
1 
 

The volatility surface for real option analysis: The case of renewable and 

traditional energy projects 

Juan M. Gutiérrez 

Universidad de los Andes, School of Management 

Calle 21 # 1-20, Bogotá, Colombia 

Tel: +5713324144 
E-mail:  jm.gutierrez2478 @uniandes.edu.co 

 
Enrique Molina 

Universidad de los Andes, School of Management 

Calle 21 # 1-20, Bogotá, Colombia 

Tel: +5713324144 
E-mail:  je.molina35 @uniandes.edu.co 

 
Andrés Mora-Valencia* 

Universidad de los Andes, School of Management 

Calle 21 # 1-20, Bogotá, Colombia 

Tel: +5713324144 
E-mail: a.mora262@uniandes.edu.co 

 
Javier Perote 

University of Salamanca (IME) 
Campus Miguel de Unamuno (Edif. F.E.S.), 37007 Salamanca, Spain 

Tel: + 34923294640 Ext 3515 
E-mail: perote@usal.es 

 
 

*Presenting Author 
 

Abstract 

The aim of this paper is to provide a suitable method to estimate the volatility parameter 

for the purpose of real option project valuation, especially that of renewable and 

traditional energy projects. The method is based on the concept of implied volatility of 

financial options. Then, we obtain implied volatilities for renewable and traditional 

energy firms by using their debt-to-equity ratios instead of “moneyness” or the strike 

price used in the case of financial options. For a given debt-to-equity relation of the 

project, the implied volatility is obtained by employing the stochastic alpha-beta-rho 

(SABR) model. Our methodology may be extended to find the volatility of any real option 
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project, subject to the availability of market data. Our empirical results show that the 

annual volatility for renewable energy projects ranged between 16.44% and 38.15% in 

the period from April 2014 to June 2016. 

Keywords: Renewable energy investment, Real Options, Volatility Surface, SABR Model 

EFM classification code: 430 – Real Options 

 

1. Introduction 

Renewable sources of energy (e.g., biomass, hydropower, geothermal, wind power, solar 

power, etc.) are increasing their market share at the expense of other sources, but more 

progress needs to be made before renewables play an important role in slowing the effects 

of climate change. Nevertheless, of late, the valuation of renewable energy projects by 

employing real options is gaining in importance (Davis et al., 2003; Kumbaroğlu et al., 

2008; Fernandes et al., 2011; Martínez-Ceseña and Mutale, 2011; Boomsma et al., 2012; 

Min et al., 2012; Detert and Kotani, 2013; Monjas-Barroso and Balibrea-Iniesta, 2013). 

The advantage of real options is the possibility of incorporating managerial flexibility in 

the valuation of projects with uncertainty, especially that of traditional and renewable 

energy projects. 

However, one shortcoming that arises during the use of real options is the estimation of 

the volatility parameter. For new and renewable energy investments, the absence of 

historical and market data makes the volatility estimation challenging. Moreover, in real 

options literature, there is no consensus on the best method to employ for the calculation 

of this parameter. It is worth mentioning that in the reviewed literature, no proposal was 

found that aimed at providing traditional and renewable energy firms with a tool that 

would allow them to adequately compute the volatility. Several studies of renewable 

energy projects employ the volatility of the WTI price, electricity price, or some other 
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commodity price, either directly or as an input in Monte Carlo simulations (Santos et al., 

2014; Zhang et al., 2014; Ritzenhofen and Spinler, 2016; Zhang et al. 2017). However, 

the volatility of some projects is higher than that of commodity prices (Costa Lima and 

Suslick, 2006a). 

The aim of this paper is to provide a suitable method to estimate the volatility parameter 

for firms in the traditional and renewable energy sectors and use real options to evaluate 

their projects. Depending on the debt-to-equity level of the project, the firm may use an 

implied volatility estimated from the market data of peers. Thus, the estimation procedure 

of implied volatility for real options resembles the methodology employed to calculate 

the implied volatility in financial options. In this paper, we employ different levels of 

debt-to-equity, rather than different values of the “moneyness,” to derive the volatility 

surface under the real options framework. To the best of our knowledge, this is the first 

attempt to ascertain the project volatility depending on the capital structure of traditional 

and renewable energy projects, and we hope that this method will become the standard 

for the industry. In derivatives, one of the reasons for the volatility of the underlying price 

is the leverage relation; this is because the enterprise value is the sum of the stock and 

debt values. Thus, our proposal is a natural and straightforward approach to estimate the 

volatility for real options. The estimation and analysis of volatility is not only important 

for an accurate assessment of the project value, but also crucial for strategic decisions. 

This is because higher volatility may delay the investment decision (Dixit and Pindick, 

1994) and increase the owner’s value, but decrease the manager’s value (Cui and Shibata, 

2017). 

The remainder of this paper is organized as follows. Section 2 presents a brief description 

of the framework of real options and volatility estimation. Section 3 introduces a 

description of the methodology employed to estimate the project volatility. Section 4 
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presents an analysis of the results of the research conducted. Section 5 presents the main 

conclusions of the paper. 

 

2. Basics of real options and volatility estimation 

 

2.1 Real options theory 

Traditional valuation methods, such as the discounted cash flows (DCF), have limited 

applicability to new and renewable energy projects. For example, the DCF method does 

not take into account flexibility of investment decisions and is not suitable for energy 

projects owing to its high volatility. Thus, real options seem to be a more suitable method 

for the valuation of these types of projects (See Jang et al., 2013, and the references 

therein). According to Kogut and Kulatilaka (2001), a real option refers to “an investment 

decision that is characterized by uncertainty, the provision of future managerial discretion 

to be exercised at the appropriate time, and irreversibility.” Hence, real options provide 

the manager the possibility of taking actions of a strategic nature in the future, 

incorporating the concept of flexibility that is absent in traditional project valuation 

approaches. The tool for flexibility is based on the financial option theory. In financial 

options, the value of a call or put option, generally, depends on five variables: stock price, 

strike price, time to maturity, risk-free interest rate, and volatility. For plain vanilla 

options, the four first variables are known, right from the moment of signing the option 

contract. However, the most difficult variable to estimate is the volatility, since the 

dynamics of the value of the underlying asset will depend on this variable during the 

contract’s lifetime. There is a close relation between real options and financial options, 
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and Table 1 presents the analogy between the main variables of a project and a call option, 

which is commonly observed in the literature on real options. 

Table 1. Analogy between the variables of real option projects and financial call options 

Project (Real option) Variable Call option (Financial option) 

Present value of expected cash flows ܵ Stock price 

Present value of investment outlays ܫ Strike price 

Length of deferral time ܶ Time to maturity 

Time value of money (discount rate) ݎ Risk-free rate 

Volatility of project’s return ߪ Volatility of stock returns 

 

This analogy allows the implementation of an approach similar to the one used for implied 

volatility in the financial option industry for real option analysis (ROA). Although there 

are different types of real options, Trigeorgis (2000) lists the defer, alter operating scale, 

time-to-build, abandon, switch, and growth options as the most common ones. For a 

recent review of the literature on real option valuation in the renewable energy sector, 

please refer to Kozlova (2017). 

Although ROA has been favorably received by the academic and practitioner 

communities, one of the main debates on its use centers around the estimation of the 

volatility to be incorporated in the valuation of the investment projects; this is because, 

in most cases, volatility is not an observable variable (Davis, 1998) and plays a 

determining role in the outcome of the investment evaluation process (Dotsis et al., 2012). 

Furthermore, there is no theoretical justification method for calculating the volatility 

parameter for real options (Lewis et al., 2008). The next subsection presents several 

methods to estimate this parameter for ROA. 
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2.2 Volatility estimation methods 

Different methodologies have been proposed to estimate the volatility. The main methods 

used to estimate this parameter are market asset disclaimer (MAD) method, market proxy 

approach (MPA), and implied volatility. In the MAD method, it is assumed that the 

underlying asset is the project value without options and follows a geometric Brownian 

motion (GBM). Then, a Monte Carlo simulation is employed to estimate the volatility of 

the GBM. The main assumption is that present value of the project without options is the 

best unbiased estimator of the project’s market value (Copeland and Antikarov, 2001). 

However, one of the disadvantages of this method is that the Monte Carlo simulation 

tends to overestimate the volatility of the cash flows (Godinho, 2006; Brandao et al., 

2012). 

On the other hand, MPA takes the volatility of stock returns of similar companies listed 

on the stock exchange and adjusts it by using the financial leverage ratio. If it is assumed 

that the enterprise value of the firm (ܸ) is given by the sum of a firm’s stock (ܧ) and debt 

 then ,(ܦ)

ܸ = + ܧ   (1)      .ܦ 

Moreover, the dynamics of the value of the firm is captured by 

ܸ݀ =  ௏ܸܼ݀,      (2)ߪ

where ܼ݀ is a Brownian motion. From equation (1), ܧ = ܸ −  ܦ and by assuming that ,ܦ 

is not stochastic, we get 

ௗா

ா
=

ௗ௏

ா
,      (3) 

and replacing ܸ݀, the following equation is obtained 
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ௗா

ா
=

ఙೇ௏ௗ௓

ா
=

ఙೇ(ாା஽)ௗ௓

ா
.      (4) 

Using expression (2) for ܸ݀, we can assume that dynamics of stock value is given by 

ܧ݀ =  (5)      .ܼ݀ܧாߪ

By equating equation (4) and (5), we obtain 

ఙೇ(ாା஽)ௗ௓

ா
=  ாܼ݀,      (6)ߪ

and by finding ߪ௏ , we can obtain the volatility of the firm by MPA 

ܣܲܯߪ =
ܧߪ

ܦ+1 ⁄ܧ
,       (7) 

where ܧߪ is the equity volatility obtained from the market, and ܦ ⁄ܧ  is the debt-to-equity 

ratio. The expression in equation (7) will be employed as an initial value for the volatility 

estimation in our paper. The main disadvantage of this method is that volatility estimation 

could be distorted by different factors including financial bubbles and investors’ 

overreaction.  

A third method for the volatility estimation is the implied volatility approach. To estimate 

this parameter for financial options, the volatility that satisfies the BS option pricing 

formula is found to get the market price of the European option. In our case, the implied 

volatility for real options is the volatility that makes the value of a company equal to its 

market value. A similar approach was proposed by Brach and Paxson (2001), but the 

authors suggest that a stock with volatility similar to the analyzed project should be found. 

The practical disadvantage is that is difficult to find such a “twin” stock.  

In financial options, it is common to obtain a graph of the implied volatility against the 

strike price or moneyness. For real options, we will use the debt-to-equity relation instead 

of the moneyness or strike price. To this end, our methodology is based on Merton’s 
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model (1974), in which the value of equity can be seen as a call option on the firm’s 

assets. Under the assumption that the firm value follows a GBM, the debt and equity 

values satisfy the BS partial differential equation. The main assumption of our 

methodology is that the project volatility is the same as that of the firm. 

As previously mentioned, one drawback of ROA is the assumption of constant volatility 

during the project’s lifetime. Several studies propose a method to allow volatility to vary 

along the life of a real option (Cassimon et al., 2011; Ting et al., 2013; Čulík, 2016). A 

review of some of the abovementioned methods and a comparison of different approaches 

to estimate volatility for a case study can be found in Nicholls et al. (2014). 

 

2.3 Implied volatility 

The main assumption of the BS model is that volatility is constant. Thus, a plot of 

volatility against both strike price and time to maturity should be a flat surface under the 

BS assumptions. In fact, during the previous stock market crash of October 1987, the 

volatility surface for index options was “relatively” flat. However, after the crash, the 

volatility varies depending on the strike price level and changes over time. Thus, the 

volatility surface exhibits a “smile” or “smirk” shape. This raises concern in the financial 

industry and academics about valuing and hedging the financial options. One of the idea 

proposed to value similar options was to extract the volatility from the BS formula using 

the market price of the options instead of the theoretical BS price, and plugging this into 

the formula to value a similar option. For certain observed option prices in the market 

( ௜݂,௠௞௧), the volatility is 

௜ߪ = ௜݂,஻ௌ
ିଵ ൫ܵ௧ , ,ݎ ,௜ܭ ௜ܶ , ௜݂,௠௞௧൯.   (8) 
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This “traded” volatility is the implied volatility which is commonly plotted against the 

strike price and time to maturity, which results in the volatility smile. 

Several approaches have been developed to model the volatility smile. The first approach 

models the stochastic dynamics of the stock price through a process that is more general 

than the GBM. The second approach models the implied volatility directly. Finally, a 

third approach is model-free and flexible. An example of the approach without a 

theoretical foundation is the vanna-volga method. There are several models based on the 

first approach. The first one is the local volatility model, where the realized volatility is 

allowed to vary deterministically according to time and the future stock price. In local 

volatility models, the stock price is the only stochastic factor. One of the most important 

local volatility models is the constant elasticity of variance (CEV) model introduced by 

Cox and Ross (1976). A second one is the stochastic volatility model, and the Heston 

(1993) model is an example. In contrast to local volatility models, stochastic volatility 

models account for two stochastic processes—one relates to stock price dynamics and the 

other to the volatility evolution. Moreover, the two processes may be correlated. The third 

type is referred to as the jump-diffusion model. This type was introduced by Merton 

(1976), and initially used to model a finite number of jumps. However, it is also possible 

to model an infinite number of jumps (Derman and Miller, 2016). The model employed 

in our paper to calibrate the implied volatility is the stochastic alpha-beta-rho (SABR) 

model, which can be classified as an extended local volatility model.  

 

3. Methodology 

The volatility estimation is performed by calculating the implied volatility of Merton 

(1976) model. The advantages of the model are its ability to provide accurate results and 

widespread acceptance among academics and practitioners. In this regard, Charitou et al. 
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(2013) point out that the model has been widely used to predict default probabilities and 

several structural models by employing iterative methods to estimate the value of the firm 

and its volatility. Our methodology is an extension of the one proposed in González-

Echeverri et al. (2015), since our proposal results in the volatility surface, that is, different 

implied volatilities on many occasions over a period of time. The authors apply the 

implied volatility methodology to valuate a real option in the healthcare industry. 

The approach is based on the Merton (1974) model, which establishes that the equity 

value corresponds to a call option on the assets of the firm. The firm value (ܸ) is given 

by the following expression (as in equation [1]) 

ܸ = + ܧ   (9)     ,ܦ 

where ܧ is the equity market value and ܦ corresponds to the debt’s face value. ܦ and ܧ 

satisfy the BS partial differential equation under the assumption that the firm value 

follows a GBM. Therefore, the equity value is given by the BS formula 

௧ܧ = ௧ܸܰ(݀ଵ) −  ௥(்ି௧)ܰ(݀ଶ),   (10)ି݁ܦ

where  

݀1 =
ln(ܸݐ ⁄ܦ )+൫ܸߪ+ݎ

2 2⁄ ൯√ܶ−ݐ

ݐ−ܶ√ܸߪ
;    (11) 

݀ଶ = ݀ଵ − ܶ√௏ߪ  −  (12)    ;ݐ

ܰ(݀ଵ) and ܰ(݀ଶ) represent the standard normal cumulative distribution functions; ܶ −

 ௏ corresponds to the firm volatility. The informationߪ is the time to maturity; and ݐ

required by this model is available from Bloomberg, except for ߪ௏ and ܦ. Hence, the 

following equation—obtained through Ito’s lemma—is required. 

ݐܧܧߪ =  (13)    ,ݐܸܸߪ(1݀)ܰ
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where ܧߪ corresponds to the equity volatility obtained from the market. Then, it is 

possible to solve two equations, that is, equations (10) and (13), and two unknowns ߪ௏ 

and ܦ. Our research interest is the firm volatility ߪ௏. The following steps describe the 

procedure for implementing our methodology. 

 

STEP 1. Collection and debugging data 

For renewable energy projects, information about stocks from the S&P/TSX Renewable 

Energy and Clean Technology Index1 is used to estimate the implied volatility as of July 

30, 2016. From the 19 stocks listed in the index, 15 stocks were considered due to 

information availability. For traditional energy projects, data on stocks from the S&P 

Global Oil Index2 is considered for the period from January 1, 2006 to June 30, 2016. Out 

of the 120 stocks in the index, 57 are listed on the New York Stock Exchange, and for the 

purpose of our study, 22 stocks are considered due to data availability. For information 

about renewable energy stocks and oil stocks, please refer to Appendix A and Appendix 

B, respectively. For each stock, the data corresponding to variables shown in Table 2 are 

downloaded from Bloomberg 

Table 2. Input Variables to Estimate the Implied Volatility 

Variable Symbol Ticker/Function 

Total debt to common equity ܦ ⁄ܧ  TOT_DEBT_TO_COM_EQY 

Current market capitalization ݐܧ CUR_MKT_CAP 

Current enterprise value ܸݐ CRNCY_ADJ_CURR_EV 

                                                             
1 “The S&P/TSX Renewable Energy and Clean Technology Index measures performance of companies 
listed on the TSX whose core business is the development of green technologies and sustainable 
infrastructure solutions. Constituents are screened by Sustainalytics, one of the world’s leading providers 
of environmental, social, and governance research and analysis.” Source: us.spindices.com. 
2 “This index measures the performance of 120 of the largest, publicly-traded companies engaged in oil & 
gas exploration and extraction & production from around the world. It provides global institutional 
investors exposure to stocks drawn from constituents of the S&P Global BMI.” Source: us.spindices.com. 
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Equity’s Volatility ܧߪ HVT (Close-to-Close method) 

Source: Bloomberg LP. 

The data is imported into Matlab and the following variable is computed 

 

ො଴ߪ =
ఙಶ

ଵା஽ ா⁄
,       (14) 

 

where ߪො଴ is the initial seed employed to find the implied volatility; it is the same as the 

MPA volatility. For the equity volatility, we obtain the following close-to-close method 

for Equity variance (ߪா
ଶ) from Bloomberg: 

ாߪ
ଶ =

ଵ

(ேିଵ)௱௧
∑ ቂln ቀ

ௌ೙

ௌ೙షభ
ቁ − ቀ

ଵ

ே
∑ ln ቀ

ௌ೙

ௌ೙షభ
ቁே

௡ୀଵ ቁቃ
ଶ

ே
௡ୀଵ ,   (15) 

where ܰ is the number of stock observations and ܵ௡ denotes the stock price. The 

observations are made after each interval of length (ݐ߂), that is, 

ܵ௡ = ଴ݐ)ܵ +  (16)      .(ݐ߂݊

This is an unbiased estimator for the variance parameter in a GBM with constant volatility 

and drift. Other methods to calculate historical equity volatility are available from 

Bloomberg. 

 

STEP 2. Implied volatility estimation 

By employing non-linear squares optimization tool from Matlab for each stock, the two 

unknowns—firm implied volatility (ܸߪ), and firm’s debt (ܦ)—from equations (10) and 

(13) are solved. The 10-year treasury bill rate, which is equal to 1.471%, is taken as the 

risk-free rate, and the time to maturity is 10 years. 
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STEP 3. Calibrating the implied volatility 

The SABR model (Hagan et al., 2002) is the most common methodology employed in the 

financial industry to calibrate the implied volatility for derivatives, and it will be used in 

our paper for the firm’s implied volatility. The advantage of the SABR model is that in it 

the volatility evolves over time, which is more realistic than assuming a constant 

volatility. As mentioned before, SABR model can be seen as an extended local volatility 

model. Following the Kienitz and Wetterau (2013) notation, the SABR model can be 

expressed through the following differential stochastic equations. 

(ݐ)ܵ݀ = (0)ܵ                        (ݐ)ఉܹ݀(ݐ)ܵ(ݐ)ߪ = ܵ଴, (17) 

(ݐ)ߪ݀ = (0)ߪ   (ݐ)ܼ݀(ݐ)ߪߥ =  ଴,  (18)ߪ

(ݐ)ܼ݀(ݐ)ܹ݀ =  (19)      .ݐ݀ߩ

 

Hence, SABR is a CEV model that include stochastic volatility (ݐ)ߪ, where ܵ(0) is the 

spot price of the underlying asset, and (0)ߪ is the volatility of the spot value. The 

parameters ߚ ,ߥ, and ߩ represent the volatility of the volatility process (ݐ)ߪ, the 

asymmetry, and the correlation between the Brownian motions ܹ݀(ݐ) and ܼ݀(ݐ), 

respectively. These parameters (ߚ ,ߥ, and ߩ) are constant and must satisfy ߥ ≥ 0;  0 ≤

ߚ ≤ 1;  and − 1 ≤ ߩ ≤ 1. By setting ߚ = 1 and ߥ = 0, we recover the traditional BS 

model. 

Through the application of perturbation techniques, Skinner (2011) obtains an expression 

for the calculation of the implied volatility as follows 
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,ܭ)SABRߪ ܶ) ≈ ܣ ቀ
ݖ

(ݖ)ݔ
ቁ  (20)     ,ܤ

ܣ =
ఙబ

(ௌ௄)
భషഁ

మ ൤ଵା
(భషഁ)మ

మర
୪୭୥మ(ௌ ௄⁄ )ା

(భషഁ)ర

భవమబ
୪୭୥ర(ௌ ௄⁄ )ା⋯൨

,  (21) 

ܤ = ቈ1 + ቆ
(ଵିఉ)మఙబ

మ

ଶସ(ௌ ௄⁄ )భషഁ +
ఘఉఙబ

ସ(ௌ௄)
భషഁ

మ

ߥ +
ଶିଷఘమ

ଶସ
ଶቇߥ ܶ + ⋯ ቉, (22) 

ݖ =
ఔ

ఙబ
(ܭܵ)

భషഁ
మ log(ܵ ⁄ܭ ),     (23) 

(ݖ)ݔ = log ൬
ඥଵିଶ௭ఘା௭మା௭ିఘ

ଵିఘ
൰.      (24) 

The implementation is performed in Matlab by employing the function blackvolbysabr, 

wherein the variable inputs are the implied volatilities estimated in step 2, and their 

respective debt-to-equity relations, instead of the moneyness (or strike price) as in the 

case of financial options. For more details about SABR model, please see Hagan et al. 

(2002), Rebonato et al. (2009), and Kienitz and Wetterau (2013). 

 

STEP 4. Volatility surface construction 

For each date, implied volatilities are estimated by following steps 1 and 2, and these 

volatilities are calibrated by employing the SABR model according to step 3. For a given 

date, the graph of implied volatility against the debt-to-equity ratio can be obtained. By 

combining graphs for different dates, the volatility surface is obtained. Then, for a given 

date and leverage ratio of a project, the (implied) volatility can be obtained to estimate 

the value of the project. It is worth mentioning that we employ the date of implied 

volatility estimation rather than the time to maturity used in the case of financial options. 
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4. Empirical results 

This section presents the results of applying the four-step procedure described in the 

methodology section. For renewable energy data, the volatility surface is obtained in 

Figure 1. 

 

Figure 1. Volatility surface for renewable energy data (monthly basis) 

 

Different values of implied volatility are obtained based on the analyzed period and the 

leverage ratio of the analyzed sample. The minimum implied volatility is 16.44% (ܦ ⁄ܧ =

0.45), whereas the maximum implied volatility is 38.15% (ܦ ⁄ܧ = 4.60). Monte Carlo 

simulations performed according to the procedure suggested by Martín-Barrera et al. 

(2016) determine a volatility of 30% for a renewable energy project. Kim et al. (2017) 

estimate a yearly volatility of 14.32% by using MAD approach for renewable energy 

projects in developing countries. 

From Figure 1, it is seen that the implied volatility is higher when the ratio debt-to-equity 

ܦ) ⁄ܧ ) ratio is high, which is consistent with financial theory. For a given date, a volatility 

“smirk” pattern is also observed and this is similar to the shape formed when analyzing 

stock derivatives because the main inputs in both cases are the equity prices and their 
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volatilities. On the contrary, a volatility “smile” is observed in foreign exchange 

derivatives, which is not the case here. The estimated parameters of the SABR model are 

presented in Figure 2. 

 

 

Figure 2. SABR estimated parameters for renewable energy data (monthly basis) 

 

The ߥ parameter (referred to as the “volvol”) is relatively stable during the sample period, 

but the volvol has its peak (around 0.6) in January 2016. In financial options, when the 

volvol parameter increases, the implied volatility increases for options deep in-the-money 

and deep out-of-the-money. This can be seen in Figure 3, where the estimated implied 

volatility increases more for the extreme debt-to-equity ratios from December 2015 to 

January 2016. 

 

Figure 3. Variation of volatility from December 2015 to January 2016 
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The ߪ଴ parameter is interpreted as the initial volatility, when the volatility process starts. 

The maximum value is in January 2016 and is equal to 23.54%. The ߩ parameter is the 

correlation between the two Brownian motions. The steeper the curve, the more negative 

is the ߩ parameter, and this is noted in January 2016, when the correlation is equal to 

−0.94. The ߚ parameter (called the backbone of implied volatility) is set as 0.5. The 

volatility surface obtained for the second set of data (oil data) is presented in Figure 4. 

 

 

Figure 4. Volatility surface for traditional energy data (monthly basis) 

 

From Figure 4, it can be seen that the minimum (maximum) implied volatility is 19.8% 

(107.1%) in October 2011 (January 2012). In a recent study on volatility of oil price, 

Abadie and Chamorro (2017) employ a long-term equilibrium volatility of 35.29% 

(February 2016) for valuation of an option to cover delay in crude oil production. Our 

results show a minimum (maximum) implied volatility of 59% (81.9%) in February 2016, 

a higher volatility compared to the study by Abadie and Chamorro (2017), and this 

difference can be noted in Figure 5. The latter presents a comparison of the minimum 
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estimated implied volatility according to our proposed methodology and the historical 

360-day volatility of WTI prices. 

 

 

Figure 5. Comparison of minimum and maximum implied volatilities and historical oil 

volatility (monthly basis) 

 

Figure 5 depicts the minimum and maximum implied volatilities obtained by the 

procedure described in the methodology section and the 360-day volatility of WTI 

obtained from Bloomberg on a monthly basis from January 2006 to June 2016. In general, 

the implied volatility for real option projects is higher than oil volatility, and this result is 

consistent with Costa Lima and Suslick (2006b). Finally, Figure 6 presents the parameter 

estimates of the SABR model for the oil case, and the interpretation is similar to that in 

the previous case. 
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Figure 6. SABR estimated parameters for traditional energy data (monthly basis) 

 

5. Conclusions 

This paper proposed a novel method to estimate volatility for new and renewable energy 

projects by following the real options analysis. This method is also applicable to 

traditional energy projects, such as the oil-based projects that are extensively studied in 

the literature and other types of projects for which market data is available. 

To the best of our knowledge, this is the first study to implement the volatility surface for 

renewable and traditional energy projects. The framework is based on the concept of 

implied volatility for financial options. We employed the debt-to-equity ratio for real 

options instead of the moneyness or strike price used in the case of financial options. To 

this end, we employed the SABR model to calibrate the implied volatilities. We described 

our proposal in a step-by-step procedure to be implemented to value renewable energy 

projects which involve flexibility in managerial decisions. 

In our empirical results, we found an implied volatility range from 16.44% to 38.15% in 

the period from April 2014 to June 2016 for renewable energy projects. For oil energy 

projects, the implied volatility varies between 19.8% and 107.1% during the January 2006 

to June 2016 period according to the leverage ratio used. 
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Future research can focus on the valuation of a real option as a case study involving 

renewable energy projects that employ the volatility estimation methodology proposed in 

our paper. Future research can also forecast the implied volatility proposed in our paper, 

since there is empirical evidence that extreme volatility in oil prices results in a decline 

in manufacturing activity (Elder and Serletis, 2011). Thus, the forecast of the implied 

volatility may help the manager take a decision on delaying or abandoning a project. 
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Appendix A. Stocks employed for renewable energy 

Ticker Company name 
ATP CT Equity Atlantic Power Corp 
DRT CT Equity DIRTT Environmental Solutions 
INE CT Equity Innergex Renewable Energy Inc 
WPT CT Equity Westport Fuel Systems Inc 
BEP-U CT Equity Brookfield Renewable Partners LP 
CAS CT Equity Cascades Inc 
NFI CT Equity New Flyer Industries Inc 
CLR CT Equity Clearwater Seafoods Inc 
RNW CT Equity TransAlta Renewables Inc 
BLD CT Equity Ballard Power Systems Inc 
AXY CT Equity Alterra Power Corp 
NPI CT Equity Northland Power Inc 
BLX CT Equity Boralex Inc 
AQN CT Equity Algonquin Power & Utilities Corp 
NAL CT Equity Newalta Corp 

Source: Bloomberg LP. 

Appendix B. Stocks employed for traditional energy 

Ticker Company name 
OXY UN Equity Occidental Petroleum Corp 
NOV UN Equity National Oilwell Varco Inc 
PXD UN Equity Pioneer Natural Resources Co 
VLO UN Equity Valero Energy Corp 
SLB UN Equity Schlumberger Ltd 
TSO UN Equity Tesoro Corp 
HES UN Equity Hess Corp 
MRO UN Equity Marathon Oil Corp 
XEC UN Equity Cimarex Energy Co 
COG UN Equity Cabot Oil & Gas Corp 
FTI UN Equity FMC Technologies Inc 
EGN UN Equity Energen Corp 
ESV UN Equity Ensco PLC 
EOG UN Equity EOG Resources Inc 
RRC UN Equity Range Resources Corp 
NBR UN Equity Nabors Industries Ltd 
NE UN Equity Noble Corp PLC 
HAL UN Equity Halliburton Co 
RIG UN Equity Transocean Ltd 
MUR UN Equity Murphy Oil Corp 
DO UN Equity Diamond Offshore Drilling Inc 
NBL UN Equity Noble Energy Inc 

Source: Bloomberg LP. 

 

 


