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ABSTRACT

This paper investigates the role of monetary policy as a source of time-varying priced risk

in bond markets. We use individual agents forecasts of Federal Funds, GDP and inflation to

construct an empirical proxy for policy shocks from the residuals of Taylor rule regressions. Key

to our analysis is a distinction between (pro-cyclical) target rate shocks and (counter-cyclical)

path shocks. We show that path shocks account for between 10% − 15% of the variance of

one-year expected excess returns on bonds with maturities 2−5 years and are also priced in the

cross-section of equity returns.
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I. Introduction

Monetary policy and bond prices are connected via two channels. Firstly, central banks use the

nominal short-term rate as a primary policy instrument. Secondly, the absence of arbitrage oppor-

tunities implies that bond yields reflect risk neutral expectations about future short rates. Hence,

both institutional features (short rate as a policy instrument) and economic restrictions (no arbi-

trage) enforce a fundamental link between monetary policy and entire term structure of interest

rates. Indeed, a large literature documents strong responses in yields to news about monetary

policy (see, for instance, Kuttner (2001), Fleming and Piazzesi (2005), and Gurkaynak, Sack, and

Swanson (2005)). However, little is known about whether there is a link between montary policy

and bond risk premia. This paper uses a new approach to identify expectations about the future

path of monetary policy and shows that path shocks represent a source of priced risk and are

important in explaining time-variation in bond risk premia.

Empirically, measuring the actions of monetary policy is a challenging task. A first difficulty is

related to the fact that a significant component of policy actions reflects the systematic response

of the policy instrument to the macro-economic environment, rather than exogenous policy shocks.

In practice, researchers make identifying assumptions to be able to disentangle the systematic com-

ponent from the monetary policy shock. Needless to say, the dynamic properties of the resulting

decomposition are highly dependent on these assumptions (Christiano, Eichenbaum, and Evans

(1999)). A second difficulty is that data on short-term target changes is unlikely to capture the

richness of policy decisions. For instance, market participants may fully foresee target rate changes,

but be considerably surprised about the path of future policy as inferred from the statements of

the members of the policy committee: in these circumstances, a measure of monetary policy shocks

based on the policy instrument alone may significantly under-estimate the extent of exogenous vari-

ation in monetary policy. This concern is particularly important for our setting, since monetary

policy is known to influence long term yields more via path than target surprises (Gurkaynak, Sack,

and Swanson (2005)). This possibility is widely understood by policymakers:

The current funds rate imperfectly measures policy stimulus because the most important

economic decisions, such as a family’s decision to buy a new home or a firm’s decision

to acquire new capital goods, depend much more on longer-term interest rates, such as

mortgage rates and corporate bond rates, than on the federal funds rate. Long-term

rates, in turn, depend primarily not on the current funds rate but on how financial

market participants expect the funds rate and other short-term rates to evolve over time.’

(Bernanke (2004b)).

In this article, we propose a novel approach to measuring path shocks which addresses both

challenges. The key results of the paper are summarised as follows.

First, we construct an empirical proxy for path shocks from the residuals of a Taylor rule

estimated on survey expectations. Central to this analysis is a new data set that includes joint
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expectations about the target rate (fed fund rate) and economic fundamentals (GDP and inflation).

This data set is compiled at monthly frequency and is available in a panel data form so that, for

each individual, we have observations on the expected counterparts to both the left and right-hand

side of the Taylor rule. Importantly, this dataset allows us to empirically identify a measure of path

shocks without making assumptions about the data generating process in the mind of agents. While

real-time and truly forward-looking, the use of survey forecasts may introduce additional concerns.

In order to ensure that the survey biases are quantitatively negligible we conduct a host of quality

checks. When we compare the properties of subjective macro expectations to those obtained from

traditional econometric benchmarks, we find that the errors of consensus forecasts are in absolute

value lower than their econometric counterparts. This is especially true for the Fed fund rates

forecasts. This result is interesting and highlights the potential importance of structural breaks in

the conduct of policy decisions. Another advantage of the panel structure of the data is that it

circumvents the need to use pre-aggregated consensus data, which may in itself bias the results.

Indeed, we compare models based on pre-aggregated consensus data, or panel data, using (i) pooled

OLS, (ii) fixed effects, (iii) random effects, and find that a panel data approach is preferable to

procedures based on pre-aggregated consensus data.

Second, to understand the relative importance of target versus path shocks we consider three

alternative measures proposed by the literature: (i) the residuals from an orthogonalised monthly

VAR (Christiano, Eichenbaum, and Evans (1996)); (ii) the daily change to the 1-month Federal

funds futures rates around FOMC announcements (Bernanke and Kuttner (2005)); and (iii) the

daily change in the 6-month euro-dollar rate around FOMC announcements (Cochrane and Piazzesi

(2002)). An intriguing yet robust finding is that target shocks are negatively correlated to path

shocks. This is interesting since we learn that short-term policy actions are linked to the formation

of expectations about future policy actions. Moreover, path shocks are on average countercyclical,

different than target shocks, which are procyclical. This observation is consistent with a term

structure of interest rates in which the short end is pro-cylical driven primarily by target shocks

and the long end is counter-cyclical driven primarily driven by risk compensation.

Third, we find that monetary policy path shocks represent an empirically important source of

priced risk in bond markets. This contrasts with the role played by (high-frequency) target shocks.

In a predictability regression of bond excess returns onto lagged path shocks we find that a one

standard deviation increase in the right hand side predicts an increase in future excess returns by

∼ 0.40 standard deviations. The statistical significance is also large: the null of no predictability is

always rejected at the 1% level and path shocks alone account for 15% of the variance of bond excess

returns. We show that the evidence: (i) is robust across a variety of Taylor rule specifications; (ii)

is present both in the full sample and in a subsample that excludes the last financial crisis; and

(iii) survives after controlling for the contemporaneous level of macroeconomic activity.

Fourth, our proxy of monetary policy path shocks features strong co-movement with the risk
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premium factors based on yield curve information proposed by Cochrane and Piazzesi (2005) and

Le and Singleton (2013). Univariate regressions of monetary policy path shocks onto the factor of

Cochrane and Piazzesi (2005) or Le and Singleton (2013) yield R2 of up to 12% and 23%, respec-

tively. In order to confirm the robustness of these results we construct a factor mimicking portfolio

in the space of equities and quantify the extent to which monetary policy path shocks help explain

the cross section of equity returns, after controlling for the Fama and French factors. Indeed, we

find that the price of monetary policy path risk estimated in the second stage regressions is 4.40%

on an annualized basis, an economic magnitude that is second only to the market risk premium.

This result highlights that monetary policy path shocks have pervasive effects in both bond and

equity markets.

Finally, we explore theoretical explanations for how monetary policy may affect the dynamics

of risk premia, which we study in the context of economies with either time-varing prices of risk

or with time-varying quantities of risk. In the context of a habit economy (time-varying price of

risk), monetary policy may be important due to the effect of money non-neutrality on the dynam-

ics of consumption surplus.1 In these economies, the marginal utility of agents depends on the

distance of consumption from habit: agents become relatively more risk averse when consump-

tion drops relative to its recent trend. Hence, if monetary policy affects consumption (if money

is non-neutral), it also affects marginal utility and the level of risk aversion of investors. To the

extent that contractionary policies have a negative impact on consumption, a (positive) monetary

policy shock will increase the price of risk as consumption falls closer to the habit stock.2 The link

between monetary policy and risk premia can be also understood in the context of long run risk

economies (time-varying quantities of risk) (see, for instance, Bansal and Yaron (2004) and Bansal

and Shaliastovich (2013)). Since predictability is an implication of heteroskedastic fundamentals in

long run risk economies, if monetary policy affect the conditional volatility of GDP growth and in-

flation, it may generate time varying risk premia in bond returns. Given the large debate about the

significance of monetary policy as a major determinant of economic (in)stability (see, for instance,

Bernanke (2004a)), the long run risk perspective is, next to habit models, an insightful channel to

understand the potential link between monetary policy and risk premia. In order to study these

channels, we assess the forecasting ability of path shocks for a proxy of consumption surplus and

the conditional volatilities of inflation and real economic growth. Using a range of tests we find

the link with consumption surplus is weak, but that projections of real economic uncertainty onto

path shocks yields an R2 equal to ∼ 20%. Thus, the previous results are consistent with a long run

risk interpretation (quantity of risk channel), and suggest that monetary policy shocks make their

way into risk premia by affecting the overall level of macroeconomic uncertainty.

1Money non-neutrality indicates the idea that monetary policy influences not only nominal quantities such as
inflation and exchange rates, but also real aggregates such as employment, GDP, and consumption (see King (2000)
and Christiano, Eichenbaum, and Evans (1999), for a review).

2The theoretical literature has studied this channel either in the context of internal habit formation, as in Sun-
daresan (1989), Constantinides (1990), and Heaton (1995), or in external habit specifications, as in Campbell and
Cochrane (1999), Wachter (2006), and Buraschi and Jiltsov (2007)
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The rest of the paper is organized as follows. After a discussion on how this work relates to

the existing literature, Section II describes the data. Section III reviews the details behind the

construction of monetary policy shocks, while Section IV presents the core evidence on bond return

predictability. Next, section V investigates whether the evidence is consistent with a price of risk,

or quantity of risk channel. Section VI concludes.

A. Related literature

This paper is related to two streams of the literature. A first stream studies the implications of

monetary policy announcements on realized returns and volatility of asset prices. Some of these

empirical studies use the FOMC Federal Open Market Committee) meetings to identify releases

of information about the conduct of monetary policy. The use of announcements is interesting

because it allows to identify shocks to the information set of agents and understand the transmission

mechanism of monetary policy. A classic study is Kuttner (2001), who disentangles the expected

and unexpected components of monetary policy from federal funds futures and finds that the latter

accounts for a large fraction of the daily variation of bond yields around FOMC announcements.

He also finds, however, that the fraction of variance that can be accounted for by monetary policy

surprises declines in maturity. Thus, it is not clear to what extent the fluctuations observed during

the release of FOMC announcement can be entirely attributed to policy news. Fleming and Piazzesi

(2005) and Gurkaynak, Sack, and Swanson (2005) tackle this puzzle from two different perspectives.

Fleming and Piazzesi (2005) find that yield changes depend not only on the surprises, but also on

the slope of the term structure. A possible interpretation of this result is that a positive (flat)

slope may indicate fears about inflation (hard landing), so that a surprise increase (decrease) in

the federal fund rate may translate into lower (higher) expected inflation, thus sending long rates

in the opposite direction of the short rate. Gurkaynak, Sack, and Swanson (2005), on the other

hand, start from the intuition that surprises about the target rate represent only part of the news

on announcement days: market participants are likely to update their beliefs about the future

path of policy as well. Gurkaynak, Sack, and Swanson (2005) construct a factor that proxies for

news about the future path of policy, and find that it can explain much of the variance of long

term yields that is unaccounted for by surprises about the federal funds target. More recently,

Andersson (2007) extends the analysis to the euro area and documents that while bond yields

feature an upsurge in volatility around announcements in both US and the euro-area, the effect is

more pronounced in US following Federal Reserve monetary policy decisions. Overall, the previous

studies indicate that monetary policy affects yields in a quantitatively significant fashion. These

results, however, are not limited to bond markets and first moments. Bernanke and Kuttner (2005)

find that an unanticipated cut in the Fed rate of 25 basis points triggers a 1% increase in the stock

market; Lucca and Moench (2011) document that as much as 80% of the US equity premium is

earned in the 24 hours before FOMC announcements. Beber and Brandt (2006) analyze the effect

of announcements on the state price densities of bond prices implied by Treasury options. They

4



find that all announcements decrease the second moment of the state price density, while the effect

on higher moments depends on the sign of the news.3 Importantly, both Bernanke and Kuttner

(2005) and Beber and Brandt (2006) decompose the effect of announcements into their economic

drivers and assess the quantitative relevance of the component due to changes in expected returns.

Bernanke and Kuttner (2005) show that monetary policy shocks account for a high fraction of

discount rate news; Beber and Brandt (2006), on the other hand, conclude that the results are

strongly suggestive of counter-cyclical variation in relative risk aversion.

A second stream of the literature studies the link between monetary policy and bond pricing in

the context of no-arbitrage term structure models. There are two popular modeling strategies. A

first strategy reconciles reduced-form short-rate term structure models with the notion that most

modern monetary authorities implement policy by controlling the path of the short rate. Under no

arbitrage, yields are risk neutral expectations of future short rates, so that, from the perspective

of no-arbitrage term structure models, introducing monetary policy amounts to specifying the

mapping between short rates and state variables in a fashion that is consistent with the policy

response function of the central bank. Some notable applications of this strategy are Piazzesi (2005),

Ang, Dong, and Piazzesi (2007) , Mönch (2008), and Chun (2011). Piazzesi (2005) obtains pricing

implications for a flexible characterization of the jump process followed by the target rate; Ang,

Dong, and Piazzesi (2007) explore the restrictions implied by a host of Taylor rule specifications;

Chun (2011) studies the link between inflation and GDP forecasts and bond yields by incorporating

survey data into a term structure model via a forward looking Taylor rule. A more ambitious task

is to study monetary policy from a general equilibrium perspective. Real business cycle models

that include monetary policy reactions to the real economy and endogenous inflation dynamics

have proved a promising channel through which to understand the economic drivers of the nominal

term structure. Since the nominal pricing kernel is given by the real pricing kernel, deflated

by the inflation, the assumption that the central bank controls the nominal short rate implies

a restriction on the (endogenous) inflation dynamic: the inflation process can be solved for by

requiring consistency between the policy rule of the central bank and the Euler equation for the

nominal short rate. For example, Kung (2014) and Gallmeyer, Hollifield, Palomino, and Zin (2007b)

study Taylor rules with representative agents having Epstein-Zin preferences, while Buraschi and

Jiltsov (2007) or Campbell, Pflueger, and Viceira (2013) combine habit formation and monetary

policy. The general conclusion from this literature is that monetary policy and endogenous inflation

dynamics help resolve many salient puzzles of the term structure with respect to models that solve

for short rates in the absence of a policy rule.

II. Data

This section describes the data set. The sample we study is at monthly frequency and runs from

January 1990 to August 2012.

3Since the authors not only consider FOMC announcements, but also 9 additional US macroeconomic news releases,
it is not possible to know how results would be affected if only FOMC announcements were taken into account.
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A. Survey data

We use survey forecasts from BlueChip Financial Forecasts Indicators (BCFF) to construct a new

measure of monetary policy shocks.4 BCFF is a monthly publication providing extensive panel data

on the expectations of professional economists working at leading financial institutions and service

companies. Forecasted variables include Treasury yields and economic fundamentals. While the

exact timing of the surveys is not published, the survey is usually conducted between the 25th and

27th of the month and mailed to subscribers within the first 5 days of the subsequent month. The

resulting dataset represents an extensive and unique dataset to investigate the role of formation of

expectations about monetary policy shocks.

The horizon of BCFFS forecasts ranges from the end of the current quarter to 5 quarters ahead (6

from January 1997). We obtain a set of constant maturity forecasts (from 1 to 4 quarters ahead),

by interpolating linearly between adjacent horizons. Macroeconomic forecasts are expressed as

annualized percentage changes between subsequent quarters: we obtain compound growth forecasts

by chaining subsequent quarterly forecasts.5

The resulting dataset of forecasts can be described as follows. Let Zt denote the time-t real-

ization of the economic or financial variable of interest, and let En [·|Ωn,t] denote the expectation

operator under the subjective measure of agent n and conditional on her time-t information set

Ωn,t. The data manipulations described above allows us to obtain Zen,t,h, the forecast of Zt+h made

by agent n at time t:

Zen,t,h
∆
= En [Zt+h|Ωn,t] , (1)

for quarterly horizons out to 1 year, h = 3, 6, 9, 12 months. Notice that this representation allows

for incomplete information (Ωn,t), and difference in priors about the data-generating process (the

expectation is taken under the subjective measure); the only assumption is that forecasts be rational

in the sense of Muth (1961). We also construct consensus forecasts ZeC,t,h, defined as the cross-

sectional mean of the forecasts by all respondents at time t:

ZeC,t,h
∆
=

1

N

N∑
n=1

Zen,t,h, (2)

where N denotes the size of the cross-section of forecasters.

The forecasts used here are real GDP (Real GNP until February 1992), Consumer Price In-

flation, and the Federal Funds rate. Since real GDP, CPI, and federal funds rates are available

4Andrea Buraschi and Paul Whelan obtained the complete BCFF paper archive directly from Wolters Kluwer and
proceeded to enter manually the data. The digitization process required inputting around 750,000 entries of named
forecasts plus quality control checking and was completed in a joint venture with the Federal Reserve Board.

5For instance, suppose that as of April 2000, the 1Q- and 2Q-ahead GDP forecasts of agent n are 5.00 and 6.00,
respectively. This means that the agent expects GDP to increase by

(
1 + 5.00

400

)
between April 2000 (the month of

the forecast) and June 2000 (the end of current quarter), and by
(
1 + 6.00

400

)
between end of June 2000 (the end of

current quarter) and the end of September 2000 (the end of the next quarter). The (annualized) compound growth

rate between April 2000 and September 2000 is obtained as
[(

1 + 5.00
400

)
·
(
1 + 6.00

400

)]2
.
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at different frequencies (quarterly, monthly and daily, respectively), the quarterly values that the

survey participants are asked to forecast are defined in different fashions. Let GDPq(t), CPIm(t,j),

and FFd(t,j) denote, respectively: (i) the seasonally adjusted value of real GDP at the end of the

quarter that includes month t; (ii) the seasonally adjusted value of CPI at the end of the j-th

month of the quarter that includes month t; and (iii) the value of the federal funds rate at the

end of the j-th day of the quarter that includes month t (assumed to be 90, for simplicity). For

each horizon h, survey participants are asked to forecast are gq(t+h), the quarter-over-prior-quarter

percent change of seasonally-adjusted real GDP, expressed as an annualized rate:

gq(t+h)
∆
=

(
GDPq(t+h)

GDPq(t+h−1)

)4

− 1; (3)

πq(t+h), the quarter-over-prior-quarter percent change of the intra-quarter average of seasonally-

adjusted CPI, expressed as an annualized rate:

πq(t+h)
∆
=

(
1/3

∑3
m=1CPIm(t+h,j)

1/3
∑3

j=1CPIm(t+h−1,j)

)4

− 1; (4)

and, fq(t+h), the average of intra-quarter daily federal funds rates:

fq(t+h)
∆
= 1/90

90∑
j=1

FFd(t+h,j). (5)

We denote the time-t forecasts of agent n for gq(t+h), πq(t+h), and fq(t+h) by gen,t,h, πen,t,h, and fen,t,h,

respectively. The online appendix plots the consensus forecasts for 1-4 quarter ahead, and the

inflation GDP growth forecasts along with a macro-activity indicator that is discussed below.

We construct expected output gaps as follows. We obtain quarterly data on real GDP from

the Bureau of Economic Analysis (BEA), and interpolate linearly to obtain monthly figures. We

fit a Hodrick-Prescott filter (with a smoothing parameter of 14,400) to log output yt = log(Yt)

and estimate the mean growth rate of the economy g∗t as the average log difference of output. We

construct potential output Y ∗t by taking the (exponential of the) trend component of the filtered

series, and construct conditional estimates of future potential output (common across agents) as

E[Y ∗t+h|Ωt] = Y ∗t exp (g∗t · h · 3).6 Next, we obtain estimates of actual output using individual GDP

growth forecasts, En[Yt+h|Ωn,t] = Yt ·
(

1 +
gen,t,1
400

)
·
(

1 +
gen,t,2
400

)
. . .
(

1 +
gen,t,h
400

)
. Finally, we construct

the percentage projected output gap for horizon h as xen,t,h = En[xt+h|Ωn,t] =
(
En[Yt+h|Ωn,t]
E[Y ∗t+h|Ωt]

− 1
)
·

100. Since this definition of gap may suffer from look-ahead biases, we also construct real time

output gaps by fitting the Hodrick-Prescott filter and estimating mean growth rates recursively

over a 10-years look-backwards rolling window. The results are only marginally affected.

6The construction of this expectations implicitly assumes that output is lognormally distributed and ignores a
Jensen’s inequality term, which is quantitatively negligible.
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B. Quality of survey data

Survey data forecasts feature a number of advantages over forecasts implied by econometric ap-

proaches such as VARs (vector autoregressions). First, the specification of the VAR may not

coincide with the data generating process in the mind of the agents. Second, agents may, contrary

to the econometrician, observe a structural break in the sample of interest. Third, even if both the

econometrician and the agents observe the data generating process, VAR forecasts still suffer from

estimation error. Survey data allows obtaining direct measures of agents’ expectations, dispensing

with the need to posit and estimate a data generating process for the variable of interest.

We summarize the cross-sectional and time-series properties of BCFFS expectations by com-

paring their performance to an econometric benchmark. In particular, we first construct the sample

equivalents of the forecasts for federal funds, real GDP growth rate, and CPI growth rate. Next,

we assume that the quantities of interest [∆ft, gt, πt]
′ follow a first-order VAR. We fit the VAR

recursively using a 25 years rolling window (100 quarterly observations), and use the estimated

parameters to construct the benchmark forecasts. Since macro-economic data are released with a

month lag, we always drop the last observations when estimating the VAR to ensure that forecasts

are based on the actual real-time information set of agents. Finally we compare the forecasting

errors of BCFFS versus VAR(1) expectations. Figure 1 summarizes the magnitude of BCFFS fore-

cast errors (1 quarter horizon) relative to VAR forecast errors. The plots on the left represent the

errors from a cross-sectional perspective: they show the time series of the number of agents in the

cross-section whose forecast error is, in absolute value, less than the absolute value of the VAR

forecast error. The plots on the right, on the other hand, summarize the forecasting ability of con-

sensus (mean) forecasts: they show the difference between the absolute value of the VAR forecast

error and the absolute value of the average BCFFS forecast error, so that a value above zero means

that, on a specific quarter, the consensus forecasts performs better than the VAR forecast. The

figure suggests that there is a strong time-series component in the ability of BCFFS surveys to

beat VAR forecasts. Overall, the errors of consensus forecasts are, in absolute value, less than the

forecast error of the VAR 85% (FF), 43% (GDP), and 65% (CPI) of the times.

[Insert Figure 1 about here.]

C. Macroeconomic activity data

We construct a proxy for the level of macroeconomic activity by following Ludvigson and Ng (2009)

and Buraschi and Whelan (2012). Ludvigson and Ng (2009) find strong evidence linking bond re-

turns to variations in the level of economic growth rate factors by running return predictability

regressions on the principle components from a large panel of real, nominal, and price-based vari-

ables. The identity and sources of the dataset are described in Ludvigson and Ng (2009); following

Buraschi and Whelan (2012), we drop all price based information in order to interpret the resulting

panel as a pure growth rate factor. Examples of price variables removed include: S&P dividend

yield, the Federal Funds (FF) rate; 10 year T-bond; 10 year - FF term spread; Baa - FF default
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spread; and the dollar-Yen exchange rate. A small number of discontinued macro series are replaced

with appropriate alternatives or dropped.7 We take the first principle component of the resulting

dataset of 99 macro series as a proxy for the conditional mean of consumption growth, gt.
8

D. Bond data

We use Fama-Bliss data from CRSP of zero coupon bond prices (available at monthly frequency)

with maturities between 1 and 5 years. The following notation is adopted. Define the date t log

price of a n-year discount bond as p
(n)
t . The yield of a bond is defined as y

(n)
t = − 1

np
(n)
t . The date-t

1-year forward rate for the year from t + n − 1 and t + n is f
(n)
t = p

(n)
t − p

(n+1)
t . The log holding

period return is the realised return on an n-year maturity bond bought at date t and sold as an

(n− 1)-year maturity bond at date t+ 12 is denoted r
(n)
t+12 = p

(n−1)
t+12 − p

(n)
t , and the corresponding

excess return is denoted rx
(n)
t+12 = r

(n)
t+12−y

(1)
t . A table in the online appendix presents the summary

statistics for bond excess returns over our sample period.

III. Monetary policy shocks

This section describes the methodology we use to construct monetary policy shocks. First, we

provide a brief overview of the alternative approaches employed by the literature. Second, we

introduce our identification scheme based on a Taylor rule and a panel of forecast data. Third, we

report the statistical properties of the constructed series.

A. Overview of identification schemes

Since much of the decisions taken by the monetary authorities reflect non-monetary developments

in the economy, the literature that studies the effect of monetary policy is typically concerned with

policy shocks, rather than policy actions per se (Christiano, Eichenbaum, and Evans (1999)). A

classic interpretation of monetary policy shocks is that they reflect changes in the preferences of

the central bank, which may arise from shift in the weights of the views or political influence of the

members of the policy committee (Christiano, Eichenbaum, and Evans (1999)).

In general, the strategies that seek to identify monetary policy shocks can be classified as being

based on a policy rule, or not. The idea behind strategies based on policy rules is to impose

as much structure on the feedback rule as needed to decompose policy actions into systematic

and non-systematic components (policy shocks). In particular, researchers following this approach

must make assumptions about the policy instrument, the functional form of the feedback rule,

the arguments of the rule, and, importantly, the interaction of the arguments of the rule and

monetary policy shocks. A common assumption, which underlies the entire literature on Taylor

7Further details of the construction and macro series included are given in the appendix of Buraschi and Whelan
(2012)

8gt explains around 90% of the unconditional variance of the panel of macroeconomic activity series.
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rules,9 is that monetary policy shocks are orthogonal to the arguments of the rule, so that they can

be estimated from regression residuals. Christiano, Eichenbaum, and Evans (1999) note that the

economic content of this assumption is that the macroeconomic variables that the monetary policy

authority looks at in setting policy are predetermined relative to the policy shocks: these variables

do not respond to contemporaneous realizations of monetary policy shocks.

The second family of identification strategies, on the other hand, infers monetary policy shocks

from data that suggests exogenous monetary policy actions. An example of this identification

philosophy is Romer and Romer (1989), who use historical records to identify large monetary

disturbances not caused by macroeconomic developments. Similarly, Romer and Romer (2004) use

quantitative and narrative records to infer intended funds rates changes around FOMC meetings,

and take into account the forecasts of the Federal Reserve to remove anticipatory components. An

alternative approach, pioneered by Rudebusch (1998) and employed, among others, by Kuttner

(2001), Cochrane and Piazzesi (2002), Gurkaynak, Sack, and Swanson (2005), and Bernanke and

Kuttner (2005), constructs monetary policy shocks from federal funds futures by exploiting their

forward-looking nature. The advantage of this approach is that it overcomes the omitted-variables

and time-varying parameter issues that Vector Autoregressions suffer from (Cochrane and Piazzesi

(2002)).

B. Constructing a measure of path shocks

There are two types of monetary policy shocks: target shocks and path shocks. Target shocks

represent exogenous variation in the conduct of monetary policy as reflected by the current behavior

of the policy instrument (the target rate); all measures of monetary policy shocks introduced in

the previous section belong to this category. Path shocks, on the other hand, capture exogenous

variation in the projected path of monetary policy. Intuitively, path shocks reflect the surprises

about future policy that can be inferred, for instance, from FOMC statements or interviews of

members of the policy committee. Path shocks, unlike target shocks, cannot be easily identified

via Taylor rule regressions because the FOMC does not reveal the projected evolution for the

path of monetary policy;10 this is unfortunate, since path shocks represent the quantitatively most

important source of variation in bond yields, especially for long maturities (Gurkaynak, Sack, and

Swanson (2005)). Our data on federal funds forecasts, however, allows us to measure the projected

evolution for the path of monetary policy from the perspective of market participants; since we

also observe market participants’ expectations about macroeconomic developments, we are able to

identify path shocks, the exogenous variation in the path of monetary policy, by taking the residuals

from a policy feedback rule estimated on federal funds and macro forecasts. This section describes

the Taylor specification we adopt and discusses the restrictions it implies for forecast data.

Let πt denote the change in the price level from quarter t − 1 to quarter t, annualized and in

9The literature on Taylor rules is extensive: see, for instance, Taylor (1993), Clarida, Gali, and Gertler (2000),
Ang, Dong, and Piazzesi (2007).

10Recently, there has been a change in the disclosure about future policy actions; see the last subsection for a
discussion.
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percentage points. Similarly, let xt denote the output gap in quarter t, in percentage points. As

standard in the literature, the output gap is defined as xt =
(
Yt
Y ∗t
− 1
)
· 100, where Yt and Y ∗t

denote actual and potential output at time t, respectively. Finally, let ft denote the time t Federal

Funds rate, with long run mean f . The level of the federal funds rate can be decomposed into a

systematic component f∗t (the Taylor rule), and an orthogonal shock ut (the target shock):

ft = f∗t + ut (6)

= f + β (πt − π) + γxt︸ ︷︷ ︸
Systematic component

+ ut︸︷︷︸
Target shocks

, (7)

where ut ⊥ f∗t . This characterization has a simple interpretation. The feedback rule f∗t captures

the systematic component of monetary policy. In the absence of disturbances to the economy and

monetary policy shocks, the federal funds rate is constant and equal to f . If output deviates from

its potential level, or inflation from its target, the central bank intervenes to stabilize the economy:

the parameters β and γ capture the sensitivity to inflation and output stabilization, respectively.

The target shock ut, on the other hand, captures the non-systematic component of monetary policy:

the orthogonality between ut and the arguments of the Taylor rule means that it can be estimated

as the residual of a simple time series regression of federal funds onto inflation and gap.

In practice, it has been observed that the central bank behaves less responsively to the state

of the economy than implied by the benchmark Taylor rule, consistent with the idea that the

central bank may have preferences over the degree of variability of federal funds rates. Also, the

central bank may wish to respond to macro aggregates that are not realizing at time t. In order

to accommodate policy inertia and backward-/forward-looking policies, the benchmark rule can be

extended to include lagged federal funds and lags/leads in its arguments, so that realized federal

funds rates are described by:

ft = ρ(L)ft−1 + (1− ρ)f∗t + ut

= ρ(L)ft−1︸ ︷︷ ︸
Inertia

+ (1− ρ)

(
f + β (πt+j − π∗) + γxt+k

)
︸ ︷︷ ︸

Systematic component

+ ut︸︷︷︸
Target shocks

, (8)

where ρ(L) = ρ1 + ρ2L + . . . ρmL
m−1 and ρ = ρ(1) capture the degree of interest rate smoothing.

Assuming that agents know the functional form and parameters of the policy rule, while they can

disagree about the future evolution of macroeconomic variables, the time-t expectation of ft+h of

agent n is given by:

En [ft+h|Ωn,t] = En [ρ(L)ft+h−1|Ωn,t] (9)

+ (1− ρ)

(
f + β (En [πt+h+j |Ωn,t]− π∗) + γEn [xt+h+k|Ωn,t]

)
(10)

+ En [ut+h|Ωn,t] , (11)
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which, using the notation introduced in the data section, can be re-written as:

fen,t,h = ρ1f
e
n,t,h−1 + . . .+ ρmf

e
n,t,h−m

+ (1− ρ)

(
f + β

(
πen,t,h+j − π∗

)
+ γxen,t,h+k

)
+ uen,t,h,

or, in its consensus form, as:

feC,t,h = ρ1f
e
C,t,h−1 + . . .+ ρmf

e
C,t,h−m︸ ︷︷ ︸

Expected inertia

(12)

+ (1− ρ)

(
f + β

(
πeC,t,h+j − π∗

)
+ γxeC,t,h+k

)
︸ ︷︷ ︸

Expected systematic component

+ ueC,t,h︸ ︷︷ ︸
Path shocks

. (13)

This expression shows that the assumption that agents believe in a Taylor rule has two implications.

First, it implies a restriction on the comovement of forecasts of federal funds, inflation, output gap,

and monetary policy shocks. Second, it suggests that subjective expectations about future monetary

policy shocks (path shocks) can be recovered from a panel of macroeconomic and financial forecasts.

C. Empirical features of the monetary policy shocks measure

All the specifications examined amount to choices for h, the horizon of the federal funds forecasts,

and i, the horizon of the output gap and inflation forecasts, in the general model:

fen,t,h = ρ1f
e
n,t,h−1 + ρ2f

e
n,t,h−2 + (1− ρ)

(
f + β

(
πen,t,i − π∗

)
+ γxen,t,i

)
+ uen,t,h; (14)

all specifications include 2 smoothing terms, which are necessary to remove the persistent compo-

nent of federal funds forecasts as in Clarida, Gali, and Gertler (2000). We consider three families

of specifications based on the choice of the horizons of the forecasts for the federal funds and the

arguments of the Taylor rule: 2 are contemporaneous, and 1 is forward looking. For each family,

output gap is either constructed using full sample information (GAP 1), or recursively (GAP 2).

This gives a total of 6 specifications, that are summarized in Table I.

[Insert Table I about here.]

In general, these models could be estimated (i) using consensus data, via OLS; or, using panel data,

via: (ii) pooled OLS (POLS); (iii) fixed effects (FE); (iv) random effects (RE). We estimate the

model using fixed effects and an online Appendix discusses in detail the the relationship among all

estimation approaches. Table I reports the test-statistics and p-values for two tests: (i) an F-test

for the joint significance of individual effects, and (ii) the Hausman test for the null hypothesis that

the difference between random and fixed coefficients is not systematic. In all cases, the F-statistic

for the joint significance of agent dummies rejects the null of no significance; furthermore, the

Hausman test always rejects the null of random effects. Taken together, these results indicate that
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fixed effects is preferable over estimation procedures based on consensus, pooled OLS, and random

effects.

Given one of the 6 Taylor rule specifications, we construct a measure of policy path shocks,

PathShockt, by taking the cross-sectional average of the estimated residuals:

PathShockt =
1

N

N∑
n=1

uen,t,h.

The online appendix presents summary statistics for each series while figure 2 plots the time series

dynamics. The message here is that, regardless of the specification, the statistical properties are

very similar and the co-movement across PathShockit is always very high. In what follows we study

the economics of path shocks focusing on specification 2, in both Federal funds and macro forecasts

are for the 1-year horizon, and the output gap is constructed recursively using only information

available at date t. However, the quantitative message of the paper is robust to different choices

for PathShockit. The online appendix presents an expanded set of results for all i = 1, . . . , 6 for

what follows.

[Insert Figure 2 about here.]

D. Path Shocks versus Target Shocks

To help understand the information content in PathShockt we compare its dynamics with three

alternative measures for monetary policy shocks studied by the literature: (i) the residuals from an

orthogonalised monthly VAR (Christiano, Eichenbaum, and Evans (1996)); (ii) the daily change

to the 1-month Federal funds futures rates around FOMC announcements (Bernanke and Kuttner

(2005)); and (iii) the daily change in the 6-month euro-dollar rate around FOMC announcements

(Cochrane and Piazzesi (2002)).

Firstly, we follow Christiano, Eichenbaum, and Evans (1996) and construct a monthly VAR:

BZt = A(L)Zt−1 + Σηt. The data vector Zt is given by Zt = [EMPt, CPIt, PCOMt, FFt] where

EMPt is the logarithm of Nonfarm payroll employment, CPIt is the logarithm of the consumer

price index, and PCOMt is growth rate in commodity price index. We identify the system by

orthogonalizing the shocks as in CEE, using the order given by Zt. This implies that shocks to the

Fed fund rate has no contemporaneous effect on the other economic variables. We specify the VAR

with L = 6 monthly lags. The estimated policy shocks are given by

ηcce(t) = i4Σ−1
[
B̂Zt − Â(L)Zt−1

]
(15)

where i4 = [0, 0, 0, 1], from which we recover the policy shocks.

The second and third shock measures are based on daily data. As in Bernanke and Kuttner

(2005) we measure the surprise component in target rate changes from the change in the 30-

Day Federal Funds Futures contract price relative to the day prior to the FOMC meeting.11 The

11These are traded on the Chicago Board of Trade where the implied futures rate is 100 minus the contract price.
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contract’s settlement price is based on the monthly average federal funds rate so the surprise change

must be scaled up by a factor related to remaining duration of the contract. Specifically, given

target change on day d of month m, we compute the unexpected target rate change as

ηbk(t) =
D

D − d
(
f0
m,d − f0

m,d−1

)
(16)

where f0
m,d is the current-month futures rate and D is the number of days in the month. Since

the effective federal funds rate tracks the target rate closely ηt provides a timely measure of the

surprise component to target rate changes. For the third measure, we follow Cochrane and Piazzesi

(2002) and define the target shock ηcp as the daily change in the 3-month euro-dollar rate around

target changes

ηcp(t) =
(
e1
d − e1

m,d−1

)
(17)

Figure 3 shows that while the three series are generally positively correlated their dynamics

shows several periods in which the information content of the three series is rather different. In-

deed, Cochrane and Piazzesi (2002) argue that ‘If in one year the Fed worries about inflation, but

in another year it places more weight on unemployment, market forecasts will adapt, but vector

auto-regressions (VARs) may not adapt and thus may incorrectly interpret anticipated actions to

be shocks.’ The ηcee(t) target shocks assume a time invariant VAR structure. While ‘pure’ unan-

ticipated changes, captured by ηcp(t) and ηbk(t), proxy temporary variation in the preferences of

the Fed, they may not convey long term information about the expected path of monetary policy.

Constructing PathShockt from surveys allows a real-time assessment of how agents expected the

stance of the monetary policy to evolve over time.

To study the link between realised policy shocks and beliefs about future shocks we run regres-

sion of PathShockt on the three target shocks described above. Panel A of table II reports results

for path shocks on target shocks, while panel B reports path shocks on a 6-month lagged summa-

tion of past target shocks. Considering first the statistical link we find slope coefficients that are

consistently negative across specification for ηit. The estimated loads are convincingly significant,

5/6 of the loadings are significant at the 1% level. While the R2’s of (noisy) contemporaneous

shocks on path shocks are low as expected, the lagged ηcp(t) and ηby(t), explain 17% and 13% of

the predictable variation in PathShockt, respectively. More interesting than statistical significance

we find that target shocks are negatively correlated to expectations about the future stance of pol-

icy. This is interesting since we learn a non-trivial link between observed short-term policy actions

(target shocks) and the formation of expectations about future policy actions (path shocks).

In general the dependence of path shocks on target shocks could take zero, positive, negative

values. If agents form expectations about future policy ignoring current actions we should expect

a zero loading in table II. Alternatively, if agents believe policy shocks are subject to regime shifts

and learn that they will revert in the future, the loadings should be negative. This observation

is consistent with Sims and Zha (2006) who finds that variance of structural disturbances in Tay-

lor rule regressions are subject to regime shifting components that are short lived. Alternatively,
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positive loadings could be rationalised through a number of behavioural biases such ‘representa-

tiveness’ (Tversky and Kahneman (1974)). In this case agents place put too much weight on recent

experiences, such as a series of negative rate cuts, and extrapolate this as the likely path of policy

going forward.

A revealing episode to learn about this link is given by the joint dynamics of target rate changes

and PathShockt during the dotcom bubble bust. This was a period that witnessed a large shift

in the non-systematic component of U.S monetary policy. In 1996 Alan Greenspan, then the

Chairman of the Federal Reserve, tried unsuccessfully to talk down the market in the face of an

over heating technology sector.12 However, the housing market and dotcom sector rally continued.

In response between June 1996 and May 2000 the Fed raised the target rate from 4.75% to 6.5%.

This represented a shift from standard Taylor rule logic since CPI inflation average just ∼ 2.20%

over this period. However, the path of monetary policy was quickly reversed on September 11th

2001. In response to the Trade Center attacks the Fed acted quickly with a series of rate cuts to

shore up market confidence. To support the stock market, between January 2001 and January 2002

The Fed lower the target rate from 6.5% to 1.75%. The market forecast was significantly surprised

by 4 of these rate changes as evidenced by the large negative realizations for both ηcp(t) and ηbk(t)

shocks (see figure 3). However, over this period PathShockt actually rose. This implies that, as

market participants observed large swings in contemporaneous Taylor rule residuals, they inferred

the stance of the Fed would revert in the future.

This narrative and the negative loadings in table 4 are consistent with hypothesis (3) above,

in which agents learn that extreme policy response will be reversed in the future. This implies

path shocks are, on average countercyclical, different than target shocks, which are procyclical.

Figure 2 makes the countercyclicality of PathShockt clear by comparing the time-series dynamics

of path shocks to a proxy of macroeconomic activity (gt) discussed in the data section above, and

NBER recession dates (shaded grey areas). In all three recessions, PathShockt rises when macroe-

conomic activity drops. Since bond risk premia are known to be countercyclical (Duffee (2002) ,

Cochrane and Piazzesi (2005)), this motivates the natural question of whether its comovement with

PathShockt is also quantitatively important, which constitutes the topic of the next section.

[Insert Figure II about here.]

[Insert Table 3 about here.]

[Insert Table 4 about here.]

E. Path Shocks and Risk Premium Proxies

To investigate whether PathShockt, extracted from macroeconomic surveys, is a potential source of

priced risk, we first investigate its comovement with proxies of bond risk premia proposed by other

12Greenspan made a famous ‘irrational exuberance’ speech at the Francis Boyer Lecture of the American En-
terprise Institute for Public Policy Research, in Washington, D.C. (Dec. 5, 1996). For the full speech see
http://www.federalreserve.gov/boarddocs/speeches/19961205.htm.
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well-known independent studies. We consider three proxies for bond risk premia, Zt: (i) the slope

of the yield curve as studied by Campbell and Shiller (1991) (Slopet = y
(5)
t − y

(1)
t ); (ii) the forward

rate factor of Cochrane and Piazzesi (2005) (CPt), and (iii) the two volatility factors constructed

by Le and Singleton (2013) (LS1t and LS2t). We assess the link between path shocks via linear

regressions:

PathShockt = const.+ Z ′tβ + εt. (18)

Table III presents the results of the regressions. There are two conclusions to be drawn. Regardless

of the bond risk premium proxy there is a strong positive statistically significant link to PathShock.

Firstly, consistent with the notation that path shocks are counter-cyclical the loading on the slope

of the yield curve is positive, with a t-stat equal to 2.19, and an R2 equal to 8%: when agents

expect monetary policy to revert from a loosening cycle long term bonds command risk positive

risk premium. Second, PathShock co-move positively with CPt and LS2t (t-stats above 2.2 and

2.8, and R2 equal to 13% and 24%, respectively), suggesting that beliefs about changes to the

future stance of policy are linked to contemporaneous bond risk premia.13 Figure 5 makes this

point clear graphically by plotting PathShock versus the three risk premium proxies.

[Insert Table III about here.]

The co-movement is intriguing for a number of reasons. Since Slopet, CPt and LS2t are by construc-

tion spanned by the yield curve, this lends support to a link between agents subjective expectations

of future monetary policy and the shape of the yield curve today. This is not obvious ex-ante since

survey expectations may differ from the expectations of the marginal investor. The ability of yields

to span path shocks largely depends on the relative difference in dimensions of the state vector

under the physical versus agents subjective measure. Duffee (2011) discusses this point in the

context of the invertibility of the current yield curve to reveal information relevant for bond risk

premia. Moreover, the fact that a proxy for path shocks is correlated with a set of (spanned) risk

premia proxies suggests that expectations of future monetary policy affect the shape of the yield

today curve not only through physical expectations of the short rate but also through a change of

measure.

IV. Bond return predictability

This section establishes the key empirical result of the paper: path shocks drive the time variation

of bond risk premia. We obtain these results via classic return predictability projections of one-year

holding period bond excess returns on lagged PathShock, and test for the statistical and economic

significance of the slope coefficient.

We verify the robustness of the results from a variety of perspectives. Firstly, an online ap-

pendix presents an expanded set of results for all specifications of PathShock, bond maturities,

and subsamples. Second, we assess the statistical and economic significance of the slope coefficients

13 The factor LS2t is the dominating risk premium factor in Le and Singleton (2013)
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in predictive regressions for bonds with maturities ranging between 2 and 5 years controlling for

alternative risk factor proxies. Third, we analyze the stability of the coefficients in a subsample

that excludes the crisis. Fourth, we conduct an out of sample test by checking whether PathShock
is also priced in the cross-section of equity returns.

A. Predictability Regressions

Table IV reports the estimation output of regressions:

rx
(n)
t+12 = const.+ β

(n)
PSPathShockt + ε

(n)
t+12.

where bond maturities n range from 2 to 5 years. The estimates in the left panel are for the entire

sample (the last excess return is defined between 2011:7 and 2012:7), while those on the right

exclude the financial crisis (the last excess return is defined between 2007:6 and 2008:6). Reported

R̄2 are adjusted, and all t-statistics employ Newey-West standard errors (18 lags); all left and

right hand side variables are standardized, so that the coefficients can be interpreted as standard

deviation changes of the regressand for a unit standard deviation change in the regressor. For

illustrative purposes, the online appendix plots the time series of realised versus fitted (expected)

excess returns for the 5-year maturity bond.

[Insert Table IV about here.]

In all projections, PathShock explains the time variation in bond excess returns in an econom-

ically and statistically significant fashion. Estimated slope coefficients are between 0.35 and 0.40:

a one standard deviation increase in path shocks predicts, on average, an increase of fitted excess

returns by ∼ 40% of its unconditional standard deviation. Adjusted R2 range between 12.00% and

15.53%, so that monetary policy path shocks also explain a large fraction of the overall variation

of realized excess returns. Also, the statistical significance is large: all t-statistics reject the null

hypothesis of no predictability at the 1% level. Besides a slight decline of the economic magnitude

of the slope coefficients for longer maturity bonds, there are no noticeable patterns across specifi-

cations of the right hand side variable and sample period. Overall, the results suggest that path

shocks are not only a statistically and economically significant, but also robust predictor of future

realized excess returns.

B. Real Growth and Inflation

Previous literature on return predictability in bond markets has highlighted the importance of real

activity, which is one of the systematic ingredients of the Taylor rule. To evaluate the marginal

contribution of the policy shocks versus the systematic component of the rule, we follow Ludvigson

and Ng (2009)) and construct a real activity factor (gt) from the first principle component from a

large panel of macroeconomic indicators, that includes 104 individual macro time series available

at monthly frequency (for details, see Section II.C.). This is different than the real argument of the
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Taylor used to estimate path shocks but is consistent with the Fed responding to deviations in real

activity from a target. In addition this provides are tougher test for the marginal ability of path

shocks to forecasts returns since the forecasting power of gt is well documented.

Table V repeats the predictability regressions above controlling for gt. The loadings on gt

are negative and significant for all maturities; both the statistical and economic significance are

strongest for n = 2 and decrease in maturity. The inclusion of gt in the set of regressors leads to

a sizable increase in the adjusted R2 relative to the univariate case, especially for short maturities

and in the 1990-2007 sample. In the case of bonds with 2 years maturities, the average increase

in R̄2 is between 10% and 15% in the 1990-2007 period, and between 5% and 10% for the full

sample; the effect decreases in maturity, becoming negligible for 5 years bonds. Nevertheless, the

economic and statistical significance of expected monetary policy path shocks is hardly affected.

The conclusion to this section is that the information content in PathShockt relevant for the bond

risk premium is not subsumed by the contemporaneous level of macroeconomic activity.

A second potential issue is that expected inflation is endogenous to the monetary policy shocks.

For instance, Gallmeyer, Hollifield, Palomino, and Zin (2007a) discuss an economy with recursive

preferences and and monetary policy. In this economy inflation is endogenous to a Taylor rule

which helps match the historical level of long term yields by introducing negative autocorrelation

to the pricing kernel. Moreover, to the extent that monetary policy affects inflation and inflation is

priced in nominal bond returns, PathShock may affect bond returns through an inflation channel.

For these reasons, we run a second test controlling for consensus expectations on inflation from

BlueChip surveys. Table VI summarizes the results. We find that in the sample period excluding

the financial crisis, expected inflation does indeed contain marginal information on bond risk premia.

The slope coefficients are positive with comparable economic magnitude of PathShock. However,

PathShock retains statistical significance even after controlling for inflation. Moreover, in the

sample period including the crisis, the predictable content of expected inflation disappears while

PathShock maintains its statistical significance.

[Insert Table V and VI about here.]

C. Predictability in the financial crisis

Tables IV and V document that the economic and statistical significance of predictability is largely

unaffected by the inclusion of the last financial crisis in the sample. This may sound, at first sight,

a little surprising. Our predictor, PathShock, is based on the notion that the federal fund rate

is the instrument of monetary policy, a tool that has lost its flexibility and effectiveness in the

context of the ZLB (zero lower bound) characterizing the US monetary landscape since the end

of 2008.14 Unable to cut federal funds targets any further, US monetary authorities have started

14During the first turmoils and Lehmans’ collapse, the Fed engaged in a particularly intense series of target rate
cuts: between 18 September 2007 and 16 December 2008, the target fed funds rate was decreased on each of the 10
FOMC meetings, going from 4.75% down to a 0%-0.25% range. Between 16 December 2008 and December 2012, the
Fed maintained the target rate in the 0%-0.25% range uninterruptedly.
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considering forward guidance15 and QE (Quantitative Easing)16 as alternative policy instruments

(see Woodford (2012) for an extensive discussion).

Given such profound changes in the way that monetary policy is implemented, are measures

of monetary policy shocks based on Taylor rule residuals appropriate and, more specifically, is

PathShock suitable to measure exogenous variation in monetary policy? Target shocks, measured

as residuals from Taylor rules estimated on current federal funds, are indeed meaningless for two

reasons. First, Taylor rules imply negative nominal federal funds rates in negative GDP growth

and low inflation scenarios, thus ceasing to be adequate representations of the systematic and

exogenous components of monetary policy. Second, surprises about current federal funds targets

are little informative about how monetary policy is actually conducted in practice, since the Federal

Reserve Bank has, de facto, switched its policy instrument from current federal funds targets to

forward guidance (at least temporarily). These criticisms, however, do not apply to residuals from

Taylor rules estimated over expected future federal funds, and therefore to PathShock. First,

despite the 0%-0.25% range imposed by the Fed onto current federal funds rates since December

2008, expected federal funds rates have featured noticeable volatility over the same period (see

Figure ??). Second, expected future short rates are precisely the instrument of policies based on

forward guidance: being a residual from a Taylor rule estimated on expectations of future short

rates, PatShock is, by construction, a measure of the exogenous variation in forward guidance. As

a consequence, PathShock is particularly suitable to measure exogenous monetary policy shocks

in the recent monetary environment.

There is no clear interpretation of PathShock in terms of QE policies; nevertheless, it is inter-

esting to study the co-movement between forward guidance and QE policies from the perspective

of BCFFS survey participants. To this end, we construct measures of expected QE path shocks by

looking at the change in consensus yield spreads between 1 and 4 quarter horizons.17 We consider

four measures of QE path shocks, each based on a specific yield spread survey forecast: (i) TS5Y ,

TS10Y , TS30Y : consensus increase in the spread between the 5-, 10-, or 30-years Treasury yield

and the federal funds rate; (ii) MTGS: consensus increase in the spread between the mortgage

yield and the 30-years Treasury yield. We consider measures based on both Treasury and mortgage

securities because the Fed has intervened in both markets during QE1 and QE2. All these measures

answer the question, by how much do agents expect that Treasury or mortgage spreads will rise

15Forward guidance represents the result of a decade long process of changes in the strategy underpinning policy
communication. The structure of FOMC statements has been modified to include: (i) an economic outlook, in January
2000; (ii) qualitative statements about future policy inclinations, in August 2003; (iii) calendar-based guidance, in
August 2011; (iv) outcome-based guidance, in December 2012.

16Quantitative Easing policies consist of purchases, by the central bank, of specified quantities of long term financial
assets. Our sample includes two instances of QE policies: (i) QE1, between late 2008 and 2009; and (ii) QE2, between
the second quarters of 2010 and 2011. While QE1 consisted of purchases of MBS, Treasuries, and Agency securities,
QE2 focused only on the purchase on long term Treasury securities. See Gagnon, Raskin, Remache, and Sack (2011)
and Krishnamurthy and Vissing-Jorgensen (2010) for further details about QE policies and their quantitative impact
on financial securities.

17As discussed earlier, any policy may be decomposed into systematic and exogenous components. Our measures
of QE, however, are not orthogonalised. In fact, there is not qualitative evidence that the Federal reserve follows a
rule in implementing QE policies, and no rule could be estimated quantitatively in such a short sample (QE policies
started in 2008).
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over the next 4 quarters? Table VII shows the pairwise correlations between PathShock and the

four measures of QE path shocks in the full, pre-QE, and during-QE samples, taking November

2008 as the start date of the QE sample. The Table contains three interesting results. First, the

correlation of PathShock with Treasury-based measures of QE is negative in all subsamples: when

agents expect the Fed to tighten (high values of PathShock), they also expect the wedge between

long and short rates to decline (low values of TS5Y , TS10Y , TS30Y ). Second, the correlation of

PathShock with Mortgage-based measures of QE is positive in all subsamples: an expansionary

forward guidance stance (low values of PathShock) is, in the mind of agents, expected to be co-

ordinated with QE policies that aim to reduce the premium on mortgage securities (low values of

MTGS). Third, all correlations rise, in absolute value, in the QE-subsample, suggesting that the

switch to forward guidance policies has increased the influence of the communication of the Federal

Reserve onto agents’ expectations.

D. Monetary policy shocks and equity markets

We conduct an out-of-sample test of our measure of monetary policy path shocks by asking whether

it is priced in the cross-section of equity returns. The effect of monetary policy on real variables

such as corporate earnings is likely to be unequal across horizons and industries. Companies

may feature different sensitivities towards central bank intervention owing to, for instance, cross-

sectional variation in cash flow duration: if monetary policy affects only short term GDP growth,

for instance, growth companies will be the least affected by tightening cycles. To the extent that

investors cannot diversify away exposure to central bank intervention, monetary policy shocks may

be a priced risk factor in the cross-section of equity returns.18

We follow two steps to test whether monetary policy shocks are priced in the cross-section of

equity returns. First, we construct a tradable portfolio that mimics monetary policy path shocks.

Second, we ask whether exposure to path shocks is marginally priced by means of cross-sectional

asset pricing tests. Throughout, we use Fama and French (1993) 100 value and size portfolios

(available on Kenneth French’s website) as test assets.

In order to construct a portfolio that mimics monetary policy path shocks, we first run time-

series regressions of the excess returns of test portfolios (RXi
t , i = 1, . . . , 100) on PathShock:

RXi
t = const.+ βiPSPathShockt + εit.

Next, we sort the 100 portfolios into ten deciles based on their sensitivity to monetary policy shocks

(βiPS), and construct the factor mimicking portfolio mpst as the average of the excess returns of the

top decile (Top) portfolios, minus the average of the excess returns of the bottom decile (Bottom)

portfolios:

mpst
∆
=

1

10

∑
i∈Top

RXi
t −

1

10

∑
i∈Bottom

RXi
t .

18See Palomino and Li (2010) for a general equilibrium model where monetary policy is a priced risk factor in the
cross-section of equity returns.
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For reference the online appendix plots the the value and size characteristics of the portfolios used

to construct mpst. The message from this plot is that they contain no discernible pattern on either

alternative mimicking portfolio.

Next, we run standard cross-sectional, two stage, asset pricing tests. In particular, we test

whether the risk premium associated with exposure to mpst is significant, in an economically and

statistically way, over and beyond the premia associated with Fama and French (1993) factors: mktt,

smbt, and hmlt. The first stage of the asset pricing test requires running time-series regressions of

test assets’ excess returns on candidate risk factors to estimate factor exposures (β):

RXi
t = αi + βimktmktt + βismbsmbt + βihmlhmlt + βimpsmpst + εit.

In the second stage, the prices of risk λ associated with factor exposures β are estimated via

cross-sectional regressions of average excess returns on factor exposures:

RX
i

= const.+ λmktβ
i
mkt + λsmbβ

i
smb + λhmlβ

i
hml + λmpsβ

i
mps + εi.

The economic and statistical significance of the prices of risk can be read off the magnitude and

t-statistics of the λ estimates. Besides standard Newey-West t-statistics, we also calculate Shanken

(1992) t-statistics to account for the fact that the regressors are estimated with error in the first-

stage regressions.

Table VIII reports the (annualized) risk premia estimates and t-statistics for our candidate

pricing factors (mktt, smbt, hmlt, mpst). The estimated economic significance is sizable: the mpst

factor commands a 4.40% premium on an annualized basis, which implies that the risk premium

earned for holding monetary policy risk is second only to the market risk premium. Also the

statistical significance is large. This is interesting in the light of the findings by Lucca and Moench

(2011) that a large fraction of the equity risk premium is captured around the FOMC announcement

days. The null hypothesis H0 : λmps = 0 is rejected at the 5% level even after control adjusting

for 1st stage generated regressor problem. An online appendix repeats this test for alternative

specifications for mpst, using one of the six specification of PathShock described above, and shows

this result is remarkable robust. Overall, the message of Table VIII is that path shocks are a

common source of priced risk not only in bond markets, but also for the cross-section of stock

returns.

[Insert Table VIII about here.]

V. Learning from predictability

The previous sections provide robust evidence that monetary policy path shocks help to explain

excess returns on bonds. This section investigates two economic channels through which path

shocks may drive the time variation of bond risk premia, and asks which channel is rejected by the

data. In general, risk premia are time varying if either the price or quantity of risk are not constant.
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Indeed the literature has proposed two benchmark economies that give rise to time varying risk

premia: (i) habit and (ii) long-run risk (LRR) economies. Can the predictability results found in

the previous section be understood within the context of one of these two streams of models?

In Lucas economies with habit preferences as in Campbell and Cochrane (1999), predictability

arises in equilibrium because of an endogenously time-varying price of risk. Shocks to the cur-

rent endowment affect the wedge between consumption and habit, thus inducing time-variation

in the price of risk. The impact of consumption shocks on interest rates depends on the relative

importance of the intertemporal consumption smoothing and precautionary savings effects. A neg-

ative shock to consumption tends to increase the short term interest rate through the consumption

smoothing channel: agents expect surplus consumption to recover, so they borrow more against fu-

ture consumption to smooth their consumption path. At the same time, the shock tends to reduce

interest rates through a precautionary savings channel: the conditional volatility of surplus rises

when its level drops, inducing agents to save more. Campbell and Cochrane (1999) parametrize

the process for surplus in a way that ensures that the two effects offset each other, so that short

rates are constant and the term structure of interest rates is always flat. Wachter (2006) removes

this restriction and solves for bond prices. She finds that when the model is calibrated to the data,

inter-temporal smoothing dominates precautionary savings: the correlation between surplus and

the short rate is negative. In this context investors require compensation to hold bonds, which

varies depending on the level of consumption surplus.19

In long run risk economies with Epstein and Zin (1989) recursive preferences such as Bansal

and Yaron (2004), predictability stems from the dynamics of the quantity of risk: the second

moments for the conditional growth rate of nominal and real macroeconomic variables are assumed

to be time varying. The most recent paper that studies the implications of this class of models in

bond markets is Bansal and Shaliastovich (2013). They derive a term structure model for nominal

yields based on Epstein and Zin (1989) preferences, time varying expected consumption growth

and inflation, time varying volatility of expected consumption growth and inflation, and money

non-neutrality. In equilibrium, the impact of uncertainty on bond risk premia depends on the

interaction of the sensitivity of yields to expected consumption and inflation growth and the sign

of the prices of risk attached to consumption and inflation uncertainty. Nominal bond yields are

increasing in both expected consumption and inflation growth. The price of expected consumption

risk is positive when agents have preference for early resolution of uncertainty. Since high expected

inflation signals low expected consumption growth (via money non-neutrality), the price of expected

inflation risk is negative. As a consequence, while high expected growth uncertainty lowers bond

premia, high expected inflation uncertainty raises bond premia.

The potential channels through which monetary path shocks can generate bond return pre-

dictability are very different in these two classes of models. Consider habit economies first. Habit

economies need to feature two ingredients for expected monetary policy shocks to be a driver of

risk premia: (i) monetary policy must have an impact on consumption; (ii) habit must be internal.

19Another example of habit economy is Buraschi and Jiltsov (2007), who model a continuous time economy with
habit formation and obtain a closed form solution for (non-affine) bond yields.
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In benchmark habit economies, in fact, the dynamics of consumption are independent of monetary

policy shocks. Extending the consumption dynamics from an i.i.d. process (as in Campbell and

Cochrane (1999)) to accommodate money non-neutrality, 20 however, is not sufficient: in external

habit models, risk aversion is a function of current surplus, which in turn depends on past con-

sumption. Thus, even if monetary policy path shocks affected future consumption, they would not

affect current risk aversion and, therefore, the price of risk. In models with internal habit, on the

other hand, the current marginal utility of agents also depends on future levels of consumption

and habit. Thus, to the extent that expected monetary policy shocks have an impact on future

consumption, they can arise as a state variable for the current level of risk aversion and price of

risk. The online appendix contains a simple example that shows how money non-neutrality and

internal habit can interact to induce a dependence of risk aversion on monetary policy shocks.

Next, consider a LRR economy. In LRR economies, predictability stems from macroeconomic

uncertainty, i.e. heteroskedasticity in the conditional mean of consumption growth and/or inflation.

For policy shocks to predict returns via a LRR channel, therefore, it must be the case that monetary

policy shocks have an impact on macroeconomic uncertainty. The link between monetary policy and

uncertainty has been at the centre of a heated debate: many economists, for instance, have called for

the use of policy instruments and communication to explicitly target the extent of macroeconomic

uncertainty. This argument has influenced the decision of introducing elements of forward guidance

in the tool kit of several central bankers.

To study the implications of these two classes of models in the context of the PathShock-

predictability results, we proceed in two steps. First, we compare the empirical evidence in support

for a habit versus LRR economy in our sample (independently of the potential existence of monetary

channel). Second, we try to understand whether the predictability we observe is consistent with

a habit versus LRR channel. To this end we run two sets of regressions. In the first set of

regressions, we project consumption surplus onto lagged monetary policy shocks; in the second set

of regressions, we regress proxies of macroeconomic uncertainty onto contemporaneous PathShock.

Under the null hypothesis that a habit mechanism is at work (time-variation in the price of risk),

the slope coefficient in the first regression should be negative and significant. On the other hand, if

monetary path shocks generate predictability because of a long-run risk mechanism (time-variation

in the quantity of risk) the slope coefficient of the second set of regressions should be positive and

significant.

We follow Wachter (2006) and construct a proxy of consumption surplus st as a weighted average

of 10 years of monthly consumption growth rates:21

st =

120∑
j=1

φj∆ct−j ,

20For instance, money non neutrality may be modelled by assuming that the level of monetary policy shocks enters
the conditional mean of consumption growth.

21The consumption data we use consist of seasonally adjusted, real per-capita consumption of nondurables and
services (from the Bureau of Economic Analysis).
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where the weight is set to φ = 0.971/3 to match the quarterly autocorrelation of the P/D ratio in

the data, as in Wachter (2006); The left panel of figure 6 plots the dynamics of the series in our

sample.

In order to construct proxies of GDP and inflation uncertainty, we use an ARMA(1, 1) model

to demean consensus expectations about 1-year ahead GDP and CPI growth, and fit a GARCH(1,

1) to the residuals: we use the conditional volatilities implied by the GARCH model as proxies of

uncertainty.22 The online appendix reports estimates for the estimated GARCH model, and the

right panel of figure 6 plot the time series of the conditional volatility of GDP and inflation implied

by the estimates.

[Insert table 6 about here.]

First, we compare the ability of these risk factor for bond returns. The online appendix shows

the results for predictability regressions of bond excess returns on consumption surplus (left panel),

macro economic uncertainty (central panel), and both consumption surplus and macro economic

uncertainty (right panel). Consider first the predictive ability of habit proxies (left panel). The

negative sign of the slope coefficients is intuitive: consistent with the empirical evidence that term

premia are countercyclical, an increase in surplus consumption predicts a decline in future excess

returns. The statistical significance, however, is weak. The null hypothesis of no significance cannot

be rejected for any bond maturity. Next, consider the predictive ability of long run risk proxies

(central panel). While inflation uncertainty has no forecasting ability for future excess returns,

uncertainty about GDP growth features large economic and statistical significance. Contrary to

Bansal and Shaliastovich (2013), we find that uncertainty about GDP growth increases, rather

than decreases, bond risk premia. The right panel confirms these results by jointly considering

both habit and LRR proxies.

[Insert table XV about here.]

Let us now turn to investigate the potential role played by PathShock. The online appendix re-

ports the output of regressions of consumption surplus on lagged monetary policy path shocks. For

any horizon considered (h = 1, . . . , 5 years), PathShock fails to predict future levels of consumption

surplus, thus ruling out a habit channel. Table X, on the other hand, reports the output of regres-

sions of macroeconomic uncertainty on contemporaneous monetary policy path shocks. The most

important result in this table is that path shocks are strongly related to GDP growth uncertainty:

the t-statistic rejects the null of no significance at any standard level, and the R2 suggests that as

much as one fifth of the variance of RGD uncertainty is accounted for the variation in PathShock.

These results are consistent with two interpretations: (i) PathShock predicts future excess returns

22The construction of the proxies for conditional volatility is closely related to the methodology followed by Bansal
and Shaliastovich (2013). Bansal and Shaliastovich (2013) use a VAR to demean consensus expectations about GDP
growth and inflation, and then regress the sum of the squared residuals between t and t+ 12 onto time-t yields; the
fitted values are used as a proxies of conditional variances. Our construction allows for the possibility of unspanned
macro uncertainty.
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via a quantity of risk channel; (ii) more precisely, PathShock impacts the uncertainty surround-

ing GDP growth, which, consistent with a LRR economy, is a key driver of the time variation of

bond risk premia in our sample (see Table XV). While the link between PathShock and σt (ge) is

tight, there is a large fraction of variation in PathShock that is unrelated to fluctuations in RGD

uncertainty. It is natural to ask what is the predictive power of the component of PathShock that

is unrelated to GDP uncertainty for bond excess returns. We address this question by running

predictive regressions on PathShock in which we control for macroeconomic uncertainty. Table XI

sumarizes the results. While controlling for uncertainty does indeed reduce the forecasting power

of PathShock, path shocks retain significant forecasting power at all bond maturities.

[Insert Tables IX, X, and XI about here.]

VI. Conclusion

Much of the term structure literature uses latent factors to model the dynamics of yields without

attempting any economic interpretation (Litterman and Scheinkman (1991) and Dai and Singleton

(2000)). Motivated by the link between monetary policy and the short term interest rate more

recent literature has moved towards an explicit role for policy shocks within no-arbitrage term

structure models (Piazzesi (2005) and Ang, Dong, and Piazzesi (2007), and Chun (2011). This

paper asks a more fundamental question: does monetary policy represent a source of priced risk in

bond markets and is it important for understanding time-variation in the bond risk premium?

To answer this question we construct PathShock, a measure of variation in the expected path

of monetary policy. This measure is constructed in real-time from the residuals of Taylor rules esti-

mated on survey forecasts of federal funds rates, GDP growth, and inflation. Comparing PathShock
to measures of monetary policy extracted from VAR analysis or daily shocks to short term lending

rates, we find that target shocks are negatively correlated to path shocks. Since the Fed lowers

the policy rate in recessions this implies path shocks are counter-cyclical and have some hope in

explaining time-variation in (counter-cyclical) bond risk premia.

We study this potential link along a number of dimensions: (i) we focus on well studied yield

based proxies for the risk premium; and (ii) through classical predictability regressions with and

without controls for alternative explanations. Summarising our findings, PathShock exhibits re-

markable co-movement with the slope of the yield curve, the forward rate factor of Cochrane and

Piazzesi (2005), and the volatility factor of Le and Singleton (2013). We find that monetary policy

shocks account for 10%-15% of the variance of one-year excess returns for bond maturities between

2 and 5 years and are significant at the 1% level. The predictability is economically and statisti-

cally stronger after controlling for the levels of macro economic activity including the real-activity

factor of Ludvigson and Ng (2009) and expected inflation extracted from surveys. Furthermore,

the results are robust to the choice of Taylor rule specification and to the inclusion of the financial
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crisis in the sample.

These results have implications for both asset pricing and monetary policy. First, the evidence

suggests that macro-finance models of the term structure should include a role for monetary pol-

icy not only through physical expectations of future short rates but also through risk-adjusted

ones. Second, the results indicate that monetary authorities can learn about market expectations

for the path of policy from real-time survey forecasts, and therefore represent a valuable tool in

implementing policy today.
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VII. Appendix B: Tables

Table I. Taylor rule specifications
This table describes different specifications of the general Taylor rule model

fen,t,h = ρ1f
e
n,t,h−1 + ρ2f

e
n,t,h−2 + (1− ρ)

(
f + β

(
πen,t,i − π∗

)
+ γxen,t,i

)
+ uen,t,h.

The first row contains the horizon, in months, of the federal funds rate forecast. The second row contains
the horizon, in months, of inflation and output gap forecasts. The third row describes the type of output
gap employed; output gap 1 is constructed using full sample information, while output gap 2 is constructed
recursively. The fourth and fifth rows report the test-statistic and p-value of the F-test for the joint
significance of the individual effects. The final two rows report the test-statistic and p-value of the Hausman
test for systematic differences between random and fixed effects coefficients (null hypothesis: random effects
is appropriate).

Specification 1 2 3 4 5 6

h 12 12 9 9 9 9

i 12 12 9 9 12 12

GAP 1 2 1 2 1 2

F(FE) 7.69 7.56 8.86 8.85 8.19 8.31

0.00 0.00 0.00 0.00 0.00 0.00

Hausman 52.91 50.61 32.71 37.17 31.28 36.23

0.00 0.00 0.00 0.00 0.00 0.00
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Table II. Path Shocks vs Target Shocks
Table reports results of a regression of PathShockt on test three proxies for target shocks that have been
studied in the literature: (i) the residuals in a monthly orthogonalised VAR (ηceet ); (ii) the 1-day change in
the 3 month euro-dollar rate around FOMC announcements (ηcpt ); and (iii) the 1-day change in the 1-month
Federal funds futures rate around FOMC announcements ηbkt . Panel A reports loadings, t-statistics (White
standard errors) and R2 from

PathShockt = α+ β ηit + εt

while Panel B reports regressions of PackShockt on a 6-month moving sum of past ηit shocks

PathShockt = α+ β

6∑
k=1

ηit−k+1 + εt

ηceet ηcpt ηbkt

Panel A

β −0.04 −0.03 −0.04

t-stat (−2.03) (−0.99) (−4.70)

R2 0.02 0.01 0.03

Panel B

β −0.02 −0.06 −0.03

t-stat (−2.77) (−4.97) (−4.43)

R2 0.06 0.15 0.10

Table III. Risk Premium Proxies
The table reports the results from regressions of PathShock on bond risk premia proxies extracted from
date t yield curve information:

PathShockt = const.+ βZ′t + εt

The proxies for yield based risk premium proxies Zt are the slope of the yield curve as in Campbell and
Shiller (1991) (Slopet = y

(5)
t − y

(1)
t ), the forward rate factor of Cochrane and Piazzesi (2005) (CPt), and

the two volatility factors estimated by Le and Singleton (2013) (LS1t and LS2t). T-statistics, reported
below in parenthesis are corrected for auto-correlation and heteroskedasticity using Newey-West errors (18
lags). Both left and right hand variables are standardized. A constant is included but not reported. Sample
period: 1990:1 - 2007:12.

Slopet CPt LS1t LS2t R2

β 0.29 0.08

t-stat (2.19)

β 0.36 0.12

t-stat (3.03)

β 0.06 0.52 0.23

t-stat (0.32) (2.94)
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Table IV. Bond Return Predictability: PathShock
The table reports the output from regressions of annual bond excess returns on a constant and expected
monetary policy shocks:

rx
(n)
t+12 = const.+ β

(n)
PSPathShockt + ε

(n)
t+12.

Bond maturities (n) range from 2 to 5 years. Each panel reports the results for one of the 6 proxies
of expected monetary policy described by Table I. The left panels report the results for the full sample
(the last observation is the excess return that realized between 2011:7 and 2012:7), while the right panels
report the results for the sample excluding the crisis (the last observation is the excess return that realized
between 2007:6 and 2008:6). T-statistics, reported below in parenthesis are corrected for auto-correlation
and heteroskedasticity using Newey-West errors (18 lags). R̄2 is the adjusted R2. Both left and right hand
variables are standardized. A constant is included but not reported.

1990-2011 1990-2007

n PathShock R̄2 PathShock R̄2

2 0.38 14.00% 0.40 15.53%

(3.13) (3.07)

3 0.37 13.73% 0.39 14.62%

(3.19) (3.00)

4 0.38 14.05% 0.38 13.70%

(3.35) (2.89)

5 0.35 12.05% 0.35 12.00%

(3.19) (2.77)

Table V. Bond Return Predictability: PathShock and gt
The table reports the output from regressions of annual bond excess returns on a constant, expected
monetary policy shocks, and levels of macroeconomic activity:

rx
(n)
t+12 = const+ β

(n)
PSPathShock + β(n)

g gt + ε
(n)
t+12

Bond maturities (n) range from 2 to 5 years. The left panels report the results for the full sample (the
last observation is the excess return that realized between 2011:7 and 2012:7), while the right panels
report the results for the sample excluding the crisis (the last observation is the excess return that realized
between 2007:6 and 2008:6). T-statistics, reported below in parenthesis are corrected for auto-correlation
and heteroskedasticity using Newey-West errors (18 lags). R̄2 is the adjusted R2. Both left and right hand
variables are standardized. A constant is included but not reported.

1990-2011 1990-2007

n PathShock g R̄2 PathShock g R̄2

2 0.35 -0.31 22.97% 0.23 -0.40 28.04%

(3.32) (-2.70) (1.85) (-4.24)

3 0.35 -0.28 21.16% 0.25 -0.32 22.54%

(3.30) (-2.89) (1.95) (-3.57)

4 0.36 -0.23 18.89% 0.26 -0.26 18.78%

(3.27) (-2.41) (2.00) (-3.00)

5 0.33 -0.20 15.90% 0.27 -0.19 14.45%

(3.10) (-2.50) (2.08) (-2.32)
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Table VI. Bond Return Predictability: PathShock and E[πt]
The table reports the output from regressions of annual bond excess returns on a constant, expected
monetary policy shocks, the consensus forecast for the 4Q-ahead ahead rate of inflation activity:

rx
(n)
t+12 = const+ β

(n)
PSPathShock + β(n)

g E[πt] + ε
(n)
t+12

Bond maturities (n) range from 2 to 5 years. The left panels report the results for the full sample (the
last observation is the excess return that realized between 2011:7 and 2012:7), while the right panels
report the results for the sample excluding the crisis (the last observation is the excess return that realized
between 2007:6 and 2008:6). T-statistics, reported below in parenthesis are corrected for auto-correlation
and heteroskedasticity using Newey-West errors (18 lags). R̄2 is the adjusted R2. Both left and right hand
variables are standardized. A constant is included but not reported.

1990-2011 1990-2007

n PathShock E[πt] R̄2 PathShock E[πt] R̄2

rx(2) 0.35 0.29 0.22 0.39 0.39 0.30

(2.94) (2.36) (3.20) (3.05)

rx(3) 0.36 0.21 0.18 0.38 0.32 0.25

(2.95) (1.64) (2.88) (2.45)

rx(4) 0.36 0.18 0.17 0.37 0.31 0.23

(3.12) (1.43) (2.74) (2.35)

rx(5) 0.34 0.12 0.13 0.35 0.28 0.19

(3.01) (0.93) (2.59) (2.10)

Table VII. PathShocks and QE path shocks
The table reports the correlation of PathShocks with four measures of QE path shocks: TS5y, TS10y,
TS30y, and MTGS. The first, second, and third rows report the pairwise correlations for the full, pre-QE
(up until November 2008), and QE sample (after November 2008), respectively.

Sample period TS5y TS10y TS30y MTGS nobs

Full sample -0,21 -0,28 -0,31 0,20 264

Pre-QE -0,06 -0,14 -0,19 0,09 226

During QE -0,83 -0,91 -0,89 0,43 38
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Table VIII. Monetary Policy Shocks and Equity Returns
The table reports risk premium estimates (λ) for the 4-factor equity asset pricing model E

[
RXi

]
= βi′λ.

The candidate risk factors are the market excess return (mkt), Fama and French (1993) value and size
factors (smb and hml) and the portfolio mimicking monetary policy shocks (mps):

βi′ =
[
βimkt βismb βihml βimps

]′
λ′ = [λmkt λsmb λhml λmps]

′

Factor betas are estimated in first-stage time series regressions via OLS. For each specification: the first row
reports (annualized) risk premia estimates; the second row reports t-statistics corrected for auto-correlation
and heteroskedasticity using Newey-West errors (18 lags); the third row reports t-statistics that employ
Shanken (1992) correction. Sample period: 1990:1 - 2011:7.

mkt smb hml mps

5.99% 2.52% 3.79% 4.40%

(8.69) (4.52) (2.90) (5.03)

(1.77) (0.95) (1.50) (2.17)

Table IX. Monetary Policy Shocks and Surplus
The table reports the output from regressions of consumption surplus at time t + h (st+h) on expected
monetary policy shocks at time t:

st+h = const.+ βPathShockt + εt+12

Forecasting horizons (h) range from 1 to 5 years. T-statistics, reported below the point estimates, are
corrected for auto-correlation and heteroskedasticity using Newey-West errors (lags equal to h). R̄2 is the
adjusted R2. Both left and right hand variables are standardized. A constant is included but not reported.

h PathShock R̄2

1 −0.01 0.00

(−0.09)

2 0.02 0.00

(0.13)

3 0.16 0.02

(0.83)

4 0.29 0.04

(1.21)

5 0.11 0.01

(0.50)
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Table X. Monetary Policy Shocks and Uncertainty
The table reports the output from regressions of macroeconomic (GDP, inflation) uncertainty at time t
(σt (·)) on monetary policy path shocks (specification 1) at time t:

σt (·) = const.+ βPathShockt + εt

T-statistics, reported below the point estimates, are corrected for auto-correlation and heteroskedasticity
using Newey-West errors (18 lags equal). R̄2 is the adjusted R2. Both left and right hand variables are
standardized. A constant is included but not reported.

PathShock R̄2

σ (ge) 0,46 20,50%

3,27

σ (πe) 0,15 2,00%

0,98

Table XI. Monetary Policy Shocks versus Uncertainty
The table reports the output from regressions of annual bond excess returns on monetary policy path
shocks, controlling for the level of macroeconomic activity and uncertainty:

rx
(n)
t+12 = const.+ β

(n)
PSPathShockt + β(n)

g gt + β
(n)

σ(g)σt (ge) + β
(n)

σ(π)σt (πe) + ε
(n)
t+12

Bond maturities (n) range from 2 to 5 years. T-statistics, reported below the point estimates, are corrected
for auto-correlation and heteroskedasticity using Newey-West errors (18 lags). R̄2 is the adjusted R2. Both
left and right hand variables are standardized. A constant is included but not reported.

n PathShock g σ (ge) σ (πe) R̄2

2 0.30 −0.23 0.16 −0.02 0.24

(2.47) (−1.88) (1.30) (−0.23)

3 0.28 −0.17 0.23 −0.03 0.24

(2.27) (−1.58) (1.98) (−0.50)

4 0.27 −0.11 0.27 −0.05 0.22

(2.19) (−1.15) (2.46) (−0.82)

5 0.25 −0.08 0.28 −0.05 0.20

(1.98) (−0.88) (2.81) (−0.90)
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VIII. Appendix C: Figures
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Figure 1. The Performance of BCFFS Forecasts
The figure plots the time series of the number of agents in the cross-section whose forecast error is, in
absolute value, less than the absolute value of the VAR forecast error (left panels), and the difference
between the absolute value of the VAR forecast error and the absolute value of the average BCFFS forecast
error (right panels). Forecast horizon: one quarter.
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Figure 2. PathShock
This figure plots monetary policy path shocks PathShock, constructed as cross-sectional averages of the
residuals from Taylor rules estimated over a panel of forecast data. Each series corresponds to one of the
6 specifications described in Table I. Sample period: 1990:1 - 2011:7.
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Figure 3. Comparing Shocks:
Figure plots PathShock against three proxies for target shocks proposed by the literature: (i) the residuals
in a monthly orthogonalised VAR (ηceet ); (ii) the 1-day change in the 3 month euro-dollar rate around
FOMC announcements (ηcpt ); and (iii) the 1-day change in the 1-month Federal funds futures rate around
FOMC announcements (ηbkt ).
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Figure 4. Counter-cyclicality of PathShock
This figure plots monetary policy path shocks PathShock (specification 1), and macroeconomic activity,
g. Areas shaded in gray indicate NBER recessions. Sample period: 1990:1 - 2011:7. Time series are
standardised for easy comparison.
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Figure 5. Monetary policy shocks and yield curve information
This figure plots PathShock against three risk premium proxies: (i) the slope of the yield curve Slopet =

y
(5)
t − y

(1)
t ; (ii) the forward rate factor of Cochrane and Piazzesi (2005) (CP ); and (iii) a volatility factor

from Le and Singleton (2013) (LS2).
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Figure 6. Habit
The left panel of this figure plots a proxy of consumption surplus, st, defined as st =

∑120
j=1 φ

j∆ct−j , where

φ = 0.971/3 and ∆ct is the (log) consumption growth between month t − 1 and t. Consumption data
consist of seasonally adjusted, real per-capita consumption of nondurables and services.

The right panel plots the conditional volatilities implied by an ARMA(1, 1)-GARCH(1, 1) model fitted
to 1-year consensus forecasts of GDP growth (geC,t,1Y ) and inflation (πeC,t,1Y ). These are proxies for the
conditional volatilities of expected GDP and inflation, which we denote σt

(
geC,t,1Y

)
and σt

(
πeC,t,1Y

)
, re-

spectively.
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