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policy may be optimal in the presence of non—positive domestic interest

rates.

Keywords: Quanto Options; American Options; Valuation; Op-

timal Exercise; Negative Interest Rates; Currency Markets.

1 Introduction

Quanto options are derivatives written on a foreign security. In the most

common call and put options on foreign stocks or indexes the exchange rate

is fixed and settled at the beginning of the contract. The exchange rate

can be fixed at the forward level (typically with the same maturity of the

option), or the level of the initial spot exchange rate. The foreign risky

security has a domestic risk neutral drift that is different from the domestic

riskless interest rate (diminished by dividend yield, if any). This makes

quanto options sensibly different from plain vanilla options (see Chapter 17

in Hull [8]). Moreover, quanto options come very frequently in the American

variety, so that they can be exercised during their whole life.

In a parsimonious diffusive model (see Bjork [4]) we provide an exhaus-

tive characterization of the optimal exercise policies of American quanto

put options, that depend on the payoff structure as well as on the interplay

between the domestic and the foreign riskless interest rate. In particular,

we show that in the presence of a domestic non-positive short-term interest

rate (as for instance the Euro denominated or the Yen denominated mar-

kets) and of a foreign positive short-term interest rate (as for instance the

US Dollar denominated market) these options may exhibit unusual optimal

exercise policies. We show by means of a numerical example that as the

sign of the domestic interest rate rd changes form positive to negative a non-

standard double continuation can appear. Battauz, De Donno and Sbuelz

(2015) determine suffi cient conditions for the emergence of a double contin-
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uation region for American perpetual put options. It follows that the same

conditions are suffi cient also for the finite maturity case. Since such condi-

tions are quite restrictive in the proximity of the expiration date, Battauz,

De Donno and Sbuelz (2015) work out a necessary condition for the finite

maturity case. We contribute by providing examples of quanto options that

can be reduced to put options exhibiting a non standard double continuation

region in the finite maturity case, without meeting the suffi cient perpetual

condition.

2 American quanto options in a lognormal cur-

rency market

We consider a frictionless continuous-time market, modeled through a sto-

chastic basis (Ω,F , (Ft)0≤t≤T , P ) satisfying the usual assumptions (in the

sense of Definitions I.1.2 and I.1.3 in [9]). Let Bd(t) = erdt be the domes-

tic riskless bond price, where rd is the constant domestic riskless interest

rate. Denote with Bf (t) = erf t the foreign riskless bond price, where rf is

the constant foreign riskless interest rate and with Sf = {Sf (t)}t∈[0,T ] the

foreign risky security price described by

dSf (t)

Sf (t)
= µfdt+ σf dW

P (t)

where WP is the <2-Brownian motion under the historical probability mea-

sure P with respect to the filtration F and σf is the <2−vector of volatilities
of the foreign security. Let Gf be the cumulative gain process obtained by

buying 1 unit of the the foreign risky security at the initial date t = 0. If

the foreign security pays a continuous dividend yield qf and the dividend

qfSf (t)dt is continuously reinvested in the security Sf , the value of the cu-
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mulative gain process at t is

Gf (t) = eqf t Sf (t)

and its differential

dGf (t) = eqf tdSf (t) + qfSf (t)dt = Gf (t)
(
(µf + qf ) dt+ σf dW

P (t)
)
.

(2.1)

The two markets are connected via the foreign to domestic exchange rate

X. If, for instance, we pick the Euro market as the domestic one and the US

market as the foreign one, X is the dollar to euros exchange rate. Assume

that X is lognormal and driven by

dX(t)

X(t)
= µXdt+ σX dWP (t)

under the historical probability measure P (σX is an <2−vector). For sake
of notation we will denote the scalar product of two vectors σ1, σ2 ∈ <2

with σ1σ2. The following proposition describes the domestic risk neutral

distribution of the assets in the market and the forward rate. The proof

extends the arguments of Chapter 17 in Bjork [4], to the case of a dividend-

paying foreign asset.

Proposition 2.1 The domestic risk neutral dynamics of the foreign risky

security price is
dSf (t)

Sf (t)
= µQf dt+ σf dW

Q(t)

where WQ is a <2−Brownian motion, Q denotes the domestic risk neutral

measure and µQf = rf − qf − σfσX . The exchange rate is

dX(t)

X(t)
= µQXdt+ σX dWQ(t)

with µQX = rd − rf . The correlation between the foreign security Sf and the
exchange rate X is

ρ =
σf · σX
‖σf‖ ‖σX‖

.
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The domestic-denominated foreign security price S∗f (t) = Sf (t)X(t) is

driven by

dS∗f (t) = S∗f (t)
[
(rd − qf ) dt+

(
σX + σf

)
dWQ(t)

]
.

The forward exchange rate F0, i.e. the number of units of domestic currency

settled at t = 0 to receive one unit of the foreign currency at the maturity T

is

F0 = EQ [X(T )] = X(0) eµ
Q
XT = X0e

(rd−rf)T .

Proof. Let B∗f (t) = Bf (t)X(t). B∗f and S
∗
f are both risky domestic securi-

ties. Then, exploiting the integration by parts’formula and observing that

the covariation between Bf and X is 0, we have

dB∗f (t) = d (Bf (t)X(t)) = X(t)dBf (t) +Bf (t)dX(t) =

= B∗f (t)
[(
rf + µQX

)
dt+ σX dWQ(t)

]
and no-arbitrage implies

rf + µQX = rd

delivering

µQX = rd − rf .

Consider the cumulative gain process denominated in domestic currency

G∗f (t) = Gf (t)X(t).

The differential of Gf in Equation (2.1) can be rewritten with respect to the

domestic risk neutral measure Q as

dGf (t) = dGf (t) = eqf tdSf (t)+qfSf (t)dt = Gf (t)
((
µQf + qf

)
dt+ σf dW

Q(t)
)
.

Ito formula implies

dG∗f (t) = d(Gf (t)X(t)) = X(t)dGf (t) +Gf (t)dX(t) + σfGf (t)σXX(t)dt =

= G∗f (t)
[(
µQf + qf + µQX + σfσX

)
dt+

(
σX + σf

)
dWQ(t)

]
.
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No-arbitrage implies that G∗f discounted at the rate rd is a Q−martingale,
i.e. the domestic-risk neutral drift of G∗f equals rd. This delivers the equation

µQf + qf + µQX + σfσX = rd,

which implies

µQf = rf − qf − σfσX .

The equation for S∗f becomes

dS∗f (t) = S∗f (t)
[(
µQf + µQX + σfσX

)
dt+

(
σX + σf

)
dWQ(t)

]
= S∗f (t)

[(
rf − qf − σfσX + rd − rf + σfσX

)
dt+

(
σX + σf

)
dWQ(t)

]
= S∗f (t)

[
(rd − qf ) dt+ (σX + σf ) dWQ(t)

]
The forward exchange rate F0, i.e. the number of units of domestic currency

settled at t = 0 to receive one unit of the foreign currency at the maturity

T, is determined by

EQ
[
e−rdT (1 ·X(T )− F0)

]
= 0

that implies the following relation between the forward and the spot ex-

change rate in terms of the domestic and foreign interest rates:

F0 = EQ [X(T )] = X(0) eµ
Q
XT = X0e

(rd−rf)T . �

Quanto put options have different payoffs, depending on contract spec-

ifications. In Equation (2.2), the time t instantaneous payoff has a foreign-

denominated strike Kf and is converted in domestic currency at the floating

exchange rate at exercise:

V (t) = sup
t≤τ≤T

EQ
[
e−rd(T−t) X(τ) (Kf − Sf (τ))+

∣∣Ft] (2.2)

In this case the American quanto option coincides with the foreign American

option, converted in domestic currency at the current floating exchange rate.
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Thus early exercise is optimal for the American quanto put option if the

foreign underlying risky security enters the optimal early exercise region of

the American put option (see Proposition 2.3).

But American quanto options are more appealing to investors, if the

currency risk is reduced. This goal is achieved by settling a domestic de-

nominated strike priceKd as in (2.3) , where the foreign security is converted

in domestic currency at the floating exchange rate at exercise,

V (t) = sup
t≤τ≤T

EQ
[
e−rd(T−t) (Kd −X(τ)Sf (τ))+

∣∣Ft] (2.3)

or, as in Equation (2.4), where the strike price is denominated in domestic

currency and the exchange rate for conversion at any exercise date is fixed

at its initial spot level

V (t) = sup
t≤τ≤T

EQ
[
e−rd(T−t) (Kd −X0Sf (τ))+

∣∣Ft] . (2.4)

A similar payoffstructure in Equation (2.5)maintains the domestic-denominated

strike price and fixes the exchange rate at the initial forward level:

V (t) = sup
t≤τ≤T

EQ
[
e−rd(T−t) (Kd − F0Sf (τ))+

∣∣Ft] . (2.5)

In another popular version of the quanto option, the strike price is denom-

inated in the foreign currency and the payoff converted at the initial spot

exchange rate

V (t) = sup
t≤τ≤T

EQ
[
e−rd(T−t) X0 · (Kf − Sf (τ))+

∣∣Ft] (2.6)

We introduce now a template to classify and characterize the optimal

exercise policy of American quanto put options in terms of American put

options for various combination in the level, sign and hierarchy of the key
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paramteres rd, rf and the volatility vectors σf and σX . Let B
Q be a one-

dimensional Q−Brownian motion and denote with

v(t, s;µ, σ, δ,K) = sup
0≤Θ≤T−t

EQ

[
e−δΘ

(
K − s · exp

((
µ− σ2

2

)
Θ + σBQ(Θ)

))+
]

(2.7)

the time−t value of an American put option on a lognormal security with
drift µ, volatility σ, interest rate δ, strike price K and maturity T. The

drift can be expressed as drift µ = δ − q, where q is the dividend yield.

Throughout our analysis we assume σ > 0.

Denote by

v∞(s;µ, σ, δ,K) = sup
0≤Θ≤∞

EQ

[
e−δΘ

(
K − s · exp

((
µ− σ2

2

)
Θ + σBQ(Θ)

))+
]

(2.8)

the value of the perpetual American put option. Obviously,

(K − s)+ ≤ v(t, s;µ, σ, δ,K) ≤ v∞(s;µ, σ, δ,K), for all t ∈ [0, T ] ,

no matter of the parameters’values. Hence, if there exists an optimal early

exercise opportunity for the perpetual put option, this is also the case for

the finite-maturity one.

In Theorem 2.2 we provide a comprehensive description of the optimal

early exercise region for American put options on a lognormal underlying

asset in case of positive, zero, and negative interest rates. The resulting

asymptotic behavior of the critical price at maturity depends also on the

interplay with the underlying risk neutral drift.

In particular, Theorem 2.2, Point 1, focuses on the standard case of a

positive interest rate δ. When δ > 0, it is well known that there exists a

constant critical price that triggers optimal early exercise for the perpetual

option and the American put option value is finite (see also Remark 2.1). On

the contrary, when the interest rate δ is negative, the perpetual American
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put option may have an infinite value. Assumption (2.13) in Theorem 2.2,

Point 4, ensures that the perpetual put option has a finite value and displays

optimal early exercise opportunities above (resp. below) an upper (resp.

lower) constant critical price (see also Proposition 2.2 in De Donno and

Sbuelz [3]). As a consequence, the finite maturity put option does also have

optimal early exercise opportunities above (resp. below) an upper (resp.

lower) critical price. However, Assumption (2.13) is not satisfied in many

practical examples, that display optimal early exercise opportunities in the

finite-maturity case only (see Section 4). Therefore, in Theorem 2.2 Point 5,

we extend the results of Theorem 2.4 in Battauz, De Donno and Sbuelz [3] to

describe the asymptotics of the upper and lower critical prices at maturity

under the milder condition of the existence of some optimal early exercise

opportunity.

Theorem 2.2 1. If δ > 0, early exercise is optimal for the perpetual

American put option when the underlying price S(t) ≤ Sc∞, where Sc∞
is the (constant) critical price of the perpetual American put option,

Sc∞ = − α

1− αK < K, A =
(Sc∞)1−α

−α > 0, (2.9)

and

α =
−
(
µ− σ2

2

)
−
√(

µ− σ2

2

)2
+ 2δσ2

σ2
< 0. (2.10)

The perpetual put value is

v∞(s;µ, σ, δ,K) =


Asα for s > Sc∞

K − s for s ≤ Sc∞.

(2.11)

Moreover, if 0 ≤ µ = δ−q ≤ δ the finite-maturity critical price is such
that

lim
t→T

Sc(t) = K
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with

lim
t→T

K − Sc(t)
σK
√

(T − t) ln γ
(T−t)

= 1 if µ > 0,

where γ = σ2

8πµ2
, and

lim
t→T

K − Sc(t)
σK
√

(T − t) ln 1
(T−t)

=
√

2 if µ = 0.

If µ = δ − q < 0 < δ the finite-maturity critical price is such that

Sc(T−) = lim
t→T

Sc(t) =
δ

q
K < K

with

lim
t→T

Sc(T−)− Sc(t)
Sc(T−)σ

√
(T − t)

= y∗,

where y∗ ≈ −0.638 is the number such that

φ (y) = sup
0≤Θ≤1

E

 Θ∫
0

(y +B (s)) ds

 = 0 (2.12)

for all y ≤ y∗ and φ (y) > 0 for all y > y∗.

2. If δ ≤ 0, and µ ≤ 0 i.e. q ≥ 0, then early exercise is never optimal,

and the value of the American put option coincides with the European

one.

3. If δ = 0, and µ − σ2

2 > 0, then α in Equation (2.10) becomes α =

−2
(
µ−σ

2

2

)
σ2

< 0. There exists a unique critical price Sc(t) ≤ Sc∞, with

Sc∞ defined in Equation (2.9) , and

Sc(t)−K ∼ −Kσ

√
(T − t) ln

σ2

8π (T − t)µ2
as t→ T

4. If δ < 0,

µ− σ2

2
> 0, and

(
µ− σ2

2

)2

+ 2δσ2 > 0, (2.13)

10



then the perpetual American put option value v∞ is

v∞(x) =


Al · xξl for x ∈ (0; l∞)

K − x for x ∈ [l∞;u∞]

Au · xξu for x ∈ (u∞; +∞)

(2.14)

where ξu < ξl are the negative solutions of the equation

1

2
σ2ξ2 +

(
µ− σ2

2

)
ξ − δ = 0, (2.15)

The critical prices are

l∞, u∞ = K
ξi

ξi − 1
for i = l, u (2.16)

and the constant Al and Au are given by

Al = −(l∞)1−ξl

ξl
and Au = −(u∞)1−ξu

ξu
. (2.17)

There exist a lower critical price l(t) and an upper critical price u(t) such

that
δK

δ − µ ≤ l(t) < u(t) ≤ K (2.18)

such that the finite-maturity American put option is optimally exer-

cised at t if S (t) ∈ [l(t), u(t)] and optimally continued if S (t) < l (t)

or S (t) > u (t) . Moreover,

u(t)−K ∼ −Kσ

√
(T − t) ln

σ2

8π (T − t)µ2
for t→ T (2.19)

The lower free boundary satisfies

l(t)− δK

δ − µ ∼
δK

δ − µ

(
−y∗σ

√
(T − t)

)
for t→ T (2.20)

where y∗ ≈ −0.638 is the number defined in Equation (2.12) .
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5. If δ < 0, and there exists x > 0 such that the finite-maturity American

put option is optimally exercised at t ∈ (0, T ) if S
(
t
)

= x, then the

segment with extremes

l(t) = inf
{
s ≥ 0 : v(t, s;µ, σ, δ,K) = (K − s)+} (2.21)

u(t) = sup
{
s ≥ 0 : v(t, s) = (K − s)+} ∧K (2.22)

is non-empty for any t ∈
[
t, T
]
. The option is optimally exercised at

any t ≥ t whenever S (t) ∈ [l (t) , u (t)] . The lower and the upper free

boundary branches satisfy the inequality (2.18) for any t ≥ t as well

as the asymptotics (2.20) and (2.19).

Proof. When δ > 0 and 0 < µ = δ − q < δ or µ < 0 < δ, the asymptotics

of Sc(t) at maturity are determined by Evans, Kuske and Keller [7], and

further improved by De Marco and Henry-Labordè [5]. For the case δ > 0

and 0 = µ the asymptotics are provided in Theorem 3 in Lamberton and

Villeneuve [10]. Hence Point 1 and 3 are proved.

If δ ≤ 0, and q = δ − µ ≥ 0, then Jensen inequality implies that for any

0 < Θ ≤ T − t

EQ

[
e−δΘ

(
K − s · exp

((
µ− σ2

2

)
Θ + σBQ(Θ)

))+
]
≥

≥ e−δΘ
(
K − s · eµΘ

)+
=
(
Ke−δΘ − s · e−qΘ

)+

>
(
K − s · e−qΘ

)+
since e−δΘ > 1

≥ (K − s)+ since e−qΘ ≤ 1.

Since (K − s)+ , the immediate payoff at t, is dominated by the continuation

value at any future 0 < Θ ≤ T − t, exercise is optimal at T only. In the

limiting case δ = 0, if µ ≤ 0 i.e. q ≥ 0, then early exercise is never optimal,

12



and the value of the American put option coincides with the European one.

Indeed, if δ = 0 and µ ≤ 0 Equation (2.15) does not admit any negative

solution. Hence Point 2 follows.

If δ < 0, and q = δ − µ < 0, then early exercise may be optimal even in

the perpetual case. The proof follows by Proposition 2.2, and the geometry

and the asymptotics for the finite-maturity critical prices can be retrieved

by Theorems 2.3 and 2.4 in Battauz, De Donno and Sbuelz [3]. Point 4

follows.

Consider now Point 5. If there exists x > 0 such that the finite-maturity

American put option is optimally exercised at t ∈ (0, T ) if S
(
t
)

= x, then

early exercise is optimal for all t ≥ t and S (t) = x since

(K − x)+ ≤ v(t, x;µ, σ, δ,K) ≤ v(t, x;µ, σ, δ,K) = (K − x)+ ,

where the first inequality follows by the payoffvalue dominance of the Amer-

ican option, and the second inequality as the American option value is de-

creasing with respect to time t. Since v(t, 0;µ, σ, δ,K) = Ke−δ(T−t) > K =

(K − 0)+ , as δ < 0, it follows that l (t) > 0 for all t ∈
(
t, T
)
. The remaining

part of Point 5 follows by the proof of Theorems 2.3 and 2.4 in Battauz, De

Donno and Sbuelz [3] restricted to t ∈
[
t, T
]
. �

Remark 2.1 We comment here Assumption (2.13) . Intuitively, a suffi cient

condition for the existence of optimal early exercise of the perpetual put with

value v∞ is (
µ− σ2

2

)2

+ 2δσ2 > 0. (2.23)

Condition (2.23) ensures that the function v∞(x) = Asα has at least one

tangency point with the immediate put payoff in the extreme(s) of the early

exercise region. This condition is always satisfied when δ ≥ 0. The tangency
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equation has always two real opposite solutions

α =
−
(
µ− σ2

2

)
−
√(

µ− σ2

2

)2
+ 2δσ2

σ2
< 0

α+ =
−
(
µ− σ2

2

)
+

√(
µ− σ2

2

)2
+ 2δσ2

σ2
> 0,

no matter of the sign of µ. Therefore the perpetual American put option

admits the representation of Equation (2.11) , and it is optimally exercised

when the underlying is below the unique critical price Sc∞. If δ < 0, Con-

dition (2.23) is not always true. Battauz, De Donno and Sbuelz [3] show

in Proposition 2.2 (see also [2]) that a suffi cient condition for the existence

of optimal early exercise of the perpetual put v∞ is (2.13) . This conditions

ensures the existence of the two real negative roots of the tangency equation

(2.15) .

The suffi cient condition (2.13) may not be true, even if binomial ap-

proximations show that the finite-maturity American put option displays

optimal early exercise opportunities. These cases satisfy a necessary condi-

tion for early exercise established in Proposition 2.5 in Battauz, De Donno

and Sbuelz [3]. For the ease of the reader, we state the necessary condition

(2.24) herefollows.

Condition 2.1 (necessary condition for early exercise, negative in-

terest rate). If δ < 0 and µ > 0 a necessary condition for the optimal

exercise of the finite-maturity American put option at t ∈ [0;T ) is

N−1
(
eδ(T−t)

)
−N−1

(
e(δ−µ)(T−t)

)
≥ σ
√
T − t, (2.24)

where N−1 (·) denotes the inverse of the standard normal cumulative distri-
bution function.
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Assumption 2.1 Condition 2.2 (necessary condition for early

Conditions (2.24) and (2.13) point in the same direction, requiring the

growth rate of the underlying µ to be relatively high compared to the (neg-

ative) interest rate δ. However, condition (2.24) is definitely milder than

(2.13) , as we one can see also in the examples of our numerical section

for American quanto put options. In particular, condition (2.24) forces the

European put option ve

ve(t, x;µ, σ, δ,K) = Ke−δ(T−t)N (z)− xe(µ−δ)(T−t)N
(
z − σ

√
(T − t)

)
,

(2.25)

with N (y) denoting the distribution function of a standard normal random

variable, and z =
(

ln K
x −

(
µ− σ2

2

)
(T − t)

)
1

σ
√
T−t , to fall below the imme-

diate payoff at t for some values of the underlying. In fact, if this is not the

case and the European option always dominates the immediate payoff at t

for all values of the underlying x, then there is no optimal exercise for the

American option at t.

In the next propositions we rewrite the American quanto put options in

terms of American put options on a lognormal (onedimensional) security. We

start from the option defined in Equation (2.2) , whose behavior is unaffected

by rd.

Proposition 2.3 Consider the American quanto put option defined in Equa-

tion (2.2) . Then

V (t) = sup
t≤τ≤T

EQ
[
e−rd(T−t) X(τ) (Kf − Sf (τ))+

∣∣Ft] =

= X(t) · v(t, Sf (t); rf − qf , ‖σf‖ , rf ,Kf ),

i.e. the American quanto put option price coincides with the foreign Ameri-

can put option price converted at the current spot exchange rate. Therefore,
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early exercise is optimal at t if Sf (t) is in the early exercise region of the

foreign American put option v(t, Sf (t); rf − qf , ‖σf‖ , rf ,Kf ) as described in

Theorem 2.2 with δ = rf , µ = rf − qf , σ = ‖σf‖ , and K = Kf .

Proof. Let Ñ (t) = X(t)e(rf−rd)t the numeraire (see Battauz [1]) associated

to the equivalent probability measure QN , whose density is

dQN

dQ
=
Ñ (T )

Ñ (0)
.

Bayes’theorem implies that

V (t) = sup
t≤τ≤T

EQ
[
e−rd(τ−t) X(τ) (Kf − Sf (τ))+

∣∣Ft]

= sup
t≤τ≤T

EQ
N
[
dQ
dQN

e−rd(τ−t) X(τ) (Kf − Sf (τ))+
∣∣Ft]

EQN
[
dQ
dQN

∣∣∣Ft]

= sup
t≤τ≤T

EQ
N

[
X(0)

X(τ)e(rf−rd)τ
e−rd(τ−t) X(τ) (Kf − Sf (τ))+

∣∣Ft]
X(0)

X(t)e(rf−rd)t

= X(t) sup
t≤τ≤T

EQ
N
[
e−rf (τ−t) (Kf − Sf (τ))+

∣∣Ft] .
The factor

sup
t≤τ≤T

EQ
N
[
e−rf (τ−t) (Kf − Sf (τ))+

∣∣Ft]
is the foreign price of the American put option on Sf if the QN−drift of Sf
coincides with the foreign riskless interest rate rf . Indeed, Girsanov theorem

implies that the process

dWN (t) = −σf dt + dWQ (t)

is a 2−dimensional QN Brownian motion. Therefore

dSf (t)

Sf (t)
= µQf dt+ σf dW

Q(t)

=
(
rf − qf − σfσX

)
dt+ σf

(
dWN (t) + σf dt

)
= (rf − qf ) dt+ σf dW

N (t) ,
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and thus the QN−distribution of Sf coincides with its foreign risk-neutral
distribution. The American quanto option coincides with

V (t) = X(t) · v(t, Sf (t); rf − qf , ‖σf‖ , rf ,Kf ),

and the rest of the proposition follows by applying Theorem 2.2 with δ = rf ,

µ = rf − qf , σ = ‖σf‖ , and K = Kf . �
In the previous proposition we have shown that the price of the Ameri-

can quanto put option in Equation (2.2) coincides with the foreign American

put option price converted at the current spot exchange rate. Intuitively,

if the domestic investor buys the option (2.2) , she has the right to the get

the foreign-denominated payoff (Kf − Sf (τ))+ whenever exercised at τ with

t ≤ τ ≤ T. The domestic denominated value of the payoff (Kf − Sf (τ))+ ex-

ercised at τ is X(τ) (Kf − Sf (τ))+ . The same right is obtained by entering a

long position on the foreign put with (Kf − Sf (τ))+ at exercise date τ, whose

price at time t in domestic currency units isX(t)·v(t, Sf (t); rf , ‖σf‖ , rf ,Kf ).

In Proposition 2.3 we have characterized the optimal exercise policies

for the American quanto option defined in Equation (2.2) , whose behavior

depends only on the foreign riskless rate rf .

In the next section we focus on American quanto put options defined

in Equations (2.3) , (2.4) , (2.5) , (2.6), whose behavior depends on both the

domestic rate rd and the foreign rate rf .

3 American quanto options and the interplay with

the sign of the riskless rates

Our first step consists in reducing American quanto put options (2.3) , (2.4) ,

(2.5) and (2.6) to American put options. This characterization, which is

done in the following lemma, will allow us to work out the optimal exercise

policies for American quanto options in Propositions 3.1 and 3.2.
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Lemma 3.1 The no-arbitrage price of the option (2.3) can be computed as

V (t) = sup
t≤τ≤T

EQ
[
e−rd(T−t) (Kd −X(τ)Sf (τ))+

∣∣Ft]
= v(t,X(t)Sf (t); rd − qf , ‖σX + σf‖ , rd,Kd)

The option in (2.4) can be computed as

V (t) = v(t,X0 · Sf (t);µQf , ‖σf‖ , rd,Kd)

and the option (2.5) as

V (t) = v(t, F0 · Sf (t);µQf , ‖σf‖ , rd,Kd),

and (2.6) as

V (t) = v(t,X0 · Sf (t);µQf , ‖σf‖ , rd, X0 ·Kf )

= X0v(t, Sf (t);µQf , ‖σf‖ , rd,Kf ).

Proof. The underlying of the option in Equation (2.3) is the lognormal

S∗f (t) = X(t)Sf (t), whose domestic risk neutral drift is rd and whose volatil-

ity vector is σX + σf as from Equation (2.1) . This yields the formula for

(2.3) . In the remaining options (2.4) and (2.5) the underlying Sf is de-

nominated in the domestic currency by using the constant initial spot ex-

change rate X0 in option (2.4) , and the constant initial forward exchange

rate F0 in option (2.5) . Thus the domestic risk neutral underlying drift is

µQf , its volatility is σf and its initial level is multiplied by the constant X0

in option (2.4) , and the constant initial forward exchange rate F0 in op-

tion (2.5) . In the last option (2.6) , both the strike price and the foreign

security are denominated in the domestic currency by using the constant

initial spot exchange rate. Therefore, the domestic risk neutral underlying

Sf drift is µ
Q
f , its volatility is σf , and both the initial underlying value

and the strike price are then multiplied by X0. Because of the put payoff
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homogeneity, we then obtain V (t) = v(t,X0 · Sf (t);µQf , ‖σf‖ , rd, X0 · Kf )

= X0v(t, Sf (t);µQf , ‖σf‖ , rd,Kf ). �

In order to describe in detail the optimal exercise policies for options

(2.3) , (2.4) , (2.5)and (2.6) we distinguish two main cases.

• Case 1: rd ≥ 0.

This is the traditional assumption on non-negative domestic interest

rate. We solve the problem in Proposition 3.1.

• Case 2: rd < 0.

The case of a negative domestic interest rate has attracted the interest

of the financial literature, due to the persistence of negative interest

rates in the European and in the Japanese markets. We address it in

Proposition 3.2.

Proposition 3.1 Suppose rd ≥ 0. Then

1. For the option (2.3) there exists a critical price at t, Sc(t) such that

early exercise is optimal at t if

X(t)Sf (t) ≤ Sc(t).

If rd > qf then

lim
t→T

Sc(t) = Kd

lim
t→T

Kd − Sc(t)
‖σf + σX‖Kd

√
(T − t) ln γ

(T−t)

= 1 where γ =
‖σf + σX‖2

8π (rd − qf )2 .

If qf = rd

lim
t→T

Kd − Sc(t)
‖σf + σX‖Kd

√
(T − t) ln 1

(T−t)

=
√

2.
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If qf > rd > 0 we have that

Sc(T−) = lim
t→T

Sc(t) =
rd
qf
Kd < Kd

with

lim
t→T

Sc(T−)− Sc(t)
Sc(T−) ‖σf + σX‖

√
(T − t)

= y∗,

where y∗ ≈ −0.638 is defined in (2.12) .

2. For the option (2.4) there exists a critical price at t, Sc(t), such that

early exercise is optimal at t if

X0Sf (t) ≤ Sc(t).

Set q∗ = qf + rd − rf + σfσX . If rd > q∗ i.e. qf − rf + σfσX < 0 then

lim
t→T

Sc(t) = Kd

with

lim
t→T

Kd − Sc(t)
‖σf‖Kd

√
(T − t) ln γ

(T−t)

= 1 where γ =
‖σf‖2

8π (rf − qf − σXσf )2 .

If q∗ = rd,

lim
t→T

Kd − Sc(t)
‖σf‖Kd

√
(T − t) ln 1

(T−t)

=
√

2

If q∗ > rd > 0, i.e. qf − rf + σfσX > 0, we have that

Sc(T−) = lim
t→T

Sc(t) =
rd
q∗
Kd < Kd

with

lim
t→T

Sc(T−)− Sc(t)
Sc(T−) ‖σf‖

√
(T − t)

= y∗,

where y∗ ≈ −0.638 is defined in (2.12) .
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3. For the option (2.5) there exists a critical price at t, Sc(t), such that

early exercise is optimal at t if

F0Sf (t) ≤ Sc(t).

The limits and the asymptotics for Sc(t) at maturity coincide with the

ones described for the option (2.4) in Point 2.

4. For the option (2.6) there exists a critical price at t, Sc(t), such that

early exercise is optimal at t if

Sf (t) ≤ Sc(t).

The limits and the asymptotics for Sc(t) at maturity coincide with the

ones described for the option (2.4) in Point 2.

Proof. The proof follows by applying Theorem 2.2 and Lemma 3.1. In

particular Point 1 follows with

δ = rd, µ = rd − qf , σ = ‖σf + σX‖ , K = Kf .

Points 2, 3 and 4 follow with

δ = rf , µ = rf − qf − σXσf , σ = ‖σf‖ , K = Kf . �

Proposition 3.2 Suppose rd < 0.

1. Consider the option (2.3) . Its underlying drift is rd − qf < 0 and the

American quanto option is optimally exercised at maturity only.
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2. Consider the option (2.4) . If µQf = rf − qf − σfσX < 0, then the

American quanto option is optimally exercised at maturity only.

If µQf −
‖σf‖2

2 = rf − qf − σfσX −
‖σf‖2

2 > 0, and(
rf − qf − σfσX −

‖σf‖2

2

)2

+ 2rd ‖σf‖
2 > 0, (3.1)

holds (or, resp., if there exists x > 0 such that the finite-maturity

American quanto put option (2.4) is optimally exercised at t ∈ (0, T )

when X0Sf (t) = x), then there exist two critical prices at t, l(t) < u(t),

such that early exercise is optimal at t if

l(t) ≤ X0Sf (t) ≤ u(t),

and continuation is optimal at t if

X0Sf (t) < l(t) or X0Sf (t) > u(t),

for all t ∈ [0, T ] (resp. for all t ∈
[
t, T
]
). Moreover

u(t)−Kd ∼ −Kd ‖σf‖

√√√√√(T − t) ln
‖σf‖2

8π (T − t)
(
rf − qf − σfσX

)2 .

For t→ T , the lower free boundary satisfies

l(t)− rdKd

rd −
(
rf − qf − σfσX

) ∼ rdKd

rd −
(
rf − qf − σfσX

) (−y∗ ‖σf‖√(T − t)
)
,

where y∗ ≈ −0.638 is defined in (2.12) .

3. Consider the option (2.5) . If µQf = rf − qf − σfσX < 0, then the

American quanto option is optimally exercised at maturity only.

If µQf = rf − qf − σfσX > 0, and (3.1) holds (or, resp., if there exists

x > 0 such that the finite-maturity American quanto put option (2.5)
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is optimally exercised at t ∈ (0, T ) when F0Sf (t) = x), then there exist

two critical prices at t, l(t) < u(t), such that early exercise is optimal

at t if

l(t) ≤ F0Sf (t) ≤ u(t),

and continuation is optimal at t if

F0Sf (t) < l(t) or F0Sf (t) > u(t),

for all t ∈ [0, T ] (resp. for all t ∈
[
t, T
]
).The limits and the asymptotics

of the critical prices at maturity coincide with the ones computed for

the option (2.4).

4. Consider the option (2.6) . If µQf = rf − qf − σfσX < 0, then the

American quanto option is optimally exercised at maturity only.

If µQf = rf − qf − σfσX > 0, and (3.1) holds (or, resp., if there exists

x > 0 such that the finite-maturity American quanto put option (2.6)

is optimally exercised at t ∈ (0, T ) when Sf (t) = x), then there exist

two critical prices at t, l(t) < u(t), such that early exercise is optimal

at t if

l(t) ≤ Sf (t) ≤ u(t),

and continuation is optimal at t if

Sf (t) < l(t) or Sf (t) > u(t),

for all t ∈ [0, T ] (resp. for all t ∈
[
t, T
]
). The limits and the asymp-

totics of the critical prices at maturity coincide with the previous ones

computed for the options (2.4) and (2.5) .

Proof. The proof follows by applying Theorem 2.2 and Lemma 3.1, as

explained in the proof of Proposition 3.1. �
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We observe that the critical prices described in Propositions 3.1 and 3.2 for

the American quanto options of Equations (2.3) , (2.4) and (2.5) are all ex-

pressed in domestic currency. Early exercise occurs at t if Sf (t), converted

in the domestic currency according to the payoff definition, enters the early

exercise region determined by the (domestic) critical price. On the con-

trary, for the American quanto option of Equation (2.6) the critical price is

expressed in foreign currency units.

Finite maturity American quanto options may display optimal early ex-

ercise opportunities, even if the corresponding perpetual American quanto

options do not admit finite perpetual free boundaries. This happens when

assumption (3.1) is not verified, but the necessary condition translating con-

dition (2.24) for the different payoff’s specifications holds true. We state the

condition here follows for the quanto options.

Proposition 3.3 (Necessary condition for early exercise of Ameri-

can quanto options when when rd < 0 and µQf = rf−qf−σfσX > 0) A

necessary condition for the optimal exercise of the finite-maturity American

quanto put option (2.4), (2.5) and (2.6) is

N−1
(
erdT

)
−N−1

(
e(rd−µ

Q
f )T
)
≥ ‖σf‖

√
T . (3.2)

where σf = ‖σf‖.

Proof. The necessary condition 2.24 found in Proposition 2.5 in Battauz,

De Donno and Sbuelz [3] requires the European put option to fall below its

payoff at t for some value of the underlying. For the quanto options this

corresponds to the existence of xm such that

ve(t, xm;µQf , ‖σf‖ , rd,K) = (K − xm)+

where K = Kd and xm = X0 · Sf (t) for the American quanto option (2.4) ,

K = Kd and xm = F0 · Sf (t) for the American quanto option (2.5) , and
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K = Kf and xm = Sf (t) for the American quanto option (2.6) . Then the

remaining part of the proof of Proposition 2.5 in Battauz, De Donno and

Sbuelz [3] follows. Assumption (3.2) is necessary for the existence of optimal

exercise opportunities at date t = 0. If early exercise is optimal at any date

t ∈ [0, T ] for some xm, it is also optimal for all future dates for the same

xm, as the American quanto options (2.4) , (2.5) , and (2.6) are decreasing

with respect to t. �

Remark 3.1 In this paper we have focused on American quanto put op-

tions. Via the American put-call symmetry, our results do also apply to

symmetric American quanto call options (see for instance Proposition 3.1

in Battauz, De Donno and Sbuelz [3]).

4 Numerical Examples

In this section we provide examples of American quanto options to show

how the domestic interest rate contributes in shaping their free boundaries.

To streamline our analysis we focus on the American quanto option with

payoff (2.6), that can be reduced to the American put option

V (t) = sup
t≤τ≤T

EQ
[
e−rd(T−t) X0 · (Kf − Sf (τ))+

∣∣Ft]
= X0v(t, Sf (t);µQf , ‖σf‖ , rd,Kf ),

following Lemma 3.1. We first introduce an example with a positive interest

rate, and then move to the case of a domestic negative interest rate. Option

prices are computed via binomial approximation (see Hull, 2018), setting

the upwards and downards coeffi cients

u = e‖σf‖
√

∆t, d = e−‖σf‖
√

∆t
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and the risk-neutral probability of an upwards movement

q =
eµ

Q
f ∆t − d
u− d

We fix

rd = +0.90%, rf = 2%, X (0) = 0.94, ‖σX‖ = 7.8%

‖σf‖ = 10%, ρ = −1%, and qf = 0,

that deliver

µQf = rf − qf − ρ ‖σf‖ ‖σX‖ = 2.008%

For an American quanto put option (2.6) deeply in-the-money at inception

with Sf (0) = 0.5 and Kf = 1, maturity T = 6 months and N = 125 time

steps we obtain

∆t = 0.004, u = 1.006, d = 0, 994, and q = 50.47%.

We take an initial in-the-money underlying value because we want to inves-

tigate what happens within our binomial model in the deeply in-the-money

region during the option life. In Figure 1 the binomial tree Sf is delimited

by the grey diamonds. We compute the upper (and unique) free boundary

by taking at any t the maximum underlying value within the early exercise

region at t, namely

u (t) = max
(
Sf (t) : X0 (Kf − Sf (t))+ = V (t)

)
,

among the binomial realizations of Sf (t) at t. The upper free boudary is

plotted in Figure 1 with the blue dots, starting after 103 consequent upwards

movements, where the continuation region begins. The asymptotic approxi-

mation for the free boundary at maturity obtained in Proposition 3.1 is plot-

ted with blue stars and is very closed to the binomial upper free boundary.
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The flat perpetual boundary,valued 0.78, is dotted with blue circles in Fig-

ure 1. As the initial underlying value Sf (0) is below both the perpetual and

the finite maturity free boundary, the initial value of both the perpetual and

the finite maturity binomial option is X0 ·(Kf − Sf (0))+ = 0.94 ·0.5 = 0.47.

Figure 1. The free boundary when rd is positive.

We then assign to the domestic riskless interest rate a opposite negative

value, rd = −0.90%, keeping all the other parameters unchanged.

In this case, conditions (3.1) and (3.2) are met. A double continua-

tion region appears. Its existence is remarkable, because it violates the

usual property of down-connectedness of the exercise region of put options,

that has been established in quite general settings (see Detemple and Tian,

2002). The perpetual lower and upper free boundaires are, resp., 0.45 and

0.68. Again, the price of the perpetual option coincides with its immedi-

ate payoff 0.47. The underlying binomial tree is unchanged, as the domestic

riskless interest rate rd = −0.90% does not enter the domestic risk-neutral

dynamics of the foreign risky security. The binomial upper (resp. lower)
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free boundary is computed by taking at any t the maximum (resp. the

minimum) underlying value within the early exercise region at t, namely

u (t) = max
(
Sf (t) : X0 (Kf − Sf (t))+ = V (t)

)
l (t) = min

(
Sf (t) : X0 (Kf − Sf (t))+ = V (t)

)
among the binomial realizations of Sf (t) at t. In Figure 2 the binomial

tree is delimited by grey diamonds. The standard part of the continuation

region appears in the upper region of the tree after 103 upwards movements,

that push the American Quanto put option towards the out-of-the-money

region. The non-standard part of the continuation region appears in the very

deeply in-the-money region, below the perpetual lower free boundary, after

73 downwards movements. In Figure 2 we plot with blue (resp. red) dots the

upper (resp. lower) binomial free boundary. The asymptotic approximation

for the upper (resp. lower) free boundary obtained in Proposition 3.2 are

plotted with blue (resp. red) stars. The flat perpetual upper (resp. lower)

boundary is plotted with blue (resp. red) circles. As the initial value Sf (0)

is within the early exercise region, the initial price of the finite-maturity

option coincides with its immediate payoff 0.47.
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Figure 2. The double free boundaries when rd is negative.

Finally, we focus on US underlying assets, calibrating our parameters

over the period December, 15th, 2015 to December, 15th, 2016, and eval-

uating Quanto options on December 14th 2016 (data source: Bloomberg).

The euro yield curve is negative and the US yield curve is positive, thus

fitting into assumptions of 3.2. In particular, on December 14th 2016, the

euro and the US yield curves are reported in Table 1.

Table 1: The EU and US Yield Curves

TTM EU Percent. Yield US Percent. Yield

30d −0.97% 0.64%

90d −0.91% 0.54%

180d −0.80% 0.69%

270d −0.80%

360d −0.80% 0.89%
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Since our model allows us only constant interest rates, we fix the rates

at the intermediate level rd = −0.80% for the euro, and rf = 0.69% for

the USD. On the same date, the exchange spot rate X (0) = 0.94 (the in-

verse eurodollar is 1/0.94 = 1. 06). The volatility of the exchange rate X is

‖σX‖ = 8%. We select US stocks from different sectors, Johnson and John-

son’s (JNJ), Microsoft (MSFT), Amazon (AMZN), and Apple (AAPL.0).

The stocks display different levels of volatility and correlation with the ex-

change rate X over the period under investigation, that are reported in the

first two rows of Table 2. The third row displays the stock risk neutral drift

µQf = rf − qf − ρ ‖σf‖ ‖σX‖ , under the assumption qf = 0.

Table 2: Stock parameters values

JNJ MSFT AMZN AAPL.0

‖σf‖ 14% 23% 30% 13.7%

ρ −0.5% 6% −1, 7% −0.09%

µQf 0.7% 0.6% 0.7% 0.7%

The correlation is slightly negative, but in the Microsoft case, where is pos-

itive. Interestingly, Assumption (2.13) that ensures the boundedness of the

perpetual American quanto option is never true. On the contrary, the nec-

essary finite- maturity condition (3.2) is satisfied over the 6 months option

maturity. American quanto put options (2.6) with 6 months maturity on

these stocks display a non-standard deeply in the money continuation re-

gion. We provide here the details for an American quanto put option (2.6)

on the JNJ stock. We set the maturity T = 6, and in-the-money initial

values Sf (0) = 1 and Kf = 1.15. With N = 125 time steps we obtain

∆t = 0.004, u = 1.009, d = 0, 992, and q = 49.94%.

In Figure 3 the binomial tree for the JNJ stock is delimited by the grey

diamonds. The blue (resp. red) dots denote the upper (resp. the lower)
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binomial free boundary. As from Proposition 3.2, the upper free boundary

converges at maturity to the strike price Kf = 1.15. The left-limit of the

lower free boundary at T is 0.6. The asymptotic approximation for the upper

(resp. lower) free boundary obtained in Proposition 3.2 are plotted with blue

(resp. red) stars. The asymptotic approximations for both the upper and

lower free boundary are very closed to the binomial boundaries over the

entire option life. There exist no perpetual constant barriers in this case, as

Assumption (2.13) is violated and the perpetual option is unbounded.

Figure 3. Quanto put option on JNJ stock. The early exercise region is

delimited between the dotted blue and red lines (the blue and red stars denote

the asymptotic approximations provided in Proposition 3.2).

These examples show how a non-standard double continuation region

appears for finite maturity American quanto put options under real circum-

stances. Interestingly, when the maturity of these options tends to infinite,

the value of the perpetual American quanto put options becomes unbounded,

because the tendence to infinite postponement, due to negative domestic in-
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terest rates, prevails. Hence in the perpetual case early exercise is never

optimal, the early exercise region is empty, and there is no free boundary.

5 Conclusion

In a diffusive currency market model we have studied the interplay of the

signs of the domestic and the foreign riskfree rate with the optimal exer-

cise policies for American quanto options. In particular, we have shown

that, given a positive foreign riskless rate, a negative domestic riskless rate

(as it is currently true for the European and the Japanese markets), may

lead to the existence of a double continuation region for American quanto

options written on a foreign risky security. We have also shown examples

of finite maturity American quanto put options that exhibit a double con-

tinuation region surrounding a non-empty early exercise region even if the

perpetual early exercise region is empty and the value of the perpetual op-

tion is unbounded. In this case, we have also provided accurate asymptotic

approximations for the free boundaries at maturity.
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