THE INFORMATIONAL VALUE OF CORPORATE CREDIT RATINGS

Mohamed A. Ayadi, Mike Densmore, Skander Lazrak, and Robert Welch*

Current Version: December 14, 2012

^{*} Ayadi is an Associate Professor, Department of Finance, Operations, and Information Systems, Goodman School of Business, St. Catharines, ON, Canada, +1 (905) 688-5550, x3917, e-mail: *mayadi@brocku.ca*. Densmore is a Brock graduate student, email: *md06lw@badger.ac.brocku.ca*. Lazrak is an Associate Professor, Department of Finance, Operations, and Information Systems, Goodman School of Business, Brock University, St. Catharines, ON, Canada, +1 (905) 688-5550, x5113, e-mail: *slazrak@brocku.ca*. Welch is a Professor, Department of Finance, Operations, and Information Systems, Goodman School of Business, Brock University, St. Catharines, ON, Canada, +1 (905) 688-5550, x5113, e-mail: *slazrak@brocku.ca*. Welch is a Professor, Department of Finance, Operations, and Information Systems, Goodman School of Business, Brock University, St. Catharines, ON, Canada, +1 (905) 688-5550, x3920, e-mail: *bwelch@brocku.ca*. We would like to thank Van Son Lai for many helpful comments. Financial support from the Institute of International Issues in Accounting (Brock University) is gratefully acknowledged. The usual disclaimer applies. Please do not quote without the authors' permission.

THE INFORMATIONAL VALUE OF CORPORATE CREDIT RATINGS

Abstract

This paper examines the quality of credit ratings issued by the three major credit rating agencies - Moody's, Standard and Poor's and Fitch. If credit ratings are informative, then prices of underlying credit instruments such as fixed-income securities and credit default insurance should change to reflect the new credit risk information. Using data on 246 different major fixed-income securities issuers and spanning January 2000 to December 2011, we find that credit default swaps (CDS) spreads do not react to changes in credit ratings. Hence credit ratings for all three agencies are not price informative. CDS prices are mostly determined by historical CDS prices while ratings are mostly determined by historical ratings. We also find that credit ratings are marginally more sensitive to CDS than CDS are sensitive to ratings.

Keywords: credit ratings and spreads, CDS prices, VAR, error correction model. **JEL Classification:** G11, G12, K22.

THE INFORMATIONAL VALUE OF CORPORATE CREDIT RATINGS

1. Introduction

Rating agencies provide markets with information regarding credit worthiness and presumably reduce uncertainty by increasing the information flow between investors and issuers. The 2011 Standard and Poor's Guide to credit rating essentials states that "Credit ratings are opinions about credit risk. Standard & Poor's ratings express the agency's opinion about the ability and willingness of an issuer, such as a corporation or state or city government, to meet its financial obligations in full and on time". Hence agencies decrease the cost of searching, analyzing and monitoring creditworthiness by investors. This should also lower the cost of lending and borrowing between issuers and lenders.(Moody's Special Comment, 2002).

Recent major systemic credit events have occurred without clear warnings from the rating agencies which questions their informational value. For example consider the downfall of Bear Stearns. Prior to filing for bankruptcy there were ample signals showing their deteriorating credit worthiness which rating agencies failed to recognize. Bear Stearns had two highly levered hedge funds which were invested in the subprime mortgage market. In early 2007 when mortgages began to frequently default these funds started to experience large losses. In July 2007 the two funds collapsed. The rating agencies did not act on this information until November 15th 2007 when S&P downgraded Bear Stearns rating from A+ to A. Ratings were not changed again until March 14th 2008, where S&P lowered Bear Stearns rating to BBB. This followed the announcement of an emergency loan from the FED through JP Morgan. These major events were not surprises. Other markets seemed to lead rating agencies in adjustment. From January 2007 to January 2008 Bear Stearns share price dropped from \$171.51 to \$71.01.

Further examples include; the recent downgrading of major banks,¹ the 1997 Asian financial crisis that spread to Latin America and various other parts of the

¹ In June 2012, Moody's downgraded 15 global banks by between 1 and 3 grades. Banks such as Citigroup and Goldman Sachs publicly questioned Moody's methodology after being downgraded (Campbell and Moore, 2012).

World and the earlier Savings and Loans failures for investors and banks in assessing credit risk levels of their portfolios and are designed to complement investor's research. According to Standard and Poor, credit rating agencies can be viewed by investors as impartial because they do not directly engage in capital market transactions. However whether they are truly impartial is the subject of current research.

An issue that tends to arise when determining the degree of neutrality of rating agencies is the manner in which they collect income. There are two methods by which agencies receive payment. The first is the issuer pay model where issuers pay raters to initiate and maintain a credit rating. The second is the subscription pay model where investors pay to access the credit ratings. Both models are criticized because they involve conflicts of interest. When the issuers pay for the rating there is an incentive for agencies to provide higher ratings to retain their business. Under the subscription pay model there is a tendency for agencies to cater to the needs of the investor and therefore provide lower ratings. Another drawback of the subscription pay model, assuming that credit ratings were established to improve the flow of information, is that it is likely to increase informational asymmetry since the ratings are released to the party paying for the service as opposed to the public.

The objective of this paper is to assess the quality of American corporate ratings given by the three most recognized rating agencies (Standard and Poor's, Moody's and Fitch). High quality ratings are forward looking and impact issue prices. Informative rating changes trigger bond prices to move in accordance. Our empirical analysis examines whether credit rating reclassifications lead or lag changes in prices. Our price measure is the credit default swap (CDS) price linked to specific issuers. CDS contracts are insurance against default events. We opt for CDS prices as they relate more to credit and default risk than yields.

Our main result is that credit ratings are not forward looking regardless of the rating agency. Using data spanning the period 2002-2011 and covering 246 different issuers rated by the three major rating agencies, we empirically document that ratings do not influence credit default swap prices after controlling for appropriate factors.

This finding supports the hypothesis that rating agencies do not contribute to the informational efficiency of the credit market.

Our contribution to the literature is twofold. First, we use a methodology we deem more appropriate for the test. Vector AutoRegressive (VAR) and Vector Error Correction (VEC) models are more suitable to test the feedback effects and the mutual contributions in the innovations of endogenous series. Second, our analysis encompasses the recent financial crisis and dramatic credit rating changes which provide more power to our tests.

The remainder of the paper is organized as follows. Section 2 reviews the literature about the quality of credit rating. Section 3 describes the methodology used to test for the quality of credit rating. Section 4 discusses the sample construction and provides descriptive statistics about the issuers included in the current study. In section 5, we develop the empirically testable hypotheses and present the empirical findings. Section 6 concludes the paper.

2. Literature review

Empirical and analytical studies have been conducted on credit rating changes. Literature on the informational value associated with rating reclassifications employ a variety of statistical methods and obtain mixed results. This paper focuses on assessing the quality of issuer credit ratings and how quality evolves over time. A review of the literature studying different aspects of credit rating reclassifications follows.

Much of the literature on credit rating changes adopt some form of event study methodology, whether it is the market model, one-factor model, two-factor model or some other variation. Past studies use both the date of the physical rating change and the announcement of change as the event date.

In order to measure the informational value of rating reclassifications most previous studies look at bond yields and stocks prices for the anticipation of (or reaction to) a change in credit rating. There are a few that make use of credit default swap (CDS) spreads in measuring this effect (Hull et al. 2004; Norden and Weber 2004). In this paper, we examine the lead-lag relationship between CDS spreads and credit rating reclassification.

Katz (1974), Grier and Katz (1976), Weinstein (1977) and Hite and Warga (1997) investigate bond market efficiency by examining monthly bond performance following a credit rating reclassification and using event-study methodology. Their findings are mixed. Clauretie et al. (1992) and Heinke and Steiner (2001) use respectively U.S. weekly and German daily bond prices to find that downgrades (upgrades) result in significant negative (insignificant) abnormal bond returns. Norden and Weber (2004) reach the same conclusions using credit default swaps instead of bond yields. Heinke and Steiner (2001) report that downgrade announcements and announcements of negative watch lists are associated with significant negative reaction up to 4 trading days after the event.

Several studies investigate the effect of the credit rating changes on the performance of the stock market. Pinches and Singleton (1978) conclude that abnormally high (low) stock prices occur prior to credit bond upgrades (downgrades). They find stock prices to be relatively stable following rating reclassifications. Griffin and Sanvicente (1982) report that bond rating changes do provide information to equity holders corresponding to stock returns, particularly for downgrades. Using daily data, Davidson et al. (1987), Followill and Martell (1997), Ederington and Goh (1993), Dichev and Piotroski (2001) and Bannier and Hirsch (2010) find significant negative stock market reactions to downgrades. Davidson et al. (1987) obtain significant reaction both to credit upgrades and an anticipatory negative effect which is reversed post downgrades. Ederington and Goh (1993) report that the negative reaction to downgrades is only observed when the downgrade is caused by the firm's or industry's revaluation of the financial prospects.

In a recent paper, Bannier and Hirsch (2010) compare cumulative abnormal returns before and after the introduction of the Moody's watch list. They find that for a firm with high credit worthiness, the watch list is used as a means to convey precise and accurate information. Conversely for low credit firms the watch list is used as a tool for actively monitoring them.

Becker and Milbourn (2011) investigate the link between the rating quality and rating competition. Rating competition is linked to Fitch initiated ratings compared to a market where only Moody's and Standard and Poor's exist. Becker and Milbourn show a positive relationship between competition and the difference between investment grade and speculative grade default probabilities. Thus, the informational content of ratings appears to decrease with more intense competition.

3. Methodology

3.1 VAR and VEC models

We rely on vector autogressive (VAR) models to study the relation between bond yields or CDS prices and rating changes. In a VAR each endogenous variable is regressed on lags of all endogenous variables included in the model and a set of control variables. Therefore in estimating a VAR the number of equations to be estimated will match the number of endogenous variables. Using vector notation a VAR of order p, VAR(p), is given by the following equations:

$$CDS_t = \alpha + \sum_{i=1}^p \beta_i CDS_{t-i} + \sum_{i=1}^q \zeta_i CR_{t-i} + \theta X_t + \varepsilon_t$$
(1)

$$CR_t = \kappa + \sum_{i=1}^{s} \varpi_i CR_{t-i} + \sum_{i=1}^{r} \lambda_i CDS_{t-i} + \gamma X_t + \nu_t$$
(2)

Where X_t is a vector of exogenous variables, CR_t measures credit ratings and CDS_t measures CDS spreads. β_i , θ , and ζ_i are coefficients on CDS spreads, exogenous variables and credit ratings respectively in equation (1). ϖ_i , λ_i and γ are matrices of coefficients to be estimated on lagged credit ratings, lagged CDS spreads and exogenous variables respectively in equation (2). ε_t and v_t are vectors of innovations.

Equation (1) estimates the impact of lagged CDS spreads and credit ratings on current CDS spreads. Equation (2) estimates the impact of lagged CDS spreads and credit ratings on credit ratings. Since each equation contains only lags of each endogenous variable, simultaneity issues do not arise. Estimating each equation by OLS produces both the generalized least squares estimator and the maximum likelihood estimator assuming multivariate normal errors (Davidson and Mackinnon, 2004). We specify the number of lag orders using Akaike and Schwarz criteria.²

VAR specifications are commonly used to determine the lead lag relationship between endogenous variables. This is particularly useful since the focus of this research is to determine the quality of issuer credit ratings. We argue that if CDS markets significantly lead rating changes, then the ratings information value and hence rating quality are low.

The focus of our analysis is to determine the degree of variation in CDS spreads that can be explained by credit ratings and the degree of variation in credit ratings that can be explained by CDS spreads. For each estimated VAR, we analyze the lead-lag relationship though variance decomposition. Variance decomposition measures the contribution of component shocks on the variance of each endogenous variable. This is done by calculating the forecast error of credit ratings and CDS spreads for a given horizon and determining the percentage that each innovation contributes.

We also rely on vector error correction (VEC) models as both endogenous variables may be co-integrated. Therefore we estimate a VEC model for any cross-section where ratings are co-integrated with CDS spreads and a VAR for the others. VEC models restrict the long-run behavior of the independent variables while allowing for short-run adjustments. The error correction representation regresses first differences of each endogenous variable on lags of differenced dependent variables, explanatory variables and an error correction term. The error correction term, also known as the equilibrium error, is given by the co-integrating vector. A very general representation of the error correction model is given in Hamilton (1994). Consider that ratings and CDS spreads are I(1) (integrated of order 1) and suppose that they are co-integrated with co-integrating vector $[1, -\theta]$. Further, suppose the equilibrium error is denoted s_t . This implies that the subsequent three variables are stationary $\{I(0)\}$; $\Delta CDS_t = CDS_t - CDS_{t-1}$, $\Delta CR_t = CR_t - CR_{t-1}$, and $s_t = (CDS_t - \theta CR_t)$. This leads to the following model:

² If ratings from all agencies are included as endogenous variables in a single VAR severe multicollinearity would almost certainly be present, rendering the standard errors and test statistics unreliable. Therefore, a separate VAR is estimated for each agency.

$$\Delta CDS_t = \beta' X_t + \gamma_1 \Delta CR_t + \gamma_2 \Delta CR_{t-1} + \gamma_2 \Delta CR_{t-2} + \dots + \gamma_{p-1} \Delta CR_{t-d+1} + \theta_1 \Delta CDS_{t-1} + \theta_2 \Delta CDS_{t-2} + \dots + \theta_{p-1} \Delta CDS_{t-j+1} + \mu s_t + \varepsilon_t$$
(3)

$$\Delta CR_t = \beta' X_t + \delta_1 \Delta CR_t + \delta_2 \Delta CR_{t-1} + \delta_2 \Delta CR_{t-2} + \dots + \delta_{p-1} \Delta CR_{t-l+1} + \phi_1 \Delta CDS_{t-1} + \phi_2 \Delta CDS_{t-2} + \dots + \phi_{p-1} \Delta CDS_{t-h+1} + \pi s_t + \eta_t$$
(4)

Equation (3) describes the variation in CDS spreads around their long-run trend and Equation (4) refers to the variation in credit ratings around their long-run trend. X_t is a vector of exogenous variables, η_t and ε_t are vectors of innovations. This system is only internally consistent if credit ratings and CDS spreads are co-integrated. Therefore, when CDS spreads are co-integrated with rating changes, the above model can be applied. In order to analyze the contribution to price discovery, we study variance decomposition as done for VAR specifications.

3.2 Factors related to credit ratings

CDS Spread

In determining an appropriate benchmark to compare credit re-ratings, the previous literature uses three alternatives; bond markets, equity markets or CDS markets.³ The CDS market is the best choice as addressed in Norden and Weber (2004) as well as Hull et al. (2004).⁴ Bond and equity prices are noisier measures of credit worthiness than CDS prices. We extract CDS spreads from Bloomberg, downloading all data available for the period of January 2000 to December 2011.

Size

The main finding of Vassalou and Xing (2004) is that size and book to market ratio (BMR in what follows) are directly related to the default risk of a firm. They find that default risk decreases monotonically as firm size increases. Therefore

³ Market is a term used to include; prices, returns, yields, or spreads from the given market.

⁴ Hull et al. (2004) argue that once a CDS quote is given, the dealer is committed to trading the minimum principal at the quoted price. In contrast, there is no commitment for a dealer to trade at a quoted bond price. They also point out that bond yields need to be transformed into credit spreads using a benchmark risk-free rate, whereas CDS spreads are already given as credit spreads and require no transformation.

smaller size firms can be expected to have a higher default risk than larger ones. We measure firm size using total assets shown on balance sheet. We download total assets from Compustat and Bloomberg, making certain that values are identical.

Book to Market

As mentioned above, Vassalou and Xing (2004) show that the BMR of a firm is a key determinant of default risk. They classify 'value stocks' as high BMR equities and 'growth stocks' as low BMR equities. Their findings indicate that BMR is positively associated with the level of default risk. Therefore, we include BMR in the set of independent variables. BMR is available from Compustat and from Bloomberg. We extract values from both databases and ensure that there are no discrepancies.

Credit Spread

Bloomberg defines a credit spread as the following: "the spread between Treasury securities and non-Treasury securities that are identical in all respects. For example, the yield differential between the U.S. 10 year Treasury bond and the AAA rated 10 year corporate bond would be the credit spread." For this analysis credit spread is defined as the difference in yield between Moody's Baa and Aaa Indices. The bonds included in these indices have maturities that are more than 20 years, are not susceptible to redemption and maintain their respective rating class (Baa or Aaa). In contrast to previously mentioned variables, and parallel to subsequent variables, credit spread is a market wide measure in that it is time specific as opposed to firm specific. Therefore credit spreads should be included as a control variable as they can provide a general sense of market conditions. We use Bloomberg to extract Moody's indices.

Term Spread/Interest Rate

Term spread can be defined as the difference between long and short maturities of a riskless bond. Both the short-term interest rate and term spread can be viewed as a signal of economic activity. Short interest rates, controlled by monetary authorities, are usually high during expansions and low during recessions. Term spreads can be understood in terms of inflation rates. Higher term spreads should be associated with higher expectations of inflation. Therefore, future economic expansion should be positively related to term spreads. For this analysis, term spread is defined as the absolute difference between the 30-year US Treasury Bond/Note and the 3-month US Treasury Bond/Note. We extract Treasury yields from Bloomberg.

4. Sample data and descriptive statistics

Due to the lack of quoted bond prices, we focus on the relationship between CDS spreads and credit ratings. The sample selection procedure is as follows. Identifiers for all bonds listed on TRACE database between 2002 and 2010 are downloaded; the identifier being used is the 9-digit bond CUSIP. CUSIP numbers are provided by CUSIP Global Services (CGS), a firm specifically focused on providing identifiers for securities worldwide. CGS provides a 9-digit CUSIP identifier for issuers and their financial instruments traded in Canada and the U.S. The 9-digit CUSIP structure is designed so that each issuer and type of instrument can be easily identified. The first 6 characters represent the unique name of the issuer, where the issuer can be a company, municipality or government agency. The 7th and 8th characters represent the issue type, either equity or debt. The 9th character checks the accuracy of the first 8 characters. All bonds found on TRACE are then matched with issuers found on COMPUSTAT using the first 6 characters. 36 129 bonds from 5717 issuers are listed on TRACE between 2002 and 2010. 13 263 issuers are listed on COMPUSTAT between 2003 and 2010. We then merge the datasets and keep only bonds issued by firms appearing in both datasets, which gives a sample of 8406 bonds issued by 1885 firms. Since the focus of this analysis is on the CDS market, only unique issuers are kept. Any issuer not domiciled in the US is eliminated; reducing the sample to 1720 issuers. Next, CDS tickers for each issuer are downloaded; if the issuer does not have an accompanying CDS then the issuer is eliminated from the sample leaving 862 unique issuers. For all available CDS tickers, spread data is downloaded for the sample period of 01/01/2000 to 01/01/2012. As was the case in the bond market, CDS spreads are not quoted on a daily basis. Therefore any CDS

instrument missing more than 35% of its total observations is eliminated. Moreover, any CDS instrument with less than 75 total observed spreads is removed. This reduces the sample by 370, leaving 492 issuers. Historical ratings for each issuer given by Moody's, Standard and Poor's and Fitch are then handpicked from the Bloomberg Terminal. Any issuer experiencing less than 3 rating changes in the CDS sample period (01/01/2000 to 01/01/2012)⁵ is removed from the sample leaving 400 issuers. Finally, after merging all CDS and rating data, all issuer's that do not experience at least two rating changes accompanied by quoted CDS spreads are dropped from the sample. The final sample consists of 246 unique issuers. CDS spreads and control variables are downloaded from the Bloomberg Terminal. Using bond CUSIP numbers, the associated 5 year CDS tickers are downloaded. This ensures that the CDS and bond are associated with the same issuer. CDS prices are taken from Bloomberg Valuation Service rather than TRACE because Bloomberg's prices are much more comprehensive.⁶

The first column of each panel in Table 1 reports the total number of upgrades and downgrades in the sample period. Panels A, B and C report statistics from Moody's S&P and Fitch samples respectively. It is quite obvious that firms face more credit rating downgrades than upgrades from all three rating agencies. This is consistent with previous work, and is more pronounced in large and recent datasets. For example, Weinstein (1977) use a sample containing 72 downgrades and 60 upgrades from 1962 to 1974. It is worth noting that the difference between upgrades and downgrades can be accounted for by the final year of this sample (1974) where there are 26 downgrades and 11 upgrades. Davidson et al. (1987) use data from 1977 to 1981 and obtain a dataset containing 93 downgrades and 69 upgrades. Ederington and Goh (1993) collect a dataset with 243 downgrades and 185 upgrades from the period spanning from 1984 to 1986. More recent research has the luxury of directly downloading time series data for rating changes, whereas early studies rely on handpicked datasets from sources such as Bloomberg and Rating Agency Bond Guides

⁵ This sample is not common for all CDS spreads, it is simply the sample period that is used for the data request. As noted the smallest sample contains 163 observations (approximately 7.5 months) and the largest sample is 2570 observations (approximately 117 months).

⁶ Both sources are assumed to be of reasonable quality.

and therefore are limited in size.⁷ This is quite apparent when considering recent work by Bannier and Hirsch (2010). Their dataset covers the time period from 1982 to 2004 and contains 2531 downgrades and 1512 upgrades. When considering datasets taken from a variety of time periods, it is clear that downgrading historically dominates upgrading. This finding coincides with our dataset.

[Please insert table 1 about here]

Table 1 also presents the distribution of ratings changes by number of classes changed. A rating change of one class is defined as an upgrade or downgrade to an adjacent rating category. As we expected, the majority of rating changes occur over one or two categories. Changes across multiple categories occur much more frequently in downgrades than in upgrades. An obvious explanation for this is the well-defined state of default. When an issuer defaults their credit rating will drop immediately to the lowest grade which is default. Downgrades lead to this well-defined event and its associated cash flow problems. Reasons for upgrades across multiple categories may not be as obvious. An example of a multiple class upgrade from our sample is XTO Energy. On June 25th 2010 XTO Energy shareholders voted in favor of acquisition by Exxon Mobile Corporation (ExxonMobil) making them a wholly owned subsidiary of ExxonMobil. Moody's upgraded XTO Energy from Baa2 to Aaa following this announcement.

[Please insert table 2 about here]

Table 2 provides descriptive statistics for issuer firms included in the sample and the exogenous variables used in estimation. Panel A reports the distribution of firm characteristics described by the first two moments and minimum and maximum values for the assets, total debt and total shares outstanding.⁸ The sample clearly contains a wide dispersion of firms based on the characteristics reported. This is

⁷ Further some recent researchers do not have access to databases that allow series on rating changes to be directly downloaded and therefore must create their own dataset. This was the case for the dataset used in this paper.

⁸ Data on firm characteristics come from COMPUSTAT, if values are missing Bloomberg data is used (when available).

shown by the high standard deviation as well as the large difference between minimum and maximum values. This result is consistent across the three characteristics examined.

Panel B provides the distribution of firms across sectors for the sample. The sector is listed in the first column with the number of issuers for each sector listed in the second column. The issuers in the sample come from a large variety of sectors. However, the distribution across sectors is unbalanced; almost half of the firms are from manufacturing, finance and insurance sectors.

Panel C describes the two exogenous variables used in estimation (credit spread and term spread). For each variable we report the first two moments and the minimum and maximum values. Further we provide the estimated correlation coefficient between the two variables. Both credit spread and term spread fluctuate between small intervals, 0.01 to 4.7 and 0.001 to 6.5, respectively,⁹ however they move in opposite directions as shown by the negative correlation coefficient (-0.94).

5 Testable hypotheses and empirical findings

Given the nature of the dataset several testable hypothesis arise. In this subsection two testable hypotheses are introduced and explained.

 H_1 : Credit ratings lag CDS spreads in adjusting for credit information.

 H_2 : Fitch has the lowest quality of corporate debt ratings.

Hull et al. (2004) and Norden and Weber (2004) examined the first hypothesis. Their findings indicate that the CDS market anticipates negative credit events. They also find that CDS spreads can successfully predict the probability of changes in credit ratings. Therefore, it is natural to hypothesize that CDS market leads credit ratings in price discovery. We examine variance decomposition to determine whether this hypothesis holds true. If credit ratings contribute a greater proportion to

⁹ Values are given as yields.

CDS variance than credit ratings contribute to CDS variance then we fail to reject this hypothesis.

The second hypothesis exploits the results from Becker and Milbourn (2011) who find that the entrance of Fitch as a major player in the credit ratings market resulted in lower quality of ratings. They measure rating quality in the following ways: the percentage of bonds rated AAA, the gap between investment grade and speculative grade bonds, correlation between bond yields and credit ratings (controlling for other factors) and the ability of credit ratings in predicting default. Since bond issuers prefer higher ratings and rating agencies are paid by the firms which they rate, it seems reasonable to conjecture that under highly competitive situations agencies tend to assign higher ratings than they would otherwise. To measure default prediction they compare ratings and default events occurring within 3 years of a rating change. All three tests lead to the conclusion that decreased quality of credit ratings is associated with increased competition. Therefore it is hypothesized that in order for Fitch to gain its market share they necessarily have to inflate their ratings as a means of breaking the barriers of entering this market. Variance decomposition is compared across rating agencies in order to evaluate this hypothesis. If Fitch has the lowest quality of ratings, their ratings should contribute less to CDS spread variance than ratings from Moody's and S&P.

5.1 Do ratings Influence the CDS? Preliminary Results

To test the relationship between credit ratings and CDS spreads we consider two preliminary tests. First, for each cross-section included in our sample we examine the bivariate correlation coefficient. This provides a rough estimate of the linear association between CDS spreads and ratings. Secondly, we test whether changes in ratings cause the CDS spread to change through estimating the following panel one step ahead model.

$$CDS_t^{(j)} = \beta_0 + \beta_1 CR_{i,t-1}^{(j)} + \beta_2 CDS_{t-1}^{(j)} + \mu_t$$
(5)

Where i = Moody's, S&P, Fitch; j = 1 to 246.

Table 3 provides correlations and estimation results from (5). Panels A, B and C report one step ahead estimation results using Moody's S&P and Fitch ratings respectively. Standard errors are computed using cross-sectional clustering. They are corrected for heteroskedasticity using White's method. We allow for fixed cross-sectional effects. We specify lag orders using the Akaike criterion. Panel D shows the correlations between ratings and CDS spreads. We report the mean correlation, standard error and associated p-value for each agency separately.

[Please insert table 3 about here]

The estimated models fit the data very well, as confirmed by the high R-squared values. Coefficient estimates for the first lag of CDS spreads are identical in all equations. They are significant and positive with magnitudes very close to 1.¹⁰ Lagged credit ratings have statistically insignificant parameter estimates. In other words, yesterday's ratings are not related to today's CDS prices. Next we examine the relationship between current ratings and current CDS prices using correlation coefficients. The calculated correlation coefficient is below 0.1 for ratings issued from each agency. This implies that movements in credit ratings are not accompanied by movements in CDS prices. We can conjecture from this preliminary result that ratings do not influence future CDS prices.¹¹ Credit ratings do not convey material information that will cause prices to move. The following sections investigate further this issue by testing the mutual influences of both CDS prices and credit ratings. We consider both CDS prices and credit ratings as endogenous variables. We aim to investigate which among these variables causes the other to change.

5.2 Are Credit Ratings Co-integrated with CDS Spreads?

In this subsection, we first test whether CDS spreads and credit rating are cointegrated of order one. As a starting point, we perform Augmented Dickey Fuller

¹⁰ This result suggests that CDS spreads are probably following a random walk. The next section tests for the existence of unit root in the CDS series.

¹¹ Ratings Granger cause CDS spreads if ratings help to forecast CDS spreads, given past CDS spreads. Our VAR models estimate jointly; whether credit ratings Granger cause CDS spreads and whether CDS spreads Granger cause credit ratings.

unit root tests on each endogenous variable. If an issuer experiences very few rating changes in the sample period then the unit root test cannot be performed due to lack of variation in the variable being tested. We conduct the test on the level and include an intercept in the intermediate test equation. The number of lags is specified using Schwarz information criterion. We use various subsamples and different exogenous variables. The results are robust to all of these alternative specifications.

Moody's full sample data allows us to test 121 cross-sections for a unit root. 96 out of 121 cross-sections exhibit a unit root. S&P results indicate that 199 out of 225 cross-sections contain unit root processes. Clearly S&P ratings vary significantly more than Moody's ratings. Fitch ratings data allow for 171 unit root tests to be executed, where 167 confirm unit root processes. These results indicate that ratings data from each agency contain unit root processes.

Using full sample results, approximately 70% of our sample firms issue CDS whose spreads contain unit root processes. However, this may not be representative of the issuers in our sample. Our data request for CDS spreads collects all relevant data between January 1st 2000 and December 31st 2011. Many CDS contracts were initiated between 2003 and 2005; therefore spread data contained in the first half of the sample is much less complete than spread data contained in the second half. Results from the second half of the sample should therefore be more representative of the true sample. Approximately 85% of CDS spreads in the second half of the sample indicate unit root processes. Therefore we confirm our finding in section 5.2.1 that CDS spreads contain non-stationary unit root processes.

We now conduct joint unit root and cointegration tests between CDS prices and credit ratings using Johansen's tests. Table 4 summarizes the results for five possible specifications. Each specification makes different assumptions regarding the trend underlying the data. Panels A, B and C provide Moody's S&P and Fitch related results.

[Please insert table 4 about here]

S&P full sample results (Panel B) specify approximately 89 ratings series are co-integrated with CDS spreads, whereas the first half of the sample specifies that

approximately 40 series are co-integrated. We report similar results for Moody's and Fitch data. S&P tests provide the strongest support for co-integration between ratings and CDS spreads. Concentrating on S&P full sample results; 90 different pairs have ratings that are co-integrated with CDS spreads. Moody's and Fitch ratings results, (Panels A and C respectively) indicate that 41 and 68 ratings series are co-integrated with CDS spreads respectively. Co-integration tests suggest that VAR specification may be more appropriate then VEC to assess the mutual influence between the CDS prices and the credit ratings.

5.3 Results from VAR Analysis

For each issuer in the sample whose ratings data do not exhibit co-integration with CDS spreads, we estimate a VAR model as in (1) and (2). Credit ratings and CDS spreads are specified as endogenous variables. We estimate ratings issued by each agency separately and, as in previous tests, we use variations of exogenous variables. Lag length for each VAR is selected through Akaike and Schwarz criterion including a maximum of four endogenous lags. For each issuer we estimate a separate VAR model. As a robustness check we estimate each VAR using five different sample periods; full sample, pre 2006, post 2006, pre 2008 and post 2008. Given the relative invariability of issuer ratings some cross-sections do not lead to feasible estimation. This is sensitive to the number of exogenous variables included, the number of lags specified and the sample period selection.

Reported results include two exogenous variables which are credit spread and term spread for each VAR model. Short term interest rates are excluded in order to mitigate the multicollinearity problem. Since term spread is defined as the difference between 30-year US Treasury Bonds and 3-month US Treasury Bonds it can certainly be expressed as a linear function of short term interest rates. Table 5 shows the VAR estimation results.

[Please insert table 5 about here]

Panels A, B and C report results using Moody's, S&P and Fitch credit ratings respectively. The first equation in each panel regresses CDS spreads on control variables and lags of ratings and CDS spreads. The second equation regresses credit ratings on control variables and lags of CDS spreads and credit ratings. The table reports output using the full sample period. Mean values are the cross-sectional average of coefficient estimates.

Lagged CDS coefficient estimates from the first equation are significant for the first two lags. This reconfirms the autoregressive nature of CDS spreads found from the panel data estimation. The coefficient on the first lag of CDS spreads is significant in all estimated regressions and has a mean value slightly greater than 1. This result is robust to sample period selection and is consistent across ratings agencies. The coefficient on the second lag of CDS spreads is estimated as negative in approximately 66% of regressions. The mean is approximately -0.1 and is significant using S&P and Fitch credit ratings but not Moody's. Higher order lags of CDS spreads are estimated significantly in roughly 50% of equations. However coefficients are not consistent for different cross-sections. One exception is the third order CDS lag in the first equation for Moody's VAR (-0.037). The means are similar for Moody's and S&P ratings, however they are insignificant. Therefore CDS spreads clearly exhibit strong autoregressive processes of order 2. Lags of credit ratings are not highly significant; approximately 23% of first order lags were estimated as significant. Significant coefficient values are estimated as positive. A positive coefficient implies that CDS spreads have a positive relation with lower credit ratings; therefore a downgrade (upgrades) would result in CDS spreads increasing (decreasing).¹² Higher order lags of credit ratings produce insignificant results. Mean values have high p-values and thus are not very reliable. Therefore credit ratings do not seem to influence CDS spreads and CDS spreads do not seem to influence credit ratings. Instead, CDS spreads are influenced most by past CDS spreads and credit ratings are influenced most by past credit ratings.

The exogenous variables in the first equation are significant in approximately 25% of estimated regressions. The mean coefficient estimate for credit spread is

¹² By definition, high numeric credit rating implies low credit quality.

negative and is significant only when using S&P ratings. The mean coefficient for term spread coefficient is insignificant in all specifications. Therefore it appears that an increase in the gap between the yield on low and high quality bonds is associated with decreases in CDS spreads. This result is puzzling since the credit spread is supposed to account for overall economic conditions, where wider credit spreads are associated with economic slowdowns and narrow credit spreads are associated with economic prosperity.

The second equation determines what factors influence credit ratings. First order lags of CDS spreads are mostly not significant. Higher order lags are also relatively insignificant. Therefore it does not appear that past CDS spreads influence current credit ratings. First order lags of ratings in the second equation are significant and positive. The mean value is significant and close to 1, results are consistent across rating agencies. Higher order lags are not statistically significant. Therefore credit ratings appear to be influenced by past ratings alone.

In order to fully examine the lead-lag relationship between CDS spreads and credit ratings, we consider the variance decomposition. Variance decomposition examines the forecast error variance of each endogenous variable in a VAR. The variation in each endogenous variable is separated into contributions from each of the two endogenous variables. Using variance decomposition we can determine the proportion of CDS variance explained by credit ratings and CDS itself. If variation in CDS spreads is explained by past credit ratings then it can be concluded that ratings lead CDS spreads and hence ratings are informative. However if the opposite is true, i.e. rating variance is mostly contributed to through CDS, we conclude that CDS spreads lead ratings. Table 6, 7 and 8 report 10-period forecast error variance decomposition for Moody's S&P and Fitch respectively. We report contributions to variance in percentages. Cross-sectional mean, standard errors and p-values are calculated in the same manner as for the VAR output.

[Please insert table 6 about here]

The results from Table 6 indicate that Moody's ratings do not contribute much to CDS variation. The first period contributions indicate that 0% of the variation in CDS spreads is contributed to by ratings. The result is similar when looking at different forecast periods. When examining credit ratings variance, we find contributions of CDS spreads to ratings variance are also very small. One period forecast results show that Moody's ratings variation is explained primarily by past ratings. However as the forecast period is increased CDS spreads do contribute to a small proportion of ratings variance (6.3% in the 10th period). Therefore we conclude that the variability in CDS spreads is explained solely by past CDS spreads and that the majority of variation in Moody's ratings is explained by past ratings. We also conclude that, on the margin, CDS spreads appear to contribute more to Moody's ratings variance than ratings contribute to CDS variance.

[Please insert tables 7 and 8 about here]

S&P (Table 7) and Fitch (Table 8) results are similar to those reported for Moody's. S&P and Fitch ratings both contribute very little to the variation in CDS spreads. However, in comparison to Moody's, CDS contribution to S&P and Fitch ratings are approximately twice as large. Similar to Moody's results, CDS spreads contribute to a negligible proportion of variation in S&P and Fitch ratings. These findings lead to two main results. First, CDS spreads are explained entirely by past CDS spreads. Second, ratings are explained primarily by past ratings. We further suggest that S&P and Fitch ratings may contribute more than Moody's does to CDS variation, though the results are marginal. Also CDS spreads may contribute to variations in credit ratings from each agency.

5.4 Results for Co-integrated CDS and Credit Ratings

For any issuer whose ratings show co-integration with CDS spreads we estimate a VEC model. We specify the number of co-integrating equations from the Johansen Co-integration test. The results are reported in a format identical to that used for VAR results. We estimate a difference VEC for each cross-section separately and for each of the 5 sample periods. We specify lag length for each regression using Akaike and Schwarz criterion.¹³

Table 9 reports the results from VEC estimation. Panels A, B and C contain Moody's S&P and Fitch results respectively. Each estimated equation contains an intercept, two exogenous variables (credit spread and term spread), a co-integration parameter and lagged first differences of credit ratings and CDS spreads. The 1st equation specifies first differences of CDS spreads as the dependent variable. The 2nd specifies first differences of credit ratings as the dependent variable.

[Please insert table 9 about here]

Moody's results (panel A) for the first equation show that lags of CDS spreads are significant in most regressions. Coefficients for lagged ratings are insignificant in a large proportion of regressions. The results from the first equation indicate that CDS spreads are influenced by previous CDS spreads but not by past ratings. This is consistent with VAR results. Equation 2 results are not highly significant. Lagged CDS spreads are insignificant in the most regressions and lagged credit ratings are insignificant in nearly all estimated regressions. This suggests that ratings are not influenced by prior CDS spreads or by past credit ratings.

S&P results (panel B) for equation 1 show coefficients for lagged CDS spreads are significant. Therefore CDS spreads are influenced by past CDS spreads. Coefficients for lagged credit ratings are significant in approximately 25% of estimated regressions. Therefore CDS spreads are not highly influenced by past credit ratings. Exogenous variables are significant in only 40% of estimated regressions. Equation 2 results are similar to those obtained using Moody's ratings. CDS spread and credit ratings coefficients are not significantly different from zeros. Therefore S&P VEC estimation results indicate that CDS spreads are influenced by past CDS spreads alone and that past CDS spreads do not influence credit ratings. This is consistent with VAR results. However, contrary to VAR results, VEC results indicate current credit ratings are not significantly influenced by their prior value.

¹³ Lags order is therefore not consistent over cross-sections causing differences in total estimated coefficients. (See Table 9). We specify a maximum of 4 lags.

Fitch results (panel C) for equation 1 indicate significant coefficients on the first two lags of CDS spreads and significant. Coefficients for lags of credit ratings are not significant in the majority of regressions. This coincides with earlier results. Therefore it appears that CDS spreads are influenced only by past CDS spreads. Term spread and credit spread coefficients do not appear to be significant. Identical to Moody's and S&P results, Fitch Equation 2 estimates are insignificant. This implies that credit ratings are not influenced by prior CDS spreads or prior credit ratings.

To further examine the lead-lag relationship between CDS spreads and credit ratings we analyze forecast error variance decomposition for each VEC. The results are presented in Tables 10, 11 and 12 for Moody's, S&P and Fitch respectively. The formats of Tables 10-12 are identical to those of Tables 6-8 (variance decomposition of VAR).

[Please insert table 10 about here]

Table 10 reports variance decomposition results from Moody's VEC estimation. The results are similar to those found from VAR variance decomposition. Moody's ratings do not contribute to the variation in CDS spreads and CDS spreads contribute a marginal portion to ratings variance. The first period contribution of CDS spreads to ratings is larger in comparison to VAR results. The contribution is however still less than 1%. Therefore VEC variance decomposition results confirm our previous findings that CDS spread variability is completely explained by past CDS spreads and that credit ratings variation is primarily explained by past credit ratings.

[Please insert tables 11 and 12 about here]

Results for S&P and Fitch are again identical to Moody's results. The first period contributions indicate that 0% of the variation in CDS spreads is explained by credit ratings. This proportion increases slightly when the forecast period is increased. When we examine ratings variance we find similar results. Our results show that variations in S&P and Fitch ratings are explained almost entirely by their past values. Thus we find that VEC variance decomposition results confirm the two major results found from VAR results; CDS spreads are explained entirely by past CDS spreads and ratings are explained primarily by past ratings. We note however that for the three tables 10, 11 and 12 mean values of the sixth column are systematically higher than those in the fourth column. In other words the CDS prices contribution to credit rating formation is always higher than the credit rating contribution to the CDS price formation even if both are economically marginal. The same conclusion was reached from Tables 6, 7 and 8.

6. Conclusion

This research examines the relationship between credit ratings and CDS spreads in order to assess the quality of corporate ratings. A rating agency's primary responsibility is to provide information regarding the credit worthiness of their rated issuers and securities. This reduces uncertainty while increasing the information flow between investors and issuers. We question whether there is any information content in credit ratings that is not already publicly available. Previous research on bond rating changes focuses on bond and equity reactions. Most find significant effects associated with only downgrades. A few studies have incorporated CDS markets into their analysis. We prefer CDS spreads instead of bond yields for two reasons. First data on CDS prices for specific issuers are more reliable than data on bonds prices. Bond yields are more likely to be stale since for most bonds the market is completely illiquid. Second, CDS prices are more closely related to credit and default risk than yields.

In contrast to previous studies which use event studies, we specify VAR and VEC models. A major advantage of estimating VAR and VEC models is the ability to study the lead-lag relationship between endogenous variables. We initially assume that credit ratings are co-integrated with CDS spreads. However Johansen's Co-integration test results indicate that co-integration is present in less than half of the cross-sections. For issuer's whose ratings exhibit co-integration with CDS spreads we employ VEC methods. VAR methods are used for issuer's whose ratings are not co-integration with CDS spreads.

VAR results confirm that CDS spreads and credit ratings are greatly influenced by their respective histories. VEC results for CDS spreads are identical. We analyze the variance decomposition for VAR and VEC models in order to understand the lead-lag relationship between credit ratings and CDS spreads or the relative contribution of each variable in the innovation of both endogenous variables. We find that CDS spreads are explained almost entirely by previous CDS spreads and that credit ratings are explained primarily by past credit ratings. Further, we find that S&P ratings contribute slightly more to CDS variation than Moody's and Fitch ratings. Therefore S&P ratings may be more informative than Moody's and Fitch ratings.

Our VAR and VEC models show that credit ratings and CDS spreads are, for the most part, unrelated. Therefore credit ratings provide little information value to financial market participants. In regards to any differences in quality amongst agencies, we conclude that S&P may provide higher quality ratings than Moody's and Fitch. However this difference is small or even negligible. These findings are not surprising given the speculation regarding the quality of credit ratings. It seems likely that the majority of information conveyed through credit ratings is publicly available.

The results have serious implications for financial markets. If credit ratings do not provide investors with any information that is not already publicly available then why should they be considered? Firms issuing bonds generally require their bonds to be rated in order for them to be traded. Furthermore, the price or yield at which bonds trade is a function of the issuer's credit standing. Therefore inflated (deflated) credit ratings can lead to deflated (inflated) bond yields.

Regardless of ratings accuracy many institutional investors and portfolio managers are required to hold only bonds rated at investment grade or higher. The inability of rating agencies to anticipate the effects of financial crises has led to severe criticism of ratings quality. Our research suggests that perhaps this criticism is warranted. Further research could expand on this work by incorporating a larger number of issuers in the sample with quoted CDS spreads who experience several rating changes.

References

Bannier, C., Hirsch, C., (2010). The Economic Function of Credit Rating Agencies – What Does the Watchlist Tell us? *Journal of Banking and Finance* 34, 3037-3049.

Becker, B., Milbourn, T., (2011). How Did Increased Competition Affect Credit Ratings? *Journal of Financial Economics* 101, 493-514.

Clauretie, T., Glascock, J., Wansley, J., (1992). Institutional Bond Pricing and Information Arrival: The Case of Bond Rating Changes. *Journal of Business Finance and Accounting* 19, 733-750.

Campbell, D., Moore, M., (2012). Credit Suisse Cut Three Levels as Moody's Downgrades Banks. Bloomberg. http://www.futuresmag.com/2012/06/22/credit-suisse-cut-three-levels-as-moodys-downgrade?eNL=4fe38141150ba01b7300001a&utm_source=MarketWeekender&ut m medium=eNL&utm campaign=FUT eNL& LID=120855091&page=4.

Davidson, R., MacKinnon, J., (2004). Econometric Theory and Methods. *New York: Oxford University Press, Inc.*

Davidson, W., Glascock, J., Henderson, G., (1987). Announcement Effects of Moody's Bond Rating Changes on Equity Returns. *Quarterly Journal of Business and Economics* 26, 67-78.

Dichev, I., Piotroski, J., (2001). The Long-run Stock Returns following Bond Ratings Changes. *Journal of Finance* 56, 173-203.

Ederington, L., Goh, J., (1993). Is a Bond Rating Downgrade Bad News, Good News, or No News for Stockholders? *Journal of Finance* 48, 2001-2008.

Followill, R., Martell, T., (1997). Bond Review and Rating Announcements: An Examination of Informational Value and Market Efficiency. *Journal of Economics and Finance* 21, 75-82.

Grier, P., Katz S., (1976). The Differential Effects of Bond Rating Changes on Industrial and Public Utility Bonds by Maturity. *Journal of Business* 49, 226-239.

Griffin, P.A., Sanvicente, A.Z., (1982). Common Stock Returns and Rating Changes: A Methodological Comparison. *Journal of Finance* 37, 103-120.

Heinke, V., Steiner, M., (2001). Event Study Concerning International Bond Price Effects of Credit Rating Actions. *International Journal of Finance and Economics* 6, 139-157.

Hite, G., Warga, A., (1997). The Effect of Bond-Rating Changes on Bond Price Performance. *Financial Analysts Journal* 53, 35-51.

Hull, J., Predescu, M., White, A., (2004). The Relationship Between Credit Default Swap Spreads, Bond Yields, and Credit Rating Announcements. *Journal of Banking and Finance* 28, 2789-2811.

Katz, S., (1974). The Price Adjustment Process of Bonds to Rating Reclassifications: A Test of Bond Market Efficiency. *Journal of Finance* 29, 551-559.

Norden, L., Weber, M., (2004). Information Efficiency of Credit Default Swap and Stock Markets: The Impact of Credit Rating Announcements. *Journal of Banking and Finance* 28, 2813-2843.

Pinches, G., Singleton, J., (1978). The Adjustment of Stock Prices to Bond Rating Changes. *Journal of Finance* 33, 29-44.

United States Securities and Exchange Commission (2000). Final Rule: Selective Disclosure and Insider Trading, *Exchange Act Release No.* 33-7881 (Oct. 23, 2000), htt://www.sec.gov/rules/final/33-7881.htm.

Vassalou, M., Xing, Y., (2004). Default Risk in Equity Returns. *Journal of Finance* 59, 831-868.

Weinstein, M., (1977). The Effect of a Rating Change Announcement on Bond Prices. *Journal of Financial Economics* 5, 329-350.

Table 1. Total Upgrades/Downgrades

This table provides information on the distribution of upgrades and downgrades by the three rating agencies included in the study; Moody's, Standard and Poor's and Fitch. All rating changes occur between January 1st 2000 and December 31st 2011. An upgrade is defined as any positive change in credit rating. A downgrade is defined as any negative change in credit rating. Panels A,B and C report the distribution of; all rating reclassifications, downgrades and upgrades respectively. The first column of each panel lists the number of rating categories changed in the rating change. The second, third and fourth column provide the number of reclassifications from Moody's, S&P and Fitch respectively.

Number]	Panel A. Moody	/'s		Panel B. S&P			Panel C. Fitch	1
Classes Changed	Total	Upgrades	Downgrades	Total	Upgrades	Downgrades	Total	Upgrades	Downgrades
1	271	108	163	651	204	447	464	170	294
2	87	14	73	186	48	138	108	35	70
3	17	3	14	44	7	37	30	7	23
4	2	1	1	21	4	17	13	4	9
5	3	2	1	18	8	10	4	1	3
6	1	0	1	6	5	1	4	1	3
7	0	0	0	8	6	2	1	0	1
8	1	1	0	4	2	2	2	1	1
9	0	0	0	0	0	0	2	2	0
10	0	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0
12	0	0	0	0	0	0	0	0	0
13	0	0	0	0	0	0	0	0	0
14	0	0	0	0	0	0	0	0	0
>14	0	0	0	0	0	0	0	0	0

Table 2. Issuer Descriptive Statistics

This table reports descriptive statistics for issuer's contained in the sample and exogenous variables used in estimation. Panel A gives the mean, minimum, maximum, and standard deviation of issuer total assets, total debt and shares outstanding are reported. All values are in hundred thousands. Panel B reports the different sectors included in the issuer sample. NAICS classes were downloaded from naics.com using NAICS codes obtained from Bloomberg. The first column lists the different categories and the second column lists the percentage of issuers in the sample belonging to each category. Panel C provides the mean, standard deviation, minimum, and maximum of the two exogenous variables (Credit Spread and Term Spread) as well as the correlation between them.

Panel A. Statistics of the Issuer									
Statistic	Total Assets	Total Debt	Shares Outstanding						
Mean	22688.99	11214.98625	479.19						
Stdev.	93266.71	39798.45	752.13						
Min.	20.88	0.06	0.001						
Max.	1121192	835300	8069.54						
Panel B. Statistics of the Issuer NAICS Classification									
Industry	Propo	ortion of							
Industry	Iss	suers							
Manufacturing	С	0.32							
Agriculture, Forestry, Fishing and Hunting	C	0.01							
Utilities	C).11							
Mining, Quarrying, and Oil and Gas Extraction	on C	0.05							
Construction	C	0.03							
Wholesale Trade	C	0.02							
Retail Trade	C	0.09							
Transportation and Warehousing	C	0.04							
Information	C	0.08							
Finance and Insurance	C	0.17							
Real Estate and Rental and Leasing	C	0.02							
Professional, Scientific, and Technical Servic	es C	0.03							
Administrative and Support and Waste	C	01							
Management and Remediation Services	C.	.01							
Health Care and Social Assistance	C	0.01							
Accommodation and Food Services	C	0.02							
Panel C. Exogenous Variable Descriptive S	Statistics								

Statistic	Credit Spread	Term Spread
Mean	2.54	2.32
Stdev.	1.57	2.03
Min	0.01	0.00
Max	4.69	6.49
Correlation coefficient	-0.94	

Table 3. One Step Ahead Estimation of CDS using lagged ratings

This table provides results from regressing CDS spreads on lagged credit ratings. Panels A, B and C report results using Moody's, S&P and Fitch ratings, respectively. We estimate the panels with cross-section fixed effect. We use the Akaike criterion to set the number of lags for both the ratings and CDS variables. For each variable; coefficient estimates, standard errors and p-values are calculated and shown in columns 2, 3 and 4 respectively. Standard errors are computed using White cross-section correction. Further, we report correlations between ratings and CDS spreads, shown in Panel D. For each issuer in the sample, we estimate the correlation between ratings and CDS spreads. We calculate and report the average correlation for ratings from each agency separately as well as the standard error of the mean and associated p-value.

Panel A. Moody's Ratings									
Variable	Estimate	Std. Error	P-value						
Constant	2.270	1.074	0.03						
Ratings (-1)	-0.149	0.120	0.21						
CDS spread (-1)	0.997	0.003	0.00						
Adjusted R-squared	0.996								
Akaike Criterion	9.476								
Log likelihood	-688869								
Panel B. S&P Ratings									
Variable	Estimate	Std. Error	P-value						
Constant	-1.822	1.208	0.13						
Ratings (-1)	0.259	0.154	0.09						
CDS spread (-1)	0.998	0.002	0.00						
Adjusted R-squared	0.996								
Akaike Criterion	9.643								
Log likelihood	-1542258								
Panel C. Fitch Ratings	5								
Variable	Estimate	Std. Error	P-value						
Constant	1.103	0.629	0.08						
Ratings (-1)	-0.059	0.090	0.51						
CDS spread (-1)	0.998	0.003	0.00						
Adjusted R-squared	0.996								
Akaike Criterion	9.145								
Log likelihood	-1204120								
Panel D. Correlation h	oetween Rating	gs and CDS							
	Moody's	S&P	Fitch						
Mean	0.064	0.083	0.097						
SE(mean)	0.042	0.043	0.045						
p-value	0.07	0.03	0.02						

Table 4. Johansen Co-integration Tests

This table provides results from Johansen's Co-integration tests between CDS spreads and ratings from each agency. Panel A reports results for Moody's, panel B provides S&P results and panel C reports Fitch results. The results are for the entire sample. The first column in each panel lists the number of co-integrating vectors. Columns 2 through 6 provide the tests results allowing for different assumptions regarding the trend underlying the data. Columns 2 and 3 assume that there is no deterministic trend in the data, column 2 results specify no intercept and no trend in the co-integrating equation and test VAR whereas column 3 results estimate an intercept in the co-integrating equation. Columns 4 and 5 allow for a deterministic trend in the underlying data. Column 4 results are based on a co-integrating equation and test VAR each estimated with an intercept and no trend, whereas the fifth column estimates assume there is a trend factor in the co-integrating equation. Column 5 reports results allowing for a quadratic deterministic trend in the underlying data. An intercept and trend are entered into the co-integrating equation, a linear trend factor is included in the test VAR.

Panel A.	Assume No	Assume No	Allow For	Allow For	Allow For
Moody's	Deterministic	Deterministic	Linear	Linear	Quadratic
Full Sample	Trend	Trend	Deterministic	Deterministic	Deterministic Trend
Results			Trend in Data	Trend in Data	in Data
Number of	No Intercept	Intercept, No	Intercept, No	Intercept and	Intercept and Trend
Cointegrating	No Trend in	Trend in CE -	Trend in CE	Trend in CE -	in CE – Linear
Vectors	CE or test	No Intercept in	and Test VAR	No Trend in	Trend in VAR
	VAR	VAR		VAR	
0	206	207	199	208	198
1	41	33	26	34	24
2	0	7	22	5	25
3	0	0	0	0	0
Panel B.	Assume No	Assume No	Allow For	Allow For	Allow For
S&P Full	Deterministic	Deterministic	Linear	Linear	Quadratic
Sample	Trend	Trend	Deterministic	Deterministic	Deterministic Trend
Results			Trend in Data	Trend in Data	in Data
Number of	No Intercept	Intercept, No	Intercept, No	Intercept and	Intercept and Trend
Cointegrating	No Trend in	Trend in CE -	Trend in CE	Trend in CE -	in CE – Linear
Vectors	CE or test	No Intercept in	and Test VAR No Trend in		Trend in VAR
	VAR	VAR		VAR	
0	157	163	149	171	150
1	88	70	58	61	38
2	2	14	40	15	59
3	0	0	0	0	0
Panel C.	Assume No	Assume No	Allow For	Allow For	Allow For
Fitch Full	Deterministic	Deterministic	Linear	Linear	Quadratic
Sample	Trend	Trend	Deterministic	Deterministic	Deterministic Trend
Results			Trend in Data	Trend in Data	in Data
Number of	No Intercept	Intercept, No	Intercept, No	Intercept and	Intercept and Trend
Cointegrating	No Trend in	Trend in CE -	Trend in CE	Trend in CE -	in CE – Linear
Vectors	CE or test	No Intercept in	and Test VAR	No Trend in	Trend in VAR
	VAR	VAR		VAR	
0	179	190	175	190	168
1	67	48	39	50	32
2	1	9	33	7	47
3	0	0	0	0	0

Table 5. VAR Estimation Results

This table reports VAR estimation results done in levels. Panel A shows estimates from the model containing Moody's ratings and CDS spreads as endogenous variables. Panel B provides results from specifying S&P ratings and CDS spreads as endogenous variables and Panel C reports estimates from a model specifying Fitch ratings and CDS spreads as endogenous variables. All models include two control variables; credit spread and term spread. Credit spread is defined as the difference in yield between prime rated bonds (AAA, Aaa) and investment grade bonds (BBB-, Baa3). Term spread is defined as the difference in yield between 30-year US Treasury Bond/Note and the 3-month US Treasury Bond/Note. Equation 1 in each panel specifies CDS spreads as the dependent variable, equation 2 specifies ratings as the dependent variable. Mean values are calculated by taking the arithmetic average of each estimate for that specific period. Standard errors are defined as the mean value divided by the square root of total observations. P-values are then calculated using the Student's t-distribution.

Panel A. Moody's Full Sample Results										
Equation 1	CDS(-1)	CDS(-2)	CDS(-3)	CDS(-4)	Ratings(-1)	Ratings(-2)	Ratings(-3)	Ratings(-4)	Credit Spread	Term Spread
Mean	1.036	-0.0808	-0.0352	0.000325	5.082	-18.266	21.526	-9.102	-1.934	-0.852
SE(mean)	0.0311	0.0585	0.0307	0.0317	3.0262	14.682	16.12	9.336	1.631	1.827
P-value	0.000	0.180	0.270	0.992	0.100	0.226	0.202	0.351	0.241	0.643
% significant	1	0.913	0.467	0.455	0.245	0.087	0.2	0.0909	0.327	0.224
# of positive & significant	49	7	2	2	11	1	2	0	4	2
# of negative & significant	0	14	5	3	1	1	1	1	12	9
Total	49	23	15	11	49	23	15	11	49	49
Equation 2	CDS(-1)	CDS(-2)	CDS(-3)	CDS(-4)	Ratings(-1)	Ratings(-2)	Ratings(-3)	Ratings(-4)	Credit Spread	Term Spread
Mean	-1.02E-08	0.0002	-0.0002	-0.000039	0.995	0.00107	0.00284	0.002996	0.00408	0.00573
SE(mean)	0.000154	0.000281	0.000217	0.00024	0.000938	0.000807	0.00162	0.00116	0.00135	0.0067
P-value	1.000	0.481	0.480	0.873	0.000	0.199	0.099	0.026	0.004	0.396
% significant	0.408	0.087	0.0667	0.0909	1	0	0	0	0.367	0.34
# of positive & significant	11	1	0	1	49	0	0	0	12	11
# of negative & significant	9	1	1	0	0	0	0	0	6	5
Total	49	23	15	11	49	23	15	11	49	47

Panel B. S&P Full Sample Results										
Equation 1	CDS(-1)	CDS(-2)	CDS(-3)	CDS(-4)	Ratings(-1)	Ratings(-2)	Ratings(-3)	Ratings(-4)	Credit Spread	Term Spread
Mean	1.095	-0.136	-0.028	-0.018	6.349	-9.064	0.914	-1.578	-1.280	0.786
SE(mean)	0.020	0.033	0.019	0.019	3.566	8.102	7.468	2.769	0.397	0.819
P-value	0.000	0.000108	0.148	0.368	0.078	0.267	0.903	0.573	0.002	0.339
% significant	1	0.794	0.558	0.643	0.228	0.190	0.154	0.071	0.238	0.267
# of positive & significant	101	16	10	4	22	4	2	0	2	6
# of negative & significant	0	34	19	14	1	8	6	2	22	21
Total	101	63	52	28	101	63	52	28	101	101
Equation 2	CDS(-1)	CDS(-2)	CDS(-3)	CDS(-4)	Ratings(-1)	Ratings(-2)	Ratings(-3)	Ratings(-4)	Credit Spread	Term Spread
Mean	-3.70E-04	-6.63E-05	2.61E-05	5.36E-05	9.96E-01	-5.8E-04	2.41E-03	4.04E-03	4.65E-03	3.54E-03
SE(mean)	0.000409	0.0000911	0.0000943	0.0000755	0.000784	0.00114	0.00107	0.000941	0.00114	0.00183
P-value	0.368	0.469	0.783	0.483	0.000	0.614	0.028	0.0002	0.0001	0.057
% significant	0.337	0.159	0.135	0.0357	1	0	0	0	0.347	0.313
# of positive & significant	25	3	3	1	101	0	0	0	25	25
# of negative & significant	9	7	4	0	0	0	0	0	10	6
Total	101	63	52	28	101	63	52	28	101	99
Panel C. Fitch Full Sample I	Results									
Equation 1	CDS(-1)	CDS(-2)	CDS(-3)	CDS(-4)	Ratings(-1)	Ratings(-2)	Ratings(-3)	Ratings(-4)	Credit Spread	Term Spread
Mean	1.084	-0.105	-0.0372	0.0135	2.285	-2.417	3.851	-8.861	-1.063	0.872
SE(mean)	0.025	0.037	0.016	0.026	1.502	5.075	3.783	5.748	0.557	0.918
P-value	0.000	0.007	0.025	0.615	0.132	0.636	0.314	0.140	0.060	0.345
% significant	1	0.778	0.622	0.579	0.225	0.185	0.067	0.263	0.213	0.238
# of positive & significant	80	14	9	5	14	5	1	3	3	4
# of negative & significant	0	28	19	6	4	5	2	2	14	15
Total	80	54	45	19	80	54	45	19	80	80
Equation 2	CDS(-1)	CDS(-2)	CDS(-3)	CDS(-4)	Ratings(-1)	Ratings(-2)	Ratings(-3)	Ratings(-4)	Credit Spread	Term Spread
Mean	8.111E-05	-6.775E-05	4.679E-05	-0.00009	0.99096	0.00385	0.00397	0.00687	0.004873	0.00187
SE(mean)	0.000176	0.000373	0.000179	9.55E-05	3.27E-03	0.00383	0.00151	0.00160	0.00258	0.00202
P-value	0.646	0.856	0.795	0.347	0.000	0.319	0.0118	0.0004	0.0622	0.359
% significant	0.263	0.148	0.156	0.105	1	0.0370	0	0	0.278	0.291
# of positive & significant	13	5	2	1	80	2	0	0	17	18
# of negative & significant	8	3	5	1	0	0	0	0	5	5
Total	80	54	45	19	80	54	45	19	79	79

Table 6. Moody's VAR Variance Decomposition

This table reports output for variance decomposition of Moody's VAR estimates. The first column lists the forecast period error being analyzed followed by the statistics calculated. Mean values are calculated by taking the arithmetic average of each estimate for that specific period. Standard errors are defined as the mean value divided by the square root of total observations. P-values are then calculated using the Student's t-distribution. The second column reports statistics on CDS variance, the third provides the percentage of CDS variance explained by CDS spreads and the fourth reports the percentage of CDS variance explained by credit ratings. The fifth column reports credit rating variance, columns six and seven report the percent of credit rating variance explained by CDS spreads and credit ratings respectively. The total number of estimated equations is 48.

1 period avgs.	CDS variance	CDS contribution	CR contribution	CR variance	CDS contribution	CR contribution
Mean	18.207	100.000	0.000	0.046	0.163	99.837
SE(mean)	4.463	0.000	0.000	0.006	0.101	0.101
p-value	0.000	0.000	0.000	0.000	0.115	0.000
2 period avgs.						
Mean	25.466	99.947	0.053	0.064	0.431	99.569
SE(mean)	6.090	0.027	0.027	0.009	0.149	0.149
p-value	0.000	0.000	0.057	0.000	0.006	0.000
3 period avgs.						
Mean	31.292	99.919	0.081	0.078	0.923	99.077
SE(mean)	7.362	0.034	0.034	0.010	0.282	0.282
p-value	0.000	0.000	0.022	0.000	0.002	0.000
4 period avgs.						
Mean	36.123	99.887	0.113	0.090	1.562	98.438
SE(mean)	8.408	0.050	0.050	0.012	0.475	0.475
p-value	0.000	0.000	0.028	0.000	0.002	0.000
5 period avgs.						
Mean	40.231	99.859	0.141	0.100	2.297	97.703
SE(mean)	9.288	0.060	0.060	0.013	0.697	0.697
p-value	0.000	0.000	0.024	0.000	0.002	0.000
6 period avgs.						
Mean	43.893	99.833	0.167	0.110	3.086	96.914
SE(mean)	10.080	0.071	0.071	0.015	0.934	0.934
p-value	0.000	0.000	0.022	0.000	0.002	0.000

7 period avgs	5.								
Mean	47.273	99.807	0.193	0.118	3.898	96.102			
SE(mean)	10.828	0.081	0.081	0.016	1.174	1.174			
p-value	0.000	0.000	0.021	0.000	0.002	0.000			
8 period avgs.									
Mean	50.407	99.780	0.220	0.126	4.712	95.288			
SE(mean)	11.535	0.092	0.092	0.017	1.410	1.410			
p-value	0.000	0.000	0.021	0.000	0.002	0.000			
9 period avgs	5.								
Mean	53.327	99.750	0.250	0.134	5.512	94.488			
SE(mean)	12.197	0.104	0.104	0.018	1.637	1.637			
p-value	0.000	0.000	0.020	0.000	0.001	0.000			
10 period ava	gs.								
Mean	56.055	99.718	0.282	0.141	6.289	93.711			
SE(mean)	12.820	0.117	0.117	0.019	1.851	1.851			
p-value	0.000	0.000	0.020	0.000	0.001	0.000			

Table 6. (Continued)

Table 7. S&P VAR Variance Decomposition

This table reports output for variance decomposition of S&P VAR estimates. The first column lists the forecast period error being analyzed followed by the statistics calculated. Mean values are calculated by taking the arithmetic average of each estimate for that specific period. Standard errors are defined as the mean value divided by the square root of total observations. P-values are then calculated using the Student's t-distribution. The second column reports statistics on CDS variance, the third provides the percentage of CDS variance explained by CDS spreads and the fourth reports the percentage of CDS variance explained by credit ratings. The fifth column reports credit rating variance, columns six and seven report the percent of credit rating variance explained by CDS spreads and credit ratings respectively. The total number of estimated equations is 116.

1 period avgs	CDS	CDS	CR	CR	CDS	CR
i perioù avgs.	variance	contribution	contribution	variance	contribution	contribution
Mean	16.341	100.000	0.000	0.068	0.219	99.781
SE(mean)	3.657	0.000	0.000	0.008	0.085	0.085
p-value	0.000	0.000	0.000	0.000	0.011	0.000
2 period avgs.						
Mean	25.201	99.809	0.191	0.096	0.711	99.289
SE(mean)	6.040	0.085	0.085	0.011	0.200	0.200
p-value	0.000	0.000	0.026	0.000	0.001	0.000
3 period avgs.						
Mean	32.402	99.705	0.295	0.118	1.180	98.820
SE(mean)	8.028	0.136	0.136	0.014	0.301	0.301
p-value	0.000	0.000	0.032	0.000	0.000	0.000
4 period avgs.						
Mean	38.570	99.629	0.371	0.135	1.683	98.317
SE(mean)	9.705	0.171	0.171	0.016	0.407	0.407
p-value	0.000	0.000	0.032	0.000	0.000	0.000
5 period avgs.						
Mean	43.894	99.566	0.434	0.151	2.225	97.775
SE(mean)	11.126	0.198	0.198	0.018	0.519	0.519
p-value	0.000	0.000	0.031	0.000	0.000	0.000
6 period avgs.						
Mean	48.626	99.514	0.486	0.166	2.790	97.210
SE(mean)	12.354	0.219	0.219	0.020	0.632	0.632
p-value	0.000	0.000	0.029	0.000	0.000	0.000

7 period avgs	s.								
Mean	52.905	99.466	0.534	0.179	3.368	96.632			
SE(mean)	13.433	0.237	0.237	0.021	0.743	0.743			
p-value	0.000	0.000	0.026	0.000	0.000	0.000			
8 period avgs.									
Mean	56.794	99.419	0.581	0.191	3.951	96.049			
SE(mean)	14.392	0.253	0.253	0.023	0.851	0.851			
p-value	0.000	0.000	0.023	0.000	0.000	0.000			
9 period avgs	s.								
Mean	60.352	99.373	0.627	0.202	4.534	95.466			
SE(mean)	15.250	0.267	0.267	0.024	0.956	0.956			
p-value	0.000	0.000	0.021	0.000	0.000	0.000			
10 period av	gs.								
Mean	63.631	99.325	0.675	0.213	5.111	94.889			
SE(mean)	16.024	0.282	0.282	0.025	1.057	1.057			
p-value	0.000	0.000	0.018	0.000	0.000	0.000			

Table 7. (Continued)

Table 8. Fitch VAR Variance Decomposition

This table reports output for variance decomposition of Fitch VAR estimates. The first column lists the forecast period error being analyzed followed by the statistics calculated. Mean values are calculated by taking the arithmetic average of each estimate for that specific period. Standard errors are defined as the mean value divided by the square root of total observations. P-values are then calculated using the Student's t-distribution. The second column reports statistics on CDS variance, the third provides the percentage of CDS variance explained by CDS spreads and the fourth reports the percentage of CDS variance explained by credit ratings. The fifth column reports credit rating variance, columns six and seven report the percent of credit rating variance explained by CDS spreads and credit ratings respectively. The total number of estimated equations is 80.

1 period avec	CDS	CDS	CR	CR	CDS	CR
i penioù avgs.	variance	contribution	contribution	variance	contribution	contribution
Mean	16.124	100.000	0.000	0.078	0.731	99.269
SE(mean)	3.590	0.000	0.000	0.012	0.344	0.344
p-value	0.000	0.000	0.000	0.000	0.037	0.000
2 period avgs.						
Mean	23.263	99.807	0.193	0.108	0.936	99.064
SE(mean)	5.065	0.086	0.086	0.017	0.393	0.393
p-value	0.000	0.000	0.027	0.000	0.020	0.000
3 period avgs.						
Mean	28.906	99.733	0.267	0.132	1.409	98.591
SE(mean)	6.237	0.110	0.110	0.020	0.477	0.477
p-value	0.000	0.000	0.018	0.000	0.004	0.000
4 period avgs.						
Mean	33.643	99.645	0.355	0.151	2.027	97.973
SE(mean)	7.218	0.128	0.128	0.023	0.609	0.609
p-value	0.000	0.000	0.007	0.000	0.001	0.000
5 period avgs.						
Mean	37.775	99.593	0.407	0.168	2.721	97.279
SE(mean)	8.080	0.141	0.141	0.026	0.777	0.777
p-value	0.000	0.000	0.005	0.000	0.001	0.000
6 period avgs.						
Mean	41.536	99.559	0.441	0.184	3.441	96.559
SE(mean)	8.874	0.148	0.148	0.028	0.958	0.958
p-value	0.000	0.000	0.004	0.000	0.001	0.000

7 period avgs.								
Mean	45.046	99.536	0.464	0.198	4.165	95.835		
SE(mean)	9.628	0.153	0.153	0.030	1.139	1.139		
p-value	0.000	0.000	0.003	0.000	0.000	0.000		
8 period avg	s.							
Mean	48.331	99.517	0.483	0.211	4.875	95.125		
SE(mean)	10.349	0.157	0.157	0.032	1.314	1.314		
p-value	0.000	0.000	0.003	0.000	0.000	0.000		
9 period avg	s.							
Mean	51.427	99.501	0.499	0.223	5.559	94.441		
SE(mean)	11.043	0.160	0.160	0.034	1.479	1.479		
p-value	0.000	0.000	0.003	0.000	0.000	0.000		
10 period av	gs.							
Mean	54.373	99.486	0.514	0.235	6.212	93.788		
SE(mean)	11.715	0.163	0.163	0.036	1.635	1.635		
p-value	0.000	0.000	0.002	0.000	0.000	0.000		

Table 8. (Continued)

Table 9. VEC Estimation Results

This table provides results from VEC estimation including Ratings and CDS spreads as endogenous variables. Panel A reports results from Moody's, Panel B reports S&P results and Panel C provides Fitch results. Each regression includes a constant and two exogenous variables; credit spread and term spread. Equation 1 specifies the first difference of CDS spreads as the dependent variable, equation 2 specifies first differenced credit ratings as the dependent variable. For each parameter mean, standard error, p-value, percentage significant, percentage positive and significant and percentage negative and significant are reported. Mean values are calculated by taking the arithmetic average of point estimates. Standard errors are calculated by dividing the standard deviation of the parameter by the square root of the number of estimated coefficients. P-values are calculated using the Student's t-distribution.

Equation 1	Cointegrating Eq.	CDS(-1)	CDS(-2)	CDS(-3)	CDS(-4)	RATINGS (-1)	RATINGS (-2)	RATINGS (-3)	RATINGS (-4)	Credit Spread	Term Spread	Constant
Mean	-0.0102	0.229	0.0329	0.000833	0.00497	-2.140	9.742	-3.617	2.716	5.975	-1.426	-1.049
SE(mean)	0.00149	0.0344	0.0256	0.0281	0.0311	4.747	4.229	7.213	2.950	1.778	0.413	1.395
P-value	1.37E-08	2.46E-08	0.208	0.977	0.875	0.654	0.027	0.621	0.367	0.002	0.001	0.456
% significant	0.813	0.875	0.735	0.609	0.636	0.250	0.294	0.217	0.091	0.396	0.354	0.438
# of positive & significant	1	36	17	7	7	7	8	2	2	18	1	3
# of negative & significant	38	6	8	7	7	5	2	3	0	1	16	18
Total	48	48	34	23	22	48	34	23	22	48	48	48
Equation 2	Cointegrating	CDS(1)	CDS(2)	CDS(3)	CDS(4)	RATINGS	RATINGS	RATINGS	RATINGS	Credit	Term	Constant
Equation 2	Eq.	CD3(-1)	CD3(-2)	CD3(-3)	CD3(-4)	(-1)	(-2)	(-3)	(-4)	Spread	Spread	Constant
Mean	-4.37E-06	0.00016	6.21E-05	2.84E-05	0.000273	-0.0113	-0.00973	-0.01611	-0.00771	-0.0289	0.00459	0.00974
SE(mean)	2.19E-05	0.000150	0.000122	9.13E-05	0.000206	0.00399	0.00358	0.00730	0.003262	0.0248	0.00374	0.00582
P-value	0.842	0.281	0.614	0.758	0.199	0.007	0.010	0.038	0.027	0.249	0.226	0.101
% significant	0.354	0.229	0.059	0.261	0.182	0.021	0.029	0.043	0	0.125	0.083	0.104
# of positive & significant	12	7	0	2	3	0	0	0	0	1	3	4
# of negative & significant	5	4	2	4	1	1	1	1	0	5	1	1
Total	48	48	34	23	22	48	34	23	22	48	48	48

Panel A. Moody's Full Sample Results

Table 9. (Continued)

Panel B. S&P Full Sample H	Results											
Equation 1	Cointegrating Eq.	CDS(-1)	CDS(-2)	CDS(-3)	CDS(-4)	RATINGS (-1)	RATINGS (-2)	RATINGS (-3)	RATINGS (-4)	Credit Spread	Term Spread	Constant
Mean SE(mean) P-value % significant	-0.00916 0.00115 3.98E-12 0.82417582	0.221 0.0208 1.20E-17 0.9011	0.0402 0.0128 0.002421 0.701299	0.0237 0.0100 0.021 0.40625	-0.0160 0.016 0.331 0.6875	11.289 5.573 0.046 0.26374	8.043 5.596 0.155 0.24675	44.026 36.803 0.236 0.21875	9.619 11.801 0.421 0.25	7.673 1.747 3E-05 0.40659	-1.838 0.414 2.51E-05 0.40659	0.0519 1.645 0.975 0.41758
# of positive & significant	6	73	39	18	10	22	10	11	4	36	1	3
# of negative & significant	69	9	15	8	12	2	9	3	4	1	36	35
Total	91	91	77	64	32	91	77	64	32	91	91	91
Equation 2	Cointegrating Eq.	CDS(-1)	CDS(-2)	CDS(-3)	CDS(-4)	RATINGS (-1)	RATINGS (-2)	RATINGS (-3)	RATINGS (-4)	Credit Spread	Term Spread	Constant
Mean SE(mean) P-value % significant	1.74E-05 6.03E-06 0.00491 0.440	3.06E-06 6.59E-05 0.963 0.242	-6.40E-06 4.56E-05 0.889 0.169	5.64E-06 8.52E-05 0.947 0.234	-0.000156 0.000133 0.247 0.219	-0.00527 0.00136 0.000203 0.011	-0.00486 0.00178 0.00791 0.013	0.00398 0.00660 0.548 0.063	-0.00885 0.003313 0.0118 0.063	-0.00174 0.00254 0.496 0.088	0.000795 0.000582 0.176 0.077	0.00217 0.00378 0.567 0.132
# of positive & significant	29	15	7	6	3	1	1	2	0	3	5	6
# of negative & significant	11	7	6	9	4	0	0	2	2	5	2	6
Total	91	91	77	64	32	91	77	64	32	91	91	91
Panel C. Fitch Full Sample Results												
Equation 1	Cointegrating Eq.	CDS(-1)	CDS(-2)	CDS(-3)	CDS(-4)	RATINGS (-1)	RATINGS (-2)	RATINGS (-3)	RATINGS (-4)	Credit Spread	Term Spread	Constant
Equation 1 Mean SE(mean) P-value % significant	Cointegrating Eq. -0.00800 0.00133 8.8716E-08 0.866	CDS(-1) 0.213 0.0265 2E-11 0.881	CDS(-2) 0.0534 0.0180 0.004321 0.793 25	CDS(-3) 0.00118 0.0126 0.925406 0.442	CDS(-4) -0.00756 0.0148 0.614104 0.552	RATINGS (-1) -6.675 7.496 0.37642 0.194	RATINGS (-2) 2.871 1.309 0.0323 0.172 7	RATINGS (-3) 0.651 1.208 0.59223 0.096	RATINGS (-4) -1.738 3.857 0.6556 0.172	Credit Spread 5.336 2.221 0.01905 0.284	Term Spread -1.300 0.509 0.01299 0.269	Constant -0.304 2.288 0.89459 0.403
Equation 1 Mean SE(mean) P-value % significant # of positive & significant	Cointegrating Eq. -0.00800 0.00133 8.8716E-08 0.866 5	CDS(-1) 0.213 0.0265 2E-11 0.881 53	CDS(-2) 0.0534 0.0180 0.004321 0.793 35	CDS(-3) 0.00118 0.0126 0.925406 0.442 13	CDS(-4) -0.00756 0.0148 0.614104 0.552 8	RATINGS (-1) -6.675 7.496 0.37642 0.194 12	RATINGS (-2) 2.871 1.309 0.0323 0.172 7	RATINGS (-3) 0.651 1.208 0.59223 0.096 1	RATINGS (-4) -1.738 3.857 0.6556 0.172 2	Credit Spread 5.336 2.221 0.01905 0.284 19	Term Spread -1.300 0.509 0.01299 0.269 1	Constant -0.304 2.288 0.89459 0.403 2
Equation 1 Mean SE(mean) P-value % significant # of positive & significant # of negative & significant Tatal	Cointegrating Eq. -0.00800 0.00133 8.8716E-08 0.866 5 53 67	CDS(-1) 0.213 0.0265 2E-11 0.881 53 6	CDS(-2) 0.0534 0.0180 0.004321 0.793 35 11	CDS(-3) 0.00118 0.0126 0.925406 0.442 13 10	CDS(-4) -0.00756 0.0148 0.614104 0.552 8 8 8	RATINGS (-1) -6.675 7.496 0.37642 0.194 12 1 67	RATINGS (-2) 2.871 1.309 0.0323 0.172 7 3 58	RATINGS (-3) 0.651 1.208 0.59223 0.096 1 4	RATINGS (-4) -1.738 3.857 0.6556 0.172 2 3 20	Credit Spread 5.336 2.221 0.01905 0.284 19 0	Term Spread -1.300 0.509 0.01299 0.269 1 17 67	Constant -0.304 2.288 0.89459 0.403 2 25 67
Equation 1 Mean SE(mean) P-value % significant # of positive & significant # of negative & significant Total Equation 2	Cointegrating Eq. -0.00800 0.00133 8.8716E-08 0.866 5 5 53 67 Cointegrating Eq.	CDS(-1) 0.213 0.0265 2E-11 0.881 53 6 6 67 CDS(-1)	CDS(-2) 0.0534 0.0180 0.004321 0.793 35 11 58 CDS(-2)	CDS(-3) 0.00118 0.0126 0.925406 0.442 13 10 52 CDS(-3)	CDS(-4) -0.00756 0.0148 0.614104 0.552 8 8 8 29 CDS(-4)	RATINGS (-1) -6.675 7.496 0.37642 0.194 12 1 67 RATINGS (-1)	RATINGS (-2) 2.871 1.309 0.0323 0.172 7 3 58 RATINGS (-2)	RATINGS (-3) 0.651 1.208 0.59223 0.096 1 4 52 RATINGS (-3)	RATINGS (-4) -1.738 3.857 0.6556 0.172 2 3 29 RATINGS (-4)	Credit Spread 5.336 2.221 0.01905 0.284 19 0 67 Credit Spread	Term Spread -1.300 0.509 0.01299 0.269 1 17 67 Term Spread	Constant -0.304 2.288 0.89459 0.403 2 25 67 Constant
Equation 1 Mean SE(mean) P-value % significant # of positive & significant # of negative & significant Total Equation 2 Mean SE(mean) P-value % significant # of positive & significant	Cointegrating Eq. -0.00800 0.00133 8.8716E-08 0.866 5 53 67 Cointegrating Eq. 2.79E-05 2.27E-05 0.22442247 0.43283582 25	CDS(-1) 0.213 0.0265 2E-11 0.881 53 6 6 7 CDS(-1) 5.20E-05 7.48E-05 0.48937 0.13433 6	CDS(-2) 0.0534 0.0180 0.004321 0.793 35 11 58 CDS(-2) 0.000172 7.61E-05 0.028057 0.12069 5	CDS(-3) 0.00118 0.0126 0.925406 0.442 13 10 52 CDS(-3) -0.000144 4.69E-05 0.003402 0.173077 2	CDS(-4) -0.00756 0.0148 0.614104 0.552 8 8 29 CDS(-4) 4.10E-05 5.43E-05 0.45634 0.241379 5	RATINGS (-1) -6.675 7.496 0.37642 0.194 12 1 1 67 RATINGS (-1) -0.00536 0.00140 0.0003 0.02985 0	RATINGS (-2) 2.871 1.309 0.0323 0.172 7 3 58 RATINGS (-2) -0.00302 0.00201 0.13766 0.01724	RATINGS (-3) 0.651 1.208 0.59223 0.096 1 4 52 RATINGS (-3) -0.00649 0.00230 0.00689 0.01923 0	RATINGS (-4) -1.738 3.857 0.6556 0.172 2 3 29 RATINGS (-4) -0.000779 0.00312 0.804769 0.034483	Credit Spread 5.336 2.221 0.01905 0.284 19 0 67 Credit Spread -0.00241 0.00246 0.32935 0.07463	Term Spread -1.300 0.509 0.01299 0.269 1 17 67 Term Spread 0.000280 0.000595 0.6394 0.04478 3	Constant -0.304 2.288 0.89459 0.403 2 25 67 Constant 0.0109 0.00599 0.07376 0.1194 8
Equation 1 Mean SE(mean) P-value % significant # of positive & significant Total Equation 2 Mean SE(mean) P-value % significant # of positive & significant	Cointegrating Eq. -0.00800 0.00133 8.8716E-08 0.866 5 53 67 Cointegrating Eq. 2.79E-05 2.27E-05 0.22442247 0.43283582 25	CDS(-1) 0.213 0.0265 2E-11 0.881 53 6 67 CDS(-1) 5.20E-05 7.48E-05 0.48937 0.13433 6 2	CDS(-2) 0.0534 0.0180 0.004321 0.793 35 11 58 CDS(-2) 0.000172 7.61E-05 0.028057 0.12069 5	CDS(-3) 0.00118 0.0126 0.925406 0.442 13 10 52 CDS(-3) -0.000144 4.69E-05 0.003402 0.173077 2 7	CDS(-4) -0.00756 0.0148 0.614104 0.552 8 8 29 CDS(-4) 4.10E-05 5.43E-05 0.45634 0.241379 5	RATINGS (-1) -6.675 7.496 0.37642 0.194 12 1 67 RATINGS (-1) -0.00536 0.00140 0.0003 0.02985 0	RATINGS (-2) 2.871 1.309 0.0323 0.172 7 3 58 RATINGS (-2) -0.00302 0.00201 0.13766 0.01724 1	RATINGS (-3) 0.651 1.208 0.59223 0.096 1 4 52 RATINGS (-3) -0.00649 0.00230 0.00689 0.01923 0	RATINGS (-4) -1.738 3.857 0.6556 0.172 2 3 29 RATINGS (-4) -0.000779 0.00312 0.804769 0.034483 1	Credit Spread 5.336 2.221 0.01905 0.284 19 0 67 Credit Spread -0.00241 0.00246 0.32935 0.07463 0	Term Spread -1.300 0.509 0.01299 0.269 1 17 67 Term Spread 0.000280 0.000595 0.6394 0.04478 3	Constant -0.304 2.288 0.89459 0.403 2 25 67 Constant 0.0109 0.00599 0.07376 0.1194 8

Table 10. Moody's VEC Variance Decomposition

This table reports the results from Moody's VEC variance decomposition. The first column lists the forecast period error being analyzed followed by the statistics calculated. Mean values are calculated by taking the arithmetic average of each estimate for that specific period. Standard errors are defined as the mean value divided by the square root of total observations. P-values are then calculated using the Student's t-distribution. The second column reports statistics on CDS variance, the third provides the percentage of CDS variance explained by CDS spreads and the fourth reports the percentage of CDS variance explained by credit ratings. The fifth column reports credit rating variance, columns six and seven report the percent of credit rating variance explained by CDS spreads and credit ratings respectively. 48 equations are estimated in total.

1 pariod avec	CDS	CDS	CR	CR	CDS	CR
i perioù avgs.	variance	contribution	contribution	variance	contribution	contribution
Mean	12.815	100.000	0.000	0.060	0.837	99.163
SE(mean)	1.981	0.000	0.000	0.005	0.342	0.342
p-value	0.00	0.00	0.00	0.00	0.02	0.00
2 period avgs.						
Mean	22.763	99.737	0.263	0.083	1.218	98.782
SE(mean)	3.928	0.123	0.123	0.007	0.459	0.459
p-value	0.00	0.00	0.04	0.00	0.01	0.00
3 period avgs.						
Mean	29.935	99.542	0.458	0.101	1.455	98.545
SE(mean)	5.332	0.189	0.189	0.009	0.572	0.572
p-value	0.00	0.00	0.02	0.00	0.01	0.00
4 period avgs.						
Mean	36.160	99.290	0.710	0.116	1.755	98.245
SE(mean)	6.604	0.291	0.291	0.010	0.770	0.770
p-value	0.00	0.00	0.02	0.00	0.03	0.00
5 period avgs.						
Mean	41.682	99.001	0.999	0.129	1.991	98.009
SE(mean)	7.762	0.397	0.397	0.011	0.934	0.934
p-value	0.00	0.00	0.02	0.00	0.04	0.00
6 period avgs.						
Mean	46.677	98.810	1.190	0.140	2.173	97.827
SE(mean)	8.819	0.467	0.467	0.012	1.071	1.071
p-value	0.00	0.00	0.01	0.00	0.05	0.00
7 period avgs.						
Mean	51.149	98.676	1.324	0.151	2.319	97.681
SE(mean)	9.778	0.514	0.514	0.013	1.176	1.176
p-value	0.00	0.00	0.01	0.00	0.05	0.00

8 period avgs.						
Mean	55.174	98.574	1.426	0.160	2.447	97.553
SE(mean)	10.656	0.544	0.544	0.014	1.262	1.262
p-value	0.00	0.00	0.01	0.00	0.06	0.00
9 period avgs.						
Mean	58.885	98.479	1.521	0.170	2.563	97.437
SE(mean)	11.467	0.567	0.567	0.014	1.333	1.333
p-value	0.00	0.00	0.01	0.00	0.06	0.00
10 period avg	s.					
Mean	62.347	98.388	1.612	0.178	2.671	97.329
SE(mean)	12.225	0.584	0.584	0.015	1.392	1.392
p-value	0.00	0.00	0.01	0.00	0.06	0.00

Table 10. (Continued)

Table 11. S&P VEC Variance Decomposition

This table reports the results from S&P VEC variance decomposition. The first column lists the forecast period error being analyzed followed by the statistics calculated. Mean values are calculated by taking the arithmetic average of each estimate for that specific period. Standard errors are defined as the mean value divided by the square root of total observations. P-values are then calculated using the Student's t-distribution. The second column reports statistics on CDS variance, the third provides the percentage of CDS variance explained by CDS spreads and the fourth reports the percentage of CDS variance explained by credit ratings. The fifth column reports credit rating variance, columns six and seven report the percent of credit rating variance explained by CDS spreads and credit ratings respectively. 91 equations are estimated in total.

	CDS	CDS	CR	CR	CDS	CR
1 period avgs.	Variance	Contribution	Contribution	Variance	Contribution	Contribution
Mean	15.987	100	0	0.059	0.615	99.385
SE(mean)	2.603	0	0	0.004	0.199	0.199
p-value	0	0		0	0	0
2 period avgs.						
Mean	24.873	99.893	0.107	0.084	0.827	99.173
SE(mean)	3.935	0.023	0.023	0.006	0.221	0.221
p-value	0	0	0	0	0	0
3 period avgs.						
Mean	32.104	99.725	0.275	0.102	1.065	98.935
SE(mean)	5.072	0.071	0.071	0.008	0.25	0.25
p-value	0	0	0	0	0	0
4 period avgs.						
Mean	38.654	99.383	0.617	0.118	1.263	98.737
SE(mean)	6.132	0.163	0.163	0.009	0.266	0.266
p-value	0	0	0	0	0	0
5 period avgs.						
Mean	44.681	99.024	0.976	0.132	1.458	98.542
SE(mean)	7.16	0.286	0.286	0.01	0.295	0.295
p-value	0	0	0	0	0	0
6 period avgs.						
Mean	50.156	98.786	1.214	0.144	1.613	98.387
SE(mean)	8.145	0.346	0.346	0.011	0.32	0.32
p-value	0	0	0	0	0	0

Table 11. (Continued)

7 period avgs.						
Mean	55.316	98.553	1.447	0.156	1.739	98.261
SE(mean)	9.137	0.443	0.443	0.012	0.338	0.338
p-value	0.00	0.00	0.00	0.00	0.00	0.00
8 period avgs.						
Mean	60.270	98.325	1.675	0.167	1.861	98.139
SE(mean)	10.158	0.553	0.553	0.013	0.357	0.357
p-value	0.00	0.00	0.00	0.00	0.00	0.00
9 period avgs.						
Mean	65.048	98.133	1.867	0.177	1.971	98.029
SE(mean)	11.217	0.644	0.644	0.013	0.376	0.376
p-value	0.00	0.00	0.00	0.00	0.00	0.00
10 period avgs.						
Mean	69.667	97.956	2.044	0.186	2.067	97.933
SE(mean)	12.337	0.723	0.723	0.014	0.392	0.392
p-value	0.00	0.00	0.01	0.00	0.00	0.00

Table 12. Fitch VEC Variance Decomposition

This table reports the results from Fitch VEC variance decomposition. The first column lists the forecast period error being analyzed followed by the statistics calculated. Mean values are calculated by taking the arithmetic average of each estimate for that specific period. Standard errors are defined as the mean value divided by the square root of total observations. P-values are then calculated using the Student's t-distribution. The second column reports statistics on CDS variance, the third provides the percentage of CDS variance explained by CDS spreads and the fourth reports the percentage of CDS variance explained by credit ratings. The fifth column reports credit rating variance, columns six and seven report the percent of credit rating variance explained by CDS spreads and credit ratings respectively. 67 equations in total are estimated.

	CDS	CDS	CR	CR	CDS	CR
1 period avgs.	Variance	Contribution	Contribution	Variance	Contribution	Contribution
Mean	14.460	100.000	0.000	0.074	0.579	99.421
SE(mean)	2.815	0.000	0.000	0.010	0.225	0.225
p-value	0	0		0	0.01	0
2 period avgs.						
Mean	22.910	99.179	0.821	0.102	0.758	99.242
SE(mean)	4.408	0.650	0.650	0.014	0.256	0.256
p-value	0	0	0.21	0	0.004	0
3 period avgs.						
Mean	29.976	98.964	1.036	0.125	0.989	99.011
SE(mean)	5.768	0.750	0.750	0.017	0.352	0.352
p-value	0	0	0.17	0	0.007	0
4 period avgs.						
Mean	35.722	98.854	1.146	0.143	1.114	98.886
SE(mean)	6.846	0.797	0.797	0.019	0.398	0.398
p-value	0	0	0.16	0	0.007	0
5 period avgs.						
Mean	40.786	98.724	1.276	0.159	1.201	98.799
SE(mean)	7.799	0.846	0.846	0.021	0.425	0.425
p-value	0	0	0.14	0	0.006	0
6 period avgs.						
Mean	45.285	98.659	1.341	0.174	1.284	98.716
SE(mean)	8.647	0.869	0.869	0.023	0.446	0.446
p-value	0	0	0.13	0	0.005	0

Table 12. (Continued)

7 period avgs.						
Mean	49.358	98.615	1.385	0.187	1.370	98.630
SE(mean)	9.416	0.885	0.885	0.025	0.461	0.461
p-value	0	0	0.12	0	0.004	0
8 period avgs.						
Mean	53.050	98.581	1.419	0.199	1.462	98.538
SE(mean)	10.116	0.894	0.894	0.026	0.473	0.473
p-value	0	0	0.12	0	0.003	0
9 period avgs.						
Mean	56.455	98.554	1.446	0.210	1.565	98.435
SE(mean)	10.763	0.899	0.899	0.028	0.487	0.487
p-value	0	0	0.11	0	0.002	0
10 period avgs.						
Mean	59.617	98.528	1.472	0.221	1.679	98.321
SE(mean)	11.366	0.905	0.905	0.029	0.504	0.504
p-value	0	0	0.11	0	0.001	0