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Abstract

Heterogeneous expectations are difficult to pin down and most of
the predictions are confirmed only by calibrated simulations. This
paper presents both a full characterization of equilibrium and an esti-
mation of a dynamic general-equilibrium model in which two groups of
agents hold heterogeneous expectations about future economic growth
and inflation. Heterogeneous expectations and endogenous consump-
tion fluctuations change the stock-bond correlation without the need
to change agents’ risk preferences or the dynamics between economic
growth and inflation. Earnings and inflation processes are jointly esti-
mated by maximizing the likelihood of their time series. The time series
of heterogeneous expectations are uncovered using historical prices by
means of the unscented Kalman Filter. The conditional correlation im-
plied by the model can predict the conditional correlation in the data.
Our model works for both Treasury bonds and Treasury Inflation Pro-
tected Securities. A time-varying term-structure of stock-bond correla-
tion is identified and explained by the implied-disagreements. Our es-
timates of disagreements are correlated with dispersions of correspond-
ing forecasts in the Survey of Professional Forecasters. Unconditional
correlations and impulse responses are obtained from simulations.

1 Introduction

The correlation between stock market and Treasury bonds is crucial for
asset allocation in portfolio management, but what decides its dynamics?
The existing literature resorts to changes either in the correlation between
economic growth and inflation or in agents’ risk preferences, both of which do
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not change very frequently. This paper provides a novel explanation of the
time-varying stock-bond correlation: a dynamic general-equilibrium model
in which two groups of agents hold heterogeneous expectations about the
future economic growth and inflation. The model shows that combinations
of a small amount of heterogeneous expectations on both economic growth
and inflation, and the endogenous consumption fluctuation resulting from
trading can generate enough variation in the stock-bond correlation without
the need to change risk preferences or correlations between fundamentals.

Despite ample evidence in surveys and analyst forecasts supporting the
existence of heterogeneous expectations among investors, heterogeneous ex-
pectation models are like double-edged swords: on the one hand, they gen-
erate a pricing kernel that implies time-varying volatilities of equilibrium
asset prices and risk premiums; on the other hand, the non-linearity harms
the tractability of prices, and dispersions in expectations are difficult to pin
down. Therefore, most of the predictions are confirmed by calibrations.

This paper attacks the heterogeneous-expectations problem head-on.
The parameters of the model are estimated, rather than calibrated, using
the Expectation-Maximization approach, an algorithm designed for missing
data and applied to state-space models. In contrast to the literature that
uses survey data as proxies of disagreements, the time-series of dispersion in
expectations are uncovered from historical prices, together with the model
using the unscented Kalman Filter, a machine-learning technique that deals
with non-linearity. This paper directly regresses the historical conditional
stock-bond correlation on the one implied by the model, and finds the latter
predicts the former. Filtered dispersions in expectations are also compared
with survey data. Regressions of asset prices that are not used in the filtering
serve as out-of-sample tests for the model.

The most intriguing fact about stock-bond correlation is the switch of its
sign in recent years. In the late 90s, researchers documented positive corre-
lation between stock and bond prices (Shiller and Beltratti 1992; Campbell
and Ammer 1993), while the market observed persistent negative stock-
bond correlation after 2000 (Ilmanen, 2003; Li, 2002; Jones and Wilson,
2004; Connolly et al, 2005). Also, negative correlation is a common feature
in many crises episodes, and is not merely a country-specific event but occurs
simultaneously across countries (Baur and Lucey, 2009). The benchmark of
stock-bond correlation has switched from positive to negative.

Is negative stock-bond correlation really shocking? Let us look at the
data. Figure 1 and 2 present the time-series of conditional correlations be-
tween the S&P 500 index and US Treasury bonds with maturity of 5/10/30
year, both nominal and inflation-protected. The correlations are calculated

2



with daily returns in each year. The correlation series exhibits great time-
variation. Moreover, negative stock-bond correlations are not novel to the
market since we observe a lot of years with negative stock-bond correlation
in the last century.

To understand the stock-bond correlation, we should notice the difference
between conditional correlation and unconditional correlation. At different
points of time with its specific information set, the correlation looking for-
ward is the conditional one. The unconditional correlation, however, is the
overall correlation in the entire probability space. Therefore, economists
need to answer two questions to explain the stock-bond correlation: first,
why the conditional one switches sign under different conditions; second,
why the unconditional correlation is positive. This paper provides a co-
herent answer: investors’ heterogeneous expectations and the endogenous
consumption share fluctuation resulting from trading. When investors have
homogeneous expectations, the stock-bond correlation is negative because
real stocks hedge inflation risks in nominal bonds and nominal bonds hedge
risks of economic growth in stocks. In the presence of disagreements on in-
flation growth, the hedging links are weakened: both stock and bond prices
are depressed by the additional risk in inflation, and they are expected either
to recover together in the future with decreased disagreements on inflation
expectation or to be depressed further if investors disagree even more, thus
the stock-bond correlation is positive. In general, investors are more likely to
disagree on inflation, so the unconditional stock-bond correlation is positive
and the result is confirmed by simulations. In recent years, when inflation
is persistently low and monetary policies are stable, investors have minor
disagreements on expected inflation, and thus the stock-bond correlation is
negative.

This paper also incorporates heterogeneous expectations on economic
growth for three reasons: first, it is a basic form of heterogeneous expecta-
tion that we cannot neglect; second, it also changes the stock-bond correla-
tion and thus helps to explain the full dynamics; third, it helps to construct
stationarity in simulations. Models with heterogeneous expectations may
suffer from the issue that one group of agents will end up taking the whole
consumption and turn the model into a representative-agent model. To
bring about stationarity without degenerating the model, a certain form
of symmetric learning seems necessary. Researchers propose several tricks
to model the source of heterogeneous expectations: investors may inter-
pret a Markov chain differently (David 2008, Buss et al. 2016), disagree
on volatility (Ehling et al. 2016), disagree on mean-reverting speed (Whe-
lan 2014), have contrary interpretation of signals (Xiong and Yan 2010) or
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investors have the same learning but with different signals (Dumas, Lewis
and Osambela 2016). This paper proposes another way to promote sym-
metry: one group of investors has a relative advantage in predicting future
inflation and the other group has a relative advantage in predicting future
economic growth. With balanced combinations of parameters, the asymmet-
ric learning will end up as symmetric relative advantages through learning
about economic growth and inflation. From simulations we observe that
the model generates non-degenerated distributions of consumption shares
for more than a thousand years, therefore, we can view the model as quasi-
stationary.

Many attempts have been made to explain the intuition of the seemingly
“unexpected pattern” of negative stock-bond correlation. The first story is
“flight to quality” (Chicago Federal Reserve Bank News Letter, #4, Decem-
ber 1987): “When investors are scared, they look for safety. They adjust
their portfolios to include more safe assets and fewer risky assets.” Flight
to quality asserts that in busts, investors’ trading decreases stock prices and
increases bond prices and thus stock and bond prices are negatively corre-
lated. However, following the same logic, the other side of the story is “flight
to risky”: in booms investors include more risky assets and fewer safe as-
sets, which also generates negative stock-bond correlation. Thus, stock-bond
correlation should be negative all the time.

The negative stock-bond correlation reflects the hedging role between
stocks and bonds: bonds as safe assets may hedge the economic risk in
stocks, while stocks as real assets hedge the inflation risk in nominal bonds.
The two hedging roles amplify each other. When the economic growth
and inflation are positively correlated, the hedging role becomes even more
significant: if inflation signals good economic growth, a positive inflation
shock will increase stocks and depress bonds not only because the inflation
rises, but the economic growth will rise as well. When the economic growth
and inflation are negatively correlated, the hedging roles offset each other: if
inflation signals bad economic growth, a positive inflation shock may lead to
negative stock-bond correlations when the depression on economic growth is
strong to offset the rise of inflation. This is exactly the intuition from models
featuring regime-shifts (David and Veronesi 2013; Campbell, Pflueger and
Viceira 2014; Song 2017), asymmetric monetary policies near zero lower
bound (Evans et al. 2016; Howard 2016), or business cycles (Koijen, Lustig
and Van Nieuwerburgh, 2010). These representative-agent models all need
postulated pricing kernels, and some ways to embed inflation shocks either
in the utility, like money illusion, or in the process of economic growth.

Different risk preferences also impact the stock-bond correlation. Barsky
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(1989) shows that an elasticity of inter-temporal substitution (EIS) greater
than unity implies a positive correlation while EIS less than unity implies
negative correlation. Also, risk aversion helps to determine the magnitude.
Kozak (2013) shows that the stock-bond correlation is negative if risk aver-
sion is high keeping the same EIS. These results yield the intuition that
an unexpected increase in economic growth will increase both the discount
rate and the dividend payout in the future, so that bond prices will unam-
biguously decrease while the change in stock prices depends on whether the
increase in dividend payout can offset that in the discount rate. Accord-
ing to Vissing-Jorgensen (2002), estimates of EIS are around 0.3 to 0.4 for
stockholders, so the stock-bond correlation should be negative when there
is no heterogeneous expectation.

The model in this paper is an extension to the sentiment-risk model
proposed by Dumas, Kurshev and Uppal (2009, henceforth DKU), where
two groups of investors are intellectually but not financially segmented and
there is no inflation. In their model, one group of investors is fully rational,
and the other group is over-confident about some pure-noise signals in the
market. The change of measure between the two groups’ beliefs is named
“sentiment”. In this paper, an inflation process is introduced, and it is
correlated with the economic growth in both outputs and growth rates.
There are two pure-noise signals in the market: one is perceived (falsely)
as correlated with the growth rate of the economy; the other is perceived
(falsely) as correlated with the rate of inflation. The more correlated an
investor believes the signal is with the true growth rate, the more likely he
will have biased expectations. Alternatively, we could assume the signals are
true signals. Both models will have decreased investors’ perceived variance
of asset prices and excess volatility from the econometrician’s viewpoint.
Also, the solution and the equilibrium characterization are the same. The
technical difference lies in the estimation task: if signals are pure noise, an
econometrician could form a better estimate of the model using data that
are publicly available; however, if signals are informative, she will not be
able to justify her estimation unless she observes all the signals .

The rest of the paper is organized as follows. Section 2 describes the
fundamental processes, signals, investors’ beliefs and learning. In Section 3,
the investors’ optimization problem is introduced and solved; the equilib-
rium pricing kernel is obtained by market clearing. Equilibrium asset prices
are determined from the pricing kernel. Section 4 estimates the fundamental
processes and decides the investor-related parameters using grid search. Sec-
tion 5 discusses the stock-bond correlation based on impulse responses and
simulations. Section 6 uncovers the time-series of disagreements, compares
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them with survey data, predicts the conditional stock-bond correlation, and
discusses its fit to the data. Section 7 concludes. All the proofs, tables, and
figures are provided in the appendix.

2 Beliefs and Information Structure

2.1 The Fundamental Processes

This paper develops an information model in which two groups of investors
(group A and group B) populate an endowment economy. In this economy,
there are two fundamental variables: the aggregate dividend output δt, and
the nominal price index Pt (CPI). We start by specifying their law of motion:

Assumption 1. δt and Pt jointly follow geometric Brownian motions

dδt
δt

= ftdt + σδ,δdZ
δ
t + σδ,PdZ

P
t , (1)

dPt
Pt

= πtdt + σP,δdZ
δ
t + σP,PdZ

P
t , (2)

with their growth rates ft and πt following the joint mean-reverting process:

dft = −ζf (ft − f̄)dt+ σf,fdZ
f
t + σf,πdZ

π
t ; ζf > 0, (3)

dπt = −ζπ(πt − π̄)dt+ σπ,fdZ
f
t + σπ,πdZ

π
t ; ζπ > 0, (4)

where dZδt , dZ
P
t , dZ

f
t , dZ

π
t are one - dimensional processes following

independent Brownian motions.

ζf and ζπ are the mean-reverting parameters, f̄ and π̄ are the long-run
mean of aggregate dividend growth rate and inflation rate. If σδ,P , σP,δ are
not both 0, the aggregate dividend growth is correlated with inflation. Zi

is the main driver of innovation in each process of i (i ∈ {δ, P, f, π}). If
σf,π, σπ,f are not both 0, the aggregate expected dividend-growth rate and
inflation rate are correlated.

We assume that investors observe δt and Pt, and that they do not observe
the conditional expected growth rates of dividends and inflation, ft and πt.
Therefore, investors need to estimate the growth rates.
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2.2 The Bogus Signals and Investors’ Models

Assumption 2. All investors filter out the current values of f and π using
the observation of the current dividend, δt, the current price index, Pt, and
two public bogus signals, sf,t and sπ,t, which have the following processes:

dsf,t = σsf,tdZ
sf
t , (5)

dsπ,t = σsπ,tdZ
sπ
t , (6)

where dZ
sf
t and Zsπt are one-dimensional processes following independent

Brownian motions.

The signals sf,t and sπ,t are pure noise. Investors in group i (for i = A,B)
believe that the signal sf is correlated with f with correlations φif , and that

the signal sπ is correlated with π with correlation φiπ:

dsf,t = σsfφ
i
fdZ

f
t + σsf

√
1− φif

2
dZ

sf
t ; |φif | ≤ 1, (7)

dsπ,t = σsπφ
i
fdZ

π
t + σsπ

√
1− φiπ

2dZsπt ; |φiπ| ≤ 1. (8)

Equation (7) and (8) states the source of heterogeneous expectations: the
investors have different “models” in their mind. The more they believe
in the pure-noise signal, the more they are biased in general. The more
they believe in the pure-noise signal than others do, the more likely they
are to lose. One can have different assumptions on the relationship of φ
between groups. We assume that φAf > φBf and φAπ < φBπ . Thus group A
is better in predicting inflation and are worse in predicting the aggregate
dividend growth compared with group B. We can interpret the model as a
reflection of the real world where news floods the market and only skilled
investors can tease out true information from the bogus. Investors are not
omniscient: if they are experts in stocks and specialize in predicting the
aggregate dividend growth, they are not so good at predicting inflation, and
vice versa. This assumption also implies the efficient market hypothesis
because every investor has the same information set. For the same reason,
no one needs to cooperate with anyone else.

2.3 Beliefs and Their Dynamics

Investors update their beliefs of the expected growth rates f and π with
the aggregate dividend output and price level δ, P , and the two pure noise
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signals sf and sπ. Lemma 1 presents the outcome of filtering for investors
in group i (for i = A,B):

Lemma 1. Optimal Filtering. The investors in group i have the following
beliefs:

dδt
δt

= f̂ itdt + σδδdW
i
δ,t + σδPdW

i
P,t, (9)

dPt
Pt

= π̂itdt + σPδdW
i
δ,t + σPPdW

i
P,t, (10)

with their growth rates ft and πt following the joint mean-reverting process:

df̂ it = −ζf (f̂ it − f̄)dt

+
γifσPP − γifπσδP
σδδσPP − σδPσPδ

dW i
δ,t +

γifπσδδ − γifσPδ
σδδσPP − σδPσPδ

dW i
P,t

+ φifσffdW
i
sf ,t

+ φiπσfπdW
i
sπ ,t,

(11)

dπ̂it = −ζπ(π̂it − π̄)dt

+
γifπσPP − γiπσδP
σδδσPP − σδPσPδ

dW i
δ,t +

γiπσδδ − γifπσPδ
σδδσPP − σδPσPδ

dW i
P,t

+ φifσπfdW
i
sf ,t

+ φiπσππdW
i
sπ ,t,

(12)

their stationary estimates of variance and covariance of state variables are

γif = hiσδδsin(α)− ζfσ2
δδ − hiσδP cos(α)− ζfσ2

δP

γifπ = jiσδδsin(β)− ζπσδδσPδ − jiσδP cos(β)− ζπσδPσPP
γiπ = jiσPδsin(β)− ζπσ2

Pδ − jiσPP cos(β)− ζπσ2
PP

where

hi =
√
σ2
ff (1− (φif )2) + σ2

fπ(1− (φiπ)2) + ζ2
fσ

2
δδ + ζ2

fσ
2
δP

ji =
√
σ2
πf (1− (φif )2) + σ2

ππ(1− (φiπ)2) + ζ2
πσ

2
δδ + ζ2

πσ
2
δP

(13)

and α β are constants specified in the appendices.

Notice that the true information δ and P serve the same role as the
bogus signal sf and sπ do, which cause the update in growth rates. Also,
there are only four independent Brownian motions in each group’s mind.
We define

ĝf,t = f̂Bt − f̂At , (14)
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ĝπ,t = π̂Bt − π̂At , (15)

so ĝf,t is the disagreement in aggregate dividend growth rate, and ĝπ,t is the
disagreement in inflation rate.

Now we have developed three sets of probability measures concerning the
aggregate dividend and inflation processes: the true probability measure,
and the probability measures under the probability beliefs of investors in
group A and those in group B. Group A’s probability beliefs at time t
are represented by a change of measure η, and {ηt} is a strictly positive
martingale process. For any event eu belonging to the σ-algebra of time u,
we have

EAt [1eu ] = EBt [
ηu
ηt
1eu ] (16)

ηt is named the “sentiment” variable in DKU as it captures the way in which
group A’s probability beliefs differ from group B’s under the probability
measure of group B. In Lemma 2, we show the dynamics of the change of
measure from group A’s probability beliefs to that from group B’s.

Lemma 2. Girsanov’s Theorem. The change of measure, ηt, follows

dηt
ηt

= −
σPP ĝf,t − σδP ĝπ,t
σδδσPP − σδPσPδ

dWB
δ,t −

σδδ ĝπ,t − σPδ ĝf,t
σδδσPP − σδPσPδ

dWB
P,t (17)

Observe that the disagreements are both incorporated into the volatility
applied to the Brownian motions because the aggregate dividend growth
and inflation are correlated. If σδP = 0, which means that the aggregate
dividend growth has no exposure to the inflation shock, the information
about inflation will not help the learning on aggregate dividend growth shock
(but still helps the learning on the growth rate), and thus the volatility on

dWB
δ,t will be reduced to − ĝf,t

σδδ
, which is the representation of ηt in DKU.

The same intuition works for the volatility applied to the inflation Brownian.
Under group B’s probability measure, the disagreements between two groups
follow the dynamics below:

Lemma 3. Dynamics of Disagreements.

dĝf,t =− ψff ĝf,tdt− ψfπ ĝπ,tdt
+ σĝf ,δdW

B
δ,t + σĝf ,PdW

B
P,t + σĝf ,sdW

B
sf ,t

+ σĝf ,s′dW
B
sπ ,t

(18)

dĝπ,t =− ψπf ĝf,tdt− ψππ ĝπ,tdt
+ σĝπ ,δdW

B
δ,t + σĝπ ,PdW

B
P,t + σĝπ ,sdW

B
sf ,t

+ σĝπ ,s′dW
B
sπ ,t

(19)
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by comparing parameters, we can find that

ψff = ζf +
γAf (σ2

Pδ + σ2
PP )− γAfπ(σδδσPδ + σδPσPP )

(σδδσPP − σδPσPδ)2
,

ψfπ =
γAfπ(σ2

δδ + σ2
δP )− γAf (σδδσPδ + σδPσPP )

(σδδσPP − σδPσPδ)2
,

σĝf ,δ =
(γBf − γAf )σPP − (γBfπ − γAfπ)σδP

σδδσPP − σδPσPδ
,

σĝf ,P =
(γBfπ − γAfπ)σδδ − (γBf − γAf )σPδ

σδδσPP − σδPσPδ
,

σĝf ,s = (φBf − φAf )σff ,

σĝf ,s′ = (φBπ − φAπ )σfπ,

(20)

ψπf =
γAfπ(σ2

Pδ + σ2
PP )− γAπ (σδδσPδ + σδPσPP )

(σδδσPP − σδPσPδ)2
,

ψππ = ζπ +
γAπ (σ2

δδ + σ2
δP )− γAfπ(σδδσPδ + σδPσPP )

(σδδσPP − σδPσPδ)2
,

σĝπ ,δ =
(γBfπ − γAfπ)σPP − (γBπ − γAπ )σδP

σδδσPP − σδPσPδ
,

σĝπ ,P =
(γBπ − γAπ )σδδ − (γBfπ − γAfπ)σPδ

σδδσPP − σδPσPδ
,

σĝπ ,s = (φBf − φAf )σπf ,

σĝπ ,s′ = (φBπ − φAπ )σππ.

(21)

First, we can show that ψff > ψfπ, ψπf < ψππ and ψff > 0, ψππ > 0,
therefore, the disagreements ĝf,t and ĝπ,t are jointly mean-reverting. Second,
the long-run mean of both disagreements is zero, because the bogus signals
have no drift-term. If investors are biased in the exactly same way (not
necessarily unbiased), the disagreements will have no diffusion and investors
will converge in their opinions even if they disagree at the beginning.
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3 The Equilibrium Allocation of Consumption and
Asset Prices

3.1 The Individual’s Optimization Problem

Assumption 3. The financial market is complete, and both groups have
the same CRRA utility with the relative risk aversion 1− α and the rate of
impatience ρ. Investors maximize their expected utility from lifetime con-
sumption.

Assumption 3 allows us to use the static martingale formulation (as
in Cox and Huang, 1989). Investors in group B solve the below lifetime
optimization problem:

max
c
EB

∫ ∞
0

e−ρt
1

α
(cBt )αdt; α < 1, (22)

subject to the lifetime budget constraint

EB
∫ ∞

0
ξBt Ptc

B
t dt = θ̄BEB

∫ ∞
0

ξBt Ptδtdt, (23)

ξB is the change of measure from group B’s probability measure to the
risk-neutral measure, which is the nominal pricing kernel. θ̄B is the share
of equity with which B is initially endowed. The first-order condition for
consumption is

e−ρt(cBt )α−1 = λBξBt Pt. (24)

where λB is the Lagrange multiplier of the budget constraint (23). Group A
holds an initial share θ̄A = 1− θ̄B of equity and faces an analogous optimiza-
tion problem. The only difference is that group A uses a probability measure
that is different from that of group B. Under B’s probability measure, the
problem of A can be stated as follows:

max
c
EB

∫ ∞
0

ηte
−ρt 1

α
(cAt )αdt;α < 1 (25)

subject to the lifetime budget constraint

EB
∫ ∞

0
ξBt Ptc

A
t dt = θ̄AEB

∫ ∞
0

ξBt Ptδtdt (26)

The first-order condition for consumption in this case is

ηte
−ρt(cAt )α−1 = λAξBt Pt (27)

where λA is the Lagrange multiplier of the budget constraint (27).
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3.2 The Equilibrium Pricing Measure

Equilibrium is defined as a price system and a pair of consumption-portfolio
policies such that (i) investors maximize their expected utility from lifetime
consumption based on their own beliefs; (ii) the asset prices are the same
under anyone’s probability measure; (iii) the market clears. In equilibrium,
investors agree to disagree on the expectations. They take speculative po-
sitions against each other, and thus their relative consumption fluctuates
endogenously.

The aggregate resource constraint, from (24) and (27), is

(
λAξBt Pte

ρt

ηt
)

1
α−1 + (λBξBt Pte

ρt)
1

α−1 = δt (28)

Solving (28), we obtain

ξBt (δt, ηt) = e−ρt
[
(
ηt

λAPt
)

1
1−α + (

1

λBPt
)

1
1−α
]1−α

δα−1
t (29)

and, therefore
cAt = ω(ηt)δt (30)

cBt = (1− ω(ηt))δt (31)

where

ω(ηt) =
( ηt
λA

)
1

1−α

( ηt
λA

)
1

1−α + ( 1
λB

)
1

1−α
(32)

A linear consumption-sharing rule manifests itself in Equation (30) and
(31), but the relative consumption, ω(ηt), is stochastic because the sentiment
variable ηt is stochastic. Also, the price level does not enter the consumption
allocation equations directly, but the price level process does influence the
consumption allocation through ηt.

3.3 Asset Prices

Five securities that are linearly independent are required to complete finan-
cial markets and implement the equilibrium, because there are four Brown-
ian motions that investors can observe: WB

δ,t, W
B
P,t, W

B
sf ,t

, and WB
sπ ,t. The

choice of securities is arbitrary. We are interested in the stock-bond correla-
tion, so we assume that these assets are a nominal bond that pays one dollar
at its maturity, an inflation-linked bond that pays one unit of consumption
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at its maturity, and a stock that pays the aggregate dividend δ perpetually.
The other two securities can be modeled as one that has the diffusion of
WB
sf ,t

, and the other that has the diffusion of WB
sπ ,t. These can be swaps on

the two bogus signals.
There are seven state variables in the economy: two output variables, δt

and Pt, two estimates of growth rates, f̂B and π̂B, two disagreements, ĝf
and ĝπ, and the sentiment variable, ηt. ηt is one-to-one related to group A’s
consumption share ωA.

The equilibrium price of the nominal bond with maturity T , which I
denote by BN , can be obtained directly from the pricing measure:

BN(f̂B, π̂B, ĝf , ĝπ, η, t, T ) = EB
f̂B ,π̂B ,ĝf ,ĝπ ,η

[ξBT
ξBt

]
(33)

Similarly, the equilibrium price of an inflation-linked bond with maturity
T , which I denote by BI:

BI(P, f̂B, π̂B, ĝf , ĝπ, η, t, T ) = PtE
B
P,f̂B ,π̂B ,ĝf ,ĝπ ,η

[ξBT
ξBt

PT
Pt

]
(34)

The equilibrium price of the stock, which I denote by F (to be consistent
with the notation in DKU), is the sum of all the future aggregate dividends:

F (P, δ, f̂B, π̂B, ĝf , ĝπ, η, t) = δtPt

∫ ∞
t

EB
P,δ,f̂B ,π̂B ,ĝf ,ĝπ ,η

[ξBu
ξBt

δu
δt

Pu
Pt

]
du (35)

We also denote the single-payoff version of stock by F T , which pays the
aggregate dividend at time T :

F T (P, δ, f̂B, π̂B, ĝf , ĝπ, η, t) = δtPtE
B
P,δ,f̂B ,π̂B ,ĝf ,ĝπ ,η

[ξBT
ξBt

δT
δt

PT
Pt

]
(36)

Assuming that α is an integer, we can expand ξBt from equation (29):

ξBt =
1

λB

1−α∑
j=0

[ (1− α)!

(1− α− j)!j!

(ηtλB
λA

)j]
(37)

Therefore, to find out the asset prices, we need to calculate the moment-
generating function of the joint distribution for {lnδu, lnPu, lnηu}.
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3.4 The Moment-generating Function

The moment-generating function of the joint distribution for {ln(δu), ln(Pu),
ln(ηu)} can be obtained in closed form.

Proposition 1. The moment-generating function for {lnδu, lnPu, lnηu} is

EB
f̂B ,π̂B ,ĝf ,ĝπ

[(δu)ε(Pu)κ(ηu)χ] = δεηχP κ ×Hfπ(f̂B, π̂B, u, t; ε, κ)

×Hg(ĝ, ĝπ, u, t; ε, κ, χ)
(38)

where

Hfπ(f̂B, π̂B, u, t; ε, κ) = exp
{
ε[f̄(u− t) +

1

ζf
(f̂B − f̄)(1− e−ζf (u−t))]

+ κ[π̄(u− t) +
1

ζπ
(π̂B − π̄)(1− e−ζπ(u−t))] +Afπ(ε, κ;u− t)

} (39)

Hg(ĝf ,ĝπ, u, t; ε, κ, χ) = exp
{

(A1fπ(χ;u− t)

+ ε2A2f (χ;u− t) + κ2A2π(χ;u− t) + εκA2fπ(χ;u− t)
+ εĝfBf (χ;u− t) + κĝπBπ(χ;u− t)

+ ĝ2
fCf (χ;u− t) + ĝ2

πCπ(χ;u− t) + ĝf ĝπCfπ(χ;u− t)
} (40)

and the functions Afπ, A1fπ, A2f , A2π, A2fπ, Bf , Bπ, Cf (χ;u − t),
Cπ(χ;u− t), and Cfπ are given in the proof.

This moment-generating function belongs to the linear-quadratic jump-
diffusion model class, whose solution is generalized in Cheng and Scaillet
(2007). The solution boils down to solving a system of non-symmetric ma-
trix Riccati differential equations (RDE), using Radon’s lemma. The as-
set prices are weighted averages of exponential linear-quadratic functions of
state variables with stochastically time-varying weights.

The equilibrium price of the nominal bond BN is:

EB
f̂B ,π̂B ,ĝf ,ĝπ

[
ξBT
ξB t

] = eρ(T−t)(1− ω(η))1−αHfπ(f̂B, π̂B, T, t;α− 1,−1)

×
1−α∑
j=0

{ (1− α)!

(1− α− j)!j!

( ω(η)

1− ω(η)

)j
Hg(ĝf , ĝπ, T, t;α− 1,−1,

j

1− α
)
} (41)
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The equilibrium price of the inflation-linked bond BI is:

PtE
B
P,f̂B ,π̂B ,ĝf ,ĝπ

[
ξBu
ξB t

PT
Pt

] = Pte
ρ(T−t)(1− ω(η))1−α

×Hfπ(f̂B, π̂B, T, t;α− 1, 0)

×
1−α∑
j=0

{ (1− α)!

(1− α− j)!j!

( ω(η)

1− ω(η)

)j
Hg(ĝf , ĝπ, T, t;α− 1, 0,

j

1− α
)
} (42)

The equilibrium price of single-payoff stock F T is:

δtPtE
B
P,δ,f̂B ,π̂B ,ĝf ,ĝπ

[
ξBu
ξB t

δT
δt

PT
Pt

] = δtPte
ρ(T−t)(1− ω(η))1−α

×Hfπ(f̂B, π̂B, T, t;α, 0)

×
1−α∑
j=0

{ (1− α)!

(1− α− j)!j!

( ω(η)

1− ω(η)

)j
Hg(ĝf , ĝπ, T, t;α, 0,

j

1− α
)
} (43)

The equilibrium price of stock F is the integral of F T :

δtPt

∫ ∞
T=t

EB
P,δ,f̂B ,π̂B ,ĝf ,ĝπ

[
ξBT
ξB t

δT
δt

PT
Pt

]dT =

∫ ∞
T=t

F TdT (44)

Following Detemple and Murthy (1994), the pricing formulas are weighted
averages of exponential-quadratic functions, which can be seen as the weighted
averages of prices in several homogeneous-agent economies, each populated
with group B investors with risk aversion 1 − j. The pricing formulas tell
us the risks that each security bears. Particularly, the real assets, inflation-
linked bond BN and stock F , are immune to the inflation rate πt. However,
they are subject to the disagreement on inflation rate, and the influence is
the same irrespective of the sign. When investors agree on the inflation rate,
the price index serves only as a scaling factor from the real to the nominal;
while if investors disagree, they will take speculative positions against each
other, and the disagreement on inflation serves as a measure of riskiness.

3.5 The Expected Conditional Stock-Bond Correlation

The second moments of prices are stochastic because their volatilities are
stochastic. We can study their expected second moments with the product
of their diffusion vectors, which under group B’s probability measure are
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the loadings on dWB
δ,t dW

B
P,t and dWB

sf ,t
dWB

sπ ,t. The diffusion vectors can
be obtained from the gradient of the price function post-multiplied by the
diffusion matrix of state variables. Each security’s price exposure has seven
components corresponding to the seven elements of the gradient vector. All
these derivatives are known in closed form when 1 − α ∈ N. The variance-
covariance matrix of security prices is simply diffF

diffBI
diffBN

 diffF
diffBI
diffBN

′

The conditional correlation between securities’ prices and the conditional
return correlation are the same, because the return is the expected price
divided by the previous price, while the previous price is already available
in the information set and will be canceled out from both the numerator
and the denominator.

Proposition 2. The correlation between two single-payment securities is
immune to both the level and the current growth rates of aggregate dividend
and price index.

The proof is straightforward: because the output and growth rates are
functions multiplied to the weighted average of Hg, and thus canceled out
from their variance in the denominator and covariance in the numerator.
This proposition states that current growth rates do have an impact on the
variance of asset prices but not the correlations if assets do not have lasting
effects on investors’ consumption. This is the reason why some models have
constant correlations between asset prices.

4 Empirical Features of the Model

In this section, we will estimate the parameters of the aggregate dividend
growth and inflation processes, and calibrate the parameters that decide
investors’ risk and time preference. We apply grid search to pin down the
parameters that generate heterogeneous expectations.

4.1 Data

This paper uses daily prices of S&P 500 and Treasury bonds from Bloomberg.
The bond prices are implied by their yields. Data on annual earnings of
S&P 500 are from Aswath Damodaran’s website, and they are used as
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proxies for nominal dividends in that the actual dividends are scheduled
and manipulated. Annual CPI data are from CRSP. These data are not
smoothed, which keeps their original volatility. I also use the dispersion
data in Survey of Professional Forecasters from the Federal Reserve Bank of
Philadelphia.

4.2 Estimating the Aggregate Dividend Growth and Infla-
tion Processes with the E-M Approach

The model has both parameters and state variables. The plan is that we
estimate the parameters of the fundamental processes, and then use the es-
timates to uncover the state variables. The objective is that the model can
predict stock-bond correlation using the estimates of parameters and state
variables. This plan is ambitious because we need to take the model in a
rigorous manner. Most of models with heterogeneous expectations use cali-
brated parameter values, which seem to match some moments of the data.
I argue that this is not the correct way because the sample moments are
hardly the unconditional moments. The most salient feature of models with
heterogeneous expectations is the time-varying volatility, while by assuming
the equivalence between sample and unconditional moments we deny it.

How to take the model seriously? In this paper, as we have specified
the law of motion of aggregate dividend growth and inflation, we just need
to maximize the likelihood of time series of earnings growth and inflation.
First, as data are discrete observations, we need to transform the processes
from the continuous-time form to the discrete-time form using exact dis-
cretization under the true probability measure. Define the log aggregate
dividend growth ratio and inflation:

Yt ≡

[
ln( δt

δt−1
)

ln( Pt
Pt−1

)

]
= ∆

[
ft−1

πt−1

]
− 1

2
∆

[
σ2
δδ + σ2

δP

σ2
Pδ + σ2

PP

]
+
√

∆

[
σδδ σδP
σPδ σPP

] [
Zδt
ZPt

]
(45)

Xt ≡
[
ft
πt

]
=

[
ft−1e

−ζf∆

πt−1e
−ζπ∆

]
+

[
f̄(1− e−ζf∆)
π̄(1− e−ζπ∆)

]

+


√

1−e−2ζf∆

2ζf
σff

√
1−e−2ζf∆

2ζf
σfπ√

1−e−2ζπ∆

2ζπ
σπf

√
1−e−2ζπ∆

2ζπ
σππ

[Zft
Zπt

] (46)

where ∆ is the time interval between observations and it is one if the model
are in the same frequency with the data.
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Note that if the aggregate dividend growth is independent from inflation,
the discretization of δ and P can be done separately. This is the dividend
growth process that prevails in the literature. If we take its expectation and
variance, we can easily find that

V ar[ln(
δt
δt−1

)] = ∆2
σ2
f

2ζf
+ σ2

δ∆

E[ln(
δt
δt−1

)] = ∆(f̄ − 1

2
σ2
δ )

If we replace V ar(Yt) with the sample variance ˆV ar(Yt) and replace E(Yt)

with the sample mean ˆE(Yt), we have two equations and four parameters,
which are σ2

f , ζf , σ2
δ and f̄ . This is why we have some degrees of freedom.

Particularly, ˆV ar(Yt) 6= σ2
δ and ˆE(Yt) 6= f̄ : the sample variance is not equal

to the output volatility and the sample mean is not equal to the long-term
mean of growth rate, which some previous studies take them as equal.

In total, there are twelve parameters in the fundamental processes: σδδ,
σδP , σPδ, σPP , ζf , ζπ, f̄ , π̄, σff , σfπ, σfπ, σππ. We also need to estimate
the state variables: the dividend growth rate ft and the inflation rate πt.
This is a typical dual-estimation problem in which statisticians need to es-
timate the parameters and state variables at the same time. We can use
the Expectation-maximization Approach, which is an iterative algorithm
designed for missing data and applied to state-space models (see, for exam-
ple, Chapter 6, Haykin 2001). The idea is as follows: first, we choose the
initial values of the parameters (which I take the values from Brenna and
Xia, 2006, and Xiong and Yan, 2010); second, we calculate the distribution
of state variable vector {Xt} with observations {Yt} and parameters using
the Kalman filter and backward pass; third, we estimate the parameters by
maximizing the log likelihood of {Xt} and {Yt} together. We iterate the
procedure until all the parameters converge. Mathematically, the E-M al-
gorithm guarantees the convergence (Dempster et al. 1977). In practice,
I use the gradient descent for convergence: the algorithm stops when all
the parameters’ gradients are smaller than a certain percentage (we choose
2× 10−6) of the log likelihood.

Figure 3-5 plots the estimates of f̄ , Cov(f, π), and σδδ against the num-
ber of iterations as illustrations of the convergence. The choices of illus-
tration are arbitrary. Clearly, they converge. We have clean solutions to
the first-order conditions of the log likelihood with respect to the param-
eters in the growth rate systems and the convergence is nice. We do not
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have analytical solution to the first-order conditions concerning the output
volatilities, and use numerical method to maximize the log likelihood, which
results in the perturbations. The convergence is quite fast as it only takes
165 iterations.

Table 1 reports the estimates of all the parameters and their variances
from the inverse of the Fisher information matrix. The volatility of the
earnings is 0.0658, which is close to the overall sample standard deviation of
earnings growth (0.0664). The volatility of inflation is close to 0.011, which
is the overall sample standard deviation of inflation (0.012). After correction
for the volatility in the growth rates, the variance implied by the estimates
are even closer to the deviation from the overall sample variance. The mean-
reverting parameter of the earnings growth rate is 0.12, which means the it
takes ln(2)/ζf=6 years for the difference between the earnings growth rate
and its long-term mean to die out by half; similarly, the mean-reverting
parameter of inflation is 0.03 and implies that the half-life of deviation from
long-term inflation rate is about 23 years.

On a technical note, the numerical method also causes the variance from
the Inverse fisher information matrix to be negative. This means that, be-
fore other parameters converge, the parameters identified by the numerical
method have already reached their optimum and have started to decrease
the likelihood. This is somehow inevitable with numerical methods in the
sense that it is difficult and of a bit of luck to find out the path along which
all the parameters are jointly reaching the optimum.

Notice that we do not have the estimates of σff , σπf , σfπ, and σππ
individually, but rather we have estimated the variance-covariance matrix of
the growth rates. This is because given the model structure, it is impossible
to pin them down from the likelihood. There is one degree of freedom as
there are 4 unknowns and 3 equations. We can rewrite them as below:

σff =Sin(π −ArcSin[
Cov(f, π)√
V ar(f)V ar(π)

])
√
V ar(f),

σfπ =Cos[π −ArcSin[
Cov(f, π)√
V ar(f)V ar(π)

]]
√
V ar(f),

σπf =Cos(β)
√
V ar(π)

σππ =Sin(β)
√
V ar(π)

(47)

where π
2 < β < 3π

4 − ArcSin( Cov(f,π)√
V ar(f)V ar(π)

). If we impose the restriction

that σfπ = σπf , we will find β = 1.13.
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4.3 Parameters about Investors and Grid Search

First, we need to choose the risk-aversion parameter 1 − α. Barsky (1989)
shows that the correlation between the riskless interest rate and the stock
market depends on the aversion to inter-temporal substitution. As elasticity
of inter-temporal substitution (EIS) is the inverse of relative risk aversion, we
should choose α so that its implied EIS is matched with the data. According
to Vissing-Jorgensen (2002) that estimates of EIS are around 0.3 to 0.4 for
stock holders, we can pin down that the relative risk aversion in integer
should be 3 and α should be -2. The rate of impatience ρ is chosen at 0.05
to match the level of prices.

To choose the parameters characterizing the source of heterogeneous ex-
pectations, φAf , φAπ , φBf , and φBπ , I implement a grid search. The purpose is to
find out the combination of {φ} that generates the most stable consumption
distribution. We search all four {φ} from 0.01 to 0.99 with increments being
0.01, applying the constrains that φAf > φBf and φAπ < φBπ . We antithetically
simulate 5000 paths for 1000-year data, and record the 10th, 50th, and 90th
quantile of the final consumption distribution. From all the combinations
that generates a consumption distribution whose 50th quantile is close 0.5,
we pick the {φ} that has the lowest dispersion between the 10th and 90th
quantile, and they are φAf = 0.89, φAπ = 0.15, φBf = 0.1, and φBπ = 0.7. The
final consumption distribution of group A can be found in Figure 6, which
shows that indeed the consumption distribution does not degenerate to the
tails.

5 The Stock-Bond Correlation

This section examines both unconditional and conditional correlation im-
plied by the model. We start from the unconditional correlation.

5.1 The Unconditional Stock-Bond Correlation

When there is no sentiment risk, the correlation between bond and stock
become constant, so the conditional correlation is also the unconditional one,
and the model is reduced to a learning-based Vasicek model (1977). From
Figure 7 and Figure 8, we can see that the stock-bond correlation increases
with risk aversion. This is consistent with Kozak (2013) who says that, when
the discount rate is high, the stock-bond correlation is negative. With CRRA
utility, the discount rate decreases with risk aversion, so the stock-bond
correlation increases with risk aversion. The maturity of bonds also increases
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the correlation on nominal bond and single-payment stock, but the impact
of maturity of bonds is weaker on the correlation between nominal bond
and perpetual normal stock because the impact diminishes with time and
is netted off by the future dividends. Note that, around risk aversion being
unity, the correlation starts to decrease with risk aversion. This corresponds
to the effect of EIS on the stock-bond correlation. EIS greater than unity
switches the correlation from negative to positive in Barsky (1989), while,
in a learning model with CRRA utility, risk aversion and EIS are inverse,
and the pricing kernel is a smooth function of risk aversion. As a result, EIS
increases stock-bond correlation when it is smaller than unity rather than
brings about a sudden change of sign.

Although the conditional stock-bond correlation varies a lot, the overall
correlation between S&P 500 and US 5/10/30 year Treasury bond is 0.36,
0.51 and 0.65. We simulate 500 antithetic paths for 200 years and compute
stock-bond correlations in the last 100 year. The distribution of simulated
correlations are in Figure 9 to 11. The simulated correlations are nicely
distributed and centered around 0. The average correlation between stock
and 5/10/30 year bond are 0.019, 0.027, and 0.037. The magnitude is only
one-tenth of the data. This may due to the difference between the average
of paths and one specific path.

5.2 The Impulse Responses to Shocks

Figure 12 plots the impulse responses to a shock in the aggregate dividend
of each group’s deviation from the true aggregate dividend growth rate.
Although there is no other shock, investors’ estimates of aggregate dividend
growth immediately deviates from the truth for two reasons: first, both
groups misinterpret the signal; second, even if they update correctly, they
will still deviate from the true signal, because they do not observe the shock
in expected dividend growth rate. In fact, as there is no shock from the
expected dividend growth rate and no shock from bogus signal, investors
in group B, whose beliefs are less distorted, end up deviating further from
the true growth rate than those who are biased do, because they attribute
more weight to the actual dividend growth. We see their deviations from
the truth slowly converges, but the impact will last because it results in a
transfer of the consumption share from group B to group A. The changes
in their disagreements and consumption share will change the conditional
stock-bond correlation.

21



5.3 The Conditional Stock-Bond Correlation

The conditional stock-bond correlation is very complicated because it is
susceptible to five state variables. In this subsection, we try to illustrate the
main mechanisms. We start again by plotting the correlation in response
to maturity and relative risk aversion in Figure 13. With sentiment risks,
the term-structure of stock-bond correlation becomes obvious: the stock-
bond correlation increases with the bond maturity. Also, it increases with
relative risk aversion. The term-structure of stock-bond correlation sheds
light upon the fact that in recent years the overall correlation between 5-
year Treasury bond and S&P 500 has decreased from positive to negative,
while the correlation between 10/30-year Treasury bond and S&P 500 is still
positive. The impact of risk-aversion on stock-bond correlation explains that
the conditional stock-bond correlation increases with group A’s consumption
as in Figure 15. Recall that asset prices are the weighted averages of prices
in several homogeneous-agent economies populated with group B investors
with risk aversion 1− j. The weight is decided by the relative consumption
share of group A to group B, and thus the higher consumption share group A
has, the more weight will be put to the pricing of equilibrium in which agents
have higher risk-aversion. As risk-aversion increases stock-bond correlation,
the consumption share of group A will also increase it.

Then we move on to the disagreements. Figure 14 plots the conditional
stock-bond correlation against both disagreements on aggregate dividend
growth rate and inflation rate. The conditional correlation varies from -1 to
1 smoothly with disagreements. Note that the edge of this plot where we
observe correlations continuously close to 1 or -1 are extreme cases where
one Brownian shock dominates the correlation.

6 Uncovering Disagreements and Predicing Con-
ditional Stock-Bond Correlations

In this section, we first estimate the time series of disagreements, and com-
pare them with the dispersion of forecasts in the Survery of Professional
Forecasters. Then we use the estimates of disagreements together with other
state variables to calculate the conditional correlation implied by the model.
In the end, we run a predictive regression of the historical stock-bond cor-
relation on the model implied correlation.

22



6.1 Uncovering Disagreements from Prices

The problem of estimating disagreements is again to filter a state-space
model. In this model, we have four observables: the aggregate dividend
growth, inflation, stock price, and bond price. One may also use several bond
prices. Under the true probability measure, we have seven state variables:
the true current growth rate and two estimates by investors in group A and
group B; the true inflation rate and two estimates by investors in group A
and group B; the consumption share of group A. We can apply the Kalman
Filter, assuming that there are some pricing errors. The difficulty lies in
the non-linearity of the prices that prevent us from obtaining the variance-
covariance matrix between the observable and state variables. To deal with
non-linearity, we choose the unscented transform (see, for example, Chapter
10, Durbin and Koopman 2012).

The unscented transform is implemented for an approximation of the
probability distribution of the variables. It can capture higher moments
and perform better than the Extended Kalman Filter. We start from zero
disagreements and equal consumption share, and then let the unscented
Kalman Filter tell us what the time series of disagreements should be. There
is no backward smoothing in this excercise. From the filter, we obtain the
conditional mean and variance of each state variable. We take the mean as
the estimates of state variables. Figure 17 and 18 shows the model-implied
(means of conditional) disagreements. The disagreements are quite smooth
over time, and they are very small.

We first compare our estimates of disagreements with the time series
of the dispersion in forecasts at the 4th quarter each year in the Survey of
Professional Forecasters (SPF), which has been used as a standard proxy for
disagreements in the literature. The horizon of forecast is one year. We use
the dispersion in real GDP growth forecast as the proxy for the disagreement
in aggregate dividend growth because it is the most comparable variable in
the survey. We use the dispersion in CPI forecast as the proxy for the
disagreement in inflation. As the CPI forecast is on the level rather than
on the growth, we also use the ratio of dispersion in CPI forecast to the
contemporaneous CPI as the second proxy for disagreement in inflation. As
the dispersion is measured by the 75th percentile estimate minus the 25th
percentile estimate, the dispersion in SPF is always positive. Therefore, we
should compare dispersions with the absolute values of disagreements.

Table 5 shows shows the regression result of dispersions in forecasts on
the model-implied disagreements. The regression of the dispersion of real
GDP gorwth forecasts on the model-implied disagreement in aggregate div-
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idend growth shows an R2 of 0.2 and a p-value of 0.0009. The regression
of dispersion of CPI level forecasts on the model-implied disagreement of
inflation shows an R2 of 0.44 and a p-value of 8×10−6. The regression of
the ratio of dispersion of CPI level forecasts to the contemporaneous CPI
level on the model-implied disagreement of inflation shows an R2 of 0.67
and a p-value of 6.7×10−10. We also conduct cross checks by regressing the
disagreement of inflation on real GDP forecast dispersion and by regressing
the disagreement of aggregate dividend growth on CPI forecast dispersion
and the ratio of that to the contemporaneous CPI, and the results have high
p-value and low R2. Therefore, we can conclude that our model-implied dis-
agreements are correlated with the corresponding dispersions in the survey
data. We can infer the disagreements on aggregate dividend growth and
inflation from publicly available prices, and they are correlated with the dis-
persions in survey data collected from individual forecasters. This piece of
evidence shows that my estimates of disagreements are sensible and credible.

6.2 Predicting Conditional Stock-Bond Correlation

In year t, we can use the state variable in the same year to calculate the
conditional stock-bond correlation implied by the model. By doing that,
we only use information up to year t. As we use the mean as the estimate
of disagreement, the model-implied bond-stock correlation is actually the
“expected value” of the model-implied bond-stock correlation. There are
two kinds of correlations: one is the correlation of prices, and the other is
the correlation of returns. In the model, the two correlations are the same,
because the price at the previous point is canceled out. However, they are
different when we calculate the sample correlation, because the price at the
previous point is different at each day. We first discuss the correlation of
prices.

Figure 16 shows the fit of the model-implied bond-stock correlation. In-
deed, the model-implied bond-stock correlation looks like the “expected
value” of the historical correlation. Also, in contrast to the regime-shift
stories where the regime shifted after 2000, the model-implied bond-stock
correlation starts to decline in early 1990s. This decline is due to the gradual
change of disagreements and the endogenous decrease of group A’s consump-
tion share.

We regress the historical time-series of the price correlation between
Treasury bonds and S&P 500 index in year t + 1 on the model implied
correlation between nominal bonds and the stock at the end of year t. We
apply no other controls. We drop the first five data points as burn-in pe-
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riod. Table 2 shows the regression results. Ideally, the coefficient should be
one, p-value should be 0, and R2 should be 100%. Unfortunately, the result
is not perfect. However, in general, the model-implied correlations predict
the historical correlations in the coming year, except the 5 year Treasury
inflation-protected security. For the nominal Treasury bonds, the coefficient
is positive, which means the model tracks and predicts the trend of corre-
lations in the data. The p-values of coefficients are mostly significant at
least at the 0.05 level, and R2 ranges from 0.11 to 0.24. For the 10-year and
30-year TIPS, the coefficient is negative. This is because the pricing ker-
nel is pushing for a decreasing stock-bond correlation, while the correlation
between TIPS and S&P 500 index in the data is positive and strong. The
correlations in the data are not predicted by their lags. This addresses two
things, on the one hand, the predictive power of the model-implied corre-
lations does not come from the autocorrelation of correlations in the data
(as there is no autocorrelation); on the other hand, the autocorrelation of
the smoothed correlation (by dynamic conditional correlation or exponential
smoothers, etc.) is mechanical. The above reasoning suggests that, com-
pared with smoothing methods, our estimation practice seems to be a better
way to calculate and predict the conditional stock-bond correlation.

We then regress the historical time-series of the return correlation be-
tween Treasury bonds and S&P 500 index in year t+1 on the model implied
correlation between nominal bonds and the stock at the end of year t. There
is significant autocorrelation in the stock-bond return correlation, which is
due to the significant autocorrelation in the bond returns. The benchmark
regression applies no controls, and we also run another two regressions in-
cluding controls of one lagged return correlation and two lags of return
correlation, respectively. Table three shows that our model-implied condi-
tional correlation of stock and bond returns predicts that in the data. Our
model works well with nominal bonds, but fails with TIPS. There is signif-
icant auto-correlation in the stock-bond return correlation, but our model-
implied correlations are still significant after including the lags. From BIC
and AICc information criterion, the regression with one lag has the best
quality. Considering the fact that the stock-bond correlation implied by
our model is the “expected” value, which is much more smooth than the
realized correlations, we also run a robustness check by standardizing both
correlations, and applying the same regressions. From Table 4, we see the
results do not change.

The model-implied bond-stock correlation for all the nominal bonds are
in Figure 20, from which we can see the change in term-structure of the stock-
bond correlation. Before 1980s, the stock-bond correlation increase in bond
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maturity; from 1980s to late 1990s, the stock-bond correlation decreases
in bond maturity; in recent 20 years, the stock-bond correlation reverts to
increasing in bond maturity. In the real data, we observe changes in the
slope of the correlation term-structure in many year, but the changes are
not explained by the model because the pricing kernel appears less variant
than that in the data. The disagreements can explain the gap between the
model-implied stock-bond correlation with different bond maturities. We
run the regression of the difference between model-implied stock-10-year-
bond correlation and stock-2-year-bond correlation on each disagreements,
the R2 is 0.7 with disagreement on inflation and 0.64 with disagreement on
aggregate dividend growth. The regression of the difference between model-
implied stock-10-year-bond correlation and stock-2-year-bond correlation on
group A’s consumption share shows small R2 and high p-value. Therefore,
the fluctuations in consumption share do not explain the term-structure of
stock-bond correlation.

The consumption share of group A is plotted in Figure 19. Over the 56
years group A gradually lost 10 percent of the total consumption to group
B. The stock-bond correlation decreases with group A’s consumption share,
thus the stock-bond correlation decreases from positive to negative. The
consumption share does not explain stock-bond correlations from regression
tests, but it is important to explain the sign of correlation. The fit of
filtered PE ratios and bond prices to real data are plotted in Figure 21 and
22. Again, we find this heterogeneous model is not as “wild” as one may
suspect in the beginning, in the sense that from a serious estimation, we
will not get outrageously big or fluctuating disagreements. Disagreements
persist, which results in less variation in the pricing kernel, and thus the
model-implied prices are less variant than the data looks.

7 Conclusion

There are four facts about the stock-bond correlation. First, it varies with
time. Second, it can be positive or negative conditionally. Third, it is overall
positive. Last, we have identified a time-varying term-structure of the stock-
bond correlation. A model with heterogeneous expectations and endogenous
consumption fluctuation can explain the above facts.

We take the estimation of the model seriously. We jointly estimate the
earnings growth and inflation processes by maximizing their likelihood using
the E-M approach. We use grid search to pin down the sentiment param-
eters. We use the unscented Kalman Filter to uncover the time series of
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disagreements, and calculate the time series of conditional stock-bond cor-
relation implied by the model. The model-implied conditional stock-bond
correlation predicts the conditional stock-bond correlation in the data. The
predictive power comes from the auto-regressive structure of the fundamen-
tal processes. Disagreements on aggregate dividend-growth rate and infla-
tion rate can explain the difference in conditional stock-bond correlations
with different bond maturities, but it is the endogenous consumption fluc-
tuation that changes the sign of the conditional stock-bond correlation.

In our model, the changes in conditional stock-bond correlation changes
are driven by risks from heterogeneous expectations rather than agents’ risk
preferences or the dynamics between economic growth and inflation. With
small and persistent disagreements, we can explain 10-20% of the condi-
tional stock-bond correlation in the data, across almost all the maturities
of Treasury bonds except the TIPS-5. Our estimate of disagreements are
correlated with the dispersion of corresponding forecasts in SPF.
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A Proofs

A.1 Proof for Lemma 2

From optimal filtering theory, (see Theorem 12.7 p.36, Lipster and Shiryaev
2001), we can find out the growth rates satisfying the stochastic differential
equations in Lemma 2. Their steady-state variances γif γ

i
fπ γ

i
π satisfy the
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quadratic equation system:

σ2
PP + σ2

Pδ

(σδδσPP − σPδσδP )2
(γif )2 − 2

σPPσδP + σPδσδδ
(σδδσPP − σPδσδP )2

γifγ
i
fπ

+
σ2
δP + σ2

δδ

(σδδσPP − σPδσδP )2
(γiπ)2 = σ2

ff (1− (φif )2) + σ2
fπ(1− (φiπ)2)− 2ζfγ

i
f ,

σ2
PP + σ2

Pδ

(σδδσPP − σPδσδP )2
γifγ

i
fπ −

σPPσδP + σPδσδδ
(σδδσPP − σPδσδP )2

[(γifπ)2 + γifγ
i
π]

+
σ2
δP + σ2

δδ

(σδδσPP − σPδσδP )2
γifπγ

i
π =

√
(σ2
ff (1− (φif )2))(σ2

πf (1− (φif )2))

+
√

(σ2
fπ(1− (φiπ)2))(σ2

ππ(1− (φiπ)2))− (ζf + ζπ)γifπ,

σ2
PP + σ2

Pδ

(σδδσPP − σPδσδP )2
(γifπ)2 − 2

σPPσδP + σPδσδδ
(σδδσPP − σPδσδP )2

γifπγ
i
π

+
σ2
δP + σ2

δδ

(σδδσPP − σPδσδP )2
(γiπ)2 = σ2

πf (1− (φif )2) + σ2
ππ(1− (φiπ)2)− 2ζπγ

i
π.

(48)

Substitute γif γ
i
fπ γ

i
π from Lemma 1, and we can find the below system of

trigonometric function after some algebraic operations:

cos(α− β) =

√
(σ2
ff (1− (φif )2))(σ2

πf (1− (φif )2))

hj

+

√
(σ2
fπ(1− (φiπ)2))(σ2

ππ(1− (φiπ)2))

hj
+

2ζfζπ(σδδσPδ + σδPσPP )

hj
,

cos(β − µ) = (ζf − ζπ)(σδδσPδ + σδPσPP ),

sin(µ)

= (hσPδcos(α− β) + hσPP sin(α− β)− jσδδ)/(
(hσPδcos(α− β) + hσPP sin(α− β)− jσδδ)2

+ (hσPδsin(α− β)− hσPP cos(α− β)− jσδP )2
)
,

cos(µ)

= hσPδsin(α− β)− hσPP cos(α− β)− jσδP )/(
(hσPδcos(α− β) + hσPP sin(α− β)− jσδδ)2

+ (hσPδsin(α− β)− hσPP cos(α− β)− jσδP )2
)
.

(49)

As γif and γiπ must be positive, one can find a unique pair of {α, β} within
the range of [0, 2π].

30



A.2 Proof for Proposition 1

The moment-generating function H satisfies the linear PDE

0 = LH(δ, f̂B, ĝf , P, π̂, ĝπ, η, t, u; ε, κ, ξ)+
∂H

∂t
(δ, f̂B, ĝf , P, π̂, ĝπ, η, t, u; ε, κ, ξ)

(50)
with the initial conditional H(δ, f̂B, ĝf , P, π̂, ĝπ, η, t, u; ε, κ, ξ) = δεP κηξ, and

L is the differential generator of (δ, f̂B, ĝf , P, π̂, ĝπ, η) under the probability
measure of group B. Now assume the H is exponential affine-quadratic:

H = δεP κηχexp{(Af(t) +Bf(t)f̂B) + (Aπ(t) +Bπ(t)π̂B)

+ (A1f (t) + ε2A2f (t) + εĝfBf (t) + ĝ2
fCf (t))}

+ (A1π(t) + κ2A2π(t) + κĝπBπ(t) + ĝ2
πCπ(t))

+ ĝf ĝπD(t) + εκE(t)}

(51)

Here we prove the independent version of the model. Note that ∂H
∂t =

H × (
∂Hf
∂t + ∂Hπ

∂t +
∂Hg
∂t +

∂Hgπ

∂t ).
Define

H1 = δεηchi ×Hf (f̂B, u, t; ε)×Hg(ĝf , u, t; ε, χ) (52)

H2 = P κηki ×Hπ(π̂B, u, t;κ)×Hgπ(ĝπ, u, t;κ, χ) (53)

Following Dumas, Kurshev and Uppal (2009), H1 is the solution to the
following PDE:

0 =
∂H1

∂δ
δf̂B − ∂H1

∂f̂B
ζf (f̂B − f̄)− ∂H1

∂ĝf
ĝf (ζf +

γAδ
σ2
δ

)

+
1

2

∂2H1

∂δ2
(δσδ)

2 +
1

2

∂2H1

∂(ĝf )2
[(
γBδ − γAδ

σδ
)2 + (φfσf )2] +

1

2

∂2H1

∂(f̂B)2
(
γBδ
σδ

)2

− ∂2H1

∂δ∂η
δηĝf +

∂2H1

∂δ∂ĝf
δ(γBδ − γAδ ) +

∂2H1

∂δ∂f̂B
δγBδ −

∂2H1

∂η∂ĝf
ηĝf (

γBδ − γAδ
σ2
δ

)

− ∂2H1

∂η∂f̂B
ηĝf

γBδ
σ2
δ

+
∂2H1

∂ĝf∂f̂B
(
γBδ − γAδ

σ2
δ

)γBδ +
1

2

∂2H

∂η2
η2(

ĝf
σδ

)2 +
∂H1

∂t
(54)

where
∂H1

∂t
= H1 × (

∂Hf

∂t
+
∂Hg

∂t
).
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Similarly, H2 is the solution to the following PDE:

0 =
∂H2

∂P
P π̂B − ∂H2

∂π̂B
ζπ(π̂B − π̄)− ∂H2

∂ĝπ
ĝπ(ζπ +

γAP
σ2
P

)

+
1

2

∂2H2

∂P 2
(PσP )2 +

1

2

∂2H2

∂(ĝπ)2
[(
γBP − γAP
σP

)2 + (φπσπ)2] +
1

2

∂2H2

∂(π̂B)2
(
γBP
σP

)2

− ∂2H2

∂P∂η
Pηĝπ +

∂2H2

∂P∂ĝπ
P (γBP − γAP ) +

∂2H2

∂P∂π̂B
PγBP −

∂2H2

∂η∂ĝπ
ηĝπ(

γBP − γAP
σ2
P

)

− ∂2H2

∂η∂π̂B
ηĝπ

γBP
σ2
P

+
∂2H2

∂ĝπ∂π̂B
(
γBP − γAP
σ2
P

)γBP +
1

2

∂2H

∂η2
η2(

ĝπ
σP

)2 +
∂H2

∂t
(55)

where
∂H2

∂t
= H × (

∂Hπ

∂t
+ +

∂Hgπ

∂t
).
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Note that

1

H1
× [

∂H1

∂δ
δf̂B − ∂H1

∂f̂B
ζf (f̂B − f̄)− ∂H1

∂ĝf
ĝf (ζf +

γAδ
σ2
δ

)

+
1

2

∂2H1

∂δ2
(δσδ)

2 +
1

2

∂2H1

∂(ĝf )2
[(
γBδ − γAδ

σδ
)2 + (φfσf )2] +

1

2

∂2H1

∂(f̂B)2
(
γBδ
σδ

)2

− ∂2H1

∂δ∂η
δηĝf +

∂2H1

∂δ∂ĝf
δ(γBδ − γAδ ) +

∂2H1

∂δ∂f̂B
δγBδ −

∂2H1

∂η∂ĝf
ηĝf (

γBδ − γAδ
σ2
δ

)

− ∂2H1

∂η∂f̂B
ηĝf

γBδ
σ2
δ

+
∂2H1

∂ĝf∂f̂B
(
γBδ − γAδ

σ2
δ

)γBδ +
1

2

∂2H

∂η2
η2(

ĝf
σδ

)2 +
∂H1

∂t
]

+
1

H2
× [

∂H2

∂P
P π̂B − ∂H2

∂π̂B
ζπ(π̂B − π̄)− ∂H2

∂ĝπ
ĝπ(ζπ +

γAP
σ2
P

)

+
1

2

∂2H2

∂P 2
(PσP )2 +

1

2

∂2H2

∂(ĝπ)2
[(
γBP − γAP
σP

)2 + (φπσπ)2] +
1

2

∂2H2

∂(π̂B)2
(
γBP
σP

)2

− ∂2H2

∂P∂η
Pηĝπ +

∂2H2

∂P∂ĝπ
P (γBP − γAP ) +

∂2H2

∂P∂π̂B
PγBP −

∂2H2

∂η∂ĝπ
ηĝπ(

γBP − γAP
σ2
P

)

− ∂2H2

∂η∂π̂B
ηĝπ

γBP
σ2
P

+
∂2H2

∂ĝπ∂π̂B
(
γBP − γAP
σ2
P

)γBP +
1

2

∂2H

∂η2
η2(

ĝπ
σP

)2 +
∂H2

∂t
]

=
1

H
× [

∂H

∂δ
δf̂B − ∂H

∂f̂B
ζf (f̂B − f̄)− ∂H

∂ĝf
ĝf (ζf +

γAδ
σ2
δ

)

+
1

2

∂2H

∂δ2
(δσδ)

2 +
1

2

∂2H

∂(ĝf )2
[(
γBδ − γAδ

σδ
)2 + (φfσf )2] +

1

2

∂2H

∂(f̂B)2
(
γBδ
σδ

)2

− ∂2H

∂δ∂η
δηĝf +

∂2H

∂δ∂ĝf
δ(γBδ − γAδ ) +

∂2H

∂δ∂f̂B
δγBδ −

∂2H

∂η∂ĝf
ηĝf (

γBδ − γAδ
σ2
δ

)

− ∂2H

∂η∂f̂B
ηĝf

γBδ
σ2
δ

+
∂2H

∂ĝf∂f̂B
(
γBδ − γAδ

σ2
δ

)γBδ

+
∂H

∂P
P π̂B − ∂H

∂π̂B
ζπ(π̂B − π̄)− ∂H

∂ĝπ
ĝπ(ζπ +

γAP
σ2
P

)

+
1

2

∂2H

∂P 2
(PσP )2 +

1

2

∂2H

∂(ĝπ)2
[(
γBP − γAP
σP

)2 + (φπσπ)2] +
1

2

∂2H

∂(π̂B)2
(
γBP
σP

)2

− ∂2H

∂P∂η
Pηĝπ +

∂2H

∂P∂ĝπ
P (γBP − γAP ) +

∂2H

∂P∂π̂B
PγBP −

∂2H

∂η∂ĝπ
ηĝπ(

γBP − γAP
σ2
P

)

− ∂2H

∂η∂π̂B
ηĝπ

γBP
σ2
P

+
∂2H

∂ĝπ∂π̂B
(
γBP − γAP
σ2
P

)γBP

+
1

2

∂2H

∂η2
η2[(

ĝf
σδ

)2 + (
ĝπ
σP

)2] +
∂H

∂t
]
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The above equality holds for each and every derivative in the partial differ-
ential equation.

Therefore, δεηχP κ×Hf (f̂B, u, t; ε)×Hg(ĝf , u, t; ε, χ)×Hπ(π̂B, u, t;κ)×
Hgπ(ĝπ, u, t;κ, χ) is the solution to the whole PDE. The definitions of the

functions inside δεηχP κ×Hf (f̂B, u, t; ε)×Hgf (ĝf , u, t; ε, χ)×Hπ(π̂B, u, t;κ)×
Hgπ(ĝπ, u, t;κ, χ) are similar to those in Dumas Kurshev and Uppal (2009).

A.3 The E-M Approach Applied to Estimate the Fundamen-
tal Processes

Here I illustrate the case for the aggregate dividend growth.
First is the expectation part. With the discrete-time processes (57) and

(58), given parameters of σ2
f , ζf , σ2

δ and f̄ , applying the Kalman filter we
have:

f̂t+1|t = e−ζf∆f̂t|t + f̄(1− e−ζf∆)

Pt+1|t = e−2ζf∆Pt|t +
1− e−2ζf∆

2ζf
σ2
f

Kt+1 =
Pt+1|t

∆Pt+1|t + σ2
δ

f̂t+1|t+1 = f̂t+1|t +Kt+1(Yt+1 −∆f̂t+1|t + 0.5∆σ2
δ )

Pt+1|t+1 = Pt+1|t −Kt+1∆Pt+1|t

Then applying backward pass we have:

Lt =
Pt|te

−ζf∆

Pt+1|t

f̂t|T = f̂t|t + Lt(f̂t+1|T − f̂t+1|t)

Pt|T = Pt|t + Lt(Pt+1|T − Pt+1|t)Lt

Second, we need to calculate the likelihood function

L =constant+

T∑
1

[−1

2
ln(∆σ2

δ )−
1

2∆σ2
δ

(Yi − (f̂i−1 −
1

2
σ2
δ )∆)2

− 1

2
ln(

1− e−2ζf∆

ζf
σ2
f )−

ζf

(1− e−2ζf∆)σ2
f

(f̂i − (f̂i−1e
−ζf∆ + f̄(1− e−ζf∆))2]
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We maximize the likelihood by taking derivatives over σ2
f , ζf , σ2

δ and

f̄ , respectively, and equate the derivatives to 0. Solving these first order
conditions we find that σ2

f , σ2
δ and f̄ can be rewritten as a function of ζf .

Substitute σ2
f , σ2

δ and f̄ into the first order condition with respect to ζf , we
choose the smallest positive solution as the optimizing ζf , and then we can

obtain the optimizing values of σ2
f , σ2

δ and f̄ . Note that f̂i and f̂i−1 are not
independent with each other, so the concerning calculations are

E(f̂i|Y ) = f̂t|T

E(f̂if̂i|Y ) = Pt|T + f̂t|T f̂t|T

E(f̂if̂i+1|Y ) = f̂t|tf̂t+1|T + Lt(Pt+1|T (f̂t+1|T − f̂t+1|t)f̂t+1|T )

Obtaining the new values of σ2
f , ζf , σ2

δ and f̄ , we can redo the above

procedures until σ2
f , ζf , σ2

δ and f̄ converge. When σ2
f , ζf , σ2

δ and f̄ converge,

we not only get the values of σ2
f , ζf , σ2

δ and f̄ , but also the estimated

distributions of {f̂t|Y }.

A.4 The Discretization for the Unscented Kalman Filter

First, we need to discretize the disagreements process under the effective
measure. Define ĝif,t = f̂ it − ft, ĝiπ,t = π̂it − πt, i = {A,B}, their dynamics
jointly follow a mean-reverting system:

dĝif,t =− ψiff ĝf,tdt− ψifπ ĝπ,tdt+ σĝif ,δ
dZδt + σĝif ,P

dZPt

+ σĝif ,sf
dZ

sf
t + σĝif ,sπ

dZsπt − σffdZ
f
t − σfπdZπt

(57)

dĝiπ,t =− ψiπf ĝf,tdt− ψiππ ĝπ,tdt+ σĝiπ ,δdZ
δ
t + σĝiπ ,PdZ

P
t

+ σĝiπ ,sfdZ
sf
t + σĝiπ ,sπdZ

sπ
t − σπfdZ

f
t − σππdZπt

(58)
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where the coefficients are

ψiff = ζf +
γif (σ2

Pδ + σ2
PP )− γifπ(σδδσPδ + σδPσPP )

(σδδσPP − σδPσPδ)2
,

ψifπ =
γifπ(σ2

δδ + σ2
δP )− γif (σδδσPδ + σδPσPP )

(σδδσPP − σδPσPδ)2
,

σiĝf ,δ =
γifσPP − γifπσδP
σδδσPP − σδPσPδ

,

σiĝf ,P =
γifπσδδ − γifσPδ
σδδσPP − σδPσPδ

,

σiĝf ,sf = φifσff ,

σiĝf ,sπ = φiπσfπ,

(59)

ψiπf =
γifπ(σ2

Pδ + σ2
PP )− γiπ(σδδσPδ + σδPσPP )

(σδδσPP − σδPσPδ)2
,

ψiππ = ζπ +
γiπ(σ2

δδ + σ2
δP )− γifπ(σδδσPδ + σδPσPP )

(σδδσPP − σδPσPδ)2
,

σiĝπ ,δ =
γifπσPP − γiπσδP
σδδσPP − σδPσPδ

,

σiĝπ ,P =
γiπσδδ − γifπσPδ
σδδσPP − σδPσPδ

,

σiĝπ ,sf = φifσπf ,

σiĝπ ,sπ = φiπσππ.

(60)

The solution to this system is as below:

ĝif,t =ĝif,0

1
θ2(t) + 1

θ2p(t)

θ1(t)
θ2(t) + θ1p(t)

θ2p(t)

+ ĝiπ,0

1
θ2(t) −

1
θ2p(t)

θ1(t)
θ2(t) + θ1p(t)

θ2p(t)

+
1

θ1(t)
θ2(t) + θ1p(t)

θ2p(t)

∫ t

0
[(
θ1(s)

θ2(t)
+
θ1p(s)

θ2p(t)
)σĝif

+ (
θ2(s)

θ2(t)
− θ2p(s)

θ2p(t)
)σĝiπ ]dWs

(61)
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ĝiπ,t =ĝif,0

1
θ1(t) −

1
θ1p(t)

θ2(t)
θ1(t) + θ2p(t)

θ1p(t)

+ ĝiπ,0

1
θ1(t) + 1

θ1p(t)

θ2(t)
θ1(t) + θ2p(t)

θ1p(t)

+
1

θ2(t)
θ1(t) + θ2p(t)

θ1p(t)

∫ t

0
[(
θ1(s)

θ1(t)
− θ1p(s)

θ1p(t)
)σĝif

+ (
θ2(s)

θ1(t)
+
θ2p(s)

θ1p(t)
)σĝiπ ]dWs

(62)
where

σĝif
= {σiĝf ,δ, σĝif ,P , σĝif ,sf , σĝif ,sπ ,−σff ,−σfπ}

σĝiπ = {σĝiπ ,δ, σĝiπ ,P , σĝiπ ,sf , σĝiπ ,sπ ,−σπf ,−σππ}

dWs = {dZδs , dZPs , dZ
sf
s , dZ

sπ
s , dZ

f
s , dZ

π
s }′

(63)

and θ1(t), θ2(t), θ1p(t), θ2p(t) are solutions to two systems of matrix def-
ferential equations: [

θ′1(t)
θ′2(t)

]
=

[
ψiff ψifπ
ψiππ ψiπf

] [
θ1(t)
θ2(t)

]
(64)

[
θ1p
′(t)

θ2p
′(t)

]
=

[
ψiff −ψifπ
ψiππ −ψiπf

] [
θ1p(t)
θ2p(t)

]
(65)

The solution to each θ function is a linear combination of two exponential
functions if the corresponding coefficient matrix is of full rank, or just one
exponential function if the corresponding coefficient matrix has rank of one.
For neat notations, I omit the “i” in all the θ functions.

ĝif,t and ĝiπ,t are jointly normally distributed. After obtaining their means
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and variances, the exact discretization is as below:

ĝif,t+∆ = ĝif,t

1
θ2(∆) + 1

θ2p(∆)

θ1(∆)
θ2(∆) + θ1p(∆)

θ2p(∆)

+ ĝiπ,t

1
θ2(∆) −

1
θ2p(∆)

θ1(∆)
θ2(∆) + θ1p(∆)

θ2p(∆)

+ (
I(
√∫ ∆

0 (( θ1(s)
θ2(∆) + θ1p(s)

θ2p(∆))σĝif ,δ
+ ( θ2(s)

θ2(∆) −
θ2p(s)
θ2p(∆))σĝiπ ,δ)

2ds)

θ1(∆)
θ2(∆) + θ1p(∆)

θ2p(∆)

Wδ,∆

+
I(
√∫ ∆

0 (( θ1(s)
θ2(∆) + θ1p(s)

θ2p(∆))σĝif ,P
+ ( θ2(s)

θ2(∆) −
θ2p(s)
θ2p(∆))σĝiπ ,P )2ds)

θ1(∆)
θ2(∆) + θ1p(∆)

θ2p(∆)

WP,∆

+
I(
√∫ ∆

0 (( θ1(s)
θ2(∆) + θ1p(s)

θ2p(∆))σĝif ,sf
+ ( θ2(s)

θ2(∆) −
θ2p(s)
θ2p(∆))σĝiπ ,sf )2ds)

θ1(∆)
θ2(∆) + θ1p(∆)

θ2p(∆)

Wsf ,∆

+
I(
√∫ ∆

0 (( θ1(s)
θ2(∆) + θ1p(s)

θ2p(∆))σĝif ,sπ
+ ( θ2(s)

θ2(∆) −
θ2p(s)
θ2p(∆))σĝiπ ,sπ)2ds)

θ1(∆)
θ2(∆) + θ1p(∆)

θ2p(∆)

Wsπ ,∆

−
I(
√∫ ∆

0 (( θ1(s)
θ2(∆) + θ1p(s)

θ2p(∆))σff + ( θ2(s)
θ2(∆) −

θ2p(s)
θ2p(∆))σπf )2ds)

θ1(∆)
θ2(∆) + θ1p(∆)

θ2p(∆)

Wf,∆

−
I(
√∫ ∆

0 (( θ1(s)
θ2(∆) + θ1p(s)

θ2p(∆))σfπ + ( θ2(s)
θ2(∆) −

θ2p(s)
θ2p(∆))σππ)2ds)

θ1(∆)
θ2(∆) + θ1p(∆)

θ2p(∆)

Wπ,∆

(66)
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ĝiπ,t+∆ = ĝif,0

1
θ1(∆) −

1
θ1p(∆)

θ2(∆)
θ1(∆) + θ2p(∆)

θ1p(∆)

+ ĝiπ,0

1
θ1(∆) + 1

θ1p(∆)

θ2(∆)
θ1(∆) + θ2p(∆)

θ1p(∆)

+
I(
√∫ ∆

0 (( θ1(s)
θ1(∆) −

θ1p(s)
θ1p(∆))σĝif ,δ

+ ( θ2(s)
θ1(∆) + θ2p(s)

θ1p(∆))σĝiπ ,δ)
2ds)

θ2(∆)
θ1(∆) + θ2p(∆)

θ1p(∆)

Wδ,∆

+
I(
√∫ ∆

0 (( θ1(s)
θ1(∆) −

θ1p(s)
θ1p(∆))σĝif ,P

+ ( θ2(s)
θ1(∆) + θ2p(s)

θ1p(∆))σĝiπ ,P )2ds)

θ2(∆)
θ1(∆) + θ2p(∆)

θ1p(∆)

WP,∆

+
I(
√∫ ∆

0 (( θ1(s)
θ1(∆) −

θ1p(s)
θ1p(∆))σĝif ,sf

+ ( θ2(s)
θ1(∆) + θ2p(s)

θ1p(∆))σĝiπ ,sf )2ds)

θ2(∆)
θ1(∆) + θ2p(∆)

θ1p(∆)

Wsf ,∆

+
I(
√∫ ∆

0 (( θ1(s)
θ1(∆) −

θ1p(s)
θ1p(∆))σĝif ,sπ

+ ( θ2(s)
θ1(∆) + θ2p(s)

θ1p(∆))σĝiπ ,sπ)2ds)

θ2(∆)
θ1(∆) + θ2p(∆)

θ1p(∆)

Wsπ ,∆

−
I(
√∫ ∆

0 (( θ1(s)
θ1(∆) −

θ1p(s)
θ1p(∆))σff + ( θ2(s)

θ1(∆) + θ2p(s)
θ1p(∆))σπf )2ds)

θ2(∆)
θ1(∆) + θ2p(∆)

θ1p(∆)

Wf,∆

−
I(
√∫ ∆

0 (( θ1(s)
θ1(∆) −

θ1p(s)
θ1p(∆))σfπ + ( θ2(s)

θ1(∆) + θ2p(s)
θ1p(∆))σππ)2ds)

θ2(∆)
θ1(∆) + θ2p(∆)

θ1p(∆)

Wπ,∆

(67)

where I(
√∫ ∆

0 x(s)2ds) =


√∫ ∆

0 x(s)2ds if x(s) > 0

−
√∫ ∆

0 x(s)2ds if x(s) < 0
(s < 0 < ∆), so

I is a sign indicator function to keep the sign of Brownnian parts consistent
with that of their volatility across all ĝi.

B Tables and Figures
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Table 1: The Converged Estimates of Fundamental Processes

This table lists all the estimates of aggregate dividend growth and inflation from the
E-M Approach. The aggregate dividend is proxied by annual reported earnings of
S&P 500. The inflation is proxied by the CPI index in CRSP. The variances are
obtained from the inverse of Fisher Information matrix.

Parameter Symbol Value Variance
Long-term average growth rate f̄ .01 4.6×10−5

of aggregate dividend
Volatility of aggregate dividend σδδ .066 -2.2×10−4

on dividend shock
Volatility of aggregate dividend σδP .003 -5.2×10−4

on inflation shock
Mean-reverting parameter ζf .12 3.7×10−3

of aggregate dividend growth
Long-term average growth rate π̄ .018 3.4×10−5

of inflation
Volatility of inflation σPδ .00047 -1.5×10−5

on dividend shock
Volatility of inflation σPP .011 -9.1×10−5

on inflation shock
Mean-reverting parameter ζπ .03 4.8×10−4

of inflation
Variance of aggregate dividend σ2

ff + σ2
fπ 3.5×10−5 4.03×10−11

growth rate
Variance of inflation rate σ2

πf + σ2
ππ 4.4×10−6 2.56×10−13

Covariance of aggregate dividend σffσπf 2.1×10−6 2.02×10−12

growth rate and inflation rate +σfπσππ
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Table 2: The predictive regression of stock-bond price correlation

This table shows the regression of the historical time-series of the correlation between
Treasurys bond prices and S&P 500 index levels on the model implied time-series of the
stock-bond correlation. The regressions are specified with the maturity of the bond. It
also shows the regression of historical correlation between 10-year Treasury bond and
S&P 500 index on itself up to two lags.

Independent Variable coefficient P-value R2

T 2 3.18 .0002 .24
T 5 3.14 .027 .18
T 10 2.85 .015 .11
T 30 3.85 .027 .12
TIPS 5 -1.76 .4 .03
TIPS 10 -4.8 .05 .18
TIPS 30 -5.1 .1 .14
T 10t−1 .12 .38 .015
T 20t−2 .17 .22 .028
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Table 3: The predictive regression of stock-bond return correlation

This table shows the regression of the historical time-series of the correlation between
Treasurys bond returns and S&P 500 index returns on the model implied time-series of
the stock-bond correlation. The regressions are specified with the maturity of the bond.
The regression specification is as below.

Corrt = constant+ βImpliedCorrt

Corrt = constant+ βImpliedCorrt + β1Corrt−1

Corrt = constant+ βImpliedCorrt + β1Corrt−1 + β2Corrt−2

Corr β β1 β2 AdjustedR2

T 2 2.6(1.4×10−8) .55
T 2 2.0(8.7×10−4) .23(.16) .56
T 2 1.8(8.6×10−3) .21(.23) .094(.58) .54
T 5 3.4(1.3×10−11) .54
T 5 2.2(1.7×10−4) .29(.04) .62
T 5 2.2(1.7×10−3) .26(.07) .07(.58) .62
T 10 4.2(2.8×10−12) .53
T 10 2.7(2.6×10−4) .37(.007) .67
T 10 2.5(1.4×10−3) .34(.02) .058(.68) .66
T 30 5.8(1.0×10−10) .65
T 30 3.9(1.0×10−3) .34(.035) .69
T 30 3.5(.014) .34(.056) .07(.68) .68
TIPS 5 -.65(.38) -.011
TIPS 5 -.91(.3) -.021(.93) -.04
TIPS 5 1.2(.21) .033(.89) -.47(.06) .12
TIPS 10 1.4(.14) .062
TIPS 10 .58(.58) .044(.84) -.08
TIPS 10 1.2(.36) .022(.93) -.3(.23) -.074
TIPS 30 1.6(.15) .06
TIPS 30 .99(.47) .16(.52) -.02
TIPS 30 1.7(.34) .17(.51) -.31(.3) -.06
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Table 4: Robustness:The predictive regression of stock-bond return correla-
tion

This table shows the regression of the historical time-series of the correlation between
Treasurys bond returns and S&P 500 index returns on the model implied time-series of
the stock-bond correlation. The regressions are specified with the maturity of the bond.
The regression specification is the same as that in Table 3, but the variables are
standardized.

Corr β β1 β2 R2

T 2 .75(1.4×10−8) .55
T 2 .58(8.7×10−4) .23(.16) .56
T 2 .16(.0086) .064(.23) .029(.58) .54
T 5 .78(1.3×10−11) .6
T 5 .57(1.4×10−4) .28(.054) .63
T 5 .53(.0022) .26(.087) .069(.64) .62
T 10 .79(2.8×10−12) .62
T 10 .54(1.8×10−4) .33(.014) .67
T 10 .52(.0017) .33(.034) .04(.78) .66
T 30 .81(1.0×10−10) .65
T 30 .56(.001) .34(.035) .69
T 30 .49(.014) .34(.056) .07(.68) .68
TIPS 5 -.2(.38) -.011
TIPS 5 -.28(.3) -.021(.93) -.048
TIPS 5 -.36(.21) -.033(.89) -.47(.056) .12
TIPS 10 .33(.144) .062
TIPS 10 .13(.58) .044(.84) -.086
TIPS 10 .28(.36) .022(.93) -.3(.23) -.074
TIPS 30 .33(.15) .06
TIPS 30 .2(.47) .16(.52) -.024
TIPS 30 .34(.34) -.31(.3) .17(.051) -.06
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Table 5: The regressions of dispersions in Survey of Professional Forecasters

This table shows the regression of dispersions of forecasts of real GDP growth and
inflation on the model-implied disagreements. The dependent variables list the tickers of
dispersions, and the independent variables list the tickers of disagreements. RGDP is
short for real GDP growth. CPI refers to the dispersion in CPI level forecast. CPI ratio
is the ratio of dispersion in CPI

Dependent Variable Independent Variable coefficient P-value R2

RGDP dividend growth -1.6 .00099 .2
CPI inflation 61.6 8.1×10−6 .44
CPI ratio inflation 15081 6.7×10−10 .67
RGDP inflation 7.35 .82 .0011
RGDP inflation ratio 7.4 .8 .0011
CPI dividend growth .17 .5 .013
CPI ratio dividend growth -40.99 .42 .018
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Figure 1: The annual correlation between S&P 500 and 5/10/30 year US
Treasury bond based on daily returns

Figure 2: The annual correlation between S&P 500 and 5/10/30 year US
TIPS based on daily returns
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Figure 3: The convergence of f̄

Figure 4: The convergence of Cov(f, π)

Figure 5: The convergence of σδδ
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Figure 6: The final consumption share distribution of group A

Figure 7: The correlation between nominal bond and single-payment stock

Figure 8: The correlation between nominal bond and stock
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Figure 9: The distribution of simulated correlation between 5 year nominal
bond and stock

Figure 10: The distribution of simulated correlation between 10-year nomi-
nal bond and stock

48



Figure 11: The distribution of simulated correlation between 30 year nominal
bond and stock

Figure 12: Impulse response of g̃Af and g̃Bf to Zδ
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Figure 13: The conditional correlation between nominal bond and stock
against risk aversion and bond maturity

Figure 14: The conditional correlation between nominal bond and stock
against disagreements
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Figure 15: The conditional correlation between nominal bond and stock
against the consumption share of group A

Figure 16: The fit of model-implied bond-stock correlation and the historical
stock-bond correlation series
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Figure 17: The time series of implied disagreements on aggregate dividend
growth rate

Figure 18: The time series of implied disagreements on inflation

Figure 19: The time series of group A’s consumption share
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Figure 20: The conditional correlation between nominal bonds and stock
implied by the model

Figure 21: The fit of model-implied PE ratio and the historical PE ratio
series

Figure 22: The fit of model-implied 10-year nominal bond price and the
historical T10 price series
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