morris and Shin (2010) and Liang

et al. (2012) such beliefs are modeled exogenously and therefore lead to a partial equilib-

rium. In this paper, besides such exogenous beliefs, we also consider the feedback effect

of the bank run barrier on the representative creditor’s beliefs about other creditors’

behavior. In this aspect, our model represents a general equilibrium model in the same

spirit as He and Xiong (2012b) and Cheng and Milbradt (2012).

Appendix

A Proofs

A.1 Proof of Proposition 2.2

The proof is essentially the same as Lemma 3.2 and 3.3 in Liang and Jiang (2012),

so we only sketch it.

models as in Black and Cox (1976), Longstaff and Schwartz (1995), and Briys and de Varenne (1997),

among others. If the default barrier is determined endogenously by equity holders, the models are also

referred as optimal capital structure models, which were initiated by Leland (1994, 1998) and Leland

and Toft (1996), followed by Hilberink and Rogers (2002) and Chen and Kou (2009), among others.
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First, note that under the new coordinate x̄ = x/(βlt), the PDEs (2.6) and (2.7)

become LvWn = 0 on a regular domain [Tn, Tn+1] × [1,∞). The Green’s function

G(t, x̄;Tn+1, ξ) for the operator Lv on [Tn, Tn+1]× [1,∞) is the solution to the following

PDE problem 



LvG(t, x̄;Tn+1, ξ) = 0

G|x̄=1 = 0

G|t=Tn+1 = δ(x̄− ξ).

(A.1)

By making the transformation y = log(x̄/ξ), τ = Tn+1 − t, and

G(τ, y;Tn+1, ξ)

= exp

{[
rS − r − 1

2σ2

(
rV − rL − σ2

2

)2
]

τ − 1
σ2

(
rV − rL − σ2

2

)
y

}
H(τ, y;Tn+1, ξ),

it is easy to verify that H(τ, y;Tn+1, ξ) satisfies a heat equation on the half plane. Its

solution can be easily obtained by the standard image method.

Next, given the Green’s function G(τ, y;Tn+1, ξ), we derive the solution to LvWn = 0

on the domain [Tn, Tn+1] × [1,∞) with the boundary and terminal data Pn and Qn by

applying integration by parts. Consider the adjoint problem of (A.1) on [t, Tn+1]× [1,∞)




L̂vĜ(η, ξ; t, x̄) = 0

Ĝ|ξ=1 = 0

Ĝ|η=t = δ(ξ − x̄),

(A.2)

where L̂v is the adjoint operator of Lv

L̂v = − ∂

∂η
+

1
2
σ2 ∂2

∂ξ2
ξ2 − (rV − rL)

∂

∂ξ
ξ + (rS − r).

Since Wn(η, ξ) satisfies LvWn = 0 and Ĝ(η, ξ; t, x̄) satisfies the adjoint equation L̂vĜ(η, ξ; t, x̄) =

0, applying integration by parts to the integral

∫ ∞

1
dξ

∫ Tn+1−ε

t+ε
[Ĝ(η, ξ; t, x̄)LvWn(η, ξ)−Wn(η, ξ)L̂vĜ(η, ξ; t, x̄)]dη,
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and using the boundary and terminal data Pn and Qn for Wn(η, ξ) will give us the

Green’s representation formula (2.8).

A.2 Proof of Proposition 3.2

We have the following properties for the first arrival time (i.e., the first short-term

debt maturity) T1 and the intensity g(Xt), the proof of which can be found for example

in Bielecki and Rutkowski (2002).

Lemma A.1 The process Γ defined by Γt =
∫ t
0 g(Xs)ds for t ≥ 0 is an Ft-hazard process

associated with T1, that is,

Γt = − log Q(T1 > t|Ft) = − log Q(T1 > t|F∞).

Moreover, for any Ft-adapted process Yt and Ft-stopping time τ , on the event {T1 > t},

E[1{T1≥τ}Yτ |Ft] = E
[
Yτe

− ∫ τ
t g(Xs)ds|Ft

]
. (A.3)

E
[
1{t<T1<τ}YT1 |Ft

]
= E

[∫ τ

t
Yse

− ∫ s
t g(Xu)dug(Xs)ds | Ft

]
. (A.4)

In the following, we employ the distribution of T1 given by Lemma A.1 to calculate

(3.2). For the first and the third terms, by using (A.4), we obtain

Ex
t

{
1{t<T1<τIns∧T}e

(rS−r)(T1−t) [θ(XT1)max {1, U(T1, XT1)}+ (1− θ(XT1))RT1 ]
}

= Ex
t

{∫ τIns∧T

t
e
∫ s

t (rS−r−g(Xu))dug(Xs)

× [θ(Xs)max{1, U(s,Xs)}+ (1− θ(Xs))αXs/(1 + ls)] ds} .

For the second term, based on (A.3), we obtain

Ex
t

{
1{T1≥τIns,t≤τIns<T}e

(rS−r)(τIns−t)RτIns

}

= Ex
t

{
1{t≤τIns<T}e

∫ τIns

t (rS−r−g(Xu))duαβlτIns/(1 + lτIns)
}

.
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For the last term, by employing (A.3) again, we obtain

Ex
t

{
1{T1≥T,τIns≥T}e

(rS−r)(T−t) min {1, XT /(1 + lT )}
}

= Ex
t

{
1{τIns≥T}e

∫ T
t (rS−r−g(Xu))du min {1, XT /(1 + lT )}

}
.

By combing the above three equalities, we finally derive

U(t, x) = Ex
t

{∫ τIns∧T

t
e
∫ s

t (rS−r−g(Xu))dug(Xs)

× [θ(Xs)max{1, U(s,Xs)}+ (1− θ(Xs))αXs/(1 + ls)] ds.

+ 1{t≤τIns<T}e
∫ τIns

t (rS−r−g(Xu))duαβlτIns/(1 + lτIns)

+ 1{τIns≥T}e
∫ T

t (rS−r−g(Xu))du min {1, XT /(1 + lT )}
}

.

Then similar to Proposition 2.1, the Feynman-Kac formula gives us the PDE repre-

sentation for the value function U(t, x) under the Cox maturity structure as provided in

Proposition 3.2.

A.3 Proof of Theorem 4.1

For n = 0, 1, . . . , N , we consider a sequence of optimal stopping time problems

V (Tn, x) = sup
τ∈{Tn+1,Tn+2,...}\T∗

Ex
Tn

{
1{Tn≤τIns<T} · ATn,τIns + 1{τIns≥T} · ATn,T

}
,

where τ is an Ft-stopping time taking value in {Tn+1, Tn+2, . . .}\T∗. Then the value of

the optimal stopping time problem (4.1) is given by V (0, x), and we want to show that

V (0, x) = U(0, x).

Obviously we have V (TN , x) = U(TN , x), since there is no optimization problem

involved in V (TN , x) which is

V (TN , x) = Ex
TN

{
1{TN≤τIns<T}e

(rS−r)(τIns−TN )RτIns + 1{τIns≥T}e
(rS−r)(T−TN )RT

}
.
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The idea is to introduce a sequence of auxiliary optimal stopping time problems whose

optimal stopping times are also permitted to stop at the initial time Tn.

V̂ (Tn, x) = sup
τ∈{Tn,Tn+1,...}\T∗

Ex
Tn

{
1{Tn≤τIns<T} · ATn,τIns + 1{τIns≥T} · ATn,T

}
.

We have the following relationship between V̂ and V

V̂ (Tn, x) = θ(x)max{1, V (Tn, x)}+ (1− θ(x))RTn , for n = 0, 1, . . . , N. (A.5)

For n = 0, 1, . . . , N − 1, by taking conditional expectation on FTn+1 in V (Tn, x), we

obtain

V (Tn, x) = sup
τ

Ex
Tn





E


1{Tn≤τIns<T} · ATn,τIns + 1{τIns≥T} · ATn,T︸ ︷︷ ︸

≡I

|FTn+1








= sup
τ

Ex
Tn

{
E

[(
1{Tn≤τIns<Tn+1} + 1{τIns≥Tn+1}

)
× I|FTn+1

]}

= sup
τ

Ex
Tn

{
1{Tn≤τIns<Tn+1}e

(rS−r)(τIns−Tn)RτIns

+ 1{τIns≥Tn+1}e
(rS−r)(Tn+1−Tn)E

[
1{Tn+1≤τIns<T} · ATn+1,τIns + 1{τIns≥T} · ATn+1,T |FTn+1

]}

= sup
τ

Ex
Tn

{
1{Tn≤τIns<Tn+1}e

(rS−r)(τIns−Tn)RτIns

+ 1{τIns≥Tn+1}e
(rS−r)(Tn+1−Tn)E

XTn+1

Tn+1

[
1{Tn+1≤τIns<T} · ATn+1,τIns + 1{τIns≥T} · ATn+1,T

]}
,

where we used the Markovian property for X in the last equality. Note that the first

term in the bracket does not involve the stopping time τ , so the supremum over τ only

takes action on the second term and V (Tn, x) is equal to

Ex
Tn

{
1{Tn≤τIns<Tn+1}e

(rS−r)(τIns−Tn)RτIns + 1{τIns≥Tn+1}e
(rS−r)(Tn+1−Tn)

× sup
τ∈{Tn+1,Tn+2,...}\T∗

E
XTn+1

Tn+1

[
1{Tn+1≤τIns<T} · ATn+1,τIns + 1{τIns≥T} · ATn+1,T

]}
,

which, according to the definition of V̂ , is

Ex
Tn

{
1{Tn≤τIns<Tn+1}e

(rS−r)(τIns−Tn)RτIns + 1{τIns≥Tn+1}e
(rS−r)(Tn+1−Tn)V̂ (Tn+1, XTn+1)

}
.

42



By the relationship (A.5), we obtain the recursive formulation for V (Tn, x):

V (Tn, x) = Ex
Tn

{
1{Tn≤τIns<Tn+1}e

(rS−r)(τIns−Tn)RτIns

+ 1{τIns≥Tn+1}e
(rS−r)(Tn+1−t)

[
θ(XTn+1)max{1, V (Tn+1, XTn+1)}+ (1− θ(XTn+1))RTn+1

]}
.

This is just the dynamic programming equation for U(t, x) in (2.5). Since we already

proved V (TN , x) = U(TN , x), by proceeding backwards we obtain V (0, x) = U(0, x).

A.4 Proof of Theorem 4.2

The proof is essentially the same as the proof for Theorem 4.1. For any t ≥ 0, by

letting X start from Xt = x and {Tn}n≥0 start from T0 = t, we consider a family of

optimal stopping problems

V (t, x) = sup
τ∈{Tn}n≥1\T∗

Ex
t

{
1{t≤τIns<T} · At,τIns + 1{τIns≥T} · At,T

}
,

where τ is a Gt-stopping time taking value in {Tn}n≥1\T∗. Therefore, τ is not allowed

to stop at the starting time t. The value of the optimal stopping time problem (4.2) is

given by V (0, x), and we want to prove that V (0, x) = U(0, x).

Similarly to the case of the discrete tenor structure, we introduce a family of auxiliary

optimal stopping time problems where the optimal stopping times are also allowed to

stop at the starting time t

V̂ (t, x) = sup
τ∈{Tn}n≥0\T∗

Ex
t

{
1{t≤τIns<T} · At,τIns + 1{τIns≥T} · At,T

}
.

We have the following relationship between V̂ and V

V̂ (t, x) = θ(x)max{1, V (t, x)}+ (1− θ(x))Rt for t ∈ [0, T ). (A.6)
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Taking expectations conditional on FT1 in V (t, x) and using the strong Markov property

for X, we obtain for any t ∈ [0, T )

V (t, x) = sup
τ

Ex
t

{
E

[
(1{t<T1<τIns} + 1{T1≥τIns})1{t≤τIns<T} · At,τIns

+ (1{t<T1<T} + 1{T1≥T})1{τIns≥T} · At,T |FT1

]}

=sup
τ

Ex
t

{
E

[
1{t≤τIns<T}1{t<T1<τIns}At,τIns |FT1

]
+ 1{t≤τIns<T}1{T1≥τIns}e

(rS−r)(τIns−t)RτIns

+ E
[
1{τIns≥T}1{t<T1<T}At,T |FT1

]
+ 1{τIns≥T}1{T1≥T}e(rS−r)(T−t)RT

}

=sup
τ

Ex
t

{
1{t<T1<τIns∧T}e

(rS−r)(T1−t)E
[
1{T1≤τIns<T}AT1,τIns + 1{τIns≥T}AT1,T |FT1

]

+ 1{t≤τIns<T}1{T1≥τIns}e
(rS−r)(τIns−t)RτIns + 1{τIns≥T}1{T1≥T}e(rS−r)(T−t)RT

}

=sup
τ

Ex
t

{
1{t<T1<τIns∧T}e

(rS−r)(T1−t)E
XT1
T1

[
1{T1≤τIns<T}AT1,τIns + 1{τIns≥T}AT1,T

]

+ 1{t≤τIns<T}1{T1≥τIns}e
(rS−r)(τIns−t)RτIns + 1{τIns≥T}1{T1≥T}e(rS−r)(T−t)RT

}
,

which by the definition of V̂ is equal to

Ex
t

{
1{t<T1<τIns∧T}e

(rS−r)(T1−t)V̂ (T1, XT1)

+ 1{t≤τIns<T}1{T1≥τIns}e
(rS−r)(τIns−t)RτIns + 1{τIns≥T}1{T1≥T}e(rS−r)(T−t)RT

}
.

The result then follows from the relationship (A.6).

B Numerical approximation of the solution to PDE (3.3)

We first transform PDE (3.3) by defining y = log(x/βlt), τ = T − t and u(τ, y) =

U(t, x). Then PDE (3.3) reduces to

∂u

∂τ
=

1
2
σ2 ∂2u

∂y2
+ (rV − rL − 1

2
σ2)

∂u

∂y
+ (rs − r − ζ)u + η max{1, u}+ κ, (B.1)
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where

ζ(τ, y) = g(x); η(τ, y) = g(x)θ(x); κ(τ, y) = g(x)(1− θ(x))αx/(1 + lt),

with boundary and initial conditions

u(τ, 0) = αβlT−τ/(1 + lT−τ ) = P (τ) = P ;

u(0, y) = min{1, eyβlT /(1 + lT )} = Φ(y) = Φ.

In the following, we derive the implicit finite difference equation for PDE (B.1).

Let ∆τ denote the step size between two updates of the value function u in the time

dimension. Similarly, ∆y denotes the step size between grid points in the space dimension

of the value function u. The relevant range of two variables is taken to be

(τ, y) ∈ [0, T ]× [0, ȳ],

where ȳ is a large constant such that realization of y outside the region [0, ȳ] occurs with

negligible probability. At each grid point, we define

un
j = u(n∆τ, j∆y);

and the implicit finite difference equation for (B.1) is

un+1
j − un

j

∆τ
=

1
2
σ2

un+1
j+1 − 2un+1

j + un+1
j−1

∆y2
+ (rV − rL − 1

2
σ2)

un+1
j+1 − un+1

j−1

2∆y

+ (rs − r − ζn+1
j )un+1

j + ηn+1
j max{1, un+1

j }+ κn+1
j , (B.2)

where

ζn
j = G(n∆τ, j∆y); ηn

j = η(n∆τ, j∆y); κn
j = F (n∆τ, j∆y)

for 0 ≤ n ≤ T/∆τ and 0 ≤ j ≤ ȳ/∆y. The corresponding boundary and initial

conditions are

u0 = P ; uȳ/∆y = 0; u0 = Φ,

45



where P and Φ, with abuse of notation, denote the vectors containing the discrete values

of the boundary and initial conditions, respectively.

The implicit finite difference equation (B.2) can be rewritten as the following non-

linear algebraic equation:

Aun+1 − (ηn+1,max{1, un+1}) = κn, (B.3)

where κn =
1

∆τ
un + κn − [cP, 0, 0, . . . , 0]∗, and A is a tridiagonal matrix:

A =




a1 b 0 . . . 0

c a2 b
. . . 0

0 c a3 b . . .

0 0
. . . . . . 0

0 0 . . . c aȳ/∆y−1




with

aj =
1

∆τ
+

σ2

∆y2
− (rS − r − ζn+1

j );

b = −1
2

σ2

∆y2
− 1

2∆y
(rV − rL − 1

2
σ2),

c = −1
2

σ2

∆y2
+

1
2∆y

(rV − rL − 1
2
σ2).

Finally, for n = 0, 1, . . . , T/∆τ , we use the standard Newton method to solve the

nonlinear algebraic equation (B.3) as follows.

• Set v1 = un;

• For m = 1, 2, . . ., solve vm+1 recursively by the corresponding linear equation for

(B.3)

Avm − (ηn+1,max{1, vm})− κ̄n + Bn+1
m (vm+1 − vm) = 0
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until sup |vm+1 − vm| < ε, where

Bn+1
m = A− ηn+1




1{vm
1 >1} 0 . . . 0 0

0 1{vm
2 >1} 0 . . . 0

0 0
. . . 0 0

0 0 0 0 1{vm
ȳ/∆y−1

>1}




• Suppose the above loop runs M times. Then set un+1 = vM .
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Figure 1: Scenario simulation with discrete tenor structure

The figure shows three simulated asset value paths in the model with a discrete tenor structure,

where volatility σ = 0.4, expected return rate rV = −0.02, market interest rate r = 0.01, short-

term rate rS = 0.03, and long-term rate rL = 0.05. The initial values of short- and long-term

debt are set to S0 = 2 and L0 = 2, respectively. The safety covenant parameter β = 0.4, the

bankruptcy cost parameter α = 0.6, and the fire-sale rate is set to ψ = 0.6. In this discrete tenor

structure setting the number of rollover dates is set to N = 4. The dotted line describes the

bank run barrier, the dashed line the illiquidity barrier, and the dashed-dotted line the insolvency

barrier.
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Figure 2: Scenario simulation with a staggered tenor structure

The figure shows three simulated asset value paths in the model with a staggered tenor structure

where volatility σ = 0.4, expected return rate rV = −0.02, market interest rate r = 0.01, short-

term rate rS = 0.03, and long-term rate rL = 0.05. The initial values of short- and long-term

debt are set to S0 = 2 and L0 = 2, respectively. The safety covenant parameter β = 0.4, the

bankruptcy cost parameter α = 0.6, and the fire-sale rate is set to ψ = 0.6. In this staggered

tenor structure setting the intensity of the Cox process is chosen to be g(Xt) ≡ 0.4. The dotted

line describes the bank run barrier, the dashed line the illiquidity barrier, and the dashed-dotted

line the insolvency barrier.
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Figure 3: Influence of the intensity on creditor’s value function

The figure shows the representative creditor’s value function at time t = 0 for increasing initial

asset value V0 in the discrete tenor structure model with N = 1000 rollover dates and for the

staggered tenor structure model for different intensities g of the Cox process. Other parameters

are the same as in Figure 2.
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Figure 4: Comparison between the discrete and the staggered tenor structure models

The figure shows the bank run barrier depending on time t for different rollover frequencies N

in the discrete tenor structure model and for different intensities g(x) of the Cox process in the

staggered tenor structure model. Other parameters are the same as in Figure 2.
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