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Abstract

We study the implications of predictability on the optimal asset allocation of ambiguity

averse long-term investors. We analyze the term structure of the multivariate risk-return

trade-off in a VAR model under full consideration of parameter uncertainty, and we decom-

pose the predictive covariance along different sources of risk/uncertainty. We calibrate the

model to real returns of US stocks, US long-term government bonds, cash, real-estate and

gold using the term spread and the dividend-price ratio as additional predictive variables.

While over short periods the model-implied conditional covariance structure of asset-class

returns determines the optimal allocation, we find that over longer horizons the optimal

asset allocation is significantly influenced by the covariance structure induced by estimation

errors. As a consequence, the ambiguity averse long-term investor tilts her portfolio not

simply toward the global minimum-variance portfolio but shrinks portfolio weights toward a

seemingly inefficient portfolio which shows maximum robustness against estimation errors.

Most interestingly, we find that even though time diversification of stock returns vanishes

after consideration of estimation errors, real long-term bond returns are even more affected,

making stocks an important asset class for the ambiguity averse long-term investor.
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1 Introduction

Return predictability has great impact on the optimal long-term asset allocation of risk

averse investors, as stressed, e.g., by Campbell and Viceira (2002) or Campbell, Chan, and

Viceira (2003). Although there is still an ongoing debate whether out-of-sample predictions

are statistically and/or economically significant, a growing body of empirical evidence sup-

ports return predictability in different asset classes.1 The reported autocorrelation in asset

returns together with predictive power of explanatory variables lead to time-varying return

expectations and have considerable effect on the (co)variance structure of long-horizon re-

turns. Time-varying expectations might give reason for attempts to time the market and

for using current predictions to make short-term profits. The long-term investor, however,

is primarily interested in the consequences of predictability on the covariance structure of

holding-period returns. Since predictability makes the multivariate risk-return trade-off

dependent on the investment horizon, investors who consider predictability conclude that

part of the unconditional variance of asset returns is actually predictable time variation

and thus does not constitute investment risk. This effect – also referred to as time diver-

sification – makes the optimal asset allocation horizon-dependent.2 The estimated term

structure of the risk-return trade-off is, however, susceptible to estimation errors, and these

errors tend to increase considerably with an increasing investment horizon, which erodes

part of the effect of time diversification.3

It is the goal of our study to derive the optimal multivariate asset allocation for a

long-term investor who shows aversion against ambiguity in true expected asset returns.

Time-varying investment opportunities, i.e., predictability, is modeled in a vector autore-

gression framework of order one, VAR(1). The portfolio optimization for a mean-variance

investor is done under full consideration of parameter uncertainty. We provide closed-form

expressions for the decision problem at hand. We treat ambiguity aversion regarding ex-

pected holding-period returns in a multi-prior setting as introduced in Garlappi, Uppal,

and Wang (2007). With this approach, ambiguity averse investors optimize their mean-

variance objective while regarding each possible portfolio selection being paired with the

worst possible expected return vector that exceeds a certain critical likelihood threshold.

We calibrate our model to real returns of US bonds, stocks, real estate, T-bills, and

gold over the period from 1960-01 to 2015-12 and use the dividend-price ratio and the term

1For early papers on predictability in equity and bond returns see Fama and Schwert (1977), Keim and
Stambaugh (1986), Fama and French (1988a,b), Campbell and Shiller (1988) and Fama and Bliss (1987). A
critical re-examination of studies in equity return predictability is Welch and Goyal (2008). More recent work
on equity prediction that addresses the concerns of Welch and Goyal (2008) is, e.g., Campbell and Thompson
(2008), Rapach, Strauss, and Zhou (2010), and Dangl and Halling (2012). Recent papers that document
predictability in bond premia are Cochrane and Piazzesi (2005), Cieslak and Povala (2015), and Diebold and
Li (2006). Predictability in commodity returns is reported, e.g., by Gorton, Hayashi, and Rouwenhorst (2012).

2Campbell and Viceira (2005) estimate a VAR model for stocks, bonds and T-bills with dividend-price ratio,
term spread, and short-term nominal interest rate as additional predictors and show that the riskiness of stocks
decreases for increasing investment horizon, while T-bills and long-term bonds become more risky as the horizon
becomes longer.

3See, e.g., Pastor and Stambaugh (2012) who find that even with very long time-series of equity-return
data, estimation errors in model parameters are large enough to outweigh the variance reduction, or time
diversification, originating from predictability.
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spread as additional covariates. With this study we fill a gap in the existing literature since

it is the first that develops the optimization of a multivariate asset allocation of a risk and

ambiguity averse long-term investor in the presence of return predictability. Existing stud-

ies like Campbell and Viceira (2002, 2005) and Campbell, Chan, and Viceira (2003) focus

on the multivariate term structure of the risk/return trade-off but are silent on estimation

uncertainty. Papers that explicitly address parameter uncertainty, like Barberis (2000) or

Pastor and Stambaugh (2012) neither analyze multivariate asset allocation nor allow to

consider investor’s ambiguity aversion with respect to parameter uncertainty. Garlappi,

Uppal, and Wang (2007) study multivariate asset allocation with parameter uncertainty

and ambiguity aversion, but assume i.i.d. return processes and, thus, do not consider return

predictability.

We find that in the presence of predictability the covariance of holding-period returns

generally differs from the covariance structure of errors in the estimates of long-term ex-

pected returns. Thus, portfolios that are robust against estimation errors differ from port-

folios that diversify return volatility. So investors who show ambiguity aversion with respect

to errors in estimates of expected returns will prefer portfolios that are seemingly inefficient

from the point of view of a pure risk averse investor. While both depend on the investment

horizon, estimation errors become disproportionately large compared to return variance

when planning for long horizons. Consequently, even moderate ambiguity aversion against

misspecification of expected returns, which has only low impact on the asset allocation over

short holding periods, eventually becomes the determining factor in the long-term portfolio

choice.

In line with Pastor and Stambaugh (2012), we see that time diversification of stock

returns effectively vanishes after considering parameter uncertainty. The possible mis-

specification of expected returns, however, affects other asset classes more severely (most

prominently real long-term bond returns), making stocks a relevant asset class for the am-

biguity averse long-term investor. With moderate ambiguity aversion, the investor holds

a balanced portfolio with considerable long positions in cash. For increasing ambiguity

aversion bond holdings are diminished, leaving the investor with an optimal portfolio of

stocks, real-estate and cash. Independent of the investment horizon and the model param-

eterization, gold plays an insignificant role in a long-term portfolio.

This paper focuses on long-term asset allocation, but as an extension we demonstrate

that our approach of regarding aversion against ambiguity in estimated risk premia in a

VAR(1) setup can actually benefit also the short- and medium-term investor. Optimizing

the portfolio under a reasonable level of aversion against model mis-specification protects

investors from aggressive attempts to time the market which result in extreme portfolio

positions that translate into poor out-of-sample return characteristics and high portfolio

turnover. We show empirically that portfolios optimized under ambiguity aversion deliver

significant certainty equivalence gains compared to portfolios that are optimized ignoring

return predictability (Garlappi, Uppal, and Wang, 2007).

The paper is structured as follows. In Section 2 we discuss existing literature related to

our paper. Section 3 introduces the VAR(1) framework we employ to model predictability in

asset returns and to decompose total variance-covariance of aggregated long-term returns.
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Section 4 describes our data set. Section 5 derives closed-form expressions for our portfolio

selection problem under parameter uncertainty and presents empirical results when bonds,

stocks, cash, real estate and gold are available. In Section 6 we present empirical evidence

that our approach of considering aversion against ambiguity in the model specification can

also benefit the short- and medium-term investor. Section 7 concludes. All our proofs can

be found in the appendix.

2 Related Literature

Early work of Merton (1969), Samuelson (1969) and Fama (1970) show that when asset

prices are generated by a geometric Brownian motion (i.e., returns are i.i.d. and jointly

normal) and investors’ utility is iso-elastic, the optimal asset allocation is constant and

independent of the investment horizon. Deviations from these rather restrictive assump-

tions generally lead to time-varying investment-opportunity sets and predictability in asset

returns, which make optimal investment depend on (i) the current state and (ii) the invest-

ment horizon. Investors with a general (non-log) utility function will, thus, exhibit hedging

demand against these changes in expected returns and/or covariances over time, see Merton

(1971, 1973). Since there is a growing body of empirical evidence for predictability in asset

returns (as discussed in Section 1, Footnote 1), we argue that considering predictability is

of first-order relevance for long-term portfolio allocation.

Kim and Omberg (1996) propose an analytically tractable model for an investor with

HARA utility who trades a risk-free asset and a risky asset. Brennan, Schwartz, and

Lagnado (1997) analyze a richer asset allocation problem of a long-term investor who can

invest in bonds, stocks and cash. They consider the short rate, the dividend yield as well

as the yield on a console bond as additional predictors, and they use a finite difference

approximation on a grid to solve the problem numerically. In their setting, an investor

with a long horizon places a larger fraction of the portfolio in both stocks and bonds than

does a myopic investor. Mean reversion of bonds and stock returns makes these assets

less risky in the long run. Furthermore, their out-of-sample results indicate that exploiting

predictability in asset returns is also economically significant. Campbell, Chan, and Viceira

(2003) use an analytical approximation to solve the investment/consumption problem of an

infinitely long-lived investor with Epstein-Zin utility. All mentioned papers assume known

parameters in their analysis. In their outline for future research, Brennan, Schwartz, and

Lagnado (1997) emphasize that estimation risk should be addressed directly, which would

then alleviate the problem of highly leveraged portfolio positions and extreme portfolio

turnover.

While Bawa, Brown, and Klein (1979) address estimation risk in portfolio selection

problems for i.i.d. returns, Kandel and Stambaugh (1996) are the first to consider parame-

ter uncertainty under return predictability. Their investor uses sample evidence to update

his beliefs about parameters in a Bayesian setup. They conclude that considering the pre-

dictive variables in portfolio choice can have a substantial influence on investors’ utility

even though regression evidence for such predictability may be weak. Barberis (2000) con-

siders a long-term investor who can allocate money to Treasury bills and a stock index.
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Time-varying investment opportunities are modeled within a VAR framework, which in-

cludes asset returns and predictor variables. Parameter uncertainty is considered by the

predictive distribution of future returns. He finds that even after incorporating parameter

uncertainty, time diversification is still the predominant effect, and a long-horizon investor

still allocates more to equities than an investor ignoring predictability, but the effect is

smaller than when assuming fixed parameters. Parameter uncertainty might even domi-

nate time diversification, as demonstrated by Pastor and Stambaugh (2012) in a univariate

allocation setup, so that the investor who is aware of predictability and parameter uncer-

tainty regards stocks more risky in the long run than in the short run and, thus, allocates

less to the risky asset when considering a longer holding period. Xia (2001) examines the

optimal portfolio strategy under parameter uncertainty in continuous time. Compared to

previous work, in her model the investor is allowed to learn about the predictive relation

over time. She illustrates that predictability and stochastic predictive variables introduce a

stochastic covariance between the current estimate of the parameters and the stock returns.

Learning reduces the sensitivity of the optimal allocation to the predictive variable, and

the relationship between both is no longer monotone. Using historical data, she shows that

investors who ignore market timing can incur very large opportunity costs.

The standard Bayesian approach in the above mentioned literature treats the unknown

parameters as random variables. A pre-specified prior is combined with observations from

data to construct a predictive distribution of returns. Optimal portfolios maximize expected

utility with respect to this predictive distribution. As emphasized by Garlappi, Uppal, and

Wang (2007), the implicit assumption here is that decision-makers are neutral to ambiguity

in the sense of Knight (1921). However there is substantial evidence that this is not the

case, and that especially private investors have a preference for asset allocation rules which

are robust with respect to this ambiguity, see, e.g., Li, Tiwari, and Tong (2016).

3 Model

To allow for time-varying investment opportunities, we model the joint dynamics of asset

returns and of predictive variables in a VAR(1) framework which we borrow from Barberis

(2000)

zt = a+Bzt−1 + εt, (1)

with zt the (n × 1) vector of asset returns and covariates. As the asset menu we use

long-term US government bonds, US stocks, cash and alternative investments in form of

gold plus real estate, since for most homeowners the house is the single most important

asset in the portfolio (see e.g. Flavin and Yamashita, 2002). As additional predictors we

include the term spread between the yield of long-term US-government bonds and the T-

bill rate and the log dividend–price ratio. Therefore, in our setting we have n = 7. For

a detailed description of the data which we use to calibrate our model, please refer to

Section 4. The (n×1) vector a consists of intercept coefficients and B is the (n×n) matrix

of slope coefficients. Disturbances are denoted by εt, an (n× 1) vector with i.i.d. N(0,Σε)

distributed elements. A calibration of the model must determine n2 + n coefficients in a

and B plus the (n+ 1)n/2 elements of Σε.
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A potentially important drawback of the VAR-based approach is that standard least

squares parameter estimates might be contaminated by a finite-sample bias that seriously

distorts the asset allocation decision, especially when the model contains variables, as in-

terest rates, dividend-price ratios and term spreads, that are highly persistent, see Bekaert,

Hodrick, and Marshall (1997) and Engsted and Pedersen (2012, 2014). More concise, such

estimates will generally be biased toward a dynamic system that displays less persistence

than the true process. The bias is particularly pronounced when the estimation sample is

short and the dynamic process is very persistent (see Bauer, Rudebusch, and Wu, 2012).4

Therefore, we apply the technique proposed by Kilian (1998); Nicholls and Pope (1988);

Pope (1990) to obtain bias-corrected parameter estimators.

We consider a long-term investor in t = 0, who is interested in the aggregated returns

of the tradable assets bonds, stocks, cash, real estate and gold over an investment horizon

of T months. Conditional on a, B and Σε, the aggregated log-returns rT are normally

distributed (see Barberis, 2000, eq. (18) and (19)) with mean

µT = Ta+ (T − 1)Ba+ (T − 2)B2a+ · · ·+BT−1a+ (B +B2 + · · ·+BT )zt, (2)

and covariance

ΣT = Σε

+ (I +B) Σε (I +B)
′

+
(
I +B +B2

)
Σε
(
I +B +B2

)′
...

+
(
I +B + · · ·+BT−1

)
Σε
(
I +B + · · ·+BT−1

)′
. (3)

We address the uncertainty in the parameters estimated from a sample with Tobs obser-

vations within a simulation study by sampling from the predictive distribution. We employ

the two-step Bayesian approach described by Zellner (1971). To compute the posterior dis-

tribution p(a,B,Σε|z) we rewrite the model as
z′−(Tobs−1)

...

z′0

 =


1 z′−Tobs

1
...

1 z′−1

( a B
)′

+


ε′−(Tobs−1)

...

ε′0

 . (4)

With C a (n × (n + 1)) matrix which results from joining the vector a with the (n × n)

matrix B,

C =


a1 B1,1 B1,2 · · · B1,n

a2 B2,1 B2,2 · · · B2,n

...
. . .

an Bn,1 Bn,2 · · · Bn,n

 , (5)

4 Campbell, Chan, and Viceira (2003) acknowledge the finite-sample bias in their VAR estimates but state
that bias corrections are complex in multivariate systems and, hence, they do not attempt to adjust for the bias.
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we write the model as

Z = XC ′ + E. (6)

When calibrating the model to observed data, estimated coefficients â and B̂ as well as

the covariance structure of the residuals Σ̂ε are affected by estimation errors. From Zellner

(1971) we know that true coefficients have a joint inverse Wishart / Normal distribution

such that the marginal distribution p(Σ−1
ε |z) follows

Σ−1
ε |z ∼Wishart(Tobs − n− 2, Σ̂−1). (7)

Conditional on the covariance matrix Σε, model coefficients are normally distributed ac-

cording to

vec(C ′)|Σε, z ∼ N(vec(Ĉ ′),Σε ⊗ (X ′X)−1). (8)

Estimation errors in the model’s coefficients propagate in a complex way into estimation

errors in the moments of the aggregate T -period return rT , µT and ΣT stated in Equations

(2) and (3). Regarding estimation errors, rT is generally not normally distributed. We de-

compose the term structure of the total variance of rT imposed by time-varying investment

opportunities in three parts:

var(rT |z) = EΣε(var(rT |Σε, z)) + varΣε(E(rT |Σε, z))

= EΣε [Ea,B(var(rT |a,B,Σε, z))] + EΣε [vara,B(E(rT |a,B,Σε, z))]

+varΣε(E(rT |Σε, z))

= EΣε [Ea,B(ΣT )] + EΣε [vara,B(µT )] + varΣε(E(rT |Σε, z))

= EΣε,a,B [ΣT ] + EΣε [ΩT ] + ΛT

= Σ̄T + Ω̄T + ΛT , (9)

i.e., the expected average covariance, Σ̄T , and two additional covariance matrices which

reflect the uncertainty in expected asset returns given the ambiguity about the parameters,

Ω̄T , as well as the ambiguity about the residuals’ covariance of the VAR model, ΛT . Hence,

a mean-variance optimizer will invest in the classical mean-variance optimal portfolio with

µ̄T = E[µT ] as the expectations of asset returns and a covariance structure determined by

Σ̄T + Ω̄T + ΛT .

In order to calculate the covariance matrices Σ̄T , Ω̄T and ΛT we rely on simulation.

We perform 400,000 simulation draws according to the scheme (7) and (8). First, we

sample 2,000 covariance matrices from the marginal p(Σ−1
ε |z) employing (7) and for each

of the sampled Σε we simulate 200 sets of model parameters a and B from the conditional

distribution described in (8). In line with Stambaugh (1999), we assume that the sampled

process is stationary, i.e., when a sampled B exhibits an eigenvalue with modulus above

one the observation is dropped and resampled.
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4 Data

We use (where necessary calculate) continuously compounded monthly returns for all assets

in our investment menu. Returns of stocks, bonds and cash are taken from the updated

data set proposed in Welch and Goyal (2008):5 Equity returns are given by stock returns

on the S&P500 index (including dividends) (CRSP SPvw). For bonds and cash we rely on

long-term government bond returns (ltr) and T-bill rates (Rfree). We calculate real estate

returns from the Home Price Index, see Shiller (2015).6 In order to consider the additional

rent income for real estate (comparable to a dividend yield of stocks), Davis, Lehnert, and

Martin (2008) provide historical rent-to-rice ratios, which we add to the price changes of

the Home Price Index.7 While all other data are available on a monthly frequency, the

rent-to-price data are with a quarterly frequency. Therefore, we assume that within the

three months of a quarter the indicated rent-to-price ratio is constant. Furthermore, in

order to allow for an alternative investment, we add gold to our asset menu.8 All five time

series are deflated by the changes in the Consumer Price Index (infl).

As additional predictor variables we use the term spread and the log dividend–price ra-

tio, see Campbell, Chan, and Viceira (2003). We calculate the term spread as the difference

between the long-term government bond yield (lty) and the T-bill rate (tbl). We use 12-

months moving sums of dividends paid on the S&P500 index (D12). The log dividend–price

ratio is the log annual dividends (D12) less the log price index (Index).

From 1960-01 to 2015-12 we have in total 672 monthly observations to estimate the

VAR process. Table 1 shows OLS parameter estimates. Apart from analyzing a different

time interval and including the additional assets real estate and gold, our estimates are

well in line with those of Campbell, Chan, and Viceira (2003).

[Table 1 about here.]

The most noteworthy observation is the very high and significant persistence of the log

dividend-price ratio and the term spread, and the relatively high persistence of cash and

real estate, with the consequence that R2 of the regression of these time series is high.

Bond, stock and gold returns are harder to predict. For bonds the returns of stocks and

cash as well as the term spread have significant predictive power. In line with previous

literature, stocks returns have the lowest R2. As expected, real estate returns are nega-

tively related to the short interest rate (return of cash). Table 2 describes the correlation

structure of the innovations in the VAR system, with annual standard deviations on the

main diagonal. Consistent with previous results of Campbell, Chan, and Viceira (2003),

unexpected stock returns are highly negatively correlated with shocks to the log dividend-

price ratio. Unexpected bond returns are negatively correlated with shocks to the term

spread.

[Table 2 about here.]

5The data is provided on Amit Goyal’s website www.hec.unil.ch/agoyal/. Mnemonics are indicated in
parenthesis.

6The data is provided on Robert Schiller’s website www.econ.yale.edu/~shiller/data.htm.
7The data is provided at www.lincolninst.edu/subcenters/land-values/rent-price-ratio.asp.
8The data is provided at www.globalfinancialdata.com.
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Given that OLS parameter estimates for very persistent processes are downward biased

toward a stable system, we apply the Pope (1990) correction, which shifts very persistent

coefficients upwards (e.g., the OLS parameter for term spread of 0.9544 is corrected to

0.9618, that of the dividend-price ratio of 0.9919 is corrected to 0.9921). That this seemingly

“minor” correction is relevant also in terms of risk shows Table 3, in which we compare

elements on the main diagonal of the decomposed covariance matrices, see (9), from the

OLS estimated VAR model with those of the Pope corrected VAR model. It can be seen

that the Pope correction considers the higher estimation risk imposed by very persistent

processes, and that the difference to OLS increases with the investment horizon.

[Table 3 about here.]

When comparing the overall variance (i.e. Σ̄ + Ω̄ + Λ) of the asset returns in the

investment menu, the ratio between Pope-corrected and OLS values given in Table 4 reveals

that bonds are affected most from the small-sample adjustment. From our reading of

Table 1, this is due to the fact that bond returns are predicted significantly (p-value below

0.01) by the term spread, which is a very persistent process. Thus, estimation errors of the

term spread propagate over the considered horizon and translate in estimation errors of

bond returns. Although also the log dividend-price ratio is very persistent, its predictive

power for stocks is much weaker, which explains why stock returns are less affected by

the bias-correction. However, the overall variance of all assets significantly increases when

addressing the small-sample bias.

[Table 4 about here.]

[Table 5 about here.]

We use the Pope corrected parameters and sample 2000 × 200 times to compute the

posterior distribution p(a,B,Σε|z). Table 5 lists the variance decomposition (9) for the

five asset classes on a horizon of 120 months as well as on a horizon of 600 months. The

contribution of ΛT , i.e., the effect of estimation uncertainty in the covariance of VAR resid-

uals, plays a minor role for all asset classes independent of the horizon. This observation

is consistent with Kan and Zhou (2007) who show that the covariance of residuals can be

estimated with good precision when the number of asset returns is low compared to the

number of observations. In fact the main contribution to long-term return variance origi-

nates from Σ̄T , the expected covariance of returns, and from Ω̄T , the variance of expected

returns driven by estimation errors in VAR coefficients a and B. The contribution of Ω̄T

increases with the time horizon. While the contribution of errors in expected returns is

roughly 15% on a horizon of 120 months, it increases to 43%–48% on a horizon of 600

months. Please note that Ω̄T implies a covariance structure that differs from Σ̄T , hence,

the asset allocation is more severely influenced by estimation errors in expected returns on

longer horizons, as we will see in Section 5.

In Figure 1 we illustrate the effect of these different sources of variance on asset-class

volatility. The upper-right panel of Figure 1 shows that the overall p.a. risk of stocks is

slightly decreasing with the investment horizon, even though considering parameter un-

certainty leads to a substantial upward correction in the long-term riskiness of stocks (for
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a discussion see, e.g., Barberis, 2000; Pastor and Stambaugh, 2012). Compared to stock

returns, due to their persistence the overall p.a. risk of the returns of bonds, cash, gold and

real estate clearly increases in time.

[Figure 1 about here.]

The corresponding term structure of correlations for the different asset pairs are illustrated

in Figure 2. In general, the 95% confidence intervals of the correlation between all asset

classes indicated with dashed-dotted lines results to be huge, with values between −0.8

and +0.8. For the pairwise correlation between bond returns, stock returns and real estate

returns we observe a small positive short-term and a significantly higher long-term average

dependence. Furthermore, the long-term average pairwise correlation between each of these

assets and cash is negative, i.e., bonds, stocks and real estate benefit in the long run from a

decline in the short interest rate, and vice verse.9 While the long-term average correlation

between gold and stocks/real estate is negative, the pairwise correlation between gold and

bonds is positive. Our tentative explanation is that during times of financial turmoil stock

and real estate prices decline, while safe-haven instruments as governmental bonds and gold

are on high demand. All confidence bounds are wide, so ignoring estimation errors and

giving asset-allocation advice based on the expected term structure of return correlations

is not recommended.

[Figure 2 about here.]

Given the well-known challenge to identify proper expected returns for portfolio selec-

tion problems, we follow the idea of Sharpe (1974) and compute implicit T -returns conveyed

by the asset weights of anchor portfolios. Therefore, we propose to use the 2013 Survey

of Consumer Finances (SCF) conducted by the Federal Reserve. The main purpose of the

survey is to analyze the financial condition of families in the United States and to study

the effects of changes in the economy. The Survey of Consumer Finance is updated every

three years and, among others, categorizes the asset allocation of US families according to

different discrimination criteria as, e.g., income, age of head, family structure, education of

head, race, work status of head, region, wealth etc. For our investigation, we identify age

of head as the most relevant characteristic in revealing information about the investment

horizon. We distinguish: (a) young families with an age of head between 35 and 44, and (b)

older families with an age of head between 65 and 74, arguing that younger families to have

a longer investment horizon (young families 50 years versus older families 10 years). We

aggregate and categorize asset classes to five groups: bonds (saving bonds plus bonds minus

loans secured by residential property), stocks (stocks, business equity), cash (transaction

accounts plus certificates of deposits minus short term loans as installment loans, lines of

credit and credit card balances), real estate (primary and other residential property, equity

in non residential property) and gold. Other asset classes with mixed portfolios (pooled

investment funds, retirement accounts, cash life insurance and other managed assets) are

assigned to bonds, stocks and cash according to the relative weight in the composition of

the financial wealth of a family. Since we lack detailed information, the implicit assumption

9The cash returns are given by the monthly T-bill rate.
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here is that on average the asset allocation in those mixed products corresponds to the

weights directly held in the classical financial assets. Furthermore, we assign the invest-

ment class “Other” to our category gold. We denote these market-capitalization implied

assets returns by m̂T . Figure 3 compares the calculated asset allocation of the two groups.

[Figure 3 about here.]

The most significant difference can be identified in the weights of bonds and real estate.

While for young households the weight of real estate in the overall portfolio is consider-

ably higher than for older households, the bond investments (netted for loans secured by

residential property) is lower. We consider this finding as an empirical evidence for older

households having a shorter planning horizon and investing therefore a higher fraction of

their wealth in bonds.

Let us mention two alternative approaches to specifying expected returns. First, ex-

pected returns can be determined endogenously in a general equilibrium setup. If assets

are in limited supply and different types of investors form their optimized portfolios, ag-

gregate demand drives prices and consequently expected returns. We have worked out the

optimization analysis in general equilibrium for two types of investors, an investor that

shows only risk aversion but no ambiguity aversion and an investor with both risk and

ambiguity aversion. Such a model leads to interesting cross-dependencies since changes in

the parametrization of one investor type influences optimal portfolios of the other through

the demand channel. While these effects are undoubtedly very interesting, we think that

the estimation and the comprehensive interpretation of such a model is beyond the scope

of this paper. Thus, we will discuss optimal asset allocation and the treatment of ambi-

guity aversion in a partial equilibrium with market implied expected returns as described

above. The second alternative to implicit return expectations is to resort directly to the

VAR model. In Section 6 we discuss portfolio properties when applying the VAR estimate

of risk premia for a variety of different investment horizons and different levels of ambigu-

ity aversion. It can be seen that under reasonable levels of ambiguity aversion optimized

long-term portfolios based on expected premia directly from the VAR estimates are very

similar to optimal portfolios based on premia implied by SCF data.

5 Portfolio Optimization

We consider a long-term investor who decides on the optimal asset allocation according a

mean-variance criterion and shows a certain degree of ambiguity aversion against misspeci-

fication in expected long-term returns. The investor uses the VAR(1) framework discussed

in the previous sections to exploit predictability in returns and employs the multi-prior ap-

proach of Garlappi, Uppal, and Wang (2007) to deal with ambiguity in expected returns.

This framework is a classical max-min approach to consider ambiguity aversion within a

restricted set of specifications for the long-term expected returns – the set of priors consid-

ered. The choice of priors is done with respect to the likelihood of the model specification,

and we will discuss this approach in more detail in this section.

Starting point of the mean-variance optimization is the decomposition of the predictive
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variance derived in Equation (9),

var(rT ) = Σ̄T + Ω̄T + ΛT

= E(ΣT ) + E [vara,B(µT )] + varΣε(µT ).

The ambiguity averse mean-variance investor will consider the first part of this decomposi-

tion Σ̄T as return variation affecting her mean-variance objective and treat the estimation

uncertainty in expected returns, conveyed by Ω̄T + ΛT , within the multi-prior approach.

In contrast to this complex approach, we also discuss/analyze four less sophisticated in-

vestors and interpret similarities and differences in their asset allocations: (a) We consider

a mean-variance investor who ignores predictability and uses the sample covariance matrix

to determine the optimal asset allocation. (b) We regard a mean-variance investor who is

aware of predictability but ignores parameter uncertainty, i.e., who uses a mean-variance

criterion that considers Σ̂T from (3) as the covariance structure of returns, where Σ̂T refers

to the matrix ΣT |z, the matrix which is estimated from observed data (see, e.g., Campbell,

Chan, and Viceira, 2003). (c) We look at a mean-variance investor who additionally con-

siders the effect of estimation uncertainty on ΣT but takes expected long-term returns as

given. This investor uses only the first part, Σ̄T , from the decomposed predictive variance.

(d) Finally, we refer to a mean-variance investor without ambiguity aversion who fully

recognizes that estimation errors in the expected returns increase the predictive variance.

This investor acknowledges the full predictive variance Σ̄T +Ω̄T +ΛT in her mean-variance

optimization (see, e.g., Barberis, 2000).

The VAR(1) model (1) is written in log returns, which have a clear advantage in time

aggregation of µT in (2). For portfolio optimization we use the discrete counterpart, de-

noted by mT . Since we are not interested in market timing strategies, but only in the

long-term implications of predictability, we estimate expected discrete holding-period re-

turns from representative portfolios, as discussed in the previous section, and denote these

implied estimates m̂t.

We formulate the optimization problem of an ambiguity averse mean-variance investor,

who addresses aversion against ambiguity in expected returns within a multi-prior frame-

work, in the following way

max
w

min
m̄T

w′m̄T −
γ

2
w′Σ̄Tw, (10)

s.t. (m̂T − m̄T )
′
(Ω̄T + ΛT )−1 (m̂T − m̄T ) ≤ ε, (11)

w′1 = 1. (12)

We assume an investor with relative risk aversion of γ who seeks to optimize a mean-

variance criterion, i.e., the risk/return trade-off implied by Σ̄T and m̄T , with Σ̄T the

expected covariance of returns under consideration of parameter uncertainty and m̄T the

unknown vector of expected holding-period returns, see Equation (10). Equation (12) is

the usual portfolio constraint. To ensure robustness with respect to a misspecification of

expected returns m̄T , the objective is simultaneously minimized with respect to m̄T , chosen

from a set of available priors, see Equation (11). This so-called multi-prior approach follows
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the idea of Garlappi, Uppal, and Wang (2007) which states that under consideration of the

first two moments of estimation errors in m̄T , robustness is ensured by doing the max-min

optimization (10) over all models whose normal-likelihood exceeds a given threshold ε (such

a constraint results in a hyper-ellipsoid, see, e.g., Meucci, 2009). Ignoring higher moments of

m̄T , the left-hand side of (11), also known as Mahalanobis distance, is distributed according

to Hotelling’s T 2 distribution, see, e.g., Marida, Kent, and Bibby (1979). If the number

of observations is large, the distribution converges to a χ2 distribution with n degrees of

freedom. Hence, interpreting ε as the quantile of the χ2
(n) distribution allows to state

a confidence level for the robustness of the optimization. While we acknowledge that

predictability introduces higher moments in m̄T , we stick to the assumption that investors

regard all m̄T contained in a critical hyper-ellipsoid defined by (11). We do this because

empirical quantiles of the left-hand-side of (11) are almost identical to quantiles of the χ2
(n)

distribution for short investment horizons. For longer horizons we consider the deviations

from joint normality by determining ε quantiles of the empirical distribution obtained from

simulation.

Figure 4 shows the empirical distribution of the Mahalanobis distance of m̂ and m̄ for

T = 120 months and for T = 600 months together with a χ2 distribution with five degrees

of freedom. Vertical solid and dashed lines indicate the 90% and 95% quantiles of the χ2
(5)

distribution (solid red) as well as empirical quantiles at T = 120 (solid black) and T = 600

(dotted black). We see that for investment periods up to 10 years, the χ2
(5) distribution

approximates the empirical distribution quite well. For longer horizons non-normality in m̄

leads to higher probability for large deviations. A reasonable choice of ε for 90% confidence

is between 9.2 (T = 120) and 9.5 (T = 600) and for 95% confidence between 11.1 and 14.7.

[Figure 4 about here.]

Proposition 1. Let A = 1′Σ̄−1
T 1, B = m̂′T Σ̄−1

T 1 and D = Σ̄−1
T (Φ−1

T + Σ̄−1
T )−1Σ̄−1

T with

ΦT (w) =
√
ε

γ
√
w′(Ω̄T+ΛT )w

(Ω̄T + ΛT ), and given the min-max problem defined by (10)-(12),

the optimal asset allocation w∗ is given by

w∗ =
1

γ

(
Σ̄−1
T −D

)(
m̂T +

γ + m̂′TD1−B
A− 1′D1

1

)
(13)

=
1

γ
Σ̄−1
T

(
m̂T +

γ −B
A

1

)
︸ ︷︷ ︸

mean-variance portfolio ignoring uncertainty in m̄T

+ ambiguity hedge.

All our proofs can be found in the appendix. From (13) we see that optimal portfolio

weights can be expressed as the sum of the mean-variance optimal portfolio of an investor

who ignores estimation uncertainty in m̄T (while considering the effect of estimation uncer-

tainty in the covariance structure) plus an ambiguity hedge portfolio (zero-sum investment)

that ensures the desired protection against ambiguity in m̄T . The overall hedging demand

against ambiguity depends on the magnitude of ε.

Proposition 2. The first-order condition, see Appendix A.1 (24), reveals that there exists
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a coefficient of ambiguity aversion ε∗ with

ε∗(γ) = γ2w′(Ω̄T + ΛT )w, (14)

such that the optimal portfolios of the ambiguity averse investor and that of a pure risk

averse investor coincide. With ε > ε∗(γ), the ambiguity averse investor overweights un-

certainty from estimation errors relative to the pure return variance they produce. With

ε below the critical level of ε∗(γ), ambiguity aversion is so low that investors underweight

estimation errors relative to the pure risk averse investor.10

For ε ↘ 0, i.e., if ambiguity aversion vanishes, the hedging demand vanishes and w∗

converges to the optimal portfolio of a pure mean-variance optimizer who ignores estimation

uncertainty in m̄T ,

w∗ =
1

γ
Σ̄−1
T

(
m̂T −

B − γ
A

1

)
. (15)

This means that for vanishing ambiguity aversion there is no smooth transition to the

portfolio of the pure risk averse investor, it is rather a transition to the portfolio of the

investor who ignores errors in the estimate of expected returns. Thus, in interpreting

results, the critical level of ambiguity aversion ε∗ serves as an implicit threshold that

indicates whether the ambiguity averse investor treats estimation errors more cautiously

than the pure risk averse investor.

For ε↗∞, the optimal portfolio converges to

w∗ =
1

1′(Ω̄T + ΛT )−11
(Ω̄T + ΛT )−11, (16)

such that the hedge against estimation errors in expected returns completely dominates the

asset allocation. Such a portfolio optimally diversifies the joint errors in expected returns.

For an investor who is not ambiguity averse this portfolio is essentially inefficient.

Our result differs from Garlappi, Uppal, and Wang (2007). In the absence of pre-

dictability, the covariance structure introduced by parameter uncertainty is the same as

the covariance structure of return volatility (i.e., the covariance of estimation errors is a

scaled version of the sample covariance of returns). As a consequence, a growing ambi-

guity aversion pushes the optimal portfolio toward the global minimum-variance portfolio

along the invariant efficient portfolio frontier, i.e., increasing risk aversion and increasing

ambiguity aversion both move the optimal portfolio along the existing frontier toward the

minimum-variance portfolio. In our setting, due to predictability, parameter uncertainty

induces a covariance structure that differs from the covariance structure of return volatil-

ity. As a consequence, an increasing ambiguity aversion does not “only” shrink the optimal

portfolio toward the minimum-variance portfolio, but pushes optimal portfolios from the

efficient frontier into the seemingly inefficient-portfolio area.

In order to determine market implied expected asset returns for different investment

horizons, we reverse the fix-point problem in (13) for a representative agent with γ = 4 and

10The dotted vertical lines in Figure 4 show the location of the corresponding ε∗ for a relative risk aversion
of γ = 4 and investment horizons of T = 120 and T = 600.
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set ε to the critical value ε∗ defined in Proposition 2 such that m̂T gives the asset weights

of older households with a planning horizon of T = 120, and younger household with a

planning horizon of T = 600, respectively. We use data given by the Survey of Consumer

Finance 2013 sorted according to age of head to identify their asset allocation, see our

discussion in Section 4. The choice of the representative agent using ε∗ is motivated by the

empirical fact that institutional investors became the dominant market player over time,

while ambiguity aversion seems to be mainly found for retail investors, see Li, Tiwari, and

Tong (2016).11 Institutional investors are typically viewed as being relatively sophisticated

with a better understanding of the market. Consequently, such investors face less ambiguity,

but they account for the full predictive variance Ω̄T + Σ̄T + Λ in their optimization.

Given the portfolio constraint (weights must sum to one) is binding in the anchor

portfolio of the representative investor, reverse optimization does not yield unique return

expectations, see Zagst and Pöschik (2008). Since the binding constraint influences the

portfolio choice, portfolio weights reveal the investors expectations only up to one degree

of freedom, i.e., relative to some reference return that must be specified exogenously. We

choose cash as the reference asset and assume a real long-term return of zero. Implicit

returns backed out by reverse optimization of the anchor portfolio specify the remaining

asset class returns, see Figure 5.

[Figure 5 about here.]

[Figure 6 about here.]

Figure 6 illustrates efficient frontiers of investors with different sophistication levels (as

discussed above) from the viewpoint of an investor who only considers the sample covariance

matrix in his optimization. His efficient frontier is indicated with the solid green line. In

addition, we show also efficient frontiers of more sophisticated agents: First, we consider

investors who are aware of predictability from (3) but ignore parameter uncertainty, such

that they base their portfolio decision on Σ̂T (black-dotted line). Second, we consider

investors who are aware of predictability and parameter uncertainty but take expected

long-term returns as given, i.e., they base their decision on Σ̄T (black-dashed line). Third,

we show the optimal risk-return trade-off of investors who consider the full predictive

variance Σ̄T +Ω̄T +ΛT but are not ambiguity averse (black-solid line). Finally, we consider

investors who are aware of the covariance of returns Σ̄T and show aversion against ambiguity

in expected returns, i.e., Ω̄T + ΛT is treated in the multi-prior approach (dependent on

the degree of ambiguity aversion, their efficient frontier is indicated with different colors).

For ε > ε∗ the ambiguity averse investor overweights uncertainty from estimation errors

in the mean (drawn by colored-solid lines), while below this critical value the investor

underweights estimation errors (drawn by colored-dashed lines), see Proposition 2. The

diamond and the bullet points indicate the global minimum-variance portfolios for the above

mentioned (more sophisticated) investors. Of course, from the naive investor’s viewpoint

all choices of the others are seemingly inefficient. The left panel shows results for a planning

11Blume and Keim (2012) illustrate, e.g., that he proportion of U.S. public equities managed by institutions
has risen steadily over the past six decades, from about 7 or 8% of market capitalization in 1950, to about 67%
in 2010.
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horizon of T = 120 months, the right panel shows results for a planning horizon of T = 600,

respectively. The comparison between both panels confirms that parameter uncertainty

becomes much more relevant in the long run.

[Figure 7 about here.]

[Figure 8 about here.]

In Figure 7 and 8 we analyze the impact of an increasing ambiguity aversion on the

optimal portfolio composition given holding periods of T = 120 and T = 600 months. The

risk aversion γ is set equal to 4. In each figure, the upper-left panel shows the optimal

portfolio of an investor who considers only Σ̄T , i.e., neglects uncertainty in the expected

returns. The upper-right panel gives the optimal portfolio of an investor who considers

the full predictive variance Σ̄T + Ω̄T + ΛT without being ambiguity averse. Given our

choice of the representative agent, these portfolios correspond to those in Figure 3. The

lower panels show optimal asset allocations of investors who consider the full predictive

variance and are ambiguity averse, i.e., have ε > ε∗. A higher ambiguity aversion tilts the

optimal asset allocation toward cash. By comparing Figure 7 and 8, it can be seen that for

longer investment horizons stocks and real estate (bonds) become more (less) attractive. In

this sense our results are in line with Barberis (2000), who also finds that stock allocation

increases with horizon. We attribute this result to the fact that with our data set the

predictive volatility of stock returns is relatively independent of the time horizon, while

those of the other assets is increasing. In all cases, gold plays only a minor role in the

optimal composition of a portfolio.

In order to better distinguish our contribution from earlier papers in the literature, in

Figure 9 we compare the optimal asset allocations for T = 120 (upper panels) and T = 600

(lower panels) of investors with different sophistication level. While in the left panels we

show the optimal asset allocation for a relative risk aversion of γ = 4, the right panels show

the corresponding global minimum-variance portfolios of extreme risk/ambiguity averse

investors. For all four combinations we consider again (a) an investor who completely ne-

glects predictability and parameter uncertainty in asset returns, i.e., bases his investment

decision on the sample covariance matrix, (b) an investor who considers predictability but

ignores parameter uncertainty, i.e., uses Σ̂T , (c) an investor who optimizes his portfolio

based on Σ̄T , i.e., takes expected returns as given, (d) an investor who fully recognizes

the entire predictive variance without ambiguity aversion, which – due to our choices for

the representative agent – gives the market capitalization from the SCF, (e) an ambiguity

averse investor who considers the full predictive variance. In the left panels, all investors

use the same market-implied expected returns of the representative agent, and ambiguity

averse investors have to consider the constraint ε = 10 (which corresponds to a confidence

level of roughly 91% for both investment horizons). The left panels show, in line with

well-known previous results of the literature, that erroneously neglecting parameter uncer-

tainty, i.e., underestimating the overall risk, leads to extreme asset weights. The investor

(a), who bases his decision on the sample covariance matrix, is tempted to borrow heavily

short-term money in order to invest in real estate. For an investment horizon of T = 600
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his debt-to-equity ratio is up to 28.12 Considering parameter uncertainty leads to more

balanced portfolios. The right panels show that the difference in the optimal asset allo-

cation of minimum-variance portfolios can be substantial. In our data set, predictability

makes stocks more attractive compared to cash. For both considered investment horizons,

an increasing ambiguity aversion tilts the optimal portfolio toward cash. However, com-

pared to an extremely risk averse investor, extremely ambiguity averse investors allocate a

significantly higher amount of their wealth to stocks. For both, the extremely risk averse

investor and the extremely ambiguity averse investor, bonds and gold play no role in the

optimal asset allocation.

[Figure 9 about here.]

6 Extension: Short- and Medium-term Investment

We use the data set of Section 4 to show empirically that a short- and medium-term investor,

who aims for exploiting predictable variation in expected risk premia, can benefit from our

approach of introducing ambiguity aversion in a VAR(1) setup. This is an extension to the

analysis of this paper, and an in-depth study of timing strategies under ambiguity aversion

shall be left for future research. While data availability limits the application of infor-

mative backtest studies of long-term asset allocation strategies, short- and medium-term

investment (up to a horizon of a few years) can be investigated using historical data. We

therefore compare out-of-sample results of our VAR approach that considers predictability

to the approach without predictability (GBM) proposed by Garlappi, Uppal, and Wang

(2007). In both cases we assume a risk-aversion of γ = 4. We use an expanding window

to estimate the parameters, starting with 25 years of monthly observations (from 1960 to

1984), and calculate out-of-sample returns for the period from 1985 onwards. In line with

the corresponding model assumptions, we allow the GBM approach (as a one-period model)

to re-allocate the portfolio every month, and take non-overlapping investment periods of

length T for the VAR approach. In Table 6 we present results for holding periods of one,

two and five years.

[Table 6 about here.]

For different levels of ambiguity aversion and different holding periods we calculate the

certainty equivalent (CE) as well as the first four moments of the out-of-sample returns

for both strategies.13 To avoid that our results are mainly driven by the specific starting

month of the investigation, we shift the starting point of the analysis up to eleven months

and report mean and median of the twelve calculations.

12This extreme leverage is in line with ballooned average loan-to-value ratios of mortgaged homeowners (up
to 95%) during and after the Great Recession, see, e.g., data presented by Bullard (2012).

13Garlappi, Uppal, and Wang (2007, p. 51) show the relationship between ε, used in their equation (16), and
ε, used in their numerical exhibition. Given that compared to them we use directly the covariance matrix of
expected returns (instead of the covariance matrix of the returns), we can omit the term 1/T , and a value of
ε = 3 in their setting corresponds to ε = 15.2 for 25 years of monthly observations, i.e., has to be scaled by
5.07 ≈ 299 × 5/(300 − 5).
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The VAR approach is able to exploit predictability, which results in a higher mean out-

of-sample return compared to the GBM approach. The increase in mean is accompanied

by an increase in the standard deviation of returns. Both effects are higher for low levels

of ε and short investment horizons T . Further evidence for the successful exploitation of

predictability is the generation of right-skewed out-of-sample returns for low levels of ambi-

guity aversion and for short investment horizons. Furthermore, Table 6 reports the certainty

equivalent provided by the two approaches for an investor with CRRA utility with relative

risk aversion of γ = 4. For short investment horizons the VAR approach delivers higher

CEs than the GBM approach, and higher levels of ambiguity aversion reduce the tendency

to exploit time variation in expected returns and, thus, reduce the CE advantages of the

VAR strategy. For longer holding periods, however, the VAR model faces a higher exposure

to potential model mis-specification than models which ignore predictability. Having high

tolerance against mis-specifications (low ε) over a 60 months holding period results in lower

CEs than using the GBM model. Using high ε, i.e., investing in a portfolio that focuses on

diversifying estimation errors, the VAR model has again a CE advantage over a model that

does not regard predictability. Consequently, the introduction of the ambiguity-aversion

approach proposed by Garlappi, Uppal, and Wang (2007) into the VAR setup apparently

improves its applicability to short- and medium-term investment.

Figure 10 compares the asset allocation of the VAR approach for T = 12, T = 60

and T = 600 to the asset allocation of the one-period GBM approach with ε = 25. For

longer investment horizons the impact of predictability on the covariance becomes more

important than short-term predictability in expected returns, and, as a consequence, the

asset allocation decisions are more balanced. It can be seen that while the optimal asset

allocation of the GBM approach is almost entirely composed of cash and real estate, the

VAR approach, in order to exploit predictability in the data, trades actively also the other

assets.

[Figure 10 about here.]

Without ambiguity-aversion, over-confidence in the estimated parameters often leads to

extreme portfolio weights in a VAR model (even if the analysis is conducted from a steady

state perspective with very long/infinite investment horizons, as done in e.g. Campbell,

Chan, and Viceira, 2003). With the consideration of potential mis-specifications in expected

returns, the asset allocations becomes more stable – even when starting from the practically

relevant vector of realized state variables as done here. The proposed asset allocations of

the VAR approach in Figure 10 seem to be reasonable, e.g. for T = 60 with asset weights

between −0.60 and 0.04 for bonds, between −0.18 and 0.59 for stocks, between −5.97 and

0.40 for cash, between 0.81 and 6.83 for real estate and between −0.10 and 0.21 for gold.

In line with empirical observations, for both the VAR and GBM approach real estate is a

very attractive investment class.
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7 Conclusion

In this paper we investigate the optimal asset allocation of long-term investors who consider

return predictability but show aversion against model mis-specification. Predictability

induces a term structure in the covariance of asset returns, with the consequence that

the optimal asset allocation depends on the investment horizon. Return predictability is

captured by a VAR(1) model that considers ambiguity aversion in the way proposed by

Garlappi, Uppal, and Wang (2007), where investors perform a max-min optimization over a

set of priors about expected returns. We demonstrate how to decompose the term-structure

of return correlation along three sources of risk/uncertainty: The expected covariance

of returns, the covariance of expected returns imposed by estimation errors of the VAR

parameters, and the covariance of expected returns imposed by estimation errors of the VAR

model’s residual covariance. We derive a closed-form expression for the optimal portfolio

decision, and we show that ambiguity aversion under predictability of asset returns does no

longer correspond to a “shrinkage” toward the global minimum-variance portfolio. Thus,

aversion against the ambiguity in expected returns leads to optimal investment in a portfolio

that is not mean-variance efficient but optimally diversifies estimation errors.

The model is calibrated to a data set that covers more than 50 years of real returns

of US stocks, US long-term government bonds, cash, real-estate and gold, and uses the

term spread and the dividend-price ratio as additional predictors. Expected returns are

estimated from market-implied expectations using portfolio weights of young and older US

households as references.

Our main findings from an inspection of the calibrated model can be summarized as

follows: The risk of model mis-specification significantly contributes to the overall predic-

tive volatility and is highly relevant for the asset allocation decision over long investment

horizons. For stocks the term structure of overall annual volatility is slightly decreasing in

the investment horizon, for the other assets it increases significantly. We show that the 95%

confidence intervals for the annual volatility as well as for the correlation pairs are wide.

Thus, long-term portfolio advice needs to be done under consideration of estimation errors.

Neglecting parameter uncertainty leads to overconfidence and extreme portfolio composi-

tions, where cash is used to leverage the investments in real estate and bonds. Ambiguity

against errors in the model parametrization reduces leverage and even turns cash into an

interesting investment vehicle. Stocks and real estate are further relevant asset classes for

ambiguity averse long-term investors, while bonds and gold play only a minor role.

A Appendix

A.1 Proof of Proposition 1

Equation (10)-(12) can be written as Lagrangian

L(m̄T , λ, δ) = w′m̄T −
γ

2
w′Σ̄Tw − λ

[
ε− (m̂T − m̄T )

′
(Ω̄T + ΛT )−1 (m̂T − m̄T )

]
+ δ(1− w′1). (17)
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It is well known that m̄∗T is a solution of the constraint problem only if there exists a scalar

λ∗ ≥ 0, such that (m̄∗T , λ
∗) is a solution of the following unconstrained problem

min
m̄T

max
λ
L(µ, λ). (18)

From the first-order conditions with respect to m̄T in (17) we obtain

m̄∗T = m̂T −
(Ω̄T + ΛT )w

2λ
. (19)

Substituting this in (17) we get

L(m̄T , λ, δ) = w′m̂T −
γ

2
w′Σ̄Tw −

1

4λ
w′(Ω̄T + ΛT )w − λε+ δ(1− w′1). (20)

Therefore, the max-min problem is equivalent to the following maximization problem,

max
w,λ

w′m̂T −
γ

2
w′Σ̄Tw −

1

4λ
w′(Ω̄T + ΛT )w − λε+ δ(1− w′1). (21)

Solving for λ we obtain

λ =
1

2

√
w′(Ω̄T + ΛT )w

ε
> 0, (22)

which results in

L(m̄T , δ) = w′m̂T −
γ

2
w′Σ̄Tw −

√
εw′(Ω̄T + ΛT )w + δ(1− w′1). (23)

The first-order conditions with respect to w gives

m̂T − δ1 = γ

(
Σ̄T +

√
ε

γ
√
w′(Ω̄T + ΛT )w

(Ω̄T + ΛT )

)
w. (24)

Let ΦT (w) =
√
ε

γ
√
w′(Ω̄T+ΛT )w

(Ω̄T + ΛT ) and given the so-called Woodbury matrix identity

(Σ̄T + ΦT )−1 = Σ̄−1
T − Σ̄−1

T (Φ−1
T + Σ̄−1

T )−1Σ̄−1
T we get

w =
1

γ

(
Σ̄−1
T − Σ̄−1

T (Φ−1
T + Σ̄−1

T )−1Σ̄−1
T

)
(m̂T − δ1) . (25)

Using w′1 = 1, we can write

w′1 =
1

γ
(m̂T − δ1)

′ (
Σ̄−1
T − Σ̄−1

T (Φ−1
T + Σ̄−1

T )−1Σ̄−1
T

)
1 = 1. (26)

Let’s define A = 1′Σ̄−1
T 1, B = m̂′T Σ̄−1

T 1 and D = Σ̄−1
T (Φ−1

T + Σ̄−1
T )−1Σ̄−1

T we can rewrite

(26) as

1

γ
(B − m̂′TD1− δ(A− 1′D1)) = 1 (27)

−γ + m̂′TD1−B
A− 1′D1

= δ, (28)
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which in (25) gives

w∗ =
1

γ

(
Σ̄−1
T −D

)(
m̂T +

γ + m̂′TD1−B
A− 1′D1

1

)
.

Thus, the optimal weights w are implicitly given as a fixed-point of the above equation,

since the matrix D on the right hand side of the equation depends on w. For a proof of

the existence and uniqueness of these weights see Appendix A.2.

A.2 Proof of Existence and Uniqueness of the Optimal Portfolio

Optimal portfolio weights are implicitly given by (13) which we rewrite as

w(s) =
1

γ

(
Σ̄T +

√
ε

γs

(
Ω̄T + ΛT

))−1

m̂T +
γ − m̂′T

(
Σ̄T +

√
ε

γs

(
Ω̄T + ΛT

))−1

1

1′
(

Σ̄T +
√
ε

γs

(
Ω̄T + ΛT

))−1

1
1

 ,

(29)

which implies that determining optimal portfolio weights resembles to finding a positive

root of the characteristic equation

f(s) = w(s)′
(
Ω̄T + ΛT

)
w(s)− s2. (30)

To prove the existence of a positive root of (30) we examine the first part of the charac-

teristic equation and define

wk =
1

γ

(
Σ̄T + k

(
Ω̄T + ΛT

))−1

(
m̂T +

γ − m̂′T
(
Σ̄T + k

(
Ω̄T + ΛT

))−1
1

1′
(
Σ̄T + k

(
Ω̄T + ΛT

))−1
1

1

)
, (31)

with

w0 =
1

γ
Σ̄−1
T

(
m̂T +

γ − m̂′T Σ̄−1
T 1

1′Σ̄−1
T 1

1

)
,

w∞ = lim
k→∞

x(k) =
1

kγ

(
Ω̄T + ΛT

)−1

(
m̂T +

γ − m̂′T 1
k

(
Ω̄T + ΛT

)−1
1

1′ 1k
(
Ω̄T + ΛT

)−1
1

1

)

=
1

kγ

(
Ω̄T + ΛT

)−1

(
m̂T +

kγ − m̂′T
(
Ω̄T + ΛT

)−1
1

1′
(
Ω̄T + ΛT

)−1
1

1

)

=
1

1′
(
Ω̄T + ΛT

)−1
1

(
Ω̄T + ΛT

)−1
1.

Note that w
k=
√
ε

γs

coincides with w(s). Since limk→∞ wk is the minimum-variance portfolio

corresponding to the covariance structure
(
Ω̄T + ΛT

)
, we conclude that

inf
{
w′k
(
Ω̄T + ΛT

)
wk
}

= w′∞
(
Ω̄T + ΛT

)
w∞ =

1

1′
(
Ω̄T + ΛT

)−1
1
> 0.
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The portfolio x0 is the mean variance portfolio corresponding to Σ̄T and risk aversion γ.

Thus, we have

0 < w′∞
(
Ω̄T + ΛT

)
w∞ ≤ w′0

(
Ω̄T + ΛT

)
w0 <∞

We now set k =
√
ε

γs and conclude that

lim
s→0

f(s) =
1

1′
(
Ω̄T + ΛT

)−1
1
> 0,

lim
s→∞

f(s) = w′0
(
Ω̄T + ΛT

)
w0 − lim

s→∞
s2 = −∞.

Since f is continuous, we conclude that f has a positive root, independent of the parametriza-

tion of the model.

The proof of the uniqueness of the positive root is done in three steps:

• First, we restrict the considerations on portfolios w with w′m̂T = const and show

that if w0, the minimum-variance portfolio with respect to Σ̄T , differs from w∞,

the minimum-variance portfolio with respect to
(
Ω̄T + ΛT

)
, then w′kΣ̄Twk is strictly

increasing and wk
(
Ω̄T + ΛT

)
wk is strictly decreasing in k with k > 0.

• Second, we show that within m̂T = const, non-uniqueness of the root of f implies
d
dk{w

′
k

(
Ω̄T + ΛT

)
wk} ≥ 0. Thus, excluding the non-interesting stable case we con-

clude that for w′m̂T = const, f(s) has a unique root.

• Third, we prove that the frontier in the σΣ =
√
w′Σ̄Tw vs. m̄T space is concave

which implies the uniqueness of the optimal portfolio stated in Proposition 1.

We start by defining M(m) = {w ∈ Rn|w′1 = 1 ∧ w′m̂T = m}, which is the space of

all portfolios that have a given expected return (measured with respect to m̂T , not m̄T ).

Restricting our considerations first to M(m), wk is the minimum-variance portfolio on

M(m) with respect to the covariance matrix Σ̄T + k
(
Ω̄T + ΛT

)
.

The characteristic function f from Equation (30) for w restricted to M has a positive

root, since w′(s)
(
Ω̄T + ΛT

)
w(s) equals 0 < w′∞

(
Ω̄T + ΛT

)
w∞ < ∞ at s = 0 and 0 <

w′0
(
Ω̄T + ΛT

)
w0 < ∞ for s → ∞. Also under the portfolio restriction M , f(0) > 0 and

f(s→∞)→ −∞, hence, there exists at least one positive root.

Any portfolio transaction between two elements of M(m) is orthogonal to wk. In

particular, dwk
dk

is such a transaction from which we conclude that

0 =
dwk
dk

′ (
Σ̄T + k

(
Ω̄T + ΛT

))
wk

=
dwk
dk

′
Σ̄Twk + k

dwk
dk

′ (
Ω̄T + ΛT

)
wk.

⇒ k
d

dk

(
w′k
(
Ω̄T + ΛT

)
wk
)

= − d

dk

(
w′kΣ̄Twk

)
. (32)

Thus, for k > 0 the sensitivity of the variances of the minimum-variance portfolio wk mea-

sured with respect to Σ̄T and
(
Ω̄T + ΛT

)
show opposite sign. Since w0 is the minimum-

variance portfolio with respect to Σ̄T and w∞ is the minimum-variance portfolio with re-

spect to
(
Ω̄T + ΛT

)
(both restricted to M(m)) and the variance of wk is continuous and dif-
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ferentiable in k, d
dk

(w′k
(
Ω̄T + ΛT

)
wk), we must have at least some k with d

dk
(w′k

(
Ω̄T + ΛT

)
wk) <

0. Now assume that d
dk

(
w′k
(
Ω̄T + ΛT

)
wk
)

changes sign for some k > 0. Then ∃k > 0 with

d

dk

(
w′k
(
Ω̄T + ΛT

)
wk
)

=
d

dk
(w′kΣ̄Twk) = 0,

dwk
dk

′ (
Ω̄T + ΛT

)
wk =

dwk
dk

′
Σ̄Twk = 0,

which implies that dwk
dk

is a portfolio transaction within the iso-variance ellipsoid of both

Σ̄T and
(
Ω̄T + ΛT

)
. The Lagrangian for the constraint minimization under given expected

target return m is

L(w, λ1, λ2) = w′k
(
Σ̄T + k

(
Ω̄T + ΛT

))
wk + λ1(1− w′k1) + λ2(m− w′km̂T ).

The first derivative of the the Lagrangian with respect to wk must be constant equal to

zero independent of k, i.e.,

d

dk

[
d

dwk
[w′k

(
Σ̄T + k

(
Ω̄T + ΛT

))
wk]

]
= − d

dk

[
d

dwk
[λ1(1− w′k1) + λ2(m− w′km̂T )]

]
,

d

dk

[
2
(
Σ̄T + k

(
Ω̄T + ΛT

))
wk
]

=
d

dk
[λ11 + λ2m̂T ] ,

2

[(
Σ̄T + k

(
Ω̄T + ΛT

)) dwk
dk

′
+
(
Ω̄T + ΛT

)
wk

]
=

dλ1

dk
1 +

dλ2

dk
m̂T .

Let x be a portfolio transaction within M(m), then it follows

2

[
x′
(
Σ̄T + k

(
Ω̄T + ΛT

)) dwk
dk

+ x′
(
Ω̄T + ΛT

)
wk

]
=

dλ1

dk
x′1︸︷︷︸
=0

+
dλ2

dk
x′m̂T︸ ︷︷ ︸

=0

,

⇒ x′
(
Σ̄T + k

(
Ω̄T + ΛT

)) dwk
dk

= −x′
(
Ω̄T + ΛT

)
wk. (33)

This is true for all portfolio transactions within M and since dwk
dk is itself a portfolio

transaction within M , it follows

dwk
dk

′ (
Σ̄T + k

(
Ω̄T + ΛT

)) dwk
dk

= 0, ⇒ dwk
dk

= 0.

But Equation (33) is valid for all transactions within M , so we get

x′
(
Σ̄T + k

(
Ω̄T + ΛT

)) dwk
dk

= −x′
(
Ω̄T + ΛT

)
wk = 0,∀x ∈M,

which means that wk equals w∞, the minimum-variance portfolio with respect to
(
Ω̄T + ΛT

)
in M .

Now show that if at some k1 > 0 we have dwk
dk

′ (
Σ̄T + k

(
Ω̄T + ΛT

))
wk = 0 (and, hence,

wk1 = w∞), then wk = w∞ for all k ∈ [k1,∞). If we assume the contrary, i.e., there is

some nonempty range (k2, k3) in [k1,∞) such that wk strictly deviates from w∞ for all k ∈
(k2, k3). Then w′k

(
Ω̄T + ΛT

)
wk must exceed w∞

(
Ω̄T + ΛT

)
w∞, but must return to this
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value (at least asymptotically) for growing k. So dwk
dk

′ (
Σ̄T + k

(
Ω̄T + ΛT

))
wk must first be

positive and then turn negative, implying (by continuity) that it must change signs which

in turn requires some k ∈ (k2, k3) with wk = w∞. This is a contradiction to the assumption

that wk strictly deviates from w∞ in (k2, k3). So we know if dwkdk
′ (

Σ̄T + k
(
Ω̄T + ΛT

))
wk =

0 at some k1, then wk is equal to the minimum-variance portfolio with respect to
(
Ω̄T + ΛT

)
for all k ∈ [k1,∞).

Next we show that wk must also equal w0, i.e., the minimum-variance portfolio with

respect to Σ̄T , for all k ∈ [k1,∞). Assume the contrary, then wk = w∞ differs from w0 at

some k ∈ [k1,∞). Then, ∃x a portfolio transaction within M(m), such that x′Σ̄Tw∞ 6= 0.

But wk is the minimum-variance portfolio with respect to Σ̄T + k
(
Ω̄T + ΛT

)
, so it follows

that

0 = x′
(
Σ̄T + k

(
Ω̄T + ΛT

))
wk = x′Σ̄Tw∞ + k x′

(
Ω̄T + ΛT

)
w∞︸ ︷︷ ︸

=0

6= 0.

In a last step, we show that wk = w0 for all k > 0. This is done again by contradiction.

Assume there is some nonempty range (k2, k3) in (0, k1] where wk differs from w0, thus, we

argue that dwk
dk

′
Σ̄Twk must change sign inside (k2, k3). Also dwk

dk

′ (
Σ̄T + k

(
Ω̄T + ΛT

))
wk

changes sign at the same location, say at k4 ∈ (k2, k3). But then it follows that wk =

w0 = w∞ ∈ [k4,∞), which contradicts our assumption. Finally we know that if w0 6= w∞,

w′kΣ̄Twk is strictly increasing for k > 0 and wk
(
Ω̄T + ΛT

)
wk is strictly decreasing for

k ≥ 0.

To prove the uniqueness of the root of the characteristic function f restricted to M , we

assume that there exist three roots s1 < s2 < s3, where f cuts the abscissa from above at

s1 (since it is positive for small s), cuts the abscissa from below at s2 and again from above

at s3.

Consider roots s2 and s3 and define σ2(s) = w′k
(
Ω̄T + ΛT

)
wk|k=

√
ε

γs

. Then

s2 < s3,

f(s2) = f(s3) = 0,

f(s) ≥ 0, ∀s ∈ [s2, s3],

σ(s)/s ≥ 1, ∀s ∈ [s2, s3],

k2 =

√
ε

γs2
> k3 =

√
ε

γs3
,

w′k3Σ̄Twk3 > w′k2Σ̄Twk2 .

Using Equation (32),

w′k3Σ̄Twk3 − w′k2Σ̄Twk2︸ ︷︷ ︸
>0

=

∫ k3

k2

d

dk
(w′kΣ̄Twk)dk

= 2

∫ k3

k2

dwk
dk

′
Σ̄Twkdk

= −2

∫ k3

k2

k
dwk
dk

′ (
Ω̄T + ΛT

)
wkdk.
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To integrate the last term by parts, we use

d

dk
(w′k(k

(
Ω̄T + ΛT

)
)wk) = 2k

dwk
dk

′ (
Ω̄T + ΛT

)
wk + w′k

(
Ω̄T + ΛT

)
wk,

and conclude

−2

∫ k3

k2

k
dwk
dk

′ (
Ω̄T + ΛT

)
wkdk = −kw′k

(
Ω̄T + ΛT

)
wk|k3k2 +

∫ k3

k2

w′k
(
Ω̄T + ΛT

)
wkdk

= k2w
′
k2

(
Ω̄T + ΛT

)
wk2 − k3w

′
k3

(
Ω̄T + ΛT

)
wk3

+

∫ k3

k2

w′k
(
Ω̄T + ΛT

)
wkdk

=

√
ε

γs2
s2

2 −
√
ε

γs3
s2

3 +

∫ s3

s2

σ2(s)(−
√
ε

γs2
)ds

=

√
ε

γ
(s2 − s3) +

√
ε

γ

∫ s3

s2

σ2(s)

s2
ds

≤
√
ε

γ
(s2 − s3) +

√
ε

γ

∫ s3

s2

1ds

=

√
ε

γ
(s2 − s3) +

√
ε

γ
(s3 − s2) = 0.

Two distinct roots at s2 and s3 with f(s) ≥ 0 in [s2, s3] is not consistent with d
dk (w′kΣ̄Twk)

strictly positive everywhere. In the case where f touches the abscissa from below at s2,

equivalent considerations lead to d
dk (w′kΣ̄Twk) ≤ 0 at s2. So we conclude that on M(m),

f(s) has a unique positive root, which we denote k∗ = k∗(m) and the corresponding

portfolio wk∗ = wk∗(m).

As a side result we get the derivative of the root of f(s) with respect to ε by applying

the implicit function theorem. If s∗ is the root of f(s) and k =
√
ε

γs then according to the

definition (30) it must hold that

0 =
d

dk

(
w′k
(
Ω̄T + ΛT

)
wk
)

︸ ︷︷ ︸
<0

dk

dε︸︷︷︸
>0

∣∣∣∣
s=s∗

+
df

ds︸︷︷︸
<0

∣∣∣∣
s=s∗

ds∗

dε

⇒ ds∗

dε
= −

d
dk

(
w′k
(
Ω̄T + ΛT

)
wk
)

df
ds

< 0. (34)

By construction s∗ equals
√
w′k∗

(
Ω̄T + ΛT

)
wk∗ , hence, an increase in ε leads to a decrease

in
√
w′k∗

(
Ω̄T + ΛT

)
wk∗ .

The final step of our proof is to show that in the σΣ =
√
w′Σ̄Tw vs. m̄T space the set

of all available portfolios is convex. Referring to Equations (19) and (22) we write

m̄T = m̂T −
√
ε
(
Ω̄T + ΛT

)
w√

w′
(
Ω̄T + ΛT

)
w
, (35)

i.e., according to the max-min approach to ambiguity aversion, the expected return w′m̄T
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is the minimum among all available priors, for given w. Transferring the results for portfo-

lios restricted to M(m) into the σΣ / m̄T space we find that wk∗ maximizes mean-variance

utility for all w with w′1 = 1. The globally optimal portfolio for given γ is then char-

acterized by one particular wk∗ . Assume mean-variance utility is maximized at w, then

w = wk∗(w
′m̂T ), otherwise we can argue that wk∗(w

′m̂T ) has higher mean-variance utility

than w.

As a final step of the proof, we show that the portfolio frontier is concave in the σΣ

/ m̄T space. Take two portfolios, w1 and w2 and consider w(h) = hw1 + (1 − h)w2 for

h ∈ [0, 1], then due to diversification with respect to Σ̄T and
(
Ω̄T + ΛT

)
, respectively, we

have

σΣ(w(h)) =
√
w(h)′Σ̄Tw(h) ≤ hσΣ(w1) + (1− h)σΣ(w2),

m̄T (wh) = hw′1m̂T + (1− h)w′2m̂T −
√
ε
√
w(h)′

(
Ω̄T + ΛT

)
w(h)

≥ h[w′1m̂T −
√
ε
√
w′1
(
Ω̄T + ΛT

)
w1]

+(1− h)[w′2m̂T − w′1m̂T −
√
ε
√
w′2
(
Ω̄T + ΛT

)
w2]

= hm̄T (w1) + (1− h)m̄T (w2).

The whole linear section w1, w2 in the σΣ / m̄T space is (weakly) dominated by w(h),

h ∈ [0, 1]. Hence, we conclude that the efficient frontier is concave and consequently the

portfolio which satisfies the first-order condition of Proposition 1 is the unique maximum.

A.3 Proof of Proposition 2

As a side result of the proof of Proposition 1, (34) in Appendix A.2 shows that w′(Ω̄T+ΛT )w

is monotonically decreasing in ε. Consequently,

√
ε

γ
√
w′(Ω̄T + ΛT )w

is monotonically increasing in ε. Therefore, ε > ε∗(γ) implies that the ambiguity averse

investor overweights uncertainty in expected returns from estimation errors.
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Figure 1: Contribution of overall volatility as proposed in (9) for bonds, stocks, cash, real
estate and gold (values indicated in standard deviation p.a.). The solid lines show the term
structure of volatility for an investor: (a) who is aware of predictability but neglects parameter
uncertainty (green line), (b) who is aware of predictability and parameter uncertainty but takes
expected returns as given (red line), and (c) who uses the full predictive variance (black line
with black dashed-dotted lines indicating the 95% confidence interval). The dashed (dotted)
line indicates the volatility from purely considering Ω̄T (ΛT ).
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Figure 2: Term structure of return correlations of pairs of asset classes based on the full
predictive covariance Σ̄T + Ω̄T + ΛT (95% confidence bounds as dashed-dotted lines).
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Figure 3: Asset allocation of US families with respect to age of head (Survey of Consumer
Finances, 2013).
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for T = 120 months and T = 600 months together with the density of a χ2- distribution with
n = 5 degrees of freedom. Vertical solid and dashed lines indicate quantiles at the 90% and
95% level, respectively. Vertical dotted lines indicate critical confidence levels ε∗ such that the
full predictive variance is considered without additional ambiguity aversion.
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Figure 5: Market implied expected (excess) returns m̂T relative to the expected return of
cash (set equal to zero) given the market capitalizations of the two identified groups from
the Survey of Consumer Finance, 2013. The left panel shows results for families with an age
of head between 65 and 74 and an assumed planning horizon of T = 120 months, while the
right panel gives corresponding results for families with an age of head between 35 and 44 and
T = 600 months.
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Figure 6: Efficient risk-return combinations of investors with different sophistication level from
the viewpoint (a) of an investors who considers only the sample covariance matrix, i.e., neglects
predictability and parameter uncertainty. His efficient frontier is indicated with a green line.
The other agents consider: (b) only predictability but not parameter uncertainty (black-dotted
line), (c) predictability and parameter uncertainty with long-term means as given (black-dashed
line), (d) the full predictive variance without ambiguity aversion (black solid line), and (e)
the full predictive variance with different degrees of ambiguity aversion (colored-solid line for
ε > ε∗, coloured-dashed line for ε < ε∗). The diamond and the bullet points indicate the global
minimum-variance portfolios of investors (b)-(e). The left panel shows results for T = 120, the
right panel for T = 600.
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Figure 7: Optimal asset allocation with a risk aversion γ = 4, and different levels of ambiguity
aversion ε ∈ {0, 0.25, 10, 25} with T = 120. The upper-left panel shows the optimal portfolio of
an investor who considers only Σ̄T , the upper-right panel gives the optimal asset allocation of
an investor who considers the full predictive variance Σ̄T +Ω̄T +Λ, i.e., ε = ε∗. The lower panels
illustrate the optimal asset allocation of investors who recognize the full predictive variance
but are ambiguity averse with respect to uncertainty in expected returns, i.e., ε > ε∗.
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Figure 8: Optimal asset allocation with a risk aversion γ = 4, and different levels of ambiguity
aversion ε ∈ {0, 3.54, 10, 25} with T = 600. The upper-left panel shows the optimal portfolio of
an investor who considers only Σ̄T , the upper-right panel give the optimal asset allocation of an
investor who considers the full predictive variance Σ̄T + Ω̄T + Λ, i.e., ε = ε∗. The lower panels
illustrate the optimal asset allocation of investors who recognize the full predictive variance
but are ambiguity averse with respect to uncertainty in expected returns, i.e., ε > ε∗.
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Figure 9: Comparison of optimal portfolios for γ = 4 (left panels) and global minimum-
variance portfolios (right panels) of investors with a planning horizon of T = 120 (upper
panels) and T = 600 (lower panels), who (a) base their investment decision on the sample
covariance and neglect predictability and parameter uncertainty, (b) consider predictability
in asset returns but neglect parameter uncertainty, (c) optimize their portfolio based on Σ̄T ,
i.e., neglect uncertainty in expected returns, (d) recognize the full predictive variance without
ambiguity aversion, and (e) recognize the full predictive variance with ambiguity aversion.
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Figure 10: Optimal portfolio weights (ε = 25) for the VAR approach with T = 12 (upper-left
panel), T = 60 (upper-right panel), and T = 600 (lower-left panel), and for the GBM approach
with T = 1 (lower-right panel).
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Table 1: OLS based VAR estimation parameters (standard errors in parenthesis)

Dependent variable:
bonds(t) stocks(t) cash(t) real estate(t) gold(t) spr(t) d(t)-p(t)

(1) (2) (3) (4) (5) (6) (7)

bond(t-1) 0.036 0.147∗∗ 0.004 −0.001 0.052 0.043∗∗∗ −0.132∗∗

(0.039) (0.058) (0.003) (0.005) (0.064) (0.006) (0.059)

stocks(t-1) −0.105∗∗∗ 0.028 −0.005∗∗ −0.001 −0.058 0.001 −0.042
(0.027) (0.039) (0.002) (0.004) (0.043) (0.004) (0.040)

cash(t-1) 1.331∗∗∗ 0.588 0.541∗∗∗ −0.255∗∗∗ 1.219∗ −0.033 −0.504
(0.426) (0.630) (0.035) (0.058) (0.698) (0.061) (0.636)

real estate(t-1) 0.179 0.131 −0.035∗∗ 0.743∗∗∗ 0.487 −0.061∗∗ −0.004
(0.205) (0.303) (0.017) (0.028) (0.336) (0.029) (0.306)

gold(t-1) −0.015 −0.059∗ −0.001 −0.003 0.095∗∗ −0.0004 0.064∗

(0.024) (0.035) (0.002) (0.003) (0.039) (0.003) (0.035)

spr(t-1) 0.306∗∗∗ 0.240∗∗ −0.001 0.015 0.164 0.954∗∗∗ −0.238∗∗

(0.079) (0.116) (0.007) (0.011) (0.129) (0.011) (0.117)

d(t-1)-p(t-1) −0.0001 0.008∗ 0.0004 −0.00000 0.006 −0.00001 0.992∗∗∗

(0.003) (0.004) (0.0002) (0.0004) (0.005) (0.0004) (0.004)

const −0.005 0.027∗ 0.002∗∗ 0.001 0.018 0.001 −0.024
(0.010) (0.015) (0.001) (0.001) (0.017) (0.001) (0.015)

Observations 671 671 671 671 671 671 671
R2 0.056 0.027 0.301 0.533 0.029 0.922 0.988
Adjusted R2 0.046 0.017 0.293 0.528 0.019 0.922 0.988
Residual Std. Error (df = 663) 0.029 0.043 0.002 0.004 0.047 0.004 0.043
F Statistic (df = 7; 663) 5.659∗∗∗ 2.664∗∗ 40.705∗∗∗ 108.172∗∗∗ 2.871∗∗∗ 1,125.882∗∗∗ 8,015.214∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 2: Cross-correlation of residuals. Standard deviation (p.a.) on the main diagonal.

bond stock riskfree real estate gold spr d-p

bond 0.100 0.137 0.233 0.052 0.048 -0.365 -0.119
stock − 0.148 0.110 0.111 0.104 0.001 -0.989

riskfree − − 0.008 0.470 0.091 -0.147 -0.065
real estate − − − 0.014 0.022 -0.023 -0.087

gold − − − − 0.164 -0.032 -0.091
spr − − − − − 0.014 -0.011
d-p − − − − − − 0.149
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Table 3: Elements on the main diagonal of OLS versus Pope estimated variance.

OLS Pope

Σ̄120 Ω̄120 Λ120 Σ̄120 Ω̄120 Λ120

bond 0.213 0.038 0.0002 0.255 0.046 0.0002
stock 0.161 0.028 0.0001 0.178 0.031 0.0002

riskfree 0.005 0.001 0.00000 0.005 0.001 0.00000
realestate 0.031 0.006 0.00003 0.036 0.007 0.00003

gold 0.445 0.082 0.0004 0.472 0.092 0.0005

Σ̄600 Ω̄600 Λ600 Σ̄600 Ω̄600 Λ600

bond 1.809 1.616 0.008 2.490 2.345 0.012
stock 0.332 0.248 0.001 0.407 0.304 0.002

riskfree 0.051 0.044 0.0002 0.065 0.057 0.0003
realestate 0.264 0.245 0.001 0.355 0.319 0.002

gold 3.939 3.551 0.019 4.547 4.255 0.023
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Table 4: Ratio of the overall variance between Pope corrected and OLS variance.

bond stock riskfree realestate gold

T=120 1.199 1.104 1.131 1.153 1.069
T=600 1.412 1.225 1.282 1.324 1.175
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Table 5: Variance contribution for different time horizons of the considered asset classes ac-
cording to (9). The contribution of estimation errors in expected returns to the total return
variance increases with the investment horizon. Estimation errors in expected returns are
mainly induced via uncertainty in VAR coefficients a and B (Ω̄T ). Errors in expected returns
resulting from estimation errors in the covariance matrix of residuals Σε (ΛT ) are of minor
importance.

bonds stocks cash real estate gold

Σ̄120 84.56% 84.99% 84.31% 84.27% 83.67%
Ω̄120 15.36% 14.93% 15.61% 15.66% 16.24%
Λ120 0.07% 0.08% 0.08% 0.08% 0.08%

Σ̄600 51.37% 57.17% 52.84% 52.55% 51.53%
Ω̄600 48.39% 42.61% 46.92% 47.22% 48.21%
Λ600 0.24% 0.22% 0.24% 0.23% 0.26%
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Table 6: Certainty equivalent (CE) and moments of out-of-sample returns for the model with
predictability (VAR) versus the model without predictability (GBM) (values are not annual-
ized).

ε = 10

T CE mean sd skew kurt

VAR 12 mean 0.1611 0.4727 0.6908 1.7995 5.7779
median 0.1645 0.4518 0.6818 1.8403 5.8259

GBM 12 mean 0.0225 0.0239 0.0267 -0.4982 3.2005
median 0.0226 0.0240 0.0268 -0.4631 2.9703

VAR 24 mean 0.1226 0.5503 0.8393 1.8570 6.2522
median 0.1304 0.5481 0.8534 1.8624 6.2740

GBM 24 mean 0.0439 0.0489 0.0520 -0.3377 2.5139
median 0.0442 0.0490 0.0517 -0.3344 2.4991

VAR 60 mean -0.2473 0.6020 0.9071 0.6276 2.9104
median -0.1961 0.5885 0.8976 0.6228 2.9346

GBM 60 mean 0.1060 0.1293 0.1247 -0.1434 1.3858
median 0.1053 0.1301 0.1258 -0.1052 1.3775

ε = 25

T CE mean sd skew kurt

VAR 12 mean 0.1291 0.2851 0.4714 2.1853 7.2205
median 0.1241 0.2707 0.4647 2.2356 7.2278

GBM 12 mean 0.0203 0.0216 0.0251 -0.4278 3.2463
median 0.0204 0.0216 0.0251 -0.3955 3.0774

VAR 24 mean 0.1326 0.2729 0.4571 2.3667 8.1671
median 0.1308 0.2675 0.4618 2.4134 8.4503

GBM 24 mean 0.0397 0.0440 0.0486 -0.2764 2.5226
median 0.0399 0.0441 0.0482 -0.2673 2.5132

VAR 60 mean 0.0216 0.2594 0.3998 0.2376 2.7570
median 0.0329 0.2572 0.4011 0.2060 2.7493

GBM 60 mean 0.0955 0.1161 0.1166 -0.1108 1.4554
median 0.0948 0.1168 0.1178 -0.0802 1.4490

ε = 100

T CE mean sd skew kurt

VAR 12 mean 0.0415 0.0463 0.0525 1.1598 5.7344
median 0.0398 0.0445 0.0538 1.1033 5.5811

GBM 12 mean 0.0186 0.0197 0.0240 -0.3634 3.2509
median 0.0186 0.0197 0.0239 -0.3382 3.1301

VAR 24 mean 0.0586 0.0665 0.0666 -0.1247 2.3938
median 0.0588 0.0669 0.0669 -0.0668 2.3813

GBM 24 mean 0.0363 0.0402 0.0462 -0.2245 2.5141
median 0.0364 0.0403 0.0458 -0.2193 2.5273

VAR 60 mean 0.1158 0.1486 0.1486 -0.1417 1.4557
median 0.1161 0.1488 0.1489 -0.0789 1.3957

GBM 60 mean 0.0868 0.1056 0.1110 -0.0812 1.5334
median 0.0862 0.1062 0.1124 -0.0607 1.5073
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