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Abstract

DeMiguel et al. (2009a) show that estimation errors lead to mean-variance portfolios that
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account for transaction costs, the stability penalty offers intuitive analytical solutions to the
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1 Introduction

The mean-variance theory of Markowitz (1952) is the most important portfolio choice model in

academia and investment practice. It provides simple and analytically tractable portfolios of min-

imum risk for a desired level of expected return. Practical applications though suffer from two

critical issues. First, the parameters that define optimal portfolios are unknown and need to be

estimated in finite samples. Estimation errors insert risk in the portfolio selection process, coined

as estimation risk in the literature, which may significantly reduce out-of-sample performance (e.g.,

see Michaud, 1989; Best and Grauer, 1991). Second, the portfolio weights tend to change dra-

matically over time. This instability translates into high transaction costs which further decrease

portfolio returns. In this paper, I treat estimation risk and instability in a joint manner.

With regards to estimation risk, a vast literature has developed around providing more efficient

estimators of the unknown parameters or the optimal weights (Brandt, 2009, provides an excellent

review). This literature has been recently challenged by the work of DeMiguel et al. (2009a) who

find that 1/N outperforms mean-variance portfolios and most of their extensions. In response to

this finding, DeMiguel et al. (2009b), Tu and Zhou (2011), Kirby and Ostdiek (2012) and Kourtis

et al. (2012) develop new sample-based portfolio strategies that offer significantly higher risk-

adjusted returns than 1/N . I show that the latter portfolio may still be superior in the presence

of transaction costs. This is because most of the sample-based strategies are significantly more

unstable than 1/N . Notably, the approaches of DeMiguel et al. (2009b), Tu and Zhou (2011) and

Kourtis et al. (2012) lead to negative Sharpe ratios in several cases once I account for proportional

transaction costs of 100 basis points (bp). For example, in a dataset of 8 international market

portfolios the strategies of Demiguel et al. (2009b) and Kourtis et al. (2012) result in an annual

Sharpe ratio of 0.822 and 0.926, respectively, in the absence of transaction costs. The Sharpe

ratio of 1/N is lower (0.542). Once I account for transaction costs, though, the two sample-based

strategies respectively lead to Sharpe ratios of -0.076 and -0.373 while the Sharpe ratio of 1/N is

0.522. This is because the turnover of the two sample strategies is up to 70 times higher. Such

results highlight the importance of portfolio stability.

The standard approach to promote stability is to directly incorporate transaction costs in the

portfolio optimization problem. Numerous studies modify the original mean-variance model to

account for fixed and/or variable transaction costs (Woodside-Oriakhi et al., 2013, provide a recent

review of this literature). Due to the nature of transaction costs, the analytical derivation of the

portfolio weights is no longer feasible and a computational algorithm is required instead. However,

such algorithms may be inefficient for a large number of assets. Moreover, the lack of an analytical

representation of the optimal weights does not allow to apply such approaches to the recent advances

in the literature of estimation risk discussed above. This is important in light of the finding of Kirby

and Ostdiek (2012) that estimation risk has a magnifying effect on transaction costs.

In this paper I develop a method to increase the stability of sample-based strategies while main-

tain their efficiency. I propose to impose a “stability penalty” directly to the investor’s objective.

The penalty controls the deviation of the portfolio weights after rebalancing from the weights be-
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fore rebalancing. The novelty is that I measure the deviation using the Σ
1
2 -norm instead of the

1-norm that is usually applied in the literature, where Σ is the covariance matrix of asset returns.

This leads to an intuitive analytical solution to the portfolio optimization problem; the “stable”

portfolio weights are a linear combination of the weights before and after rebalancing.

My approach effectively treats estimation risk since the form of the weights allows the appli-

cation to any portfolio strategy from the estimation risk literature. Moreover, I show that the

stability penalty may improve performance even in the absence of transaction costs. This is be-

cause the stability penalty can be interpreted in two interesting manners. First, it is equivalent

to imposing a norm constraint in the original mean-variance problem. DeMiguel et al. (2009b)

show that such constraints can increase risk-adjusted returns in the presence of transaction costs.

Second, the stability penalty is equivalent to shrinking the portfolio weights to that of a buy-and

hold strategy. The latter may be efficient when the market is in momentum (i.e. asset returns are

positively autocorrelated).

The main feature of my method is that it can be used to reduce the turnover of any sample-based

portfolio strategy. The extent of the turnover reduction is controlled by a stability parameter. I

provide two alternatives for its selection. First, I choose the parameter that matches the turnover

of the strategy to that of 1/N . This is because the latter in known to result in low turnover while

being a natural benchmark in this study. Moreover, it is possible to derive the distribution of the

turnover of 1/N under standard assumptions. This is useful since it allows the estimation of the

expected transaction costs of the stable portfolios or other statistical inference about the portfolio

stability. Second, I choose the parameter that maximizes the portfolio return of the previous month.

This is motivated by the positive autocorrelation of portfolio returns (see, Campbell et al., 1997,

DeMiguel et al., 2009b, Kourtis et al., 2012) and may lead to further performance improvements.

To evaluate the stability approach, I apply it to nine sample-based srategies from the litera-

ture. These include three portfolios from the sample-based mean-variance frontier, a short-sale

constrained mean-variance portfolio, the shrinkage-based portfolio of Ledoit and Wolf (2004a) as

well as five portfolios from the studies of DeMiguel et al. (2009b), Tu and Zhou (2011), Kirby

and Ostdiek (2012) and Kourtis et al. (2012). In this manner, I derive stable versions of these

sample-based strategies. I next compare their out-of-sample performance to that of 1/N and of

their “unstable” counterparts in 5 datasets of real asset returns. I decompose out-of-sample per-

formance into efficiency and stability; the first is measured by Sharpe ratio and the second by the

average portfolio turnover. I compute the Sharpe ratio in the case of no transaction costs and for

transaction costs of 100 bp.

The results of the empirical analysis confirm that the stability penalty leads to both efficient

and stable portfolios. Revisiting the dataset of 10 industry portfolios discussed above, I find that

the stable versions of the portfolios of DeMiguel et al. (2009b) and Kourtis et al. (2012) offer a

Sharpe ratio of 0.600 and 0.629 respectively outperforming 1/N under transaction costs of 100 bp.

At the same time, all stable strategies generate a turnover equal or lower to 1/N by construction.

Moreover, in three out of the five datasets the stability approach improves portfolio performance
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even in the absence of transaction costs. For instance, in a set of 8 international market portfolios

the Sharpe ratio of the strategies of DeMiguel et al. (2009b), Tu and Zhou (2011) and Kourtis

et al. (2012) increases from 0.288, 0.147 and 0.168 to 0.368, 0.324 and 0.426 when the stability

penalty is applied. The latter values are higher than the Sharpe ratio of 1/N at 0.344. Out of the

two methods for selecting the stability parameter, the momentum-based criterion leads in higher

Sharpe ratios than fixing the parameter to match the turnover of 1/N in most cases.

The remaining of this work is organised as follows. Section 2 presents the mean-variance frame-

work. The effects of estimation risk and portfolio instability to the performance of several portfolio

strategies are discussed in Section 3. Section 4 develops an approach to stabilize portfolio strategies

and presents its merits. Section 5 evaluates the stability approach in several datasets of real asset

returns while Section 6 concludes this paper.

2 The mean-variance framework

I present the mean-variance framework under different portfolio constraints. I consider a multi-

period investor in a market of N risky assets and risk-free asset. The returns on the risky assets

over the period t are Rt while Rft stands for the risk-free return. At each time t, the optimal weights

wt for the investor minimize the variance of the portfolio excess returns

min
wt

w′tΣwt (1)

subject to the constraints

w′tµ = µ0 (2)

w′t1N = 1 (3)

In the above, µ and Σ are respectively the ex-ante mean and covariance matrix of the excess

returns rt = Rt − rft . To simplify notation, I assume that these moments are time-invariant. How-

ever, all results can be readily extended to the case of time-varying moments. The first constraint

sets the the level of return required by the investor (µ0). Allowing µ0 to take different values gener-

ates the minimum variance frontier. The second constraint ensures that the investor only holds the

risky assets (1N is an N -dimensional vector of 1’s). I impose this constraint to perform comparisons

between different portfolio strategies without the need of defining a risk-aversion parameter. My

approach though can be easily modified to allow investment in the risk-free asset.

It is intuitive to express the optimal solution of the problem (1), (2), (3) as a linear combination

of two special portfolios. The first results if I do not impose the constraint (2). In this case, the

investor should hold the global minimum variance portfolio, which is the portfolio of risky assets

with minimum risk. The weights are defined as:

wMIN =
Σ−11N

1′NΣ−11N
. (4)
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The second portfolio is defined as the point where the capital Market Line is tangent to the

efficient frontier. For this reason, it is called tangency portfolio and its weights are given by

wTP
t =

Σ−1µ

1′NΣ−1µ
. (5)

Then, applying first order conditions to the mean-variance problems confirms that the solution

wMV as well as every point in the frontier is a linear combination of the global minimum variance

portfolio and the tangency portfolio

wMV = (1− xt)wMIN + xtw
TP, (6)

where m =
µ0 − µMIN

t

µMV−µMIN for µMIN = µ′wMIN and µTP = µ′wTP being respectively the expected excess

returns on the global minimum variance portfolio and the tangency portfolio.

If short-sales are not allowed, there is one additional constraint in the optimization problem to

ensure the positivity of the weights:

w ≥ 0 (7)

The short-sale constrained optimization problem cannot be solved analytically, but there are fast

quadratic optimization algorithms to derive the optimal weights.

3 Estimation risk and portfolio stability

All efficient portfolios as well as their short-constrained counterparts are functions of the first two

moments µ and Σ of the excess returns. In practice, µ and Σ are unknown and the investor needs

to estimate them. This estimation is usually performed using a sample of the history of the asset

excess returns rt−T ....rt−1 where T is sample size. For example, the traditional practice employs

the Maximum Likelihood (ML) estimators:

µ̂t =
1

T

t−1∑
i=t−T

Ri (8)

Σ̂t =
1

T

t−1∑
i=t−T

(Ri − µ̂t)(Ri − µ̂t)′ (9)

and applies them to estimate the portfolio weights. Using estimates instead of the true values of

the parameters introduces estimation risk in the portfolio choice process. Estimation risk is known

to result in severely suboptimal portfolios which produce low or even negative risk-adjusted returns

(see for instance, Michaud, 1989; Best and Grauer, 1991). A vast literature over the last decades

proposes several alternative estimators for the moments or the weights that result in improved

performance (Brandt, 2009 offers an excellent review). The majority of the proposed strategies,

however, performs worse than naive diversification (DeMiguel et al., 2009a, DGU hereafter) in terms
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of out-of-sample risk adjusted returns. In response to this finding, new studies have developed more

efficient portfolio strategies that produce higher risk-adjusted returns (DeMiguel et al. 2009b, Tu

and Zhou, 2010, Kirby and Ostdiek, 2012, Kourtis et al. 2012).

The effects of estimation risk are more prominent in the presence of transaction costs since

estimation errors lead to unstable portfolios over time. The standard measure of instability is

portfolios turnover. The turnover measures the deviation of the portfolio weights after rebalancing

from the weights before rebalancing using the 1-norm. For a sample-based strategy p, the turnover

at period t is given by

τpt = ||ŵpt − w̃
p
t ||1 , (10)

where w̃pt are the portfolio weights for the strategy at time t before rebalancing. These are defined

as

w̃pi,t =
ŵpi,t−1(1 +Ri,t−1)

1 +
∑N

i=1 ŵ
p
i,t−1Ri,t−1

. (11)

To understand how estimation risk affects stability, note that the turnover of asset i is

∣∣∣ŵpi,t − w̃pi,t∣∣∣ =

∣∣∣∣∣(ŵpi,t − ŵpi,t−1

)
−
ŵpi,t−1(Ri,t −Rpt )

(1 +Rpt )

∣∣∣∣∣ (12)

where Rpt is the return on the strategy p at time t. The above equation implies that compared

to a constant-weights strategy such as 1/N or the optimal true portfolio, the turnover of an asset

for a sample-based strategy may be larger by
∣∣∣(ŵpi,t − ŵpi,t−1

)∣∣∣. Sample-based strategies with a

large sensitivity in changes in the sample may see a large decline in the returns in the presence

of transaction costs. I examine whether this argument is valid for several sample strategies in the

literature that I next discuss. Table 1 lists all strategies employed in this work.

3.1 Naive diversification (1/N)

I start with naive diversification which is the benchmark strategy in this paper. Naive diversification

assigns the same weight to each asset:

w
1/N
t =

1N
N

(13)

Even though it is a biased estimator of the optimal portfolio weights, it is not subject to

estimation risk and this explains its favorable performance reported by DeMiguel et al. (2009a)

compared to several strategies in the literature. Other attractive features of this strategy include

the positivity of weights and the low turnover due to the constant weights.

3.2 The sample tangency portfolio (TP)

The sample tangency portfolio results from replacing µ and Σ with µ̂ and Σ̂ in (5). The portfolio

weights are then given by
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ŵTP
t =

Σ̂−1
t µ̂t

1′N Σ̂−1
t µ̂t

. (14)

This portfolio has the worst performance in DGU producing highly negative Sharpe-ratios in

several cases and very high levels of turnover. Kirby and Ostdiek (2012) attribute this performance

to the denominator of in the weights. If 1′NΣ−1µ is close to zero, the sample tangency portfolio will

have extreme weights leading to severe out-of-sample performance. This is because the required

return return µ′ŵMV
t is unrealistically high and this magnifies both the turnover and the estimation

risk.

3.3 The sample global minimum variance portfolio (MIN)

The means µ are considered more challenging to estimate than variance-covariances (Merton, 1980;

Chopra and Ziemba, 1993). Motivated by this, several authors propose the use of the sample

global minimum variance portfolio defined in (4) (Jagannathan and Ma, 2003, Ledoit and Wolf,

2003, DeMiguel et al. 2009b, Kourtis et al. 2012, among others)

ŵMIN
t =

Σ̂−1
t 1N

1′N Σ̂−1
t 1N

(15)

Jagannathan and Ma (2003) and DGU find that the above portfolio outperforms the sample

tangency portfolio in terms of Sharpe ratios and certainty-equivalent returns in several datasets

of real returns. Recently, Kourtis et al. (2012) also derive in closed form the expected certainty-

equivalent return of the above strategy and analytically confirm the empirical results of previous

studies. GMV is also more stable than the tangency portfolio over time since the denominator of

the weights is always positive due to the positive definiteness of Σ̂t. As a results, it does not attain

values close to zero.

3.4 The sample mean-variance portfolio (MV, MVC)

The sample-based mean-variance portfolio is the sample counterpart of (6):

ŵMV
t = (1− x̂t)ŵMIN

t + x̂tŵ
TP
t , (16)

where m̂t results for using the ML estimators of the parameters. The above equation defines a “2-

fund” strategy, since it is a weighted -sum of the sample tangency portfolio and the global minimum

variance portfolio. Then, the variation of level of expected return µ0 defines the sample minimum

frontier. For 0 ≤ x̂t < 1, ŵMV
t is less sensitive to estimation risk and more stable than the sample

tangency portfolio. This is because decreasing x̂t, increases the weight given to the global minimum

variance portfolio.

For my comparisons, I also need to set x̂t. Equivalently, I need to pick an appropriate value for

µ0
t . Following Kirby and Ostdiek (2012), I choose µ0

t to be equal the sample mean return of 1/N

7



unless the latter portfolio is not in the efficient part of the sample minimum variance frontier. In

this case, I set the required return equal to the return of the closest efficient portfolio which is the

global minimum variance portfolio. In essence:

µ0
t = max{µ1/N , µMIN} (17)

where µ1/N = µ̂′1N/N .

This allows me to fairly compare the performance of the mean-variance portfolio to that of

1/N . Moreover, as shown by Kirby and Ostdiek (2012), this setting produces superior portfolios

compared to the tangency strategy in terms of both stability and out-of-sample performance. I

additionally consider the short-sale constrained version of this strategy denoted by (MVC).

3.5 The Ledoit-Wolf minimum variance portfolio (LW)

All sample-based portfolios so far employ the ML estimators of µ and Σ. Ledoit and Wolf (2003,

2004a, 2004b) develop an improved estimator of the covariance matrix based on the shrinkage

methodology of James and Stein (1961). The estimator is a convex combination of Σ̂ and a matrix

Λ̂t that is less prone to estimation errors:

Σ̂LW
t = (1− f̂t)Σ̂ + f̂tΛ̂t (18)

The set of candidates for Λ̂ include the identity matrix (Ledoit and Wolf 2004b), the constant

correlations matrix (Ledoit and Wolf 2004a) and the covariance matrix that results from the CAPM

model (Ledoit and Wolf 2003). A statistical loss function is employed for the optimal computation

of f̂t. Then, the global mimimum variance weights can be estimated by

ŵLW
t =

(
Σ̂LW
t

)−1
1N

1′N

(
Σ̂LW
t

)−1
1N

(19)

Ledoit and Wolf (2003; 2004a) find that the above strategy outperforms GMV in many cases

with regards to out-of-sample variance and Sharper. In this paper, I only consider Λt = I as a

shrinkage target where I is the identity matrix. This is because I find that it produces the lowest

out-of-sample variance compared to using the constant-correlations matrix and the matrix from an

1-factor returns model.

3.6 The 2-norm-constrained portfolio (NC)

Portfolio constraints such as no-short-sales are known to improve performance (Jagannathan and

Ma, 2003). In this context, Demiguel et al. (2009b) show that norm-constrained minimum variance

portfolios can outperform 1/N out-of-sample. They specifically augment (1),(3) with the following

constraint
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‖w‖ ≤ δt (20)

where ‖·‖ can be the 1-norm, 2-norm or a matrix norm. They use two criteria to select the parameter

δt. The first involves a cross-validation method for computing the parameter that minimizes out-of-

sample variance. The second chooses the value of δ that maximises the last period’s return. In this

manner, it aims to increase out-of-sample returns by taking into account the positive autocorrelation

in portfolio returns (see Campbell et al, 1997). In my analysis, I only include the 2-norm constrained

portfolio (NC) that maximises last period’s return on the basis of two reasons. First, the variance-

based portfolios in DeMiguel et al. (2009b) appear to perform worse than LW portfolio with regards

to out-of-sample variance. Second, the 2-norm portfolio results in higher or similar Sharpe ratios

than portfolios based on other norms.

3.7 The three-fund strategy of Tu and Zhou (2011) (3F)

Under the assumption of normal i.i.d. returns, Tu and Zhou (2011) propose the following strategy;

ŵ3F
t = π1ŵ

TP
t + π2ŵ

MIN
t + π3ŵ

1/N
t (21)

where πi’s are chosen to maximize expected certainty-equivalent return under normality. Tu and

Zhou (2011) find that this portfolio produces higher risk-adjusted returns that 1/N .

The weights in (21) define a four-fund strategy since it combines the TP, MIN, 1/N and the risk-

free asset (cis do not sum to unity). In order to make the performance of this strategy independent

of the risk-free asset and comparable to the remaining strategies in my analysis, I divide the weights

by 1′N ŵ
3F
t to end up with a portfolio of risky assets only.1

3.8 The volatility timing strategy (VT)

Kirby and Ostdiek (2012) propose several strategies that mimic some of the attractive features of

1/N while they take into account the information contained in historical returns. They show that

these timing strategies outperform 1/N out-of-sample no matter the presence of transaction costs.

Among the different timing strategies they propose, I consider here the following:

ŵVT
t =

D̂t1N

1′ND̂t1N
, (22)

where Dt is the diagonal covariance matrix, i.e. a matrix with the asset variances in the main

diagonal and zeros elsewhere. This strategy is particularly attractive since it offers a very low

turnover and positive weights. Kirby and Ostdiek (2012) also find that it offers a significantly

higher Sharpe ratio than 1/N .

1This normalization would not be plausible if 1′N ŵ
3F
t is taking values close to 0 such as the tangency portfolio. I

find that this is not the case in the datasets I consider due to the form of the weights (21). Moreover, I find that the
performance when investing in the risk-free asset is slightly worse.
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3.9 Portfolios based on the shrinkage of the inverse covariance matrix (ICV,

ICR)

The two remaining strategies I include in my analysis are derived by Kourtis et al. (2012) who

propose to apply the shrinkage methodology directly to the inverse covariance matrix. Kourtis et

al. (2012) develop the following estimator:

Ŝt = d̂tΣ̂
−1
t + (1− d̂t)F̂T (23)

where F is a matrix less sensitive to estimation errors than Σ̂−1. They apply Ŝ to estimate the

global minimum variance portfolio:

ŵic
t =

(
Ŝt

)−1
1N

1′N

(
Ŝt

)−1
1N

(24)

Kourtis et al. (2012) select d̂t in two ways similar to DeMiguel et al. (2009b); the first uses the

cross-validation technique to reduce out-of-sample variance and the second maximizes last period’s

return. They find that the first approach offers very low levels of risk while the second results

in higher Sharpe Ratios compared to other strategies from the literature (including 1/N). Among

different candidates for F̂ , Kourtis et al. (2012) find that a linear combination of the identity matrix

and the covariance matrix for the market model of Sharpe (1963) gives the best performance. Hence,

I only consider this matrix while construction ŵIC
t . ICV and ICR respectively denote the minimum

variance portfolio that results from choosing d̂t according to the variance and the return approach.

3.10 Performance and stability of sample-based portfolios

I now show that most of the sample-based strategies presented can be unstable over time and

perform worse than 1/N in the presence of transaction costs. For this purpose, I employ 5 datasets

of real monthly excess return that include 3 datasets that have been used in several previous

studies. These are the three Fama-French factors (3FF), the 10 industry portfolios (10Ind) and

the 25 size and book-to-market portfolios (25SBM). The fourth dataset (8int) consists of US-dollar

denominated returns on 8 international market portfolios (Australia, Canada, France, Germany,

Japan, Italy, UK, USA). Finally, I consider a dataset of 50 plain stocks (50SP). These are the

current S&P500 stocks that have been traded since 01/1981. As a risk-free rate, I adopt the 1-

month T-bill rate. All datasets are obtained from Kenneth French’s website except for the stocks

dataset which is obtained by Google. Table 3 includes a summary of the datasets along with the

time period each one spans. The selection of datasets allows to evaluate portfolio performance for

different numbers and types of assets at both national and international level.

In each dataset, I study how the ten strategies perform in terms of out-of-sample risk-adjusted

returns and stability over time using the rolling window method of DeMiguel et al. (2009a). In

particular, for each month t, I use the returns for the months t-T,...,t-1 to compute the portfolio
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weights ŵpt for each strategy p. In this manner, I obtain a time series of monthly excess returns

{rpt = r′tŵ
p
t } for each strategy and dataset. I compute the mean µ̂p and variance (σ̂p)2 of these

returns as well as the Sharpe ratio:

λ̂p =
µ̂p

σ̂p
(25)

which is the standard measure of the efficiency of a portfolio strategy. I also study the significance

of the difference between the Sharpe ratio of each sample-based strategy and 1/N . For this purpose,

I test the hypothesis “H0 : ŜRp − ŜR1/N = 0” following the studentised circular block bootstrap

approach of Ledoit and Wolf (2008) to obtain the respective p-value for the difference.

I characterize the stability of a strategy through the average turnover τ̂p =
1

M − T − 1

∑M−1
t=T+1 τ

p
t . High average turnover is associated with unstable portfolios and high

transaction costs. In this paper, I account for proportional variable transaction costs. Then, the

portfolio return net of transaction costs R̃pt is given by

R̃pt = (1 +Rpt )(1− κτ
p
t )− 1 (26)

where κ stands for the level of transaction costs per transaction and τpt is the turnover at time t.

In Panel A of Tables 3-7 I present the mean, variance, Sharpe ratio in annual terms and the

turnover for each portfolio strategy in the absence of transaction costs as well as the Sharpe ratio

in the presence of transaction costs of 100 basis points (κ = 0.01). One, two and three ’*’ reflect

significance at 10%, 5% and 1%, respectively. I compute these performance measures for a sample

size of 120 months (10 years of monthly returns). Since the computation of the portfolio weights

of the 3-fund strategy requires a risk aversion parameter, I set it equal to 3.2

When there are no transaction costs, the results are consistent with the existing literature even

though 1/N manages to outperform most strategies in the 8Int and 50SP datasets which are only

used here. With regards to portfolio risk, the strategies based on the shrinkage estimator of the

covariance matrix and its inverse (LW and ICV, respectively) offer lower variances compared to

both 1/N and the global minimum variance portfolio (MIN).

The results for the Sharpe ratios show the tangency portfolio is the worst performer in line with

the literature. It offers higher Sharpe ratio than 1/N only for the the 3FF and 25SBM datasets

while it even results in negative average return for the 50SP set. The Sharpe ratio for the mean-

variance portfolio with an expected return equal to than of the 1/N portfolio is higher than that

of the 1/N portfolio and the global minimum variance portfolio in all datasets except for the set

of 50 stocks. The latter is the only set where the short-sale constraint improves performance. The

five portfolios from the recent literature (NC, 3F, VT, ICV, ICR) outperform 1/N in the 10IND

and 25SBM portfolios in line with previous studies. In the 3FF set, the norm-constrained portfolio

and the 3-fund rule of Tu and Zhou (2012) offer the highest Sharpe ratio. In the international

dataset, MV, MVC, VT and ICV outperform 1/N . The most challenging dataset is the 50SP

dataset where only the norm-constrained portfolio and the volatility timing strategy outperform

2I have also considered alternative values for the risk aversion parameter with no significant change in the results
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1/N . These results highlight the need of more efficient portfolios.

I now show the importance of portfolio stability. All sample-based strategies except for the

volatility-timing portfolio produce significantly higher turnover than 1/N . As a result, the Sharpe

ratios net of transaction costs are significantly lower for all strategies except for VT. The reduction

is quite prominent for the recent contributions in the literature (NC, 3F, ICR). In fact, the Sharpe

ratios for these three strategies are negative in most of the datasets. In other words, the instability

of portfolio strategies can result in significant losses in practice. Motivated by this findings, I

develop an approach to improve portfolio stability.

4 A stability penalty to mean-variance optimization

The discussion in the previous section highlights the need of efficient portfolio strategies that offer

low turnover. The natural approach followed in the literature is to modify the constraint (2) by

subtracting the proportional transaction costs from the expected portfolio return:

w′tµ− c‖wt − w̃t‖1 ≥ µ0 (27)

In contrast to the original mean-variance problem, the transaction costs-adjusted problem in-

volves a nonlinear constraint. As such, the derivation of an analytic representation of the optimal

weights is not feasible and their calculation may be computationally demanding for a large number

of assets. It is also uncertain whether the constraint (27) improves performance significantly. For

this reason, I study the out-of-sample performance of the transaction costs adjusted mean-variance

portfolio and its short-sale constrained counterpart. I use the “fmincon” function of Matlab to

derive the portfolio weights. I again assume of proportional transaction costs of 100 bp. I present

the results in Table 8. Clearly, both sample-based portfolios are more efficient and stable com-

pared to the original portfolios. However, in two out of the five datasets 1/N still outperforms

the mean-variance portfolios in terms of Sharpe ratio. This indicates the need for more efficient

strategies. However, the lack of an analytical representation of the optimal weights under trans-

action costs does not allow the application of most of the recent advances in the estimation risk

literature. For instance, the strategies of Kourtis et al. and Tu and Zhou use the analytical form

of the optimal weights. DeMiguel et al. (2012) also found that adding the non linear constraint to

the norm-constrained portfolio worsens performance. They argue that this is due to the fact the

constraint involves the difference between a term that involves the unknown µ and a term that is

free of estimation errors.

I resolve these issues by proposing an alternative method to produce stable portfolios. I intro-

duce a penalty directly in the objective function instead of the expected return as:

min
wt

w′tΣwt + ct (wt − w̃t)′Σ (wt − w̃t) (28)

Similarly to transaction costs, the penalty increases as the weights move away from the current
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holdings w̃t. However, in contrast to using 1-norm, the deviation is measured by the Σ
1
2 norm.

Note that the objective function can be rewritten as

‖w − wMIN‖2
Σ

1
2

+ ct‖w − w̃‖2
Σ

1
2

(29)

In this manner, the objective function now represents a trade-off between efficiency and insta-

bility. The above modification of the mean-variance problem offers two advantages compared to

other methods in the literature that incorporate transaction costs. First, all terms in the objective

function are now subject to estimation risk. This may help to mitigate the problem discussed in

DeMiguel et al. (2012). Second, I am now able to derive the optimal portfolio weights in closed

form as the next proposition implies.

Proposition 1 The solution to the new portfolio choice problem is given by

w̄MV
t =

1

1 + ct
wMV
t +

ct
1 + ct

w̃t (30)

Proof. The first order conditions for the stable portfolio choice problem are:

2(1 + ct)Σwt − δ11N − δ2µ+ 2ctΣw̃t (31)

and solving for w gives:

wt =
δ1

2(1 + ct)
Σ−11N +

δ2

2(1 + ct)
Σ−1µ+

ct
(1 + ct)

w̃t (32)

Applying the constraints (2), (3) results to a linear system. If I then solve for δ1 and δ2, I end up

with (30).

Therefore, the optimal portfolio is a linear combination of the optimal portfolio without the

penalty and the current holdings of the investor. This holds for all portfolios in the mean-variance

frontier including the global minimum variance portfolio.

4.1 Treating estimation risk

The analytical form of the portfolio weights allows to jointly treat estimation risk and instability.

This is because one can use any portfolio strategy from the literature to estimate the original mean

variance weights wMV
t in (30). Then, for any strategy p, there is a stable counterpart with weights

given by

w̄p =
1

1 + cpt
ŵpt +

cpt
1 + cpt

w̃pt (33)

Moreover, there may be further portfolio performance improvements due to the imposition of

the stability penalty. To better understand this argument, I provide two interpretations of the
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stability penalty. First, note that cpt is the Lagrange multiplier of the constraint

|w − w̃‖2
Σ

1
2
< δ (34)

for some δ when this constraint is added in the original problem. DeMiguel et al. (2009b) show

that imposing norm constraints may improve portfolio performance in the presence of estimation

risk. Therefore, strategies which are subject to significant estimation errors may benefit from the

stability penalty even in the absence of transaction costs.

The second interpretation relies on the shrinkage estimation theory developed by James and

Stein (1961). In this case, the stable portfolio weights w̄p result from shrinking the original portfolio

weights ŵpt to the weights of the buy-and-hold strategy w̃pt . On one hand, the original portfolio is

a contrarian strategy; it performs well when the serial correlation of the returns is negative. On

the other hand, the buy-and-hold strategy is a momentum strategy offering high returns when the

asset returns are positively autocorrelated. Therefore, the stable portfolio diversifies between a

contrarian and a momentum strategy and this may lead to performance improvements when the

market is in momentum.

4.2 Treating portfolio instability

I now discuss how the stability penalty reduces the magnitude of transaction costs for any strategy

p. It is simple to verify that the turnover of the stable portfolio is

τ̄pt =
1

1 + cpt
τ̂pt (35)

As the above relation indicates, for cpt ≥ 0 the turnover of the stable portfolio is decreasing

with cpt and is less than the turnover of the original portfolio. The larger cpt is, the more stable the

portfolio is and the less the transaction costs are. In the special case that cpt goes to infinity, the

investor will select the portfolio of the previous period and transaction costs will approach 0.

The choice of the stability parameter cpt is critical in my approach. In this work, I propose

two alternative ways to choose it.3 First, at each period t, I set the value of cpt that matches the

turnover of the stable strategy to that of 1/N . This is because 1/N is known to offer very low

turnover compared to other strategies while being the benchmark in this paper. Then, the stability

parameter is given by

ĉpt =
τ̂pt − τ̂

1/N
t

τ̂
1/N
t

(36)

so that τ̄pt = τ̂
1/N
t .

To further improve performance, the second approach for selecting the stability parameter

makes use of the positive autocorrelation of portfolio returns in line with the work of Demiguel

3Alternative to these, one can easily fix the stability parameter in order to achieve a desired level of transaction
costs.
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et al. (2009b) and Kourtis et al. (2012). In particular, I choose the value of cpt that lies in the

interval [0, ĉpt ] so that the resulting stable portfolio maximizes the return of the previous period.

As a result, at each period, the investor will either hold the stable portfolio for cpt = ĉpt or she will

not trade. In the latter case, the turnover will be zero further reducing the average turnover and

transaction costs over time.

In the following, I present an efficient method for estimating the expected turnover of 1/N . The

latter is central in my approach since it characterizes the stability of all stable portfolios and the

magnitude of transaction costs that one should expect.

4.3 The distribution of the turnover

Several studies investigate the distribution of the portfolio weights, means, variance, certainty-

equivalent return and the Sharpe ratio (e.g., Ohkrin and Schmid, 2006, Kan and Zhou, 2007, Kan

and Smith, 2008, Kourtis et al. 2012). In light of the results of this study, portfolio turnover is also

an important variable in portfolio optimization. It is important then to study the distribution of

the portfolio turnover. Assuming normality, I next present an analytic approximate expression for

the distribution and the expectation turnover of the 1/N strategy. This allows to make inference

on the expected turnover of the stable portfolios proposed in this paper. Let Rt ∼ N(mt,Σ) where

mt = µ+ rft . The turnover of 1/N at time t is

τ
1/N
t =

N∑
i=1

∣∣∣∣∣ 1

N
−

1
N +Ri,t

1 +
∑N

j=1
Rj,t
N

∣∣∣∣∣ =
N∑
i=1

∣∣∣∣ R̄t −Rj,tN(1 + R̄t)

∣∣∣∣ (37)

where R̄t =
∑N

j=1

Rj,t
N

is the cross-sectional average of the returns. To determine the distribution

of τ
1/N
t , I first examine the joint distributions of the numerator and denominator by setting Yi,t =

R̄t − Rit and Xt = N(1 + R̄t). It is easy to confirm that Yi,t and Xt are normally distributed as

sums of normally distributed variables. Their first two moments and their covariance are given by

µYi,t := E (Yi,t) = m̄t −mi,t (38)(
σYi,t
)2

=
1′NΣ1N
N2

+ σ2
ii,t − 2

e′iΣ1N
N

(39)

µX := E (Xt) = N(1 + m̄t) (40)(
σXt
)2

= 1′NΣ1N (41)

σYi,t,Xt =
1′NΣ1N
N

− e′iΣ1N
N

(42)

for ei being a N -dimensional vector with 1 in the i − th entry and zero elsewhere. The exact

distribution of the ratio of two dependent normal variables (Y,X) is the subject in several studies

(e.g., Marsaglia, 1965, Hinkley 1969). In general, the moments of the ratio do not exist. Under the

assumption of P (Xt‘0 ' 0), Hayya et al. (1975) provide a handful approximation of the distribution

Y/X that I employ in this paper. Hayya et al. show that Y/X approximately follows a normal
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distribution if

cv(X) < 0.09, cv(Y ) > 0.19, |ρ(Y,X)| < 0.5 (43)

where cv and ρ respectively denote the coefficient of variation and the correlation. Table 9 reports

cv(Xt) and the cross-sectional average, minimum and maximum of cv(Yi,t) and |rho(Yi,t, Xt)| for

each dataset of returns estimating mt and Σt with the sample mean and covariance matrix. I

observe that the conditions (43) are fulfilled. Therefore, an approximation of the distribution of

Wi,t =
Yi,t
Xt

can be obtained through Taylor approximation as

Wi,t ∼ N(µWi
t , (σWi)2

t ) (44)

µWi
t =

µYi,t

µXt
+ (σXt )2

µYi,t(
µXt
)3 − σYi,t,Xt(

µXt
)2 (45)

(σWi
t )2 = (σXt )2)

(
µYi,t

)2

(
µXt
)4 +

(σYi,t)
2(

µXt
)2 − 2

σYi,t,XtµYi,t(
µXt
)3 (46)

Given the approximate normality of Wi,t, the turnover of each asset |Wi,t| approximately follows

a folded normal distribution with the same distribution parameters. In figure 1, I compare the real

cdf of the turnover of the first asset (solid line) to the approximate cdf (dashed line) for the 8Int,

10ind, 25SBM and 50SP datasets. The cdfs are computed using a sample of 10,000 simulated returns

drawn from the multivariate normal distribution with moments equal to the sample moments of the

four datasets. The figure confirms that the approximation is accurate in all datasets. Therefore,

the expected turnover for the i-asset of the 1/N strategy can be computed by

E|Wi,t| = σWi
t

√
2

π
e
− (µ

Wi
t )2

2(σ
Wi
t )2 + µWi

t (

(
1− 2Φ(−µ

Wi
t

σWi
t

)

)
(47)

where Φ is the cdf of the standard normal distribution.

The distribution of the turnover of the 1/N strategy can then be approximated by a sum

of folded normal distributions (W ∼
∑N

i=i FN(µWi , (ΣW )2)). An approximation of the expected

turnover is then given

E(τ̂1/N ) =
N∑
i=1

E|Wi,t| (48)

The above approximation allows the estimation of the turnover of 1/N using the ML estimators

of the sample moments. In panel B of Table 9 I compare the average of this estimator to the

average realised turnover of the 1/N strategy (Tables 3-7). The estimation is performed using a

rolling window approach with a sample size of 120 months. The results confirm the accuracy of the

estimator which also offers low standard errors.
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5 Performance of the stable portfolios

In this section, I evaluate the stability approach by applying it to the sample-based strategies

presented in section 3. Panel B of Tables 3-7, contains the mean, variance and turnover of the

stable strategies as well as their Sharpe ratio in the absence and presence of transaction costs. The

first column for the turnover and the transaction costs-adjusted Sharpe ratio corresponds to the

stability parameter that matches the turnover of the sample-based strategy to that of 1/N . The

second column reports in parenthesis these measures when the stability parameter maximizes last

period’s return. All performance metrics are derived following the procedure discussed in Panel

A. It is convenient to discuss the results in three parts since there are similarities between some

datasets.

5.1 Performance in the 3FF dataset

This dataset contains the returns of only 3 assets leaving less room for estimation risk. As the

results in Panel A of Table 3 indicate, 1/N achieves a Sharpe ratio of 0.841 when there are no

transaction costs while the norm-based portfolio and three-fund strategy produce the highest Sharpe

ratios of 0.96 and 0.946 respectively. In fact, most portfolio strategies perform better than naive

diversification. Interestingly though, 1/N outperforms the minimum variance portfolio (MIN) and

the shrinkage-based portfolios (LW, ICV, and ICR) as well as the volatility timing strategy.

Due to the small number of assets, the level of turnover for the sample-based strategies is

comparatively low in comparison with the remaining datasets. As expected, 1/N is the most stable

strategy with a turnover of 0.023. The remaining strategies attain similar levels excluding NC and

ICR which result in turnover of 0.161 and 0.411, respectively. Because of the large turnover of the

latter strategy, the corresponding Sharpe ratio is negative once I account for transaction costs of

100 bp. This result indicates the importance of portfolio stability.

Examining the results in Panel B, I find that the stability penalty improves the Sharpe ratio of

almost all strategies, even in the absence of transaction costs. The most significant improvement

is observed for the ICR strategy where the Sharpe ratio increases from 0.666 to 0.909 higher than

that of 1/N . For most strategies, the increase in the Sharpe ratio mainly comes from an increase

in the mean return rather than a decrease in the variance. When the stability parameter is chosen

to maximize portfolio return, the turnover ranges from 0.006 to 0.016 significantly lower than the

turnover of 1/N .

The improvement in the performance due to the stability approach is more prominent in the

presence of transaction costs. More notably, the Sharpe ratio of the norm-based and the ICR

portfolios respectively increase from 0.626 and -0.052 to 0.84 and 0.866 when the turnover is equal

to that of 1/N . When the stability parameter is selected according to the momentum criterion,

portfolio performance is further improved to the point that all sample-based strategies apart from

the volatility timing strategy outperform 1/N .
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5.2 Performance in the 10Ind and 25SBM datasets

I discuss the results for both datasets jointly (Tables 5, 6) since similar conclusions can be drawn.

Starting with panel A, the Sharpe ratios under no transaction costs confirm the findings of previous

studies since all sample strategies apart from the tangency portfolio outperform 1/N . The largest

Sharpe ratio is observed for the ICR strategy in the 10ind set (0.926) and for the 3F strategy in

the 25SBM set (1.18). In both sets the Sharpe ratio of 1/N is significantly lower (0.542 and 0.512,

respectively).

The results for the turnover again confirm the stability of 1/N and the volatility timing strategy

compared to other sample-based strategies. The turnover of these two portfolio ranges from 0.017

to 0.025. The remaining strategies attain a turnover between 0.114 and 1.735 in the 10Ind set and

between 0.320 and 38.19 in the 25SBM set. Clearly, the stability of the strategies deters with the

number of assets since in this case estimation risk is higher. The most unstable strategies are the

tangency portfolio, the norm-constrained portfolio and the portfolio based on the shrinkage of the

inverse covariance under the returns criterion (ICR). Once I account for transaction costs, these

strategies result to negative risk-adjusted returns. In this setting, 1/N offers higher Sharpe ratio

than most sample-based strategies. In the 10Ind dataset, only MIN, LW, VT and ICV perform

better than naive diversification. In the 25SBM set, only LW and VT offer a higher Sharpe ratio.

These findings again reveals the need for stable portfolios.

In panel B of Tables 5 and 6, I report the Sharpe ratios for the stable counterparts of all

strategies. In the absence of transaction costs, the results are mixed with some strategies performing

slightly better and other somewhat worse than their original analogues. However, under transaction

costs of 100 bp, all stables strategies offer higher Sharpe ratios than 1/N . The most significant

improvement is naturally observed for NC and ICR which are the most unstable strategies examined

here. For example, in the 25SBM dataset the Sharpe ratio of ICR increases from -2 to 0.595 when

the turnover is equal to that of 1/N and to 0.596 when the stability parameter maximizes last

period’s portfolio return. As expected, the latter results to even more stable portfolios than 1/N in

terms of turnover. In general, the two selection criteria for the stability parameter lead to similar

Sharpe ratios which are higher than 1/N .

The potential of the stability approach in improving portfolio performance is best illustrated

by examining the results for the tangency portfolio in the 10Ind dataset. As discussed in section 2,

this portfolio is very sensitive to estimation errors and very unstable by construction. This is clear

by the results in Panel A; the Sharpe ratio is comparatively the lowest (0.289) and the turnover is

more than 50 times that of 1/N . As a result, the tangency portfolio generates a negative Sharpe

ratio net of transaction costs of -0.29. Imposing the stability penalty though dramatically improves

both the Sharpe ratio and the turnover. In fact, under the second criterion for selecting the stability

parameter the tangency portfolio is most stable and efficient than 1/N offering a Sharpe ratio of

0.5241 net of transaction costs and a turnover of 0.014.
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5.3 Performance in the 8Int and 50SP datasets

The dataset of 8 international portfolios (Table 4) along with the 50 stocks dataset (Table 7) are

the most challenging environment for testing the stability approach. According to the results in

the first set (Table 4, Panel A), none of the sample strategies significantly outperforms 1/N apart

from the volatility timing strategy. Moreover, most of the strategies are very unstable compared

to 1/N . The highest turnover again comes from the TP, 3F, NC and ICR portfolios (8.355, 20.41,

0.97, 1.973, respectively). These strategies are disabled by transaction costs resulting in negative

Sharpe ratios. Only the VT strategy outperforms 1/N in the presence of transaction costs. In the

50SP set, the sample-based strategies perform even worse due to the large number of assets and

the magnitude of estimation risk. All strategies apart from VT and NC perform worse than 1/N

in terms of both Sharpe ratio and turnover. Due to instability, most strategies result in negative

Sharpe ratio under transaction costs of 100 bp. Therefore, it is interesting to see the extent to

which the stability approach improves performance.

As Panel B of Tables 4 and 7 indicates, the stability penalty manages to drastically increase

Sharpe ratio while reducing turnover. For the 8Int dataset, I find that the Sharpe ratio for all

stable portfolios except from TP, 3F and LW is higher than that of 1/N . This holds in both the

presence and the absence of transaction costs. Optimizing the stability parameter further increases

the Sharpe ratio. ICR and ICV and NC offer the highest Sharpe ratios of 0.419, 0.3592 compared

to 0.327 of 1/N . Similar conclusions can be drawn by studying the respective results for the 50

stocks dataset (Table 7, Panel B). The stability approach improves all strategies in terms of Sharpe

ratio and turnover, especially when the return-based stability criterion is employed. The highest

Sharpe ratio net of transaction costs is obtained for the ICR strategy (0.75 compared to 0.6638 of

1/N). Overall, the results confirm that the stability penalty is successful in producing portfolios

that are both stable and efficient.

6 Conclusions

In this paper, I deal with the two main problems in the applicability of mean-variance portfolios:

estimation risk and instability. I show that most existing sample-based strategies underperform

1/N in the presence of transaction costs. This is because estimation errors increase instability as

this is measured by the portfolio turnover. Motivated by this finding, I develop a new method to

jointly treat estimation errors and instability. In particular, I propose to augment the investor’s

objective with a penalty that controls the deviation from the portfolio before rebalancing through

a stability parameter.

The main advantage of my method compared to other approaches in the literature is that it

leads to intuitive analytical representations of the portfolio weights. As such, it can effectively treat

estimation risk since it can be readily applied to stabilise any efficient sample-based strategy. I

further provide two interpretations to show that the stability penalty may improve performance

even in the absence of transaction costs. To treat instability, I propose two selection criteria for the
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stability parameter. The first equalizes the turnover of the sample-based strategy to that of 1/N .

The second maximizes last month’s portfolio return on the basis of the reported momentum effect.

In my empirical analysis I apply the stability approach to several sample-based strategies from

the literature. I find that the resulting stable portfolio strategies outperform 1/N under most

scenarios even in the presence of high transaction costs. At the same time, they offer a turnover

which is equal or less than the turnover of 1/N . Among the two selection criteria for the stability

parameter, the momentum-based parameter leads to higher Sharpe ratios and lower turnovers.

Overall, my results confirm that the stability approach leads to stable and efficient portfolios.
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Table 1: List of portfolio strategies

This table reports the portfolio strategies considered in the performance analysis.

Abbreviation Description

1/N Equal-weighted portfolio

TP Sample tangency portfolio

MIN Sample global minimum variance portfolio

MV Sample mean-variance portfolio with a required return equal to the return of 1/N

MVC Short-sale constrained mean variance portfolio with a required return equal to the return of
1/N

LW Minimum variance portfolio that results from shrinking the covariance matrix to the identity
(Ledoit and Wolf 2004b)

NC 2-norm constrained minimum variance portfolio that exploits the positive autocorrelation of
portfolio returns (DeMiguel et al. 2009b)

3F The linear combination of MEAN, GMV and 1/N portfolios proposed in Tu and Zhou (2011)

VT Minimum variance portfolio that results from using a diagonal covariance matrix (Kirby and
Ostdiek, 2012)

ICV Minimum variance portfolio that results from shrinking the ML estimator of the inverse co-
variance matrix to a linear combination the identity and the inverse covariance matrix from
a 1-factor model. The shrinkage parameters minimize out-of-sample variance (Kourtis et al.
2012)

ICR Minimum variance portfolio that results from shrinking the ML estimator of the inverse co-
variance matrix to a linear combination of the identity and the inverse covariance matrix from
a 1-factor model. The shrinkage parameters maximize last period’s return (Kourtis et al.
2012)
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Table 2: List of datasets

This table lists the datasets of monthly excess returns that I use for the performance analy-
sis along with the time period they span. All data are obtained from Kenneth French’s website
(http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html) apart from the stocks dataset
which is obtained by Google. I use the 30-day T-bill rate, also obtained from Kenneth French’s website, for the
derivation of excess returns

Abbreviation Time Period Description

3FF 07/1969-09/2012 3 Fama-French factors

8Int 01/1981-12/2011 8 international market portfolios (Australia,
Canada, France, Germany, Japan, Italy, UK
and USA)

10Ind 07/1969-09/2012 10 industry portfolios

25FF 07/1969-09/2012 25 size and book-to-market portfolios

50S&P 01/1981-10/2012 50 S&P 500 stocks

24



Table 3: Results for the 3 Fama French Dataset

This table summarizes the out-of-sample performance of the strategies described in Table 1 in the 3 Fama French
dataset. Panel A reports the average return, variance and Sharpe ratio in annual terms and the average turnover. It
also reports the Sharpe ratio in the presence of proportional transaction costs of 100 basis points. All these measures
are derived using a rolling window approach for a sample size of 120 months. One, two or three stars next to the
Sharpe ratio of the sample-based strategies indicate that the difference from the Sharpe ratio of 1/N is statistically
significant at the 10%, 5% and 1% level, respectively. This hypothesis test is performed using a studentized circular
block bootstrap method with 1000 trials and an expected block size of 5. Panel B reports the same metrics as in
Panel A for the stable counterparts of the strategies of Table 1. Stability is enforced by setting the turnover of the
sample-based strategies equal to the turnover of 1/N as described in the text. The table also reports in parenthesis
the Sharpe ratio and turnover when stability is enforced so that it maximizes last month’s portfolio return (see text
for more details).

No transaction costs Transaction costs

Strategy µ̂p (σ̂p)2 θ̂p τ̂p θ̂p

1/N 0.0547 0.0042 0.8405 0.0229 0.7983

Panel A: Original strategies

TP 0.0651 0.0051 0.9143 0.0509 0.8289
MIN 0.0415 0.0032 0.7336 0.0243 0.6833
MV 0.0518 0.0033 0.8966* 0.0358 0.8232

MVC 0.0518 0.0033 0.8966* 0.0358 0.8232
LW 0.0424 0.0032 0.7473 0.0237 0.6983
NC 0.0562 0.0034 0.9613*** 0.1609 0.6263*
3F 0.0608 0.0041 0.9455** 0.0360 0.8795*
VT 0.0348 0.0034 0.5956** 0.0231 0.5492**
ICV 0.0404 0.0032 0.7150* 0.0252 0.6627*
ICR 0.0457 0.0047 0.6662* 0.4109 -0.0520***

Panel B: Stable strategies

TP 0.0678 0.0053 0.9283 0.0229 (0.0091) 0.8910 (0.9666)
MIN 0.0419 0.0032 0.7380 0.0229 (0.0059) 0.6899 (0.8278)
MV 0.0538 0.0034 0.9280* 0.0229 (0.0059) 0.8809* (0.9492**)

MVC 0.0527 0.0033 0.9148* 0.0229 (0.0073) 0.8674* (0.9399***)
LW 0.0432 0.0033 0.7543 0.0229 (0.0059) 0.7066 (0.8404*)
NC 0.0547 0.0038 0.8841* 0.0229 (0.0142) 0.8401* (0.8737**)
3F 0.0650 0.0043 0.9850*** 0.0229 (0.0079) 0.9438*** (0.9963***)
VT 0.0352 0.0035 0.5985* 0.0229 (0.0070) 0.5520 * (0.7050)
ICV 0.0405 0.0032 0.7146 0.0229 (0.0061) 0.6664 (0.8099)
ICR 0.0572 0.0040 0.9088** 0.0229 (0.0155) 0.8660** (0.8812**)
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Table 4: Results for the 8 International Portfolios Dataset

This table summarizes the out-of-sample performance of the strategies described in Table 1 in the 8 international
portfolios dataset. Panel A reports the average return, variance and Sharpe ratio in annual terms and the average
turnover. It also reports the Sharpe ratio in the presence of proportional transaction costs of 100 basis points. All
these measures are derived using a rolling window approach for a sample size of 120 months. One, two or three
stars next to the Sharpe ratio of the sample-based strategies indicate that the difference from the Sharpe ratio of
1/N is statistically significant at the 10%, 5% and 1% level, respectively. This hypothesis test is performed using a
studentized circular block bootstrap method with 1000 trials and an expected block size of 5. Panel B reports the
same metrics as in Panel A for the stable counterparts of the strategies of Table 1. Stability is enforced by setting
the turnover of the sample-based strategies equal to the turnover of 1/N as described in the text. The table also
reports in parenthesis the Sharpe ratio and turnover when stability is enforced so that it maximizes last month’s
portfolio return (see text for more details).

No transaction costs Transaction costs

Strategy µ̂p (σ̂p)2 θ̂p τ̂p θ̂p

1/N 0.0577 0.0282 0.3438 0.0241 0.3265

Panel A: Original strategies
TP 0.0956 1.8203 0.0708* 8.3554 -0.2808***

MIN 0.0432 0.0203 0.3031 0.1190 0.2026**
MV 0.0553 0.0248 0.3512 0.1650 0.2250*

MVC 0.0569 0.0256 0.3556 0.0939 0.2850
LW 0.0453 0.0204 0.3171 0.0833 0.2469*
NC 0.0438 0.0231 0.2881* 0.9667 -0.4722***
3F 0.5332 13.2279 0.1466** 20.4056 -0.2174***
VT 0.0596 0.0265 0.3660 0.0242 0.3482
ICV 0.0500 0.0205 0.3486 0.0992 0.2652*
ICR 0.0275 0.0268 0.1677** 1.9726 -1.2080**

Panel B: Stable strategies
TP 0.2236 0.5427 0.3035* 0.0241 (0.0157) 0.2995* (0.2043*)

MIN 0.0528 0.0225 0.3525 0.0241 (0.0094) 0.3332 (0.3754)
MV 0.0570 0.0237 0.3704* 0.0241 (0.0112) 0.3516 (0.3995)

MVC 0.0595 0.0264 0.3660 0.0241 (0.0241) 0.3482 (0.3529)
LW 0.0509 0.0221 0.3427 0.0241 (0.0241) 0.3232 (0.3232)
NC 0.0599 0.0265 0.3681 0.0241 (0.0203) 0.3503 (0.3551)
3F 0.0544 0.0283 0.3237 0.0241 (0.0102) 0.3065 (0.3204)
VT 0.0598 0.0266 0.3670 0.0241 (0.0060) 0.3493 (0.3627)
ICV 0.0570 0.0227 0.3784* 0.0241 (0.0241) 0.3592* (0.3592*)
ICR 0.0709 0.0277 0.4264** 0.0241 (0.0209) 0.4090** (0.4185**)
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Table 5: Results for the 10 Industry Portfolios Dataset

This table summarizes the out-of-sample performance of the strategies described in Table 1 in the 10 industry
portfolios dataset. Panel A reports the average return, variance and Sharpe ratio in annual terms and the average
turnover. It also reports the Sharpe ratio in the presence of proportional transaction costs of 100 basis points. All
these measures are derived using a rolling window approach for a sample size of 120 months. One, two or three
stars next to the Sharpe ratio of the sample-based strategies indicate that the difference from the Sharpe ratio of
1/N is statistically significant at the 10%, 5% and 1% level, respectively. This hypothesis test is performed using a
studentized circular block bootstrap method with 1000 trials and an expected block size of 5. Panel B reports the
same metrics as in Panel A for the stable counterparts of the strategies of Table 1. Stability is enforced by setting
the turnover of the sample-based strategies equal to the turnover of 1/N as described in the text. The table also
reports in parenthesis the Sharpe ratio and turnover when stability is enforced so that it maximizes last month’s
portfolio return (see text for more details).

No transaction costs Transaction costs

Strategy µ̂p (σ̂p)2 θ̂p τ̂p θ̂p

1/N 0.0804 0.0220 0.5418 0.0240 0.5223

Panel A: Original strategies

TP 0.0774 0.0718 0.2889* 1.3037 -0.2954
MIN 0.0865 0.0148 0.7107* 0.1570 0.5557
MV 0.0848 0.0159 0.6734* 0.2160 0.4665*

MVC 0.0766 0.0156 0.6130 0.1143 0.5032
LW 0.0849 0.0143 0.7114* 0.1066 0.6044
NC 0.1053 0.0164 0.8221** 0.9483 -0.0755***
3F 0.0817 0.0170 0.6257 0.1797 0.4613*
VT 0.0818 0.0189 0.5945 0.0249 0.5727
ICV 0.0868 0.0146 0.7191* 0.1142 0.6058*
ICR 0.1499 0.0262 0.9256*** 1.7349 -0.3753***

Panel B: Stable strategies

TP 0.1476 0.1201 0.4260* 0.0240 (0.0141) 0.4178 (0.5241)
MIN 0.0897 0.0153 0.7251** 0.0240 (0.0112) 0.7017 (0.6853)
MV 0.0896 0.0173 0.6806** 0.0240 (0.0106) 0.6586** (0.6371**)

MVC 0.0781 0.0163 0.6115* 0.0240 (0.0124) 0.5889* (0.5824*)
LW 0.0844 0.0146 0.6997** 0.0240 (0.0116) 0.6757** (0.6774**)
NC 0.0820 0.0178 0.6150* 0.0240 (0.0205) 0.5933* (0.5996*)
3F 0.0798 0.0172 0.6083 0.0240 (0.0127) 0.5863 (0.5826)
VT 0.0819 0.0190 0.5946 0.0240 (0.0058) 0.5736 (0.5855)
ICV 0.0857 0.0148 0.7044** 0.0240 (0.0115) 0.6806** (0.6854**)
ICR 0.0840 0.0166 0.6512** 0.0240 (0.0217) 0.6287** (0.6286**)
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Table 6: Results for the 25 Size and Book-to-Market Portfolios Dataset

This table summarizes the out-of-sample performance of the strategies described in Table 1 in the 25 size and
book-to-market dataset. Panel A reports the average return, variance and Sharpe ratio in annual terms and the
average turnover. It also reports the Sharpe ratio in the presence of proportional transaction costs of 100 basis
points. All these measures are derived using a rolling window approach for a sample size of 120 months. One, two or
three stars next to the Sharpe ratio of the sample-based strategies indicate that the difference from the Sharpe ratio
of 1/N is statistically significant at the 10%, 5% and 1% level, respectively. This hypothesis test is performed using
a studentized circular block bootstrap method with 1000 trials and an expected block size of 5. Panel B reports the
same metrics as in Panel A for the stable counterparts of the strategies of Table 1. Stability is enforced by setting
the turnover of the sample-based strategies equal to the turnover of 1/N as described in the text. The table also
reports in parenthesis the Sharpe ratio and turnover when stability is enforced so that it maximizes last month’s
portfolio return (see text for more details).

No transaction costs Transaction costs

Strategy µ̂p (σ̂p)2 θ̂p τ̂p θ̂p

1/N 0.0893 0.0304 0.5123 0.0173 0.5004

Panel A: Original strategies

TP 0.4869 0.5918 0.6329* 38.1853 -0.3266***
MIN 0.1448 0.0177 1.0882*** 0.8140 0.3462**
MV 0.1428 0.0177 1.0722*** 0.8623 0.2870**

MVC 0.1282 0.0344 0.6919* 0.5008 0.3595*
LW 0.1212 0.0159 0.9617*** 0.3197 0.6552
NC 0.1416 0.0197 1.0098*** 3.7935 -1.8537***
3F 0.2010 0.0289 1.1826*** 1.3717 0.1968*
VT 0.0915 0.0279 0.5481 0.0182 0.5351
ICV 0.1267 0.0169 0.9754*** 0.5659 0.4488
ICR 0.1917 0.0376 0.9881*** 5.3635 -2.0003***

Panel B: Stable strategies

TP 0.2561 0.3141 0.4570 0.0173 (0.0117) 0.4533 (0.4466)
MIN 0.1158 0.0208 0.8025*** 0.0173 (0.0094) 0.7881*** (0.7533**)
MV 0.1175 0.0219 0.7950*** 0.0173 (0.0082) 0.7809*** (0.7474**)

MVC 0.0845 0.0255 0.5291 0.0173 (0.0102) 0.5160 (0.5299)
LW 0.1094 0.0201 0.7707** 0.0173 (0.0101) 0.7560*** (0.7189**)
NC 0.0978 0.0271 0.5941* 0.0173 (0.0157) 0.5814 (0.5872)
3F 0.1121 0.0288 0.6607** 0.0173 (0.0115) 0.6484** (0.6205**)
VT 0.0914 0.0279 0.5473* 0.0173 (0.0043) 0.5348* (0.5471*)
ICV 0.1117 0.0202 0.7865** 0.0173 (0.0093) 0.7718** (0.7407**)
ICR 0.0984 0.0262 0.6082* 0.0173 (0.0160) 0.5953** (0.5959**)
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Table 7: Results for the 50 S&P500 Stocks Dataset

This table summarizes the out-of-sample performance of the strategies described in Table 1 in the 50 S&P500 stocks
dataset. Panel A reports the average return, variance and Sharpe ratio in annual terms and the average turnover. It
also reports the Sharpe ratio in the presence of proportional transaction costs of 100 basis points. All these measures
are derived using a rolling window approach for a sample size of 120 months. One, two or three stars next to the
Sharpe ratio of the sample-based strategies indicate that the difference from the Sharpe ratio of 1/N is statistically
significant at the 10%, 5% and 1% level, respectively. This hypothesis test is performed using a studentized circular
block bootstrap method with 1000 trials and an expected block size of 5. Panel B reports the same metrics as in
Panel A for the stable counterparts of the strategies of Table 1. Stability is enforced by setting the turnover of the
sample-based strategies equal to the turnover of 1/N as described in the text. The table also reports in parenthesis
the Sharpe ratio and turnover when stability is enforced so that it maximizes last month’s portfolio return (see text
for more details).

No transaction costs Transaction costs

Strategy µ̂p (σ̂p)2 θ̂p τ̂p θ̂p

1/N 0.1074 0.0233 0.7031 0.0501 0.6638

Panel A: Original strategies

TP -0.0253 0.1658 -0.0621*** 2.7254 -0.8265***
MIN 0.0352 0.0223 0.2353** 0.5227 -0.1862***
MV 0.0346 0.0222 0.2323** 0.5326 -0.1991***

MVC 0.0726 0.0135 0.6245* 0.1284 0.4919**
LW 0.0661 0.0135 0.5685* 0.2133 0.3475**
NC 0.0992 0.0174 0.7518 1.6295 -0.7181***
3F 0.0641 0.0220 0.4319** 0.5765 -0.0352***
VT 0.0970 0.0178 0.7270* 0.0479 0.6841*
ICV 0.0698 0.0134 0.6039* 0.2033 0.3921**
ICR 0.1008 0.0311 0.5718** 2.3141 -0.9999***

Panel B: Stable strategies

TP 0.5950 12.7863 0.1664** 0.0501 (0.0293) 0.1647** (0.0777**)
MIN 0.0764 0.0328 0.4215** 0.0501 (0.0237) 0.3883** (0.4022**)
MV 0.0842 0.0479 0.3849** 0.0501 (0.0236) 0.3574** (0.3769**)

MVC 0.0748 0.0139 0.6342 0.0501 (0.0216) 0.5831 (0.6018)
LW 0.0737 0.0154 0.5943* 0.0501 (0.0226) 0.5457* (0.5164*)
NC 0.0934 0.0162 0.7342* 0.0501 (0.0385) 0.6868* (0.7040*)
3F 0.0923 0.0184 0.6802 0.0501 (0.0265) 0.6358 (0.6749)
VT 0.0972 0.0179 0.7260* 0.0501 (0.0081) 0.6810* (0.7297*)
ICV 0.0751 0.0138 0.6381* 0.0501 (0.0196) 0.5868* (0.6145)
ICR 0.0932 0.0144 0.7764** 0.0501 (0.0414) 0.7260** (0.7505**)
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Table 8: Performance of optimal portfolios under transaction costs

This table reports the Sharpe ratio in annual terms (Panel A) and the average turnover (Panel B) for the
equal-weighted portfolio and two mean-variance portfolios that are optimal under proportional transaction costs
of 100 basis points. These measures are derived using a rolling window approach for a sample size of 120
months. One, two or three stars next to the Sharpe ratio of the sample-based strategies indicate that the
difference from the Sharpe ratio of 1/N is statistically significant at the 10%, 5% and 1% level, respectively.
This hypothesis test is performed using a studentized circular block bootstrap method with 1000 trials and an
expected block size of 5. MV denotes the mean-variance portfolio with a required level of return net of trans-
action costs equal to the return of the equal weighted portfolio. MVC is the short-sale constrained counterpart of MV.

Strategy 3FF 8Int 10Ind 25SBM 50SP

Panel A: Sharpe Ratio

1/N 0.7983 0.3265 0.5223 0.5004 0.6638
MV 0.8658* 0.3020 0.7065** 0.9132*** 0.2052*

MVC 0.9096** 0.3241 0.6120* 0.1405** 0.6016

Panel B: Turnover

1/N 0.0229 0.0241 0.0240 0.0173 0.0501
MV 0.0100 0.0236 0.0329 0.0382 0.1423

MVC 0.0083 0.0156 0.0165 0.6350 0.0651
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Table 9: Distributional properties of the turnover of 1/N

This table contains a set of useful statistics (Panel A) that enable the approximation of the distribution of the
turnover as this is derived in subsection 4.3. Panel B contains the average turnover of the 1/N portfolio for each
dataset of Table 2 and its estimator computed using the suggestions in subsection 4.3. It also reports the standard
error of the estimator.

Statisic 3FF 8Int 10Ind 25FF 50SP

Panel A: Useful statistics

cv(X) 0.018581 0.047835 0.042277 0.049593 0.0435
¯cv(Yi) 24.66742 63.05045 50.02501 49.84192 165.0798

min(cv(Yi)) 5.335742 8.93878 12.90212 6.393113 6.775161
ρ̄(X,Yi) 0.3324 0.214677 0.264381 0.236444 0.227137

max(ρ(X,Yi)) 0.49174 0.377236 0.514432 0.489793 0.548175
Panel B: Turnover estimators for 1/N
ˆτ1/N 0.0229 0.0241 0.0240 0.0173 0.0501

τ̃1/N 0.0248 0.0290 0.0243 0.0190 0.0537
S.E 0.0019 0.0049 0.0003 0.0016 0.0036
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Figure 1: True vs approximate cdf of the turnover for the 1/N portfolio

This figure shows the real cumulative distribution function (cdf) of the turnover for the first asset of the 1/N
portfolio and the approximate cdf derived in subsection 4.3 in the paper. Panels A, B, C and D correspond to the
8Int, 10Ind, 25SBM and 50SP datasets (see Table 2 for a description). Both cdfs are derived under the assumption
of the asset returns follow a multivariate normal distribution with mean and covariance equal to their sample
counterparts. For the construction of the cdfs 10,000 random normal observations were extracted from the returns
distribution.
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