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Abstract

Structural models of default risk price firm’s equity and debt as contingent claims written

on the firm’s underlying assets. However, the empirical literature has detected that observed

credit spreads, particularly for safer firms, tend to be on average above their structural models’

predictions (the credit spread puzzle). This paper investigates possible explanations for the

credit spread puzzle, using data on the credit default swaps of 40 U.S. investment-grade firms

from 2005 to 2009. Firstly, the paper explores the contribution of downside risk, by calibrating

the Merton model (1974) on an empirical measure of the sensitivity of credit default swaps to

equity volatility, rather than directly on a proxy for asset volatility. The sensitivity measure,

extracted from market data, is able to capture the fat left tail in the risk-neutral distribution

of firm’s returns. Investors take into account the likelihood of extreme events and, to protect

themselves against default, they are available to pay a higher CDS premium. Secondly, this work

detects two additional components of CDS premia related to illiquidity in credit markets and

investors’ aversion to uncertainty. The effects of default risk, tail risk, investors’ uncertainty,

and illiquidity become particularly clear over the recent subprime crisis period when investors

lingered in fear of crashes and - being uncertain about firms’ fundamental values - decided to

withdraw from active participation. When market is illiquid and uncertainty greater, sellers of

credit default swap charge more and CDS premia increase.

Keywords: Credit Default Swap; Merton Model (1974); Credit Spread Puzzle; Tail Risk; Illiq-

uidity; Uncertainty.



1 Introduction

The spreads on safe (investment-grade) bonds at relatively short maturities tend to be much larger

than those predicted by a variety of structural models (Eom, Helwege, and Huang, 2004). Academics

and practitioners have defined this phenomenon as the credit spread puzzle.

Employing an original methodology, this research paper tests as potential explanations for the credit

spread puzzle: (i) the existence of a tail risk premium; (ii) investors’ aversion to uncertainty ; (iii)

and the illiquidity of credit contracts.

The central hypothesis tested is that the levels of credit premia for investment-grade firms above

those predicted by the Merton (1974) model are caused by:

1) Investors’ aversion to the risk of extreme negative events (also called tail events or crashes);

2) Investors’ inactivity due to uncertainty about firms’ fundamentals;

3) Lack of market liquidity in the relative credit markets.

In order to estimate the contribution of tail (downside) risk to the price of investment-grade credit,

we follow the methodology firstly introduced by Campbell and Taksler (2003) and then employed

by Gemmill and Keswani (2011). Instead of using a historical volatility measure for the assets (for

example, the one employed by Schaefer and Strebulaev, 2008, or by Vassalou and Xing, 2004), this

methodology predicts corporate bond spreads by calibrating the Merton model to the sensitivity of

bond spreads to equity volatility.

Therefore, we start by estimating the required sensitivity measure from a panel regression of CDS

premia on equity volatility variables (dCDS/dσE). The resulting measure captures the pure effects

of (market and firm’s) equity volatility on CDS premia1. dCDS/dσE is then used with the Merton

model to obtain weekly implied volatilities and CDS premia for 40 investment-grade firms2. There-

fore, the calibration of the structural model is neither based on a proxy for the unobservable volatility

of firm’s asset, nor does it depend on a particular shape of the probability distribution and dynamics

of a firm’s returns (e.g. with jumps and/or stochastic volatility). The Merton model is instead cali-

brated on the estimated measure dCDS/dσE which helps to capture the reaction of investors in the

credit markets to shifts in equity market volatility and firm’s equity volatility directly from market

data.

Using this methodology we recover implied asset volatilities which display the same smirk as shown

by the implied volatilities from equity index options3. Previous literature has assessed that this pat-

1We perform a preliminary control for the simultaneous effects of shifts in firm’s leverage and market volatility on both

firm’s equity volatility and CDS premia in order to reduce potential problems of endogeneity.
2More details on the original Merton (1974) model and its modified version used in the calibration exercise are provided

respectively in Appendices B and C. More details on the estimation of dCDS/dσE are provided in Section 4.
3The implied volatilities from out-of-the-money equity index options are higher than the volatilities implied by the

market prices of equity index options which are in-the-money or at-the-money. In cross-section, the implied volatilities

of firms with very low leverage ratios are higher than the implied volatilities of firms with relatively larger leverage

ratios.
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tern in equity options can be explained by the “crashophobia” of investors who are extremely averse

to tail events (Jackwerth and Rubinstein, 1996)4. Therefore, we call the Merton model calibrated on

dCDS/dσE the “tail-model”.

Some improvements in the estimation of implied asset volatilities and CDS premia are observed in

cross-section and time-series using the tail-model rather than traditional (physical) measures of asset

volatility. However, the calibration results from the tail-model in and out-of-sample largely depend

on the accuracy of dCDS/dσE estimation and the ability of the panel regression to capture correctly

both cross-section and time-series variability in the sensitivity measure.

The use of dCDS/dσE to calibrate the Merton model reduces the credit spread puzzle, but does not

eliminate it. The discrepancies are quite large over the recent crisis period (mid 2007 - 2009). There-

fore, we investigate further factors that can help to explain the residual part of credit premia which

the tail-model leaves unexplained. In particular, we find that credit spreads are positively affected

by illiquidity in credit markets and uncertainty on firm’s future performance and fundamentals. The

economic relevance of these non-default components grows considerably over the crisis period.

Finally, we compare the out-of-sample forecasting ability of the tail-model and its adjusted version

(including illiquidity and uncertainty effects) with the forecasts from the Merton model calibrated

on traditional proxies for asset volatility, like the volatility proxy used in the 2008 paper by Schaefer

and Strebulaev (SS model). The root mean squared forecast error and the mean absolute forecast

error from the SS model are double those from the tail-model and triple those from the adjusted

tail-model. We therefore obtain the most precise predictions for credit premia using the adjusted

tail-model, which takes into account downside risk, illiquidity, and uncertainty premia.

The research paper illustrates how the effects of tail risk, illiquidity of CDS contracts, and investors’

aversion to uncertainty can help to explain (and predict) credit premia for investment-grade firms

using the Merton model (1974) framework and some adjustments that take into account the effect of

market frictions. The relationships between tail risk, illiquidity, and uncertainty became prominent

over the crisis period, when investors lingered in fear of crashes and - being uncertain about firms’

fundamental values - decided to withdraw from active participation. When the market is illiquid and

uncertainty increases, sellers of credit default swaps charge more and CDS premia widen.

The research paper is written as follows. Section 2 illustrates the main idea and limitations of the

Merton model (1974) and explains the intuition behind its calibration to the sensitivity of CDS

to equity volatility dCDS/dσE . Section 3 reports preliminary estimates of dCDS/dσE obtained

from: (i) theoretical values of asset volatilities, leverage ratios, and premia predicted by the Merton

model; and (ii) real values of equity volatilities and CDS premia used in cointegration analysis on

the individual firm level. Section 3 aims to illustrate how dCDS/dσE estimates change with levels

4Traders are concerned about the possibility of a stock market crash similar to the one that materialized in 1987. Thus,

they evaluate deep out-of-the-money put options which become very valuable in such extreme scenarios above the

Black-Scholes (1973) predictions.
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of leverage, asset volatility, and market-wide volatility and provides the basis for the successive

analysis. Section 4 explains the procedure followed to obtain the estimated sensitivity dCDS/dσE

from a complete panel regression and the CDS premia and implied volatilities from the tail-model

calibration. Sections 5 and 6 show how the tail-model performs in explaining credit premia variability

in cross-section and time-series. Section 7 tests the out-of-sample forecasting ability of the tail-model

(with and without the extra-premia induced by illiquidity and uncertainty aversion). A robustness

check to the tail-model is performed in Section 8. Finally, Section 9 presents the concluding remarks

to the work.

2 Beyond the traditional Merton Model (1974)

The Merton model posits a functional relationship between the bond (or CDS) spread Sit of a firm

i at a specific point of time t and: the asset value (Ait), the asset volatility (σAit), the leverage (Lit),

and the time T and interest rate to maturity rt. For simplicity we can write the explicit form as f1:

Sit = f1(Ait, σ
A
it , Lit, T, rt) (1)

The model’s equation contains two unobservable variables: the asset volatility σAit and the asset total

value Ait. A conventional approach to calibrating the model assumes that Ait can be approximated

by the book value of debt plus the market value of total equity capital. σAit is then estimated from

the firm’s asset value Ait, equity value Eit and equity volatility σEit , and from the first derivative of

the firm’s equity with respect to its total asset value ∂Eit/∂Ait, using Ito’s Lemma:

σAit ≈ σEit (
Eit
Ait

)(
1

∂Eit/∂Ait
) (2)

Vassalou and Xing (2004) - hereafter VX - use an iterative process to estimate σAit , which has also

been followed by other researchers (e.g., Bharath and Shumway, 2004). The iterative process starts

by assuming that debt is riskless. In this case, asset volatility is given by:

σAit = σEit (1− Lit) (3)

where Lit indicates the firm’s leverage ratio. The upper limit for σAit is σEit (i.e. when debt is risky

and debt volatility is equal to equity volatility). The Merton equation (1) is then solved recursively

to obtain estimates of the model spread Sit.

To estimate σAit Schaefer and Strebulaev (2008) - hereafter SS - use instead a combination of σEit ,

σDit (respectively the volatility of equity and corporate debt returns), and σEDit (covariance between

debt and equity returns). Using this proxy for the asset volatility, they estimate the debt-to-equity

hedge ratio and verify that the Merton model can be used to hedge the credit risk exposure of the
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firm correctly, i.e. the model is useful in time-series for hedging of changes in bond prices5.

However, most empirical literature that has tested Merton model’s ability to predict the level of

credit spread (rather than changes) has revealed that the model cannot generate the high spreads

observed in the markets (see, amongst others, Eom, Helwege and Huang, 2004). These results have

originated what is called the credit spread puzzle.

Two main streams of literature on the credit spread puzzle have been developed over the past

decades. One stream argues that the reason why the classic structural Merton (1974) model tends to

under-predict credit spreads is that it relies on over-simplified assumptions on firms’ assets dynamics,

interest rate dynamics, timing of the defaults, and investors’ preferences. The second stream has in-

stead focussed on frictional or non-default components of the spreads on debt and credit instruments.

These are components which are not priced in traditional structural models.

2.1 Tail Risk Component in CDS Premia

The Merton model (1974) assumes that the firm’s value follows a geometric Brownian motion with

constant drift and volatility. In the risk-neutral domain (RND) the firm’s returns are assumed to be

log-normally distributed. In a structural model for credit risk the holders of risky corporate debt are

considered as owners of a riskless bond who have issued put options on the firm value to the holders

of the equity. When volatility increases the value of the put option increases and equity holders

benefit at the expense of the bond holders.

While the Merton model would predict a positive relationship between equity volatility and credit

spreads, Campbell and Taksler (2003) find that the strength of this relationship is far greater than

can be explained by the Merton model6. This suggests a role for tail risk in pricing of credit con-

tracts. An increase in volatility shifts probability mass towards the tails of the distribution of firm

value. Economically speaking, a rise in volatility increases the probability of default. However, in the

risk-neutral domain asset returns may have a fatter left tail than implied by the log-normal distribu-

tion assumed by Merton (1974). Therefore, incorporating tail risk (also known as downside risk) in

a structural model should lead to better predictions of credit spreads, in particular for investment-

grade bonds at short maturities (Delianedis and Geske, 2001; Zhou, 2001b).

Gemmill and Yang (2010) find that the tail risk estimated from equity index options explains credit

spreads on zero-coupon bonds. Cremers, Driessen and Maenhout (2008), Zhang, Zhou and Zhu

(2009), and Cremers, Driessen, Maenhout and Weinbaum (2008) estimate an option-implied (Q)

skewness measure and find some positive evidence of its effect on credit spreads. Coval, Jurek and

5Appendix B provides further details on the theory of the Merton (1974) model and on its traditional calibration

methodologies.
6Different empirical studies detect a positive effect of equity volatility on credit spreads but disagree on its magnitude

(see, amongst others, Avramov et al, 2007; Benkert, 2004; Gemmill and Keswani, 2011; Chen, Lesmond and Wei,

2007; and Bharath and Shumway, 2008). Campbell and Taksler (2003) find a huge effect, whereas others find smaller

effects.
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Stafford (2009), and Collin-Dufresne, Goldstein and Yang (2012) use equity index option prices to

explain spreads on triple-A CDOs using a structural model. All these studies show that the structural

model can work when suitably calibrated and is capable of generating large credit spreads due to the

presence of tail risk premia.

A fat left-tailed distribution can increase credit spreads relative to those implied by the Merton

model. However, to get a substantial effect from tail risk, we need to assume that there is a sub-

stantial systematic or market-wide component in the tail event7. For this to happen it must be

the case that tail events for individual firms can be triggered by default events of other firms via

specific business connections or via the “updating of investors’ beliefs” on the likelihood of crashes

(see Collin-Dufresne, Goldstein and Helwege, 2003). The tail risk can therefore be decomposed in

an idiosyncratic component and a systematic (or market-wide) component (see also Collin-Dufresne,

Goldstein and Yang, 2012) that takes into account the possible contagion effect8.

There are two possible ways to proceed in order to include tail risk in the structural model: the

first is to model the asset return distribution explicitly; the second is to continue to use the Merton

model, but to calibrate it differently (depending on the contingent claim being valued) to an empir-

ical measure which can capture the fat left tail and its variability over time.

We follow the second route which keeps all modelling assumptions as simple as in the original Merton

model (1974) framework9. In particular, in this paper we follow the methodology of Gemmill and

Keswani (2011) to predict credit spreads from the Merton model. The methodology requires the

calibration of the model to the estimated sensitivity of CDS premia to equity volatility dCDS/dσE

(slope coefficient from a panel regression). This methodology aims to capture the left-skewness (fat

left tail) of the firm’s returns distribution implied by real market data. We call the calibrated model

the “tail-model”.

More specifically, the key idea behind this approach is to recognize that different contingent claims

7In the risk-neutral domain, the fat-tailed distribution describes investors’ preferences and it is therefore reflected in all

asset prices. In this sense, the tail risk is non-diversifiable and commands a higher risk premium.
8The empirical literature has highlighted the fact that often credit default events seem to cluster. Such phenomenon,

defined as “credit contagion”, depends on the characteristics of the credit event, as well as of the company and the

industry (see Jorion and Zhang, 2007). Financial distress across companies may be driven by common economic

factors, such as negative shocks to cash flows across the industry or economic recessions. Initially, the literature on the

effect of correlated defaults on the individual firm’s default probability started developing with intensity-based models

of default risk, rather than with structural models (see, amongst others, Duffie and Garleânu, 2001; Longstaff and

Rajan, 2008; and Jarrow and Yu, 2001). In particular, Jarrow and Yu (2001) investigate the effects of counterparty

risk, which occurs when the default of one firm causes financial distress on other firms with which the first firm has

close business ties. This distress, in turn, is transmitted to a second layer of firms through a domino (or contagion)

effect. As examples of this effect, in the 1998 serious concerns emerged that the default of the LTCM hedge-fund

would lead to defaults of other major funds and banks. The same concern on default contagion raised with the failure

of Lehman Brother in 2008 (amidst the subprime meltdown).
9The only modification to the original Merton (1974) model is the additional assumption that at each point of time

leverage ratio is equal to the target leverage ratio (see Collin-Dufresne and Goldstein, 2001). Further details are

provided in Appendix C.
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will trade on different implied volatilities. Risky debt is equivalent to a risk-free bond plus a short

position in a put written on the firm value with a strike which reflects the outstanding debt of the

firm. Therefore, a CDS written on a firm with very low leverage corresponds to a deeply out-of-the-

money put option and has an implied volatility reflecting the mass of the risk-neutral distribution

of the firm value in its far left tail. In contrast, a CDS written on a firm with relatively higher

leverage corresponds to a closer at-the-money put option, so the implied volatility reflects the mass

of the risk-neutral firm-value distribution much closer to the current firm value. As a consequence,

by comparing the implied volatilities of firms with lower and higher leverage levels at different points

of time we can understand the shape of the risk-neutral distribution of the firm value and how this

changes over the time. Instead of imposing a particular volatility or implying the volatility from the

observed spreads, which would be the conventional approach, we bypass the choice of a volatility

proxy and calibrate the model to the estimated sensitivity of the CDS premia to equity-volatility.

If there is a high degree of left-skewness in the risk-neutral distribution, then the calibration of the

model on the sensitivity measure will reveal this via implied volatilities which in cross-section are

large and diminishing with leverage levels (Gemmill and Keswani, 2011).

2.2 Non-default Components in CDS premia

With regards to the frictional or non-default components of bond and CDS spreads, a number of

studies indicate illiquidity as a further explanation for the failure of the structural models (see, for

example, Longstaff et al, 2005; Huang and Huang, 2003; and Chen et al, 2007). In our paper we ex-

amine, alongside credit market illiquidity, the effect of investors’ aversion to uncertainty (also known

as ambiguity aversion). Using a structural model for credit risk with heterogeneous beliefs, Buraschi

et al (2010) derive testable implications for the role of uncertainty in the determination of equilib-

rium credit spreads. They show (theoretically and empirically) that there is a positive relationship

between the dispersion of investors’ beliefs (generated by uncertainty on firm’s cash flows valuation

and future earnings) and credit spreads. In the cross-section, higher dispersion of investors’ beliefs

increases firms’ credit spreads. In addition, during the 2008 credit crisis the link between uncertainty

and credit spreads is found to be stronger than in previous periods10.

Building on this literature, our research paper reveals the effects of illiquidity and ambiguity aversion

on credit spreads which the tail-model cannot capture. Investors’ trading decisions and credit pricing

are shown to depend also on these frictional components.

10A more detailed review of studies on liquidity and uncertainty is provided in Chapter 1.
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3 Preliminary Analysis of CDS Premia Sensitivity to

Equity Volatility

There is within the Merton’s model an implicit relationship between the asset volatility (σAit) and

the sensitivity of the spread to asset volatility (dCDSit/dσ
A
it). Using Equation (2), we can infer that

there is also an implicit relationship between the asset volatility (σAit) and the sensitivity of the CDS

spread to equity volatility (dCDSit/dσ
E
it ).

Let us write this as:

σAit = f2(dCDSit/dσ
E
it )

where f2 is the implicit function. This function cannot be written explicitly, just as the implied

volatility of an option cannot be written explicitly as a function of the relevant parameters. f2 can

only be examined numerically (as we do in Section 4). Next, the CDS premium of firm i at time t

can be obtained from the Merton model calibrated to dCDSit/dσ
E
it , rather than to a proxy for σAit .

To estimate dCDS/dσE (i.e. the sensitivity of CDS premia to equity volatility) and capture its

variability in cross-section and over time, we employ a panel regression. The calibration results from

the tail-model largely depend on the accuracy of dCDS/dσE estimation. In this Section we collect

some preliminary evidence on theoretical and empirical characteristics of dCDS/dσE to be used then

as guidelines for choosing the panel regression specification.

3.1 Estimation of CDS Premia Sensitivity to Equity Volatility from Mer-

ton Model based on Theoretical Values of Leverage and Asset Volatil-

ity

To specify a relevant panel regression we need to consider what the relationship between CDS pre-

mium, leverage, equity volatility, and dCDS/dσE should be in theory. We assume that there is a

CDS with a 5-year maturity written on a firm with asset value of 100 and a continuous interest rate

of 5%11. Table 1 displays computed values for CDS premia and dCDS/dσE under various volatility

and leverage conditions, based on a Merton model with fixed leverage ratio.

Starting with Column 1, in the top part of the table leverage is set to 5%; in the middle part it

is 15%; and in the bottom part it is 30%. In Column 2, asset volatility is changed in steps of 5%,

from 20% to 65%. Column 3 displays the computed CDS premium after Merton-model calibration.

Column 4 shows the computed equity volatility, given the level of leverage in Column 1 and the asset

volatility in Column 2, using the relationship in Equation (2). In Column 5 of the table, dCDS/dσE

is computed empirically from one row of the table (CDS premia) to the next (equity volatility).

11Whether the asset has any yield or not is irrelevant, because we modify Merton’s model so that a firm has a target-level

of leverage at the current level. With a fixed leverage, payouts have no impact on CDS values. See Appendix C for

details on the model employed and on the calibration procedure.
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At low asset volatilities, the spreads from the model (in Column 3) are very small, e.g. 1.8 basis

points with a 30% leverage and 20% asset volatility (equivalent to 28.6% equity volatility). However,

the model can generate large spreads at even moderate leverage if the asset volatility is large enough.

For example, with 15% leverage and an asset volatility of 60%, the equity volatility is 69.6% and the

CDS premium is 236 basis points.

For a given leverage, the computed dCDS/dσE (in Column 5) is quite sensitive to the level of the

equity volatility (and associated asset volatility). For example, at a leverage of 15% (which is quite

usual for the A-rated firms in our sample) a shift in the equity volatility from 46.9% to 52.6% changes

the computed dCDS/dσE from a value of 3 to a value of 5.3.

The volatilities used in this table are in the risk-neutral “Q” domain and they are not those which

can be observed in the physical “P” domain. It is worth mentioning two points in this regard. First,

it is well-known that implied volatilities for put options on equity indices show values of 60% or more

if the options are deep out-of-the-money12. A CDS on a highly-rated firm is equivalent to a deep

out-of-the-money put option, so it is also likely to exhibit large asset volatility in the Q-domain.

Second, in the empirical work in the remainder of the paper we measure equity volatility σE in the

observable P-domain. We then use σE , alongside real data on CDS premia, to estimate dCDS/dσE

in the P-domain. Thus, to conduct any meaningful comparison between the estimated dCDS/dσE

(P-measure) and its theoretical values in Table 1 (Q-measure) we have to assume that dCDS/dσE

is very similar in the P and Q domains. To support this assumption, there is some evidence from

equity-index options. The VIX is a measure of equity-index volatility in the Q-domain. Figure

1 shows that the equity-index (S&P 500) volatility measured in P-domain and the VIX index are

closely related.

While most previous studies have implicitly assumed that dCDS/dσE is a constant parameter, the

implication from Table 1 is that the theoretical dCDS/dσE increases with asset volatility (and equity

volatility) at each given level of leverage. It also increases with leverage at each given level of asset

volatility (and equity volatility), but this second effect is less prominent than the first one. From the

two sections at the bottom of Table 1, where leverage is set equal to 15% and 30%, we can calculate

for example that if asset volatility doubles from 0.3 to 0.6 ceteris paribus dCDS/dσE becomes on

average 20 times larger. Instead, if leverage doubles from 0.15 to 0.3, ceteris paribus dCDS/dσE

becomes on average only three times larger. The marginal effect of leverage on dCDS/dσE is much

lower than the marginal effect of asset volatility.

12The two reasons for this are: (i) the model assumes a log-normal asset return, whereas it is likely to be skewed; and

(ii) the implied volatilities are measured in the risk-neutral (Q) domain.
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3.2 Empirical Estimation of CDS Premia Sensitivity to Equity Volatility

based on Cointegration Analysis on a Firm-by-Firm basis

Having observed the characteristics of dCDS/dσE obtained from theoretical values of leverage and

asset volatilities using the Merton model, we now use real CDS premia, leverage ratios and realized

equity volatilities13,14 for 40 investment-grade U.S. firms15 to estimate dCDS/dσE on a firm-by-firm

basis. These estimates will be then compared with the theoretical values in Table 1.

The estimation of CDS premia sensitivity to equity volatility on a firm-by-firm basis is obtained

through cointegration analysis16. The results are summarized in Table 2. The average dCDS/dσE

estimated over the whole period (Column 1) is positive and in the range between 0.71 and 10.17.

The inter-quartile range goes from 1.51 to 3.88, the median is 2.04, and the mean is 3.15. These

values are quite consistent with the theoretical values in Table 1.

The range of leverage (from the bottom to the top decile) in our sample of firms goes from 5% to

30%, with a median of 12%. The 5th lowest percentile of leverage is around 5%, while the top 95th

percentile is equal to 34%. Assuming a 40% asset volatility (in the Q domain), a range of leverage

from 5% to 30% would return from Table 1 a range of dCDS/dσE from 0.1 to 9.0. At the median

leverage of 12%, the computed dCDS/dσE would be around 3. We conclude that the values of

dCDS/dσE estimated from the cointegration and reported in Table 2 are consistent with the values

computed theoretically with the Merton model and reported in Table 1.

Next, Columns 2 and 3 of Table 2 show the cointegration estimates of dCDS/dσE in the pre-crash

period (January 2005 - March 2007) and in the post-crash period (April 2007 - December 2009).

13The realized equity volatility (P-measure) is estimated as annualized exponentially-weighted moving average (EWMA)

volatility over a 180 days rolling window, using lambda=0.94. RiskMetrics uses generally a lambda of 0.94 for EWMA

volatility. The idea behind the EWMA variance is to compute the variance as a moving average of past squared daily

returns using decreasing weights. A lambda equal to 0.94 means that the most recent squared daily return is weighted

by (1-0.94) = 6%. The next squared return is weighted by the lambda-multiple of the prior weight (5.64%). The third

prior day’s squared return is weighted by (1-0.94) x 0.94 x 0.94 = 5.30%, and so on. Therefore, a value of lambda 0.94

implies a half-life of around 11 days. Recursively, the formula for exponentially weighted moving average variance is

given by: σ2
t = λσ2

t−1 + (1 − λ)u2t−1 where σ2
t−1 is the previous day’s equity variance and u2t−1 is the previous day’s

squared equity return.
14In further extensions of the work implied (Q) volatilities from equity options could also be used as alternative to

realized volatilities. The implied volatilities have been used by some authors (e.g. Cremers et al, 2008) to calibrate

structural models. This technique requires the knowledge of options prices at different strikes to obtain the implied

volatilities of firms with different leverage ratios and then use them to predict credit premia. The estimation of spreads

on highly rated firms’ bonds requires the availability of very deep out-the-money puts prices. The EMWA measure

of firm’s realized equity volatility used in our paper is based instead on firm’s historical equity returns and it is of

easy computation. Furthermore, as mentioned in Paragraph 3.1, the evidence of a close relationship between the VIX

index of implied volatility and the realized volatility of the S&P 500 index (see Figure 1) suggest that there may be

no substantial difference between dCDS/dσE estimated with realized equity volatility and dCDS/dσE estimated with

implied equity volatility.
15See Section 4 for more information about data and relative sources.
16One reason to use cointegration analysis is that the CDS premium and the equity volatility show high level of auto-

correlation, so the underlying relationship between the two variables is difficult to unravel but it is expected to be

imposed over time.
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Column 2 shows that only 29 out of 40 firms have positive dCDS/dσE values in the pre-crash period

and that the median and mean of dCDS/dσE are respectively 0.43 and 0.64. Appendix D provides

possible explanations for why some firms over this period display negative values of dCDS/dσE .

Column 3 of Table 2 shows that in the post-crash period all 40 firms have positive dCDS/dσE val-

ues. In this period dCDS/dσE has a mean of 3.47 and a median of 2.39. The post-crash results are

similar to those estimated for the whole period in Column 1. It would therefore appear that in a

quiet period there is little impact of equity volatility on the CDS premia; only in the more turbulent

post-crash period does equity volatility have a clear influence.

Furthermore, we test whether the value of dCDS/dσE estimated on a firm-by-firm basis changes over

time with large shifts in general market conditions and volatility. To accomplish this, we perform

the cointegration analysis between the firm’s CDS premium and its equity volatility, conditional on

VIX levels17. Interesting effects are detected and reported in Table 3. When we move towards higher

VIX bands, we observe an almost-monotonic increase in the number of firms displaying a positive

dCDS/dσE , and in the mean, median, and maximum value of dCDS/dσE .

Finally, we examine how dCDS/dσE estimated on a firm-by-firm basis from cointegration analysis

changes in cross-section depending on the average firm’s leverage and equity volatility, in order to

understand whether the patterns are consistent with those observed in Table 1. We find that firms

with higher average equity volatility tend to have higher sensitivity of CDS premia to equity volatil-

ity18. The estimated slope from a cross-sectional regression of dCDS/dσE on firm’s equity volatility

is positive (equal to 0.17) and highly significant (t-stat is above 3). By contrast, differences in lever-

age ratios across firms do not seem to dictate significant differences in terms of dCDS/dσE . The

estimated slope from a cross-sectional regression of dCDS/dσE on firm’s leverage ratio is negative

(equal to -0.39) and insignificant (t-stat is below 1).

The results indicate that: (i) The value of dCDS/dσE depends on the level of market-wide volatility

and increases progressively with higher VIX levels; and (ii) Firms with higher equity volatility also

display larger CDS premium sensitivity to equity volatility.

17The number of observations in each “VIX band” is uneven.
18The regression results and corresponding graphs are not reported for brevity, but they are available upon request.
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4 Estimation of CDS Premia Sensitivity to Equity

Volatility from Panel Regression and Calibration of the

Tail-Model

We now proceed to estimate the sensitivity of CDS premia to equity volatility dCDS/dσE , to be used

in the tail-model calibration, as the slope coefficient from a panel regression of CDS premia on firms’

equity volatility and equity market volatility19. We denote this as the “auxiliary panel regression”

since it is instrumental to the model calibration. We have tried a number of specifications for the

auxiliary panel regression. Taking into account the theory and the results discussed in Section 3, the

specification we favour is a panel regression that allows the value of dCDS/dσE to vary with the

equity volatility level (but not with the leverage level, because the range of leverage is too narrow

for the investment-grade firms we consider).

First, we regress the market premium of a CDS contract issued by firm i at time t (CDSit) on the

firm’s equity volatility (σEit ), conditional on the level of VIX. The conditionality is formulated as a

series of VIX bands, using dummy variables. One reason to use VIX dummy variables is that, as

observed in Table 3, the estimated dCDS/dσE increases in magnitude over time from low to high

VIX periods. The panel regression specification aims at capturing these time dynamics. As further

explanatory variables we include the equity index volatility (σS&P
t ), the interest rate level (Rt), and

the firm’s leverage ratio (Lit).

The resulting regression equation is:

CDSit = α0 + βσS&P
t + δ0σ

E
it + δ1D

V IX
13 σEit + δ2D

V IX
15 σEit + δ3D

V IX
20 σEit + δ4D

V IX
25 σEit+

+δ5D
V IX
30 σEit + δ6D

V IX
50 σEit + γRt + ϑLit + εit

(4)

DV IX
13 denotes a dummy variable which equals 1 when VIX is between 13% and 15%; DV IX

15 denotes

a dummy variable which equals 1 when VIX is between 15% and 20%; and so on.

Second, we obtain the sensitivity measure of CDS premia to both firm’s and market equity volatility,

dCDS/dσE as:
dCDS
dσE = dCDS

dFirm σE + dCDS
dσS&P

where dCDS
dFirm σE is the sensitivity of CDS premia to firm’s equity volatility20 and dCDS

dσS&P is the

sensitivity of CDS premia to market equity volatility.

The P-measure of sensitivity of CDS premia to firm’s equity volatility is obtained from the panel

19The dCDS/dσE estimates from cointegration in the previous Section (see Tables 2 and 3) are obtained on a firm-by-

firm basis from a time-series analysis which leaves cross-sectional differences unexplained and does not control for the

influences of changes in interest rates, market-wide volatility, firms’ assets value, and unobservable firm-specific effects

on CDS premia. To control for all these effects simultaneously and obtain a pure measure of the sensitivity of CDS

premia to equity volatility across all firms and periods we therefore adopt the panel regression approach.
20Firm σE

it is obtained as the orthogonal component of a firm’s equity volatility to its leverage Lit and to market

volatility σS&P
t .
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regression as:

dCDS

dFirm σE
= δ0 + δ1D

V IX
13 + δ2D

V IX
15 + δ3D

V IX
20 + δ4D

V IX
25 + δ5D

V IX
30 + δ6D

V IX
50 (5)

To this value we add the estimated coefficient for S&P500 equity index volatility from the panel

equation (4) dCDS
dσS&P = β, which takes into account the effect of general market volatility on CDS

premia. Investors’ appreciation of a firm’s downside risk depends in fact on both the level of riskiness

of the firm and shifts in market-wide conditions. We finally obtain:

dCDS

dσE
= δ0 + δ1D

V IX
13 + δ2D

V IX
15 + δ3D

V IX
20 + δ4D

V IX
25 + δ5D

V IX
30 + δ6D

V IX
50 + β (6)

We analyse 40 investment-grade U.S. firms over the period from January 2005 to December 2009. To

ensure availability of CDS data, we use the quotes of firms that have been listed in the CDX North

American Investment Grade Index. We eliminate all financial, insurance, and real estate firms due

to the difficulty of interpreting their capital structure variables. Equity and CDS data (prices and

quotes) are collected respectively from CRSP and Bloomberg databases. The 1st and 99th percentiles

of CDS and equity quotes and returns are winsorized in order to eliminate potential outliers.

We focus our study on U.S. dollar-denominated CDS contracts with five years maturity, as they are

the most liquid. Compared to the yield spreads of corporate bonds, CDS spreads are often regarded

as a superior measure of default risk as they are not affected by the choice of the risk-free yield

or by differential tax treatments. Our sample covers the period that goes from January 2005 until

December 2009. Although most information in this study is available on a daily basis, we prefer to

use weekly data for several reasons. As noted by Zhang, Zhou, and Zhu (2009), using daily data on

single-name CDSs may result in substantial sparseness problems, especially in the very early sample

period (2005). Moreover, using daily data is likely to understate the effect of firm’s leverage on

CDS premia since the balance sheet information (taken from COMPUSTAT) is available only on a

quarterly basis. Finally, the impact of outliers and possible measurement errors, for example due to

CDS bid-ask spreads, is likely to be much lower for weekly data. Our final weekly filtered dataset

contains prices and quotes for equity and CDSs of 40 U.S. investment-grade firms from 1 January

2005 to 27 December 2009, giving a total of 10280 observations. The sample includes the turbulent

period of the crisis from mid 2007 to the first quarter of 2009.

The P-measure of CDS premia sensitivity to equity volatility dCDS/dσE is obtained as in (6) from

the panel regression in Equation (4). Since it is difficult to separate the effects of leverage, market

volatility, and firm’s equity volatility21, we employ a two-stage panel regression to estimate Equation

(4). In the first stage, equity volatility (proxied by the firm’s annualized exponentially-weighted

moving average EWMA equity volatility) is regressed on market volatility (proxied by S&P500 an-

nualized EWMA volatility) and leverage ratio. The residuals (defined “equity orthogonal volatility”)

are then used in the second stage regression. In this second stage, CDS premia are regressed on

21As illustrated also in Appendix D, changes in leverage have simultaneous effects on CDS premia and assets volatil-

ity (and equity volatility). Therefore, it is important to control for both effects and to disentangle their separate

components.
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interest rate (proxied by the 5-year Treasury yield at constant maturity), leverage ratio, “orthogonal

equity volatility”, “orthogonal equity volatility” multiplied by “VIX bands dummies”, and market

volatility. With the second stage regression we can identify the separate effects of leverage, firm’s

equity volatility (via orthogonal equity volatility), and market-wide volatility on CDS premia, while

avoiding collinearity.

The second-stage estimation results are presented in Table 4. We have estimated Equation (4) with

and without fixed firm effects and the results are similar, so we only report the latter in Table 4.

The analysis shows that the selected variables are all highly significant in explaining the level of CDS

premia. The volatility variables and leverage have positive effects on CDS spreads, while the interest

rate has a negative impact. The adjusted R2 is around 57%. The estimated dCDS/dσE is equal to

(1.94 + 0.71=) 2.65 when VIX is below 13%. This level rises to (2.65 + 4.59=) 7.24 when VIX is

in the range of 30 - 50% and remains at a similar value of (2.65 + 4.50=) 7.15 at even higher VIX

levels. The estimated dCDS/dσE is an increasing step-function of VIX (the higher the VIX, the

higher dCDS/dσE). Figure 2 shows that the estimated dCDS/dσE , which rises stepwise with VIX

in the regression, can be fitted to a logarithmic function of VIX.

The results of the auxiliary panel regression in Table 4 are consistent with both the theoretical values

of dCDS/dσE in Table 1 and the values estimated on a firm-by-firm basis via cointegration analysis

(Tables 2 and 3). The mean of dCDS/dσE estimated from the auxiliary panel regression is 4.45; the

median is 3.99; the maximum value is 9.14; the minimum value is 2.03; and the standard deviation

is 1.6622.

After having estimated dCDS/dσE , we use the results to calibrate the Merton model. To implement

the Merton model using data on 5-year credit default swaps we make two assumptions: (i) the CDS

spread is the same as the spread on a risky zero-coupon bond with maturity equal to the CDS 5-year

maturity; and (ii) the firm’s current leverage ratio is also the firm’s target level ratio (see Collin-

Dufresne and Goldstein, 2001). Details on the model assumptions and the calibration procedure are

provided in Appendix C. For each firm and each week the calibration exercise returns values for the

firm’s implied asset volatility and CDS premium. We call this model the “tail-model”23. The reason

for calling it the “tail model” is that the calibration to dCDS/dσE captures an important feature

in the data. As illustrated in the next Section 5, the implied volatility smile obtained from the

cross-section of model-estimated CDS premia - tantamount to the smile of deep out-of-the-money

put options - at each point of time declines with the leverage of the firm (i.e. as the strike price for the

put option written on the firm’s assets rises). The equity option literature suggests that this feature

is motivated by a heavy negative skew (fat left tail) in the risk-neutral probability distribution of the

underlying asset24.

22The sensitivity measure dCDS/dσE obtained from the auxiliary panel regression (4) includes both CDS premia

sensitivity to firm’s (orthogonal) equity volatility and CDS premia sensitivity to equity index volatility. The latter is

approximately equal to 2.
23Tail-model errors are then generated as difference between: (i) observed market CDS premia and tail-model implied

CDS premia; and (ii) asset volatilities implied by CDS market premia and volatilities implied by the estimated tail-

model.
24For a put equity option the underlying is the firm’s equity, while for the CDS the underlying is the overall firm’s assets
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5 Cross-Sectional Fit of the Tail-Model

After calibrating the tail-model, we analyse its cross-sectional fit by comparing: (i) market CDS

premia with the premia estimated from the tail-model, and (ii) implied asset volatilities from market

CDS premia with the implied asset volatilities estimated from the tail-model. Figures 3, 4, and 5

show the results for the relatively calm week starting on 19th of March 2006; Figures 6, 7, and 8 show

the results for the week starting on the 21st of September 2008, soon after the Lehman Brothers crash.

The interesting evidence displayed by Figures 3 and 6 is that both implied asset volatilities from

CDS market premia and from the tail-model decrease with higher leverage ratios and remain very

close, even during the turbulent week after the Lehman collapse (21 September 2008). Implied asset

volatilities decrease when the leverage ratio increases, just as implied volatilities from deep out-of-

the-money put options decrease with the strike price. This confirms our hypothesis that dCDS/dσE

is able to capture non-normality and left-skewness in the risk-neutral distribution of a firm’s returns.

While leverage has a decreasing effect on implied volatilities in cross-section, this does not always

translate in a negative effect on CDS premia. In fact in Figure 5 CDS premia are only slightly

decreasing with leverage, while in Figure 8 they are slightly increasing with leverage25.

In Figures 4 and 7 we also compare in cross-section the implied asset volatilities from CDS mar-

ket premia with two P-measures of historical asset volatility, including the one estimated using the

Schaefer and Strebulaev (2008) methodology (SS). Figures 4 and 7 present interesting differences

with respect to Figures 3 and 6. The volatility estimates from the tail-model have a pattern which

is much closer to their market-implied values and in this they outperform the SS estimates. The

tail-model also outperforms the Merton model calibrated to SS volatility (we call it SS model for

brevity) in predicting CDS premia (see Figures 5 and 8). In the week starting on the 19th of March

2006, the average prediction error for the tail-model is 15 basis points (equivalent to 50% the average

market CDS premium). This error is half the average prediction error from the SS model (around

29 basis points). The SS model works extremely badly over the cross-section. In the week starting

on the 21st of September 2008, the average prediction error for the tail-model is 13 basis points

(equivalent to 18% the average market CDS premium), which is less than half the SS model average

prediction error (34 basis points, corresponding to almost 50% of the average market CDS premium).

The in-sample results show that even a simple Merton model can have more explanatory ability when

calibrated on a measure that proxies left skewness in the risk-neutral distribution of firms’ returns

(and investors’ appreciation of extreme downside events). However, we observe that the CDS premia

estimated from the tail-model remain on average lower than the CDS premia observed in the market.

We therefore analyse next whether the in-sample tail-model prediction errors can be explained by

value.
25The estimated coefficient of leverage in the auxiliary panel regression in Equation (4) is also found positive (see Table

4). Appendix D explains the consistency of these results in presence of different cross-sectional and time-series effects

of leverage and volatility on CDS premia.
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non-default factors, such as illiquidity and investors’ aversion to uncertainty.

The illiquidity of the CDS contracts can increase CDS premia above the level predicted by the struc-

tural model. Recent papers, such as Tang and Yan (2006) and Bongaerts, de Jong and Driessen

(2011), have studied the effects of liquidity on derivative contracts in zero net-supply, particularly on

CDS contracts. Tang and Yan (2006) observe that “sellers of CDS contracts provide not only insur-

ance against credit risk, but also liquidity service in the market. If the demand exceeds the supply,

sellers can charge a premium for faster matching, ceteris paribus, as they are liquidity providers”26.

Bongaerts, de Jong, and Driessen (2011) demonstrate that illiquid derivatives can have lower ex-

pected returns if the short-sellers (CDS protection writers) are more aggressive than the “long”

investors (CDS protection buyers), due to their higher aggregate wealth, lower risk aversion, or

shorter horizon. The intuition behind this idea is that the aggressive investors are more sensitive to

transaction costs and thus need to be compensated for these costs in equilibrium. Applying their

model to CDS market data, Bongaerts et al (2011) find that sellers of credit protection receive illiq-

uidity compensation on top of the compensation for default risk (liquidity premium). In our research

paper, we investigate the effect of illiquidity on CDS premia. The illiquidity variable is proxied by

the residuals from a regression of CDS bid-ask spread on equity volatility and past CDS premium.

The residuals represent the pure illiquidity component of the CDS bid-ask spread27.

The dispersion of analysts’ forecasts on firm’s earnings over a forecasting period of three months

represents the measure of uncertainty of market participants over the fundamentals and the future

performance of the firms28. The underlying hypothesis is that greater uncertainty can increase CDS

premia above the tail-model predictions when investors are adverse to uncertainty. Moreover, uncer-

tainty (or ambiguity) can induce non-participation in the market. In the Easley and O’Hara (2010)

26The demand-supply imbalance and the aggressiveness of credit protection sellers are fundamental to explain liquidity

effects on credit derivatives, besides the “hedging argument”. The price of the CDS insurance in fact can rise also when

the underlying market in which the writers of the insurance do their hedging becomes less liquid.
27Following Bongaerts, de Jong and Driessen (2011), the CDS liquidity level on day t is computed as summation of half

bid-ask spread on day t− 1 plus half bid-ask spread on day t: CDS illiquidity level= Â 1
2

CDS BA (t) + Â 1
2

CDS BA

(t-1). A regression of CDS illiquidity level on past CDS premium and contemporaneous equity volatility is performed

over a rolling window of 180 days. The residuals represent a “pure illiquidity” component of the CDS bid-ask spread

(i.e. orthogonal to past price level and equity volatility), which is employed as final proxy of illiquidity in the CDS

market. As alternative illiquidity proxy we employ also equity illiquidity, i.e. the residuals from a regression of Equity

illiquidity level= Â 1
2

Equity BA (t) + Â 1
2

Equity BA (t-1) on past equity price and equity volatility (pure illiquidity

component of equity bid-ask spread). Marra (2012) shows that the illiquidity in equity and CDS markets tend to

co-move across large number of firms, particularly during the crisis periods. Consistently, the results of the regressions

of tail-model errors on equity illiquidity and CDS illiquidity tend to be similar in terms of statistical significance.

However, the impact of equity illiquidity appears larger in terms of economic significance.
28We proxy the belief disagreement (uncertainty) about future firm’s earnings using the analysts’ earnings forecast

dispersion, i.e. the ratio between the median of earnings forecasts for each firm across all analysts and the relative

standard deviation. We follow the methodology of Buraschi et al (2010). We use analysts’ forecasts of earnings per

share, taken from the Institutional Brokers Estimate System (I/B/E/S) database. This database contains individual

analyst’s forecasts organized by: (A) forecast date; and (B) the last date the forecast was revised and confirmed

as accurate. Following Buraschi et al (2010), and Diether, Malloy, and Scherbina (2002), we use only stock-split

unadjusted data. As initial step, we match analysts’ forecast data with our CDS data. We extend each forecast date

to its revision date: if, for example, a forecast is made in January 2006 and it is last confirmed in March 2006, we use

this forecast for January, February, and March 2006. If more than one forecast per month is recorded for the same

analyst, we use the forecast which was confirmed most recently.
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model of investors’ behaviour in presence of uncertainty, when traders have incomplete preferences

over assets, absence of trading and higher illiquidity can arise. We test whether this theory has any

implication for inducing larger spreads in the CDS market for investment-grade firms, particularly

over the turbulent period of the crisis. The debate on uncertainty and risk aversion has not been

deeply examined in this research paper. However, for this analysis the dispersion of analysts’ fore-

casts on firms’ earnings is chosen as the measure of uncertainty because it should not overlap with

other measures which proxy both investors’ aversion to risk and to uncertainty (e.g. VIX). It is in

fact generally difficult to disentangle one from the other.

To capture the illiquidity of the firms in cross-section we also use firms’ market capitalization. Secu-

rities issued by small firms and derivatives written on these claims tend to be more illiquid than the

corresponding claims on large firms. Moreover, the level of uncertainty on small firms’ performance

tends to be higher given the limited number of analysts following those firms.

Graphical evidence in Figure 9 shows a positive relationship on average between tail-model premia

errors and CDS illiquidity over the crisis week (after 21 September 2008). Figure 10 also shows that

the tail-model implied volatility errors tend to be positively related to CDS illiquidity. The cross-

sectional regression results in Tables 5, 6, 7, and 8 confirm that CDS illiquidity has a significantly

positive impact on tail-model errors in the turbulent week (21 September 2008), but no effect in the

calmer week (19 March 2006). In the week after the Lehman Brothers failure, a 1 standard deviation

change in CDS illiquidity increases tail-model premia errors and implied volatility errors respectively

by 0.36 (0.46 if we control for equity volatility) and 0.44 standard deviations (0.57 if we control for

equity volatility). Over the same week the variable measuring investors’ dispersion of beliefs and

uncertainty also becomes highly significant: a 1 standard deviation change in uncertainty increases

tail-model premia errors and implied volatility errors respectively by 0.74 (0.37 if we control for

equity volatility) and 0.94 standard deviations (0.41 if we control for equity volatility). Graphical

evidence in Figures 11 and 12 also shows a positive relationship between the tail-model errors and

the measure of uncertainty (although the graphical relationship appear to be driven by a handful of

data points, both variables have been preliminary filtered from outliers).

6 Time-Series Fit of the Tail-Model and further Analysis of

Determinants of Tail-Model Errors

The time-series analysis of the average CDS premium and implied asset volatility estimated from

the tail-model (in-sample) across 40 highly-rated firms shows that the dynamics predicted by the

tail-model follow the expected pattern, with a sharp increase of average CDS premium over the

crisis period (see Figures 13 and 14). Although the average premium estimated from the Merton

model calibrated on Schaefer and Strebulaev (2008) volatility (SS model) seem to capture better

some of the explosion of the credit premia at the peak of the crisis (2008), it performs worse than

the tail-model in the pre and post-crash period. In particular, before the second quarter of 2008,

the SS model - reliant on lower historical volatilities - largely underestimates the average market
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CDS premium. The predictions from the tail-model look on average more reasonable, although they

remain insufficient to explain completely the observed size of the CDS premia during the crisis period.

We perform time-series regressions to identify whether average CDS market illiquidity and market

uncertainty contribute to explain the tail-model under-predictions. We also test for the effect of

market volatility. Although this effect has been already captured by the auxiliary panel regression

in Equation (4), it might appear again in tail-model prediction errors for the following reasons:

(1) The measure of market volatility used in the auxiliary panel regression may not capture the whole

volatility-effect;

(2) The model specification (linear) used in the panel regression may describe the relationship be-

tween CDS premia and market volatility only at cost of an approximation;

(3) The CDS sensitivity to equity volatility estimated from the panel regression is a physical measure,

but it is then used in the risk neutral domain (for model calibration) to predict CDS premia and

implied volatility. However, the risk neutral domain disregards the effect of volatility risk;

(4) Literature on uncertainty and ambiguity aversion in financial markets points out that higher

market volatility is one of the key indicators of increased market uncertainty.

The effects of market volatility on tail model errors are captured using two alternative market volatil-

ity proxies: VIX index (Q-measure) and S&P500 index EWMA volatility (P-measure).

Over the crisis period the average tail-model errors appear closely related to: (i) measures of market

volatility (VIX and S&P500 volatility - see Figures 15 and 16); (ii) average firms’ illiquidity (measured

by average residual equity bid-ask spread - see Figure 17); and (iii) median firms’ earnings uncer-

tainty (see Figure 18). The time-series regressions in Tables 9 and 10 confirm that higher average

CDS illiquidity and VIX contributes to increase the tail-model errors. An increase of one standard

deviation in VIX leads on average to 0.62 standard deviations increase in the tail-model premia error.

One standard deviation increase in average CDS residual bid-ask spread determines 0.38 standard

deviations increase in average tail-model premia error. VIX is not significant to explain the increase

in implied volatility error, whereas CDS illiquidity is economically and statistically significant. The

proxy for market uncertainty is not found significant in time-series when we control also for VIX and

average CDS illiquidity (unreported result).

Further, to examine the influence of illiquidity, uncertainty, and volatility risk we also employ panel

analysis on tail-model prediction errors. In the panel regressions tail-model errors for CDS premia

and implied volatility are regressed on VIX index, earnings’ forecast uncertainty, CDS illiquidity, and

inverse of market capitalization. The panel regressions’ results reported in Tables 11 and 12 show

that all explanatory variables are positively significant to explain the increase in CDS premia tail-

model errors. In particular, the tail-model errors increase with higher earnings’ forecast uncertainty

and CDS illiquidity. The regressions are performed with and without fixed (firm) effects29.

Finally, Table 13 shows the pair-wise Pearson correlations between all frictional variables (and the

29Only the former results are reported for brevity. Excluding fixed firm effects does not change qualitatively and

quantitatively the results.

17



statistical significance of these correlations). The numbers in Table 13 demonstrate that collinearity

may be a potential issue only between VIX and market capitalization, which two variables (for this

reason) are never included together in the panel regressions (see Tables 11 and 12).

7 Forecasting Ability of the Tail-Model

So far we have been working with data “in sample” to test the validity of the tail-model. We have

detected significant influences of illiquidity and uncertainty on the component of CDS premia that

the tail-model leaves unexplained. In this Section, by means of out-of-sample forecasting, we perform

a more severe test on the predictive power of the tail-model and the illiquidity and uncertainty factors

for CDS premia. This test verifies whether: (1) the tail-model and its adjustment to illiquidity and

uncertainty can be used to predict future CDS premia correctly; and (2) the tail-model outperforms

traditional methodologies of Merton model calibration based on historical volatility estimates (such

as the one by Schaefer and Strebulaev, 2008).

For the rolling forecasting exercise we define as the initial in-sample period 1/1/2005 to 6/1/2008

(157 weeks). The out-of-sample period, over which we predict the CDS premia, includes the last two

years of the sample and goes from 13/1/2008 to 27/12/2009.

Firstly, we estimate dCDS/dσE in sample by performing the auxiliary panel regression in Equation

(4) on a rolling window of 157 weeks. Secondly, we calibrate the Merton model out of sample to

the sensitivity measure dCDS/dσE estimated in-sample to obtain the tail-model forecasts of CDS

premia30. Thirdly, for each week t over the out-of-sample period and each firm i we obtain a forecast

of the CDS premium from an adjusted tail-model as follows:

Forecast of CDS Premium from Adjusted Tail-Model =

Forecast of CDS Premium from Tail-Model (as defined above) + Adjustment Factor

The adjustment factor is given over the out-of-sample period by:

Estimated Intercept + BetaILL × CDS Illiquidityt + BetaMC × Inverse Market Capitalizationt +

BetaFORDISP × Earnings’ Forecast Dispersiont.

The intercept and the coefficients BetaILL, BetaMC , and BetaFORDISP are estimated in-sample

from a rolling panel regression of tail-model premia errors (previously obtained using the whole sam-

ple of data, as explained in Section 4) on CDS residual bid-ask spread, inverse market capitalization,

and earnings’ forecast dispersion31. Using the adjustment factor we can test whether taking into

account the past influence of illiquidity and uncertainty on CDS premia tail-model errors can im-

prove CDS premia predictions for the future (up to two years ahead), above the tail-model predictions.

30In the rolling forecasting exercise the CDS premium over the week commencing on 13/1/2008 is obtained using the

dCDS/dσE estimated from the panel regression over the sample 1/1/2005 - 6/1/2008. Next, the CDS premium for

the week commencing on 20/1/2008 is obtained using the dCDS/dσE estimated from the panel regression over the

sample 8/1/2005 - 13/1/2008 (i.e. the initial week of the previous in-sample period is dropped, while one “new week”

is added at the end; the length of the in-sample period remains however fixed to 157 weeks).
31The prediction of the adjustment factor has been repeated using only CDS residual illiquidity and analysts’ earnings

forecast dispersion (i.e. without including the market capitalization variable). Results remain mostly unchanged,

therefore are not reported for brevity.
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The average results from the forecasting exercise are illustrated in Figure 19. In this graph the ad-

justed tail-model forecasts are compared with the market CDS premia, the forecasts obtained using

the tail-model (with no adjustments), and the forecasts from the SS model. Across all 40 investment-

grade firms, the adjusted tail-model performs on average very well in forecasting the level of the CDS

market premia out of sample. The SS model has lower forecasting ability. On average, the forecasts

obtained by the SS model systematically under-predict the market CDS premia over the whole period

before November 2008 and again starting from April 2009. The forecasting ability of the tail-model

using dCDS/dσE is good both in magnitude and direction. The summary statistics for the absolute

forecast errors (Mean Squared Forecast Errors - MSE, Root Mean Squared Forecast Errors - RMSE,

and Mean Absolute Forecast Errors - MAE) reported in Table 15 confirm the relative forecasting

performances: the tail-model and its version adjusted to illiquidity and uncertainty over-perform the

traditional SS methodology in predicting CDS premia out of sample. The RMSE and MAE of the

SS methodology are three times the RMSE and MAE of the adjusted tail-model which delivers the

best forecasts.

Finally, as a robustness check, the rolling forecasting exercise is repeated on different in and out-

of-sample periods, respectively 1/1/2005 to 3/25/2007 and 1/4/2007 to 27/12/2009. The starting

in-sample period coincides with the pre-crisis period. The results are shown in Figure 20 and Table

16, and confirm the good performance of the tail-model, and the even better performance of the

adjusted tail-model.

8 Robustness Check:

Explicit Model vs. Reduced-Form Model

As a further robustness check on the tail-model, in this Section we firstly investigate whether the

errors of the tail-model are related to the errors of the initial (auxiliary) panel regression in Equation

(4), where market CDS premia are regressed on interest rate, leverage ratio, and equity volatility

variables, conditional on VIX levels (Table 4 reports the results of the relative panel estimation).

In this Section we call the tail-model also the “explicit structural model” and the auxiliary panel

regression in Equation (4) the “reduced-form structural model”.

If we find that the tail-model errors are larger than the panel errors and unrelated to them, this

means that the Merton model calibrated on dCDS/dσE introduces further sources of disturbance. If

we find that the errors are similar, then it is likely that both the panel regression and the tail-model

omit to consider the same variables. Our hypothesis is that the omitted variables are CDS market

illiquidity and investors’ aversion to uncertainty. After estimating the auxiliary panel regression in

Equation (4), we construct the residual series (i.e. the panel errors) and compare them with the

errors from the tail-model. Figure 21 shows that the tail-model errors are strongly and positively

related to the panel errors.
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Next, we include illiquidity and uncertainty frictions in the auxiliary panel regression to test whether

they are significant to explain market CDS premia; likewise they have been found to explain tail-

model errors in the analysis in Sections 5 and 6. This result is displayed in Table 14. Illiquidity

and uncertainty are highly significant variables to explain an increase in CDS premia. This confirms

their role as possible relevant omitted variables in both the tail-model (explicit model) and the panel

regression (reduced-form model).

Tables 4 and 14 show that the reduced-form model for CDS premia, represented by the panel re-

gression in Equation (4) and its enhanced version including illiquidity and uncertainty frictions, are

able to explain over 57% of the variation in CDS premia. Looking at the high R-squared from the

reduced-form model estimation, one might therefore argue that calibrating the explicit tail-model is

unnecessary to obtain good CDS premia predictions. However, the explicit tail-model is calibrated

on a measure of left-skewness in the firm’s returns distribution (dCDS/dσE) which is not incor-

porated in the panel regression and which has been shown essential to capture cross-sectional and

time-series dynamics in credit spreads. To support this argument, we compare the out-of-sample

predictive ability of the explicit model with the predictive ability of the reduced-form model (with

and without illiquidity and uncertainty variables). The results are presented in Figure 22 and Table

15 (for out-of-sample period January 2008 - December 2009) and Figure 23 and Table 16 (for the

longer out-of-sample period April 2007 - December 2009). Table 15 illustrates the measures of fore-

casting performance for the SS model, the tail-model, the adjusted tail-model, the panel regression,

and its adjusted version including illiquidity and uncertainty variables. The forecasts of CDS premia

obtained from the adjusted panel regression have on average twice as large mean absolute forecast er-

rors as the forecasts obtained from the adjusted tail-model and more than double root mean squared

forecast errors. The forecasting ability of the adjusted tail-model is higher than the one of the tail-

model; however, the tail-model forecasts outperform the panel forecasts by 8% (for MAE) and 19%

(for RMSE). In turn, the panel regressions can forecast CDS premia out-of-sample better than the

Merton model calibrated on SS volatility. Table 16 show that when a longer out-of-sample period is

considered (April 2007 - December 2009), the forecasting performance of the reduced-form structural

model improves over the tail-model. The MAE and RMSE of the panel forecasts are almost the same

as the MAE and RMSE of the tail-model; however, the measures of dispersion of the panel forecast

errors are also almost twice as large. Noticeably, in all cases the tail-model adjusted to illiquidity

and uncertainty remains the “unbeaten” methodology to forecast CDS premia out-of-sample.

To sum up, although the reduced-form model can forecast average CDS premia quite correctly, the

tail-model adjusted for illiquidity and uncertainty returns the highest performance and the closest

predictions (it has in fact smaller RMSE and MAE).
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9 Conclusions

Previous literature has found that the structural Merton (1974) model is successful in estimating

changes in firms’ credit risk exposure (Schaefer and Strebulaev, 2008 - SS), but unsuccessful in

reproducing the level of credit spreads observed in the market (Eom, Helwege and Huang, 2004;

Collin-Dufresne, Goldstein and Martin, 2001; and Huang and Huang, 2004). This has generated the

so-called credit spread puzzle. Despite its flaws, the Merton (1974) model offers an intuitive economic

interpretation of default events and views firms’ equity and credit claims as contingent claims written

on firms’ underlying assets. The structural model literature has developed therefore in parallel to

the literature on Black-Scholes for equity options.

In this paper we use a Merton model (with target leverage at its local level), but we calibrate it to a

measure of the sensitivity of credit default swap premia to equity volatility dCDS/dσE , rather than

to more direct proxies for asset volatility. We call this calibration methodology the “tail-model”. The

benefit of the tail-model is to capture the variation in the underlying risk-neutral distribution (RND)

of firm’s asset, not only in the volatility dimension, but also in higher order moments (i.e. skewness

and kurtosis). The measure helps to demonstrate that there is a fat tail in the RND and conveys a

larger set of information on the time-varying attitude of investors towards the probability of extreme

crashes. The model does not however investigate explanations for the existence of the fat tail, which

could be due to jumps, correlation risk, volatility risk, and/or investors’ risk aversion.

Consistent with the literature on put options, we observe that the implied volatilities from CDS

premia for 40 U.S. highly-rated companies (obtained by inverting the Merton model pricing equa-

tion) demonstrate the existence of a volatility smirk (in leverage). The dCDS/dσE calibration can

generate the same kind of smirk, which more traditional calibration approaches (such as SS) cannot.

In addition, we find that the tail-model largely improves the in-sample and out-of-sample predic-

tions of credit premia relative to more traditional calibration methodologies, before and during the

recent crisis period. In particular, the Schaefer and Strebulaev (2008) model works very badly in

cross-section. The tail-model performs better than the SS model in both cross-section and time-series.

Nevertheless, the calibration of the tail-model returns CDS premia which are still below those ob-

served in the market. This leads to a consideration of non-default components of credit spreads. In

particular, this work carries out a test on the effects of illiquidity and uncertainty on CDS premia.

We find that illiquidity in credit markets and investors’ aversion to uncertainty on the fundamental

values and earnings’ prospects of the firms influence investors’ attitude and trading decisions in the

credit markets, and have a positive impact on residual CDS premia. The tail-model adjusted to

include also illiquidity and uncertainty premia replicates the patterns of market CDS premia very

closely and displays the lowest average prediction errors in two separate out-of-sample forecasting

exercises, when compared to more traditional calibration methodologies.

To the best of our knowledge, no previous empirical work has jointly evaluated the impact of changes

in the shape of the risk neutral distribution (and investors’ preferences) and illiquidity and uncertainty
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frictions on the spreads of CDSs written on investment-grade firms to explain the credit spread

puzzle. This work proposes solutions to overcome the difficulty in capturing investors’ preferences,

their appreciation of the probability of extreme losses, the cost of their inactive participation into the

market, and their aversion to uncertainty; and shows that all these factors have a prominent effect

on credit premia of highly-rated firms, in particular during the 2007-09 crisis.
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A Figures and Tables

Figure 1: Relationship between VIX Index and S&P 500 Index Annualized Exponentially-Weighted

Moving Average Volatility (with lambda=0.94)

(Volatilities are measured in percentage units; Sample: January 2005 - December 2009.)

Figure 2: Relationship between VIX Index and Estimated or Logarithm-fitted Sensitivity of CDS

Premia to Equity Volatility dCDS/dσE

(All variables are measured in percentage units; Sample: January 2005 - December 2009; 40 U.S. investment-

grade firms.)
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Figure 3: Cross-section of Implied Volatilities from Market CDS Premia and Implied Volatilities from Tail-
Model, against Leverage Ratio
(19 Mar 2006; 40 U.S. investment-grade firms; Logarithmic curves are fitted to the data; All variables are measured in

decimals.)

Figure 4: Cross-section of Implied Volatilities from Market CDS Premia, Volatilities estimated from SS
(2008) Methodology, and Volatilities estimated using (1 - Leverage ratio) × Annualized EWMA Equity
Volatility, against Leverage Ratio
(19 Mar 2006; 40 U.S. investment-grade firms; Logarithmic curves are fitted to the data; All variables are measured in

decimals.)
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Figure 5: Cross-section of Market CDS Premia, CDS premia implied by Tail-Model using dCDS/dσE , and
CDS Premia implied by Merton Model calibrated on SS Volatility, against Leverage Ratio
(19 Mar 2006; 40 U.S. investment-grade firms; CDS premia are measured in basis points, leverage ratios in decimals.)
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Figure 6: Cross-section of Implied Volatilities from Market CDS Premia and Implied Volatilities from Tail-
Model, against Leverage Ratio (21 Sept 2008; 40 U.S. investment-grade firms; Logarithmic curves are fitted to the

data; All variables are measured in decimals.)

Figure 7: Cross-section of Implied Volatilities from Market CDS Premia, Volatilities estimated from SS
(2008) Methodology, and Volatilities estimated using (1 - Leverage ratio) × Annualized EWMA Equity
Volatility, against Leverage Ratio (21 Sept 2008; 40 U.S. investment-grade firms; Logarithmic curves are fitted to the

data; All variables are measured in decimals.)
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Figure 8: Cross-section of Market CDS Premia, CDS Premia implied by Tail-Model using dCDS/dσE , and
CDS Premia implied by Merton Model calibrated on SS Volatility, against Leverage Ratio
(21 Sept 2008; 40 U.S. investment-grade firms; CDS premia are measured in basis points, leverage ratios in decimals.)
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Figure 9: Scatter Plot of CDS Premia Errors from Tail-Model against CDS Illiquidity
(Tail Model CDS Premium Error = CDS Market Premium - CDS Premium implied by Tail-Model;

CDS Illiquidity = Residuals from a regression of CDS bid-ask spread on past CDS premium

and contemporaneous equity volatility; 21 Sept 2008; 40 U.S. investment-grade firms;

Regression line fitted to the data; Tail-Model CDS Premium Errors are measured in basis points.)

Figure 10: Scatter-Plot of Implied Volatility Errors from Tail-Model against CDS Illiquidity
(Tail-Model IVol Error = Implied Volatility from CDS Market Premium - Implied Volatility from Tail-Model;

CDS Illiquidity = Residuals from a regression of CDS Bid-Ask Spread on Past CDS Premium

and Contemporaneous Equity Volatility; 21 Sept 2008; 40 U.S. investment-grade firms;

Regression line fitted to the data; Tail-Model CDS Implied Volatility Errors are measured in decimals.)
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Figure 11: Scatter-Plot of CDS Premia Errors from Tail-Model against Analysts’ Earnings Forecast Disper-
sion (Uncertainty)
(Tail Model CDS Premium Error = CDS Market Premium - CDS Premium implied by Tail-Model;

Earnings’ Uncertainty = Dispersion of Analysts’ forecasts on the firm’s earnings;

21 Sept 2008; 40 U.S. investment-grade firms; Regression line fitted to the data;

Tail-Model CDS Premium Errors are measured in basis points.)

Figure 12: Scatter-Plot of Implied Volatility Errors from Tail-Model against Analysts’ Earnings Forecast
Dispersion (Uncertainty)
(Tail-Model IVol Error = Implied Volatility from CDS Market Premium - Implied Volatility from Tail-Model;

Earnings’ Uncertainty = Dispersion of Analysts’ forecasts on the firm’s earnings;

21 Sept 2008; 40 U.S. investment-grade firms; Regression line fitted to the data;

Tail-Model CDS Implied Volatility Errors are measured in decimals.)
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Figure 13: Time-Series of Average CDS Market Premium, Average CDS Premium implied by the Tail-Model
using dCDS/dσE , and Average CDS Premium implied by Merton Model calibrated on SS Volatility
(40 U.S. investment-grade firms; Sample: Jan 2005 - Dec 2009; Average premia are measured in basis points.)

Figure 14: Time-Series of Average Implied Volatility from Market CDS Premia, Average Implied Volatility
from Tail-Model using dCDS/dσE , and Average Schaefer-Strebulaev (2008) Volatility
(40 U.S. investment-grade firms; Sample: Jan 2005 - Dec 2009; Average volatilities are measured in decimals.)
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Figure 15: Time-series of Average CDS Premium Error from Tail-Model and VIX Index
(Average Tail-Model CDS Premium Error = Average CDS Market Premium - Average CDS Premium

implied by Tail-Model; 40 U.S. investment-grade firms; Sample: Jan 2005 - Dec 2009;

Average CDS premium is measured in basis points, VIX in percentage units.)

Figure 16: Time-series of Average CDS Premium Error from Tail-Model and Annualized Exponentially-
Weighted Moving Average Volatility of S&P500 Index (with lambda=0.94)
(Average Tail-Model CDS Premium Error = Average CDS Market Premium - Average CDS Premium

implied by Tail-Model; 40 U.S. investment-grade firms; Sample: Jan 2005 - Dec 2009;

Average CDS premium is measured in basis points, S&P500 volatility in percentage units.)
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Figure 17: Time-series of Average CDS Premium Error from Tail-Model and Average Equity Residual
Illiquidity
(Average Tail-Model CDS Premium Error =

Average CDS Market Premium - Average CDS Premium implied by Tail-Model;

Average Equity Residual Illiquidity =

Average residuals from firm-by-firm regressions of equity bid-ask spreads on equity volatility and past equity prices;

40 U.S. investment-grade firms; Sample: Jan 2005 - Dec 2009;

Average CDS premium and average equity residual illiquidity are measured in basis points.)
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Figure 18: Time-series of Average CDS Premium Error from Tail-Model and Median Analysts’ Earnings
Forecast Dispersion (Uncertainty) Across Firms
(Average Tail-Model CDS Premium Error =

Average CDS Market Premium - Average CDS Premium implied by Tail-Model;

Median Earnings’ Uncertainty = Median dispersion of analysts’ forecasts on the firm’s earnings;

40 U.S. investment-grade firms; Sample: Jan 2005 - Dec 2009;

Average CDS premium is measured in basis points, median earnings’ uncertainty in percentage units.)
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Figure 19: Comparison of Average Out-of-Sample Forecasts:
CDS Market Premium, CDS Premium from Merton Model calibrated on SS volatility,
CDS Premium from Tail-Model using dCDS/dσE ,
and CDS premium from Tail-Model adjusted for Illiquidity and Uncertainty
(Average values across 40 U.S. investment-grade firms; Rolling forecasts;

In-sample period: 157 weeks starting with 1 Jan 2005 - 6 Jan 2008;

Out-of-sample period: 13 January 2008 - 31 December 2009;

Forecasted CDS premia are measured in basis points.)
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Figure 20: Comparison of Average Out-of-Sample Forecasts:
CDS Market Premium, CDS Premium from Merton Model calibrated on SS volatility,
CDS Premium from Tail-Model using dCDS/dσE ,
and CDS Premium from Tail-Model adjusted for Illiquidity and Uncertainty
(Average values across 40 U.S. investment-grade firms; Rolling forecasts;

In-sample period: 117 weeks starting with 1 Jan 2005 - 25 Mar 2007;

Out-of-sample period: 1 April 2007 - 31 December 2009;

Forecasted CDS premia are measured in basis points.)
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Figure 21: Scatter-Plot of CDS Premium Errors from Tail-Model against Residuals from Auxiliary Panel
Regression (Eq. 4)
(40 U.S. investment-grade firms; Sample: Jan 2005 - Dec 2009; Weekly frequency;

Panel residuals and tail-model CDS premium errors are measured in basis points.)
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Figure 22: Comparison of Average Out-of-Sample Forecasts:
CDS Market Premium, CDS Premium from Reduced-form Model (Auxiliary Panel Regression - Eq.(4)), CDS
premium from Reduced-form model with Illiquidity and Uncertainty, and CDS Premium from Tail-Model
adjusted for Illiquidity and Uncertainty
(Average values across 40 U.S. investment-grade firms; Rolling forecasts;

In-sample period: 157 weeks starting with 1 Jan 2005 - 6 Jan 2008;

Out-of-sample period: 13 January 2008 - 31 December 2009;

Forecasted CDS premia are measured in basis points.)
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Figure 23: Comparison of Average Out-of-Sample Forecasts:
CDS Market Premium, CDS Premium from Reduced-form Model (Auxiliary Panel Regression (Eq.(4)), CDS
Premium from Reduced-form model with Illiquidity and Uncertainty, and CDS Premium from Tail-model
adjusted for Illiquidity and Uncertainty
(Average values across 40 U.S. investment-grade firms; Rolling forecasts;

In-sample period: 117 weeks starting with 1 Jan 2005 - 25 Mar 2007;

Out-of-sample period: 1 April 2007 - 31 December 2009;

Forecasted CDS premia are measured in basis points.)
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Table 1: Theoretical Values of CDS Premia and dCDS/dσE from Merton Model
(The structural model is calibrated on the following assumptions:

- CDS contract written on a firm with asset value 100 and with 5-years maturity;

- Continuous interest rate r set equal to 5%;

- Target level of leverage set equal to the current level)

Leverage Asset Volatility CDS Premium (bp) Equity Volatility d CDS Premium/d EqVol

0.05 0.2 0 0.211

0.05 0.25 0 0.263 0

0.05 0.3 0 0.316 0

0.05 0.35 0.1 0.368 0

0.05 0.4 0.8 0.421 0.1

0.05 0.45 3.5 0.474 0.5

0.05 0.5 10.5 0.526 1.3

0.05 0.55 24.3 0.579 2.6

0.05 0.6 47.4 0.631 4.4

0.05 0.65 81.6 0.683 6.6

0.15 0.2 0 0.235

0.15 0.25 0.3 0.294 0

0.15 0.3 2.4 0.353 0.4

0.15 0.35 10.1 0.411 1.3

0.15 0.4 27.5 0.469 3

0.15 0.45 57.8 0.526 5.3

0.15 0.5 102.3 0.583 7.8

0.15 0.55 161.7 0.64 10.5

0.15 0.6 235.7 0.696 13.2

0.15 0.65 323.9 0.752 15.7

0.3 0.2 1.8 0.286

0.3 0.25 11.6 0.356 1.4

0.3 0.3 36 0.424 3.6

0.3 0.35 77.9 0.491 6.3

0.3 0.4 137.1 0.557 9

0.3 0.45 212.6 0.622 11.6

0.3 0.5 302.8 0.687 13.9

0.3 0.55 406.5 0.751 16

0.3 0.6 522.7 0.817 17.8

0.3 0.65 650.7 0.883 19.4
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Table 2: Average Estimates of dCDS/dσE obtained from Cointegration Analysis on
Individual Firms’ CDS Premia and Equity Volatility
(Average results across 40 Investment Grade Firms are reported;

Pre-Crash is the period from 1/1/2005 to 25/3/2007;

Post-Crash is the period from 1/4/2007 to 27/12/2009)

All Period Pre-Crash Period Post-Crash Period

Number of Firms 40 40 40

Number of Firms with dCDS/dσE>0 40 29 40

Mean dCDS/dσE 3.152 0.643 3.471

Median dCDS/dσE 2.042 0.426 2.399

Std Dev dCDS/dσE 2.521 0.875 2.785

Min dCDS/dσE 0.713 -0.680 1.033

Max dCDS/dσE 10.170 3.025 10.858

Range 9.457 3.704 9.825

First Quartile dCDS/dσE 1.508 -0.005 1.597

Third Quartile dCDS/dσE 3.880 1.050 3.865

Inter-Quartile Range 2.372 1.055 2.268
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Table 4: Auxiliary Panel Regression of CDS Premia on:
Equity Volatility Variables, Interest Rate and Leverage (All-Sample)
Dependent Variable: CDS Market Premia (measured in basis points)

Method: Panel Least Squares

Sample (adjusted): 1/1/2005 - 27/12/2009

Periods (weeks) included: 257

Cross-sections (firms) included: 40

Total panel (balanced) observations: 10280

Firm clustered standard errors and covariance are estimated (d. f. corrected)

Second-stage Panel Regression. The equity volatility variable is the orthogonal component obtained as residual from a first-

stage panel regression of firm’s equity volatility on leverage and S&P 500 Index volatility

Variable Coeff. Estimate Std Error t-Value p-value

Intercept 41.5832 4.0824 10.19 <0.0001

Lev Ratio 138.8511 5.7952 23.96 <0.0001

Int. Rate -11.9742 0.7903 -15.15 <0.0001

S&P500 Eq. Vol. 1.9437 0.0583 33.32 <0.0001

Equity Volatility 0.7078 0.1318 5.37 <0.0001

Eq. Vol. x Dummy VIX 13 0.0328 0.2398 0.14 0.8913

Eq. Vol. x Dummy VIX 15 0.1680 0.2467 0.68 0.4859

Eq. Vol. x Dummy VIX 20 2.2133 0.1877 11.79 <0.0001

Eq. Vol. x Dummy VIX 25 2.7876 0.2029 13.74 <0.0001

Eq. Vol. x Dummy VIX 30 4.5889 0.1710 26.83 <0.0001

Eq. Vol. x Dummy VIX 50 4.4992 Â 0.2098 Â 21.44 <0.0001

Adj. R-squared 0.5667

Table 5: Cross-Sectional Regression - 19 March 2006
Dependent Variable: Tail-Model Premium Error =
CDS Market Premium - CDS Premium implied by Tail-Model
Cross-sections included: 40 IG Firms;

White standard errors are estimated;

CDS Res Illiquidity =

Orthogonal component of CDS bid-ask spread to past CDS premium and current equity volatility;

Earnings’ Uncertainty = Dispersion of analysts’ forecasts on the firm’s earnings.

Specification 1 Coefficient Econ. Sign. Std. Error t-Statistic Prob.Â Â

Constant 14.7477 3.6877 4.00 0.0003

Earnings Uncertainty -2.3854 Not Sign. 13.8649 -0.17 0.8644

CDS Res Illiquidity 1.7958 Not Sign. 3.6784 0.49 0.6285

R-squared 0.007

Adjusted R-squared -0.050

Specification 2 Coefficient Econ. Sign. Std. Error t-Statistic Prob.

Constant 13.6684 7.8310 1.75 0.0899

Earnings Uncertainty -3.2605 Not Sign. 15.1283 -0.22 0.8306

Equity Vol. 0.0599 Not Sign. 0.3821 0.16 0.8763

CDS Res Illiquidity 1.8868 Not Sign. 3.7757 0.50 0.6205

R-squared 0.008

Adjusted R-squared -0.078
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Table 6: Cross-Sectional Regression - 19 March 2006
Dependent Variable: Implied Volatility Error from Tail-Model=
Volatility implied from CDS Market Premium - Volatility implied from Tail-Model
Cross-sections included: 40 IG Firms;

White standard errors are estimated;

CDS Res Illiquidity =

Orthogonal component of CDS bid-ask spread to past CDS premium and current equity volatility;

Earnings’ Uncertainty = Dispersion of analysts’ forecasts on the firm’s earnings.

Specification 1 Coefficient Econ. Sign. Std. Error t-Statistic Prob.

Constant 0.0367 0.0073 5.01 <0.0001

Earnings Uncertainty -0.0003 Not Sign. 0.0275 -0.01 0.9912

CDS Res Illiquidity 0.0041 Not Sign. 0.0073 0.57 0.5746

R-squared 0.009

Adjusted R-squared -0.047

Specification 2 Coefficient Econ. Sign. Std. Error t-Statistic Prob.

Constant 0.0307 0.0155 1.98 0.056

Earnings Uncertainty -0.0052 Not Sign. 0.0300 -0.17 0.8642

Equity Vol. 0.0003 Not Sign. 0.0008 0.44 0.6628

CDS Res Illiquidity 0.0046 Not Sign. 0.0075 0.62 0.5387

R-squared 0.015

Adjusted R-squared -0.072
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Table 7: Cross-Sectional Regression - 21 Sept 2008
Dependent Variable: Tail-Model Premium Error =
CDS Market Premium - CDS Premium implied by Tail-Model
Cross-sections included: 40 IG Firms;

White standard errors are estimated;

CDS Res Illiquidity =

Orthogonal component of CDS bid-ask spread to past CDS premium and current equity volatility.

Earnings’ Uncertainty = Dispersion of analysts’ forecasts on the firm’s earnings; Significant Variables (at 1% C.L.) in bold.

Specification 1 Coefficient Econ. Sign. Std. Error t-Statistic Prob.

Constant 5.1924 8.6645 0.60 0.5536

Earnings Uncertainty 74.5472 0.7433 17.8937 4.17 0.0002

CDS Res Illiquidity 22.0915 0.3632 7.8359 2.82 0.0079

R-squared 0.510

Adjusted R-squared 0.482

Specification 2 Coefficient Econ. Sign. Std. Error t-Statistic Prob.

Constant -56.3862 18.4164 -3.06 0.0043

Earnings Uncertainty 37.0120 0.3690 18.4945 2.00 0.0534

Equity Vol. 1.9362 0.3996 0.5297 3.66 0.0009

CDS Res Illiquidity 27.7207 0.4557 6.9098 4.01 0.0003

R-squared 0.648

Adjusted R-squared 0.617
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Table 8: Cross-Sectional Regression - 21 Sept 2008
Dependent Variable: Implied Volatility Error from Tail-Model=
Volatility implied from CDS Market Premium - Volatility implied from Tail-Model
Cross-sections included: 40 IG Firms;

White standard errors are estimated;

CDS Res Illiquidity =

Orthogonal component of CDS bid-ask spread to past CDS premium and current equity volatility;

Earning Uncertainty = Dispersion of analysts’ forecasts on the firm’s earnings; Significant Variables (at 1% C.L.) in bold.

Specification 1 Coefficient Econ. Sign. Std. Error t-Statistic Prob.

Constant 0.0001 0.0088 0.01 0.9883

Earnings Uncertainty 0.0732 0.9450 0.0182 4.02 0.0003

CDS Res Illiquidity 0.0207 0.4404 0.0080 2.59 0.0138

R-squared 0.484

Adjusted R-squared 0.454

Specification 2 Coefficient Econ. Sign. Std. Error t-Statistic Prob.

Constant -0.0674 0.0182 -3.71 0.0007

Earnings Uncertainty 0.0321 0.4138 0.0182 1.76 0.0876

Equity Vol. 0.0021 0.5670 0.0005 4.07 0.0003

CDS Res Illiquidity 0.0269 0.5717 0.0068 3.94 0.0004

R-squared 0.653

Adjusted R-squared 0.622

Table 9: Time-Series Regression - All Sample (Jan 2005 - Dec 2009)
Dependent Variable: Average Implied Volatility Error from Tail-Model=
Average Volatility implied from CDS Market Premia - Average Volatility implied from Tail-Model
Sample: 1/01/2005 - 27/12/2009 - Obs:257;

Newey-West HAC Standard Errors and Covariance (lag truncation=4);

CDS Res Illiquidity =

Residuals from a regression of CDS bid-ask spread on past CDS premium and current equity volatility; Significant Variables

(at 1% C.L.) in bold.

Coefficient Econ. Sign. Std. Error t-Statistic Prob.Â Â

Constant 0.0272 0.0024 11.29 <0.0001

VIX 0.0001 Not Sign. 0.0001 1.38 0.1685

CDS Res Illiquidity 0.0153 0.4240 0.0021 7.45 <0.0001

R-squared 0.182

Adjusted R-squared 0.175
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Table 10: Time-Series Regression - All Sample (Jan 2005 - Dec 2009)
Dependent Variable: Average Tail-Model Premium Error
Average CDS Market Premium - Average CDS Premium implied from Tail-Model
Sample: 1/01/2005 - 27/12/2009 - Obs:257;

Newey-West HAC Standard Errors and Covariance (lag truncation=4);

CDS Res Illiquidity =

Residuals from a regression of CDS bid-ask spread on past CDS premium and current equity volatility; Significant Variables

(at 1% C.L.) in bold.

Coefficient Econ. Sign. Std. Error t-Statistic Prob.

Intercept -1.7015 2.1872 -0.78 0.4373

VIX 1.2121 0.6174 0.0880 13.78 <0.0001

CDS Res Illiquidity 15.6739 0.3761 1.8674 8.39 <0.0001

R-squared 0.492

Adjusted R-squared 0.488

Table 11: Panel Regression
Dependent Variable: Implied Volatility Error from Tail-Model=
Volatility implied from CDS Market Premia - Volatility implied from Tail-Model
Method: Panel Least Squares;

Sample: 1/01/2005 - 27/12/2009 (All Sample);

Periods (weeks) included: 257;

Cross-sections (firms) included: 40;

Total panel (unbalanced) observations: 10280;

White period standard errors and covariance (d. f. corrected);

CDS Res Illiquidity =

Residuals from a regression of CDS bid-ask spread on past CDS premium and current equity volatility;

Earning Uncertainty = Dispersion of analysts’ forecasts on the firm’s earnings;

Firms’ Fixed Effects Included (Test for Fixed Effect: F-Stat= 178.78; (Pr>F)<0.0001); Significant Variables (at 1% C.L.) in

bold.

Coefficient Econ. Sign. Std. Error t-Statistic Prob.

Constant 0.024 0.00250 9.53 <.0001

VIX 0.0001 0.0225 0.00003 2.79 0.0052

Earnings Uncertainty 0.0008 0.1072 0.00006 13.03 <.0001

CDS Res Illiquidity 0.0060 0.1284 0.00040 15.78 <.0001

Adjusted R-squared 0.369

Constant 0.0093 0.0023 3.99 <.0001

Inv. Mkt. Cap 0.0039 0.5752 0.0012 34.02 <.0001

Earnings Uncertainty 0.0007 0.0895 0.00006 11.5 <.0001

CDS Res Illiquidity 0.0046 0.0969 0.0004 12.52 <.0001

Adjusted R-squared 0.436
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Table 12: Panel Regression
Dependent Variable: Tail-Model Premium Error=
CDS Market Premium - CDS Premium implied from Tail-Model
Method: Panel Least Squares;

Sample: 1/01/2005 27/12/2009 (All Sample);

Periods (weeks) included: 257;

Cross-sections (firms) included: 40;

Total panel (unbalanced) observations: 10280;

White period standard errors and covariance (d. f. corrected);

CDS Res Illiquidity =

Residuals from a regression of CDS bid-ask spread on past CDS premium and current equity volatility;

Earning Uncertainty = Dispersion of analysts’ forecasts on the firm’s earnings;

Firms’ Fixed Effects Included. (Test for Fixed Effect: F-Stat= 108.58; (Pr>F)<0.0001); Firms’ Fixed Effects Included (Test

for Fixed Effect: F-Stat= 178.78; (Pr>F)<0.0001); Significant Variables (at 1% C.L.) in bold.

Coefficient Econ. Sign. Std. Error t-Statistic Prob.

Constant -7.3431 3.4055 -2.16 0.0311

VIX 1.1636 0.2290 0.0428 27.19 <.0001

Earnings Uncertainty 1.2681 0.1264 0.0861 14.73 <.0001

CDS Res Illiquidity 8.1983 0.1348 0.5167 15.87 <.0001

Adjusted R-squared 0.312

Constant -15.9093 3.0691 -5.18 <.0001

Inv. Mkt. Cap 7.9124 0.8986 0.1505 52.57 <.0001

Earnings Uncertainty 1.0712 0.1068 0.0790 13.57 <.0001

CDS Res Illiquidity 4.7649 0.0783 0.4758 10.01 <.0001

Adjusted R-squared 0.424

Table 13: Pair-wise Correlation Matrix with Relative T-Statistics at 95% Confidence Level for VIX,
CDS Residual Bid-Ask Spreads, Analysts’ Earnings Forecast Dispersion and Inverse of Market Cap-
italization
(All Sample: Jan 2005 - Dec 2009)

VIX CDS Res Illiquidity Earnings Uncertainty

CDS Res Illiquidity -0.0371

(t-stat = 0.0002)

Earnings Uncertainty 0.0394 -0.0003

(t-stat < 0.0001) (t-stat = 0.9794)

Inverse of Market Cap. 0.1859 0.0686 0.0078

(t-stat < 0.0001) (t-stat < 0.0001) (t-stat = 0.4403)
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Table 14: Robustness Check:
Panel Regression of CDS Premia on Equity Volatility Variables, Interest Rate, CDS Residual Bid-
Ask Spread and Analysts’ Earnings Forecast Dispersion
Dependent Variable: CDS Market Premia;

Method: Panel Least Squares;

Sample (adjusted): 1/1/2005 - 27/12/2009 (All Sample);

Periods (weeks) included: 257;

Cross-sections (firms) included: 40;

Total panel (balanced) observations: 10280;

Clustered standard errors and covariance at firms level are estimated (d. f. corrected);

CDS Res Illiquidity =

Residuals from a regression of CDS bid-ask spread on past CDS premium and current equity volatility;

Earning Uncertainty = Dispersion of analysts’ forecasts on the firm’s earnings.

Variable Coeff. Estimate t-Value p-value

Constant 28.2751 6.94 <0.0001

Lev Ratio 136.4608 24.03 <0.0001

Int. Rate -9.3289 -11.82 <0.0001

S&P500 Eq. Vol. 2.0974 36.20 <0.0001

Equity Volatility 0.8837 6.80 <0.0001

Eq. Vol. x Dummy VIX 13 0.1059 0.45 0.6523

Eq. Vol. x Dummy VIX 15 0.2179 0.90 0.3674

Eq. Vol. x Dummy VIX 20 2.1099 11.47 <0.0001

Eq. Vol. x Dummy VIX 25 2.6182 13.16 <0.0001

Eq. Vol. x Dummy VIX 30 4.2497 25.16 <0.0001

Eq. Vol. x Dummy VIX 50 4.0102 19.26 <0.0001

CDS Res. Bid-Ask Spread 6.8822 13.84 <0.0001

Earnings Forecast Dispersion 1.1691 14.85 <0.0001

Adj. R-squared 0.5849
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B The Theory of the Merton Model (1974)

Let (Ω, F, P) be a probability space and (Wt)0≤t≤T a Brownian motion defined on this space. The

firm is represented by an asset value A which pays a payout rate δ. Merton model (1974) conjectures

that the total value of a firm’s asset A follow a log-normal diffusion process with constant growth

rate µA and constant volatility σA:

dAt = µAAtdt+ σAAtdWt (B.1)

where µA = r − δ .

The firms’ liabilities consist of risky debt B (with face value D and maturity T ) and equity E. The

firm’s leverage L is defined as the ratio between the present value of debt promised payment D and

the total value of the assets A. Thus, it is equal to: L = De−rT

A , where r is the continuously com-

pounded risk-free interest rate in the market. Firm’s default occurs at date-T (maturity) if AT < D.

Under the assumptions of the Black-Scholes (1973) model32, the Merton (1974) model prices equity

and risky debt of a firm as contingent claims written on the firm’s assets. Equity is priced as a

European call option on the assets of the firm with strike price equal to the face value of debt D.

The risky debt of the firm is instead evaluated as a short position on European put written on the

firm’s asset (with strike equal to the promised debt payment D) and a long position on a riskless

bond. Therefore, according to the Black-Scholes pricing formula for non-dividend paying European

call options, at time 0 the equity value E0 is given by:

E0 = CBS(A0, σ
A, D, r, T ) = A0N(d1)−De−rTN(d2) (B.2)

where N(.) is the cumulative function for the standard Normal distribution,

d1 =
ln( A

De−rT )

σA
√
T

+ σA
√
T

2 = −ln(L)

σA
√
T

+ σA
√
T

2

and d2 = d1 − σA
√
T .

The sensitivity (first derivative) of equity to firm’s total assets value is determined by the call option

delta: N(d1) = ∆C .

At time 0, the debt value B0 is given by the difference between the total assets’ value and the equity

value:

B0 = A0 − E0 (B.3)

Using Equations (B.2) and (B.3) we obtain:

B0 = De−rTN(d2) +A0N(−d1) (B.4)

32The Assumptions behind Black-Scholes model (1973) and Merton model (1974) are the following:

- Market are competitive and efficient: agents are price-takers and trading has no affect on prices;

- There are no transaction costs;

- Agents trade continuously;

- Agents have unlimited access to short-selling and assets are indivisible;

- There are no bankruptcy costs in case of firm’s default;

- There are no corporate taxes or tax advantages from issuing debt;

- Agents can borrow and lend at the same continuously compounded risk-free rate r;

- The firm has issued only two kinds of claims: non-dividend paying equity and debt. Debt is a pure zero-coupon bond

that pays at maturity T an amount D.
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This implies:

B0 = De−rT − (De−rTN(−d2)−A0N(−d1)) = PV (D)− PBS(A0, σ
A, D, r, T ) (B.5)

As previously mentioned, the debt value at time 0 is equal to the present value of a long position on

a riskless bond with face value D plus the value of a short position on a put option (derived from

the Black-Scholes pricing formula for non-dividends paying European put options).

Thus, the credit spread on the risky bond at time t is given by: st = − 1
T−t ln(Bt

D )− r.

Equation (B.4) can be used to calculate the sensitivity (first derivative) of risky debt to assets’ value

which is given by the delta of the put option: N(−d1) = ∆P .

The sensitivity of debt to equity h is then given by:

h =
∂B

∂E
=

∂B
∂A
∂E
∂A

=
N(−d1)

N(d1)
=

1

∆c
− 1 (B.6)

Therefore it depends on the delta of a European call option written on the firm’s assets with exercise

price equal to the face value of debt. The debt-to-equity elasticity (H hedge ratio) is obtained as:

H = (
∂B

∂E
)(
E

B
) = h(

1

L
− 1) (B.7)

Two common methodologies to calibrate the Merton model are the one of Vassalou and Xing (2004)

- henceforth VX Methodology - and the one implemented by Schaefer and Strebulaev (2008) - hence-

forth SS Methodology. The VX methodology requires the knowledge of the outstanding debt of the

firm, the equity value, and the equity volatility33 in order to estimate the value and volatility of the

firm’s assets from a system of two non-linear equations. Following Vassalou and Xing (2004), we

recall Equation (B.2) and notice that since equity is a function of assets’ value, it is possible to apply

Ito’s Lemma to determine the instantaneous volatility of equity σE from total assets’ volatility σA

(Jones et al, 1984).

dEt = df(At, t) = (
∂E

∂t
+ µAAt

∂E

∂A
+
σA

2

2
A2
t

∂2E

∂A2
)dt+ (σAAt

∂E

∂A
)dWt. (B.8)

It follows:

E0σ
E = A0σ

A ∂E

∂A
= A0σ

AN(d1). (B.9)

and

σE =
σAA0N(d1)

E0
. (B.10)

Equations (B.2) and (B.10) represent a system of two equations in two unknowns (A0 and σA).

Therefore we can determine the unknowns by solving the non-linear equations. In practice, we adopt

a recursive procedure (the so-called KMV method; see also Crosbie and Bohn, 2003, and Bharath

33Typically, equity volatility is estimated from historical annualized volatility of equity daily log returns; the firm’s

equity value is obtained as a product of the firm’s equity price and the number of its outstanding shares (i.e. the firm’s

market capitalization); and the outstanding amount of debt can be obtained as the book value of the firm’s current

debt plus half of its long-term debt value.
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and Shumway, 2004) that involves inverting the Black-Scholes formula34.

The SS Methodology estimates asset volatility in a “more direct, model-free approach that is based

only on observables”and“recognizes that debt bears some asset risk and that equity and debt covary”

(Schaefer and Strebulaev, 2008). The methodology requires an estimation of the asset volatility for

each firm i at time t as square root of:

σAi,t
2

= (1− Li,t)σEi,t
2

+ Li,tσ
D
i,t

2
+ 2(1− Li,t)Li,tσEDi,t (B.11)

σDi,t is the time t unconditional volatility of firm i debt - estimated as the historical annualized

volatility of debt log returns; σEi,t is the time t unconditional volatility of firm i equity - estimated as

the historical annualized volatility of equity log returns; σEDi,t is the time t covariance between firm i

debt and equity - estimated as the historical annualized covariance between equity and debt returns;

and Li,t is the leverage ratio of firm i at time t. Once A and σA are estimated, then it is possible to

estimate also N(d1), the debt-to-equity hedge ratio H and the credit spread implied by the Merton

(1974) model.

34Crosbie et al (2003) explain that the model linking equity and asset volatility, described by the system of Equations

(B.2) and (B.10), holds only instantaneously. In practice the market leverage moves around in a substantial way and

the system does not provide reasonable results. Instead of using the instantaneous relationships given by Equations

(B.2) and (B.10), we follow Crosbie et al (2003) and estimate the model using a more complex iterative procedure to

solve for the asset volatility. Crosbie et al (2003) describe it as a procedure that “uses an initial guess of the volatility

to determine the asset value and to de-lever the equity returns. The volatility of the resulting asset returns is used

as the input to the next iteration of the procedure that in turn determines a new set of asset values and hence a new

series of asset returns. The procedure continues in this manner until it converges. This usually takes no more than a

handful of iterations if a reasonable starting point is used”.
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C Modified Merton Model and Calibration Procedure

In the paper the Merton (1974) model is slightly modified. A simplified version of the model by

Collin-Dufresne and Goldstein (2001) is instead used (CDG). The original CDG model introduces

stationary mean-reverting leverage ratio. In the CDG model firms adjusts their capital structure

(rather than keeping it fixed as in the original Merton model) in order to reflect changes in assets

value. This ensures that the leverage ratio always reverts to a target value. In our simplified version

of the CDG model, the leverage ratio is assumed to be fixed at its target value (or, equivalently,

when the firm’s assets value A changes, the leverage L is assumed to adjust immediately to its target

value through an adjustment in the capital structure K).

At any time t, the current level of leverage Lt = Kt

At
is considered the target leverage level.

Therefore, while in the original Merton (1974) model Kt = K∀t ∈ [0, T ], here we assume:
dKt

Kt
= (r − δ)dt,

i.e. changes in assets value due to the net firm’s payouts trigger an immediate adjustment in firm’s

capital structure to keep the leverage ratio invariant. As a consequence, the firm’s credit spread is

unaffected by the firm’s payout rate (Collin-Dufresne and Goldstein (2001) obtain this result numer-

ically through their model calibration).

We calibrate the structural model to parameters that match the following data: the current leverage

ratio (given by book value of the firm’s liabilities divided by the sum of market capitalization of the

firm and book value of its liabilities), the riskless interest rate (set equal to the current 3-months

T-Bill yield), the payout rate set equal to 2% (as explained above, the payout rate δ is irrelevant for

credit spreads at the target leverage ratio), and the sensitivity of CDS premia to equity volatility

estimated across all 40 firms over the historical period of 2005-2009. The estimation of dCDS/dσE

is obtained from a panel regression of CDS premia on leverage, interest rate, equity market volatility

(approximated by the exponentially-weighted moving average of S&P volatility) and firm’s equity

volatility (conditional on VIX levels). The firm’s equity volatility used in the panel regression is the

orthogonal component of firm’s equity volatility to equity market volatility and leverage. dCDS/dσE

is given by the sensitivity of CDS premia to the orthogonal firm’s equity volatility plus the sensitivity

of CDS spread to equity market volatility (see Section 4 for further details).
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D Simultaneous Effects of Leverage on Assets Volatility and

CDS Premia

The empirical results of the cointegration analysis in Table 2 reveal that over the pre-crash period

for 25% of the firms in the sample an increase in equity volatility reduces (rather than increases) the

CDS premium, thus (dCDS/dσE < 0). How can we explain this puzzling result?

It is reasonable to assume that over time dCDS/dL > 0 (i.e. a higher leverage ratio triggers a higher

CDS premium). The positive effect of leverage on CDS premia over time is observed also in the

results of the auxiliary panel regression - Equation (4) (see Table 4). If dCDS/dL > 0, then we can

easily see that:
dCDS

dσE
=
dCDS

dL
¯

1

(dσE/dL)
> 0

if and only if dσE/dL > 0 (i.e. a higher leverage ratio triggers higher equity volatility); while

dCDS

dσE
=
dCDS

dL
¯

1

(dσE/dL)
< 0

if and only if dσE/dL < 0 (i.e. a higher leverage ratio triggers lower equity volatility).

To collect some heuristic evidence on this argument, we estimate dσE/dL as slope coefficient of a

panel regressions of equity volatility on leverage35 (controlling also for market volatility), separately

over the pre-crash period (Jan 2005 - June 2007) and the post-crash period (July 2007 - Dec 2009).

We find that before the crisis dσE/dL < 0, while during the crisis dσE/dL > 0. In both cases

the slope coefficients are statistically significant. Therefore, when higher leverage increases the CDS

premium but simultaneously decreases firm’s assets volatility, it is possible to observe negative values

for the CDS premia sensitivity to equity volatility.

Leverage can have different cross-sectional and time-series effects on CDS premia and implied asset

volatility. Let us consider the following example, displayed by Figure D.1. To illustrate this example

we also refer to the results of the theoretical estimation of CDS premia (from Merton model) in

Table 1. First, we simulate values for asset volatility using the tail-model for a number of firms with

different levels of leverage (and we obtain the blue curve in Figure D.1). Second, we look at a specific

investment-grade firm (let us call it firm J) with initial leverage ratio of 15% and asset volatility 48%.

The values of leverage ratio and asset volatility for firm J are represented by Point 1 on the blue

curve:

Point 1: (Lev=0.15, AssVol=0.48)

The CDS premium for this firm should be around 80-90 bps (from an approximation with linear

35Leverage is defined as the ratio between the book value of liabilities and the sum of the market value of equity and the

book value of liabilities. The book value of liabilities and the number of shares outstanding change at a much lower

frequency than the share price. Therefore, an increase in leverage over time is mainly triggered by a decrease in assets

value, via a drop in share price.
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interpolation using values provided by Table 1).

Let us suppose that in the following week, characterized by higher market turbulence, the asset

volatilities of all firms increase by 10%, while their leverage ratios stay constant. Firm J will then

move from the initial Point 1 to Point 2 on the upward-shifted volatility smile where its asset volatil-

ity is around 0.53 (red curve in Figure D.1):

Point 2: (Lev=0.15, AssVol=0.53)

The CDS premium of firm J should now be approximately equal to 132 bps (from linear interpolation

of values in Table 1), that is 65% higher than in Point 1.

If instead during this week the asset volatility of firm J increases by 10% and also its leverage ratio

increases by (say) 20%, firm J first moves from Point 1 to Point 2 on the red curve (because of the

increase in volatility), and then from Point 2 to Point 3 (because of the increase in leverage):

Point 3: (Lev=0.18, AssVol= 0.50).

The net increase in asset volatility of firm J would be around 4% because the negative effect of

leverage neutralizes part of the initial 10% increase in asset volatility. At Point 3 the CDS premium

for firm J would be around 140 bps, that is 75% larger than in Point 1, but only 6% larger than in

Point 2.

The contribution of leverage to the increase in the CDS premium appears nearly irrelevant, if com-

pared to the contribution of asset volatility (despite we assume a 20% increase in leverage, which is

double the increase in volatility of 10%).

To conclude, from this numerical example we observe that the negative effect of higher leverage on

the implied volatility in cross-section (i.e. “sliding down” the volatility smile) is neutralized by the

positive effect of an increase in general market volatility over the two consecutive weeks. In addition,

the positive effect of the increase in leverage on CDS premia over the two consecutive weeks is less

strong than the effect of the (even lower) increase in asset volatility.
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Figure D.1: Simulation of Theoretical Asset Volatility Levels from Merton Model,

given different Levels of Leverage

(The structural model is calibrated on the following assumptions:

- CDS contract written on a firm with asset value 100 and with 5-years maturity;

- Continuous interest rate r set equal to 5%;

- Target level of leverage set equal to the current level)
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