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                                                          Abstract 
 

In this paper we construct a variance risk premium spillover index among France, Germany, UK, 

Switzerland and the US. The variance risk premium is measured by the difference between the 

(square) of implied volatility and expected realized variance of the stock market for next month. We 

also construct a spillover index for the constituents of the variance risk premium. The series under 

investigation exhibit long memory properties.  The construction of a total spillover indicator 

suggested by Diebold-Yilmaz (2009) would then rely on modeling a fractionally integrated Vector 

Autoregressive Model, which might be subject to errors in specifying the correct lag length and the 

fractional differencing parameters. In order to avoid such misspecification errors, we employ 

wavelet analysis. In particular, we employ the Maximal Overlapping Transform and we compute 

the covariance matrix at different scales (associated to a frequency range). The spillover index is 

then obtained from the relative contribution of each (orthogonalized) shock  to the variance of the 

other series at given scale (e.g. at a given investment time horizon).   
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1. Introduction  

In this paper we aim to analyze spillover among the variance risk premium series for five countries: 

France, Germany, UK, Switzerland and the US. Following Bollersev et al. (2009) who focus only 

on the US stock market (see also Bollersev et al, 2013b for a study extended to other countries stock 

markets), the variance risk premium is defined as the difference between the risk-neutral and 

statistical expectations of the future return variation. The risk neutral expectation of the stock 

market variance is approximated by the one-month forward looking model-free options implied 

variances. The statistical expectation (or expectation under the physical measure) of the stock 

market variance is approximated by realized variances over next month (see Carr and Wu, 2006; see 

also Bollersev et al., 2013). As pointed by Bollersev et al (2013a and 2013b), the variance risk 

premium is interpreted both as aggregate risk aversion and aggregate economic uncertainty. We 

also extend the analysis to spillovers among the two constituents of the variance risk premium. 

Spillovers among the variance risk premia are analyzed through a time varying total spillover index 

obtained, following the suggestion of Diebold-Yilmaz (2009), by measuring the relative 

contribution of orthogonalized shocks spilling over to other markets. For this purpose, Diebold-

Yilmaz (2009) rely on the variance decomposition of a stationary VAR(p).  

To our knowledge, the only study analyzing the type of volatility spillovers we are interested in is 

the one  of Jiang, et al. (2012) investigating spillovers across implied volatility indices for the US 

and for Europe (with emphasis on the role played by news). However, Jiang et al. (2012) focus on 

the relationship between first differences of implied volatilities, and not on the levels.   

 

Since our focus is on analyzing spillovers between series exhibiting long memory (e.g. the variance 

risk premium and its constituents), we prefer, when building up the time varying total spillover 

index of Diebold and Yilmaz (2009), avoiding errors associated to a fractionally integrated Vector 

Autoregressive model both in terms of an incorrect VAR lag order and fractional differencing 
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parameter
1
.  For this purpose, we use the Maximal Overlapping Discrete Wavelet Transform, 

MODWT, to obtain a scale by scale decomposition of the covariance matrix of the fractionally 

integrated series under investigation (see Witcher et al., 2000). Each scale is associated to a given 

frequency range interpreted as a given time investment horizon. While the total spillover index of 

Diebold-Yilmaz (2009), based on the variance decomposition at given forecast horizon, requires the 

specification of the correct lag order of a VAR, we are able, through MODWT, to produce a non-

parametric estimation of the variance decomposition for different investment time horizons.  

The structure of the paper is as follows. Section 2 describes the issue of long memory; Section 3 

describes wavelet analysis; Section 4 describes the Diebold-Yilmaz (2009) total spillover index and 

our contribution; Section 5 focusses on the empirical evidence and section 6 concludes. 

 

2 Long memory  

Let a time series xt , be described by an ARFIMA(p,d,q) process: 

tt
d LyLL ε)()1)(( Θ=−Φ           (1) 

where εt is an iid Gaussian process with variance 2
εσ . The AR component is given by a polynomial 

of degree p (with roots outside the unit circle): 

p
pLLLL ϕϕϕ ++++=Φ ...1)( 2

21                       (2) 

and the MA component is described by a polynomial of degree q (with roots outside the unit circle): 

q
qLLLL θθθ ++++=Θ ...1)( 2

21           (3) 

The fractional differencing operator (1 – L)
d
 can be derived from a power series expansion as 

follows: 

                                                 
1
 Evidence of long memory in volatility measures is well documented. The studies of Baillie et al. (1996), Andersen 

and Bollerslev (1997), Comte and Renault (1998) give evidence of long-run dependencies, described by a fractionally 

integrated process, in GARCH, realized volatilies, and stochastic volatilities models, respectively. More recently, 

empirical studies show that the volatility implied from option prices exhibits properties well described by fractionally 

integrated process (see Bandi and Perron, 2006 and Christensen, and Nielsen, 2006).  
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It turns out that, for –0.5 < d < 0.5, the process xt is stationary and invertible. For such processes, 

the effect of a shock ε at time t on x at time t+h decays as h increases, but the rate of decay is much 

lower than for a process integrated of order zero, hence the autocorrelation function for a 

fractionally integrated process decays hyperbolically. If 0.5 < d < 1, then the process is non-

stationary long-memory and it is characterized by an infinite variance. 

There exist a number of estimation methods for the fractional integration parameter. The GPH 

estimator is based on the low frequency spectral behavior of the time series, and it is simply the 

slope of the sample log periodogram:  

)()))2/((sin4ln()(ln 2
sss dcP λελλ +−=          

where P (.) is the periodogram of the data computed at the harmonic frequencies 
T

s
s

π
λ

2
= , with 

T/2 ,…1,= s pω , and T is the sample size.  

The local Whittle estimator developed by Kunsch (1987) and by Robinson (1995b) maximizes a 

frequency-domain Gaussian likelihood for frequencies in the neighborhood of zero, i.e.: 
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Both the GPH and local Whittle estimators provide point estimate of the fractional integration 

parameter which are dependent on the choice of the bandwith parameter m, that is on the number of 

low frequencies considered.  

 

Moving to a multivariate approach to model dynamic spillover effects between long memory series 

would require the computation of dynamic multipliers by specifying fractionally integrated Vector 

Autoregressive Model (see Bollersev et al., 2013). As mentioned before, in this paper we want to 

analyze spillovers without relying on modeling a fractionally integrated Vector Autoregressive 
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Model, which might be subject to model misspecification in terms of lag length and in terms of the 

fractional differencing parameter. 

 

3 Wavelet multiresolution analysis 

Our primary focus is on the construction of a spillover index for different time investment horizon: 

from short to long-run. For this purpose we apply a scale by scale decomposition of variances and 

covariance of volatilities time series. The standard frequency-domain approach is based on the 

assumption that the observed time series is stationary over the time period under study. Classical 

Fourier analysis has a global nature; in decomposing data into sinusoidal components of various 

frequencies, which are localized in frequency but not in time, time information is lost except for the 

one conveyed in the phase. For that reason, the Fourier transform is not suitable for truly evolving 

(time varying) phenomena. 

On the other hand, wavelet analysis allows assessing at the same time changes in the relationship 

among variables at different ranges of frequencies and over the time. Wavelets can be particularly 

useful when the time series is localized in time as well as in frequency. Discontinuities in signals 

can be described in terms of very short (compressed) local basis functions with a high-frequency 

content, whereas a fine analysis at low frequencies can be achieved using highly dilated (stretched) 

basis functions. In other words, the wavelet is contracted or dilated to change the scale at which one 

looks at a signal. The wavelet is then shifted or translated in time to correspond to different part of 

the signal. The procedure is called multiresolution analysis. In particular, in case of a dyadic 

multiresolution analysis, the dilated and translated family of wavelets functions can be defined as
2
: 

 

Ikjktt jj
kj ∈−= −− ,);2(2)( 2/

, ψψ             (6) 

                                                 
2
 Given a time series with T observations, conventional dyadic multiresolution analysis applies to a succession of 

frequency intervals in the form of (π/2
(j)

, π/2
(j-1)

), with the decomposition level  j running from 1 to J. The bandwidths 

are halved (down-sampled by 2) repeatedly descending from high to low frequencies. By the j
th

 round, there will be j 

wavelet bands and one accompanying scaling function band. At the decomposition level j, one obtains a set of T/2
j
 

mutually orthogonal wavelets functions given by equation (7), separated from each other by 2
j
 points. 
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where j  and k are the integer parameters governing the scale resolution (i.e. 2
-j
) and translation in 

time, respectively.  All the wavelet basis functions, ψj,k, are self-similar, namely, they differ only by 

translation and change of scale from one another. These functions result from a mother wavelet, 

ψ(t), which is any oscillating function with zero mean, finite support and unit energy, i.e.: 
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The object of a wavelet analysis is to associate an amplitude (wavelet) coefficient w to each of the 

wavelet. The task is accomplished by the Discrete Wavelet Transform which is implemented via the 

pyramid algorithm of Mallat (1987). If certain conditions are satisfied, these coefficients completely 

characterize the signal which is resolved in terms of a coarse approximation and the sum of fine 

details: 

 

∑ ∑∑+=
k j k

kjkjkJkJ wtvtx ,,,, )()( ψφ              (8) 

       

Here J is the highest possible level of decomposition; kJ ,φ  is the set of  translated orthogonal 

scaling functions spanning the lower frequency range [0, π/2
(J)

). Therefore, the first term 

∑
k

kJkJ tv )(,, φ  in eq. (8)   is the coarse approximation of the signal, and the second term 

∑∑
j k

kjkjw ,, ψ  in eq. (8) is the sum of fine details.  
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The scaling and wavelet coefficients kjv ,  and kjw ,  are the following projections of x(t) on the bases 

kj,φ  and kj ,ψ  respectively: 

 

∫= dtttxv kjkj )()( ,, φ                   (9) 

 

∫= dtttxw kjkj )()( ,, ψ                    (10) 

 

The signal can then be written as a set of orthogonal components at resolutions 1 to J: 

 

 

11 ......)( DDDStx JJJ ++++= −                (11) 

 

At level j the  detail component jD  captures frequencies spanning cycles with periodicity between 

j2  and 12 +j  and the smooth jS   captures cycles with periodicity greater than 12 +J  periods. 

A disadvantage of the conventional dyadic wavelet analysis is the restriction on the sample size T 

which has to be a power of 2. A further problem lies in the fact that the DWT depends upon a non-

symmetric filter that is liable to induce a phase lag in the processed data. These difficulties can be 

circumvented by means of the Maximum Overlapping Discrete Wavelet Transform (MODWT), 

through which, the filtered output at each stage of the pyramid algorithm is not subjected to down-

sampling, as in DWT analysis. As a consequence, the number of coefficients generated at the j-th 

stage of the decomposition, are in number equal to the sample size, T, instead that equal to T/2
j
.  

 

4 Total spillover index  

The total spillover index (for the forecast horizon H) put forward by by Diebold and Yilmaz (2009) 

is given by: 
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The coefficients 2
,ikha  entering the expression at the numerator are the “cross variance  shares” or 

“spillovers”, measuring the relative contribution of shock k to the variance the forecast error of 

series i (and viceversa). The coefficient matrix Ah includes also the “own shares”, that is the 

contribution of shock i to the variance the forecast error of series i. The coefficients entering matrix 

Ah  are obtained from a stationary VAR(p), once the residuals have been orthogonalized via 

Cholesky decomposition. As we can observe from eq.(13), the total spillover index provided by 

Diebold Yilmaz (2009) approach is based on the decomposition of the variance of forecast errors, 

e.g. the residuals of a VAR(p) model fitted to stationary time series. As mentioned above, our focus 

is on the construction of a spillover index of time series exhibiting long memory properties. In order 

to avoid producing a spillover indicator based on a miss-specified model both in terms of VAR lag 

order length and in terms of the fractional integration parameter, we rely on the MODWT to 

produce a scale by scale decomposition of the covariance matrix of fractionally integrated time 

series (see Percival and Walden, 2000; Whitcher, 2000).  Each scales is associated to a given 

frequency range, interpreted as a given time investment horizon. Unlike the DWT, the MODWT, by 

producing a decomposition of a given time series into components having the same size as the 

original time series, is capable to explore potential structural breaks. The construction of the total 

spillover index is obtained in the following three stages. 

 

1) As shown by Percival and Walden (2000) (see also Whitcher, 2000) the wavelet covariance 

between two fractionally integrated time series X and Y (with the orders of integration d1 and d2, 

respectively) for scale λj (which is equal to 2
j-1

) is defined as: )( jλγ  and it is given by: 
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where ,, ,,
Y

tj
X

tj ww  are the non-boundary wavelet coefficients for the primary surplus and debt (GDP 

ratios) for scale λj; Nj =N - Lj + 1 and Lj =(2
j
-1)(L-1)+1 is the filter length at level j. The covariance 

formula of two fractionally integrated time series given by eq. (14) relies on the stationary property 

of the wavelet coefficients.. The choice of filter length depends on the trade-off between leakage 

and boundary affected coefficients: the longer the filter, the closer to an ideal high pass filter, but 

also the higher the number of boundary coefficients.  For that reason, in presence of time series 

exhibiting an high degree of persistence, the condition suggested by Percival Walden (2000), L ≥  

2d (where d is the fractional integration parameter),  ensuring stationary wavelet coefficients would 

suggest the use of a filter with length L bigger than two. However, from eq. (12), unbiased estimates 

for the cross covariance of the time series at scale λj imply considering only the non-boundary 

coefficients (Percival and Walden, 2000). The longer is the filter, the higher is the number of 

boundary affected coefficients. For robustness we consider not only the Haar filter (with filter 

length equal to 2), but also filters such as LA(4) and LA(8), where the number in parenthesis is the 

associated filter length. 

2) The orthogonal shocks facilitating the computation of variance decomposition are obtained by 

employing a factor decomposition of the covariance matrix of the fractionally integrated time series 

for a given scale, employing the Cholesky decomposition (in a way similar to Diebold-Yilmaz, 

2009) who rely on the Cholesky factorization of the he covariance matrix of VAR residuals).  

In order to orthogonalize the innovations, we use the Cholesky decomposition of Σj, which is the 

55×  covariance matrix for the endogenous variables for scale λj, the scale specific covariance 

matrix of raw time series. The index j varies from 1 to 4, implying that we consider spillover indices 
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for an investment time horizon of either 2-4 days, or 4-8 days, or 8-16 days, or 16-32 days. The 

Cholesky factorization  of Σj,  returning the upper triangular matrix Aj, implies a specific recursive 

identying scheme for the orthogonalized shocks. For robustness, we follow the suggestions of  with 

Faust (1998) (see also Diebold-Yilmaz, 2009) considering all possible different recursive 

identifying schemes (which is equal 120 in case of five endogenous variables).      

3) The total spillover index relative to a scale λj is given by: 
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where 
jik

a λ,  are the coefficients measuring the relative contribution of shock k to the variance of 

variable i for scale λj. Finally, similarly to Diebold-Yilmaz (2009) we produce a time varying total 

spillover index by using a rolling window. The first and the last ending date of the 252 day window 

are 13/10/2000 and 29/11/2011.  

 

 

5. Data and empirical evidence 

The variance risk premium at day t is defined as the difference between the risk-neutral and 

objective expectations of realized variance. In line with Bollersev et al. (2013a), the risk-neutral 

expectation of variance is measured as the end-of-month implied volatility squared and de-

annualized (dividing by 12). In line with Bollersev et al. (2013a), the realized variance is the sum of 

squared 5-minute log returns of the S&P 500 index over the next month (using 21 days plus the 

squared overnight return). The daily realized variance is obtained from the OX-MAN library and 

the daily (annualized) implied volatility series is obtained from DATASTREAM. The sample 
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observed at daily frequency runs from 4/1/2000 till 31/12/2011 and the countries under 

investigation are the US, UK, Germany, France and Switzerland. 

In Table 1 we report descriptive statistics. The variance risk premia are all positive on average, 

ranging from a low of 8.95% for Germany to a high of 24.16% for UK on a percentage-squared 

monthly basis. “Selling” volatility has been highly profitable on average over the 2000-2011 period. 

The (average) size of the shock (measured by the standard deviation) hitting the variance risk 

premium and the implied variance series are similar across countries (around 30% for the variance 

risk premium,, and around 50% for the implied variance series). The (average) size of the shock 

hitting realized variances varies considerably across countries, with values equal to 41.782%, 

25.085%, 50.952%, 36.530% and 25.926%, for the US, UK,, Germany, France and Switzerland, 

respectively. Moreover, the major source of asymmetry in the distribution of the variance risk 

premia series is the large kurtosis (similar findings apply to implied and realized variance series).  

 

We turn now our focus on the long memory properties of the series under investigation. The 

estimation results for the fractional differencing parameter proposed by Geweke and Porter-Hudak 

(1983), hereafter GPH, based on a log-periodogram regression give at evidence (see Table 2) of 

non-stationary long memory in both implied and realized volatility time series (see Bandi and 

Perron, 2006 for similar results). There is also evidence of stationary long memory in the variance 

risk premium series (see Bollersev et al., 2013b for similar findings) with Germany as the only 

country exhibiting a short memory variance risk premium (given that the coefficient d is found to be 

not statistically different from zero).
 
The GPH estimation results are confirmed by the Local Whittle 

estimator (see Table 3). Given that the variance risk premium series is integrated of an order lower 

than implied and realized volatility series, we can conclude that there is evidence of fractional 

cointegration between the realized and implied volatility time series of each country stock market.  
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The Figures for the time varying spillover index show that results are not sensitive to choice of the 

ordering of variables since the minimum, median and maximum values among the 120 recursive 

identifying scheme employed to orthogonalize the shocks are very close to each other.  

Figures 1 gives evidence of a variance risk premium spillover index spike between 10/9/2001 and 

the observation immediately after (that is on 17/09/2001) when the very short term (between 2 and 

4 days) variance premium spillover index raises from 31% to 45%. The interval time between 

14/10/2008 and 29/10/2008 is characterized by a large drop in the spillover index from 59% to 

46%. A steep rising trend in the implied variance series very short term spillover index is observed 

only over the last part of the sample, starting from a low of 29% the 30/10/2009 to a peak of 57.6% 

on 24/05/2011. Another steep rising trend can observed between 15/7/2011 and 8/8/2011 when 

index raises from 47% to 57%. We do not observe any spike in the spillover index for an 

investment time horizon above 4 days (see Figure 2-4). An investment time horizon between 4 and 

8 days (see Fig. 2) is characterized by a large drop (from 63% to 48%) in the spillover index 

between 11/9/2008 31/10/2008 and by a steep rising trend with values of the index raising from 

45% to 65% between 5/10/2009 and 23/3/2011. On the 8/8/2011 we observe the largest value, equal 

to 67.7%, in the spillover index. Investment time horizon between 8 and 16 days and between 16 

and 32 days are not characterized by any particular structural break with values of the variance 

premium spillover index oscillating around an average value of 60% 

  

From Figure 5 we can observe two volatility spikes. The first one is recorded on 17/9/2001 when 

there the spillover index raises from the previous day (that is, 10/9/2011) value of 35% to 51%. The 

second milder spike is recorded between the 3/10/2008 to 13/10/2008 when the spillover index 

raises from 44 to 55%. Immediately after, we can observe a large drop in the very short term 

spillover index, when the index falls from 57% to 28% during the interval time between 13/10/2008 

and 17/10/2008.  A steep rising trend in the implied variance series very short term spillover index 

only over the last part of the sample, starting from a low of 31% the 30/10/2009 to a peak of 59% 
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on 8/03/2011. Then, after a small drop to 54% there is again a constantly rising value of the 

spillover index from 1/1/2011 to 8/8/2011 (with values of the spillover index ranging between 54% 

and 60%). Moving to the investment time horizon between 4 and 8 days (see Figure 6) we can 

observe milder spillover spikes: from 10/9/2011 to 18/9/2011 we can observe an increase in the 

spillover index from 45% to 55%; from 26/9/2011 to 14/10/2011 we can observe an increase in the 

spillover index from 55% to 64%. Then, we can observe a constant drop till 30/10/2008 when the 

index reaches a value of 47%. Figure 6 shows a steep rising trend over an interval time (longer than 

the one observed for scale 1), from 2/11/2009 to 6/06/2011, when the spillover index raises from 

48% to 67%. The very last part of the sample ending in November 2011 is characterized by values 

of the spillover index between 65% and 70%. From Figure 7 and 8 there is neither evidence of 

volatility spikes, nor of steep rising trend, although last period of the sample (starting from July 

2010) is characterized by spillover index values above 70%. 

 

From Figure 9 we can observe a steep rise in the very short term spillover index for realized 

variance, from 25% to 55%, between 13/6/2001 and 13/2/2002. Another steep rise in the very short 

term spillover index, from 19% to 70% occurs between 26/04/2004 and 9/9/2008. A mild rise in the 

very short term spillover index, from 36% to 49% occurs between 14/2/2011 and 7/7/2011. The 

spillover index for realized variance and for an investment time horizon between 4 and 8 days (see 

Fig 10) is characterized by an evolution over time similar to the one in Fig.9.  Finally, Investment 

time horizon between 8 and 16 days and between 16 and 32 days are not characterized by any 

particular structural break with values of the realized variance spillover index oscillating around an 

average value of 60% 

 

4. Conclusions 

In this paper we, first, explore the long memory properties of the variance risk premium and its 

constituents: the expectation of stock market variance under the risk neutral and physical measure, 
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for five countries: US, France, Germany, UK and Switzerland. The risk neutral expectation of the 

stock market variance is approximated by the one-month forward looking model-free options 

implied variances. The statistical expectation (or expectation under the physical measure) of the 

stock market variance is approximated by the next month realized variances. The estimation of the 

fractional integration parameter d by GPH and local Whittle estimator point at the existence of 

stationary long memory in the variance risk premium and non-stationary long memory in the 

constituents of the variance risk premium. One we found evidence of fractional integration, we 

build a total spillover index for the variance risk premium, the implied variance, and the one month 

realized volatility relying on a non-parametric estimation of the variance decomposition for 

different time investment horizon. Contrary to Diebold-Yilmaz (2009), our methodology to 

compute the variance decomposition and then total spillover index does not require the specification 

of a fractionally intergrated Vector Autoregressive Model. The method proposed in this paper is 

based on the Maximal Overlapping Discrete Wavelet Transform, MODWT, to obtain a scale by 

scale decomposition of the covariance matrix of the fractionally integrated series under 

investigation (see Witcher et al., 2000). Each scale is associated to a given frequency range 

interpreted as a given time investment horizon. The time varying spillover index plots gives 

evidence of few spikes and steep rising trend in the spillover index for the variance risk premium 

and its constituents especially for very short term time investment horizons (between 2 and 4 days 

and between 4 and 8 days). 
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Table 1: Descriptive Statistics  

                        variance risk premium 

 Mean Std Dev    Skewness Kurtosis    

US 17.788 32.347 -0.139 23.254 

UK 24.167 31.990 3.144 23.039 

GER 8.950 31.621 -2.324 17.040 

FRA 22.590 34.216 1.191 12.586 

SWI 19.822 31.483 3.553 33.920 

                        implied variance 

 Mean Std Dev    Skewness Kurtosis    

US 48.261 49.919 3.855 24.398 

UK 46.604 46.647 3.318 19.776 

GER 54.343 49.108 2.357 9.938 

FRA 57.907 52.553 2.731 13.787 

SWI 42.131 45.838 3.745 25.066 

                        realized variance 

 Mean Std Dev    Skewness Kurtosis    

US 30.472 41.782 4.362 27.032 

UK 22.437 25.085 2.698 11.760 

GER 45.393 50.952 2.437 9.758 

FRA 35.316 36.530 2.489 10.753 

SWI 22.309 25.926 2.634 10.741 

Note: The whole sample runs from 4/1/2000 to 31/12/2011 
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Table 2: GPH estimates of parameter d  
US UK GER FRA SWI 

                                         variance risk premium
 

0.205  0.253 

  

0.097 

  

0.239  

 

0.219 

  

                                            implied variance 

0.754 

 

0.567 

 

0.612 

 

0.570 

 

0.513 

 

                                            realized variance 

0.657 
 

0.576 

 

0.507 
 

0.523 
 

0.415 
 

Note: The asymptotic standard error is equal to 0.088 and it is derived from the limiting  

distribution ( ) )24/,0( 2
, πNddm mT →− , where the bandwith parameter m is set equal  

to the square root of the sample size. The limiting distribution was obtained by Robinson  

(1995a) in the presence of stationary data and by Velasco (1999) in the presence of non 

stationary data with 4/32/1 pd≤ .  

 

 

 

Table 3: Local Whittle estimates of parameter d  
US UK GER FRA SWI 

                                      variance risk premium 

0.179 0.326 0.118 0.261 0.326 

                                            implied variance 

0.718 0.648 0.753 0.728 0.673 

                                            realized variance 

0.643 0.621 0.606 0.616 0.608 

Note: Note: The asymptotic standard error is equal to 0.068 and it is derived from the  

limiting distribution ( ) )4/1,0(, Nddm mT →− , where the bandwith parameter m is set  

equal to the square root of the sample size. The limiting distribution was has been derived 

by Robinson (1995b). 
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Figure 1: VP Spillover index; scale 1 (2-4 days time horizon) 

 
 

Figure 2: VP Spillover index; scale 2 (4-8 days time horizon) 

 
 

Figure 3: VP Spillover index; scale 3 (8-16 days time horizon) 

 
 

Figure 4: VP Spillover index; scale 4 (16-32 days time horizon) 
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Figure 5: IV Spillover index; scale 1 (2-4 days investment time horizon) 

 
 

Figure 6: IV Spillover index; scale 2 (4-8 days investment time horizon) 

 
 

Figure 7: IV Spillover index; scale 3 (8-16 days investment time horizon) 

 
 

Figure 8: IV Spillover index; scale 4 (16-32 days investment time horizon) 
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Figure 9: RV Spillover index; scale 1 (2-4 days investment time horizon) 

 
 

Figure 10: RV Spillover index; scale 2 (4-8 days investment time horizon) 

 
 

Figure 11: RV Spillover index; scale 3 (8-16 days investment time horizon) 

 
 

Figure 12: RV Spillover index; scale 4 (16-32 days investment time horizon) 
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