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Abstract

Information ambiguity introduces view bias. By defining this view bias, we develop a
novel reward-risk measurement framework, an extended CAPM a sequence of empirical
test procedures to explain asset pricing anomalies. U.S. stock market data (1926-1999)
implies a pessimistic view on average for people with rational risk preference; that ex-
plains the equity premium puzzle. The extended CAPM still admits a single beta repre-
sentation. The amount of risk becomes the weighted average of systematic risk and latent
risk. The price of risk, or the expected market excess return, is adjusted by view bias.
The momentum effect has two alternative explanations within this framework. Either
the winner has a low systematic risk but a high latent risk, and the adjusted price of risk
is positive; or the winner has a low systematic risk and a low amount of risk (a weighted
average of systematic risk and latent risk), but the adjusted price of risk is negative.
Post-war U.S. data supports the latter explanation.
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1. Introduction

Theorists develop models with testable predictions; empirical researchers document

puzzles stylised facts that fail to fit established theories and this stimulates the development

of new theories. Such a process is part of the normal development of any science.

– Campbell (2000), Asset Pricing at the Millennium

Fundamental asset pricing theory established an asset pricing framework, that is, the

asset price of any contingent claim is the expectation of its terminal payoff discounted

by a stochastic discount factor (SDF). However, the actual data cannot reconcile with

what the theory suggests, either from the mean and variance of stochastic discount

factor perspective1, e.g., the equity premium puzzle, risk-free rate puzzle, and correlation

puzzle, etc., or from the factor structure of SDF perspective2, e.g., size effect, value effect,

and momentum. The main purpose of this paper is to generalise the above asset pricing

framework to make the actual data reconcile with this novel theory. Specifically we first

introduce a new coherent risk-reward measurement framework reflecting people’s view

bias towards information ambiguity, and then based on which, we derive a generalised

CAPM theory. We also develop a corresponding econometrics methodology suitable

for the new risk-reward measurement framework, and finally we provide the empirical

evidence on the advantage on explaining the anomalies.

Since the anomalies are against the basic asset pricing equation, which is the first order

condition of rational investor’s portfolio optimization problem, hence the optimization

1Equity premium puzzle first documented by Mehra and Prescott (1985). In Cochrane (2001), over
the last 50 years in the U.S. real stock returns have averaged 9% with a standard deviation of about
16%, while the real return on treasury bills has been about 1%. Thus, the historical annual market
Sharpe ratio has been about 0.5. Aggregate consumption growth has been about 1%. Thus, we can
only reconcile these facts with the theory, if investors have a risk aversion coefficient of 50! However the
experimental data shows the risk aversion coefficient for normal person is between 1 and 4. Also see
Campbell (2000) for the survey paper of asset pricing theoretical development and empirical anomalies.
An equivalent anomaly, risk free rate puzzle, first documented by Weil (1989).

2Size effect in US stock returns was first documented by Banz (1981), debates on whether size premium
is a compensation for systematic risk is ongoing. Momentum first documented by Jegadeesh and Titman
(1993), which shows that past winners continue to outperform the past losers, while the beta estimate for
the winner portfolio is even lower. Fama and French (1996) find that among several CAPM anomalies,
momentum is the only one unexplained by the three-factor model. Also See Cochrane (2001) for the
discussion of asset pricing anomalies.
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problem itself should be the cradle land of the research. The optimization problem can

be described as follows: By choosing the optimal consumption and the weight of each

individual security within the portfolio, the investor is to maximize the expectation of

the integration of the utility generated by the consumption of whole life as well as a

utility generated by the lump sum terminal wealth, with budget equation and security

price dynamics as the restrictions. However sometimes, e.g. in the post second world

war, people only know the possible outcomes of an uncertainty, and they do not know

the exact probabilities of each state, but just have a vague assessment3. Then for the

investor, the expectation is not obtainable. Hence the pessimistic investor will take the

maxmin strategy and optimistic investor will take the maxmax strategy. Table 1 shows

us an example.

Table 1

Decision making under perfect and imperfect information

Strategy X Strategy Y

Rate of return 1% 3% 50% 100% -1000% 3% 50% 100%

Probability 5% 15% 70% 10% 0% 10% 80% 10%

Summary Mean=45.5%, VAR=0.068 Mean=50.29%, VAR=0.048

Assume a risk averse investor is facing the risk under perfect information of the probabil-

ity of each state, he will choose Strategy Y, because Y is generating a higher expectation

of the rate of return (50.29%) than Strategy X (45.5%), with a lower variance of the

rate of return (0.048) than Strategy Y (0.068). However if the investor cannot observe

the probability, by comparing the state payoff sets and following the maxmin priciple,

a pessimistic investor will choose Strategy X, because he will first anticipates that the

worst state of each strategy will happen (State S1 for both), then select a strategy with a

better result. In reverse, the optimistic investor will anticipate the best state will always

happen, then select a strategy with a better result. In contrast to the risk preference, we

3Knight (1921) distinguishes knowing the outcomes without aware of the corresponding possibility
as uncertainty from risk.
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name the pessimism and optimism4 the view bias of a rational investor facing the im-

perfect information. Not necessarily a risk-averse investor is pessimistic or a risk taking

investor is optimistic. A risk averse investor can be either pessimistic or optimistic due

to their opinion on the circumstances when the probability is not observable. We find

the following stylized fact in Section 5: if the market return and consumption growth

move in the same direction, a risk-averse investor is more like a pessimistic investor; if

the market return and consumption growth move in a counter-direction, a risk-averse

investor is more like an optimistic investor, which is against Bossaerts et al. (2010)’s

finding that those two are positively correlated.

From the above example, we can see the essential conceptual difference between the

risk preference and the view bias. First, risk preference exists no matter information is

perfect or not, however the view bias deviates from neutral when information is imperfect.

Second, risk preference reflects people’s character, which is nature born, and quite stable

during the whole life, hence it does make sense to get an experimental estimate for risk-

averse coefficient for normal person; while view bias reflects people’s attitude toward the

information ambiguity, and it is quite variable. It is highly possible that for the same

person, his view bias changes dramatically from pessimistic to optimistic within one day.

Dow Industrials declined 6.54 percent (the seventh largest in the postwar period) on Sep.,

26, 1955 due to President Eisenhower’s heart attack, and the decline lasted for a couple

of months. People couldn’t adjust their believes on the stock return distribution pattern

in a timely manner, hence although he expected that the stock price will fall, he didn’t

realised that the stock price will fall that much. In other words, he relatively amplified

the good state’s probability and technically possessed an optimistic view bias, although

in real life he is not optimistic at all5.

Then what if the extreme states of each strategy are all the same? E.g., the worst stock

4Abel (2002) shows that pessimism and doubt in the subjective distribution of the growth rate of
consumption reduce the equity premium puzzle. Also see Guidolin (2006).

5The monthly historical view bias calculated based on our model shows that from Jan. 1955 to Aug.
1955, the aggregated view bias are all less than 0.5, indicating a pessimistic view; the view bias in Sep.
and Otc. are both above 0.5, indicating an optimistic view. See Siegel (2008) for the event.
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price is always zero, the worst rate of return is always negative infinity, etc.? That’s the

reason why many researches have be done on using quantile to measure the reward of the

rate of return instead of using the extreme worst outcome. The logic is that even though

the worst outcomes for each strategy are all the same, their 5 percent quantile might be

different enough for us to make a choice. However there are two reasons why we don’t

like the quantile. First, quantile is not a sufficient statistics, and making decision based

on quantile, is a waste of information. Second, using quantile as a reward measurement,

is not directing us to a nice concise SDF pricing framework, which is integrating all

the asset pricing problems on a contingent claim level. Without that framework, the

expectation-conceptual-driven martingale theory is not available any more, the elegant

risk neutral valuation option pricing theory collapses.

The above concerns motive us to establish an axiomatic reward-risk measurement

framework by introducing a novel concept of expectile which takes the merits of expec-

tation and quantile both, without affording the drawbacks of either. Our goal is that the

expectile we develop in this paper should be able to reflect the imperfect information,

capture people’s view bias towards the information ambiguity, without losing the concise

integrated asset pricing framework, and eventually solves two categories of anomalies

within that particular framework. Our paper makes the following methodological and

empirical contributions to the existing literature.

First, we define the expectile as an argument minimizing the weighted (by view bias)

mean squared deviation from that particular argument. The logic is as follows, the

median of a random variable is an argument minimizing the mean absolute deviation

from that particular argument. The quantile is an argument minimizing the weighted

mean absolute deviation from that particular argument. The expectation is an argument

minimizing the mean squared deviation from that particular argument. Hence in an

induction manner, it is quite natural to define the expectile as above. By doing so, the

measure of risk, named as variancile by us, is being defined simultaneously as the weighted

mean squared deviation from the expectile. In order to make sure the expectile and
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variancile are suitable for measuring reward and risk, we needs to check if the coherency of

reward (risk), namely the additivity (sub-additivity), homogeneity and risk-free condition

are satisfied. Among those conditions, only the additivity of the reward measure is not

satisfied. However that is not violating any pricing principle, actually that extends the

traditional law of one price under perfect information as follows: Imperfect information

may induce instantaneous profit by repackaging the portfolios. The premium is not to

compensate for bearing information ambiguity risk, but being awarded for providing

more information. We differentiate those two types premium as the first and second

category information premium respectively.

Second, we revise the expectation utility maximization axiom into an expectile utility

maximization axiom6. We redo Merton Problem under the expectile framework, and

extend the CAPM theory. The main result is that the expectile of the rate of return,

which is view bias adjusted, can still be described as a single beta representation, except

that the beta is now the weighted average of systematic risk and latent risk7.

μi +
σi√
dt

− rf =
Θ2σ̃iM +ΦσiM

Θ2σ̃2
M +Φσ2

M

(
μM +

σM√
dt

− rf
)
. (1)

Under perfect information, the investor will possess a neutral view bias, Θ will degenerate

into zero, and Φ will degenerate into one. Therefore we obtain the traditional CAPM.

We explain the equity premium puzzle by using this new theoretical framework, that

people possess a pessimistic view bias where there is no perfect information in post-war

U.S.; We explain the momentum as follows, the people’s view bias will be pendulous

to digest the past information and accommodate itself to the new information. Hence

there is a cycle for people’s view bias reciprocates from pessimism to optimism. Since

beta is the weighted average of systematic risk and latent risk, and the weights Θ2 and

Φ are affected by movement of view bias, the beta will surge accordingly. The adjusted

6Krausa and Sagi (2006) claim that the agents’ preferences with respect to unforeseen contingencies
must be non-expected utility.

7Latent risk is closely related to the idiosyncratic risk, however their definitions are not exactly the
same. We will brief it in section 3.3 in details.
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price of the risk (μM + σM√
dt

− rf ) will be the same for all portfolios, hence the amount

of risk will be the only determinant of portfolio ranking. If μM + σM√
dt

− rf > 0, the

momentum appears when the winner portfolio is having a low systematic risk and a high

latent risk, while the loser portfolio is having a high systematic risk and a low latent risk.

If μM + σM√
dt

− rf < 0, the momentum appears when the winner portfolio is having a low

systematic risk and a low amount of risk (weighted average of systematic risk and latent

risk), while the loser portfolio is having a high systematic risk and a high amount of

risk. If the view bias to reciprocate around neutral symmetrically (asymmetrically), the

relative amount of risk, beta, will vary across time with a period being half of (the same

long as) the period of view bias. Jacobs and Wang (2004) investigate the importance of

idiosyncratic consumption risk for the cross sectional variation in asset returns. Since

idiosyncratic risk and latent risk are closing related, our theoretical results support what

their empirical finding suggests.

Third, we clarify the necessity of developing new econometrics methodology, an expec-

tile regression to test the extended CAPM theory. We distinguish the expectile regression

between ordinary least square regression (OLS), weighted least square regression (WLS),

and quantile regression. We establish the expectile regression methodology by listing all

the assumptions, finding new estimators, and proving the asymptotic consistency and

normality in large sample analysis. We develop the hypothesis testing by the case of

conditional homoskedadticity and heteroskedasticty. We estimate and test the expectile

based unconditional CAPM theory through the conditional GMM being restricted by

view bias distorted linear conditions.

Finally, we demonstrate the advantage of the expectile based asset pricing theory

through empirical application, in which we reach dramatically different conclusions on

CAPM hypothesis testing. Specifically, we obtain a statistically significant view bias

based beta, and there is no evidence that we should reject the null hypothesis that

moment conditions are satisfied.
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Our paper is related to the ambiguity8 asset pricing approach. The difference be-

tween risk and uncertainty was documented by Knight (1921) and Ellsberg (1961). Am-

biguity aversion is a preference for risks over uncertainty. Historical contributions in-

cludes Gilboa and Schmeidler (1989)’s “maxmin” model, Ghirardato et al. (2004)’s “α-

maxmin” model, Klibanoff et al. (2005)’s “smooth ambiguity” model. Bossaerts et al.

(2010) argue that attitudes towards ambiguity are heterogeneous across the population.

Ui (2011) study the relationship between limited market participation and the equity

premium which is decomposed into the risk premium and the ambiguity premium. The

paper establishes rational-expectations equilibrium with an assumption that the ambi-

guity averse investor evaluates his portfolio in terms of the minimum of expected utility.

Araujo et al. (2012) consider the pricing rules of single-period securities markets with

finitely many states, and develop an Arrow-Debreu ambiguous state price valuation.

Their results, however, explain the anomalies to an experimental level, not to an em-

pirical test level, due to the reason of model complexity and data availability. Their

approach loses the integrated SDF pricing framework while making extensions; hence

the modeling complexity will be compounded with the problem complexity, and soon

becomes unmanageable.

The advantage of our approach is that not only does the expectile take the merits

of quantile, which conceptually reflects people’s behaviour of amplifying the bad state

probability and shrink the good state one if he is pessimistic, and vice versa, when

facing the information ambiguity, but also the expectile based asset pricing takes the

merits of the expectation framework. Now the pricing equation of any contingent claim

is the expectile of terminal payoff discounted by SDF, which can be rewritten into the

expectation of the product of the view bias adjustment, SDF and the terminal payoff,

moreover technically the view bias adjustment and SDF are separable. That is critical

important from the model simplification’s perspective, and because of that, the whole

theoretical framework can be easily applied to solve more complicated problems, e.g.,

8See Hirshleifer (2001) for psychology theoretical support.

8



considering the heterogeneity, limited market participant, etc. Also the expectile takes

the merits of expectation, which has mature and astronomical mathematics knowledge as

support. Hence after some modification work, the expectile based asset pricing framework

can be applied to the martingale theory to provide explanation to derivatives pricing

puzzles. Moreover since the expectation is being widely used in all finance area, e.g.,

portfolio management, corporate finance, financial risk management, fixed income, etc., it

is worth trying to apply the expectile concept to any of them to solve the puzzles in those

different areas. For the same reason, expectile approach is superior to many other reward-

risk measure approaches, e.g., Bassett et al. (2004)’s Choquet expected utility approach,

being formulated as a problem of linear quantile regression, Gourieroux and Liu (2006)’s

VaR, Tail-VaR and proportional hazard-distortion risk measure, and Giorgi and Post

(2011)’s second-order stochastic dominance measure.

Our paper is also different from the utility or consumption based approaches, the

endeavours made on which includes: 1) Loss aversion [See Benartzi and Thaler (1995),

Fielding and stracca (2007), Giorgi and Post (2011)]. 2) Disappointment ex post [See

Athanasoulis and Sussmann (2007) and Gollier and Muermann (2010)]. 3) State de-

pendent utility [See Danthine et al. (2004), Falato (2009)]. 4) Habit formation [See

Meyer and Meyer (2005), Du (2011), and Otrok et al. (2002)]. 5) Interrelation between

time preference and risk aversion coefficient [see Kang and Kim (2012)]. 6) Consump-

tion based CAPM [See Parker (2003)]. 7) Markov regime switching of consumption, etc.

Although the modification on utility and consumption will enter into the SDF, which

might solve both two categories of the anomalies, either from the mean and variance of

SDF perspective, or the factor structure of SDF perspective, the utility or consumption

based approaches can only solve the equilibrium asset pricing anomalies. However our

approach is replacing the key factor expectation into an expectile, and that will help to

solve the equilibrium asset pricing anomalies as well as the risk-free arbitrage pricing

puzzles. One way to distinguish our paper from all the remaining literature is that our

approach has a by-product (expectile regression) to empirically exploit the advantage
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of the expectile based asset pricing theory, while the econometrics contributions are not

necessary for the other approaches.

The rest of the paper is organized as follows. Section 2 establish the axiomatic expec-

tile based reward-risk measurement framework, and check the coherency of the measures.

Section 3 revise the expectation utility maximization axiom into the expectile utility max-

imization axiom, redo Merton problem, extend CAPM theory, and finally explain two

categories of asset pricing anomalies. Section 4 brief the necessity of introducing new

econometric methodology to test the expectile based theories, list the hypotheses, and

discuss the empirical methodologies. Section 5 provide empirical evidence on the advan-

tages of the expectile based model for explaining the asset pricing anomalies. Section 6

conclude. Proofs are in Appendix.

2. Expectile based reward-risk measurement framework

In this section, we first introduce a novel concept of expectile based reward-risk

measure framework. We then discuss the seven advantages of using the expectile as a

reward measure to reflect people’s view bias towards the information ambiguity. We also

check the coherency of both the reward measure and risk measure. Finally, we compare

the view bias approach and the risk preference approach, and summarise the results in

Table 2.

As what we’ve discussed in Section 1, we want the new reward measure taking the

merits of expectation and quantile both, without affording the drawbacks of either. The

probabilistic setting will be as follows: the Brownian motion W will be defined on

a complete filtered probability space (Ω,F ,Ft,P), and we shall denote by Ft the P-

augmentation of the natural filtration FW
t = σ(W (s); 0 � s � t). For simplicity, at this

stage, we drop time t, and denote W (t) as W , We give the following definition.

Definition 1. (Unconditional Expectile) Suppose the above probability setting holds, and

obviously W is absolute-integrable, i.e.,
∫ |W |fW (w)dw < ∞, the unconditional expectile
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of W is

Eθ(W ) � argminq

[
(1− θ)

∫
W<q

(W − q)2fW (w)dw + θ

∫
W�q

(W − q)2fW (w)dw

]
(2)

where fW (· ) is the probability density function of W , and θ is the view bias coefficient.

Under perfect information, namely if fW (· ) is clearly known to the investor, θ is

50%, which implies view bias neutral. Under imperfect information, namely the investor

doubting about fW (· ), if he is possessing a pessimistic view bias, he will add more weight

on the bad state probability (i.e., make (1− θ) � 50%), and put less weight on the good

state probability (i.e., make θ < 50%); if he is possessing an optimistic view bias, he

will do in a reverse way. Hence θ captures the tendency of how people response to the

information ambiguity. Optimizing Eq. (2) by taking the first order derivative with

respect to (henceforth w.r.t.) q, we equivalently define the unconditional expectile as

follows,

Eθ(W ) � q∗ =

∫
πW (θ)wfW (w)dw (3)

where

πW (θ) =
(1− θ)1W<q∗ + θ1W�q∗∫

[(1− θ)1W<q∗ + θ1W�q∗ ] fW (w)dw
(4)

The unconditional expectile Eθ(W ), (for simplicity, denoted as q∗ in Eq. (3) and Eq.

(4), appears on both sides of Eq. (3). Hence Eq. (3) is an implicit function w.r.t. Eθ(W ).

The disadvantage is that there is no closed form solution, and we need to numerically

solve the equation, but it is for good. However the advantage is of far more meanings.

First, Implicit function format makes the expectile a self-triming measure9, and that

makes the expectile superior to the weighted average. Fig. 1. provides a graphical

illustration of how expectile is obtained, and of the differences between the expectile

and the weighted average. The horizontal axis represents the value of W . The curve

[–fW (· )] represents the probability density of a standard normal distributed random

9We define self-trimming within this context as the weighted average being equal to the weighting
division point.
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(a) Weightd average

-4 -3 -2 -1 0 1 2 3 4

W

Weighted W

Weighted and scaled W

(b) Expectile

Fig. 1.

Comparison of non-selftrimming and selftrimming reward measure. This graph illustrates the conceptual

differences between weighted average [see Fig. 1(a)] and expectile [see Fig. 1(b)]. The blue solid curve

[–fW (· )] represents the original probability measure of standard normal distribution. The light green

dot-dash curve [. . . weighted fW (· )] represents the view bias weighed measure. The red dash curve

[- - weighted and scaled fW (· )] represetns the weighted and scaled probability measure. Cross shaped

star in Fig. 1(a) represents the weighted average of standard normal distribution under [- - weighted

and scaled fW (· )], where the weight is arbitrarily chosen. Pentacle in Fig. 1(b) represents the weighted

average of standard normal distribution under [- - weighted and scaled fW (· )], where the weight is

chosen to be to equal to the weighted average itself (pentacle) itself.

variable. We arbitrarily choose a q, and then assign a weight of (1 − θ) to the left

hand side of q, and θ to the right hand side of q. We obtain the weighted density

[(1 − θ)1W<q∗ + θ1W�q∗ ] fW (w), see curve [. . . weighted fW (· )] of Fig. 1(a). In order

to make it a probability density, we scaled it by dividing it by the area under curve

[. . . weighted fW (· )], then we have a probability density,
(1−θ)1W<q+θ1W�q∫

[(1−θ)1W<q+θ1W�q]fW (w)dw
,

see curve [- - weighted and scaled fW (· )] of Fig. 1(a). With the reshaped probability,

we calculate the expectation, which is different from q and marked as a cross-shaped

star. We search for a q∗, which will make the expectation under the weighted and scaled

probability density the same as q∗, and then define q∗ as expectile and mark it as the

pentacle in Fig. 1(b).

By comparing Fig. 1(a) and Fig. 1(b), we understand the reason why the implicit-

function format makes the expectile a self-triming measure. When we add the weighted

average operator onto a random variable, we can capture people’s view bias towards the

ambiguity, however when we solving more complicated problem, we might have to add the

weighted average operator onto another weighted average of a random variable, since the
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weighting division point is different from the weighted average, the results will become

more and more fussy. However, the expectile is defined as the solution of an implicit

function, which guarantee the convergence of weighting division point is the expectile

itself, hence no matter how complicated the research problem is, and how many layers

that the expectile operator needs to be added onto another expectile operator, it will

always reach a nice and concise expression, which can fully exploit the essential truth of

the problem without showing too much technical bits and pieces being with very limited

financial intuitions.

The second advantage of the expectile is that as a tool being used to discover the

mystery of asset pricing, it is able to describe the information ambiguity. We use relative

entropy (Kukkback-leibler Distance), which is a measure of how different the distorted

distribution is from the original one, to quantify the information lost. We find that

the expectile models the process where the information is being lost continuously w.r.t.

the view bias adjustment. However using quantile to measure the reward of return,

the probability information will be lost out of the control of the view bias adjustment.

Moreover expectile is a sufficient statistics, which means that calculating the sample-

based estimator of expectile will maintain all the information contained in the sample

set. However quantile is not a sufficient statistics, and the calculation of sample-based

estimator is a waste of the information contained in the sample set. We formalise it as

Lemma 1.

Lemma 1. (Relative entropy comparison 10) 0 � D(f‖hexpextile) < D(f‖hquantile) =

+∞, with the first equality if and if θ = 50%, where Qθ(x) is the θ−quantile of X,

D(f‖hexpectile) =
∫
fX(x)ln

(
fX (x)

πX(θ)fX(x)

)
dx and D(f‖hquantile) = − ∫

fX(x)ln(1θ ×
1{X<Qθ(x)})dx.

Proof. See the Appendix.

The third advantage of the expectile framework is that the reward measure and the

10D(f‖h) is the relative entropy of distribution h w.r.t f , if they are the same, D(f‖h) is zero, as h
deviates from f , D(f‖h) deviates from zero.
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risk measure can be defined simultaneously, similar to the expectation and the variance.

However the weighted average, with an arbitrarily chosen weighting division point, loses

this important character. We defined the new risk measure as follows.

Definition 2. (Unconditional variancile) Suppose the above probability setting holds, and

obviously W is absolute-integrable, i.e.,
∫ |W |fW (w)dw < ∞, the unconditional varian-

cile of W is

V ARθ(W ) �
∫
(W − q∗)2πW (θ)fW (w)dw (5)

where fW (.) is the probability density function of W , and θ is the view bias coefficient11.

Proposition 1. (Monotonicity of expectile) As people goes from extreme pessimism to

extreme optimism, his reward measure, expectile, goes from negative infinity to positive

infinity monotonously. (Invariance of variancile) As people goes from extreme pessimism

to extreme optimism, his risk measure, variancile, remains to be unchanged.

Proof. See the Appendix.

The fourth advantage of expectile framework is formalised as Proposition 1. The

Girsanov theory describes how the dynamics of stochastic change when the original mea-

sure is changed to an equivalent measure. The Doléans exponential shifts the original

distribution density rightward (leftward) when it is changing from the risk averse (risk

taking) world into a risk neutral world. The risk preference will not change people’s

measurement on the amount of risk (i.e., the variance remains to be constant), but will

affect the price of the risk, or how much excess rate of return on average that people

will ask for being compensated for taking per unit of the market risk. Proposition 1 also

describes a change of measure. The πW (θ) reshapes the original distribution density by

amplifying the left-hand side and shrinking the right-hand side of the expectile. Similarly,

(Invariance of variancile) guarantees that the view bias will not change people’s measure

on the amount of risk. (Monotonicity of expectile) w.r.t. view bias is compatible with

the actual behaviour of how people adjust their anticipation on the Brownian motion by

11It is easy to prove V ARθ(W ) = Eθ(W
2)− [Eθ(W )]2.
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taking the risk of information ambiguity into account. The adjustment is being called

the first category information premium.

However, based on the stock price Geometric Brownian motion assumption, the rate

of return of the stock is a linear function of Brownian motion,

dSt

St
= μdt+ σdWt (6)

Moreover, the portfolio rate of return is the weighted rate of return of each individual

security. Hence in order to do further analysis, we need to investigate the coherency

i.e., additivity, homogeneity, and risk-free condition of expectile as a reward measure.

We also need to check the coherency, namely sub-additivity, homogeneity, and risk-free

condition of variancile as a risk measure. The result is that all of them are satisfied,

except the additivity of expectile. See Proposition 2 to 4 as below.

Proposition 2. (Homogeneity of expectile) Eθ(σW ) = σEθ(W ), where σ is a constant;

(Risk-free condition of expectile) Eθ(r +W ) = r + Eθ(W ), where r is a constant; (Ad-

ditivity of expectile with full information)If there is no risk-source dimensional receding,

i.e., if people knows the joint distribution of individual stock returns within the portfolio,

his expectile of the rate of return of the portfolio is equal to the sum of the expectile of

each individual security, namely Eθ(
∑n

i=1 Xi) =
∑n

i=1 Eθ(Xi), where Xi = ri + σiWi, is

normal distributed. (Non-additivity of expectile with information dimensional receding)

If people only knows the distribution density of the rate of return of the portfolio, and he

doesn’t know the joint distribution of individual stock returns, his expectile of the rate of

return of the portfolio is not equal to the sum of the expectile of each individual security.

Eθ(
∑n

i=1 Xi) =
∑n

i=1 Eθ(Xi), where
∑n

i=1 Xi represents the rate of return of the portfo-

lio as a one dimensional random variable, rather than the sum of n dimensional random

variables.

Proof. Trivial and omitted.

The fifth advantage of expectile reward-risk measure framework is fully exploited

in Proposition 3, based on which we provide policy recommendation to complete the

15



market.

Proposition 3. (Extended law of one price) Under imperfect information, when port-

folios are repackaged, the return remains to be the same, if and only if people are view

neutral. If pessimism exists, people can assemble them into a portfolio to do riskless

arbitrage; if optimism exists, they can split the package to earn non-zero excess return.

Proof. See the Appendix.

There is no conflict between this result and the traditional no arbitrage theory, since

under this general reward-risk measurement framework, the amount of information being

contained in the asset is another factor that influences asset pricing besides time, market

risk, and information ambiguity risk. People who earn non-zero excess rate of return

through repackaging must know more about the probabilities of each individual secu-

rity. The premium is not to compensate for bearing the market risk or the information

ambiguity risk. It is a reward for providing more information. We name it the second

category information premium. Within the general framework of reward-risk measure-

ment, we re-examine the market completeness in contingent claim market, Arrow-Debreu

security market and ordinary security market. The market completeness expands itself

from the security level to a portfolio level. The policy recommendation is that to ensure

each elementary adopted consumption process obtainable, there should be no portfo-

lio repackaging constraints. Getting the second category information premium through

repackaging the portfolio can improve the welfare of both two parties, and it is a Pareto

equilibrium allocation process.

The sixth advantage of expectile reward-risk measure framework can be briefly de-

scribed as follows. We’ve checked the traditional coherency conditions of reward measure,

however under imperfect information, the above conditions are not sufficient. As a re-

ward measure, it should reflect the “exparte effect”. The story is that a two sons’ father

worries about his elder son, a fisherman, since tomorrow might be a rainy day, and wor-

ries about his younger son, an umbrella seller, since tomorrow might be a sunny day.

Under expectation based framework, where risk averse takes effects only, if the expected
16



rate of return of asset X is negative, and there is a perfect negative correlation between

asset X and Y, the expected rate of return of asset Y is positive. However, in the above

example, the father’s reward measure for X and Y are both negative. Hence it is not

appropriate to describe the father’s behaviour as risk averse, and that effect actually

reflects more about his pessimism. As an appropriate reward measure, expectile should

be able to capture that meaningful difference. We formalised the “exparte effect” as

another coherency condition in Lemma 2.

Lemma 2. (Exparte effect12) Assume X and Y are the rate of returns of two assets.

Assume Y = bX, then Eθ(Y ) = bEθ(X), iff b � 0, and Eθ(Y ) = bE(1−θ)(X), iff b � 0.

Proof. See the Appendix.

Lemma 2 discusses the case of perfect correlation between two assets. Naturally, we

are interested in the case where the correlation is not tight. To answer this question,

we need to develop an approach to construct two standard normal distributed random

variables X and Y with correlation being ρ. We know that under perfect information, Y

can always be constructed as Y1 = ρX +
√
1− ρ2Z or Y2 = ρX −

√
1− ρ2Z, where X ,Z

are two independent standard normal distributions N(0, 1). However under imperfect

information, Eθ(ρX +
√
1− ρ2Z) �= Eθ(ρX −

√
1− ρ2Z). According to Proposition 2

(Non-additivity of expectile with information dimensional receding), Eθ(ρX+
√
1− ρ2Z)

and Eθ(ρX−
√
1− ρ2Z), the expectiles based on the joint distribution of (X,Z) are both

different from Eθ(Y ), the one dimensional distribution of a single Y . However we should

choose the construction of Y1 or Y2 to make the expectile based on the joint distribution

of (X,Z) and the expectile based on the one dimensional distribution of Y distort the

anticipation in the same direction.

Lemma 3. (Construct correlated standard normal distributions13) Assume X,Z are

independent N(0, 1), and Y = ρX + sign(ρ)×√
1− ρ2Z, then Y ∼ N(0, 1), ρXY = ρ,

12Due to the “Exparte effect”, it is not always correct to modify the existing expectation based theory
to an expectile based theory simply by replacing the expectation into expectile.

13 Eθ(ρX + sign(ρ)×√
1− 2Z) means that the expectile is calculated based on the one dimensional

distribution of random variable,Y , where Y is constructed as ρX + sign(ρ)×
√

1− ρ2Z.
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where ρXY is the correlation between X and Y , and Eθ(Y ) = Eθ(ρX + sign(ρ)
√
1− ρ2Z)

and Eθ(ρX + sign(ρ)
√
1− ρ2Z) will have the same sign under the same view bias, θ.

Proof. Trivial and omitted.

So far, we’ve checked the coherency of the reward measure, in order to check the risk

measure and to understand how the risk can be diversified through portfolio management

under the new measurement framework, we still need to define the following concepts.

Definition 3. (Conditional expectile (linear14)) Suppose the probability setting holds,

the unconditional expectile of Y w.r.t. X is defined as

Eθ(Y |X) � argmin
g∈A

Eθ [Y − g(X)]
2
= argmin

g∈A
E
[
πX(θ)πY |X(θ)(Y − g(X))2

]
(7)

where X and Y are random variables (r.v.) with normal distribution, set A = {g : R2 �→
R|g(x) = β0 + β1X}, and

πX(θ) �
(1− θ)1{X<Eθ(X)} + θ1{X�Eθ(X)}∫ [

(1− θ)1{X<Eθ(X)} + θ1{X�Eθ(X)}
]
fX(x)dy

(8)

πY |X(θ) �
(1− θ)1{sign(β1)(Y−g(X)<0)} + θ1{sign(β1)(Y−g(X)�0)}∫ [

(1 − θ)1{sign(β1)(Y−g(X)<0)} + θ1{sign(β1)(Y −g(X)�0)}
]
fY |X(x)dy

(9)

Definition 4. (Two dimensional unconditional Expectile) Suppose the probability set-

ting holds, the conditional expectile of measurable function h(X,Y ) is well defined, if

E
[
πX(θ)πY |X(θ)h(X,Y )

]
= E

[
πY (θ)πX|Y (θ)h(X,Y )

]
, and the conditional expectile is

defined as Eθ [h(X,Y )] = E
[
πX(θ)πY |X(θ)h(X,Y )

]
.

Definition 5. (Two dimensional unconditional Covariancile) Suppose the probability set-

ting hold and then the conditional expectile of h(X,Y ) = XY is well defined, where X

and Y are random variables with joint normal distribution, then the Covariancile15 of X

and Y is defined as COV (X,Y ) � E
[
πY (θ)πX|Y (θ)(X − Eθ(X))(Y − Eθ(Y ))

]
.

14Why is linear relationship sufficient for asset pricing? When we use n-dimensional Geometric Brow-
nian Motion to model the stock price dynamics, the rate of return of the stock is a linear function of the
independent increments. Why do we study the expectile on normal distribution or the function of normal
distribution? It ensure the extended law of one price holds. Why is the conditional expectile defined
as Eθ(Y |X) = b0 + b1X good enough for pricing purpose? When we are solving portfolio optimization,
expectile on n-dimentional rate of return can be converted into the summation of the expectile of the
product of two standard normal random variables.

15It is equivalent to COVθ(X, Y ) � Eθ(X, Y )− Eθ(X)Eθ(Y ).
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Proposition 4. (Homogeneity of Variancile) VARθ(σW ) = σ2 VARθ(W ), where σ is

a constant; (Risk-free condition of expectile) VARθ(r + W ) =VARθ(W ), where r is

a constant; (Sub-additivity of variancile) VARθ(X + Y ) =VARθ(X)+VARθ(Y ) + 2 ×
COVθ(X,Y ).

Proof. See the Appendix.

The seventh advantage of the expectile framework is that the view bias adjustment,

πθ and the risk averse adjustment, SDF are product separable, which is very important

for simplifying the problem. When we apply the above coherent reward-risk measure to

the portfolio optimization problem, we get the first order condition (FOC), which is an

extended SDF based asset pricing formula,

p(g(X)) = Eθ(m(X)g(X)) =

∫
Ω

πX(θ)m(X)g(x)fX(x)dx (10)

where X is the rate of return, a normal distributed random variable, g(X) is the payoff

of the contingent claim, represented as a measurable function. Assuming the probability

setting holds, m(X) is the stochastic discount factor, and fX(x) is the probability distri-

bution function of X . To conclude Section 2, we compare the view bias approach with

the traditional risk preference approach, and summarise the results in Table 2.

3. Expectile based asset pricing model and anomalies

In this section, we first revise the expectation utility maximization axiom into an

expectile utility maximization axiom, and then we redo Merton Problem under the ex-

pectile framework, and extend the CAPM theory. Finally, we explain the first category

asset pricing anomaly, equity premium puzzle, and the second category asset pricing

anomaly, momentum within the expectile based reward-risk measurement framework.

3.1. Expectile CAPM with view bias adjustment

The technical difficulty we face in revising the expectation utility maximization axiom

into an expectile utility maximization axiom is that so far we just defined the expectile
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Table 2

Comparison of risk preference approach and View bias approach

Risk preference approach View bias approach

Panel A: Similarity

Change the price of market risk, keep the quantity of market risk unchanged

Self-trimming measure

Sufficient statistics

Define reward measure and risk measure simultaneously

Risk diversification

Panel B: Dissimilarity

Perfect and imperfect information Imperfect information

Shifts Reshape

Character Attitude

Stable Variable

No exparte effect Exparte effect

Market risk premium First & Second category information premium

No instant payoff from repackaging Instant payoff from repackaging

Panel C: Relationship

Product separable, p(g(X)) = Eθ(m(X)g(X)) =
∫
Ω
πX(θ)m(X)g(x)fX (x)dx

Table 2 compares the traditional Risk preference approach and newly developed View bias approach.
The similarity includes: (1) Both risk preference and view bias adjustments are a change of measure
from real probability to subjective probability. (2) As risk preference (view bias) deviates from risk
neutral (view neutral), only the reward measure, expectation (expectile) will be adjusted, the value of
the risk measure, variance (variancile) remain to unchanged. In other words, both two approaches change
the price of the market risk, and either of the approach change the quantity of the market risk. (3) Both
expectation and expectile are self-trimming, and that provides the possibility for us to get a nice and
concise expression of results. (4) Both expectation and expectile are sufficient statistics, the empirical
analysis will never waste the information of sample sets. (5) Both two approaches define the reward
measure and risk measure simultaneously. The logic of the framework is internally consistent. (6) The
risk can be diversified through portfolio management under both two measurement frameworks. The
dissimilarity includes: (1) Risk preference is a concept under both perfect and imperfect information;
View bias is a concept under imperfect information only. (2) Risk preference shifts the probability
distribution curve; View bias reshapes the probability distribution curve. (3) Risk preference describes
people’s character. View bias describes people’s attitude. (4) Risk preference is stable. It can be
obtained through experiments; View bias is variable, it is affected by the status quo. (5) Expectation
does not capture the “exparte effect”; Expectile captures the “exparte effect”. (6) Risk preference will
compensate the investor for taking market risk, and the premium is market risk premium; View bias
will compensate the investor for taking information ambiguity risk, and the premiums include the first
and second category information premium. (7) Law of one price holds, and repackaging portfolio does
not induce non-zero excess return; Extended law of one price holds, and repackaging portfolio induces
non-zero excess return. (8) Market completeness is on security level; Market completeness is on portfolio
level. The relation between two approaches is that the expectile based asset pricing formula implies that
the view bias adjustment and SDF are product-separable.
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of a measurable function of maximum two random variables. The optimization problem

can be described as follows: By choosing the optimal consumption and weight of each

individual security within the portfolio, the investor is to maximize the expectation of

the integration of the utility generated by the consumption of the whole life as well as the

utility generated by the lump sum terminal wealth, with budget equation and security

price dynamics as the restrictions. However the utility of intermediate consumption or

the utility of terminal wealth are a function of high dimensional random variables. For-

tunately, the essential part of the problem can be eventually converted into an expectile

of pairs of the product of two standard normal distributions.

Theorem 1. (Expectile CAPM) Suppose Assumption A.1 to A. 6 in the Appendix holds.

Then the following expectile CAPM representation holds for Eθ(· ):

Eθ(ri − rf ) = βθEθ(rM − rf ), i = 1, 2, · · · , n (11)

where βθ � Θ2σ̃iM +ΦσiM

Θ2σ̃2
M +Φσ2

M

, σiM �
∑

�jσiσjρij, σ2
M �

∑n
j=1 �jσMσjρij, σ̃iM �∑n

j=1 �jσiσjsign(ρij)
√
1− ρ2ij, σ̃

2
M �

∑n
j=1 �jσMσjsign(ρjM )

√
1− ρ2jM , Θ � Eθ(w),

Φ � Eθ(w
2), �i is the weight of security i within the portfolio, and w ∼ N(0, 1).

Proof. See the Appendix.

We convert Eq. (11) into an equivalent expectation based formula as below,

E(ri) +
σi√
dt

− rf = βθ(E(rM ) +
σM√
dt

− rf ), i = 1, 2, · · · , n (12)

The left hand side of the equation is the expected excess rate of return being adjusted by

the view bias coefficient to compensate for taking information ambiguity risk. σiM is the

absolute amount of the systematic risk of individual security, σ2
M is a benchmark, the

amount of systematic risk inherent in the market portfolio, σ̃iM is the absolute amount of

latent risk of individual security, σ̃2
M is the absolute amount of latent risk inherent in the

market portfolio. βθ is the relative amount of risk, being different from traditional β, it is

not the relative amount of systematic risk, but of the weighted average of systematic risk
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and latent risk, with the weight being Θ2

((Θ2+Φ) and Φ
((Θ2+Φ) respectively. Under perfect

information, the investor will possess a neutral view bias, then Θ becomes zero, and

Φ becomes one. The extended expectile based CAPM will degenerate into a tradition

CAPM. We are able to explain the equity premium puzzle using this new theoretical

framework.

3.2. Theoretical explanation for equity premium puzzle

Equity premium puzzle first documented by Mehra and Prescott (1985), also see

Cochrane (2001). Over the last 50 years in the U.S. real stock returns have averaged

9% with a standard deviation of about 16%, while the real return on treasury bills has

been about 1%. Thus, the historical annual market Sharpe ratio has been about 0.5.

Aggregate consumption growth has been about 1%. Thus, we can only reconcile these

facts with the theory, if investors have a risk aversion coefficient of 50! If considering

the correlation between consumption growth rate and market return, the risk aversion

coefficient, risk aversion coefficient has to be 250. However the experimental data shows

that the risk aversion coefficient for normal person is between 1 and 4.

Theorem 2. (Equity premium puzzle) Assume the correlation between consumption

growth rate and the market returns is ρCM , then E(rM )+ σM√
dt
Θ− rf = ασCσM (ΦρCM +

Θ2sign(ρCM )
√
1− ρ2CM ), where σC is the volatility of the aggregate consumption growth

rate and α is the risk averse coefficient.

Proof. See the Appendix.

Under view bias adjusted expectile framework, with a normal constant risk aversion

coefficient 3, we solve a monthly average (1945-1999) of implied view bias coefficient,

θ = 0.473, which is just a slight deviation from view neutral. However if we neglect this

important factor, the implied risk aversion coefficient will be highly irrational.

3.3. Theoretical explanation for momentum

In this subsection, we will explain how the momentum effect is generated. We first

discuss the risk decomposition between each pair of the security, σij and σ̃ij . Second,
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we discuss the risk decomposition of security i w.r.t. the market portfolio, and then

brief the difference between idiosyncratic risk and latent risk. Third, we develop an

approximate estimation of the latent risk σ̃iM and the benchmark σ̃2
M without using the

joint distribution of each pair of securities within the portfolio16. Fourth we exploit how

the view bias towards ambiguity affects βθ, we then make the hypothesis that view bias

vacillates with a periodicity, and prove that if it is the case, the period of βθ is half of

or the same as the period of θ. Finally, we explain the momentum, size effect and value

effect based on the above analysis.

The difficulty of estimating βθ is that while we redo the Merton problem, we solve the

optimal weight for each individual security, and then we have a market portfolio, which

consists of n individual securities, but according to βθ’s definition, we can only figure out

the absolute amount of the systematic risk σiM (and the benchmark σ2
M ) by studying the

relationship between security i and the market portfolio (by studying the rate of return

of the market portfolio), however in terms of the latent risk σ̃iM and benchmark σ̃2
M , we

need to study each pair of the relationship between security i and j, where j varies from

1 to n, and then sum them over.

First, we discuss the risk decomposition between each pair of security. The risk of

security i can be decomposed into a risk perfectly correlated with the risk of security

j (See Fig. 2(a): OC), i.e. σij � σiσjρij , and a risk being independent to the risk of

security j (See OB), i.e. σ̃ij � σiσjsign(ρij)
√
1− ρ2ij . Surprisingly under the view bias

based expectile framework, the risk being compensated is the weighted sum of both (See

OD), i.e. Θ2σiσjρij + Φσiσjsign(ρij)
√
1− ρ2ij . That is different from the traditional

risk averse based expectation framework, under which only σij will be compensated.

Second, we consider the risk decomposition of security i w.r.t. the market portfolio.

As discussed in the last paragraph, the risk of security i can be decomposed into σij and

σ̃ij , where j = 1, 2, n. In Fig. 2(b), σij are the vectors from the origin to the center of

16According to the definition of the latent risk of security i and market portfolio σ̃iM and σ̃2
M , the

sample estimation of latent require the joint distribution of each pair of individual securities, which
makes the accurate estimation practically impossible. We will discuss it in details later in this section.
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(a) Risk decomposition (b) Perfect correlation

(c) Imperfect correlation (d) Latent risk by industry

Fig. 2.

Risk decomposition. This graph intuitively explains why we need each pair of the security returns

to estimate the latent risk of security i w.r.t the market portfolio, and illustrate why an approximate

estimation by industry works. Fig. 2(a) shows not only the projection of on return i, but also the

independent component perpendicular to return i should be taken into account, which is considered

as the latent risk. The total risk of ri w.r.t rj can be decomposed into OB and OC, where OC is

the systematic risk, OB is the latent risk). Fig. 2(b) assumes that the securities in the market index

are all pefectly correlated. Then the latent risk equals the idyosyncratic risk (σ̃iM = σiσM

√
1− ρ2iM ).

Systematic risk (σiM ) is the sum of distances from origin O to Ol. Latent risk (σ̃iM ) is the sum of radius

Oljl of the circles, where l represents the number of securities in the market index. Fig. 2(c) describes

the real world situation that the securities in the market index are not pefectly correlated. Then latent

risk does not equal the idyosyncratic risk. Again systematic risk (σiM ) is the sum of distances from

origin O to Ol. Latent risk (σ̃iM ) is the sum of radius Oljl. Since the rate of return of each individual

security might be negatively correlated within the market index, if we consider the market portfolio as a

one dimensional security j∗, and calculate the latent risk of security i w.r.t j∗, by doing so, some latent

risks will be canceled out with each other, hence it will wrongly estimate the latent risk of security i

w.r.t the market portfolio. See Fig. 2(d), the securities in the same industry tend to have strong positive

correlations; hence it makes sense to approximate the latent risk of security i w.r.t the market portfolio

by dividing the market portfolio into several sub-portfolios by industry. The accuracy improves as the

section becomes finer. The marginal improvement of latent risk estimation accuracy decrease rapidly.
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the circles, and σ̃ij are the radiuses of the circles. Suppose for each pair of securities,

the rate of return are all perfectly correlated, then all vectors (j1, j2, · · · , jn) points at

12 o’clock if ρij � 0 (or 6 o’clock if ρi,j < 0) as shown in Fig. 2(b), otherwise the vectors

points at disordered directions as in Fig. 2(c). We claim that the following equation

holds,

σ̃iM �
n∑

j=1

�jσi(t)σj(t)sign(ρij(t))
√
1− ρ2ij(t) = σi(t)σM (t)sign(ρiM (t))

√
1− ρ2iM (t)

(13)

The left hand side is defined as the latent risk of security i w.r.t. the market portfolio, and

right hand side is defined as idiosyncratic risk of security i w.r.t. the market portfolio.

The latent risk equals to the idiosyncratic risk, if and only if the individual security

in the market portfolio are all perfectly correlated as shown in Fig. 2(b), otherwise

the negatively correlated securities tends to offset each other, and the latent risk will

distinguish itself from idiosyncratic risk. Hence we cannot estimate σ̃iM and σ̃2
M simply

using the aggregated rate of return of the market portfolio, just as what we did in estimate

σiM and σ2
M . We need the joint distribution of each pair of the securities in the market

portfolio. Therefore an accurate estimate of βθ is practically infeasible.

Third, we develop an approximate estimation of the latent risk ãiM and the bench-

mark σ̃2
M . We first divide the market portfolio into several sub-portfolios by category

of industry, and then estimate the latent risk σ̃iM using
∑N

l=1 �lσiσlsign(σil)
√
1− ρ2il

where N represents the number of industry, σl is the volatility of the rate of return of

industry l portfolio. The securities in the same industry tend to have strong positive

correlations; on the graph, they are falling in the same section. We figure out the latent

risk of security i w.r.t. each industry portfolio, and then calculate the weighted average.

Through this way, we approximate the latent risk of security i w.r.t. the market portfo-

lio. The accuracy improves as the section becomes finer. (See Fig. 2(d), if the number of

industry goes from 3 to 6, the marginal improvement of latent risk estimation accuracy

is significant, however if the number of industry goes from 6 to 12, the improvement is
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no more than the shaded area. We summarize the above fact in Lemma 4.

Lemma 4. (Estimating latent risk using industries’ rate of return)

lim
N→n

N∑
m=1

�lσiσlsign(σil)
√

1− ρ2il = σ̃iM (14)

Proof. Obvious and omitted.

Fourth, we exploit how the view bias towards ambiguity affects βθ. If the view bias

is neutral i.e., θ = 50%. The Θ2 = 0 and Φ = 1, βθ = σiM

σ2
M
, which is the projection of

total risk on the market portfolio risk. See Fig. 2(a), intuitively it is the shadow OC

of OA on the horizontal axis at 12 o’clock under the sun on top of head. If the view

bias is pessimism or optimism, i.e., θ �= 50%, then Θ2 > 0 and 0 < Φ < 1, then βθ is

the relative weighted average of systematic risk and latent risk of security i w.r.t. the

benchmark, market portfolio. Again, See Fig. 2(a), with a biased view, βθ is the shadow

OD of OA on the vertical axis under the sun early in the morning or at dawn. Under

imperfect information, it takes time for people to digest the current and past information,

to adjust his view bias, and then to accommodate his view bias to the new information.

Hence usually people will overreact to the ambiguity. For example, he starts at taking

a too pessimistic view bias and carrying a very conservative trading strategy, but later

he realizes that the real situation is much better than what he thought, and he starts

to be optimistic to the new coming information. Overreaction will be eliminated if he is

reacting to the same information, because he will learn from the past lessons, however

since the information he is facing to is progressing, and not stationary, the overreaction

can never be eliminated. Therefore it is reasonable to make the hypothesis that view bias

vacillates with a periodicity, under which we are able to explain the momentum effect.

See Corollary 1 and Corollary 2.

Corollary 1. (Symmetry of beta) ∀θ, βθ = β1−θ.

Proof. Obvious from the definition of βθ, Θ, and Φ.

Corollary 2. (Match between periods) Under H0: THE VIEW BIAS COEFFICIENT
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θ VACILLATES WITH A PERIODICITY, if the dynamics of θ is symmetric periodic

waves around neutral (like a sine wave, a square wave), the period of βθ is half of the

period of θ, otherwise the period of βθ is equal to the period of θ.

Proof. Obvious from Corollary 1.

Fifth, we explain the momentum, size effect and value effect based on the above

analysis. Momentum first documented by Jegadeesh and Titman (1993), shows that

past winners continue to outperform the past losers, while the beta estimated for the

winner portfolio is even lower. Fama and French (1996) find that among several CAPM

anomalies, momentum is the only one unexplained by the three-factor model. We claim

that the real factor causing the momentum effect is the fluctuation of people’s view bias,

which adjusts the price of the risk (the market excess rate of return) by σM√
dt
Θ, also makes

the relative risk amount βθ fluctuate accordingly either with a period half of or the same

length as the period of the view bias, depending on whether or not the dynamic of θ

when it is pessimism is a phase lagged mirror reflection to the dynamic of θ when it is

optimism. There are two alternative explanations.

Explanation 1. (View bias adjusted beta approach) After being adjusted by view bias,

a high relative amount of risk and a positive market price of risk make the winner

portfolio outperform the loser portfolio with a lower beta. Assume that after the view

bias adjustment, the price of the risk, μM + σM√
dt
Θ − rf , is positive. See Fig. 3.(d),

the view bias at time t1 is the extreme optimism, according to the expectile CAPM,

μi +
σi√
dt
Θ− rf = βθ(μM + σM√

dt
Θ− rf ), the optimism will adjust the expected rate of re-

turn for different stocks in the same direction, by σi√
dt
Θ. We scale the portfolios to make

them on a same level of volatility σ, the optimism view bias will shift the expected rate

of return by the same amount, and it will not change the rank of the security. However

as view bias changes, it will also change the amount of risk, beta, and that will change

the ranking of the stock accordingly. At time t1, see Fig. 3.(a) to (c), their risk amount

which determines the excess rate of return is Θ2σ̃iM+ΦσiM

Θ2σ̃2
M+Φσ2

M
. If the winner portfolio is more

composed of the securities with low systematic risk σiM and greater amount of latent risk

σ̃iM and the loser portfolio is more composed of the securities with high systematic risk
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Fig. 3.

Momentum-View bias adjusted beta approach. This graph illustrates how the view bias reciprocation

explains the momentum effect. Fig. 3.(d) describes a symmetric view bias fluctuation w.r.t view neutral.

Fig. 3.(a) to (c) depict the behaviour of three types of winners and three types of losers under the

corresponding view bias at different times. If the winner portfolio is more composed of the securities

with low σiM and high σ̃iM , and the loser portfolio is more composed of the securities with high σiM ,

low σ̃iM , then momentum effect appears, namely the past winners continue to outperform the past

losers, while the beta σiM

σ2
M

estimate for the winner portfolio is even lower, under the conditiona that the

view bias adjusted price of risk is positive.

σiM and less amount of latent risk σ̃iM , then it will explain the momentum effect that

past winners continue to outperform the past losers, while the beta σiM

σ2
M

estimate for the

winner portfolio is even lower. Hence in order to accept the explanation to the momen-

tum effects, we shouldn’t find any empirical evidence to against the following five facts.

First, the view bias adjusted market execess rate of return is positive. Second, σiM of

the winner portfolio is low, and σiM of the loser portfolio is high. Third, σ̃iM of the

winner portfolio is greater than σ̃iM of the loser portfolio. Fourth, the periods of both

winner portfolio and loser portfolio are the same, either to be half of or the same length

as the period of view bias. Fifth, the time that momentum exists is the time that view

bias deviates from neutral most; The time that momentum is being relieved or eliminated

is the time that view bias is close to neutral.
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Explanation 2. (View bias adjusted market price of risk approach) After being adjusted

by view bias, a low relative amount of risk and a negative market price of risk will make

the winner portfolio outperform the loser portfolio with a lower beta. Assume that after

the view bias adjustment, the price of the risk, μM + σM√
dt
Θ − rf is negative, then the

greater the relative amount of the risk is, the lower the compensation for taking the risk

is, the lower the ranking of the portfolio is. E.g. the market excess rate of return is

5% on average, the adjustment, σM√
dt
Θ, is -8% under pessimism view bias. Hence the

new price of risk is -3%. Assume view bias adjusted beta for winner portfolio is 0.8,

for loser portfolio is 2. then the compensation for taking risk for winner is -2.4%, the

compensation for loser is -6%. Assume the view bias adjustment σi√
dt
Θ are the same

for both, being 8%, then the excess rate of return for winner portfolio is 5.6%, and 2%

for loser portfolio. That explains the momentum effect. Hence in order to accept this

alternative explanation to the momentum effects, we shouldn’t find any empirical evidence

to against the following two facts. First, the view bias adjusted market execess rate of

return is negative. Second, the view bias adjusted beta for the winner portfolio is even

lower.

The size effect in US stock returns first documented by Banz (1981), debates on

whether size premium is a compensation for systematic risk. Recent studies consider the

possibility that liquidity is a priced state variable, and the returns on small stocks are

sensitive to this state variable [See van Dijk (2011)]. However Amihud (2002) finds that

liquidity risk can only absorb part of the size effect. Another anomaly is the value effect,

first documented by Sanjoy (1983). The returns are predicted by the ratios of the market

value to the accounting measures such as the earnings or the book value of equity. Our

paper explain the size effect and value effect that under imperfect information, the size

and the value of a firm is a signal, based on which the investor will extrapolate the past

performance and adjust their view bias towards the ambiguity, and then the view bias is

the driving force of the distorted pricing.
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4. Expectile based econometrics model

In this section, we first brief the necessity of introducing new econometric methodol-

ogy to test the expectile based theories and hypotheses, and then we find the estimator

and study the expectile based law of large number (LLN), and central limit theory

(CLT). The small sample properties does not exists, however the large sample properties

including consistency and asymptotic normality can be proved. Finally, we employ the

conditional GMM restricted by expectile regression condition to empirically test view

bias based unconditional expectile CAPM theory.

4.1. Necessity of developing expectile regression

First, there is a one to one correspondence between mathematical model and econo-

metrics model. If a theory is developed under the expectation and variance reward-risk

measurement framework, the corresponding econometrics method to test that theory has

to be the OLS regression. If a theory is developed under the quantile and absolute de-

viation reward-risk measurement framework, the corresponding econometrics method to

test that particular theory has to be the quantile regression. Hence in an induction man-

ner, intuitively we need a new expectile regression to test the view bias based expectile

CAPM.

Second, in particular the model correct specification of expectile based model is

Eθ(ε|X) = 0, and Eθ(ε|X) = 0 ⇔ E(ε|X) = 0, iff θ = 50%, the model is misspecified in

an OLS regression point of view. We usually use the instrumental variable regression to

solve the problem. However, for a given θ, being different from 50%, Eθ(ε|X) = 0 implies

E(ε|X) �= 0, but not the reverse. It simply because E(ε|X) �= 0 contains no information

about θ, and obviously we cannot decide whether or not Eθ(ε|X) = 0 is true. In other

words, using instrumental variable method, we neglect the information of θ, the 2SLS

estimator would not be efficient.

Third, do we still need an expectile regression, if we can translate the expectile CAPM

(Eq. (11)) into an expectation based linear relationship between the rate of return of
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security i, and the market portfolio (See Eq. (12) as below)?

E(ri) +
σi√
dt

− rf = βθ(E(rM ) + σM√
dt

− rf )

The answer is yes. The reason is that by reviewing OLS regression, the estimator

of β for rei = α + βreM , e.g., (where superscript e represents the excess rate of return),

is β̂ = σiM

σ2
M

,. Hence calculating portfolio i’s beta is no difference from estimating the

parameter β of a linear regression. Theoretically we can estimate the parameter of

regression by calculating the sample beta of securtity i w.r.t. the market portfolio.

However as what we discussed in Section 3.3, in practice it is not feasible, because we

need the joint distribution of each pair of the securities within the market portfolio to get

the βθ. Hence Eq. (12) is useful to compare itself with the ordinary CAPM to explain

the asset pricing anomalies, because both of them are taking the expectation format, but

Eq. (12) is not appropriate for parameter estimation purpose.

4.2. Expectile regression model

In this subsection, we develop an expectile regression, including rewriting regression

identity, resetting the assumptions, looking for new estimators, developing the expec-

tile based asymptotic tools (WLLN and CLT), proving the consistency and asymptotic

normality of expectile regression with i.i.d Observations, We develop asymptotic χ2 test

for the case of Conditional Homoskedasticity and Conditional Heteroskedasticity respec-

tively. Finally, we use randomly generated sample sets to simulate the expectile regres-

sion.

We start from a finite sample linear regression with one independent variable only,

namely Y = g(X) + ε, where g(X) = β0 + β1X , however we cannot find an unbiased

estimator. The sampling distribution of the estimated parameter β̂ is not a normal

distribution. Therefore, we focus on large sample properties of expectile regression.

Theorem 3. (Regression identity) Given Eθ(Y |X), we can always write

Y = Eθ(Y |X) + ε (15)
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where ε is called the regression distribution and has the property that

Eθ(ε|X) = E(πXπY |Xε|X) (16)

The random variable ε represents the part of Y that is not captured by Eθ(Y |X). It is

usually called a noise, while Eθ(Y |X) is called the signal. We denote the estimator as

β̂ = (β̂0, β̂1)
′, the estimate error as εt = Yt − ĝ(Xt), where ĝ(Xt) = β̂0 − β̂1Xt.

Proof. Obvious and omitted.

Suppose Zt are i.i.d r.v., with E|Zt| < ∞, and define

Z̄n =

∑n
t=1(θ1{Zt�Z̄n}Zt + (1 − θ)1{Zt<Z̄n}Zt)∑n

t=1(θ1{Zt�Z̄n} + (1 − θ)1{Zt<Z̄n})
, where t = 1, 2, . . . , n, (17)

Lemma 5. (SLLN of Expectile for i.i.d. samples)

Z̄n
a.s.−−→ Eθ(Zt), as n → ∞ (18)

Proof. See the appendix.

Theorem 4. (Consistency of expectile regression with i.i.d observations) Suppose As-

sumption A.7 to A.10 in the Appendix holds, β̂
p−→ β as n → ∞, where

β̂ = (X ′Π̂XX)−1X ′Π̂Y |XY (19)

and

Π̂X =

⎛⎜⎜⎜⎝
π̂X1 0

. . .

0 π̂Xn

⎞⎟⎟⎟⎠
n×n

, Π̂Y |X =

⎛⎜⎜⎜⎝
π̂Y1|X1

0

. . .

0 π̂Yn|Xn

⎞⎟⎟⎟⎠
n×n

(20)

and

π̂Xt =
θ1{Xt�X̄n} + (1− θ)1{Xt<X̄n}

1
n

∑n
t=1(θ1{Xt�X̄n} + (1− θ)1{Xt<X̄n})

, (21)
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and

π̂Yt|Xt
=

θ1{sign(β̂1)(Yt−ĝ(Xt))�0} + (1 − θ)1{sign(β̂1)(Yt−ĝ(Xt))<0}(∑
n
t=1(θ1{Xt�X̄n}+(1−θ)1{Xt<X̄n})

(
θ1{sign(β̂1)(Yt−ĝ(Xt))�0}+(1−θ)1{sign(β̂1)(Yt−ĝ(Xt))<0}

)
∑n

t=1(θ1{Xt�X̄n}+(1−θ)1{Xt<X̄n})

)
(22)

Proof. See online proof.

Theorem 5. (Asymptotic normality of expectile regression) Under assumptions A.7-

A.12, we have

√
n
(
β̂ − β

)
d−→ N

(
0, Q−1V Q−1

)
, as n → ∞

where

Q = E(XπXX ′), and V = E
(
X(πX)2X ′(πY |Xε)2

)
.

Proof. See online proof.

So far, we have the estimator β̂ , and we prove the consistency and asymptotic

normality of expectile regression with i.i.d observations. Next we discuss how to construct

a test statistic for the null hypothesis H0 : Rβ = r, where R is a J × 2 constant matrix,

and r is a J × 1 constant vector, J represents number of equalities.

Theorem 6. (Asymptotic χ2 test with conditional homoskedasticity) Suppose assump-

tion A.7- A.13 hold, then under H0 : Rβ = r,

W = (Rβ̂−r)′
[
R
(
X ′Π̂′

XX
)−1

X ′Π̂′
XD(e)D(e)′Π̂XX

(
X ′Π̂′

XX
)−1

R′
]−1

(Rβ̂−r) ∼ X2
J

(23)

where

D(e) = diag
(
Π̂Y1|X1

e1, Π̂Y2|X2
e2, · · · , π̂Yn|Xn

en

)
. (24)

Proof. See online proof.

We use randomly generated sample sets to simulate the expectile regression. The

main conclusions are as follows: First, for a given positively correlated (X,Y ), we run

expectile regression of Y on X , as θ goes from 0 to 1, the estimated intercept becomes
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greater, while the slope becomes smaller. For a given negatively correlated (X,Y ), as

theta goes from 0 to 1, the estimated intercept becomes smaller, while the slope becomes

greater. Second, the estimation is robust when view bias coefficient θ varies within the

range of [30%, 70%]. As θ deviates from neutral (50%), the contour of β̂ turns bumpy and

becomes more twists. Hence although we can always find the estimation β̂, it contains

more noises rather than the true information as θ goes to 1 or goes to 0. See Fig. 4..

4.3. Expectile CAPM empirical test methodology

In this subsection, we employ conditional GMM restricted by expectile regression

condition to empirically test view bias based expectile CAPM theory. We test the un-

conditional expectile CAPM,

Eθ(ri − rf ) = βθEθ(rM − rf ),

We rewrite it into

Eθ

(
rei − βθreM

)
= 0,

where rei is the excess rate of return of security i, and reM is the excess rate of return of

market portfolio. Hence testing CAPM is testing a moment condition. The difficulty is

that there is only one equation, but with two parameters (zero intercept and statistically

significant non-zero slope) to be tested. We know that only when the number of moment

conditions is greater than the dimension of the parameter vector, the model is said to

be over-identified. Over-identification allows us to check whether the model’s moment

conditions match the data well or not. Fortunately, the unconditional expectile CAPM

is just a special case of conditional expectile CAPM. Therefore, we solve the problem by

estimating an unconditional expectile CAPM model using conditional GMM, which is
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(a) Contour of solving Eq. (19) with θ = 40% (b) Y = 18.64+3.19X; Uncentered R2 = 0.95

(c) Contour of solving Eq. (19) with θ = 50% (d) Y = 24.47+2.83X; Uncentered R2 = 0.96

(e) Contour of solving Eq. (19) with θ = 60% (f) Y = 29.69 + 3.60X; Uncentered R2 = 0.97

Fig. 4.

Expectile regression. This graph illustrates how the view bias affects the expectile estimation results.
See e.g. Fig. 4(a), the horizontal axis represents the estimated intercept, and horizontal axis represents
the estimated slope of the expectile regression Y = Eθ(Y |X) + ε, where Eθ(Y |X) = a + bX, with view
bias θ being 40% (indicating pessimism). The sample sets are generated by random seeds. Fig. 4(a)
is the contour of solving Eq. (19). There are two twisting bands, the intersection of two midlines of
the bands are the estimated intercept (18.6365) and slope (3.1932). The Uncentered R2 is 0.95247. See
Panel A. (b), the scattered diagram with best fitting line. The estimating process is that we search
for a sample expectile of X (see Fig. 4(b), the vertical line perpendicular to the X axis), and assign a
weight of 70% to the samples less than the sample expectile and a weight of 30% to the samples greater
than the sample expectile. The sample expectile needs to found satisfying the condition that itself is
equal to the calculated weighted average. We then search for the best fitting line based on the rule
that if the slope is upwarding, we assign a weight of 70% to the samples above the fitting line, and
30% to the samples below, otherwise we assign the weight in a reverse way, namely 70% to the samples
below the fitting line, and 30% to the samples above, and then we calculate the OLS estimators based
on the weighted sample sets. The parameters of the best fitting line is the one to make itself equal to
the OLS estimators weighted based on that particular fitting line. The estimation is robust when view
bias coefficient θ varies within the range of [30%, 70%]. By comparing Fig. 4(a), 4(c), and 4(e), we

observe that as θ deviates from neutral (50%), the contour of β̂ turns bumpy and becomes more and
more twists. Hence although we can always find the estimation β, it contains more noises rather than
the true information as view bias goes to extreme pessimism (0%) or goes to extreme optimism (100%).
By comparing Fig. 4(b), 4(d), and 4(f), as view bias goes from 40% to 60%, the estimated intercept
becomes smaller, while the slope becomes greater. Hence it is possible that we find evidence to reject
the null hypothesis under view neutral, but we cannot find evidence to reject and have to accept the
null hypothesis under pessimistic view or optimistic view.
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restricted by the expectile regression condition. The econometrics model is as follows,

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

E
(
πrei,t

− β0 − β1πreM,t
reM,t

)
= 0

E
(
πrei,t−1

πrei,t|rei,t−1
rei,tr

e
i,t−1 − β0πrei,t−1

rei,t−1 − β1π
e
ri,t−1

πreM,t|rei,t−1
reM,tr

e
i,t−1

)
= 0

E
(
πreM,t−1

πrei,t|reM,t−1
rei,tr

e
M,t−1 − β0πreM,t−1

reM,t−1 − β1π
e
rM,t−1

πreM,t|reM,t−1
reM,tr

e
M,t−1

)
= 0

(25)

St: πY |X are implied by Eθ(Y |X) = α0 + α1X , where Y ∈ {rei,treM,t}, X ∈ {rei,treM,t}

where rei,t is the excess rate of return of security i at time t, reM,t is the excess rate of return

of market portfolio at time t. The first equation of GMM is an unconditional moment

condition, the second equation of GMM is a moment condition conditioning on the

information of previous period’s excess rate of return of security i, and the last equation

is a moment condition conditioning on the information of previous period’s excess rate

of return of market portfolio. We will test the null hypothesis H0 : β0 = 0, β1 = 0, and

the moment condition by the case of conditional homoskedasticity and heteroskedasticity

according to the following steps.

• Step 1: assume view bias θ is given, search for the sample expectile to get πrei,t
and

πreM,t
; using the same sample set with one period lag to get πrei,t−1

, and πreM,t−1
.

• Step 2: run expectile regression of rei,t on rei,t−1, obtain the estimated parame-

ters, based on which estimate πrei,t|rei,t−1
. Repeat the same procedure to estimate

πrei,t|reM,t−1
, πreM,t|rei,t−1

, πreM,t|reM,t−1
.

• Step 3: test statistical significance of πrei,t|rei,t−1
.

• Step 4: if the slope is insignificant, then replace πrei,t|rei,t−1
using πrei,t

.

• Step 5: repeat step 3 and step 4 for πrei,t|reM,t−1
, πreM,t|rei,t−1

, πreM,t|reM,t−1
.

• Step 6: run GMM to estimate β0 and β1.

• Step 7: test null hypothesis H0: β0 = 0, β1 = 0.
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• Step 8: test the moment condition H0: Eθ(r
e
i − β0 − β1r

e
M ) = 0.

5. Empirical results

In this section, we provide empirical evidence on the advantages of the expectile based

model for explaining the asset pricing anomalies. In particular, our empirical analysis

is conducted in several steps. We first check the data availability. Second, by assuming

a reasonable risk aversion coefficient, we obtain an aggregated implied view bias time

series. Third, we construct momentum portfolio. We use the ranking time series of

10 momentum portfolios’ return as proxies for βθ
t . we do spectral analysis on βθ

t and

the excess rate of return of all momentum portfolio. The period of βθ
t and excess rate

of return are both compatible with the period of view bias coefficient, indicating that

view bias towards ambiguity is being priced for that particular momentum portfolio.

Therefore, fourth, we test the expectile based unconditional CAPM on 10 momentum

portfolios under the average aggregated implied view bias coefficient over the observation

period. We reach dramatically different conclusions on testing the moment condition.

GMM reject the Null hypothesis suggested by traditional CAPM, E(rei −β0−β1r
e
i ) = 0.

View bias adjusted GMM accept the Null hypothesis suggested by the expectile based

Eθ(r
e
i − β0 − β1r

e
i ) = 0. Finally, we analyse the systematic risk and latent risk of winner

portfolio and loser portfolio, as well as the view bias adjusted excess rate of return to see

if our statement hypothesis explains the momentum successfully.

First, we check the data availability. Daily stock returns data including common

shares of all NYSE-, AMEX- and NASDAQ-listed firms are available in CRSP. We select

the stocks with stock share code being 10 or 11 to exclude closed end funds, real estate

investment trust, American depository receipts and foreign stocks. We get the monthly

average of daily common share return and market return including dividends and the

volatility excluding dividends. The annualized volatility is obtained by multiplying
√
252.

Daily risk-free rate is proxied as 30 T-bill return from CRSP divided by 30.4. The U.S.

quarterly aggregate nondurable goods and service consumption per capita is obtained
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from John Compbell’s website. We interpolate it into a monthly time series. We use

Gauss-Laguerre quadrature to numerically approximate Θ and Φ with respect to θ.

Second, we solve equation E(rM ) + σM√
dt
Θ− rf = ασCσM (Θ2sign(ρCM)

√
1− ρ2CM +

ΦρCM ) to get an implied USA aggregated view bias coefficient time series from May

1926 to Sep 1999, by assuming a reasonable constant risk aversion coefficient being 3.

The averaged view bias is 0.473, a slight deviation from view neutral, the maximum

and minimum are 0.871 and 0.219 respectively. See Fig. 5(a), view bias when it is

pessimism is not a phase lagged mirror reflection to the dynamic when it is optimism. We

compare the equity premium puzzle implied view bias coefficient under a constant risk-

averse coefficient being 3 and the equity premium puzzle implied risk averse coefficient

under view neutral. The conclusion is that if we neglect the view bias factor, which

is just lightly deviating from neutral, then we need a huge risk preference to reconcile

E(rM )− rf = ασCσMρCM with the actual data, which is a stylized fact documented as

equity premium puzzle. See Fig. 5(b), we draw the view bias periodogram within the

time span from May. 1926 to Dec. 1999. The fist significant period is around 50 years,

the second significant period is around 90 months. We group the data set of implied

view bias and implied risk preference by the sign of correlations ρCM . We run regression

by each group for the data pairs, whose risk aversion is within the range of (−300, 300).

The result indicates that they are strongly correlated for both two groups. See Fig. 5(c)

and 5(d), we claim that the implied risk preference under view neutral and implied view

bias under the constant risk preference being 3 are positively (negatively) correlated

when aggregate consumption growth rate and market portfolio return are positively

(negatively) correlated. In other words, if the market return and consumption growth

move in the same direction, a risk-averse investor is more like a pessimistic investor. If

the market return and consumption growth move in a counter-direction, a risk-averse

investor is more like an optimistic investor.

Third, we get the rank of each selected stock in deciles. The sample range17 is from

17The reason why we select this sample range is because we need the volatility of each momentum
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Fig. 5.

Implied view bias and implied risk preference. Fig. 5(a) compares the equity premium puzzle implied

view bias under a constant risk preference being 3 and the equity premium puzzle implied risk preference

under view neutral within the time span from Jun. 1963 to Dec. 1970. For the implied view bias, the

maximum is 0.871, the minimum is 0.219, the average is 0.473. For the implied risk averse coefficient,

we truncate it to [-300, 300] to exclude the outliers, then the average is 30. Fig. 5(b) is the view bias

periodogram within the time span from May. 1926 to Sep. 1999. The first significant period is around

50 years months. The second significant period is 90 months. Fig. 5(c) indicates that the implied

risk preference is positively correlated with the implied view bias when the aggregate consumption is

positively correlated with market portfolio return. The intercept (-361) and the slope (712) are both

statistically significant under 99% confidence, the adjusted R2 is 0.58. Fig. 5(d) indicates that the im-

plied risk preference is negatively correlated with the implied view bias when the aggregate consumption

is negatively correlated with market portfolio return. The intercept (341) and the slope (-689) are both

statistically significant under 99% confidence, the adjusted R2 is 0.60.
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Jun. 1963 to Dec. 1970. Following many studies, the rank periods have the length

of six months. For any given month, the rank of a certain stock is determined based

on the past 6-month returns. We construct momentum portfolios in July 1967, the

middle of the sample range. We group the stocks by rank to get 10 portfolios, and get

the value-weighted monthly return of each portfolio. We scale the portfolio return to

make each of them having exactly the same volatility to control σi√
dt
Θ adjustment in the

expectile CAPM. We then do the spectral analysis to get the period of each portfolio

return, period of βθ
t , as well as the implied view bias coefficient with sample range (Jun.

1963 to Dec 1970). The first and second significant period for view bias are 62 and 19

months respectively. Actual data indicates that view bias when it is pessimism is not

a phase lagged mirror reflection to the dynamic when it is optimism, then according to

Corrolary 2, we are expecting the period of βθ is equal to the period of view bias. And

based on Theorem 1, the period of the excess rate of return of the portfolio should be

equal to the period of view bias as well. This is a unique perspective, from which we

hypothesize and prove that view bias impact the market. Since we are interested in the

period instead of the wave swing of the βθ
t dynamic, it makes sense to use the rank time

series of return as a proxy for its βθ
t . We make comparisons between the periods of view

bias and the rank period of each momentum portfolio βθ
t . See Table 3, quite many of

them are consistent with what the expectile CAPM model suggests. So we account that

the view bias towards ambiguity is being priced for that particular security. The rank

periods don’t have a period with the length being around 62, and the p-value for white

noise test is large. That is because we are using the rank as a proxy for beta βθ
t , and

the range of the rank is restricted to [1, 10], hence it is not able to reflect the long term

trend or cycle.

Fourth, we give an example of empirical evidence on the advantages of the expectile

based model for testing CAPM. We take average of the implied view bias into expec-

portfolio and market index to be stable in order to carry out the following analysis, hence the 50 years
view bias cycle is too long. The sample range (Jun. 1963 to Dec. 1970) covers 93 months, roughly the
second statistical significant period, and it is the golden age for the united states’ economy after the
second world war.

40



Table 3

Value weighted momentum portfolio spectral analysis

Rank spectral analysis Return spectral analysis

Portfolio Period p-value 1st period 2st period p-value

Loser 14 0.3187 57 21 <0.0001

Loser+ 19 0.6497 57 18 <0.0001

Loser++ 19 0.2384 56 18 <0.0001

Loser+++ 24 0.9419 57 19 <0.0001

Loser++++ 24 0.7953 60 23 <0.0001

Winner 20 0.5192 58 22 <0.0001

Winner 20 0.5519 63 24 <0.0001

Winner 23 0.0019 68 23 <0.0001

Winner 19 0.1282 70 24 <0.0001

Winner 26 0.0618 — 25 <0.0001

Average 20.6 60.7 21.7

Table 3 compares the period of rank time series and the period of return time series of 10 momentum
portfoios, and both of them are compatible with view bias period.

tile CAPM to estimate the view bias based beta, and to test if the moment condi-

tions are satisfied. We use GMM method with restriction to the estimated view bias

adjustments,πrei,t|rei,t−1
, πrei,t|reM,t−1

, πreM,t|rei,t−1
, πreM,t|reM,t−1

. The sample range again is

from Jun. 1963 to Dec. 1970, overall 93 months. We run GMM and classical OLS

regression to estimate CAPM model. We also run view bias adjusted GMM for each

momentum portfolio. We first group sample data by view bias. Then we run expectile

regression to get the distortion factor for each data pair. The slope of the expectile re-

gression are not statistical significant, hence we replace the conditional πrej,t|rei,t−1
using

unconditional πrej,t
. We finally combine two groups of data, to run GMM (Eq. (25)). See

Table 4. The view bias adjusted betas, estimated through GMMθ, GMM, OLS are of the

same pattern for 10 momentum portfolios. The beta for the biggest winner estimated

through GMMθ is 0.7687, which is the lowest among 10 momentum portfolios. Hence

the real data does not support Explanation 1.

Finally, we claim the actual data supports Explanation 2. The amount of risk of

winner portfolio is lower, the adjusted market price of risk is negative. We first study

the risk composition of each portfolio. See Table 5, we decompose the total risk of each

portfolio into systematic risk (σiM ) and idyosyncratic risk (σiσM

√
1− ρ2iM ). According
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to the Theorem 1 and Eq. (13) the real priced risk is the weighted average of systematic

risk and latent risk (σ̃iM ), where the weights are Φ and Θ2 respectively. Second, we

arbitrarily choose a view bias. For any particular view bias, there exists a pair of Φ and

Θ2, using which we are able to get the view bias adjusted beta (βθ). Third, we calculate

the sample average of market excess rate, which is postive. However the market excess

return adjusted by first category of information premium ( σM√
dt
Θ) is negative (-2.991

annually), multiplying which by βθ, we obtain that the adjusted exptected portfolio

excess return (E(ri) +
σi√
dt
Θ− rf ) are all negative. By substracting the item ( σi√

dt
Θ), we

get the exptected portfolio excess return (E(ri)−rf ) being all postive. Fourth, we search

for a view bias for each portfolio to make the expected portfolio excess return implied

by expectile CAPM being equal to the sample average of excess return, we then get the

momentum effect implied view bias for each momentum portfolio. The corresponding

view bias adjusted beta for each portfolio are reconcile with βθ estimated by GMMθ in

Table 4. Fifth, we find that the difference between β and βθ are quite tiny. βθ for the

biggest winner portfolio is the lowest among all 10 portfolios, which is consistent with

what the GMMθ’s results indicate. Finally, we find the advantage of expectile CAPM and

the advantage of using view bias distorted GMM for testing expectile CAPM. See Table

4, J-statistic for GMMθ are all greater than 5%, which implies the moment conditions

in Eq. (25) are all satisfied, and model is correctly specified. 6 out of 10 J-statistic for

GMM are all less than 5%, which implies their moment conditions in Eq. (25) with all

distortion multiplier π ≡ 1 are rejected, and traditional CAPM model are mis-specified.

Those dramatically different results shows an empirical evidence on the advantages of

the expectile based theoreticl and empirical model. All the above analysis supports

Explanation 2.
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6. Conclusion

In this paper, we develop an expectile based extended asset pricing theoretical frame-

work. We also develop a novel econometrics method, expectile regression, for testing the

extended CAPM and finding the empirical evidence to support our explanations to the

anomalies. Comparing with the existing methods, our approach is more flexible. First,

the traditional methods normally list many factors. The risk factor will be compensated

by the risk premium directly. Some other factors, such as information asymmetry, re-

strictions, will change the model structure. Since they all exist at the same time, as fully

incorporating those factors, the model is becoming more and more complicated. However

the view bias is like a transducer, many risk factors affect the asset pricing indirectly

through affecting the view bias factor. By modeling the relationship between asset pric-

ing and view bias, we are able to explain both two categories of anomalies either from

mean and variance of SDF perspective, e.g., equity premium puzzle, or from the factor

structure of SDF perspective, e.g., momentum effect. Second, our approach is extending

expectation into expectile. As a reward measure, expectile appears in both the equilib-

rium asset pricing and riskfree arbitrage pricing, however many traditional approach can

solve equilibirum asset pricing anomalies only. Simulation studies and empirical example

show that the non-zero intercept and statistical insignificant beta of traditional CAPM

obtained by running OLS regression might become a zero intercept and statistical signifi-

cant CAPM obtained by running expectile regression, the momentum condition which is

not satisfied under expectation operator can be satisfied under expectile operator. Em-

pirical studies indicate that the equity premium puzzle is consistent with what our view

bias approach suggests, and people are pre-occupied with a aggregated pessimistic view

bias on average during post war in U.S.; Momentum effect has two alternative explana-

tions: either the winner portfolio has a low relative amount of risk (weighted average of

systematic risk and latent risk) while the market price of risk is postive; or the winner

portfolio is of a high relative amount of risk while the market price of risk is positive.

Empirical analysis on post war U.S. stock market data supports the second explanantion.
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Appendix

In this appendix, we provide the assumptions and detailed mathematical proofs of

some of the results in the paper, for the others, please refer to online proof.

Assumption A. 1. Time interval between each decision is infinitesimal.

Assumption A. 2. Prices follow diffusion processes.

Assumption A. 3. Only consumption and portfolio process are controllable.

Assumption A. 4. There is no exogenous endowment.

Assumption A. 5. Investors are homogenous.

Assumption A. 6. Information is imperfect, and pessimism or optimism view bias ex-

ists.

Assumption A. 7. [I.I.D] {Yt, X
′
t}(t = 1)n is an i.i.d random sample.

Assumption A. 8. [Linearity] Yt = X ′
tβ

0 + εt, t = 1, , n for some unknown 2 × 1 pa-

rameter β0 and some unobservable random variable εt.

Assumption A. 9. [Correct model specification] Eθ(εt|Xt) = 0a.s. with E(ε2t ) = σ2.

Assumption A. 10. [Non-sigularity] The K ×K matrix Q = E(XtX
′
t) is nonsingular

and finite.

Assumption A. 11. The K ×K matrix E(XtX
′
tY

2
t ) is finite and positive definite.

Assumption A. 12. The K ×K matrix E(XtX
′
tε

2
t ) is finite and positive definite.

Assumption A. 13. E(πsign(β1)(Y−β0−β1X)σ
2
t |Xt) = σ2

θ a.s.

Assumption A. 14. E(X4
jt) < ∞ for all 0 � j � k; and E(ε4t ) < ∞.

Lemma 1. (Relative entropy comparison) 0 � D(f‖hexpextile) < D(f‖hquantile) =

+∞, with the first equality if and if θ = 50%, where Qθ(x) is the θ−quantile of X,

D(f‖hexpectile) =
∫
fX(x)ln

(
fX (x)

πX(θ)fX(x)

)
dx and D(f‖hquantile) = − ∫

fX(x)ln(1θ ×
1{X<Qθ(x)})dx.
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Proof. According to the existing information theorem that defining Supp(f) = {x :

fX(x) > 0}, if the support Supp(f) � Supp(h), then D(f‖h) = +∞. By solving

Quantileθ(X) = argminq[(1 − θ)
∫
X<q

|x − q|fX(x)dx + θ
∫
X>q

|x − q|fX(x)dx], we get

the FOC: 1 =
∫

1
θ1{X<q∗}fX(x)dx. Hence, Supp(f) � Supp(1{X<q∗}f) are satisfied,

and D(f‖hquantile) = +∞. In likely manner, Supp(f) = Supp(πX(θ)f), therefore 0 �

D(f‖hexpectile) < D(f‖hquantile) = +∞ is proved. �

Proposition 1. (Monotonicity of expectile) As people goes from extreme pessimism

to extreme optimism, his expectile (reward measure) goes from negative infinity to pos-

itive infinity monotonously. (Invariance of variancile). As people goes from extreme

pessimism to extreme optimism, his variancile (risk measure) remains to be unchanged.

Proof. We use the orthogonal polynomials to approximate the integrand, then the inte-

gral is evaluated by Gaussian quadrature. Although Eq. (A.1) is still an implicit function

with respect to q∗, it is of a much simpler form, and easy to get the result using root

finding technique.

Eθ(W ) � q∗ =

∫ [
(1− θ)1{W<q∗} + θ1{W>q∗}

]
fW (w)wdw∫ [

(1− θ)1{W<q∗} + θ1{W>q∗}
]
fW (w)dw

(A.1)

where fW (w) = 1
2π e

−w2

2 . Equivalently, we rewrite it into

b∗ =

∫ [
(1− θ)1{W<b∗} + θ1{W>b∗}

]
e−w2

wdw∫ [
(1− θ)1{W<b∗} + θ1{W>b∗}

]
e−w2dw

,

where b∗ = q∗√
2
. Then we have

(1−θ)

∫ 0

−∞
e−(w−b)2wdw+θ

∫ 0

−∞
e−(w−b)2wdw = (θ−1)

∫ −∞

0

e−(w−b)2wdw+θ

∫ 0

−∞
e−(w−b)2wdw

Namely,

(θ − 1)

∫ −∞

0

e−we−(w2−2bw+b2−w)wdw + θ

∫ 0

−∞
e−we−(w2+2bw+b2−w)wdw
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We name e−w the weight function, then e−w2−2bw+b2−ww is the integrand. By setting

q∗ =
√
2b = (lnB)√

2
, and using Guass-Laguerre formula, we obtain the results as follows.

n∑
k=1

αk

[
(θ − 1)Bwk + θB−wk

]
= 0, (A.2)

where αk = Ake
−w2

k+wk , Ak = wk

(n+1)2[Ln+1(wk)]2
, Ln+1(wk) =

∑n
k=0(−1)k

(
n+a
n−k

)
wk

k! = 0.

That is, solving equation Ln+1(wk) = 0, we get the wk, we get the xk, k = 1, · · ·n, and
all the corresponding ak, k = 1, n. After taking them into equation (A.2), we get the B

using Newton root finding method, and q∗ is obtained. Calculation of wk and ak is done

for good. Given different , calculating q∗ is to solve equation with respect to different ,

and the set of wk and ak, k = 1, · · ·n are never changed. See Fig. A. 1(a), the expectile

is converging quickly as the highest power of the orthogonal polynomials increases. Fig.

A. 1(b) indicates that Eθ(W ) is a monotonously increasing function of θ. We substitute

the value of expectile into the definition of variancile, and get the constant 1, no matter

what value the view bias is. �

Proposition 3. (Extended law of one price) Under imperfect information, when port-

folios are repackaged, the return remains to be the same, if and only if people are view

neutral. If pessimism exists, people can assemble them into a portfolio to do riskless

arbitrage; if optimism exists, they can split the package to earn non-zero excess return.

Proof. Equivalently, we only need to prove the following statement. If Xi ∼ N(μi, σi),

the correlation between Xi and Xj is ρij, and ∃ρij �= 1, then

Eθ(
∑n

i=1 Xi) = Eθ(
∑n

i=1 Xi) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

> 0θ > 50%

> 0θ > 50%

< 0θ < 50%

.

Case 1: if θ = 50%, then Eθ(
∑n

i=1 Xi)−Eθ(
∑n

i=1 Xi) = Eθ(
∑n

i=1 Xi)−Eθ(
∑n

i=1 Xi) = 0.

Case 2: if θ > 50% and ∃ρij �= 1,
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(a) Numerically approximating expectile

 
               Expec�le    

(b) Monotonicity of expectile

Fig. A.1

Numerical analysis of expectile. Fig. A.1(a) indicates that the expectile Eθ(W ) (where W is a stan-

dard normal distributed random varaibel) is converging quickly as the highest power of the orthogonal

polynomials [the n in Eq (A.2)] increases for all levels of view bias (from L0.01 to L0.99). Fig. A. 1(b)

indicates that Eθ(W ) is a monotonously increasing function of θ.
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• Step 1: if n = 2, Xi ∼ N(μi, σi), we haveX1+X2 ∼ N(μ1+μ2, σ
2
1+σ2

2+2σ1σ2ρ12),

then Eθ(
∑2

i=1 Xi)−Eθ(
∑2

i=1 Xi) = (σ1+σ2)Eθ(W )−Eθ(W )
√

σ2
1 + σ2

2 + 2σ1σ2ρ12.

If ρij �= 1, and from Proposition 1 that Eθ(W ) is a monotonously increasing function

with respect to θ, Eθ(W ) > 0, hence Eθ(
∑2

i=1 Xi)−Eθ(
∑2

i=1 Xi) > 0, otherwise if

ρij = 1, Eθ(
∑2

i=1 Xi) = Eθ(
∑2

i=1 Xi).

• Step 2: we make assumption that, if n = k, then Eθ(
∑2

i=1 Xi)−Eθ(
∑2

i=1 Xi) � 0.

• Step 3: if n = k+1, then Eθ(
∑n

i=1 Xi) = Eθ(
∑k+1

i=1 Xi) = Eθ(
∑k

i=1 Xi)+Eθ(Xk) �

Eθ(
∑k

i=1 Xi) + Eθ(Xk) � Eθ(
∑k+1

i=1 Xi).

Case 3: if < 50% and ∃ρij �= 1, since Eθ(W ) < 0, ceteris paribus, we get Eθ(
∑n

i=1 Xi)−
Eθ(

∑2
i=1 Xi) � 0.

Case 4: if ∀ρij = 1, then Eθ(
∑n

i=1 Xi)−Eθ(
∑n

i=1 Xi) = E(
∑n

i=1 Xi)− E(
∑n

i=1 Xi) = 0.

�

Lemma 2. (Exparte effect) Assume X and Y are the rate of returns of two assets.

Assume Y = bX, then Eθ(Y ) = bEθ(X), iff b � 0, and Eθ(Y ) = bE(1−θ)(X), iff b � 0.

Proof. 1) If b > 0, we have

fY (y) =
1

σY

√
2π

e
− (bx−μY )2

2σ2
Y =

1

b

1(
σY

b

)√
2π

e
− (x−μY

b )
2

2( σY
b )2 ,

denote μX = μY

b and σX = σY

b , fY (y) = bfX(x), then

Eθ(Y ) � q∗ = b

∫ [
(1− θ)1{bX<q∗} + θ1{bX>q∗}

]
fX(x)xdx∫ [

(1 − θ)1{bX<q∗} + θ1{bX>q∗}
]
fX(x)dx

Since b > 0, we have

q∗

b
=

∫ [
(1− θ)1{X< q∗

b } + θ1{X> q∗
b }
]
fX(x)xdx∫ [

(1− θ)1{X< q∗
b } + θ1{X> q∗

b }
]
fX(x)dx

,
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hence Eθ(X) = q∗

b , namelyEθ(Y ) = bEθ(X).

2) If b < 0, we have

fY (y) =
1

σY

√
2π

e
− (bx−μY )2

2σ2
Y =

1

b

1(
σY

b

)√
2π

e
− (x−μY

b )
2

2( σY
b )2 ,

denote μX = −μY

b and σX = −σY

b , fY (y) = −bfX(x), then

Eθ(Y ) � q∗ = b

∫ [
(1− θ)1{bX<q∗} + θ1{bX>q∗}

]
fX(x)xdx∫ [

(1− θ)1{bX<q∗} + θ1{bX>q∗}
]
fX(x)dx

,

hence E1−θ(X) = q∗

b , namely E1−θ(Y ) = bE1−θ(X).

3) If b = 0, we have Eθ(Y ) = bEθ(X) = bE1−θ(X). �

Proposition 4. (Homogeneity of Variancile) V ARθ(σW ) = σ2V ARθ(W ), where σ is

a constant; (Risk-free condition of expectile) V ARθ(r +W ) = V ARθ(W ), where r is a

constant; (Sub-additivity of variancile) V ARθ(X + Y ) = V ARθ(X) + V ARθ(Y ) + 2 ×
COVθ(X,Y ).

Proof. 1) V ARθ(σW ) �
∫
(σW − σq∗)2πW (θ)fW (w)dw = σ2V ARθ(W ).

2) V ARθ(r +W ) �
∫
(r +W − (r + q∗))2πW (θ)fW (w)dw = V ARθ(W ).

3) V ARθ(X + Y ) �
∫
(X + Y − (q∗X + q∗Y ))

2πY (θ)πX|Y (θ)fX,Y (x, y)dxdy =∫
[(X − q∗X)2 + 2(X − q∗X)(Y − q∗Y ) + (Y − q∗Y )

2]πY (θ)πX|Y (θ)fX,Y (x, y)dxdy =
∫
(X −

q∗X)2πX(θ)πX|Y (θ)fX,Y (x, y)dxdy +
∫
(Y − q∗Y )

2πY (θ)πX|Y (θ)fX,Y (x, y)dxdy +
∫
[2(X −

q∗X)(Y − q∗Y )]πY (θ)πX|Y (θ)fX,Y (x, y)dxdy = V ARθ(X) + V ARθ(Y ) + 2× COVθ(X,Y ).

�

Theorem 1. (Expectile CAPM) Suppose Assumption A.1 to A. 6 in the Appendix holds.

Then the following expectile CAPM representation holds for Eθ(.):

Eθ(ri − rf ) = βθEθ(rM − rf ), i = 1, 2, · · · , n (11)

where βθ � Θ2σ̃iM +ΦσiM

Θ2σ̃2
M +Φσ2

M

, σiM �
∑

�jσiσjρij, σ2
M �

∑n
j=1 �jσMσjρij, σ̃iM �∑n

j=1 �jσiσjsign(ρij)
√
1− ρ2ij, σ̃

2
M �

∑n
j=1 �jσMσjsign(ρjM )

√
1− ρ2jM , Θ � Eθ(w),
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Φ � Eθ(w
2), �i is the weight of security i within the portfolio, and w ∼ N(0, 1).

Proof. We first define the following variables. W (t) �Total wealth at time t. Pi(t) �Price

of the ith asset at time t(i = 1, · · · , n). Sj(t) � Value of the jth state variable at time

t(j = 1, · · · ,m). C(t) � Consumption per unit time at time t. wi(t) � Proportion of

total wealth in the ith asset at time t(i = 1, · · · , n). Note ∑n
i=1 wi(t) ≡ 1 We model the

consumption and portfolio choosing process as follows,

J [W (t), S(t), t] ≡ max
C(s),�(s)

Eθ,t{
∫ T

t

U1 [C(s), s] ds+ U2 [W (T ), T ]} (A.3)

St: boundary condition:

J [W (T ), S(T ), T ] = U2 [W (T ), T ] .

budget equation:

W (t) =
n∑

i=1

wi(t0)
Pi(t)

Pi(t0)
[W (t0)− C(t0)h]

assumption1: t ≡ t+ h, h → 0 assumption2:

dPi(t)

Pi(t)
= μi(S, t)dt+ σi(S, t)

√
dtwi, i = 1, 2, · · · , n

dPi(t)

Pi(t)
= μi(S, t)dt+ σi(S, t)

√
dtwi, i = 1, 2, · · · , n

V = [σil] , σil = σiσlρil, i, l = 1, 2, · · · , n

dSj(t) = fj(S, t)dt+ gi(S, t)
√
dtqj , j = 1, 2, · · · ,m

By Taylor’s theorem and the mean value theorem for integrals, Eq. (A.3) can be rewritten

as,
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J [W (t0), S(t0), t0] = max
C(s),�(s)

Eθ,t0{U1 [C(t̄), t̄]h+ J [W (t0), S(t0), t0]

+
∂J [W (t0), S(t0), t0]

∂dt
h+

∂J [W (t0), S(t0), t0]

∂W
[W (t)−W (t0)]

+

m∑
j=1

∂J [W (t0), S(t0), t0]

∂Sj
[Sj(t)− Sj(t0)]

+
1

2

∂2J [W (t0), S(t0), t0])

∂W 2
[W (t)−W (t0)]

2

+
1

2

m∑
k=1

m∑
j=1

∂2J [W (t0), S(t0), t0]

∂Sk∂Sj
[Sk(t)− Sk(t0)] [Sj(t)− Sj(t0)]

+

m∑
j=1

∂2J [W (t0), S(t0), t0]

∂W∂Sj
[W (t)−W (t0)] [Sj(t)− Sj(t0)] +O(h2)}

where t̄ ∈ [t0, t], take limit as h → 0, take the θ-adjusted expectation operators onto each

term, and subtracting, J [W (t0), S(t0), t0] of both sides, we have

0 = max
C(s),�(s)

{U1 [C(t), t] dt+
∂J [W (t), S(t), t]

∂dt
dt

+
∂J [W (t), S(t), t]

∂W
Eθ,t [dW (t)]

+

m∑
j=1

∂J [W (t), S(t), t]

∂Sj
Eθ,t [dSj(t)(t]

+
1

2

∂2J [W (t), S(t), t])

∂W 2
Eθ,t [dW (t)]

2

+
1

2

m∑
k=1

m∑
j=1

∂2J [W (t), S(t), t]

∂Sk∂Sj
[Sk(t)− Sk(t)]Eθ,t [dSj(t)]

+

m∑
j=1

∂2J [W (t), S(t), t]

∂W∂Sj
Eθ,t [dW (t)dSj(t)] +O(dt2)}

(A.4)

By subtracting W (t0) on both sides, the budget equation is rewritten as,

W (t)−W (t0) =

[
n∑

i=1

�i(t0)
Pi(t)− P0(t)

Pi(t0)

]
[W (t0)− C(t0)h]− C(t0)h
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The expectile of the limit process as h → 0 is

Eθ,t[dW (t)] = {
n∑

k=1

�i(t)W (t)Eθ,t

(
dPi(t)

Pi(t)

)
− C(t)dt} +O(dt2)

= {
n∑

k=1

(
�i(t)W (t)

[
μi(S, t) +

σi(S, t)√
dt

Eθ,t(wi)

]
− C(t)

)
}dt

(A.5)

Applying the same limit process to other terms,

Eθ,t[dW (t)]2 =

n∑
l=1

n∑
i=1

�i(t)�l(t)W (t)2σi(S, t)σl(S, t)E(θ, t)[wiwl]dt (A.6)

Eθ,t[dSj(t)] = fj(S, t)dt + gj(S, t)
√
dtEθ,t(qi) (A.7)

Eθ,t[dSk(t)dSj(t)] = gk(S, t)gj(S, t)Eθ,t[qk(t)qj(t)]dt +O(dt2) (A.8)

E(θ, t)[dW (t)dSj(t)] =

[
n∑

i=1

�i(t)W (t)σi(S, t)gj(S, t)Eθ,t[wiqj(t)]

]
dt (A.9)

Take Eq. (A.5) to Eq. (A.9) into Eq. (A.4), and assume the nth asset is risk free asset,

we get the following HJB function:

0 = max
C(s),�(s)

{U1 [C(t), t] dt+
∂J [W (t), S(t), t]

∂dt
dt+

∂J [W (t), S(t), t]

∂W

× {
[(

n−1∑
i=1

(
�i(t)

(
μi(S, t) +

σi(S, t)√
dt

Eθ,t(wi)

)
− rf

)
+ rf

)
W (t)

]
− C(t)}

+
m∑
j=1

∂J [W (t), S(t), t]

∂Sj

[
fj(S, t) +

gj(S, t)√
dt

Eθ,t(qi)

]

+
1

2
∂2J [W (t), S(t), t]/W 2

n−1∑
l=1

n−1∑
i=1

�i(t)�l(t)W (t)2 × σi(S, t)σl(S, t)E(θ, t)(wiwl)

+
1

2

m∑
k=1

m∑
j=1

∂2J [W (t), S(t), t]

∂Sk∂Sj
gk(S, t)gj(S, t)E(θ, t)(qkqj)

+
m∑
j=1

∂2J [W (t0), S(t0), t0]∂W∂Sj[
n−1∑
i=1

�i(t)W (t)σi(S, t)× gj(S, t)E(θ, t)(wiqj)]}
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We let the derivatives of HJB w.r.t consumption C(t) and weight assigned to each risky

asset, �1(t) to �n−1(t), equal to zero, the first order conditions are,

U1,C [C∗(t), t]− ∂J [W (t), S(t), t]

∂W
= 0

∂J [W (t), S(t), t]

∂W
{μi(S, t) +

σi(S, t)√
dt

Eθ,t(wi)− rf}

+
∂2J [W (t), S(t), t]

∂W 2

n−1∑
l=1

�∗
l W (t)σi(S, t)σl(S, t)Eθ,t(wiwl)

+

m∑
j=1

∂J [W (t), S(t), t]

∂W∂Sj
{σi(S, t)gj(S, t)Eθ,t(wiwj)}

= 0, i = 1, 2, · · · , n− 1

Define a more compact expression in the following way,

V = [σiσlEθ,t(wiwl)], i, l = 1, 2, · · · , n− 1

Γ = [σigjEθ,t(wiqj)], i, l = 1, 2, · · · , n− 1; j = 1, 2, · · · ,m

Then, we can get the optimized portfolio process,

�∗ = − JW [W (t), S(t), t]

W (t)JWW [W (t), S(t), t]
V −1{μi(S, t) +

σi(S, t)√
dt

Eθ,t(wi)

− rf} − V −1Γ
JSW [W (t), S(t), t]

W (t)JWW [W (t), S(t), t]

We write the above formula in form of vectors, and sum K homogeneity investors’ port-

folio weight, we get the aggregated market portfolio weight.

�M =

∑K
k=1 �

KWK∑K
k=1 W

K

=
A

M
V −1{μ(S, t) + σ(S, t)√

dt
Eθ,t(w) − γf}+ V −1Γ

B

M
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where

A =
K∑

k=1

(
− Jk

W [W (t), S(t), t]

Jk
WW [W (t), S(t), t]

)
;B =

K∑
k=1

(
− Jk

SW [W (t), S(t), t]

Jk
WW [W (t), S(t), t]

)
;M =

K∑
k=1

W k.

The expectile excess return vector satisfies the following equation,

μ(S, t) +
σ(S, t)√

dt
Eθ,t(w) − γf = �′

MV
M

A
− Γ

B

A

We denote each scalar of the vector �′
MV as σθ

iM , and assuming that state variables are

constants,

μi(S, t) +
σi(S, t)√

dt
Eθ,t(w) − rf = σθ

iM

M

A
(A.10)

We specify the term of σθ
iM , and get

σθ
iM =

n∑
j=1

�jσiσjE��θ,t(wiwj)

=

n∑
j=1

�jσiσj{[Eθ,t(w)]
2
√
1− ρ2ij × sign(ρij + Eθ,t(w

2)ρij}

= Eθ,t(w)]
2

n∑
j=1

�jσiσj

√
(1− ρ2ij × sign(ρij) + Eθ,t(w

2)

n∑
j=1

�jσiσjρij

(A.11)

We consider a market portfolio as a whole, and then it is a one-dimension random

variable. We use symbol M̄ to distinguish it from n dimensional market portfolio,

μM̄ (S, t) +
σM̄ (S, t)√

dt
Eθ,t(�)− γf = σθ

M̄M

M

A
(A.12)
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where

σθ
M̄M =

n∑
j=1

�jσM̄σjEθ,t(wM̄wj)

=

n∑
j=1

�jσM̄σj{[Eθ,t(w)]
2
√
1− ρ2

jM̄
× sign(ρjM̄ ) + Eθ,t(w

2)ρjM̄}

= [Eθ,t(w)]
2

n∑
j=1

�jσM̄σj

√
(1− ρ2

jM̄
× sign(ρjM̄ ) + Eθ,t(w

2)

n∑
j=1

�jσM̄σjρjM̄

The reason why we use symbol M̄ to distinguish the market portfolio being taken as

one security and as an n dimensional portfolio is that the expectile does not satisfy the

additivity when there is a risk dimensional-receding. After the coefficients being taken

out of the expectile operator, there is no difference between M̄ and M , therefore we can

rewrite the above expression as follows,

σθ
M̄M = [Eθ,t(w)]

2
n∑

j=1

�jσMσj

√
1− ρ2jM × sign(ρjM ) + Eθ,t(w

2)σ2
M (A.13)

Take equations Eq. (A.11) and Eq. (A.13) into Eq. (A.10) and Eq. (A.12) respectively,

and denote μi � μi(S, t), σi � σi(S, t)

μi +
σi√
dt
Eθ,t(w) − γf

μM + σM√
dt
Eθ,t(w) − γf

=
σθ
iM

σθ
M̄M

We denote Θ � (w), Φ � Eθ(w
2), σ̃iM �

∑n
j=1 �jσiσjsign(ρij)

√
1− ρ2ij , σ̃2

M �∑n
j=1 �jσMσjsign(ρjM )

√
1− ρ2jM , �i is the weight of security i within the portfolio,

and w ∼ (0, 1). Hence we have two equivalent expressions of expectile CAPM.

Eθ(ri − rf ) = βθEθ(rM − rf ), i = 1, 2, · · · , n.

or

μi +
σi√
dt
Θ− rf = βθ(μM +

σi√
dt
Θ− rf ), i = 1, 2, · · · , n.
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�

Theorem 2. (Equity premium puzzle) Assume the correlation between consumption

growth rate and the market returns is ρCM , then E(rM )+ σM√
dt
Θ− rf = ασCσM (ΦρCM +

Θ2sign(ρCM )
√
1− ρ2CM ), where σC is the volatility of the aggregate consumption growth

rate.

Proof. We assume the investor is solving the following portfolio optimization problem.

max
�(t)

Eθ,t{
∫ ∞

t

e−δsU (C(s)) ds}

= Eθ,t{
∫ t+h

t

e−δsU (C(s)) ds}+ Eθ,t{
∫ ∞

t+h

e−δsU (C(s)) ds}

= Eθ,t{
∫ t+h

t

e−δsU (C(s)) ds}+ Eθ,t{
∫ ∞

0

e−δ(t+h+s)U (C(t+ h+ s)) ds}

St : C(t) = e(t)−�(t)PM (t); C(t+ s+ h) = e(t+ s+ h) +�(t)D(t+ s+ h)h; h → 0

where�(t) is number of shares of market portfolio, δ is time preference, e(t) is endowment

at time t, D(t) is dividend at time t. We take the same approach shown in Cochrane

(2001) and get the following similar result, which is expressed under expectile operator.

Eθ,t

(
dPM (t)

PM (t)

)
+

D(t)

PM (t)
dt− rfdt = αEθ,t

[
dC(t)

C(t)

dPM (t)

PM (t)

]
(A.14)

Taking the diffusion processes into the right hand side of the above equation, we have

Eθ,t

[
dC(t)

C(t)

dPM (t)

PM (t)

]
= Eθ,t

[
(μCdt+ σC

√
dtwC)(μMdt+ σM

√
dtwM )

]

where wC , wM are standard normal distributed, their correlation is ρCM . Omitting the
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high order derivatives, we obtain

Eθ,t

[
dC(t)

C(t)

dPM (t)

PM (t)

]
= σCσMdtEθ,t[wCwM ]

= σCσMdt

(
[Eθ,t(w)]

2
√
1− ρ2CM × sign(ρCM ) + [Eθ,t(w)]

2
ρCM

)
(A.15)

Taking Eq. (A.15) into Eq. (A.14), and cancel dt on both sides, we have

μM +
D(t)

PM (t)
+ σM

√
dtEθ,t(w)− rf

= ασCσM

(
[E(θ, t)(w)]

2
√
1− ρ2CM × sign(ρCM ) + [Eθ,t(w)]

2ρCM

)

We drop t, assume D(t) = 0, and denote Θ � (w), Φ � Eθ(w
2), we get

E(rM ) +
σM√
dt
Θ− rf = ασCσM

(
Θ2sign(ρCM)

√
1− ρ2CM +ΦρCM

)

If the volatility of aggregation consumption growth rate and the volatility of rate of

return of market portfolio are completely correlated, that is, ρCM = 1.

E(rM ) +
σM

dt
Θ− rf = ασCσM (ΦρCM ).

�
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