
Commodity Futures Hedging, Risk Aversion and

the Hedging Horizon

Thomas Conlona, John Cottera, Ramazan Gençayb
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1. Introduction

Large commodity price fluctuations have increased the importance of hedging to both

producers and consumers.1 Derivative securities, in particular futures contracts, allow the

hedging of operational risks associated with commodity usage. Risk minimization objectives

are often considered in the literature, to determine the optimal number of futures contracts

necessary to remove the risk associated with holding a spot position in a given commodity.2

However, research suggests that the assumptions underlying minimum variance hedging may

be relaxed in practise, with hedging strategies shaped by both the level of managerial risk

aversion and their view on future market returns (Géczy et al., 2007; Tufano, 1996). More-

over, the horizon of the investor has been shown to alter the optimal hedging strategy (In &

Kim, 2006). By incorporating a range of specific investor preferences using a mean-variance

hedging framework, this paper illustrates how investor preferences impact the optimal fu-

tures hedging strategy and associated performance. The horizon dependent mean-variance

hedging approach is shown to result in hedge ratios that vary substantially in magnitude, in

keeping with findings for the hedging policies of real firms (Haushalter, 2000; Tufano, 1996).

Two alternative theories exist, as to the motivation behind corporate risk management

activities (Jin & Jorion, 2006). The first suggests that managers attempt to maximize

shareholder value by hedging, but mixed empirical support for the maximization theory

exists.3 The second theory suggests that management undertake hedging strategies in order

to diversify their personal portfolio or to maximize their personal utility, perhaps driven by

firm compensation structure. Stulz (1984) demonstrated the theoretical importance of the

1The higher cost of commodity inputs, such as cotton, and the impact on firm profitability was discussed

in the Economist (2011). Producers are having difficulty in passing rises in commodity prices onto consumers,

increasing the importance of hedging in the management of firms operational and cash-flow risks.
2Recent contributions to the futures hedging literature include a regime switching GARCH model with

conditional jump dynamics, Lee (2009), the effect of asymmetric basis on bivariate GARCH models of

commodity hedging, Lien & Yang (2008) and the impact of basis convergence and long memory on the

optimal minimum-variance futures hedge, Dark (2007).
3Jin & Jorion (2006) find that hedging reduces exposure to underlying prices but does not affect market

value of the firm; Allayannis (2001) finds evidence of a positive relation between firm value and the use of

foreign currency derivatives, while Tufano (1996) finds little evidence for the value maximization hypothesis.
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level of managerial risk aversion to the optimal hedging strategy, with greater managerial risk

tolerance leading to speculative positions. Several empirical studies have also addressed the

link between operational risk management, managerial incentives and risk aversion.4 Given

the evidence for the importance of managerial risk aversion in corporate risk management,

in this paper we explicitly incorporate risk aversion preferences in the calculation of the

optimal futures hedging strategy. In the empirical literature varying levels of investor risk

aversion have been demonstrated, motivating the study of different risk aversion preferences

in the case of futures hedging studied here (Bekaert et al., 2009).

Recent studies of corporate risk management have documented evidence that hedging

programmes of firms are influenced by the market views of management.5 Depending on

management’s expectations about future market prices, the size and timing of hedges may

vary. Stulz (1996) suggested that firms may have private information relating to their market

and that this may influence the extent to which they hedge. The evidence for selective

hedging is in contrast to the hedging literature focused on a risk minimisation objective, with

empirical results showing hedging strategy influenced by management’s view on expected

returns (Brown et al., 2006). In contrast, the minimum-variance objective assumes that

returns follow a pure martingale process with zero expected returns. Given that management

may believe that they have access to privileged information allowing them to predict future

returns, it is important to understand how their optimal hedging strategy varies from the

risk minimisation objective with differing private information. In this paper, a range of non-

zero expected return assumptions are incorporated using a mean-variance hedging objective,

resulting in substantial variation of the optimal hedge ratio and supportive of the hedging

policies of real firms.

4Tufano (1996) and Haushalter (2000) demonstrate that certain firms choose to hedge none of their

production, while others choose to hedge a proportion of commodity risk driven in part by managerial risk

aversion.
5In the case of gold mining firms, Brown et al. (2006) demonstrated that gold producers hedge selectively,

increasing their hedge ratios as gold prices decrease. Géczy et al. (2007) studied the tendency of firms to

“take a view” on interest rate and currency movements, suggesting that perceived information and cost

advantages lead them to hedge actively. Considerable evidence of selective hedging was found by Adam &

Fernando (2006), with only small marginal cash flow gains to firms.

3



Further, important features of financial data such as volatility and correlation, have been

extensively documented to have specific characteristics for the time horizon examined. Con-

sidering the interaction between risk aversion and investor horizon, Barberis (2000) demon-

strated increased optimal stock allocation in a portfolio context at long horizons. For the case

of futures hedging the optimal minimum-variance hedge ratio has been shown to increase

for data sampled at longer horizons, with a corresponding increase in hedge performance

(Ederington, 1979). However, sampling data at increasing horizons suffers from sample re-

duction problems associated with reduced quantities of data. To overcome this problem,

recent studies have introduced wavelet multiscaling techniques and we follow this approach

here.6 Wavelet decomposition facilitates an examination of different investor horizons, by

breaking a time-series into constituent time horizons and incorporating information at each

horizon that would be excluded using a sub-sampling method.

In the futures hedging literature, In & Kim (2006) describe how wavelets allow the

determination of the unique minimum-variance hedge ratio associated with different hedging

horizons for the S&P 500. The optimal hedge ratio and associated hedging effectiveness

were shown to increase at long time horizons, with both converging to one (implying a

fully hedged position gives full risk protection at long horizons).7 In the present work, we

build on previous work by calculating a horizon dependent mean-variance hedge ratio using

the wavelet transform. This explicitly incorporates preferences on both risk aversion and

selective hedging in the calculation of the optimal horizon dependent futures hedge ratio

and the associated hedging performance.

Considering the described empirical evidence for the influence of risk aversion, selective

hedging and investor horizon in firm hedging strategy, it is important to examine the im-

6Wavelet multiscaling techniques have been applied to numerous problems in Finance, such as the analysis

of high frequency foreign exchange data (Ramsey & Zhang, 1997) and changes in systematic risk over different

time horizons (Gençay et al., 2005). Wavelets have also been used to derive insight into relationships between

financial assets at different time-horizons (In et al., 2011; Rua & Nunes, 2009; Kim & In, 2005). Further

details on the application of wavelets to financial research can be found in Gençay et al. (2001).
7Further, Fernandez (2008) and Lien & Shrestha (2007) applied wavelet decomposition to minimum-

variance futures hedging, demonstrating improved hedging performance for investors with long time horizons.
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plications for the futures hedging strategy adopted by firms and the performance achieved.

This paper makes a number of important contributions to the literature: First, we show

how substantial cross-sectional variation in hedge ratios can emerge, driven by differing risk

aversion and time horizon preferences of firm management in a mean-variance framework.8

The hedge ratios are contrasted with traditional risk minimizing minimum-variance ratios,

with investor preferences shown to alter the optimal hedge ratio considerably.

Assumptions on selective hedging due to private information are then incorporated in

a mean-variance framework, by testing expected return assumptions with varying magni-

tude and direction. The interaction between different hedging preferences are examined,

with speculative hedging strategies resulting for hedgers with low risk aversion, long time

horizons and non-zero expected returns. The insights obtained complement those found in

previous studies focused on a simple horizon dependent minimum-variance hedging strategy

(Lien & Shrestha, 2007; In & Kim, 2006). Finally, given the evidence of diverse hedging

strategies among real firms we assess the hedging performance achieved by hedgers with dif-

fering preferences. Contrasting hedging performance is demonstrated from risk minimization

and utility perspectives, with performance shown to be strongly dependent on the underly-

ing preferences of the hedger. In particular, hedgers with high levels of risk aversion and a

short horizon are shown to reduce the risk of the hedge portfolio but achieve inferior utility

in comparison to those with low risk aversion. Thus, the implication for firm hedging strat-

egy is that both optimal hedge ratios and associated performance are dependent upon the

preferences of the hedgers.

The remainder of this paper is organized as follows: Section 2 presents the methodology

used to derive the optimal hedge strategy incorporating differing risk aversion, time-horizon

and private information preferences. Section 3 discusses the commodity data examined and

presents the empirical results. Concluding comments are given in Section 4.

8The importance of risk aversion and time horizon in a mean-variance setting, although not in the context

of futures hedging, have also been studied in optimal trade execution (Huberman & Stanzl, 2005; Almgren,

2003; Holden & Subrahmanyam, 1996).
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2. Methodology

2.1. Optimal Futures Hedge Ratio

The optimal futures hedge ratio depends on the objective function to be optimized, with

many different objective functions proposed, such as minimum-variance, mean-Gini and

generalized semivariance.9 In this paper, we follow an expected utility framework, in order

to capture the impact of differing hedger preferences on the optimal hedge ratio. Assuming

the hedger has a long spot position in the underlying commodity, the return, rh, on the

hedge portfolio is given by

rh = rs − hrf , (1)

where rs and rf are the log returns of the spot and futures prices respectively, and h is the

hedge ratio. Throughout the hedging literature, a mean-variance expected utility function

is often adopted, (Alizadeh et al., 2008; Brooks et al., 2002; Gagnon et al., 1998; Kroner &

Sultan, 1993), an approach we follow here.10 If E(rh) and var(rh) are the expected return

and variance of the hedge portfolio respectively, then the expected utility function is given

by

EU(rh) = E(rh)− αvar(rh), (2)

where α > 0 is a risk aversion parameter. The hedger then maximizes expected utility,

max
h

EU(rh) = max
h

[E(rs)− hE(rf ) (3)

−α(var(rs) + h2var(rf )− 2hcov(rs, rf ))], (4)

leading to an optimal hedge ratio, h, of futures contracts to hedge the spot position,

h =
cov(rs, rf )

var(rf )
− E(rf )

2αvar(rf )
, (5)

where cov(rs, rf ) is the covariance between spot and futures returns, var(rf ) the variance of

futures returns and E(rf ) the expected futures return.

9See Chen et al. (2003) for a throughout review of different objective functions applied in the futures

hedging literature.
10The mean-variance approximation to expected utility is only precisely consistent with the expected

utility hypothesis in the case of quadratic utility and normal asset returns. However, Kroll et al. (1984);

Levy & Markowitz (1979) showed similar portfolio decisions for a wide range of alternative utility functions.
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If the hedger has infinite risk aversion, α =∞, or futures prices follow a martingale, then

(5) reduces to the first term, corresponding to a variance minimizing hedge ratio (Ederington,

1979).11 The second term in (5) is the speculative component, whose relative importance

increases as risk aversion decreases. Given the recent evidence that firms adopt selective

hedging, management may assume non-zero expected return driven by their proprietary in-

formation.12 Depending upon their risk aversion preferences and expected returns assump-

tions, the hedging strategy adopted by management may differ from the minimum-variance

strategy. In this paper the effect of varying expected returns assumptions on the optimal

hedge ratio are assessed for a set of both positive and negative expected returns for different

management risk aversion levels and hedging horizons. This contributes additional insights

beyond the horizon dependent minimum-variance hedging strategy previously detailed, (Lien

& Shrestha, 2007; In & Kim, 2006), by capturing additional hedging preferences.

2.2. Hedging Performance

The primary motivation to test the performance of a hedging strategy is to ensure that

risk is reduced in the expected fashion. Dependent on the objective of the hedger, a variety of

methods to measure the performance of a hedging strategy have been proposed. In the case

of a minimum-variance hedge, Ederington (1979), the hedging performance can be measured

as the fraction of portfolio variance removed by hedging,13

HEvariance = 1− V ariance(r̃h)

V ariance(r̃s)
, (6)

where r̃h and r̃s are the out-of-sample returns for the hedge and spot portfolios respectively.

While the variance reduction performance measure captures the risk of the portfolio, it

fails to consider the trade-off between risk and return, important to a hedger with a view on

expected returns driven by private information. In order to consider the risk-return trade-off,

we also measure the out-of-sample utility of the portfolio, assuming the same mean-variance

11The minimum-variance hedge ratio was compared to a full expected utility maximization, (Lence, 1996),

with optimal minimum-variance hedge ratios shown to be substantially different from mean-variance hedges.
12In the context of portfolio optimisation, Best & Grauer (1991) examined the sensitivity of portfolio

weights to changes in the expected returns of assets.
13This is also given by the R2 from a regression analysis, Ederington (1979).
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utility function described above. Mean-variance utility has been commonly adopted as a

measure of hedging performance (Lee, 2009; Lien & Yang, 2008; Gagnon et al., 1998; Kroner

& Sultan, 1993). By measuring performance using the same risk aversion level as assumed

in the calculation of the mean-variance hedge ratio, we give a consistent view of the hedger’s

preferences. The out-of-sample utility is given by,

U(r̃h) = r̃h − αvar(r̃h), (7)

where the risk aversion level, α, corresponds to the level used in the calculation of the optimal

hedge ratio, (5), and r̃h is the realized out-of-sample return of the hedge portfolio.

We have now defined the tools necessary to model changes in the optimal hedge ratio

and associated performance for hedgers with differing preferences. Next, we detail the use

of wavelet multiscale analysis in the determination of changes in the optimal hedge ratio at

different time horizons.

2.3. Wavelet Multiscale Analysis

Financial and economic time series may have differing empirical characteristics as a func-

tion of time horizon. Wavelets provide an efficient means of studying the multi-horizon

properties of time-series as they can be used to decompose a signal into different time hori-

zons or frequency components. Further, wavelets help to overcome the sample reduction

problem normally found for low-frequency data, capturing information associated with all

available data. An alternative to the wavelet analysis is the Fourier transform, which uses a

set of sine and cosine functions to transform a time-series from the time to the frequency do-

main, but does not preserve the information in time. The wavelet transform is applied here

due to its better localization properties and ability to handle non-stationary data, important

in the context of financial data.

A wavelet is a small wave which grows and decays in a limited time period.14 To formalize

the notion of a wavelet, let ψ (.) be a real valued function with integral zero,∫ ∞
−∞

ψ(t)dt = 0. (8)

14The contrasting notion is a big wave such as the sine function which keeps oscillating indefinitely.
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Further, the square of the function integrates to unity,∫ ∞
−∞

ψ(t)2dt = 1. (9)

Wavelets are, in particular, useful for the study of how weighted averages vary from one

averaging period to the next. Let x(t) be a real-valued function and consider the integral

x̄(s, e) ≡ 1

e− s

∫ e

s

x(u)du (10)

where we assume that e > s. x̄(s, e) is the average value of x (.) over the interval [s, e].

Instead of treating an average value x̄(s, e) as a function of end points of the interval [s, e],

it can be considered as a function of the length of the interval,

λ ≡ e− s (11)

while centering the interval at

t = (s+ e)/2. (12)

λ is referred to as the time horizon15 associated with the average, and using λ and t the

average can be redefined such that

a(λ, t) ≡ x̄(t− λ

2
, t+

λ

2
) =

1

λ

∫ t+λ
2

t−λ
2

x(u)du (13)

where a(λ, t) is the average of x(.) over a time horizon of λ centered at time t. The change

in a(λ, t) from one period to another is measured by

w(λ, t) ≡ a(λ, t+
λ

2
)− a(λ, t− λ

2
) =

1

λ

∫ t+λ

t

x(u)du− 1

λ

∫ t

t−λ
x(u)du. (14)

This measures how much the average changes between two adjacent nonoverlapping time

intervals, from t− λ to t+ λ, each with a length of λ. As the two integrals in equation (14)

involve nonoverlapping intervals, they can be combined into a single integral over the real

axis to obtain,

w(λ, t) =

∫ ∞
−∞

ψ̃(t)x(u)du (15)

15Also referred to as the scale associated with the average.
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where

ψ̃(t) =


−1
λ
, t− λ < u < t,

1
λ
, t < u < t+ λ,

0, otherwise.

(16)

w(λ, t) are the wavelet coefficients and they are essentially the changes in averages across

adjacent (weighted) averages. Further mathematical details on the wavelet transform can

be found in Appendix A.

2.4. Wavelet variance and covariance

An important application of the wavelet transform is the ability to decompose the vari-

ance of a time-series at different horizons. This is possible as the total variance can be shown

to be invariant between the transformed and original process (see Appendix A for further

details). For each of the moments necessary in the calculation of the optimal mean-variance

hedge ratio, (5), an analogous horizon dependent moment can be calculated using wavelets.

The wavelet coefficients, wf (λ, t) and wg(λ, t), associated with a particular time horizon

λ and time t for functions f and g can be used to calculate a horizon dependent wavelet

covariance (Percival & Walden, 2000).

An unbiased16 estimator of the wavelet covariance at time horizon λj = 2j−1 is given by

covfg(λj) =
1

Mj

N−1∑
t=Lj−1

wf (λj, t)wg(λj, t) (17)

where Mj = N−Lj+1 is the number of coefficients remaining after discarding the boundary

coefficients. The wavelet variance for function f at a particular time horizon λj is similarly

defined,

varf (λj) =
1

Mj

N−1∑
t=Lj−1

[wf (λj, t)]
2 . (18)

The wavelet variance and covariance decompose the statistics of a financial time-series at

increasingly higher resolutions and allow the exploration of the signal at different time hori-

16At a time-series boundary, the wavelet transform uses ‘mirrored’ coefficients, potentially introducing a

bias to the data. To alleviate this, the coefficients affected by the boundary are removed from the calculation

of the statistics. Biased coefficients were also tested with little quantitative implication for our results.
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zons.17 In the case of the commodity hedgers studied, the original data is of monthly horizon,

leading to wavelet variance-covariance at 1 − 2 month, 2 − 4 month, 4 − 8 month, 8 − 16

month and 16− 32 month horizons, incorporating both short- and long-run horizons.18

The horizon dependent wavelet covariance, (17), and variance, (18), can then be applied

to calculate a time horizon dependent version of the optimal mean-variance hedge ratio (5),

h(λj) =
cov(rf , rs;λj)

var(rf ;λj)
− E(rf )

2αvar(rf ;λj)
. (19)

where cov(rf , rs;λj) corresponds to the covariance between the spot and futures returns, and

var(rf ;λj) the variance of the futures returns at horizon λj. This mean-variance hedge ratio

is now dependent on the time horizon, risk aversion and expected return assumptions of the

hedger, allowing us to examine how changes in specific hedger preferences alter the optimal

hedging strategy.

3. Data and Empirical Results

3.1. Data and Descriptive Statistics

Monthly spot and futures prices for a range of commodities traded on different exchanges

and with diverse fundamental drivers were selected for the study. Coffee (traded on NYBOT),

cotton (NYMEX), corn (CBOT) and crude oil (NYMEX) prices from January 1986 through

December 2010, a total of 300 months, were obtained from Datastream. In the context of

futures hedging, monthly data has been explored previously in a number of studies due to

a reduction in nonsynchroneity problems between futures and cash (Adam-Müller & Nolte,

2011; Ederington & Salas, 2008). Monthly data is appropriate in this study, as it allows

contrast to studies of corporate finance hedging policy where the reported data ranges from

monthly horizon up to five years (Jin & Jorion, 2006; Allayannis & Ofek, 2001; Haushalter,

17Confidence intervals for the wavelet variance and covariance may be calculated using large sample theory.

See Percival & Walden (2000) for a detailed treatise.
18Throughout this paper, the average time horizon is referred to instead of the range described. Using the

average horizon, the monthly commodity returns are decomposed into returns with horizon 1.5, 3, 6, 12 and

24 months.
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2000). Each futures contract is nearest-to-maturity and rolled to the new contract on the

first day of the contract month.

To decompose the data for both the cash and futures returns into the constituent time-

horizons of the investor, the maximum overlap discrete wavelet transform was employed

(MODWT, Section A.2). For this study, we selected the least asymmetric (LA) wavelet,

(also known as the Symlet, Percival & Walden (2000)), with filter width LA8, where 8 refers

to the length of the scaling function.19 The Symlet was chosen as it exhibits near symmetry

about the midpoint and allows accurate alignment of wavelet coefficients with the original

time-series. In the calculation of the hedge ratio and the associated performance measures,

only coefficients unaffected by the boundary are used, eliminating boundary problems.

In order to test the performance of the prescribed hedging strategy at each risk aversion

level and time horizon, the time-series is split into two equal segments, where the first is used

to calculate the optimal hedge ratio in-sample and the second to test the performance of the

strategy out-of-sample (Lee, 2009). At each time horizon, the out-of-sample performance

captures the average performance realized by an investor with that horizon, rather than

the real-time hedging performance. In-sample performance was also considered, but little

additional insight was revealed as full information regarding returns are available to the

investor in-sample.20 Out-of-sample effectiveness results in a clearer, unbiased view of the

performance for hedgers with differing views on expected returns.

The mean-variance hedging objective, (5), requires the hedger view on expected futures

returns. In this paper, we examine changes in the hedge ratio for different investor expected

return assumptions. To this end, zero expected returns (a pure martingale process) are

tested resulting in a minimum-variance hedge. Given the observed tendency for firms to

hedge selectively, a range of non-zero expected returns are also examined to determine the

impact on commodity futures hedging. Expected returns were chosen with reference to the

19Different filter widths and wavelet types were also examined. The filter width was chosen to strike a

balance between the level of periodicity captured and the highest level of decomposition available. Various

other wavelet types, such as the Coiflet and Daubauchies were tested giving little qualitative difference in

results. Results, not shown for conciseness, are available from the authors.
20In-sample results are not shown for brevity; However, they are available from the authors.
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average annualized returns achieved in both the in-sample and out-of-sample periods. In-

sample, the average returns tended to be negative, while out-of-sample annual returns were

found to be positive. The expected returns selected here vary from −4% to +4%, within the

range of returns found over the periods studied.

3.2. Hedging and Risk Aversion

We first investigate the univariate impact of differing risk aversion preferences on the

optimal hedging strategy, using the original unfiltered monthly commodity returns. The

optimal mean-variance hedge ratio, (5), is calculated for different values of risk aversion

corresponding to low risk aversion (α = 1), moderate risk aversion (α = 3), high risk aversion

(α = 6, 10) and extremely high risk aversion (α = 1000).21 The extremely high risk aversion

case approximates the case of infinite risk aversion, equivalent to the minimum-variance

portfolio.22

The optimal mean-variance hedge ratio for a hedger with varying risk aversion and ex-

pected returns preferences is shown in Table 1. For each commodity a range of different

expected return assumptions from −4% to +4% are examined.23 For extremely high levels

of risk aversion, (α = 1000), the optimal hedge ratio is the same across all expected return

values since the magnitude of the speculative component in (5) converges to zero. How-

ever, for low levels of risk aversion, the optimal hedge ratios diverge significantly, increasing

21Various levels of risk aversion have been examined in the hedging literature, with Lence (1996) testing

values of 1, 3 and 10, Gagnon et al. (1998) examining values between 0.5 and 4, and Kroner & Sultan (1993)

assuming a value of 4. The range of assumptions for the risk aversion are also in line with the empirical

literature, with Bekaert et al. (2009) finding a median risk aversion level of 2.52 but a mean of 7.06.
22In the case of extremely high risk aversion, the second term of equation (5) approaches zero, approx-

imating the minimum-variance case. Since the minimum-variance case assumes zero expected return, the

extremely high risk aversion case provides an indifferent hedge ratio to a zero expected return mean-variance

hedge. Note, we discuss this case implicitly by examining the extremely high risk aversion case, α = 1000.
23Each of these values corresponds to an annualized expected return, chosen to reflect the view of a

hedger with additional information they believe not to be available to the market. An example might be the

information available to a large oil producer due to knowledge of a refinery due to be taken off-line due to

repairs. Additional expected return values were also considered, resulting in some quantitative changes to

the hedge ratio but little change to the qualitative implications.
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monotonically as the expected return moves from positive to negative. For risk aversion

level α = 1, a hedger expecting a negative return will tend to over-hedge, with the hedge

ratio much greater than one. In contrast, the optimal hedge ratio for a positive expected

return is lower than the naive (or one-to-one) hedge ratio, ranging from 0.09 to 0.81 across

the different commodities studied.

[Table 1 about here.]

For greater risk aversion levels, the optimal hedge ratio decreases (increases) in the case

of negative (positive) expected returns, converging to the minimum-variance hedge in each

case. At the highest risk aversion levels, the speculative component of (5) is minimized

with less importance placed on the private information available to the hedger and more

on risk reduction. Previous application of the mean-variance hedging framework, (Rolfo,

1980), assumed a single expected return and varying risk aversion levels. By examining

a range of expected return assumptions, we demonstrate the importance of the market

view realized from the manager’s private information. Hedge ratios greater than one are

found only for negative expected returns, corresponding to a risk tolerant hedger taking a

speculative position to benefit from their view on future expected return. The actual hedge

ratios found previously for the oil and gold-mining industries were rarely greater than one,

(Jin & Jorion, 2006; Haushalter, 2000; Tufano, 1996), suggesting that management rarely

speculated on negative expected returns. Empirically, Haushalter (2000) found that oil and

gas producers with an active hedging policy hedged an average of 30% of one year production.

Comparing this to the optimal crude oil hedge ratio in table 1, would suggest a very low

level of management risk aversion level (< 1) and positive expected return assumptions.

However, the above analysis assumes that all hedgers have similar hedging horizons, while

different producers and consumers may actually have very diverse horizons. We consider the

implications of this in the following sections.

3.3. Futures Hedging and the Hedging Horizon

In order to calculate the horizon dependent variance of and covariance between futures

and spot, each commodity time-series is first decomposed into constituent time horizons
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using the maximum overlap discrete wavelet transform (MODWT - See appendix A.2 for

further details). Table 2 presents the variance, covariance and correlation statistics for each

commodity at different average time horizons corresponding to 1.5, 3, 6, 12 and 24 months.

The variance at each horizon corresponds to the contribution to total sample variance and is

found to peak at the shortest time horizon for all assets. With the exception of Corn (which

peaks at medium time-horizons), the maximum covariance is also found at short horizon.

Also shown in table 2 are correlations between spot and futures at different horizons. In the

cases of cotton, corn and crude oil correlation is found to increase at longer time horizons, in

keeping with findings for other assets in previous studies (Fernandez, 2008; Lien & Shrestha,

2007; In & Kim, 2006). Coffee is the exception here, with maximum correlation found at

intermediate horizon, perhaps explained by difficulties in coffee storage over longer horizons.

[Table 2 about here.]

The minimum-variance hedge ratio for each asset is also shown in Table 2, with larger

hedge ratios at longer time horizons in keeping with the findings of Fernandez (2008); Lien

& Shrestha (2007); In & Kim (2006). At the shortest horizon of 1.5 months, the optimal

minimum-variance hedge ratio ranges from 0.33 in the case of cotton to 0.99 for crude

oil. At the longest time horizon studied, the hedge ratio ranges from 0.82 (coffee) to 1.08

(cotton). Considering the different assets, a wide divergence is found with a range of 0.75

between hedge ratios at the shortest and longest horizons for Cotton but negligible in the

case of crude oil, possibly reflecting the liquidity of each market, (crude oil being the most

widely traded commodity). The hedging performance at each horizon is also examined for

all assets, measured using variance reduction and is found to increase at longer horizons.

Having separately considered the impact of risk aversion, hedging horizon and speculative

hedging on the optimal hedging strategy, we next incorporate assumptions on all to examine

their impact on commodity hedging strategy.

3.4. Hedging, Risk Aversion and the Hedging Horizon

Having examined the change in the optimal futures hedge ratio for differing risk aversion,

selective hedging and time horizon separately in previous sections, here we consider a horizon
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dependent mean-variance framework that incorporates all. Table 3 considers the optimal

mean-variance hedge ratio for hedgers with different hedging horizons, risk aversion attitudes

and expected return assumptions.24 First, we detail the results for a hedger assuming positive

expected return of +2% where, moving from high to low risk aversion, we find a decrease in

the optimal hedge ratio for all assets. This is in keeping with the premise that an investor

with low risk aversion has higher risk tolerance and is concerned with both risk and return.

These risk tolerant investors are willing to reduce the size of their hedge to gain a positive

expected return. Looking down the different time horizons in table 3 for an investor with

extremely low risk aversion (α = 1), we find that the optimal hedge ratio decreases at longer

horizon taking on negative values at a 24 month horizon, for all assets examined. This

suggests that it is optimal for an investor with a long time horizon and low risk aversion

to take a speculative position (reverse hedging) using futures.25 However, empirical studies

have found little evidence for reverse hedging in the case of gold miners or oil and gas firms,

(Jin & Jorion, 2006; Haushalter, 2000; Tufano, 1996), suggesting a zero lower bound on the

hedge ratio at each horizon. This, in turn, implies a lower bound on the risk aversion level of

the hedger at each horizon, with a lower bound between 2 and 4 imputed across the assets

studied, in keeping with that found in the asset pricing literature (Mehra & Prescott, 1985).

[Table 3 about here.]

Next, we consider the optimal hedge ratio for a negative expected return, −2%. In

contrast to the results for positive expected returns, the optimal hedge ratio is found to

increase moving from high to low risk aversion levels. The hedger, in order to profit from

the expected direction of the commodity, takes a larger short position in the futures market

for low risk aversion levels. In keeping with the findings for positive expected return, at long

24The average hedge ratio and 95% confidence interval were also calculated using a bootstrap method and

are available from the authors. Results show that the hedge ratios found are within the 95% confidence

intervals from the bootstrap.
25This result is consistent with the findings of Barberis (2000), where the optimal equity allocation for

long horizon investors were shown to be larger than for short horizon investors due to predictability in equity

returns.
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horizons the optimal hedge ratio for low risk aversion levels diverges from the one-to-one or

naive hedge, resulting in a net short speculative position in futures.26

At very high risk aversion levels, (α = 1000), the hedge ratio converges to the minimum-

variance hedge ratio, regardless of the expected return assumption. In contrast to previous

findings, (Fernandez (2008) and references therein), the maximal hedge ratio is found at

intermediate horizon for certain assets, (coffee, corn and crude oil). However, the underlying

data examined here is of a much longer horizon, (monthly rather than daily in previous

studies), contributing additional insight from the perspective of longer-term hedgers.

For robustness, differing expected returns assumptions of −4% and +4% are also studied

for each commodity, with the optimal hedge ratio in each case shown in table 4. The trends

in the hedge ratio for different horizons and risk aversion assumptions are similar to those

found in table 3 for smaller magnitude expected returns. Naturally, for very high levels of risk

aversion, α = 1000, the ratio is identical, as the speculative component of (5) is negligible. At

low levels of risk aversion, α = 1, . . . , 3, the divergence between the hedge ratio for positive

and negative returns is more pronounced than that found earlier. At these levels, the risk

tolerant hedger is attempting to increase their expected future wealth with less regard for

the level of risk involved. Further, at long hedging horizons the speculative component

dominates, with the hedger taking larger positions to benefit further from the expected

bias in the return and the lower relative volatility, driven by mean-reversion in commodities

(Schwartz, 1997). Comparing to the previous results for different returns assumptions, the

direction of expected return is important at all horizons, while the magnitude of expected

return has relatively more impact on the optimal hedging strategy at longer horizon.

[Table 4 about here.]

Given the evidence that risk aversion, selective hedging and hedging horizon influence

the hedging strategy of real firms, we have shown that incorporating each into an optimal

hedging model produces a wide range of hedge ratios, in keeping with that found for real

firms (Haushalter, 2000; Tufano, 1996). As an example, consider a minimum-variance hedge

26Note that a positive number in table 3 implies that the hedger sells short that number of contracts, (5),

while a negative number corresponds to a long speculative position in the futures.
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for a crude oil producer, which would suggest a hedge ratio approaching one. In a study of

oil and gas producers from 1992 to 1994, Haushalter (2000) found that for companies that

hedge production, on average only 30% of one year production was hedged. In our analysis,

to achieve a hedge ratio like that found empirically at a twelve month horizon the hedger

would require a relatively low risk aversion level (α = 1, . . . , 3) and a positive expected return

assumption. This suggests that minimum-variance hedging, although prevalent throughout

the literature, may not capture the true preferences of hedgers. Incorporating risk aversion,

through mean-variance hedging, in combination with the hedging horizon allows for a richer

variety of preferences and a better understanding of the impact on hedging strategy. This,

in turn, helps us to understand the impact of managerial preferences on the operations of

the firm.

3.5. Hedging Performance

Incorporating investor preferences on risk aversion, hedging horizon and expected re-

turn (selective hedging) into a mean-variance hedging objective, a wide range of possible

hedge ratios were detailed across all commodities studied. Given the diverse hedge ratios

demonstrated here and the evidence for wide ranging hedge ratios adopted by real firms, it

is important to understand the performance achieved by each hedging strategy. Dependent

on the objective of the hedger each of the ratios prescribed will also deliver varying hedging

performance. In order to determine the performance of the optimal hedging strategy across

different risk aversion levels and wavelet derived hedging horizons, we consider two differ-

ent performance measures. Performance is tested out-of-sample, with half the data used to

calculate the relevant hedge ratio and the remaining data used for out-of-sample assessment.

In table 5 performance is measured using the traditional variance reduction method,

with performance shown for a range of risk aversion levels and hedging horizons. Similar to

the case of an investor who hedges at a weekly or monthly period (Ederington, 1979), our

results show the average performance achieved by a hedger at different horizons. Results

are shown for two levels of expected return, ±2%, for the hedge ratios corresponding to

table 3.27 First, we examine the variance risk reduction performance corresponding to the

27Effectiveness results for expected returns of ±4% were also studied and were found to be qualitatively
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original unfiltered returns with small variation found for differing risk aversion level. Across

the different wavelet transformed horizons, for very high levels of risk aversion the hedge

ratio for hedgers expecting both positive and negative return is equal, resulting in identical

effectiveness. For high levels of risk aversion hedging performance is found to be improved

at longer horizons, with large performance increases in particular for coffee and cotton.

At low risk aversion levels, the performance varies markedly across assets. In the case of

crude oil, similar performance is found for positive and negative expected returns, while for

cotton the performance at short horizons differs greatly. Across all assets, at long horizons

we find an increase in the hedge portfolio variance relative to the spot position for low levels

of risk aversion, driven by the hedger’s willingness to increase the expected return of the

portfolio with little focus on the risk of the hedge portfolio. This corresponds to a hedger

taking a speculative position, expecting mean reversion in commodities with little focus on

risk (Schwartz, 1997). However, little empirical evidence for this ‘reverse hedging’ exists

in the literature, suggesting higher risk aversion preferences in practise (Haushalter, 2000;

Tufano, 1996).

[Table 5 about here.]

The application of variance-reduction as a measure of hedging performance captures

only the reduction in spot portfolio risk. However, a hedger assuming a non-zero expected

futures return may want to consider the trade-off between risk and return in evaluating the

performance of the hedging strategy. A common approach to incorporate both risk and

return in performance measurement is to evaluate the mean-variance utility of the hedge

portfolio.28 While previous studies have applied a minimum-variance hedging approach and

measured performance using mean-variance utility, (Alizadeh et al., 2008; Fernandez, 2008;

In & Kim, 2006), we provide a consistent view by applying the same hedging preferences to

find both the optimal mean variance hedge ratio and measure associated performance.

The out-of-sample utility, (7), of the hedge portfolio can be found in table 6 for hedge

similar. Results are not presented for conciseness but are available on request.
28The economic benefits from hedging have been commonly measured using mean-variance utility (Lee,

2009; Lien & Yang, 2008; In & Kim, 2006; Gagnon et al., 1998; Kroner & Sultan, 1993).
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ratios corresponding to those in table 3. In agreement with the findings of In & Kim (2006);

Fernandez (2008) the utility of the hedge portfolio is found to be negative for a wide range

of scales and horizons. For all assets at the shortest horizons, a monotonic decrease in

the realized utility is found at greater risk aversion levels across both positive and negative

expected returns. Compared with low risk aversion hedgers, those having very high risk

aversion (minimum-variance hedgers), are giving up expected returns in order to focus on

decreasing their risk levels, thus lowering their mean-variance utility. At longer horizons,

the out-of-sample utility is found to be greatly dependent on the expected return. In each

case, the realized out-of-sample return is positive, resulting in contrasting performance for

long horizon positive and negative expected return hedgers. Those with positive (negative)

expected returns, experience positive (negative) expected utility at long horizons, decreasing

(increasing) at higher risk aversion levels. Moreover, across all risk aversion levels a hedger

using unfiltered original data to calculate his hedge ratio achieves a lower level of utility than

a hedger focussed on a particular horizon, confirming the importance of considering horizon

independent of aversion or expected returns preferences.

[Table 6 about here.]

Comparing the hedging horizons, for very high risk aversion levels (the minimum-variance

hedge), the highest utility is achieved for hedgers with a long horizon, with a monotonic

increase for all assets. For small values of aversion, the results are again dependent on

the expected return. Positive expected return hedgers experience an increase in utility

at long horizons, due to a decrease in the size of their hedge position. In contrast, the

large speculative hedge positions adopted by negative expected return hedgers result in

monotonically decreasing utility at long horizons. These results demonstrate that while low

risk aversion hedgers can benefit at longer horizon, their expected return assumptions and

associated private information leading to the expected returns are crucial in the outcome. As

described previously in the case of a crude oil producer, the hedge ratio may be considerably

less than a minimum-variance hedge, resulting in large deviation in performance depending

on the accuracy of the expected returns assumptions at low risk aversion levels. At the longest

horizons, a hedger correctly anticipating a positive expected return would have benefited
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from having low risk aversion, while a negative expected return hedger would have benefited

further at high levels of aversion.

Comparing the different performance metrics studies, high risk aversion hedgers achieve

best performance in terms of risk reduction, measured using variance reduction. However,

measured using out-of-sample utility, the performance was weakest (strongest) at high risk

aversion for negative (positive) expected returns compared to other risk aversion levels. This

demonstrates the importance of considering hedge portfolio realized return in measuring the

hedging performance, in particular for hedgers with low risk aversion preferences. For high

risk aversion hedgers, best performance is found at the longest horizon examined, regardless

of the effectiveness measure applied. The implication for firm hedging strategy is that both

optimal hedge ratios and associated performance are dependent upon the preference of the

hedger.

4. Conclusions

In this paper, we examine the impact of differing investor preferences on the optimal

futures hedging strategy. Given the evidence that assumptions underlying minimum variance

hedging may be relaxed in practise, we investigate how preferences on hedging horizon, risk

aversion and selective hedging impact the optimal mean-variance futures hedging strategy

and associated hedging performance. The paper provides insight into the interaction between

the optimal commodity hedge ratio and investor risk aversion, selective hedging and hedging

horizon.

A mean-variance hedging framework is applied in order to examine changes in the optimal

futures hedge ratio for a range of preferences. Using wavelets, we transform commodity

returns data into different horizons, allowing us to examine a number of different hedging

horizons with a limited dataset. The horizon dependent mean-variance hedging approach is

shown to result in hedge ratios that vary widely in magnitude for all commodities, in keeping

with findings for the hedging policies of real firms (Haushalter, 2000; Tufano, 1996).

For positive expected returns, the optimal hedge ratio is shown to decrease for lower risk

aversion levels, as low risk aversion is associated with higher levels of speculation for risk

tolerant investors. Comparing long to short horizons, the optimal hedge ratio is significantly
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smaller at low risk aversion levels. In contrast, for negative expected returns the optimal

mean-variance hedge ratio is found to increase at low risk aversion levels, with the hedger at-

tempting to benefit from their view of expected returns (due to private information). Again,

a sharp contrast is found between short and long horizon hedgers, with long horizon hedgers

willing to speculate further. Finally, for extremely high levels of risk aversion, expected

returns are of negligible importance to the hedger and so the hedge ratio converges for all

returns assumptions. Additional analysis of larger magnitude expected returns demonstrate

greater diversity between hedge ratios for differing risk aversion preferences.

Performance of the diverse hedge ratios detailed is then examined, with contrasting per-

formance found from risk minimization and utility perspectives. Measuring the level of

variance remaining after hedging, differing results are found, dependent on the interaction

between risk aversion and hedging horizon. For high risk aversion, the best risk reduction

performance is obtained at long horizons. For low risk aversion levels, the amount of residual

risk is found to increase at long horizons, due to the speculative component associated with

the hedge ratio. Moreover, the highest levels of utility were found for hedgers who correctly

forecasted positive expected returns and had a long horizon. Hedgers with high levels of risk

aversion and a short horizon are shown to reduce the risk of the hedge portfolio but achieve

inferior utility in comparison to those with low risk aversion. The implication for firm hedg-

ing strategy is that both optimal hedge ratios and associated performance are dependent

upon the preferences of the investor.
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Appendices

A. Wavelet Transformations

A.1. Discrete Wavelet Transform

In order to capture the optimal hedging characteristics associated with different time

horizons, we first decompose each time-series using the wavelet transform. Decomposing the

data results in a series of coefficients associated with a particular time horizon and can be

performed using the (discrete) wavelet transformation (DWT). Formally, let us introduce

the DWT through a simple matrix operation. Let y be the dyadic length vector (T = 2J)

of observations. The length T vector of discrete wavelet coefficients w is obtained via

w =Wy (20)

where W is a T×T orthonormal matrix defining the DWT. The vector of wavelet coefficients

can be organized into J + 1 vectors, w = [w1,w2, ...,wJ ,vJ ]′, where wj is a length T
2j

vector

of wavelet coefficients associated with changes on a time horizon of length λj = 2j−1 and vJ

is a length T/2j vector of scaling coefficients associated with averages on a time horizon of

length 2J = 2λJ .

The matrix W is composed of the wavelet and scaling filter coefficients arranged on a

row-by-row basis. Let

h1 = [h1,N−1, h1,N−2, . . . , h1,1, h1,0]
′ (21)

be the vector of zero-padded unit horizon wavelet filter coefficients in reverse order. Thus,

the coefficients h1,0, ..., h1,L−1 are taken from an appropriate orthonormal wavelet family of

length L, and all values L < t < T are defined to be zero. Now circularly shift h1 by factors

of two so that

h
(2)
1 = [h1,1, h1,0, h1,N−1, h1,N−2 . . . , h1,3, h1,2]

′

h
(4)
1 = [h1,3, h1,2, h1,1, h1,0 . . . , h1,5, h1,4]

′
(22)

and so on. Define the T
2
× T dimensional matrix W1 to be the collection of T

2
circularly

shifted versions of h1. Hence,

W1 = [h
(2)
1 ,h

(4)
1 , . . . ,h

(T
2
−1)

1 ,h1]
′. (23)
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Let h2 be the vector of zero-padded horizon 2 wavelet filter coefficients defined similarly to

h1. W2 is constructed by circularly shifting the vector h2 by factor of four. Repeat this

to construct Wj by circularly shifting the vector hj (the vector of zero-padded horizon j

wavelet filter coefficients) by 2j. The matrix VJ is simply a column vector whose elements

are all equal to 1√
T

. Then, the T × T dimensional matrix W is W = [W1,W2, ...,WJ ,VJ ]′.

When we are provided with a dyadic length time-series, it is not necessary to implement

the DWT down to level J = log2(T ). A partial DWT may be performed instead that

terminates at level Jp < J . The resulting vector of wavelet coefficients will now contain

T − T
2Jp

wavelet coefficients and T
2Jp

scaling coefficients.

The orthonormality of the matrix W implies that the DWT is a variance preserving

transformation:

‖w‖ =

T

2J∑
t=1

v2t,J +
J∑
j=1

 T

2J∑
t=1

w2
t,j

 =
T∑
j=1

y2t = ‖y‖2 . (24)

This can be easily proven through basic matrix manipulation via

‖y‖2 = y′y = (Ww)′Ww = w′W ′Ww = w′w = ‖w‖ . (25)

Given the structure of the wavelet coefficients, ‖y‖2 is decomposed on a horizon-by-horizon

basis by

‖y‖2 =
J∑
j=1

‖wj‖2 + ‖vj‖2 (26)

where ‖wj‖2 =
∑ T

2j

t=1w
2
t,j is the sum of squared variation of y due to changes at horizon λj

and ‖vj‖2 =
∑ T

2j

t=1 v
2
t,j is the information due to changes at horizons λJ and higher.

A.2. Maximum Overlap Discrete Wavelet Transformation

An alternative wavelet transform is the maximum overlap discrete wavelet transformation

(MODWT) which is computed by not subsampling the filtered output. Let y be a vector of

observations with arbitrary length T. The length (J + 1)T vector of MODWT coefficients w̃

is obtained via

w̃ = W̃y, (27)
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where W̃ is a (J+1)T×T matrix defining the MODWT. The vector of MODWT coefficients

may be organized into J + 1 vectors via

w̃ = [w̃1, w̃2, . . . , w̃J , ṽJ ]T (28)

where w̃j is a length T vector of wavelet coefficients associated with changes on a horizon of

length λj = 2j−1 and ṽJ is a length T vector of scaling coefficients associated with averages

on a horizon of length 2J = 2λJ , just as with the DWT.

Similar to the orthonormal matrix defining the DWT, the matrix W̃ is made up of J + 1

submatrices, each size T × T , and may be expressed as

W̃ =



W̃1

W̃2

...

W̃J

ṼJ


The MODWT utilizes the rescaled filters h̃j =

h̃j

2
j
2

and g̃J = h̃J

2
J
2

, (j = 1, ..., J). To construct

the T × T dimensional submatrix W̃1, we circularly shift the rescaled wavelet filter vector

h̃1 by integer units to the right so that

W̃1 =
[
h̃
(1)
1 , h̃

(2)
1 , h̃

(3)
1 , . . . , h̃

(N−2)
1 , h̃

(N−1)
1 , h̃1

]T
(29)

This matrix may be interpreted as the interweaving of the DWT submatrix W1 with a

circularly shifted (to the right by one unit) version of itself. The remaining submatrices

W̃2, . . . , W̃J are formed similarly to Equation 29, only replace h̃1 with h̃j.

In practice, a pyramid algorithm is utilized similar to that of the DWT to compute the

MODWT. Starting with the data xt (no longer restricted to be a dyadic length), filter it

using h̃1 and g̃1 to obtain the length T vectors of wavelet and scaling coefficients w̃1 and ṽ1,

respectively.

For each iteration of the MODWT pyramid algorithm, we require three objects: the data

vector x, the wavelet filter h̃l and the scaling filter g̃l. The first iteration of the pyramid

algorithm begins by filtering (convolving) the data with each filter to obtain the following
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wavelet and scaling coefficients:

w̃1,t =
L−1∑
l=0

h̃lyt−l mod T and ṽ1,t =
L−1∑
l=0

g̃lyt−l mod T (30)

where t = 1, . . . , T . The length T vector of observations has been high- and low-pass filtered

to obtain T coefficients associated with this information. The second step of the MODWT

pyramid algorithm starts by defining the data to be the scaling coefficients ṽ1 from the first

iteration and apply the filtering operations as above to obtain the second level of wavelet

and scaling coefficients

w̃2,t =
L−1∑
l=0

h̃lṽ1,t−2l mod T and ṽ2,t =
L−1∑
l=0

g̃lṽ1,t−2l mod T , (31)

with t = 1, . . . , T . Keeping all vectors of wavelet coefficients, and the final level of scaling

coefficients, we have the following length T decomposition: w̃ = [w̃1, w̃2, ṽ2]
′. After the

third iteration of the pyramid algorithm, where we apply filtering operations to ṽ2, the

decomposition now looks like w̃ = [w̃1, w̃2, w̃3, ṽ3]
′. This procedure may be repeated up to

J times where J = log2(T ) and gives the vector of MODWT coefficients in Equation 28.

Similar to DWT, MODWT wavelet and scaling coefficients are variance preserving

‖w̃‖2 =
T∑
t=1

ṽ2t,J +
J∑
j=1

(
T∑
t=1

w̃2
t,j

)
=

T∑
j=1

y2t = ‖y‖2 . (32)

and a partial decomposition Jp < J may be performed when it is deemed necessary.

The following properties are important for distinguishing the MODWT from the DWT.

The MODWT can accommodate any sample size T , while the J thp order partial DWT re-

stricts the sample size to a multiple of 2Jp . The detail and smooth coefficients of a MODWT

are associated with zero phase filters. Thus, events that feature in the original time series can

be properly aligned with features in the MODWT multiresolution analysis. The MODWT

is invariant to circular shifts in the original time series. This property does not hold for

the DWT. The MODWT wavelet variance estimator is asymptotically more efficient than

the same estimator based on the DWT. For both MODWT and DWT, the scaling coeffi-

cients contain the lowest frequency information. But each level’s wavelet coefficients contain

progressively lower frequency information.
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Gençay, R., Selcuk, B., & Whitcher, B. (2001). An Introduction to wavelets and other

filtering methods in finance and economics . San Diego, CA: Academic Press.
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In, F., Kim, S., & Gençay, R. (2011). Investment horizon effect on asset allocation between

value and growth strategies. Economic Modelling , 28 , 1489–1497.

Jin, Y., & Jorion, P. (2006). Firm value and hedging: Evidence from U.S. oil and gas

producers. The Journal of Finance, 61 , 893–919.

Kim, S., & In, F. (2005). The relationship between stock returns and inflation: new evidence

from wavelet analysis. Journal of Empirical Finance, 12 , 435–444.

Kroll, Y., Levy, H., & Markowitz, H. M. (1984). Mean-variance versus direct utility maxi-

mization. The Journal of Finance, 39 , 47.

Kroner, K., & Sultan, J. (1993). Time-varying distributions and dynamic hedging with

foreign currency futures. Journal of Financial and Quantitative Analysis , 28 , 535–551.

Lee, H.-T. (2009). Optimal futures hedging under jump switching dynamics. Journal of

Empirical Finance, 16 , 446–456.

Lence, S. H. (1996). Relaxing the assumptions of minimum-variance Hedging. Journal of

Agricultural and Resource Economics , 21 , 39–55.

Levy, H., & Markowitz, H. (1979). Approximating expected utility by a function of mean

and variance. The American Economic Review , 69 , 308–317.

Lien, D., & Shrestha, K. (2007). An empirical analysis of the relationship between hedge

ratio and hedging horizon using wavelet analysis. Journal of Futures Markets , 27 , 127–150.

Lien, D., & Yang, L. (2008). Asymmetric effect of basis on dynamic futures hedging: Em-

pirical evidence from commodity markets. Journal of Banking & Finance, 32 , 187–198.

29



Mehra, R., & Prescott, E. (1985). The equity premium: A puzzle. Journal of monetary

Economics , 15 , 145–161.

Percival, D., & Walden, A. (2000). Wavelet methods for time series analysis . Cambridge:

Cambridge University Press.

Ramsey, J., & Zhang, Z. (1997). The analysis of foreign exchange data using waveform

dictionaries. Journal of Empirical Finance, 4 , 341–372.

Rolfo, J. (1980). Optimal hedging under price and quantity uncertainty: The case of a cocoa

producer. The Journal of Political Economy , 88 , 100–116.

Rua, A., & Nunes, L. (2009). International comovement of stock market returns: A wavelet

analysis. Journal of Empirical Finance, 16 , 632–639.

Schwartz, E. (1997). The stochastic behavior of commodity prices: Implications for valuation

and hedging. Journal of Finance, 52 , 923–974.

Stulz, R. (1984). Optimal hedging policies. Journal of Financial and Quantitative Analysis ,

19 , 127–140.

Stulz, R. (1996). Rethinking risk management. Journal of Applied Corporate Finance, 9 ,

8–25.

Tufano, P. (1996). Who manages risk? An empirical examination of risk management

practices in the gold mining industry. Journal of Finance, 51 , 1097–1137.

30



Risk Aversion
Coffee 1 3 6 10 1000

E[r] = +4% 0.62 0.77 0.81 0.82 0.85
E[r] = +2% 0.73 0.81 0.83 0.84 0.85
E[r] = -2% 0.96 0.89 0.87 0.86 0.85
E[r] = -4% 1.08 0.92 0.89 0.87 0.85

Cotton 1 3 6 10 1000
E[r] = +4% 0.09 0.34 0.41 0.43 0.47
E[r] = +2% 0.28 0.41 0.44 0.45 0.47
E[r] = -2% 0.66 0.53 0.50 0.49 0.47
E[r] = -4% 0.84 0.59 0.53 0.51 0.47

Corn 1 3 6 10 1000
E[r] = +4% 0.32 0.74 0.85 0.89 0.95
E[r] = +2% 0.64 0.85 0.90 0.92 0.95
E[r] = -2% 1.27 1.06 1.01 0.98 0.95
E[r] = -4% 1.59 1.16 1.06 1.02 0.95

Crude Oil 1 3 6 10 1000
E[r] = +4% 0.64 0.87 0.93 0.95 0.98
E[r] = +2% 0.81 0.93 0.96 0.97 0.98
E[r] = -2% 1.16 1.04 1.01 1.00 0.99
E[r] = -4% 1.33 1.10 1.04 1.02 0.99

Table 1: Optimal mean-variance hedge ratios incorporating different investor preferences for
risk aversion and expected return using original unfiltered data.
Notes: Hedge ratios calculated in-sample using data from January 1986 - June 1998. For each asset, various
expected annualised return values (E[r]) ranging from −4% to +4% are examined, selected with reference
to average annualised returns. The mean-variance hedge ratio is calculated for a set of risk aversion levels,
covering the range of those detailed in the literature. Hedge ratios are calculated using original unfiltered
commodity returns, excluding information on the planning horizon of the hedger.
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Time Risk Aversion
Horizon 1 3 6 10 1000 1000-1

1.5 0.63 0.71 0.73 0.73 0.75 0.11
0.86 0.78 0.77 0.76 0.75 -0.11

3 0.58 0.78 0.83 0.85 0.88 0.30
1.18 0.98 0.93 0.91 0.88 -0.30

6 0.73 0.96 1.01 1.04 1.07 0.34
1.41 1.18 1.13 1.10 1.07 -0.34

12 0.18 0.81 0.97 1.03 1.12 0.94
2.07 1.44 1.28 1.22 1.13 -0.94

24 -1.85 -0.07 0.37 0.55 0.82 2.67
3.49 1.71 1.26 1.09 0.82 -2.67

(a) Coffee

Time Risk Aversion
Horizon 1 3 6 10 1000 1000-1

1.5 0.06 0.24 0.28 0.30 0.33 0.27
0.60 0.42 0.37 0.35 0.33 -0.27

3 0.19 0.47 0.54 0.57 0.61 0.41
1.02 0.75 0.68 0.65 0.61 -0.41

6 0.29 0.70 0.81 0.85 0.91 0.62
1.53 1.11 1.01 0.97 0.91 -0.62

12 -1.33 0.18 0.56 0.71 0.94 2.26
3.21 1.69 1.32 1.17 0.94 -2.26

24 -3.38 -0.41 0.33 0.63 1.07 4.45
5.53 2.56 1.82 1.52 1.08 -4.45

(b) Cotton

Time Risk Aversion
Horizon 1 3 6 10 1000 1000-1

1.5 0.49 0.75 0.82 0.85 0.89 0.40
1.28 1.02 0.95 0.93 0.89 -0.40

3 0.17 0.62 0.74 0.78 0.85 0.68
1.54 1.08 0.97 0.92 0.85 -0.68

6 0.12 0.79 0.96 1.03 1.13 1.02
2.15 1.47 1.30 1.23 1.13 -1.02

12 -0.36 0.62 0.86 0.96 1.10 1.46
2.56 1.59 1.35 1.25 1.10 -1.46

24 -1.50 0.23 0.67 0.84 1.09 2.59
3.69 1.96 1.53 1.36 1.10 -2.59

(c) Corn

Time Risk Aversion
Horizon 1 3 6 10 1000 1000-1

1.5 0.72 0.90 0.95 0.96 0.99 0.27
1.26 1.08 1.03 1.02 0.99 -0.27

3 0.63 0.86 0.92 0.94 0.98 0.35
1.33 1.10 1.04 1.01 0.98 -0.35

6 0.64 0.88 0.94 0.96 1.00 0.36
1.36 1.12 1.06 1.03 1.00 -0.36

12 0.04 0.67 0.83 0.89 0.98 0.94
1.92 1.30 1.14 1.08 0.98 -0.94

24 -1.03 0.32 0.65 0.79 0.99 2.02
3.01 1.66 1.33 1.19 0.99 -2.02

(d) Crude Oil

Table 3: Optimal mean-variance hedge ratios for varying time horizon (months) and risk aversion, with
annualised expected returns of ±2%.
Notes: Hedge ratios calculated in-sample using data from January 1986 - June 1998. At each time horizon, the first line
corresponds to an annualised expected return (E[r]) value of +2% while the second line corresponds to an annualised
expected return of −2%, selected with reference to average annualised returns. The mean-variance hedge ratio is calculated
for a set of risk aversion levels, covering the range of those detailed in the literature. The data is transformed into different
time horizons using the wavelet filter (LA8) up to a 24 month horizon.
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Time Risk Aversion
Horizon 1 3 6 10 1000 1000-1

1.5 0.52 0.67 0.71 0.72 0.75 0.23
0.97 0.82 0.78 0.77 0.75 -0.22

3 0.29 0.68 0.78 0.82 0.88 0.59
1.47 1.08 0.98 0.94 0.88 -0.59

6 0.4 0.85 0.96 1.00 1.07 0.67
1.74 1.3 1.18 1.14 1.07 -0.67

12 -0.75 0.5 0.81 0.94 1.12 1.87
3.00 1.75 1.44 1.31 1.13 -1.87

24 -4.49 -0.95 -0.07 0.29 0.81 5.30
6.12 2.59 1.7 1.35 0.82 -5.30

(a) Coffee

Time Risk Aversion
Horizon 1 3 6 10 1000 1000-1

1.5 -0.21 0.15 0.24 0.27 0.33 0.54
0.87 0.51 0.42 0.38 0.33 -0.54

3 -0.21 0.33 0.47 0.53 0.61 0.82
1.43 0.88 0.74 0.69 0.61 -0.82

6 -0.32 0.5 0.7 0.79 0.91 1.23
2.14 1.32 1.11 1.03 0.91 -1.23

12 -3.57 -0.56 0.19 0.49 0.93 4.50
5.44 2.44 1.69 1.39 0.94 -4.50

24 -7.78 -1.88 -0.40 0.19 1.07 8.85
9.94 4.03 2.55 1.96 1.09 -8.85

(b) Cotton

Time Risk Aversion
Horizon 1 3 6 10 1000 1000-1

1.5 0.1 0.62 0.75 0.81 0.89 0.79
1.68 1.15 1.02 0.97 0.89 -0.79

3 -0.51 0.4 0.62 0.72 0.85 1.36
2.21 1.31 1.08 0.99 0.85 -1.36

6 -0.89 0.46 0.8 0.93 1.13 2.02
3.15 1.81 1.47 1.33 1.13 -2.02

12 -1.8 0.14 0.62 0.81 1.10 2.9
4.00 2.07 1.59 1.39 1.11 -2.89

24 -4.06 -0.62 0.24 0.58 1.09 5.15
6.25 2.82 1.96 1.61 1.10 -5.15

(c) Corn

Time Risk Aversion
Horizon 1 3 6 10 1000 1000-1

1.5 0.46 0.81 0.90 0.94 0.99 0.53
1.52 1.17 1.08 1.04 0.99 -0.53

3 0.28 0.74 0.86 0.91 0.98 0.70
1.68 1.21 1.09 1.05 0.98 -0.70

6 0.28 0.76 0.88 0.93 1.00 0.72
1.71 1.23 1.12 1.07 1.00 -0.71

12 -0.89 0.36 0.67 0.8 0.98 1.87
2.85 1.6 1.29 1.17 0.98 -1.87

24 -3.02 -0.35 0.32 0.59 0.99 4.01
5.00 2.33 1.66 1.39 0.99 -4.01

(d) Crude Oil

Table 4: Optimal mean-variance hedge ratios for varying time horizon (months) and risk aversion, with
annualised expected returns of ±4%.
Notes: Hedge ratios calculated in-sample using data from January 1986 - June 1998. At each time horizon, the first line
corresponds to an annualised expected return (E[r]) value of +4% while the second line corresponds to an annualised
expected return of −4%, selected with reference to average annualised returns. The mean-variance hedge ratio is calculated
for a set of risk aversion levels, covering the range of those detailed in the literature. The data is transformed into different
time horizons using the wavelet filter (LA8) up to a 24 month horizon.
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Time Risk Aversion
Horizon 1 3 6 10 1000
Original 0.73 0.75 0.75 0.75 0.75

0.75 0.76 0.76 0.76 0.75
1.5 0.69 0.73 0.73 0.74 0.74

0.77 0.75 0.75 0.75 0.74
3 0.68 0.8 0.82 0.82 0.83

0.84 0.85 0.84 0.84 0.83
6 0.81 0.88 0.89 0.89 0.88

0.77 0.87 0.88 0.88 0.88
12 0.29 0.88 0.93 0.93 0.94

0.18 0.84 0.91 0.92 0.94
24 -5.5 -0.12 0.52 0.7 0.89

-2.77 0.79 0.98 0.98 0.89

(a) Coffee

Time Risk Aversion
Horizon 1 3 6 10 1000
Original 0.44 0.60 0.63 0.64 0.66

0.81 0.72 0.69 0.68 0.66
1.5 0.10 0.40 0.46 0.49 0.52

0.80 0.63 0.58 0.55 0.52
3 0.34 0.7 0.76 0.79 0.82

0.97 0.91 0.87 0.85 0.82
6 0.48 0.89 0.94 0.96 0.98

0.74 0.98 0.99 0.99 0.98
12 -4.14 0.32 0.78 0.90 0.99

-3.25 0.61 0.93 0.98 0.99
24 -16.66 -0.92 0.53 0.84 1.00

-17.04 -1.05 0.47 0.80 1.00

(b) Cotton

Time Risk Aversion
Horizon 1 3 6 10 1000
Original 0.76 0.87 0.89 0.89 0.90

0.88 0.91 0.91 0.90 0.90
1.5 0.65 0.84 0.88 0.89 0.90

0.90 0.93 0.92 0.91 0.90
3 0.27 0.79 0.86 0.89 0.92

0.80 0.96 0.95 0.94 0.92
6 0.20 0.93 0.98 0.99 0.98

-0.10 0.83 0.93 0.96 0.98
12 -0.78 0.82 0.96 0.98 0.99

-0.98 0.75 0.92 0.96 0.99
24 -4.70 0.38 0.85 0.94 0.99

-4.95 0.3 0.8 0.92 0.99

(c) Corn

Time Risk Aversion
Horizon 1 3 6 10 1000
Original 0.94 0.97 0.97 0.97 0.97

0.93 0.96 0.97 0.97 0.97
1.5 0.92 0.98 0.99 0.99 0.99

0.91 0.98 0.98 0.99 0.99
3 0.87 0.98 0.99 1.00 1.00

0.87 0.98 1.00 1.00 1.00
6 0.87 0.99 1.00 1.00 1.00

0.86 0.98 0.99 1.00 1.00
12 0.08 0.89 0.97 0.99 1.00

0.13 0.91 0.98 0.99 1.00
24 -3.12 0.53 0.88 0.96 1.00

-3.06 0.56 0.89 0.96 1.00

(d) Crude Oil

Table 5: Out-of-sample hedging performance, measured using variance reduction, for varying time horizon
(months) and risk aversion.
Notes: Out-of-Sample performance over the period July 1998 to December 2010 is measured using the in-sample hedge
ratios detailed in table 3. At each time horizon, the first line is the performance assuming an expected return of +2%
in calculating the hedge ratio, while the second line refers to an expected return of −2%. The data is transformed into
different time horizons using the wavelet filter (LA8) up to a 24 month horizon.
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Time Risk Aversion
Horizon 1 3 6 10 1000
Original -0.004 -0.011 -0.021 -0.035 -3.451

-0.005 -0.011 -0.021 -0.035 -3.451
1.5 -0.001 -0.003 -0.007 -0.011 -1.057

-0.001 -0.003 -0.006 -0.011 -1.057
3 0.000 -0.001 -0.003 -0.004 -0.344

-0.002 -0.002 -0.003 -0.004 -0.343
6 0.000 -0.001 -0.002 -0.002 -0.097

-0.003 -0.002 -0.002 -0.002 -0.097
12 0.002 -0.000 -0.001 -0.001 -0.038

-0.006 -0.003 -0.002 -0.002 -0.038
24 0.009 0.002 0.001 0.000 -0.044

-0.013 -0.004 -0.002 -0.002 -0.042

(a) Coffee

Time Risk Aversion
Horizon 1 3 6 10 1000
Original -0.005 -0.022 -0.047 -0.081 -8.396

-0.007 -0.023 -0.048 -0.081 -8.396
1.5 0.002 -0.004 -0.011 -0.020 -2.237

0.002 -0.002 -0.008 -0.017 -2.234
3 0.003 0.001 -0.000 -0.002 -0.380

-0.000 0.001 0.000 -0.001 -0.378
6 0.004 0.001 0.001 0.000 -0.040

-0.004 -0.001 -0.000 -0.000 -0.039
12 0.011 0.003 0.002 0.001 -0.015

-0.020 -0.006 -0.003 -0.002 -0.014
24 0.022 0.007 0.003 0.002 -0.002

-0.045 -0.016 -0.008 -0.005 -0.002

(b) Cotton

Time Risk Aversion
Horizon 1 3 6 10 1000
Original 0.001 -0.003 -0.008 -0.015 -1.577

-0.004 -0.005 -0.009 -0.015 -1.577
1.5 0.003 0.000 -0.002 -0.004 -0.497

-0.002 -0.001 -0.002 -0.003 -0.495
3 0.005 0.002 0.000 -0.001 -0.241

-0.004 -0.001 -0.000 -0.001 -0.240
6 0.007 0.002 0.001 0.000 -0.025

-0.010 -0.004 -0.003 -0.002 -0.025
12 0.011 0.003 0.002 0.001 -0.007

-0.014 -0.005 -0.003 -0.002 -0.007
24 0.021 0.007 0.003 0.002 -0.002

-0.024 -0.008 -0.004 -0.003 -0.002

(c) Corn

Time Risk Aversion
Horizon 1 3 6 10 1000
Original 0.002 0.000 -0.001 -0.001 -0.164

-0.002 -0.001 -0.001 -0.002 -0.164
1.5 0.003 0.001 0.000 0.000 -0.078

-0.004 -0.001 -0.001 -0.001 -0.078
3 0.004 0.002 0.001 0.001 -0.006

-0.004 -0.001 -0.001 -0.000 -0.006
6 0.004 0.002 0.001 0.001 -0.001

-0.005 -0.002 -0.001 -0.000 -0.001
12 0.012 0.004 0.002 0.001 0.000

-0.012 -0.004 -0.002 -0.001 0.000
24 0.024 0.008 0.004 0.003 0.000

-0.024 -0.008 -0.004 -0.002 0.000

(d) Crude Oil

Table 6: Out-of-sample hedging performance, measured using out-of-sample utility, for varying time
horizons (months) and risk aversion.
Notes: Out-of-Sample utility performance over the period July 1998 to December 2010 is measured using the in-sample
hedge ratios detailed in table 3. At each time horizon, the first line is the performance assuming an expected return of
+2% in calculating the hedge ratio, while the second line refers to an expected return of −2%. The data is transformed
into different time horizons using the wavelet filter (LA8) up to a 24 month horizon.
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