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1. Introduction

It is well known that investors benefit from diversifying internationally.1 Therefore, in-

stitutional investors will invest in government bonds that are issued by different countries

rather than solely investing in their home country. In the challenge of managing such

an international government bond portfolio it is essential to have a model that can cope

with the cross section and time series of yields of two countries.

This paper proposes a model for conditional bond investment in international markets.

For matching the variation of treasury yields in two economies, we rely on a joint affine

term structure model (ATSM).2 We identify an optimal government bond portfolio for

two countries conditional on the information in both term structures of interest rates

in discrete time. In an empirical study, the model is tested with treasury yield data

from the US and UK in the period of 1983-2012. An interpretation of the factors as

’level’, ’slope’ and ’spread’ is given and we identify common and local factors that drive

the term structure of yields of both countries.3 Thereafter, we calculate the optimal

conditional portfolio proposed in the model and identify the common risk factors that

drive the portfolio weights. In this manner we can study the interaction of the time

series of treasury yields and the variation of portfolio weights. In our empirical study we

can show that common risk factors in international bond returns are not only important

for modelling the joint dynamics of interest rates, but can also explain the investment

choice of an international bond investor.

One of the most puzzling phenomenons in international finance is the forward premium

anomaly documented by Fama (1984). Since the variation in international term struc-

ture of interest rates and exchange rates depend on each other it is intuitive to look

for risk driving factors that model the variation of treasury yields and exchange rates

1Grubel (1968), Solnik (1974), De Santis and Gerard (1997) et al. report significant benefits from
diversifying internationally.

2See Backus et al. (2001), Bansal (1997), Dewachter and Maes (2001) and Egorov et al. (2011).
3In the sense of Litterman and Scheinkman (1991) and DeJong (2000) who give a factor interpretation

for single term structure models.
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jointly. Backus et al. (2001), Bansal (1997) and Hodrick and Vassalou (2002) were the

first to study the risk driving factors in the context of two-currency term structure mod-

els. A problem that arises, when modelling interest rates and exchange rates jointly, is to

capture the different volatility characteristics of both (see Inci and Lu, 2004). Together

with the former, Dewachter and Maes (2001) model exchange rate movements with an

additional risk driving factor.

There is a stream in literature that argues that the difference in variation of interest rates

and exchange rates is better explained by including time variation in the risk premium

(Brennan and Xia (2006), Sarno et al. (2012) and Graveline and Joslin (2011)). In these

papers an extended affine formulation of the risk premium is used to explain that time

variation.4 However, Feldhütter et al. (2012) argue that investors prefer simple models

(completely affine) to more complex models (essientially affine) even if they know that

the simple model is wrong.5 Since the focus of the paper lies on a risk minimizing in-

ternational bond portfolio and not on exploiting the exchange rate risk premium, we

follow the argumentation of Feldhütter et al. (2012) and stick to the completely affine

term structure model. For completely affine ATSM’s Egorov et al. (2011) provide a

classification similar to the one of Dai and Singleton (2000) for single ATSM’s.

Portfolio decisions are usually not made with continuous adjustments. Papers that

model the joint dynamics of interest rate term structures for international bond portfo-

lio application have focused on continuous time investment (see Dewachter and Maes,

2001). However, empirical studies on the forward discount puzzle draw a different pic-

ture. Eichenbaum and Evans (1995) first documented that after an interest rate increase,

a currency continuous to appreciate for another 8 to 12 quarters before it starts to de-

preciate. One would expect this to happen if the investor makes discrete rather than

continuous time portfolio adjustments. Therefore, we follow Bacchetta and van Wincoop

4Duffee (2002) and Dai and Singleton (2002) proposed an extended affine model to bring more flexibility
in the risk premium for single term structure models.

5That is if they face parameter uncertainty, which is modelled with Marcov Chain Monte Carlo
(MCMC).
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(2010), who propose infrequent portfolio decisions for international bond investment, in

fixing a discrete time investment horizon. Korn and Koziol (2006) propose a model

for domestic bond portfolio optimization. For international bond portfolios Hunter and

Simon (2004) can find diversification benefits. Driessen et al. (2003) and Juneja (2012)

study the common risk factors of international bond portfolios but they do not propose

a proper model to explain the variation in treasury yields.

The contribution of the present paper is twofold. Although there is growing literature

concerned with the joint modelling of term structures of interest rates, surprisingly lit-

tle is known about the implications for bond portfolio managers. Firstly, we propose a

simple model for international bond investment for a discrete time investment horizon

conditional on the joint term structure of interest rates. Building on the rich literature

on joint ATSM’s, we propose a portfolio model. Therefore, we extend the single ATSM

of Korn and Koziol (2006) for joint ATSM’s.6 Secondly, we give an empirical study of

our model for US and UK treasury yields in the period of 1983 to 2012. To our best

knowledge, we are the first to give an interpretation of the common risk driving factors

for international bond portfolios.7 Building on our model we can show that the common

risk driving factors in the two economies drive the variation in international bond port-

folios, too. As a consequence we can show that joint ATSM’s are capable for modeling

an optimal portfolio conditional on the information in the cross section and time series of

two countries. The remainder of the paper is organized as follows. Section ’2 The Model’

sets up the modeling framework, and specifies the optimal portfolio strategy. Section ’3

Empirical Study’ discusses the data, the estimation procedure and the portfolio strategy.

In section 4 the results are presented. Section 5 concludes and technical details, figures

and tables are shifted to the appendix.

6Korn and Koziol (2006) use an ATSM with uncorrelated Gaussian factors in the Ar representation.
For using the model in the joint term structure model framework we have to extend the formulation
to correlated factors in the conanical representation (see Dai and Singleton, 2000).

7Driessen (2005) and Juneja (2012) present a pure empirical study of common risk factors for bond
returns without proposing a model for the joint term structure.
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2. The Model

Great improvements have been made in modelling single term structures for pricing

bonds, interest rate derivatives and bond portfolios.8 Fulfilling the needs of an institu-

tional investor, who wants to diversify internationally, is a little more precarious. Two

country models are a significant extension of single country models in jointly modelling

the dynamics of the term structures of interest rates and exchange rates. In the subsec-

tion 2.1 the model for matching the variation in cross section and time series of two term

structures is presented and in subsection 2.2 we propose an optimal portfolio model that

makes advances in joint ATSM’s available for international bond investors.

2.1. Model of the Joint Term Structure

We follow Dai and Singleton (2000) and Egorov et al. (2011) in defining the price of a

zero coupon bond. Let two economies be described by the probability space (Ω,F , P )

where P denotes the physical measure. Q and Q∗ shall be the equivalent martingale

measures for the US and the UK, respectively.9 In the absence of arbitrage, the time-t

prices of a US and a UK zero-coupon bond, that mature at t + τ , P (t, τ) and P ∗(t, τ)

are given by

P (t, τ) =EQ
t

[
exp(−

∫ t+τ

t
r(u)du)

]
and (1)

P ∗(t, τ) =EQ∗
t

[
exp(−

∫ t+τ

t
r∗(u)du)

]
, (2)

where EQ and EQ∗ denote Ft conditional expectations under Q and Q∗, respectively. A

joint ATSM is obtained under the assumption that the instantaneous short rates r(t) and

8See Chapman and Pearson (2001) and Dai and Singleton (2003) for literature reviews.
9In the following a ∗ shall indicate the foreign economy.
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r∗(t) are affine functions of a vector of latent state variablesX(t) = [X1(t), X2(t), . . . , XN (t)]′,

r(t) = δ0 + δ′X(t) and r∗(t) = δ∗0 + δ∗
′
X(t) (3)

where δ0 and δ∗0 are scalars and δ′ and δ∗
′

are N × 1 vectors. X(t) nests the local, as

well as, the common factors that drive both economies. Common factors enter both

expressions of r(t) and r∗(t) through non zero δ’s and δ∗’s. Further more, the weighting

of the factors for the specific country is expressed in the value of δ. If δi for the common

factor tends to zero the dynamics of the short rate are (almost) exclusively driven by the

local factor. If, in contrast, δ is equally weighted for both countries their exists a common

risk factor that drives the dynamics of both economies. That has important implications

for the international bond portfolio. If the short rate is (almost) mutually independent

to the other economy there is diversification potential per se without emphasizing much

effort in the risk management. If, on the other hand side, the bonds depend on common

risk factors it is important which bonds of each country are in the portfolio to benefit from

diversification. The local factors are forced to be mutually independent since they would

not be local otherwise. They may depend on each other through the correlated common

factors, though. This one joint ATSM can be decomposed in two single ATSM’s if the

local factors are mutually independent (see Egorov et al., 2011). The joint dynamics of

X(t) follow an affine diffusion of the form:

dX(t) = K[ϑ−X(t)]dt+ ΣStdW (t). (4)

W (t) is an N -dimensional independent standard Brownian motion under P , K and Σ

are N×N parameter matrices and ϑ is an N×1 parameter vector. The definition of X(t)

given in equation (4) is a general formulation.10 We further determine the characteristics

10Equation (4) nests famous stochastic processes in finance such as the Vasicek (1977) and Cox et al.
(1985) model.
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of the affine diffusion by specifying St. The matrix St is diagonal with (i, i)-th elements:

St(ii) =
√
αi + β′iX(t), i = 1, . . . , N, (5)

where αi is a scalar parameter and βi is an N × 1 parameter vector.

Papers that are mainly concerned with the exchange rate risk premia try to explain the

different variation of interest rates and exchange rates with time varying risk premia (see

Brennan and Xia (2006), Sarno et al. (2012) and Graveline and Joslin (2011)). However,

in using constant risk premia we follow Feldhütter et al. (2012) who argue that investors

prefer simple models (completely affine) to more complex models (essientially affine)

even if they know that the simple model is wrong. The domestic risk premium for US

bonds is defined as Λ = α ·λt, where λt is an N ×1 parameter vector. The risk premium

is country specific and independent from the foreign risk premium, i.e. the risk premium

parameter of the foreign factor is zero. Likewise, the UK risk premium is defined as

Λ∗ = α · λ∗t , where λ∗t is an N × 1 parameter vector.

So far the model describes the joint dynamics of both term structures of interest rates.

We can as well model the country specific dynamics of each country, separately. Under

the risk neutral measure Q the affine diffusion X of the US reads:

dX(t) = KQ[ϑQ −X(t)] + Σ · α · dWQ(t) (6)

where dWQ(t) = dW (t) − Λ, ϑQ and KQ represent the risk neutral measure. In the

same way we define the diffusion for the UK under the risk neutral measure Q∗:

dX(t) = KQ∗[ϑQ∗ −X(t)] + Σ · α · dWQ∗(t) (7)

where dWQ∗(t) = dW (t)−Λ∗, ϑQ∗ and KQ∗ represent the risk neutral measure. Having
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outlined the short rates r and r∗ and the underlying diffusion processes X(t), we can

now turn to the zero bond prices. Under the risk-neutral measure Q the price of an US

zero-coupon bond reads

P (t, τ) = exp(−A(τ)−B(τ)′X(t)), (8)

where A(·) and B(·) satisfy the ordinary differential equations (ODEs) (see Dai and

Singleton, 2000):

dA(τ)

τ
= ϑ′κB(τ)− 1

2

N∑
i=1

[Σ′B(τ)]2iαi − δ0 and (9)

dB(τ)

τ
= −κB(τ)− 1

2

N∑
i=1

[Σ′B(τ)]2iβi + δ′. (10)

Under the risk-neutral measure Q∗ the price of a US zero-coupon bond follows the same

dynamics

P ∗(t, τ) = exp(−A∗(τ)−B∗(τ)′X(t)), (11)

where A∗(·) and B∗(·) satisfy ordinary differential equations(ODEs) similar to the ones in

equation(9). With the initial conditionsA(0) = A∗(0) = 0N×1 andB(0) = B∗(0) = 0N×1

and r(t) and r∗(t) defined above, these ODEs are completely specified. For the process

X(t) the solutions to these ODEs are available in closed form. Kim and Orphanides

(2005) give a very handy closed form solution of the bond prices in vector notation. The

yield of a zero-coupon bond maturying at τ is given by:

yt,τ = Aτ +Bτ ·Xt (12)
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with

Aτ =− 1

τ
[(Kµ)′(m1,τ − τI)K−1′δ+

1

2
δ′K−1(m2,τ−ΣΣ′m1,τ −m1,τΣΣ′ + τΣΣ′)K−1′δ − τδ0] (13)

Bτ =
1

τ
m1,τδ (14)

where

m1,τ =−K−1′(exp(−K ′τ)− I) (15)

m2,τ =− vec−1((K ⊗ I) + (I ⊗K))−1vec(exp(−Kτ)ΣΣ′exp(−K ′τ − ΣΣ′)). (16)

A, B are functions of K,µ,Σ, δ, δ0 and the risk neutral and physical parameters corre-

spond in the following way:

K =KQ − ΣΛ (17)

µ =K−1(KQµQ − ΣΛ) (18)

To avoid over identification we follow the restrictions of Dai and Singleton (2000). There-

fore, K is lower triangle and Σ is the identity matrix. To completely charactize the joint

dynamics of the term structures of interest rates, we need to model the Dollar and Pound

exchange rate. If we assume complete markets and the absence of arbitrage we know

from Backus et al. (2001) and Ahn (2004) that the exchange rate S is:

S(t+ τ)

S(t)
=
M∗(t+ τ)

M(t+ τ)
(19)
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where M and M∗ are the pricing kernels for the US and UK market, respectively.

Following Egorov et al. (2011) we assume that the pricing kernels follow the form:

dM(t)

M(t)
=− r(t)dt− Λ′dW (t) (20)

dM∗(t)

M∗(t)
=− r∗(t)dt− Λ∗

′
dW (t) (21)

Having outlined the affine diffusion that underlies the short rate process and the pric-

ing kernels of the two economies, we can obtain the change in the exchange rate in

logarithmic form (see Backus et al. (2001) and Inci and Lu (2004)):

ds(t) = (r(t)− r∗(t))dt+
1

2

N∑
i=1

(λ2
i − λ∗2i )dt+

N∑
i=1

(λi − λ∗i )dW (22)

Formulas for the expected exchange rate E[s] and variance of the exchange rate V ar[s]

are given in the appendix. For our empirical study we use a four factor model for the

joint dynamics of both countries. With S defined in equation (5) we have zero factors

govern the instantaneous variance of the short rate. This is a A0(4) model in the Dai and

Singleton (2000) sense. In our model the first two factors are common factors and model

the joint dynamics (see Egorov et al., 2011). The US and UK term structure of interest

rates is modeled by one local factor each. The local factors are mutually independent.

Under the physical measure the diffusion process is given by:

d



X1t

X2t

X3t

X4t


=



κ11 0 0 0

κ21 κ22 0 0

κ31 κ32 κ33 0

κ41 κ42 0 κ44





−X1t

−X2t

−X3t

−X4t


dt+ d



W1t

W2t

W3t

W4t


. (23)

Without loss of generality X1 and X2 are assumed to be the common factors. X3 is the

US local factor and X4 is the UK local factor. As both local factors are required to be
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mutually independent κ43 = 0.

2.2. The Optimal Portfolio

In the model above the joint interest rates of both countries and the resulting exchange

rate were defined. Since institutional investors will not only hold a single bond but

rather manage a whole portfolio, it is intuitive to ask for applications for portfolio man-

agement. The short rate dynamics in the joint ATSM are modelled in a continuous time

setting. That might be the reason why the few papers that are concerned with portfolio

management, model the optimal portfolio in continuous time (see Dewachter and Maes,

2001). However, empirical studies of the forward premium puzzle indicate that modeling

the investor’s portfolio decision in discrete time might help to explain the phenomenon

better (see Bacchetta and van Wincoop, 2010).11

With the joint ATSM presented above we have an expectation of the future short rate

drift and volatility and its bond prices. Therefore, we have all the information to calcu-

late the expected returns and covariances of these bonds conditional on the information

in the term structure of interest rates. In doing so, we extend the model of Korn and

Koziol (2006) for international bonds with an underlying joint ATSM. Firstly, for mod-

elling an international bond portfolio we extend the original model from single to joint

term structure modelling. Secondly, as Dai and Singleton (2000) state, it is important

to incorporate correlation between the factors in a single country model. Therefore, it

is even more important to allow for correlations between common and local factors in

a joint ATSM. Thirdly, we use the canonical representation in the Dai and Singleton

(2000) sense. For modelling two term structures jointly it is essential to allow the short

rate to depend on the factors with distinct weight (see equation (3)). Otherwise, the

11The focus of Bacchetta and van Wincoop (2010) is more on international macro. They study the
question whether a model in which the investor makes his portfolio decision infrequently can explain
the forward premium puzzle better. They do not help the investor in making a portfolio and linking
it the conditional information in both term structures of interest rates.
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short rate is forced to depend on the common factors, even if there is no justification in

the data.12

The investor can choose a combination of zero coupon from two countries and different

time to maturity T̂ = T0 < T1 < · · · < TT̄ for each country. This leads to 2N̄ bonds to

invest in. µ ∈ R2N̄ is the vector of expected returns and Σ ∈ R2N̄×2N̄ is the matrix of

covariances:

µ =



µ(T1)

...

µ(TN )

µ∗(T1)

...

µ∗(TN )


,Σ =



σ(T1) · · · σ , (T1, TN ) σ ,∗(T1, T1) · · · σ ,∗(T1, TN )

...
. . .

...

σ , (TN , T1) σ ,∗(TN , TN )

σ∗, (T1, T1) σ∗,∗(T1, TN )

...
. . .

...

σ∗, (TN , T1) · · · σ∗, (TN , TN ) σ∗,∗(TN , T1) · · · σ∗(TN )


.

µ and σ can be evaluated as follows:13

µ (Ti) =
e
M

(1)
(Ti)+

1
2
S
(1)

(Ti)
2

P (0, Ti)
− 1, (24)

µ∗(Ti) =
e
M∗

(1)
(Ti)+

1
2
S∗
(1)

(Ti)
2

P ∗(0, Ti)
− 1,

σ (Ti) =
e

2·M
(1)

(Ti)+S(1)
(Ti)

2

· (eS(1)
(Ti)

2

− 1)

P (0, Ti)
,

σ∗(Ti) =
e

2·M∗
(1)

(Ti)+S
∗
(1)

(Ti)
2

· (eS
∗
(1)

(Ti)
2

− 1)

P ∗(0, Ti)
,

σ∗, (Ti, Tj) =
e
M
∗,
(2)

(Ti,Tj)+
1
2S
∗,
(2)

(Ti,Tj)
2

P ∗(0, Ti) · P (0, Tj)
− e

M∗
(1)

(Ti)+M(1)
(Tj)+

1
2 (S∗

(1)
(Ti)

2+S
(1)

(Tj)
2)

P ∗(0, Ti) · P (0, Tj)

12Korn and Koziol (2006) propose an optimal portfolio model for a domestic german bond portfolio with
an uncorrelated Gaussian single TSM in the Ar representation (see Babbs and Nowman, 1999).

13One uses the fact that the state variables Xi are normally distributed. Hence eX is log-normally dis-

tributed and it is E
[
eX

]
= eE[X]+ 1

2
V ar[X] and V ar

[
eX

]
= E

[
eX

]2
(eV ar[X]−1). In contrast to Korn

and Koziol (2006), the Brownian motions are correlated. As Law (2007) shows however, only the cal-

culations of the covariances change: Cov
[
eXi , eXj

]
= (eCov[Xi,Xj ] − 1)eE[Xi]+E[Xj ]+

V ar[Xi]+V ar[Xj ]
2 .
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where

M∗(1)(Ti) =A∗(Ti) + [B(Ti)]
T · EP

0 [Xn(t)] ,

M(1)(Ti) =A∗(Ti) + [B(Ti)]
T · EP

0 [Xn(t)] ,

S∗(1)(Ti)
2 =[B(Ti)]

T · [V arP0 [Xn(t)]] · [B(Ti)] + s2(ε),

M ,
(2)(Ti, Tj) =A (Ti) +A (Tj) + [B(Ti) +B(Tj)]

T · EP
0 [Xn(t)] ,

M∗,∗(2) (Ti, Tj) =A∗(Ti) +A∗(Tj) + [B(Ti) +B(Tj)]
T · EP

0 [Xn(t)] ,

M∗,(2)(Ti, Tj) =A∗(Ti) +A (Tj) + [B(Ti) +B(Tj)]
T · EP

0 [Xn(t)] and

S∗,(2)(Ti, Tj)
2 =[B(Ti) +B(Tj)]

T · [V arP0 [Xn(t)]] · [B(Ti) +B(Tj)] + s2(ε).

As equation (24) shows, the expected returns and covariances are available in closed

form. That makes the model very easy to implement for risk management of an in-

ternational bond portfolio. Having calculated ’µ’ and ’σ’ for the bond portfolio, the

theoretic model is fully specified and we can bring the model to the data. That shall

bring some clarity on how the cross section and time series of treasury yields is related

to the portfolio weights evolution.

3. Empirical Study

In the former section we have fully specified a theoretic model that enables the investor

to sep up an optimal international bond portfolio. To see whether the model of the

present paper can explain the variation in the time series and cross section of treasury

yields of two countries, we test the model empirically with government bond data. The

question is whether that variation can explain the evolution of the portfolio weights of

an international bond portfolio. We follow Driessen et al. (2003) who give an interpreta-
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tion of common factors in international bond portfolios in an empirical study.14 In the

following section we describe the data, formulate the state space model to cope with the

panel data and present the portfolio strategy.

3.1. Data

We aim to study an international bond portfolio consisting of US and UK treasury

bonds. For the sake of simplicity, we use zero coupon government bonds and leave

coupon payments aside. The data is provided by the US Federal Reserve and the Bank

of England (see Gurkaynak et al., 2006). The period of 1979 to 1982 is known to be

econometrically precarious because of the so called US Federal Reserve’s experiment (see

Chapman and Pearson, 2001). Therefore, we exclude that period. Since the optimal

portfolio is predicted for the period ahead, we can not allow for a brake in the time

series. Hence, we do not take treasury yields before 1979 into account. That is the

reason why we investigate the period from January 1983 to July 2012. We follow Egorov

et al. (2011) and use daily observations of 6 months, 2-, 5- and 10-Years treasury yields

from the US and the UK.

[insert Figure 1 about here.]

In figure 1 the US and UK treasury yields are reported. The time series of the US

treasury yields is shown in the first row. In the majoirty of the period the US term

structure is normal (upward sloping). Further more, the short end of the term struc-

ture is more volatile than the long end and the interest rate level decreases consistently

over time. Roughly the same picture can be drawn for the time series of UK treasury

yields from the second row of figure 1. Most of the period the UK term structure is

14Driessen et al. (2003) study the common factors in international bond portfolios for hedged and
unhedged portfolios in the Litterman and Scheinkman (1991) sense. However, they do not give a
theoretic model that can explain the variation in the cross section and time series of international
bonds.
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normal although there are more periods of an inverse term structure than there are for

the US. The short end of the yield curve is even more volatile than the US equivalent

is. Decreasing interest rate levels can be found for the UK, too. Having described the

time series of the US and UK term structures, the question to be answered here is,

how the yield movement over time does effect international bond portfolio management.

Therefor, we will present the parameter estimation procedure in the following subsection.

3.2. State Space Model

Term structure models have the positive feature that they capture the time series dy-

namics in the factors and the cross section is a resulting function of these factors and the

time to maturity (see DeJong, 2000). Dealing with such panel data, it is a natural ap-

proach to define a state space model. The factors can be found in the transition equation

and the treasury yields of different maturities are in the measurement equation. Sev-

eral techniques have been proposed for estimating the model parameters. The efficient

method of moments is applied to term structure models by Dai and Singleton (2000).

Eraker (2001) and Feldhütter et al. (2012) use Markov-Chain Monte Carlo methods for

estimating term structure models. However, these methods are computationally very

intensive. Since our model relies on a completely affine Gaussian setup, we follow Babbs

and Nowman (1999) in using Kalman Filtering with a very straight forward direct max-

imum likelihood estimation.

At time t let there be observed zero-coupon bond yields with maturity τ1 trough τk in
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vector yt. Vector A(τi) and B(τi) are as defined equation 9:

yt =



Y US
t (τ1)

...

Y US
t (τk)

Y UK
t (τ1)

...

Y UK
t (τk)


, A =



A(τ1)

...

A(τk)

A∗(τ1)

...

A∗(τk)


, B =



B(τ1)′

...

B(τk)
′

B∗(τ1)′

...

B∗(τk)
′


. (25)

The state space model form reads:15

yt = A+BXt + ε (26)

Xt+h = e−KhXt + (I − e−Khµ+ υt+h) (27)

where h is the time between two observations. The measurement equation is the first

equation in the system and is a function of the parameters (δ0, δ
∗
0 , δXi, δ

∗
Xi,K, λ, λ

∗) and

an error term ε. DeJong (2000) stated that it is important to observe more treasury

yields than model factors to identify the risk premium, accurately. We follow Duan and

Simonato (1999) and Geyer and Pichler (1997) in observing all maturities with a certain

error ε. This error is assumed to be serially and cross sectionally uncorralleted. The

second equation is the transition equation with the conditional mean and variance of

the factors with an error term υt+h ∼ N(0,Ωn) where Ωn is :(see Kim and Orphanides,

2005)

vec(Ωn) = −((K ⊗ I) + (I ⊗K))−1vec(e−(K +K ′)h− I). (28)

15The notation eX , where X is a square matrix, denotes the matrix exponential eX = I + X + X2/2 +
X3/6 + · · · (see Kim and Orphanides, 2005).
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3.3. Portfolio Strategy

An international bond portfolio has two main risk driving factors - interest rate and

exchange rate risk. The problem in modeling the joint dynamics of interest rates and

exchange rates is the different variation of the two (see Dewachter and Maes (2001),

Graveline and Joslin (2011) et al.). That difference is even more important in portfolio

management, because it changes the risk characteristics of the portfolio considerably.

In the present paper, we want to focus on the portfolio risk caused by the variation

of the term structure rather than the variation of the exchange rates.16 Therefore, we

follow Hunter and Simon (2004) and study a hedged international bond portfolio. Yet,

as Driessen et al. (2003) point out, since the difference between forward currency rates

and current spot exchange rates are usually close to zero, the returns of a hedged and

an unhedged portfolio will not distinct significantly. Therefore, hedged bond returns are

primarily driven by the variation in the underlying term structure of interest rates.

According to Morey and Simpson (2001) there are three different currency hedging

strategies. In their classification of (a) unhedged, (b) always hedged and (c) selectively

hedged, we follow strategy (b) and always hedge the exchange rate risk exposure with

forward contracts. From formula (1) we get the expected amount of foreign currency at

the end of the investment horizon and buy a 12 month forward contract of that amount.17

Morey and Simpson (2001) identify the transaction costs of a 12 months forward rate

contract between the US and UK to be 0.001093 of the contract value.

The investment set consists of zero coupon bonds from the US and UK. For each coun-

try there are bonds with 1, 2, 5 and 10 years time to maturity. In step (1) we take the

parameter set estimated with maximum likelihood in the former subsection. That set of

parameters will determine the optimal portfolios of the whole empirical study conditional

16For a treatment of exchange rate risk premia see Brennan and Xia (2006).
17Since formula (1) gives us only the expected value of the held amount at the end of the period this

amount is by definition risky. Every unexpected bond price change will cause a non hedged risk
exposure. However, Driessen et al. (2003) finds that this unhedged and therefore risky exposure is
negligible.
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on the information in the term structure of interest rates. The conditioning information

is brought into the empirical study through the factors which reflect the information cur-

rently available at this point in time. In step (2a) we take the common (Xc1 and Xc2) and

local factors (XUS andXUK) on the 2nd of January 1983([Xc1, Xc2, XUS , XUK ]02/01/1983).

Taking the parameters and factors from subsection 3.2 we can calculate the optimal

portfolio with the model in subsection 2.2. In the µ-σ sense we calculate the opti-

mal portfolio for an investment horizon of 1 Year and a fixed volatility of σ = 10%.

Short selling is permitted. Then we roll over one day. In step (2b) we take the factors

[Xc1, Xc2, XUS , XUK ]03/01/1983 and repeat the procedure. Since we study an investemnt

horizon of 260 trading days we keep rolling this window till the 31st of July 2011.

4. Results

4.1. Parameter Estimates

For matching the time series and cross section of treasury yields of the two countries

the estimated parameters are reported in Table 1. Each standard error is given in

parenthesis. The first panel reports the factor independent short rate constants. The

middle panel shows the factor depended parameters. i = 1, 2 are the common factors,

i = 3 is the local factor US and i = 4 is the local factors UK. Note that the local

parameters US (UK) are set to zero with no standard error for i = 4 (i = 3). The

model estimates rely equally on the common factors with values from 0.0097(= δ∗X1) to

0.0133(= δX2) and the local factors with values from 0.0103(= δX3) to 0.0136(= δ∗X4).

These parameters are precisely estimated with a small standard error. K defines the

factor dependence structure of the joint ATSM and each parameter κ is the same for

both countries. Yet, the local Factors i = 3, 4 are mutually independent and the factor

dependence is set to zero (κ43 = 0). In line with Feldhütter et al. (2012), the risk
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premium parameters λXi λ
∗
Xi are estimated with great standard error. In the last panel

the standard deviation of observational error is reported. In line with Egorov et al.

(2011) the model matches the data well. We obtain the biggest observational error for

10year UK treasury yields with ε∗ = 0.0031.

[insert Table 1 about here.]

In formulating the state space model, it became clear that the time series of treasury

yields is represented by the evolution of the factors. We aim to get a better understanding

of how the time series of yields influences the conditional portfolio weights later on. Hence

we need to relate the common and local factor to the corresponding yields, first. For a

standard three factor ATSM there is consensus in literature to interpret the first three

factors as ’level’ ’slope’ and ’curvature’ (see DeJong (2000), Litterman and Scheinkman

(1991), Babbs and Nowman (1999) et al.). However, the case is a little more precarious

in the present multi country model. The fitted common and local factors and treasury

yields are reported in Figure 2. The first panel of the graph shows the common factors

of the model. The first common factor is fitted and with a correlation of 0.9848 highly

correlated to the ’level’ of the US treasury yields. The second common factor is fitted

to the spread of US and UK 5 year treasury yields in the second graph of the first row.

With 0.7175 the correlation of the factor and the data is still high but lower than for the

first factor. These two common factors shall explain the common movements of both

economies. The variation in the yiels that can not be explained by the common factors

will be explained by the local factors in the second row of the figure. On the left hand

side the local factor US is fitted to the slope the US data which is the spread of the

10year treasury yield minus the 6m treasury yield. With 0.9382 the local factor US is

highly correlated to the slope in the US data which could not be captured the common

factors. The last graph of the figure fits the local factor UK to the shortrate UK. This is

the variation in the UK data that can not be matched by the common factors and has a

high correlation of 0.9460. These findings are line with Juneja (2012) and Driessen et al.
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(2003). Driessen et al. (2003) find that the common risk driving factors in international

bond returns are the ’level’ and ’slope’ of the underlying terms structure of yields and

the spread between the different yield curves.

[insert Figure 2 about here.]

4.2. Conditional Portfolio Weights

Having estimated the parameters of our joint ATSM in subsection 4.1 we can realize

the optimal portfolio of the model presented in section 2. The beauty of term structure

models is that the variation in the time series dimension of interest rates is captured

in the latent factors. That enables us to set up on optimal bond portfolio conditional

on the present state of the economy. Precisely speaking, on the present state of two

economies since the common and local factors capture the variation of both countries.

We calculate the portfolio weights as presented in subsection 3.3.

The evolution of portfolio weights is reported in figure 3.18 The first graph in the upper

left position of the figure shows the fitted ’level’ of US and UK treasury yields and the

evolution of the long end portfolio weights. The long end portfolio weights are defined as

the amount invested in US and UK bonds with 10 years to maturity. The correlations of

-0.8573 (US) and -0.8617 (U.K) are highly negative indicating that an increase of interest

rate levels leads to a decrease of the amount invested in long maturity bonds. This is

caused by the decreasing relative attractiveness of long bonds. When the overall level

of interest rates rises, the return of short bonds also increases. In that case long bonds

have relatively lower excess returns in comparison to short bonds with considerable more

risk. Therefore, long bonds become less attractive and the amount invested is reduced.

The second graph in the first row fits the slope of US and UK treasury yield curve and

the short end portfolio weights.19 The short end portfolio weights are the sum of 1

18The same results are available for fitted factors and portfolio weights to see that the model and software
work properly. For the sake of brevity, we do not report these results here. The factor and portfolio
weight evolution is available from the authors upon request.

19As in the former section the slope defined as the spread of the 10year and the 6months maturity bond.
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and 2 year bonds for the US and UK. The correlations of -0.6821(US) and -0.7139(UK)

indicate that if the slope of the data increases the amount invested in the short end

decreases. That is in the same line of argumentation as in the previous graph. The long

end bonds are more attractive, the higher the spread between long and short end is. On

the other hand side if the yield curve becomes inverse (negatively sloped) the portfolio

weights shift to the short end.

[insert Figure 3 about here.]

The first graph of the second row shows the fitted short ends of the US and UK yield

curves and the Portfolio slope. The short end of the yield curve is simply the 6 months

bond. The Portfolio slope is defined as the 10 year bond minus the sum of the 1 and 2

year bonds of the US and the UK portfolio weights. The correlations of -0.7461 (US)

and -0.7753 (UK) indicate that if the short end yields increase the money is invested in

short maturity bonds and the amount of long maturity bonds is reduced. The last graph

in the second row fits the short end of the treasury yield curve to the portfolio duration.

The portfolio duration is measured as the amount invested in the bonds(w) times the

bond’s maturity ([w1, · · ·w10, w
∗
1, · · · , w∗10]′ · [1, 2, 5, 10, 1, 2, 5, 10]). The correlations of

the short end bonds and the portfolio duration are -0.7686 (US) and -0.8077 (UK). That

is what you would expect a risk averse investor to do since he will decrease the portfolio

duration when the short rate increase and vice versa. Our results are in line with Juneja

(2012) and Driessen et al. (2003) who report that the common factors relate mostly

to the ’level’ and ’slope’ of the US treasury yields. Our empirical study shows that

common factors in international bond returns are not only an empirical phenomenon.

The empirical findings can be supported by the proposed model and the model can link

the investor’s decision conditional on the common factors in international bond returns.
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5. Conclusion

In this paper, we proposed a simple model for international bond investment. The

investor can optimize a government bond portfolio in a discrete time investment horizon

conditional on the information in the term structure of two countries. The variation in

the cross section and time series of treasury yields is captured by a joint ATSM. Easy

closed form solutions for the return and variance were given. The model is tested in

an empirical study of US and UK government bonds in the period of 1983 to 2012. An

interpretation of the factors as ’level’, ’slope’ and ’spread’ not only helped to interpret the

cross section and time series of the treasury yields but also to understand the evolution

of our conditional portfolio weights.

We showed that the ’level’ of treasury yields is highly correlated with a decrease in the

long end portfolio weights. Put it differently, when the overall ’level’ of interest rates

increases the long maturity bonds get unattractive since the short maturity bonds pay

relatively high returns with far lower risk. The ’slope’ of yields is highly correlated

with a decrease in the short bond portfolio weights. That is rational as well. When

the spread between long and short end becomes larger the short end has a significant

lower return and should therefore be under weighted. Finally, the short end of treasury

yields is highly correlated with the slope of the portfolio and a reduction in portfolio

duration. A risk averse investor wants to be compensated with a significant higher return

if the investment bears more risk. When the short rate increases their is to earn a high

return with relatively low risk associated with the short time to maturity. The long end

portfolio weights become less attractive in terms of return and bear the same high risk.

Therefore, the slope of the portfolio increases and the duration decreases. These findings

are line with Juneja (2012) and Driessen et al. (2003). Driessen et al. (2003) find that

the common risk driving factors in international bond returns are the ’level’ and ’slope’

of the underlying term structure of yields and the spread between the different yield

curves.
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Our empirical study showed that common factors in international bond returns are not

only an empirical phenomenon. The empirical findings can be supported by the proposed

model and the model can link the investor decision conditional on the common factors

in international bond returns.

24



References

Ahn, D.-H. 2004. Common factors and local factors: Implications for term structures and exchange

rates. Journal of Financial and Quantitative Analysis 39:69–102.

Babbs, S. H. and Nowman, K. B. 1999. Kalman filtering of generalized vasicek term structure models.

Journal of Financial and Quantitative Analysis 34:115–130.

Bacchetta, P. and van Wincoop, E. 2010. Infrequent portfolio decisions: A solution to the forward

discount puzzle. American Economic Review 100:870–904.

Backus, D., Foresi, S., and Telmer, C. 2001. Affine term structure models and the forward premium

anomaly. Journal of Finance 56:279–304.

Bansal, R. 1997. An exploration of the forward premium puzzle in currency markets. Review of

Financial Studies 10:369–403.

Brennan, M. and Xia, Y. 2006. International capital markets and foreign exchange risk. Review of

Financial Studies 19:753–795.

Chapman, D. A. and Pearson, N. D. 2001. Recent advances in estimating term-structure models.

Financial Analysts Journal 57:77–95.

Cox, J. C., Ingersoll jr., J. E., and Ross, S. A. 1985. A theory of the term structure of interest

rates. Econometrica 53:385–407.

Dai, Q. and Singleton, K. 2003. Term structure dynamics in theory and reality. Review of Financial

Studies 16:631–678.

Dai, Q. and Singleton, K. J. 2000. Specification analysis of affine term structure models. Journal of

Finance 55:1943–1978.

Dai, Q. and Singleton, K. J. 2002. Expectation puzzles, time-varying risk premia, and affine models

of the term structure. Journal of Financial Economics 63:415–441.

De Santis, G. and Gerard, B. 1997. International asset pricing and portfolio diversification with

time-varying risk. Journal of Finance 52:1881–1912.

DeJong, F. 2000. Time series and cross-section information in affine term-structure models. Journal

of Business & Economic Statistics 18:300–314.

25



Dewachter, H. and Maes, K. 2001. An admissible affine model for joint term structure dynamics of

interestrates. Working Paper .

Driessen, J. 2005. Is default event risk priced in corporate bonds? Review of Financial Studies

18:165–195.

Driessen, J., Melenberg, B., and Nijman, T. 2003. Common factors in international bond returns.

Journal of International Money and Finance 22:629–656.

Duan, J.-c. and Simonato, J.-G. 1999. Estimating and testing exponential-affine term structure

models by kalman filter. Review of Quantitative Finance and Accounting 13:111–135.

Duffee, G. R. 2002. Term premia and interest rate forecasts in affine models. Journal of Finance

57:405–443.

Egorov, A., Li, H., and Ng, D. 2011. A tale of two yield curves: Modeling the joint term structure

of dollar and euro interest rates. Journal of Econometrics 162:55–70.

Eichenbaum, M. and Evans, C. L. 1995. Some empirical evidence on the effects of shocks to monetary

policy on exchange rates. Quarterly Journal of Economics 110:975–1009.

Eraker, B. 2001. Mcmc analysis of diffusion models with application to finance. Journal of Business

and Economic Statistics 19:177–191.

Fama, E. 1984. Forward and spot exchange rates. Journal of Monetary Economics 14:319–338.

Feldhütter, P., Larsen, L. S., Munk, C., and B., T. A. 2012. Keep it simple: Dynamic bond

portfolios under parameter uncertainty. Working Paper.

Geyer, A. and Pichler, S. 1997. A state-space approach to estimate and test multifactor Cox-

Ingersoll-Ross models of the term structure. University of Economics Department of Operations

Research, Vienna.

Graveline, J. J. and Joslin, S. 2011. G10 Swap and Exchange Rates. Working Paper.

Grubel, H. G. 1968. Internationally diversified portfolios: welfare gains and capital flows. American

Economic Review 58:1299–1314.

Gurkaynak, R., Sack, B., and Wright, J. 2006. The U.S. Treasury Yield Curve: 1961 to the Present.

Working paper, Divisions of Research and Statistics and Monetary Affairs, Federal Reserve Board,

Washington, D.C.

26



Hodrick, R. and Vassalou, M. 2002. Do we need multi-country models to explain exchange rate and

interest rate and bond return dynamics? Journal of Economic Dynamics and Control 26:1275–1299.

Hunter, D. and Simon, D. 2004. Benefits of international bond diversification. Journal of Fixed

Income 13:57–72.

Inci, A. and Lu, B. 2004. Exchange rates and interest rates: can term structure models explain currency

movements? Journal of Economic Dynamics and Control 28:1595–1624.

Juneja, J. 2012. Common factors, principal components analysis, and the term structure of interest

rates. International Review of Financial Analysis 24:48–56.

Kim, D. H. and Orphanides, A. 2005. Term structure estimation with survey data on interest rate

forecasts. Finance and Economics Discussion Series Divisions of Research and Statistics and Monetary

Affairs Federal Reserve Board, Washington, D.C.

Korn, O. and Koziol, C. 2006. Bond portfolio optimization: A risk-return approach. Journal of Fixed

Income 15:48–60.

Law, A. M. 2007. Simulation modeling and analysis. McGraw-Hill series in industrial engineering and

management science. McGraw-Hill, Boston, 4. ed., internat. ed. edition.

Litterman, R. B. and Scheinkman, J. 1991. Common factors affecting bond returns. Journal of

Fixed Income 1:54–61.

Morey, M. and Simpson, M. 2001. To hedge or not to hedge: the performance of simple strategies for

hedging foreign exchange risk. Journal of Multinational Financial Management 11:213–223.

Sarno, L., Schneider, P., and Wagner, C. 2012. Properties of foreign exchange risk premiums.

Journal of Financial Economics 105:279–310.

Solnik, B. H. 1974. An equilibrium model of the international capital market. Journal of Economic

Theory 8:500–524.

Vasicek, O. 1977. An equilibrium characterization of the term structure. Journal of Financial Eco-

nomics 5:177–188.

27



A. Appendix: Exchange Rate Calculations

We follow Dewachter and Maes (2001) and derive the expected discrete-time exchange

rate. We take the conditional expectation of the exchange rate dynamics from equation

(22):

Et[ds(t)] = [δ0 + δ′X(t)− (δ∗0 + δ∗
′
X(t)) +

1

2
[λ2 − λ∗2]′ · I]dt (29)

By definition it is,

Et[s(t+ τ)− s(t)] =

∫ t+τ

t
Et[ds(u)]

=

∫ t+τ

t
Et[δ0 + δ′X(u)− (δ∗0 + δ∗

′
X(u))d(u)] +

1

2
[λ2 − λ2∗]′ · [I · τ ]

(30)

With the Expectation of the diffusion X,

Et[X(t+ τ)] = e−KτX(t) + (I − e−Kτµ) (31)

and evaluating the integral gives:

Et[s(t+ τ)− s(t)] =τ(δ0−δ∗0)+[δ−δ∗]′·K−1·[(−e−K·τ+I)·X(t)+µ·(K·τ+e−K·τ+I)]

+ 1
2

[λ2−λ2∗]′·[I·τ ] (32)

Similar calculations yield to the variance of the exchange rate change:

V art[s(t+ τ)− s(t)] =[δ−δ∗]′·vec−1[−(K⊗I+I⊗K)−1·vec((K+K′)−1·e−(K+K′)τ−(Iτ+I))]·[δ−δ∗]

+[λ−λ∗]′·Iτ (33)
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Table 1: 4-factor joint TSM parameter estimates

δ0 0.1188
(0.0456)

δ∗0 0.2500
(0.0604)

i=1 i=2 i=3 i=4

δXi 0.0127 0.0133 0.0103 0
(0.0069) (0.0068) (0.0076) -

δ∗Xi 0.0097 0.0131 0 0.0136
(0.0060) (0.0079) - (0.0061)

κ1i 0.3314 0 0 0
(0.5168) - - -

κ2i -0.1719 0.1000 0 0
(0.1396) (0.6555) - -

κ3i -0.1977 0.0841 0.1000 0
(0.1295) (0.2149) (0.6982) -

κ4i 0.1717 -0.0405 0 0.8161
(0.1956) (0.1199) - (0.4397)

λXi 0.0055 -1.5654 0.6850 0
(1.5463) (0.5936) (0.7471) -

λ∗Xi -0.1609 -0.9873 0 -1.6639
(1.0456) (1.8319) - (1.2250)

6m 2y 5y 10y

ε 0.0000 0.0015 0.0000 0.0017
(0.0000) (0.010) (0.0000) (0.0011)

ε∗ 0.0000 0.0015 0.0001 0.0031
(0.0000) (0.0011) (0.0001) (0.0018)

The Table reports the estimation results from the four-factor joint ATSM. The

estimation is done using daily US and UK treasury yield data from January

1983 to July 2012. We report the parameter estimates and the standard errors

in parentheses. A * indicates parameters for the UK market. ε is the standard

deviation of observational error associated with the 6 months, 2-, 5- and 10-

Years treasury yields from the US and the UK. All other coefficients for the

model are described in the text.

29



1985 1990 1995 2000 2005 2010
0

2

4

6

8

10

12

14
US treasury yields

 

 

1985 1990 1995 2000 2005 2010
0

2

4

6

8

10

12

14
UK treasury yields

 

 

6 month
5 year
10 year

6 month
5 year
10 year

Figure 1: Time-series of 6 months, 2-, 5- and 10-year zero coupon US and
UK Treasury yields.
The maximum likelihood estimataion is based on panel data of daily US and
UK Treasury yields from the 2nd of January 1983 to the 31st of July 2012.
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Figure 2: Fitted factors in the four-factor joint ATSM and US and UK Trea-
sury yields.
The figure shows the local and common factors of the estimated joint ATSM.
Each factor is plotted with its corresponding treasury yield. In the upper row
the first common factor is fitted to the ’level’ of US treasury yields(10 year US
treasury bond). The second common factor and the spread between the 5 year
US and UK treasury yields are plotted in the upper right graph. The bottom
row reports the two local factors. The left graph shows the local factor US and
the slope of the US treasury yields (10year -6months). The right graph shows
the local factor UK and the shortrate UK(6months). Factors and treasury
yields run from the 2nd of January 1983 to the 31st of July 2012.
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Figure 3: Fitted Portfolio weights and US and UK Treasury yield data.
The figure shows the Portfolio weights of the the conditional bond portfolio.
The Portfolio weights are fitted to their corresponding US and UK Treasury
yield data. The portfolio weights are calculated as the sum of both countries
and the following yields: long end = 10 years; short end = 6 months + 2 years;
slope = 10 years - (6 months + 2 years); duration = (w1, · · ·w10, w

∗
1, · · · , w∗10)′ ·

(1, 2, 5, 10, 1, 2, 5, 10). The description of the data is given in the text. The
portfolio weights and treasury yield data run from the 2nd of January 1983 to
the 29th of July 2011.
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