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Abstract

In this paper, we evaluate linear stochastic discount factor models using a portfolio metric:

the realized out-of-sample Sharpe ratio of mean-variance portfolios backed by alternative linear

factor models. Using a sample of monthly US portfolio returns data spanning the period 1927 -

2011, we provide evidence that multifactor linear models have better empirical properties than

the CAPM, not only when the cross-section of expected returns is evaluated in-sample, but also

when this economic metric is used out-of-sample. When we compare a portfolio associated to a

multifactor model and a portfolio associated to the CAPM, we document di¤erences of Sharpe

ratio of up to 10 percent.
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1 Introduction

Linear factor asset pricing models are well established in �nance. The CAPM model of Sharpe

(1964) and Lintner (1965), the three-factor model of Fama and French (1993), and the four-factor

model of Carhart (1997) are extensively used by researchers and practitioners to compute the cost

of capital and risk-adjusted returns. Previous empirical evidence evaluating their ability to �t the

cross-section of mean returns has favored multifactor models over the CAPM. The Carhart model,

for example, has been particularly successful in accounting for most of the anomalies challenging the

e¢ cient market hypothesis.1 In this literature, models are usually evaluated by comparing measures

of in-sample goodness-of-�t, such as the R2 of a cross-sectional regression of mean excess returns

on a set of factor mimicking portfolio returns.2 This paper evaluates and compares linear factor

models from an out-of-sample economic perspective. In particular, we study the out-of-sample

realized performance of mean-variance e¢ cient portfolios, whose test assets are the predicted excess

returns generated by di¤erent linear factor models.

We aim at shedding light on the empirical performance of linear factor models using an economic

metric instead of focussing on a pure econometric perspective. Even though, theoretically, linear

pricing models are intrinsically connected to mean-variance e¢ cient portfolios, it is common to

observe that portfolio choice papers ignore asset pricing models in the estimation of optimal weights.3

Usually, a functional form of the distribution of returns is assumed and then a historical sample is

used to estimate the parameters of interest. Despite of our main focus laying in the evaluation of

linear pricing models more than in the associated investment strategies, we use this link to construct

an alternative evaluation measure in the empirical asset pricing literature. Di¤erent views about

the sources of risk must a¤ect the portfolio allocation of a mean-variance investor, therefore, the

consequences of imposing such a view have economically relevant e¤ects of which we take advantage

to study a set of linear factor models. We also study to which extent there is a correspondence

between the in-sample and the out-of-sample performance of the linear factor models.

A priori, the theory is silent regarding our two main point of interest: the relative performance

of the models under this out-of-sample economic metric and the existence of a link between the

in-sample and the out-of-sample performance of the models. It is perfectly possible that models

performing well in-sample may show a poor performance out-of-sample, or the other way around.

We hypothesize that both metrics are intrinsically connected, at least from an empirical point of

view. A model producing lower pricing errors in the cross-section of expected returns might be

associated to a mean-variance portfolio, outperforming competitive models, since the investor is as

close to the true data-generating process as she can be. If this is true, we expect to observe a higher

1See Schwert (2003) and references therein.
2Recently, Lewellen et al. (2010) argue that the GLS R2 is a more appealing statistic than the standard OLS R2

to evaluate and compare asset pricing models. Following the advice by Lewellen et al. (2010), we report GLS R2 is
this paper.

3See the description of the plug-in method in Brandt (2010) and references therein.
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out-of-sample performance in multifactor models that previous literature identi�es as models with

lower pricing errors.

A �rst glance at the evidence reported in this paper is given in Figure 1. We plot the in-sample root

mean squared error (RMSE) against the out-of-sample Sharpe ratio of several linear factor models.4

Each dot represents a particular model and the number attached to it indicates the number of

factors in the model. Three facts emerge clearly. First, the best performing models in-sample are,

at the same time, the best performing models out-of-sample, according to this economic metric (this

is clear from the negative slope in the plot). Second, multifactor models outperform the CAPM.

The cloud of points of multifactor models is located at the lower right side, whilst the cloud of

points of CAPMs is located at the upper left side of the plot. This result is well known from an

in-sample perspective but new from our out-of-sample perspective. Third, the performance of some

of these mean-variance portfolios is comparable with the 1=N investment strategy of De Miguel

et al. (2009). Some points are located to the right of the dashed line representing the highest

performance achieved by the 1=N strategy in our sample, across models and speci�cations.

We conduct a formal statistical analysis using a sample of monthly US portfolios from 1927 to

2011 that corroborate our main hypothesis. We do �nd that the best performing models in-sample

(higher GLS R2 or lower RMSE) are, simultaneously, those with higher realized out-of-sample

Sharpe ratio one period ahead. In particular, we �nd that multifactor models achieve consistently

higher out-of-sample Sharpe ratios than the CAPM does. The estimated di¤erence of Sharpe ratios

between models may reach values as high as 10 per cent. These results are valid for alternative

assets in the investment menu, �rst and second stage GMM estimators, centered and uncentered

versions of the stochastic discount factor, a sub-sample analysis, and 5-year and 10-year windows

in the rolling estimation setup. Moreover, we study the ability of the 4-factor liquidity model of

Pastor and Stambaugh (2003) in explaining the cross-section of expected returns and producing

high out-of-sample Sharpe ratios. Our results indicate that even though the liquidity factor model

is outperformed by the Carhart model in-sample, it is able to outperform the other models, in terms

of out-of-sample Sharpe ratio, in many of the cases studied. Finally, we study the e¤ects of imposing

short sales constraints on the portfolio weights estimation. Jagannathan and Ma (2003) argue that

a trade-o¤ between speci�cation error and estimation error exist when short sales constraint are

imposed. We �nd that short sales constraints help to achieve higher Sharpe ratios when the full

sample is studied. However, this is not the case for the sub-sample covering the second half of our

sample (1968-2011).

Our empirical strategy consists of two stages. In the �rst stage, we estimate linear factor models

using the SDF/GMM method as described by Cochrane (2005).5 There are two reasons to prefer

the SDF/GMM method over the more standard beta method. First, the SDF representation is more

4Models change according to the numbers of factors included, the GMM estimator used and the normalization of
the stochastic discount factor considered. See more details about this characterization of the models in section 2.

5The SDF method consists of estimation of a linear factor model in its stochastic discount form by GMM.
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general, and we want to keep our model as general as possible. Second, Jagannathan and Wang

(2002) show that the SDF form is comparable to the beta form in terms of the e¢ ciency in the

estimation of risk premia and in terms of the power of the speci�cation tests. More recently, Lozano

and Rubio (2011) show that multifactor models estimated using the SDF method, in particular, the

�rst stage GMM estimator, produce lower pricing errors than the beta method does. Because we

are interested in using as reliable as possible measures of in-sample goodness of �t, this property

of the SDF method is particularly appealing for our analysis.6 In the second stage, we estimate

mean-variance e¢ cient portfolios using the predicted excess returns from the linear factor models.

Theoretically, we use the connection between the stochastic discount factor and the mean-variance

frontier established by Hansen and Richard (1987). In practical terms, we estimate the weights of

the mean-variance e¢ cient portfolio using the concept of mean-representing portfolio introduced

by Chamberlein and Rothschild (1983). As it is shown by Penaranda and Sentana (2009, 2011),

the mean-variance frontier can be consistently estimated by GMM using a set of moment condi-

tions implied by the mean-representing portfolio de�nition. Finally, we compare the out-of-sample

performance of the mean-variance e¢ cient portfolios associated to linear factor models, one period

ahead, using the test of di¤erence in Sharpe ratios of Leidot and Wolf (1998). This is a circular-

block bootstrap test that takes into account both non-normalities and serial correlation, usually

presented in the empirical distribution of returns.

Our paper contributes to two strands of the literature. First, we provide new empirical evidence

for the literature evaluating the performance of linear factor asset pricing models, see Jagannathan

and Wang (2002), Shanken and Zou (2007), Lewellen et al. (2010), Lozano and Rubio (2011),

among others. This literature has developed a pure in-sample econometric perspective to evaluate

the performance of alternative linear factor models. We aim to contribute to this literature by

providing evidence regarding the performance of the models when they are evaluated using an out-

of-sample �nancial metric. First, we document the existence of an empirical link between the in-

sample statistical performance of the models and their out-of-sample portfolio performance: models

with lower pricing errors in-sample exhibit, at the same time, higher out-of-sample Sharpe ratios.

Moreover, we show that multifactor models outperform the CAPM under this metric. Second,

we contribute to a less-developed literature studying how asset pricing models can provide useful

insights to an investor solving a portfolio choice problem (see for example Brandt, 1999; Pastor and

Stambaugh, 2000; MacKinlay and Pastor, 2000; Pastor, 2000; Chevrier and McCulloch, 2008). In

this literature, our aim is to propose the use of a methodology that combines the estimation of linear

factor models using the SDF method and the estimation of mean-variance e¢ cient portfolios using

a consistent GMM estimator. Previous studies only consider the estimation of the linear models

under the beta representation. Finally, we show that, in some cases, the portfolios associated to

multifactor models can yield a higher out-of-sample Sharpe ratio than the 1=N strategy of De Miguel

6Lozano and Rubio (2011) also document that the beta method dominates the SDF method in terms of producing
more precise estimates of the risk premium when multifactor models are evaluated.
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et al. (2009), indicating that these models may potentially become a worthy tool in the hands of

investors looking for high risk-adjusted portfolio returns.

Just a few papers have investigated the impact of using linear asset pricing models in a portfolio

choice problem.7 Pastor and Stambaugh (2000) and Pastor (2000) use risk-based and characteristic-

based asset pricing models to center the prior beliefs of a Bayesian investor solving a mean-variance

asset allocation problem. In particular, Pastor and Stambaugh (2000) study how the optimal port-

folio changes depending on the model used to center the priors. They conclude that portfolio choices

do not change signi�cantly even after considering mispricing uncertainty and margin requirements.

Pastor (2000) studies the home bias and the value and size e¤ects in a portfolio choice context. He

concludes that US investors should have strong priors on their beliefs (factor models) to explain

observed biases in both phenomena. Chevrier and McCulloch (2008), in a Bayesian environment

as well, study how economically motivated priors may help to build portfolios that outperform the

equally-weighted portfolio (1=N). Linear factor models are used by the author as one of the set of

motivated priors in the Bayesian analysis. Mackinlay and Pastor (2000) study the implications of

assuming that asset returns have an exact factor structure on the estimation of the expected returns

of mean-variance portfolios. The authors conclude that in a model with one unobserved factor, the

covariance matrix of returns collapses to the identity matrix, and the associated mean-variance

portfolio outperforms the benchmark portfolio in terms of out-of-sample returns. More recently, Tu

and Zhou (2011) show that among the theoretical-motivated portfolios that they analyse, Mackinlay

and Pastor�s model is the only one exhibiting a solid performance in terms of Sharpe ratios and

certainty equivalent.8 Behr et al. (2012) studies how industry momentum can be use to improved

the performance of minimum variance portfolios with a parametric portfolio policy. Among several

benchmark models, they study the performance of minimum variance portfolios estimated with a

covariance matrix associated to linear factor models (CAPM, the Fama and French 3-factor model,

and the Carhart model). The three analysed portfolios yield Sharpe ratios of approximately 13 per

cent. These portfolios - the ones linked to linear factor models - have higher Sharpe ratios than most

of the other portfolios under analysis.9 Finally, Kirby and Ostdiek (2012) argue that the success

of the 1=N strategy in outperforming mean-variance portfolios, documented by De Miguel et al.

(2009), is due the research design employed by the authors, which overweight portfolios subject to

high estimation risk and extreme turnover. The authors propose two new mean-variance portfo-

lio allocation methods - volatility timing and reward-to-risk timing strategies - which are able to

outperform the 1=N portfolio. In this context, the authors employ the Fama and French 3-factor

model, and the Carhart model, to produce conditional expected returns, which are later used in

the implementation of the new proposed mean-variance methods. The authors provide evidence

7A general overview of the role of factor models in portfolio and asset pricing is given by Connor and Korajczyk
(2010).

8Tu and Zhou (2011) study the performance of four portfolio models: Markowitz mean-variance, Jorion (1986),
MacKinlay and Pastor (2000) and Kan and Zhou (2007) portfolios.

9The performance of the CAPM is slightly inferior to that of multifactor models (0.12 vs 0.13).
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that the Carhart model, when used by the mean-variance reward-to-risk timing strategy, yields

promising results, beating the 1=N portfolio.

The rest of the paper is organized as follows. In section 2, we describe our methodology. In the

�rst subsection, we describe the GMM estimation of linear asset pricing models; in the second

subsection, we introduce the concept of mean-representing portfolio of Chamberlain and Rothschild

(1983) and we describe the GMM estimator proposed by Penaranda and Sentana (2009, 2011) to

compute the portfolio weights; in the third subsection, we describe the test of di¤erence in Sharpe

ratios of Ledoit and Wolf (2008). In section 3, we describe our dataset. The estimation results are

reported in section 4. Finally, we conclude in section 5.

2 Methodology

The main goal of our work is to estimate mean-variance e¢ cient portfolios which are backed by

alternative linear factor asset pricing models, in order to evaluate them according to their out-

of-sample Sharpe ratios. To ful�ll this task, we use a methodology which is characterized by the

following set of assumptions. First, we decide to employ a two-stage approach: in the �rst stage,

linear factor models are estimated under its SDF representation, and then, in the second stage, we

estimate mean-variance e¢ cient portfolios using the �tted returns obtained from the �rst stage.

Second, is the use in the estimation process of the SDF form of the asset pricing models instead of

the more standard beta representation. Third, we use GMM as our estimation method.10 Finally,

and in order to keep our estimation process as consistent as possible across the two stages, we have

decided to continue using GMM in the estimation of mean-variance e¢ cient portfolios in the second

stage. As it is explained in more detail below, we make use of a set of moment conditions that

deliver consistent mean-variance frontier estimates.

Before going into the details, some further motivation of our listed assumptions follows. Regarding

the use of the SDF form, we have decided to use them because our main interest in this work is not

the estimation of the risk premia but the accurate estimation of pricing errors. Previous literature

has identi�ed precisely this characteristic - more accurate estimates of the pricing errors of the model

- as one of the main strength of the use of the SDF form.11 Regarding the estimation of the mean-

variance e¢ cient portfolios, we make use of a theorem, introduced by Chamberlein and Rothschild

(1983), that allow us to identify these portfolios making use of an auxiliary portfolio: the mean-

representing portfolio. The weights of this portfolio are proportional to the weights of the mean-

variance e¢ cient portfolio, therefore, both have the same Sharpe ratio.12 Intuitively, this portfolio
10Even though it is common to combine the SDF form and GMM estimation in recent papers in empirical asset

pricing, we must remind the reader that this is not mandatory, it is a choice made by the econometrician. As it is
well pointed out by Jagannathan and Wang (2002) and Cochrane (2005), it could be perfectly possible to estimate
the SDF form by alternative estimation methods, as the maximum likelihood for instance.
11See Jagannathan and Wang (2002) and Lozano and Rubio (2011).
12Britten-Jones (1999) develops a portfolio�s weights estimator using OLS. In her methodology, an OLS regression
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can be interpreted as the portfolio that "mimics" the safe asset with minimum tracking error. The

estimation of this portfolio is completed by GMM using the set of moments conditions introduced

by Penaranda and Sentana (2009, 2011). The main advantage of using this methodology is that

these authors show that under weak assumptions, this procedure delivers a consistent estimate of

the mean-variance e¢ cient frontier. Moreover, as we mentioned above, using this procedure allow

us to estimate both stages by the same method, GMM.

The two-stage methodology is implemented in a moving rolling window setup. For each 60-months

window, we estimate the linear factor models and the weights of the mean-representing portfolio.

For each of these portfolios, we save the realized ex-post return in the following month. We only

evaluate the out-of-sample performance of the models one period in advance since the estimated

mean-variance frontier is static, therefore, any analysis beyond one-period will not be consistent

with this characteristic of mean-variance model. We repeat this procedure for each of the 959

windows in our sample and we obtain a time series of realized ex-post returns for each portfolio.

From these time-series, we compute the out-of-sample Sharpe ratio of each model, and �nally, we

compare these Sharpe ratios using the test of Ledoit and Wolf (2008).

2.1 SDF/GMM estimation of linear asset pricing models

In this paper, the SDF is approximated by a linear factor model, which is later estimated by

GMM. In this subsection, I brie�y explain what the SDF is, how the linear structure is explicitly

incorporated into the models, and how GMM estimators are de�ned. Our starting point is the

fundamental asset pricing equation given by:

pt = Et [mt+1xt+1] ; (1)

where pt is the asset price at time t, Et is the expectation operator conditional on the information

up to time t, mt+1 is the stochastic discount factor valid between t and t+ 1, and xt+1 is the asset

payo¤ in period t+1. Equation (1) is valid for any asset. In particular, for the case of excess returns

(r), which are the payo¤s analyzed in this paper, it reduces to:

0 = Et [mt+1rt+1] : (1a)

This expression tells us that the expected excess returns of any asset, after being discounted to the

present time by the stochastic discount factor mt+1, are zero. It is worth noting that this equation

is valid either for an individual asset or for a set of assets. In the �rst case, we will have a simple

between a vector of ones on a matrix containing the asset returns is run. The beta coe¢ cients are the estimated weights
that are also proportional to the weights of the mean-variance e¢ cient portfolio. In this regard, our methodologies
share the same spirit. Indeed, the set of moments that de�ne the mean-representing portfolio may be the same set of
moments de�ning the OLS estimates in Britten-Jones (1999).
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equation, whereas in the second case we will have a system of equations. For example, if there are

N assets in the investment menu, r and 0 are (N � 1) vectors of gross excess returns and zeros,
respectively. On the other hand, mt+1 is the realization of any random variable satisfying (1a)

between t and t+ 1. Some additional assumptions need to be imposed in order for mt+1 be unique

and positive. 13

An attractive feature of the SDF model is that it is well connected with economic theory since

it tracks the dynamic of the intertemporal rate of substitution of aggregate consumption across

periods. For the simple case of 2 periods, from the �rst-order condition for consumption, it is

possible to identify the SDF as mt+1 � � U
0(Ct+1)
U 0(Ct)

, where � is the subjective discount factor faced

by the representative agent, Ct denotes aggregate consumption at time t, and U 0 �
�
@U
@c

�
is the

marginal utility of the aggregate consumption. In this paper, we avoid making an assumption on

the functional form of the utility of the representative agent, we approximate the dynamic of the

SDF through linear risk factors instead.14

In particular, we assume the following functional form for the SDF:

mt+1 = a� b0ft; (2)

where b is a (K � 1) vector of parameters to be estimated and ft are the realizations of K risk

factors at time t. As it has been noted in previous empirical work, further assumptions on the

constant term a are required to identify the parameters of interest, b. The intuition of the lack of

identi�cation is as follows. Suppose that bm is the estimated SDF. Therefore, from equation (1a), it

holds that E [bmr] = 0. Now, for any constant c, the SDF em = cbm also satis�es (1a), i.e. E [emr] = 0.
From this example, it is clear that exist an in�nite number of SDFs satisfying (1a) simultaneously.

This is the identi�cation problem. This problem is solved normalizing the value of the constant a in

(2). As it is pointed out by Cocharane (2005), the choice of the normalization is one of convenience.

The �rst and most simple normalization is to impose a = 1. In this case we say that the SDF is

uncentered. The second normalization is a = 1 + b0E(f), which correspond to the centered SDF

case.15

After imposing a normalization on a, the set of parameters b is estimated by GMM using the pricing

errors from (1a) as the relevant moment conditions. The GMM estimation is particularly attractive

because it is e¢ cient even though the residuals of the estimated model are non-spherical errors

(autocorrelation, heteroskedasticity and non-normality), which is indeed the case for excess return

data.
13For uniqueness, the assumption of complete markets is necessary. For positiviness, both abscense of arbitrage and

the law of one price are required. See Chapter 4 in Cochrane (2005) for further details on these results.
14Cochrane (2005, ch. 9) discusses the use of factor models in empirical asset pricing.
15The properties of SDF asset pricing models under both normalizations have been studied by Burnside (2007) and

Lozano and Rubio (2011).
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Let gT (b) be the mean value of the pricing errors of a particular linear factor SDF model16:

gT (b) � ET [mt(b)rt] : (3)

Then the GMM estimates of b is the set of parameters minimizing the following quadratic form

min
b
gT (b)

0WgT (b); (4)

where W is a weighting matrix of the moment conditions. First-stage GMM estimates are obtained

setting W equal to the identity matrix, W = IN . In this case bb minimizes the sum of squared

pricing errors like in the standard OLS estimation method. In this stage, therefore, each asset

in the investment menu receives equal weight in the estimation procedure. This �rst-stage GMM

estimator is a consistent estimator of the true parameter vector and it is asymptotically normally

distributed. Second stage GMM estimates are obtained settingW equal to the inverse of the spectral

density matrix de�ned as S �
1X

j=�1
E
h
utu

0
t�j

i
; where ut � mt(bb)rt is the vector of pricing errors

of the model. In practice, ut is obtained using bb from the �rst stage. For the case where W = S�1;

the GMM estimator is optimal in the sense of producing the lowest possible asymptotic variances

for the estimated coe¢ cients.

Now, we describe the GMM estimators associated to each of the two normalizations of a.

2.1.1 Uncentered SDF/GMM

Imposing the normalization a = 1 in equation (2), the mean values of the pricing errors of the linear

factor model are

gT (b) = �ET (mr) = �ET (r) + ET (rf 0)b:

Let d be the derivative of gT (b) with respect to b:

d = �@gT (b)
@b0

= ET (rf
0);

which is equal to the second-moment matrix of excess returns and factors. Then, the �rst order

condition from (4) is given by:

�d0W [ET (r)� db] = 0:
16Note that we use the notation ET � 1

T

PT
t=1() in the expression below.
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Finally, the �rst-stage and second-stage GMM estimates of b are de�ned respectively as:

bb1 = (d0d)�1d0ET (r) (5)

and bb2 = (d0S�1d)�1d0S�1ET (r) (6)

From these expressions we observe that the GMM estimators are cross-sectional regressions of the

mean excess return of the assets, ET (r), on the matrix of second moments of excess returns and

factors, d. In fact, there is a clear parallel between these closed form solutions and the formulae

of the OLS and the GLS estimators. The �rst-stage GMM estimator is a simple OLS regression

between ET (r) and d; whereas the second-stage GMM estimator is the GLS version of the same

regression, where the weighting matrix is the inverse of the spectral density matrix, S:

2.1.2 Centered SDF/GMM

The second normalisation is a = 1 + b0E(f), where E(f) is the expected value of the factors.

The main advantage of this normalization is that the cross-sectional regressions de�ning the GMM

estimators contain covariances between excess returns and factors, instead of second moments.

Usually, researchers are more familiar with these formulas as they are closer to the de�nition of

betas. It is worth noting that after imposing the centered normalization to the SDF, we have, that

on average, the SDF equals one, E(m) = 1.17 For this case, the mean value of pricing errors are

given by

gT (b) = ET (mr) = ET (r)� ET (r ef 0)b;
where ef � f � E(f). Its partial derivative with respect to b is

d =
@gT (b)

@b0
= ET (r ef 0):

Here d is the covariance matrix between excess returns and factors. The �rst order condition of the

GMM minimization problem is given by

�d0W [ET (r)� db] = 0:

Using the sample counterpart of E(f); we estimate d: Then, the �rst and second stage GMM

estimators can be obtained using formulas (5) and (6) respectively. Analogously to the uncentered

case, GMM estimators are OLS and GLS cross-sectional regressions of expected returns on the

17 If a = 1 + b0E(f), the stochastic discount factor becomes m = 1 � b0(f � E(f)): Taking expectations and using
the law of iterative expectations, we have E(m) = 1:
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covariance matrix between excess returns and factors.

2.1.3 GMM inference

From the standard formulae of GMM�s distribution theory, the standard errors of the estimators

are de�ned as

cov(bb1) =
1

T
(d0d)�1d0Sd(d0d)�1 (7)

and cov(bb2) =
1

T
(d0S�1d)�1; (8)

where d will change depending on the selected normalization. The covariance matrix of the pricing

errors is given by

Tcov(gT (bb1)) = (I � d(d0d)�1d0)S(I � d(d0d)�1d0) (9)

and Tcov(gT (bb2)) = S � d(d0S�1d)�1d0 (10)

Finally, the models are validated using the J-test of over-identi�cation restrictions. For the �rst

and second stage estimators, the �2 test can be estimated from the following expressions:

gT (bb1)0cov(gT (bb1))�1gT (bb1) � �2(N �K) (11)

TgT (bb2)0S�1gT (bb2) � �2(N �K); (12)

where N is the number of moments used in the estimation of the parameters, and K is the number

of estimated parameters. We use this test as one of the measures of in-sample �t of the linear factor

models later on in the analysis.

2.2 Mean-representive portfolio and its estimation by GMM

Applying the Riesz representation theorem, Chamberlein and Rotchschild (1983), prove the exis-

tence of a unique portfolio (the mean representing portfolio, p0) in the set of all possible portfolios

formed by the vector of returns, r, which is directly linked to the mean-variance e¢ cient portfolio,

rMV : the weights of p0 are proportional to the weights of rMV , therefore, both have the same

Sharpe ratio. Thus, after estimating the weights of p0, we can identify the Sharpe ratio of the

mean-variance e¢ cient portfolio we are looking for. In practical terms, we estimate the weights of
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p0 by GMM, using a set of moment conditions proposed by Penaranda and Sentana (2009, 2011).

These authors show that this method produces consistent estimates of the portfolio weights, and

therefore, of the mean-variance frontier. The details of the de�nition of p0 and its estimation by

GMM are given in this subsection.

Consider a set of N risky assets and one risk-free asset. De�ne r = (r1; :::; rN )0 as the set of excess

returns over the risk-free rate of the N risky assets. The payo¤s are de�ned over an underlying

probability space 
. The �rst uncentered moment is E(r); and the second uncentered moment, that

we assume to be �nite, is given by E(rr0). Let p = w0r be the payo¤ of a portfolio with �xed weights

w = (w1; :::; wN )
0. The set of all possible portfolios built using r is denoted by P . More formally,

P is the linear span of r. The mean value of any portfolio p 2 P is given by E(p) = w0E(r); and

its cost by C(p) = w0C(r). For the case of excess returns, the cost of the payo¤s is zero, C(r) = 0,

and as a consequence, the cost of the portfolio p is zero as well. In a more general setup, when

C(r) 6= 0; it is possible to de�ne a cost representing portfolio that, with the mean representing

portfolio de�ned below, characterized the e¢ cient mean-variance frontier.

In order to de�ne what a mean representing portfolio is, we need to introduce additional notation and

concepts. The set P is a linear subspace of L2(P ), which is the collection of all random variables

with �nite variance, de�ned on the underlying probability space of P . It is known that the set

L2(P ) is a Hilbert space under the mean-square inner product: (p; q) = E(pq) for any p; q 2 P; with
the associated norm kpk =

p
E(p2): Since E(�) is a continuous function in L2(P ); Chamberlain

and Rothschild (1983), invoking the Riesz representation theorem, prove that there is a unique

portfolio in P , p0 ; representing the mean value of any portfolio in P . Thus, the (uncentered) mean

representing portfolio p0 is such that

E(p) = E(p0p) 8p 2 P . (13)

Under the topology just introduced, it is possible to show that this portfolio is de�ned as

p0 = E(r0)E(rr0)�1r = �0r: (14)

From this expression, we observe that the weights of the mean representing portfolio are given by

the vector �0 � E(r0)E(rr0)�1. The mean-variance e¢ cient frontier can be characterized either

as a function in the mean-variance space, f�; V (rMV (�))g; or as a function in the mean-standard
deviation space, f�;

p
V (rMV (�))g: The former function will be a parabola tangent to the origin in

the mean-variance space, whereas the later will be a straight line in the mean-standard deviation

space. A nice property of this methodology is that there exist a one-to-one mapping between p0
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and any portfolio on the mean-variance e¢ cient frontier, rMV : This link is given by

rMV = �
1

E(p0)
p0 (15)

and V
�
rMV (�)

�
=

�
1� E(p0)
E(p0)

�
�2; (16)

where � 2 R is the expected return and V
�
rMV (�)

�
is the variance of the optimal portfolio.18

It is worth mentioning at this point that in this setup the Sharpe ratio of the portfolios in the

mean-variance frontier is the same for any value of �; equal to the Sharpe ratio of p0:19

From (15), we observe that the weights of the mean-variance portfolio, rMV ; are proportional to

the weights of the mean representing portfolio, p0. Hence, after estimating the weights of p0; it is

straightforward to estimate the weights of rMV ; and then to compute the ex-post realized Sharpe

ratio of the portfolio, one period in advance.

Penaranda and Sentana (2009, 2011), propose to use the following system of N + 1 moments to

estimate the weights of the mean representing portfolio:

E

"
rr0�0 � r
x�0 � �0

#
= 0(N+1�1): (17)

Here, the �rst N moment equations comes directly from the de�nition in (13), valid for each of N

test assets in the investment menu. The last moment condition identi�es the expected return of the

mean representing portfolio, �0: Penaranda and Sentana (2011) show, that under some regularity

conditions, the GMM estimator of the set of coe¢ cients, � = f�0; �0g; is consistent, and hence, the
estimated mean-variance e¢ cient frontier converges in probability to its population value. Despite

of this, Penaranda and Sentana (2011) also show, using simulations, that the estimated frontier

may su¤er of severe problems of sampling uncertainty. In fact, this problem is not speci�c to this

particular methodology, and it has been well studied in the portfolio choice literature. See, for

example, Britten-Jones (1999). If our assumption that excess returns are governed by a linear

factor structure is valid, then this problem should ameliorate.20

As we mentioned above, we are using predicted excess returns in the second stage of estimation.

18Taking expectations in (15), we have E(rMV ) = �. Furthermore, the expression of the variance in (16) uses the
fact that E(p0) = E

�
p0p0

�
by (13).

19 If rMV = ap0, where a is the constant �=E(p0), then

SR(rMV ) =
aE(p0)p
a2V (p0)

=
E(p0)

�(p0)
= SR(p0) for any � 2 R:

20Peñaranda and Sentana (2011) propose to incorporate linear factor models in estimation of the mean-variance
frontier, expanding (17) with the following additional moment conditions: E [(1� bf)x] = 0; and estimate the full
model in one stage. We estimate both sets in di¤erent stages.
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These returns are computed as follows: replacing equation (2) in (1a) and imposing the normal-

ization a = 1; we obtain the fundamental asset pricing equation for the case of excess returns,

0 = E [(1� b0f)r] : This expression can be re-written as 0 = E [r � rb0f ] : We call predicted returns
to the term reb0f , i.e., we are using the predicted discounted excess returns. Of course, each linear

factor model produces estimates of b, and therefore, estimates of the predicted excess returns.

2.3 Portfolio evaluation and the test of di¤erences of Sharpe ratios.

We evaluate the ex-post realized performance of the portfolios testing whether there are statistically

signi�cant di¤erences between their out-of-sample Sharpe ratios. In particular, we perform pairwise

tests for all possible combination of models. Previous literature (see for example De Miguel et al.,

2009) has relie on the test of di¤erences of Sharpe ratios of Jobson and Korkie (1981), and its

small-sample corrected version by Memmel (2003). This test, however, assumes that asset returns

are i.i.d. normal. However, it is well documented that asset return distributions are far from being

normal, exhibiting also signi�cant levels of autocorrelation. Lo (2002) and Opdyke (2007) propose

a test of di¤erence in Sharpe ratios under the less restricted assumption of stationarity of the return

distribution. Nevertheless, we discard them since they do not take into account the time-series

nature of the excess return data.

We use the robust bootstrapped test of di¤erences in Sharpe ratios proposed by Ledoit and Wolf

(2008). This test uses the circular-block bootstrap of Politis and Romanos (1992) to build a two-

sided con�dence interval for the null hypothesis H0 : � = 0; where � � SR1�SR2 is the di¤erence
of the Sharpe ratios between any two portfolios. This test is suitable for our exercise as it explic-

itly accommodates normality deviations and time dependency in excess returns data through the

resampling technique.

Before describing the test and its implementation, some notation and de�nitions are necessary to

be introduced.21

2.3.1 Preliminaries

Suppose we observe a time-series of length T of pairs of excess returns, frit; rntgTt=1; for any two
assets i and n. The asset returns are characterized by a bivariate, strictly stationarity distribution

function with mean � =

 
�i

�n

!
and variance-covariance matrix � =

 
�2i �in

�in �2n

!
: The second

uncentered moments of the returns are denoted by i = E(r2i ) and n = E(r2n). Lets de�ne the

vector v = (�i; �n; i; i)
0 and its sample counterpart as bv = (b�i; b�n; bi; bn)0. The di¤erence of the

Sharpe ratios between these two portfolios is given by � = f(v) with f(a; b; c; d) = ap
c�a2 �

bp
d�b2 :

21We closely follow the notation in Ledoit and Wolf (2008).
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In this expression, a and b are the mean values of the returns, and c and d are the second uncentered

moments of the returns. Moreover, f(v) has a sample counterpart, which is denoted by b� � f(bv).
It is assumed that bv is normally distributed with a mean v and covariance matrix T�1	 as follows

p
T (bv � v) d�! N(0;	); (18)

where 	 is an unknown, symmetric, positive semi-de�nite matrix.22 Using the delta method, we

have that the estimated di¤erence of Sharpe ratios, b�; is also normally distributed:
p
T (b���) d�! N(0;50f(v)	50 f(v)); (19)

where the gradient vector 5f is de�ned as

50f(a; b; c; d) =

�
c

(c� a2)1:5
;� d

(d� b2)1:5
;�1
2

c

(c� a2)1:5
;
1

2

b

(d� b2)1:5

�
: (20)

From (19), the estimated standard error for b� is given by

s(b�) =
s
50f(bv)b	50 f(bv)

T
; (21)

where b	 is a consistent estimator of 	: Lo (2002) uses a HAC estimator of 	 in his test whereas

Ledoit and Wolf (2008) utilize a kernel estimator of 	 using the bootstrapped data: Romano and

Wolf (2006) show that when the sample size is small, the inference based on the kernel/bootstrap

estimator is more precise, compared with the inference based on the HAC estimator. In particular,

the HAC estimator tends to overreject the true null hypothesis.

2.3.2 The robust bootstrapped test

Ledoit and Wolf (2008) propose to build a two-sided, studentized, bootstrap con�dence interval,

with nominal level (1 � �) to test the null hypothesis, H0 : � = 0: As usual, if the interval does

not contain the zero, the null hypothesis is rejected, otherwise, it is not rejected. Initially, the

distribution of the studentized variable,
b���
s(b�) ; is approximated by the boostrapped return data in

the following way

L
 b���
s(b�)

!
� L

 b�� � b�
s(b��)

!
; (22)

where L(x) is the distribution function of the random variable x, b� is the di¤erence of Sharpe ratios
22For time-series data, Ledoit and Wolf (2008) point out that this assumption is valid, as long as there exist 4 + �

moments, where � is some small positive constant, and a mixing condition holds.

15



estimated from the observed returns, � is the true (unobservable) di¤erence of Sharpe ratios, s(b�)
is the standard error of b�; b�� is the di¤erence of Sharpe ratios computed with the bootstrapped
data, and s(b��) is the standard error of b��: The bootstrap (1 � �) con�dence interval for � is

de�ned by b�� z�j�j;1��s(b�); (23)

where z�j�j;1�� is the � quantile of L
� b���b�
s(b��)

�
: If the distribution of the returns is non-normal and/or

exhibits signi�cant levels of autocorrelation, z�j�j;1�� will be larger than its normal counterpart,

zj�j;1��. As a consequence, the rejection of the null hypothesis is harder to achieve. In order to

build the con�dence interval using (23), we need to decide which bootstrap procedure and what

estimator of 	 will be used. Regarding the bootstrap procedure, the test uses the circular block

bootstrap procedure of Politis and Romano (1992), where blocks of pairs from the observed data are

resampled with replacement. The block size is of �xed length, b � 1:23 Resampling blocks, instead
of single observations, is required to preserve the properties of the empirical distribution of excess

returns. Regarding the estimator of 	; Ledoit and Wolf (2008) propose to use the pre-whitened QS

kernel estimator of Andrews and Monohan (1992).

The kernel estimator of 	 is computed as follows. Let l be the integer part of Tb and let bv� =
(b��i ; b��n; b�i ; b�n)0 be the estimators of v = (�i; �n; i; n)

0 obtained from the bootstrapped data. A

consistent estimate of b	� is given by
b	� = 1

l

lX
j=1

�j�
0
j (24)

where �j =
1p
b

Pb
t=1 y

�
(j�1)b+t for t = 1; :::; l and y�t = (br�it � b��i ; br�nt � b��n; br�2it � b�i ; br�2nt � b�n):

The standard error of the estimated di¤erence of Sharpe ratios, s(b��); is computed replacing the
estimator b	� into the (21). Using a similar procedure s(b�) can be estimated using the observed
excess returns instead of the resampled data.

2.3.3 Small Sample Bias

Previous literature has shown that estimated Sharpe ratios are biased when the sample size is small.

Opdyke (2007) shows that in this particular case the bias is given by

E
�cSR� = SR"1 + 1

4

��4
�4
� 1
�

T

#
(25)

where �4
�4
is the kurtosis of excess returns. Regardless of the assumption made on the distribution of

23Even though Ledoit and Wolf propose an iterative procedure to estimate the optimal block length b, we just �x
it at a value of 6.
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portfolio returns, this result is valid asymptotically. Thus, before to applying the test of di¤erences

we correct the Sharpe ratios accordingly.

3 Data

Our dataset consists of monthly value-weighted US portfolio excess returns, over the risk-free rate,

from January, 1927 to December, 2011. The data, but the liquidity factor, is collected from Kenneth

French�s online data library. More details on how the portfolios are build can be found on his website.

The set of test assets evaluated are: 5, 10 and 17 industry portfolios, and a 25 double-sorted size-

value portfolio. We deliberately exclude industry portfolios with a higher number of sectors (49,

100 industries for example) because we �nd in our estimates that the linear factor models analyzed

produce poor �ts when these test assets are used, therefore, it make no sense to move to a second

stage (the estimation of mean-variance e¢ cient portfolios) when the results of the �rst stage are

not satisfactory. Thus, our exercise of estimating mean-variance e¢ cient portfolios is conditional on

the fact that the linear factor models under study are able to produce reasonable in-sample �ts of

the cross-section of expected returns in the �rst stage. This point is relevant, since Lewellen et al.

(2010) make a suggestion in the opposite direction: to consider larger set of test assets (for example,

30 industries plus 25 size-value portfolios) in the validation of asset pricing models. However, our

main interest is not to �nd the best asset pricing model in-sample but to compare and evaluate

three well used linear factor asset pricing models, using an out-of-sample �nancial metric.

The set of factors considered in the analysis includes the excess return of the market portfolio over

the risk-free rate (MKT), the size portfolio SMB (small minus big), the value portfolio HML (high

minus low), the momentum portfolio (MOM) and the liquidity factor (LIQ) of Pastor and Stam-

baugh (2003). The �rst four factors have been extensively used in the empirical �nance literature,

therefore, we refer the reader to Fama and French (1993) and Carhart (1997) for details of how they

are built. Regarding the liquidity factor, it corresponds to the value-weighted return on the 10-1

portfolio from a sort on historical liquidity betas.24 The data is available in Lubos Pastor�s webpage

from January, 1968 to December, 2010. Since this time-series is shorter than the others, in those

cases where the liquidity factor is included in the analysis, we estimate the liquidity factor model

and its competitors using this small sample. Thus, we reported results for the full sample (1927:01-

2011:12) containing 1,020 observations, and for the short sample (1968:01-2010:12) containing 516

observations.

We study four linear factor models: the CAPM (K = 1), the Fama-French 3 factor model (K = 3),

the Carhart model (K = 4 or 4M) and a 4 factor model, where the liquidity factor is added to the

3 Fama-French factor (K = 4L).

24 In Pastor and Stambaugh (2003), the liquidity factor was built sorting the portfolios on predicted betas instead
of historical liquidity betas. However, the use the last series as it is the one available in Lubos Pastor�s webpage.
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4 Empirical Results

In this section, we describe and analyse our empirical results. Our empirical strategy relies on a 5-

year moving rolling window setup.25 Our �rst window starts in January, 1927 and ends in December,

1931. For this window we estimate the set of linear asset pricing models under study, using the

formulae in subsection 2.1, and estimate the mean-variance e¢ cient portfolio weights using the

procedure described in subsection 2.2. Then, using the excess returns observed in January, 1932, we

compute the realized ex-post portfolio return one period in advance, and we save the result. Later,

we move the estimation window one period forward, covering now February, 1927 to January, 1932.

We re-estimate the models, the portfolio weights and compute the realized ex-post portfolio return

in February, 1932. We repeat this process in the 960 windows available in our dataset. The time-

series of realized ex-post portfolio returns frpwg960w=1 is used to compute the out-of-sample Sharpe
ratio as �(r

p
w)

�(rpw)
. Then, we apply the correction for small-sample bias using (25). Each model generates

a Sharpe ratio that we use to perform the test of di¤erence in Sharpe ratios described in subsection

2.3.

4.1 Basic Results

In tables (1-8) we report our basic results, where portfolio weights are unrestricted in the estimation

process. Each table reports in-sample measures of �t (GLS R2, J Test (p-val), RMSE and MAE),

the out-of-sample Sharpe ratio, and the p-value of the test of di¤erence in Sharpe ratios for the set

of linear factor models under study, for a particular set of test assets. Each linear factor model is

estimated using �rst and second stage GMM estimators, and uncentered and centered SDF models.

Tables (1-4) report the results for the full-sample, whereas tables (5-8) report the results for the

short-sample.26

The GLS R2 is the Generalised Least Squared cross-sectional R2 of linear factor models. Recently,

Lewellen et al. (2010) have suggested to report this measure, instead of the standard OLS R2 for

example, to evaluate the validity of alternative asset pricing models. The higher the GLS R2 the

better is the in-sample �t of the models, which in this particular case, can be interpreted as the

maximum Sharpe ratio obtainable from the set of test assets. The J-test (pval) is the p-value of

the chi-squared J-test of overidenti�cation restrictions in the GMM estimation, see (11) and (12).

The null hypothesis of the test is that the moment conditions included in the GMM estimation are

valid. We also report the in-sample root mean square error (RMSE) and the mean absolute error

(MAE). As a measure of performance of the portfolios, we report the ex-post realized out-of-sample

Sharpe ratio (OOS-SR), which is widely utilized for performance evaluation purposes.

25This approach has been followed by De Miguel et al. (2009) among others. As a robustness test, we also consider
a 10 year window. Those results are not reported in this version of the paper though.
261968:01-2010:12.
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Regarding the test of di¤erence in Sharpe ratios, for tables (1-4), in the last two columns we report

the p-values of the tests. In particular, we report a lower triangular matrix where the elements

in the �rst column of the matrix are, in descending order, the p-values of the tests comparing the

Sharpe ratios of the CAPM with the FF3 model and the Carhart model, respectively. The second

column has a unique element: the p-value of the test comparing the Sharpe ratio of the FF3 model

and the Carhart model. In tables (5-8) the p-value matrix contains an additional column because we

are comparing four models instead of three. Again, the values in the �rst column are the p-values

of the test comparing the Sharpe ratios of the CAPM with the other three models, the second

column reports the p-values of the test comparing the FF3 model with the two 4 factor models, and

�nally, the last column reports the p-value of the test comparing the two four factor models. The

null hypothesis of the test is H0 : SR1 � SR2 = 0 versus H1 : SR1 � SR2 6= 0 for any two models
and portfolios.

At the bottom of each table we report the out-of-sample Sharpe ratio for 3 benchmark models: the
1
N strategy of De Miguel et al. (2009), the mean-variance tangency portfolio (MV) and the global

minimum variance portfolio (MinV). The last two models are computed using historical returns.27

4.1.1 Full-Sample

In table 1, we report the results when the test assets are the 5 industries portfolios. The GLS

R2 , which is the same across GMM stages and normalizations, show that the FF3 has a superior

in-sample cross-sectional �t to that of the CAPM. The GLS R2 for the FF3 model is 78 per cent

versus 29 per cent for the CAPM. An awkward results is obtained for the Carhart model. The

GLS R2 is -71 per cent. As it is pointed out by Lewellen et al. (2010), the GLS R2 not need to

be limited to the (0,1) interval, therefore, the negative sign is possible, however, the magnitude of

the estimate is surprising. Thus, according to this statistic, when the Carhart model is evaluated

using as test asset 5 industries portfolios, it does a very poor job �tting the (weighted) expected

returns in the cross-section. For the other test assets considered, this is not the case indeed. The

J-test clearly shows that the three models are valid: the p-values range between 0.40 and 0.59

across the models. Looking at the RMSE and the MAE, we observe that the Carhart model yields

lower pricing errors than the FF3 model, which in turn, produces lower pricing errors than the

CAPM. Their RMSE are 0.26, 0.14 and 0.07, respectively, and their MAE are 0.22, 0.11 and 0.06.

Looking at the out-of-sample Sharpe ratios associated to the models, for example in the �rst block,

the out-of-sample Sharpe ratios are -0.028, -0.007 and 0.007 for the CAPM, FF3 and the Carhart

model, respectively. In the other three blocks we observe a similar pattern, with the CAPM having

a lower out-of-sample Sharpe ratio than the FF3 and the Carhart model. In any of the cases,

27The weights of the mean-variance tangency portfolio are given by w =
b��1b�
{0 b��1b� and the weights of the global

minimum variance portfolio are given by w =
b��1{
{0 b��1{ , where b� is the (N �N) covariance matrix of excess returns, b�

is the (N � 1) vector of mean excess returns and { is a (N � 1) vector of ones.
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however, this di¤erence is statistically not signi�cant according to the Ledoit and Wolf test. For

example, the p-values of the test between the CAPM and the Carhart model are 0.45, 0.70 and 0.20

and 0.37 across GMM estimators and normalizations. Regarding the benchmarks, in general, the

out-of-sample Sharpe ratio is smaller than both the 1=N and global minimum variance portfolios,

but higher than mean-variance tangent portfolio computed with historical data.

In table 2, we report the results for 10 industry test assets. GLS R2 are now in line with previous

empirical evidence: the 4 factor model has a better �t than the FF3 model and the CAPM, whereas

the FF3 model is superior to the CAPM. The GLS R2 are 0.14, 0.35 and 0.52, respectively. The

three models are validated by the J-test: the p-values of the test are 0.36, 0.45 and 0.61, respectively

in the second block for example. Looking at RMSE and MAE, we observe that across speci�cations,

the Carhart model produces lower pricing errors when compared with the other two models. For

example, in the second block, the RMSE are 0.36, 0.25 and 0.19 and the MAE are 0.29, 0.21 and

0.16 for the CAPM, FF3 model and Carhart model respectively. Looking at the out-of-sample

Sharpe ratios of the models, we observe the same path as in table 1, but now even clearer since the

magnitude of the Sharpe ratios is bigger, and more importantly, some di¤erences are statistically

signi�cant. For example, in the second block, the out-of-sample Sharpe ratios are -0.006, -0.016

and 0.04 for the CAMP, FF3 model and Carhart model, respectively. In this case, the Sharpe ratio

of the Carhart model is statistically higher than the one of the other two models (p-values of 0.05

and 0.02, respectively). In the fourth block, we also observe that the Sharpe ratio of the Carhart

model is statistically higher than that of the CAPM (p-value of 0.02). In this case , the di¤erence

between the Sharpe ratios is 0.09 (0.033 - (-0.056)). In comparison with the benchmarks models,

the Carhart model is well below the 1/N and the global mean variance portfolios, but still above

the historical mean-variance portfolio.

For the cases of 17 industries portfolios, in table 3, and 25 size-value portfolios, in table 4, we

observe a similar pattern as before: models with better performance in-sample, i.e. producing

lower pricing errors, are those with higher performance out-of-sample. These results hold regardless

of the selection of either the GMM estimator or the normalization considered. The statistical

signi�cance of the test of di¤erence is mixed. For the case of 17 industry portfolios, we do not �nd

any statistically signi�cance di¤erent, but we do for the case of 25 portfolios. In fact, the results

for the 25 test assets are stronger than the previous ones, since now the di¤erences (in the �rst

and third blocks) are signi�cant at the 99 per cent con�dence level. For example, in the �rst block,

the out-of-sample Sharpe ratios are -0.005, 0.083 and 0.144 for the CAPM, the FF3 model and

the Carhart model, respectively. The test of di¤erences in Sharpe ratios indicates that the Sharpe

ratio of the Carhart model is larger than that of the FF3 model at 99 per cent con�dence level,

and taht of the CAPM, at 90 per cent con�dence level. The best performing model in the case

of 25 test assets (uncentered, �rst-stage GMM) produces an out-of-sample Sharpe ratio of 0.144.

This number is competitive when compared with the performance of the 1=N investing strategy,

indicating that, to some extent, linear factor models, in particular the Carhart model, are useful at
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hands of investors looking at a pro�table investment strategy.

4.1.2 Short-Sample

As we mentioned before, we include in the analysis a four factor liquidity model, where the FF3

model is expanded by a liquidity factor. Pastor and Stambaugh (2003) build this liquidity factor

and study whether this factor is priced in a sample of US stocks. They �nd that the liquidity

factor is priced and that it accounts for a dimension of risk, which is not captured by the other

factors considered. We estimate this model using a shorter sample because the time series of the

liquidity factor are only available since January, 1968. Thus, our short sample covers January 1968

to December 2011. Tables (5-8) report our estimates of the four linear factor models under study.

First, we observe that there exist an empirical link between the �t of the models in-sample and the

�nancial performance of the associated portfolios out-of-sample: those models producing lower pric-

ing errors in-sample generate portfolios with the higher out-of-sample Sharpe ratios. In particular,

the CAPM even though is not rejected by the J-test, produces the lower GLS R2 and the higher

RMSE and MAE among the four models. For example, in the �rst block in table 6, the CAMP

produces a GLS R2 of 0.15, whereas the four factor liquidity model produces 0:55:The RMSE of

the CAPM is 0:35; whereas the liquidity model has a much lower RMSE of 0:15. In terms of its

out-sample performance, we �nd that in most of the cases the CAPM is outperformed by multifactor

models. Again, looking at the �rst block of table 6, the CAPM generates an out-of-sample Sharpe

ratio of 0.008 whereas the liquidity factor model generates a Sharpe ratio of 0:099. In the second

block of table 6, the out-of-sample Sharpe ratios are 0.028 for the CAPM and 0.128 for the liquidity

factor model. This di¤erence of 10 percent is statistically signi�cant at 95 percent.

Second, comparing the two four factor models, we observe that the Carhart model has slightly

better in-sample �t than the liquidity factor model, but when we look at their out-of-sample Sharpe

ratios, we �nd that the liquidity factor model produces superior performance. For example, in the

fourth block in table 7, the Carhart model has a GLS R2 of 0.37 and the liquidity factor model

has a value of 0.33. The out-of-sample Sharpe ratios are 0.005 and 0.079, respectively. It is worth

noting that two exceptions occur when the 25 size-value portfolios are used as test assets. Here, the

Carhart model outperforms the liquidity factor model in terms of the out-of-sample Sharpe ratio.

See for example the �rst block of table 8, where the out-of-sample Sharpe ratios are 0.167 and 0.118,

respectively.

Third, in general terms, both four factor models exhibit better in-sample adjustment and superior

out-of-sample performance than both the CAPM and the FF3 model. For example, in the �rst

block of table 6, the GLS R2 are 0.15 and 0.36 for the CAPM and the FF3 model whereas the

four factor models yield values of 0.57 and 0.55, respectively. In the same block, the out-of-sample

Sharpe ratios of the CAPM and the FF3 models are lower than the ones of the two four factor
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models (0.008 and 0.031 versus 0.057 and 0.099).

Fourth, in this sub-sample, we observe more often that the di¤erences in Sharpe ratios are statis-

tically signi�cant. In each of the 4 test assets considered, we �nd that at least in one block a four

factor model has an out-of-sample Sharpe ratio statistically higher than the CAPM. In the case of

the 25 size-value portfolios, this di¤erence is statistically signi�cant in each of the four blocks. In

most of the cases it is the liquidity factor model the one outperforming the CAPM. Cases where the

Carhart model or both four-factor models simultaneously outperform the CAPM are less frequent.

Finally, it is interesting to point out that in some cases the liquidity factor model is able to produce

out-of-sample Sharpe ratios a bit above one of the benchmark 1=N strategies. For example, for

the case of 10 industries portfolios, in the second block the out-of-sample Sharpe ratio is 0.128

versus 0.115 of the 1=N strategy. In the case of 25 size-value portfolios, in the last two blocks the

out-of-sample Sharpe ratios of the liquidity factor model are above the 1=N strategy (0.136 and

0.162 for the liquidity factor model versus 0.13 of the 1=N strategy). These results indicate that,

in some cases, the use of linear factor models in the building of investment portfolios may help to

achieve competitive rewards in terms of performance.

4.2 Short-Sales Constraints

Imposing short sales restrictions is common practice among practitioners and researchers dealing

with portfolio allocation problems. Sometimes the restriction takes the form of an upper bound, in

others, short sales are completely ruled out. At least two reasons explain why short sales constraints

are so popular among practitioners and researchers: �rst, it avoids the occurrence of extreme

positions in the portfolio, which can be unfeasible to implement, due either legal restrictions or

liquidity issues ; and second, previous evidence has shown that the performance of the restricted

portfolios is superior to the one of the unrestricted ones. Jagannathan and Ma (2003) rationalize

this phenomenon arguing that there exist a trade-o¤ between speci�cation errors and estimation

errors at solving the portfolio problem: short sales constraints would reduce the estimation errors

but increasing the speci�cation errors. Considering these elements we explore the e¤ect of imposing

short-sales constraints in our portfolio exercise. In tables (9-12), we report the results for the full

sample, and in tables (13-16), the results for the short sample.

4.2.1 Full Sample

Our �rst observation is that our results become stronger after imposing short sales constraints.

We clearly observe than the reported link between in-sample and out-of-sample performance of the

models do exist, and it is highly signi�cant across test assets, linear models, GMM speci�cations

and normalizations. It is clear that multifactor models are able to better explain the cross-section of
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expected returns than the CAPM, a well-known result in the literature, but these results document

that multifactor models yield a superior out-of-sample Sharpe ratio as well.

In the case of 5 industries test assets in table 9, the GLS R2 of the FF3 model is 0.78, whereas

the one for the CAPM is 0.29. As we mentioned above, the puzzling result here is that the GLS

R2 of the Carhart model is -0.71. Based on this evidence, the Carhart model would do a poor

job �tting the cross-section of expected returns, however, we observe the opposite in all the other

cases under consideration. In particular, we �nd that the GLS R2 of the Carhart model is always

higher than the one of the FF3 model and the CAPM. The other measures of in-sample �t are

consistent with this pattern: the RMSE and the MAE systematically shows that multifactor models

yield lower pricing errors than the CAPM. For example, in the �rst block of table 9, the RMSE

are 0.26, 0.14 and 0.07 and the MAE are 0.22, 0.11 and 0.06 for the three models under study,

respectively. The out-of-sample Sharpe ratio of the multifactor models is always statistically larger

than the performance of the CAPM. In the �rst block, the out-of-sample Sharpe ratios are 0.030,

0.139 and 0.127. The di¤erences of Sharpe ratios are sizeable, reaching values of 10 percent. It

is interesting to note that, for these test assets, we do not only observe that multifactor models

exhibit superior performance to the CAPM but that the Carhart model is superior to the FF3

model, which at the same time, is superior to the CAPM. These results resemble the standard in-

sample results in the asset pricing literature. See Carhart (1997) for example. The same pattern is

observed in the third and fourth blocks. The test of di¤erence of Sharpe ratios are highly signi�cant

across blocks. The Carhart model produces higher out-of-sample Sharpe ratios than the CAPM,

regardless of the GMM estimator and normalization used. These results indicates that imposing

short sales constraint improve signi�cantly the performance of the portfolios. In fact, when we

compare these results with those in table 1 (with unrestricted weights), we observe similar results

but less signi�cant.

In table 10, we report the results for 10 industries portfolios. These results are even stronger than

the ones for 5 industries. Here, not only the Carhart model exhibits a higher out-of-sample Sharpe

ratio than the CAPM, the FF3 model also outperforms the CAPM. The Ledoit and Wolf test shows

that the di¤erence of Sharpe ratios between multifactor models and the CAPM are all statistically

signi�cant at 95 per cent. The reported di¤erences are larger than previous results, averaging 12 per

cent across blocks. A remarkable result here is that the portfolio associated to the Carhart model

outperforms both the 1=N investment strategy and the historical mean-variance portfolio in three

out of four blocks, and it outperforms the global minimun-variance once.28 This evidence reinforces

the idea that linear factor models may provide useful information to investors dealing with asset

allocation problems. In fact, it shows that when additional economic structure is embedded in the

portfolio analysis, the performance of this portfolio is superior to several competitive investment

strategies.

28 In order to make a fair comparison with our models, we also restrict short sales in the benchmark models when
required.
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Table 11 reports the results for 17 industries portfolios. Similarly to the case of 5 industries portfo-

lios, after imposing the short sales restrictions, we obtain statistically signi�cant di¤erences between

the out-of-sample Sharpe ratio of multifactor models and the CAPM. These results would indicate

that short sales reduce the estimation error, more than compensating any increment in the speci�-

cation error of the portfolio optimization process. These results are quite similar to the case of 10

industries in terms of the in-sample measures of �t. The GLS R2 are 0.08, 0.21 and 0.34 for the

CAPM, the FF3 model and the Carhart model, respectively. The RMSE and the MAE also show

that the Carhart model produces lower pricing errors than the two other models. Even though, the

di¤erences in Sharpe ratios between multifactor models reach eleven per cent, we observe that in

three out of four blocks it is in fact the FF3 model is the one with a slightly higher out-of-sample

Sharpe ratio than the Carhart model.

Finally, in table 12 we report the results for the 25 size-value portfolios. As compared with the

results in table 4 (with unrestricted weights), just in two blocks, the �rst and the third one, the test

of di¤erence of Sharpe ratios are signi�cant. Nevertheless, in general, the results are still consistent

with the previous evidence: multifactor models are estimated with less error in-sample and they

have higher out-of-sample Sharpe ratio than the CAPM. We observe that the ability of the linear

models in explaining the cross-section of the expected returns declines, since the GLS R2 are now

only 0.04, 0.12 and 0.16. Also, it is worth noting that the J-test rejects the CAMP model at 95

percent con�dence level. The RMSE and the MAE show that multifactor models produces lower

pricing errors than the CAPM. Regarding the out-of-sample Sharpe ratio we observe that even

though the di¤erence between multifactor models and the CAPM do exist and it is statistically

signi�cant in two blocks according to the Ledoit and Wolf test, they are weaker now, reaching

values of 9 per cent in the �rst block and 5 per cent in the third block approximately.

4.2.2 Short Sample

As before, we add to the analysis the liquidity factor model. Its inclusion forces us to use a shorter

sample, due to data availability. Again, in order to fairly compare the models we re-estimate the

other factor models using the same sample. In general, the results in this subsection are quite similar

to those reported in subsection 4.2.1 in terms of following the trends we have been documenting

so far. Multifactor models tend to better explain the cross-section of expected returns than the

CAPM and also, tend to exhibit a stronger out-of-sample performance one period in advance. The

statistical signi�cance of the Ledoit and Wolf test decays as compared with the estimation of the

same models using the full sample reported in 4.1.2. Now, for the case of 5 industries portfolios in

table 13, most of the times the test of di¤erence is not signi�cant. Just for two cases, the liquidity

factor model has an statistical superior out-of-sample Sharpe ratio than the FF3 model.

In table 14, the di¤erence of Sharpe ratios are statistically signi�cant in 3 blocks. For example, in

the third block the liquidity factor model is superior to the CAPM at the 90 per cent con�dence

24



level. In this case, the out-of-sample Sharpe ratios are 0.152 for the liquidity factor model and

0.054 for the CAPM. In the fourth block, it is the Carhart model that has a superior out-of-sample

Sharpe ratio at the 90 percent con�dence level. In this case, the out-of-sample Sharpe ratios are

0.136 for the Carhart model and 0.05 for the CAPM.

In table 15, when 17 industry portfolios are used as test assets, in the �rst two blocks four factor

models outperform the CAPM, in this case the momentum factor being more important than the

liquidity factor. In the third block, we do not �nd any statistical signi�cant di¤erence between

Sharpe ratios, however, multifactor models still exhibit a superior in-sample �t and out-of-sample

portfolio performance. In the fourth block, only the FF3 model produces a higher out-of-sample

Sharpe ratio than the CAPM (0.068 versus 0.037, respectively). In comparison with the benchmark

models, we observe that a multifactor model, in this case the Carhart model, outperforms the

three benchmark portfolios. In particular, in the �rst two blocks, the out-of-sample Sharpe ratio

of the Carhart model are 0.138 and 0.123 respectively whereas the highest out-of-sample Sharpe

ratio reached by a benchmark models is 0.118 (the historical mean-variance portfolio). The 1=N

investment strategy generates an even lower out-of-sample Sharpe ratio of 0.109.

In table 16 we report the results for the 25 size-value portfolios. We �nd that only in two blocks

the Ledoit and Wolf test �nds statistically signi�cant di¤erences of Sharpe ratios between the four

factor models and the CAPM. In the �rst block, the out-of-sample Sharpe ratios are 0.009 and 0.122

for the CAPM and the Cahart model, respectively. In the third block, these numbers are 0.033 and

0.038. However, in this case, the liquidity factor model has a out-of-sample Sharpe ratio of 0.101.

For this set of test assets, our portfolios underperform the benchmark portfolios.

Finally, when we compare the performance of the two four factor models, we �nd that the liquidity

factor model has a worse in-sample �t than the Carhart model. This is the same result we obtained

with the full sample estimates. The results change when we compare the out-of-sample performance

of the models. In this case, we do not observe that a model dominates the other as it was the case

with the full sample estimates. Here, we �nd that in half of the blocks the Carhart model yields

higher out-of-sample Sharpe ratios, and in the other half, it is the liquidity factor model that

outperforms the Carhart model.

4.3 Summary

To sum up, the main empirical facts reported in this section are the following. First, we document

that there is a link connecting the in-sample performance of linear asset pricing models and their

out-of-sample �nancial performance. In fact, we observe that models having lower in-sample pricing

errors, have, at the same time, higher out-of-sample Sharpe ratios. Second, we document that linear

multifactor asset pricing models have a consistently higher performance than the CAPM, when they

are evaluated out-of-sample and under a �nancial performance metric. Third, when an appropriate
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bootstrap test is used to statistically compare the performance of the models, we �nd that in many

cases these di¤erences are statistically signi�cant. Fourth, we observe that the 4-factor model, that

include the liquidity factor of Pastor and Stambaugh (2003), shows a worst in-sample �t than the

Carhart model in our sample period, however, it is able to beat, in some cases, out-of-sample, all

the other models. Fifth, we verify that short sales constrains are important reducing sampling

variability in portfolio estimates, when the full sample is used. This is not necessarily the case when

we use the shorter sample, covering the second half of the full sample. This indicates that most

of the uncertainty observed in the estimation of the portfolio weights is explained by the observed

returns in the �rst half of our sample.

5 Conclusions

This paper evaluates linear stochastic discount factor models based on the out-of-sample realized

performance of mean-variance e¢ cient portfolios backed by the models. In particular, we test

whether the well-documented superior ability of multifactor models, over the CAPM, of �tting the

cross-section of expected returns in sample remains or not, when an out-of-sample portfolio metric

is considered instead. Moreover, we test whether there is an empirical link between the in-sample

statistical performance of the factor models and their out-of-sample portfolio performance.

Our methodology consists of two stages. In the �rst stage, the linear factor models are estimated

under their SDF representation by GMM, as described by Cochrane (2005). Then, in the second

stage, we use the predicted excess returns of models to estimate a mean-variance e¢ cient portfolio

using the concept of mean-representing portfolio introduced by Chamberlain and Rotchschild (1983).

As it is shown by Penaranda and Sentana (2009, 2011), the mean-representing portfolio delivers a

set of moments, which allow to estimate by GMM a (arbitrage) mean-variance frontier consistently.

Finally, we compute the realized out-of-sample Sharpe ratio, one-period in advance, for each model.

The performance of the linear models is evaluated with the circular-block bootstrapped test of

di¤erence of Sharpe ratios of Ledoit and Wolf (2008).

Using a sample of monthly US portfolio returns data spanning the period from 1927 to 2011, we

provide evidence that multifactor linear models have better empirical properties than the CAPM,

not only when the cross-section of expected returns is evaluated in-sample, but also when a portfolio

metric is used out-of-sample. Besides, we document that there exist an empirical link between the

in-sample statistical performance and the out-of-sample portfolio performance of linear factor asset

pricing models: those models exhibiting the best in-sample performance are also the models with the

best out-of-sample performance. This result is consistent with the idea that asset pricing models

provide useful information to an investor solving a mean-variance portfolio problem. A model

with lower pricing errors is the best approximation to the data generating process of the returns

that an investor could have at hand, therefore, he/she might incorporate this information into the
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optimization process in order to reduce estimation errors.

We �nd that multifactor models outperform the CAPM yielding out-of-sample Sharpe ratios by as

much as 10 per cent. These results are robust for considering alternative assets in the investment

menu, �rst and second stage GMM estimators, center and uncentered SDF speci�cations, a sub-

sample analysis, and alternative window lengths in the rolling estimation setup. We also study

the performance of a 4-factor model, where the Fama-French 3-factor model is expanded with the

liquidity factor of Pastor and Stambaugh (2003). We �nd that in-sample, this model is beaten by

the Carhart model, however, in some cases, it is able to outperform, out-of-sample, its competitor

models. Finally, we study the role of imposing short sales constraint on the portfolio optimization

problem, as suggested by the work of Jagannathan and Ma (2003). Our results show that short

sales constraint may help to increase the out-of-sample Sharpe ratio of the portfolios when the full

sample is considered, however, this is not the case when the second half of the sample (1968-2011)

is used instead.

The empirical evidence in this paper adds to two strands of the literature. First, it adds to the

literature evaluating the empirical performance of linear asset pricing models. As we mentioned

above, (i) we provide evidence that multifactor models exhibit better empirical properties than the

CAPM, not only when the cross-section of expected returns is evaluated in-sample, but also when

a �nancial metric is used out-of-sample; (ii) we document that there is a empirical link between

the in-sample statistical performance and the out-of-sample �nancial performance of linear factor

models: models producing lower pricing errors in-sample are also those exhibiting higher out-of-

sample Sharpe ratios. This empirical fact has not been documented in the literature so far. Second,

we add to the small body of literature aiming to evaluate the use of asset pricing models in the

asset allocation problem. Our contribution here is: (i) to assemble a methodology combining the

SDF form of the linear asset pricing model and the consistent estimation of mean-variance e¢ cient

portfolios by GMM, (ii) to report evidence that, in some cases, portfolios associated with multifactor

models may deliver higher out-of-sample Sharpe ratios than the 1=N investment strategy of De

Miguel et al. (2009), indicating that linear factor models may deliver economic value to an investor

who is maximizing his/her wealth.
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Figure 1: Scatter plot of RMSE vs out-of-sample Sharpe ratios.

Y = 0:39
(0:02)

� 0:86
(0:24)

X (N = 132; R2 = 0:10)

Each dot represents a particular model and the number attached to it indicates the number of

factors included in that model. The dashed vertical line indicates the average performance achieved

by the 1=N strategy in our sample, across models and speci�cations.
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Table 1: Linear Asset Pricing Model Estimation and MV Portfolio Performance

(Full Sample, Test Assets: 5 Industries)

First Stage Estimators

Uncentered SDF (a = 1)

K R2 GLS J-Test (p-val) RMSE MAE OOS SR SR Di¤.Test
1 0.29 0.40 0.26 0.22 -0.028
3 0.78 0.46 0.14 0.11 -0.007 0.62
4 -0.71 0.59 0.07 0.06 0.007 0.45 0.67

Centered SDF (a = 1� �0E(f))

K R2 GLS J-Test (p-val) RMSE MAE OOS SR SR Di¤.Test
1 0.29 0.40 0.26 0.22 0.002
3 0.78 0.46 0.14 0.11 0.008 0.83
4 -0.71 0.59 0.08 0.06 0.044 0.70 0.84

Second Stage Estimators

Uncentered SDF (a = 1)

K R2 GLS J-Test (p-val) RMSE MAE OOS SR SR Di¤.Test
1 0.29 0.40 0.29 0.24 -0.019
3 0.78 0.46 0.20 0.17 -0.009 0.90
4 -0.71 0.59 0.15 0.13 -0.002 0.20 0.24

Centered SDF (a = 1� �0E(f))

K R2 GLS J-Test (p-val) RMSE MAE OOS SR SR Di¤.Test
1 0.29 0.40 0.29 0.24 -0.039
3 0.78 0.46 0.20 0.17 0.000 0.35
4 -0.71 0.59 0.16 0.14 -0.004 0.37 0.90

Benchmarks

1/N MV MinV
OOS SR 0.143 -0.025 0.149

The table reports in-sample measures of goodness of �t for a set of linear asset pricing models (K = 1 is
the CAPM, K = 3 is the Fama-French 3 factor model and K = 4 is the Carhart model) and the out-of-
sample Sharpe ratio (OOS-SR) of the associated portfolios. R2 GLS is the R2 of the estimated linear factor
model by Generalised Least Squares under its beta representation (see Lewellen et al., 2010), J-test (p-val)
is the p-value of the GMM�s overidenti�cation test, RMSE is the root mean squared error, MAE is the mean
absolute error. SR-Di¤ Test is a matrix containig pairwise p-values for the test of di¤erence in Sharpe ratios
of Ledoit and Wolf (2008). * signi�cant at 90%, ** signi�cant at 95% and *** signi�cant at 99%. MV is
the historical mean-variance tangent portfolio and MinV is the historical global minimum variance portfolio.
First and second stage estimators refer to the GMM estimator. Uncentered and centered SDF di¤er in the
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normalization imposes on the constant term in the linear SDF model.
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Table 2: Linear Asset Pricing Model Estimation and MV Portfolio Performance

(Full Sample, Test Assets: 10 Industries)

First Stage Estimators

Uncentered SDF (a = 1)

K R2 GLS J-Test (p-val) RMSE MAE OOS SR SR Di¤.Test
1 0.14 0.36 0.35 0.28 -0.009
3 0.35 0.44 0.25 0.20 -0.023 0.77
4 0.52 0.61 0.17 0.14 0.053 0.22 0.06*

Centered SDF (a = 1� �0E(f))

K R2 GLS J-Test (p-val) RMSE MAE OOS SR SR Di¤.Test
1 0.14 0.36 0.36 0.29 -0.006
3 0.35 0.45 0.25 0.21 -0.016 0.69
4 0.52 0.61 0.19 0.16 0.040 0.05** 0.02**

Second Stage Estimators

Uncentered SDF (a = 1)

K R2 GLS J-Test (p-val) RMSE MAE OOS SR SR Di¤.Test
1 0.14 0.36 0.44 0.36 -0.029
3 0.35 0.44 0.36 0.30 -0.018 0.86
4 0.52 0.61 0.32 0.27 0.058 0.31 0.16

Centered SDF (a = 1� �0E(f))

K R2 GLS J-Test (p-val) RMSE MAE OOS SR SR Di¤.Test
1 0.14 0.36 0.42 0.34 -0.056
3 0.35 0.45 0.36 0.29 -0.013 0.23
4 0.52 0.61 0.35 0.30 0.033 0.02** 0.11

Benchmarks

1/N MV MinV
OOS SR 0.148 -0.021 0.141

See notes in table 1.
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Table 3: Linear Asset Pricing Model Estimation and MV Portfolio Performance

(Full Sample, Test Assets: 17 Industries)

First Stage Estimators

Uncentered SDF (a = 1)

K R2 GLS J-Test (p-val) RMSE MAE OOS SR SR Di¤.Test
1 0.08 0.27 0.40 0.32 -0.006
3 0.21 0.31 0.30 0.24 0.008 0.79
4 0.34 0.47 0.23 0.19 0.018 0.64 0.78

Centered SDF (a = 1� �0E(f))

K R2 GLS J-Test (p-val) RMSE MAE OOS SR SR Di¤.Test
1 0.08 0.26 0.40 0.32 0.001
3 0.21 0.31 0.30 0.24 0.018 0.74
4 0.34 0.43 0.26 0.21 0.012 0.44 0.53

Second Stage Estimators

Uncentered SDF (a = 1)

K R2 GLS J-Test (p-val) RMSE MAE OOS SR SR Di¤.Test
1 0.08 0.27 0.66 0.57 -0.034
3 0.21 0.31 0.58 0.50 -0.017 0.75
4 0.34 0.47 0.47 0.40 0.005 0.83 0.86

Centered SDF (a = 1� �0E(f))

K R2 GLS J-Test (p-val) RMSE MAE OOS SR SR Di¤.Test
1 0.08 0.26 0.61 0.52 0.010
3 0.21 0.31 0.52 0.44 -0.043 0.24
4 0.34 0.43 0.49 0.42 -0.026 0.48 0.47

Benchmarks

1/N MV MinV
OOS SR 0.141 0.051 0.105

See notes in table 1.
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Table 4: Linear Asset Pricing Model Estimation and MV Portfolio Performance

(Full Sample, Test Assets: 25 Size-Value)

First Stage Estimators

Uncentered SDF (a = 1)

K R2 GLS J-Test (p-val) RMSE MAE OOS SR SR Di¤.Test
1 0.04 0.02 0.55 0.36 -0.005
3 0.12 0.06 0.41 0.26 0.083 0.06*
4 0.16 0.13 0.33 0.24 0.144 0.00*** 0.07*

Centered SDF (a = 1� �0E(f))

K R2 GLS J-Test (p-val) RMSE MAE OOS SR SR Di¤.Test
1 0.04 0.02 0.56 0.37 -0.008
3 0.12 0.05 0.42 0.27 0.056 0.32
4 0.16 0.10 0.31 0.24 0.121 0.25 0.59

Second Stage Estimators

Uncentered SDF (a = 1)

K R2 GLS J-Test (p-val) RMSE MAE OOS SR SR Di¤.Test
1 0.04 0.02 1.41 1.27 -0.003
3 0.12 0.06 1.16 1.02 0.044 0.03**
4 0.16 0.13 1.07 0.91 0.051 0.00*** 0.05**

Centered SDF (a = 1� �0E(f))

K R2 GLS J-Test (p-val) RMSE MAE OOS SR SR Di¤.Test
1 0.04 0.02 1.26 1.12 0.018
3 0.12 0.05 1.02 0.88 0.043 0.66
4 0.16 0.10 1.03 0.88 0.065 0.34 0.49

Benchmarks

1/N MV MinV
OOS SR 0.146 -0.017 0.176

See notes in table 1.
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Table 5: Linear Asset Pricing Model Estimation and MV Portfolio Performance

(Short Sample, Test Assets: 5 Industries)

First Stage Estimators

Uncentered SDF (a = 1)

K R2 GLS J-Test (p-val) RMSE MAE OOS SR SR Di¤.Test
1 0.29 0.40 0.27 0.22 -0.027
3 0.76 0.48 0.13 0.11 -0.040 0.62
4M -0.70 0.64 0.06 0.05 0.003 0.16 0.34
4L -0.70 0.51 0.07 0.06 0.078 0.00*** 0.02** 0.06*

Centered SDF (a = 1� �0E(f))

K R2 GLS J-Test (p-val) RMSE MAE OOS SR SR Di¤.Test
1 0.29 0.40 0.27 0.23 -0.055
3 0.76 0.48 0.13 0.11 -0.020 0.87
4M -0.70 0.63 0.07 0.05 0.027 0.55 0.68
4L -0.70 0.51 0.07 0.06 0.042 0.42 0.21 0.54

Second Stage Estimators

Uncentered SDF (a = 1)

K R2 GLS J-Test (p-val) RMSE MAE OOS SR SR Di¤.Test
1 0.29 0.40 0.30 0.25 -0.017
3 0.76 0.48 0.19 0.15 -0.012 0.21
4M -0.70 0.64 0.12 0.10 0.008 0.04** 0.30
4L -0.70 0.51 0.12 0.10 0.050 0.01*** 0.15 0.66

Centered SDF (a = 1� �0E(f))

K R2 GLS J-Test (p-val) RMSE MAE OOS SR SR Di¤.Test
1 0.29 0.40 0.30 0.24 -0.012
3 0.76 0.48 0.19 0.15 -0.019 0.97
4M -0.70 0.63 0.13 0.11 0.029 0.48 0.31
4L -0.70 0.51 0.12 0.10 0.063 0.25 0.10* 0.33

Benchmarks

1/N MV MinV
OOS SR 0.106 0.025 0.122

The table reports in-sample measures of goodness of �t for a set of linear asset pricing models (K = 1 is the
CAPM, K = 3 is the Fama-French 3-factor model and K = 4M is the Carhart model and K = 4L is 4-factor
liquidity model) and the out-of-sample Sharpe ratio (OOS-SR) of the associated portfolios. R2 GLS is the R2

of the estimated linear factor model by generalized least squares under its beta representation (see Lewellen
et al., 2010), J-test (p-val) is the p-value of the GMM�s overidenti�cation test respectively, RMSE is the root
mean squared error, MAE is the mean absolute error. SR-Di¤ Test is a matrix containig pairwise p-values
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for the test of di¤erence in Sharpe ratios of Ledoit and Wolf (2008). * signi�cant at 90%, ** signi�cant
at 95% and *** signi�cant at 99%. MV is the historical mean-variance tangent portfolio and MinV is the
historical global minimum variance portfolio. First and second stage estimators refer to the GMM estimator.
Uncentered and centered SDF di¤er in the normalization imposes on the constant term in the linear SDF
model.
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Table 6: Linear Asset Pricing Model Estimation and MV Portfolio Performance

(Short Sample, Test Assets: 10 Industries)

First Stage Estimators

Uncentered SDF (a = 1)

K R2 GLS J-Test (p-val) RMSE MAE OOS SR SR Di¤.Test
1 0.15 0.42 0.35 0.29 0.008
3 0.36 0.52 0.23 0.19 0.031 0.77
4M 0.57 0.67 0.16 0.13 0.057 0.51 0.54
4L 0.55 0.57 0.18 0.15 0.099 0.24 0.04** 0.28

Centered SDF (a = 1� �0E(f))

K R2 GLS J-Test (p-val) RMSE MAE OOS SR SR Di¤.Test
1 0.15 0.42 0.36 0.29 0.028
3 0.36 0.52 0.23 0.19 0.032 0.50
4M 0.57 0.66 0.18 0.14 0.074 0.24 0.39
4L 0.55 0.58 0.19 0.15 0.128 0.03** 0.04** 0.10*

Second Stage Estimators

Uncentered SDF (a = 1)

K R2 GLS J-Test (p-val) RMSE MAE OOS SR SR Di¤.Test
1 0.15 0.42 0.41 0.33 -0.024
3 0.36 0.52 0.34 0.27 -0.012 0.96
4M 0.57 0.67 0.27 0.22 0.026 0.55 0.36
4L 0.55 0.57 0.29 0.23 0.083 0.20 0.02** 0.12

Centered SDF (a = 1� �0E(f))

K R2 GLS J-Test (p-val) RMSE MAE OOS SR SR Di¤.Test
1 0.15 0.42 0.40 0.33 0.017
3 0.36 0.52 0.34 0.27 -0.018 0.19
4M 0.57 0.66 0.28 0.23 0.022 0.63 0.29
4L 0.55 0.58 0.29 0.23 0.084 0.54 0.03** 0.07*

Benchmarks

1/N MV MinV
OOS SR 0.115 0.029 0.137

See notes in table 5.
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Table 7: Linear Asset Pricing Model Estimation and MV Portfolio Performance

(Short Sample, Test Assets: 17 Industries)

First Stage Estimators

Uncentered SDF (a = 1)

K R2 GLS J-Test (p-val) RMSE MAE OOS SR SR Di¤.Test
1 0.08 0.36 0.42 0.33 -0.012
3 0.23 0.41 0.30 0.23 -0.034 0.90
4M 0.37 0.54 0.22 0.17 -0.034 0.90 0.99
4L 0.33 0.48 0.25 0.20 0.040 0.40 0.09* 0.15

Centered SDF (a = 1� �0E(f))

K R2 GLS J-Test (p-val) RMSE MAE OOS SR SR Di¤.Test
1 0.08 0.35 0.42 0.34 -0.013
3 0.23 0.41 0.30 0.23 -0.031 0.52
4M 0.37 0.19 0.23 0.19 -0.042 0.68 0.53
4L 0.33 0.48 0.25 0.20 0.042 0.17 0.28 0.14

Second Stage Estimators

Uncentered SDF (a = 1)

K R2 GLS J-Test (p-val) RMSE MAE OOS SR SR Di¤.Test
1 0.08 0.36 0.61 0.51 -0.017
3 0.23 0.41 0.54 0.45 0.023 0.92
4M 0.37 0.54 0.41 0.35 0.003 0.79 0.82
4L 0.33 0.48 0.45 0.38 0.071 0.40 0.10* 0.11

Centered SDF (a = 1� �0E(f))

K R2 GLS J-Test (p-val) RMSE MAE OOS SR SR Di¤.Test
1 0.08 0.35 0.59 0.49 -0.024
3 0.23 0.41 0.48 0.40 0.018 0.34
4M 0.37 0.53 0.41 0.34 0.005 0.70 0.59
4L 0.33 0.48 0.42 0.35 0.079 0.06* 0.30 0.12

Benchmarks

1/N MV MinV
OOS SR 0.109 0.059 0.040

See notes in table 5.
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Table 8: Linear Asset Pricing Model Estimation and MV Portfolio Performance

(Short Sample, Test Assets: 25 Size-Value)

First Stage Estimators

Uncentered SDF (a = 1)

K R2 GLS J-Test (p-val) RMSE MAE OOS SR SR Di¤.Test
1 0.05 0.01 0.42 0.34 -0.026
3 0.14 0.06 0.22 0.17 0.071 0.13
4M 0.18 0.10 0.18 0.14 0.167 0.00*** 0.07*
4L 0.18 0.07 0.20 0.15 0.115 0.01*** 0.31 0.32

Centered SDF (a = 1� �0E(f))

K R2 GLS J-Test (p-val) RMSE MAE OOS SR SR Di¤.Test
1 0.05 0.01 0.43 0.34 -0.034
3 0.14 0.04 0.23 0.18 0.061 0.12
4M 0.18 0.07 0.21 0.17 0.101 0.03** 0.22
4L 0.18 0.05 0.22 0.17 0.118 0.07* 0.64 0.37

Second Stage Estimators

Uncentered SDF (a = 1)

K R2 GLS J-Test (p-val) RMSE MAE OOS SR SR Di¤.Test
1 0.05 0.01 1.24 1.14 -0.009
3 0.14 0.06 1.05 0.97 0.116 0.07*
4M 0.18 0.10 0.88 0.81 0.181 0.02** 0.43
4L 0.18 0.07 0.96 0.89 0.136 0.01*** 0.22 0.66

Centered SDF (a = 1� �0E(f))

K R2 GLS J-Test (p-val) RMSE MAE OOS SR SR Di¤.Test
1 0.05 0.01 1.15 1.04 0.030
3 0.14 0.04 0.95 0.85 0.060 0.76
4M 0.18 0.07 0.93 0.84 0.131 0.16 0.26
4L 0.18 0.05 0.84 0.76 0.162 0.07* 0.20 0.52

Benchmarks

1/N MV MinV
OOS SR 0.130 0.049 0.219

See notes in table 5.
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Table 9: Linear Asset Pricing Model Estimation and MV Portfolio Performance

(Full Sample, Test Assets: 5 Industries, Short-Sales Constraints)

First Stage Estimators

Uncentered SDF (a = 1)

K R2 GLS J-Test (p-val) RMSE MAE OOS SR SR Di¤.Test
1 0.29 0.40 0.26 0.22 0.030
3 0.78 0.46 0.14 0.11 0.139 0.02**
4 -0.71 0.59 0.07 0.06 0.127 0.05** 0.56

Centered SDF (a = 1� �0E(f))

K R2 GLS J-Test (p-val) RMSE MAE OOS SR SR Di¤.Test
1 0.29 0.40 0.26 0.22 0.035
3 0.78 0.46 0.14 0.11 0.141 0.32
4 -0.71 0.59 0.07 0.06 0.116 0.01*** 0.42

Second Stage Estimators

Uncentered SDF (a = 1)

K R2 GLS J-Test (p-val) RMSE MAE OOS SR SR Di¤.Test
1 0.29 0.40 0.29 0.24 0.029
3 0.78 0.46 0.20 0.17 0.075 0.03**
4 -0.71 0.59 0.15 0.13 0.141 0.08* 0.37

Centered SDF (a = 1� �0E(f))

K R2 GLS J-Test (p-val) RMSE MAE OOS SR SR Di¤.Test
1 0.29 0.40 0.29 0.24 0.022
3 0.78 0.46 0.20 0.17 0.075 0.15
4 -0.71 0.59 0.16 0.14 0.124 0.02** 0.41

Benchmarks

1/N MVc MinVc
OOS SR 0.143 0.149 0.149

See notes in table 1.

42



Table 10: Linear Asset Pricing Model Estimation and MV Portfolio Performance

(Full Sample, Test Assets: 10 Industries, Short-Sales Constraints)

First Stage Estimators

Uncentered SDF (a = 1)

K R2 GLS J-Test (p-val) RMSE MAE OOS SR SR Di¤.Test
1 0.14 0.36 0.35 0.28 0.030
3 0.35 0.44 0.25 0.20 0.137 0.00***
4 0.52 0.61 0.17 0.14 0.157 0.00*** 0.24

Centered SDF (a = 1� �0E(f))

K R2 GLS J-Test (p-val) RMSE MAE OOS SR SR Di¤.Test
1 0.14 0.36 0.36 0.29 0.020
3 0.35 0.45 0.25 0.21 0.137 0.04**
4 0.52 0.61 0.19 0.16 0.140 0.00*** 0.40

Second Stage Estimators

Uncentered SDF (a = 1)

K R2 GLS J-Test (p-val) RMSE MAE OOS SR SR Di¤.Test
1 0.14 0.36 0.44 0.36 0.039
3 0.35 0.44 0.36 0.30 0.144 0.00***
4 0.52 0.61 0.32 0.27 0.164 0.00*** 0.79

Centered SDF (a = 1� �0E(f))

K R2 GLS J-Test (p-val) RMSE MAE OOS SR SR Di¤.Test
1 0.14 0.36 0.42 0.34 0.014
3 0.35 0.45 0.36 0.29 0.123 0.02**
4 0.52 0.61 0.35 0.30 0.151 0.00*** 0.30

Benchmarks

1/N MVc MinVc
OOS SR 0.148 0.146 0.162

See notes in table 1.
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Table 11: Linear Asset Pricing Model Estimation and MV Portfolio Performance

(Full Sample, Test Assets: 17 Industries, Short-Sales Constraints)

First Stage Estimators

Uncentered SDF (a = 1)

K R2 GLS J-Test (p-val) RMSE MAE OOS SR SR Di¤.Test
1 0.08 0.27 0.40 0.32 0.028
3 0.21 0.31 0.30 0.24 0.133 0.01***
4 0.34 0.47 0.23 0.19 0.136 0.00*** 0.52

Centered SDF (a = 1� �0E(f))

K R2 GLS J-Test (p-val) RMSE MAE OOS SR SR Di¤.Test
1 0.08 0.26 0.40 0.32 0.034
3 0.21 0.32 0.30 0.24 0.130 0.02**
4 0.34 0.43 0.26 0.21 0.129 0.01*** 0.47

Second Stage Estimators

Uncentered SDF (a = 1)

K R2 GLS J-Test (p-val) RMSE MAE OOS SR SR Di¤.Test
1 0.08 0.27 0.66 0.57 0.012
3 0.21 0.31 0.58 0.31 0.138 0.02**
4 0.34 0.47 0.47 0.40 0.123 0.01*** 0.47

Centered SDF (a = 1� �0E(f))

K R2 GLS J-Test (p-val) RMSE MAE OOS SR SR Di¤.Test
1 0.08 0.26 0.61 0.52 0.026
3 0.21 0.31 0.52 0.43 0.133 0.04**
4 0.34 0.43 0.49 0.42 0.113 0.05** 0.18

Benchmarks

1/N MVc MinVc
OOS SR 0.141 0.148 0.159

See notes in table 1.
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Table 12: Linear Asset Pricing Model Estimation and MV Portfolio Performance

(Full Sample, Test Assets: 25 Size-Value, Short-Sales Constraints)

First Stage Estimators

Uncentered SDF (a = 1)

K R2 GLS J-Test (p-val) RMSE MAE OOS SR SR Di¤.Test
1 0.04 0.02 0.55 0.36 0.019
3 0.12 0.06 0.41 0.26 0.106 0.03**
4 0.16 0.13 0.33 0.24 0.100 0.04** 0.50

Centered SDF (a = 1� �0E(f))

K R2 GLS J-Test (p-val) RMSE MAE OOS SR SR Di¤.Test
1 0.04 0.02 0.56 0.37 0.014
3 0.12 0.05 0.42 0.27 0.103 0.34
4 0.16 0.10 0.31 0.24 0.097 0.89 0.21

Second Stage Estimators

Uncentered SDF (a = 1)

K R2 GLS J-Test (p-val) RMSE MAE OOS SR SR Di¤.Test
1 0.04 0.02 1.41 1.27 0.034
3 0.12 0.06 1.16 1.02 0.083 0.03**
4 0.16 0.13 1.07 0.91 0.055 0.03** 0.55

Centered SDF (a = 1� �0E(f))

K R2 GLS J-Test (p-val) RMSE MAE OOS SR SR Di¤.Test
1 0.04 0.02 1.26 1.12 0.045
3 0.12 0.05 1.02 0.88 0.097 0.11
4 0.16 0.10 1.03 0.88 0.056 0.99 0.26

Benchmarks

1/N MVc MinVc
OOS SR 0.145 0.151 0.153

See notes in table 1.
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Table 13: Linear Asset Pricing Model Estimation and MV Portfolio Performance

(Short Sample, Test Assets: 5 Industries, Short-Sales Constraints)

First Stage Estimators

Uncentered SDF (a = 1)

K R2 GLS J-Test (p-val) RMSE MAE OOS SR SR Di¤.Test
1 0.29 0.40 0.27 0.22 0.003
3 0.76 0.48 0.13 0.11 0.088 0.18
4M -0.70 0.63 0.06 0.05 0.075 0.36 0.68
4L -0.70 0.51 0.07 0.06 0.086 0.22 0.92 0.61

Centered SDF (a = 1� �0E(f))

K R2 GLS J-Test (p-val) RMSE MAE OOS SR SR Di¤.Test
1 0.29 0.40 0.27 0.23 0.007
3 0.76 0.48 0.13 0.11 0.090 0.88
4M -0.70 0.63 0.07 0.05 0.090 0.21 0.28
4L -0.70 0.51 0.07 0.06 0.097 0.87 0.72 0.06*

Second Stage Estimators

Uncentered SDF (a = 1)

K R2 GLS J-Test (p-val) RMSE MAE OOS SR SR Di¤.Test
1 0.29 0.40 0.30 0.25 0.041
3 0.76 0.48 0.19 0.15 0.044 0.22
4M -0.70 0.64 0.12 0.10 0.122 0.24 0.93
4L -0.70 0.51 0.12 0.10 0.071 0.18 0.79 0.87

Centered SDF (a = 1� �0E(f))

K R2 GLS J-Test (p-val) RMSE MAE OOS SR SR Di¤.Test
1 0.29 0.40 0.30 0.24 0.038
3 0.76 0.48 0.19 0.15 0.039 0.92
4M -0.70 0.63 0.13 0.11 0.103 0.25 0.23
4L -0.70 0.51 0.12 0.10 0.063 0.70 0.72 0.06*

Benchmarks

1/N MVc MinVc
OOS SR 0.106 0.122 0.120

See notes in table 5.
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Table 14: Linear Asset Pricing Model Estimation and MV Portfolio Performance

(Short Sample, Test Assets: 10 Industries, Short-Sales Constraints)

First Stage Estimators

Uncentered SDF (a = 1)

K R2 GLS J-Test (p-val) RMSE MAE OOS SR SR Di¤.Test
1 0.15 0.42 0.35 0.29 0.036
3 0.36 0.52 0.23 0.19 0.098 0.24
4M 0.57 0.67 0.16 0.13 0.135 0.08* 0.25
4L 0.55 0.57 0.18 0.15 0.127 0.08* 0.30 0.77

Centered SDF (a = 1� �0E(f))

K R2 GLS J-Test (p-val) RMSE MAE OOS SR SR Di¤.Test
1 0.15 0.42 0.36 0.29 0.035
3 0.36 0.52 0.23 0.19 0.097 0.41
4M 0.57 0.66 0.18 0.14 0.106 0.24 0.89
4L 0.55 0.58 0.19 0.15 0.126 0.14 0.59 0.47

Second Stage Estimators

Uncentered SDF (a = 1)

K R2 GLS J-Test (p-val) RMSE MAE OOS SR SR Di¤.Test
1 0.15 0.42 0.41 0.33 0.054
3 0.36 0.52 0.34 0.27 0.127 0.23
4M 0.57 0.67 0.27 0.22 0.133 0.13 0.61
4L 0.55 0.57 0.29 0.23 0.152 0.08* 0.36 0.52

Centered SDF (a = 1� �0E(f))

K R2 GLS J-Test (p-val) RMSE MAE OOS SR SR Di¤.Test
1 0.15 0.42 0.40 0.33 0.050
3 0.36 0.52 0.34 0.27 0.103 0.46
4M 0.57 0.66 0.28 0.23 0.136 0.08* 0.31
4L 0.55 0.58 0.29 0.23 0.133 0.25 0.57 0.68

Benchmarks

1/N MVc MinVc
OOS SR 0.115 0.097 0.130

See notes in table 5.
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Table 15: Linear Asset Pricing Model Estimation and MV Portfolio Performance

(Short Sample, Test Assets: 17 Industries, Short-Sales Constraints)

First Stage Estimators

Uncentered SDF (a = 1)

K R2 GLS J-Test (p-value) RMSE MAE OOS SR SR Di¤.Test
1 0.08 0.40 0.42 0.33 0.028
3 0.23 0.41 0.30 0.23 0.111 0.14
4M 0.37 0.54 0.22 0.17 0.138 0.03** 0.12
4L 0.33 0.48 0.25 0.20 0.113 0.19 0.91 0.31

Centered SDF (a = 1� �0E(f))

K R2 GLS J-Test (p-value) RMSE MAE OOS SR SR Di¤.Test
1 0.08 0.35 0.42 0.34 0.019
3 0.23 0.41 0.30 0.23 0.111 0.02**
4M 0.37 0.53 0.23 0.19 0.123 0.06* 0.20
4L 0.33 0.48 0.25 0.20 0.106 0.08* 0.49 0.59

Second Stage Estimators

Uncentered SDF (a = 1)

K R2 GLS J-Test (p-val) RMSE MAE OOS SR SR Di¤.Test
1 0.08 0.36 0.61 0.51 0.015
3 0.23 0.41 0.54 0.45 0.170 0.13
4M 0.37 0.54 0.41 0.35 0.118 0.05 0.23
4L 0.33 0.48 0.45 0.38 0.148 0.17 0.83 0.32

Centered SDF (a = 1� �0E(f))

K R2 GLS J-Test (p-val) RMSE MAE OOS SR SR Di¤.Test
1 0.08 0.35 0.59 0.49 0.037
3 0.23 0.41 0.48 0.40 0.068 0.08*
4M 0.37 0.53 0.41 0.34 0.101 0.31 0.56
4L 0.33 0.48 0.42 0.35 0.134 0.16 0.69 0.32

Benchmarks

1/N MVc MinVc
OOS SR 0.109 0.118 0.117

See notes in table 5.
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Table 16: Linear Asset Pricing Model Estimation and MV Portfolio Performance

(Short Sample, Test Assets: 25 Size-Value, Short-Sales Constraints)

First Stage Estimators

Uncentered SDF (a = 1)

K R2 GLS J-Test (p-val) RMSE MAE OOS SR SR Di¤.Test
1 0.05 0.01 0.42 0.34 0.009
3 0.14 0.06 0.22 0.17 0.112 0.11
4M 0.18 0.10 0.18 0.14 0.122 0.06* 0.78
4L 0.18 0.07 0.20 0.15 0.105 0.11 0.22 0.20

Centered SDF (a = 1� �0E(f))

K R2 GLS J-Test (p-val) RMSE MAE OOS SR SR Di¤.Test
1 0.05 0.01 0.43 0.34 0.009
3 0.14 0.04 0.23 0.18 0.117 0.37
4M 0.18 0.07 0.21 0.17 0.123 0.95 0.27
4L 0.18 0.05 0.22 0.17 0.109 0.43 0.99 0.23

Second Stage Estimators

Uncentered SDF (a = 1)

K R2 GLS J-Test (p-val) RMSE MAE OOS SR SR Di¤.Test
1 0.05 0.007 1.24 1.14 0.033
3 0.14 0.06 1.05 0.97 0.100 0.17
4M 0.18 0.10 0.88 0.81 0.038 0.06** 0.99
4L 0.18 0.07 0.96 0.88 0.101 0.10* 0.44 0.37

Centered SDF (a = 1� �0E(f))

K R2 GLS J-Test (p-val) RMSE MAE OOS SR SR Di¤.Test
1 0.05 0.01 1.15 1.04 0.044
3 0.14 0.04 0.95 0.85 0.104 0.30
4M 0.18 0.07 0.93 0.84 0.021 0.78 0.22
4L 0.18 0.05 0.84 0.76 0.104 0.31 0.98 0.15

Benchmarks

1/N MVc MinVc
OOS SR 0.130 0.159 0.124

See notes in table 5.
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