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Abstract

Recent research finds that prominent asset pricing models have
mixed success in evaluating the cross-section of anomalies, which high-
lights proliferation of anomalies and zoo of factors. In this paper, I
investigate that how is the relative pricing performance of these mod-
els to explain anomalies, when comparing their misspecification errors
– the Hansen–Jagannathan (HJ) distance measure. I find that a sin-
gle model dominates others in a specific anomaly by incorporating the
multiple HJ distance comparing inference; the model relative pricing
performance is sensitive to the test portfolios choice. However, differ-
ent from the current research, I result that the HJ distance is a gen-
eral statistic measure to compare models and it can be divided into
the ‘relative comparison’ (sensitive to test portfolios) and the ‘absolute
comparison’ (independent to test portfolios) parts. Second, there is a
large variation in the shape and curvature of these confidence sets of
anomalies, which makes any single SDF difficult to satisfy confidence
sets of anomalies all. My results imply that further work is required
not only in pruning the number of priced factors but also in building
models that explain the data better.
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1 Introduction and Motivation

Over the last few decades empirical studies report that over three hundred
factors that claim to explain anomalies and this number is growing. The
leading papers by Harvey et al. (2016) and Hou et al. (2017) have stud-
ied reasons why different factor models have mixed success in explaining
the cross-sectional anomalies. Harvey et al. (2016) reports that there are
more than 300 factors that seem to price the cross-section of expected re-
turns. They result that more stringent standards than conventional levels
of significance need to be used in statistical tests in order to focus on a set
of factors. The estimation of their model suggests that today a newly dis-
covered factor needs to clear a much higher hurdle, with a t-ratio greater
than 3.0. Hou et al. (2017) replicates 447 anomalies in the literature. They
find that most these anomalies are insignificant with microaps alleviating
via NYSE breakpoints and value-weighted returns. In this paper, I inves-
tigate the above research question in a different perspectives – why there
is no dominated factor models in explaining the cross-sectional anomalies
by evaluating their misspecification errors after Hansen and Jagannathan
(1997) propose Hansen – Jagannathan (HJ) distance – a misspecification
measure of models.

In early work, researchers use the HJ distance plus the pairwise HJ dis-
tance comparison inference to indicate that their new factor models perform
better than the benchmarks to explain the cross-section of equity anomalies.
Jagannathan and Wang (1996) result that their labor income conditional
capital asset pricing model (CAPM) outperforms other linear factor models
to explain returns on Fama and French 100 size-beta portfolios based on the
HJ distance misspecification measure. Lettau and Ludvigson (2001) show
that their consumption-wealth ratio conditional consumption-based CAPM
(CCAPM) obtains the smallest HJ distance compared to the CCAPM and the
Fama–French three-factor model to explain returns on the Fama–French 10
deciles portfolios and the 6 size-book/market ratio portfolios. Vassalou and
Xing (2004) find that their Fama–French model augmented by the default
risk may be less misspecified than the Fama–French model to explain the 27
size, book/market ratio and default likelihood indicator portfolios. Moreover,
Parker and Julliard (2005) show that their ultimate consumption risk condi-
tional CCAPM has the smaller HJ distance than the Lettau and Ludvigson
(2001) conditional model and the contemporaneous CCAPM to explain the
Fama–French 25 size and book/market ratio portfolios.

In this paper, I aim to contribute to the existing literature by providing
reasons that why prominent theoretically and empirically motivated factor
models explain cross-sectional anomalies differently when comparing their
HJ distance measures. I use two recent developments, one is the formal tests
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of multiple model comparison and the other is the set inference methods. My
work is closely related papers, such as Hodrick and Zhang (2001) evaluate
the specification errors of several asset pricing models that are rivals to the
standard CAPM. Other related work includes Wang (2005) and Zhang (2006)
who evaluate the cross-sectional pricing performances of several asset pric-
ing models using the HJ distance metric. Finally, Li et al. (2010) study a
sequence of model selection procedures for non-nested and nested models
based on the second HJ distance. However, these papers rely on compar-
isons of point estimates of the HJ distance for factor models, which does not
account for sampling errors and model misspecification uncertainty.

I employ the methodologies of Chen and Ludvigson (2009) and Gospodi-
nov et al. (2013), which allow for multiple model selection tests with im-
proved finite-sample properties. Chen and Ludvigson (2009) first show that
the pairwise HJ distance comparison inference cannot jointly test of correct
specification of two or more asset pricing models, “a general statistical proce-
dure for model comparison is still missing”. Gospodinov et al. (2013) further
point out there exist the sampling and model misspecification uncertainty
when we compare two or more models using sample HJ distances. There-
fore, they improve not only the pairwise but the multiple model comparison
inference based on the sample HJ distance measures, and show new piv-
otal specification and model comparison tests that are asymptotically chi-
squared distributed. To my limited knowledge, this paper is the first one
that applies the Gospodinov, Kan and Robotti (2013) multiple model compar-
ison and incorporates the appropriate null hypotheses to re-evaluate classi-
cal linear factor asset pricing models on a common set of test portfolios.

Since most earlier papers show no economic value of comparison asset
pricing models, this paper uses set inference methods proposed by Cher-
nozhukov, Kocatulum and Menzel (Chernozhukov et al. (2012)) that allow
me to construct confidence regions for the HJ sets of admissible stochastic
discount factors (SDFs) arising from my candidate models. These set infer-
ence methods allow me to further explore the economic reasons that underlie
statistical rejections of candidate models. Different from Chernozhukov, Ko-
catulum and Menzel (2012) who investigate various set inference methods
for achieving tight confidence regions and more powerful inference proce-
dures, I apply their set inference methods to analyze interactions between
confidence sets of the HJ set and asset pricing models. Specifically, I empir-
ically check which families of SDFs price test portfolios correctly and which
do not by seeing whether the mean and standard deviation of SDFs are ad-
missible.

I find, in this paper, that different from the problem of a “zoo of fac-
tors”, a set of prominent asset pricing models that are both theoretically
and empirically motivated perform differently in pricing basic asset classes
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like stock portfolios; the relative pricing performance of linear factor mod-
els is sensitive to the test portfolios choice, which “highlight the challenges
of evaluating empirical factor models” (Kogan and Tian (2013)). However,
comparing five empirical factor models and using the same set of assets, the
Carhart four-factor model has a better performance than alternative models
like the Fama–French factor models (Fama and French (1992), Fama and
French (2015)) and the Hou et al. (2015) investment-based model. Among
consumption-based models, Yogo (2006) non-durable and durable CCAPM
does better than the Piazzesi et al. (2007) housing CCAPM and the classi-
cal CCAPM model when pricing the Fama–French size/book-to-market ra-
tio and the industry sorted portfolios. In comparisons of conditional asset
pricing models, I find that the Lettau and Ludvigson (2001) model obtain
smaller HJ distances than the other two candidates when the test assets are
the size/book-to-market and industry portfolios.

This paper has two contributions as follows:
Firstly, I show that the HJ distance is a general measure, which can be

divided into the ‘relative comparison’ (sensitive to test portfolios) and the
‘absolute comparison’ (independent to test portfolios) parts. The ‘relative
comparison’ is defined as the comparison among factor models to explain the
cross-sectional anomalies; the ‘absolute comparison’ is defined as the com-
parison among factor models. The ‘relative comparison’ or the ‘absolute com-
parison’ is like to compare heights between two people for playing basketball
or to compare two people’s heights. I evidence that test assets influence the
comparison results if linear asset pricing models are compared by explaining
several cross-sectional anomalies. Specifically, I show that the modified HJ
distance of Kan and Robotti (2008) is the general form of the Gibbons, Ross
and Shanken test (GRS, Gibbons et al. (1989)), and the modified HJ distance
can be divided into two parts: the one is related to the factor structure GRS
statistics and the other is related to the test assets GRS statistics. Hence,
I can interpret my empirical results into two perspectives: first, misspecifi-
cation errors comparison results depend on the choice of test assets; second,
the GRS test can tell which mimicking portfolios that spanning candidate
models are the ex post minimum-variance frontiers, only if the model com-
parison scenario focuses on that which model is able to price the factors in
the other model (Barillas and Shanken (2016a)).

The difference between the ‘relative comparison’ and the ‘absolute com-
parison’ comes from the difference between the GRS test and the HJ dis-
tance test. The GRS test basically evaluates the improvement chances of fac-
tors portfolios to the efficient mean-variance frontier. Hence, their null hy-
pothesis states that the candidate factor-models perfectly match the mean-
variance frontier of test assets. However, the Barillas and Shanken (2016a)
shows that we do not need to match the mean-variance frontier of test as-
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sets for every factors portfolios, but we can evaluate the relative ‘match’ of
each two pair of candidate factors portfolios. If we only compare how ‘match’
of each two pair of candidate portfolios, then test assets will not participate
into the comparison; the choice of any test assets will not influence results of
any two factor-models. The HJ distance measure tries to find the minimum
second moment portfolios of each candidate factor models. Specifically, the
HJ distance measure is equal to the second moment of the difference ‘fac-
tor structure’ GRS test statistics and the ‘net effect’ of the test assets on the
GRS test statistics. Better than these two GRS separation statistics, the HJ
distance measure can be jointly tested by the Wald statistics (Ren and Shi-
motsu (2009)). Recently, Barillas and Shanken (2016b) develop a Bayesian
procedure that allows to compute model probabilities for the collection of all
possible pricing models that can be formed from a given set of factors. They
contribute the literature by analyzing the joint alpha restriction for a set of
test assets in a Bayesian setting. Their paper’s evidence casts strong doubt
on the validity of their six-factor model.

Secondly, I show that there is a large variation in the shape and curva-
ture of these HJ confidence sets, which makes it difficult for any single SDF
to satisfy them. For example, industry portfolios have a higher HJ confi-
dence set than that of the size/book-to-market portfolios. When using excess
returns on test assets, the shape of derived confidence sets for the HJ set
is flatter than that when using gross returns. This analysis helps us to un-
derstand why results that the different least misspecified model to explain
cross-sectional returns on test assets may be different. Cochrane (2005) as-
sert that there exist a proper set of SDFs that can price existing assets,
because the entire universe of possible random payoffs may not be spanned
by payoffs to existing assets, especially when markets are incomplete. About
a decade ago it was lamented that “asset pricing (theory) has fallen on hard
times” (Lettau and Ludvigson (2001)) - I find that this observation is still
valid. Furthermore, using entropy to decompose the SDF, I explore the high
variations of the filtered SDFs on our least misspecified consumption-based
asset pricing models during financial bear and bull periods, but for those
empirical factors models, entropy may not be the proper economic interpre-
tation criteria.

In the rest of the paper, I introduce in Section 2 the HJ distance, the mul-
tiple HJ distance comparison tests and the set inference-based confidence
intervals. Section 3 describes the data and candidate models. Section 4 de-
scribes the empirical analysis. Section 5 concludes the paper.
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2 Methodology

I use three different Hansen–Jagannathan (HJ) distance measures, the orig-
inal HJ distance

(
HJO)

introduced by Hansen and Jagannathan (1997), the
modified HJ distance

(
HJM)

in Kan and Robotti (2008), and the constrained
HJ distance

(
HJC)

in Gospodinov et al. (2012) to compare candidate linear
asset pricing models.

I begin with the basic asset-pricing model in the stochastic discount fac-
tor (SDF) representation

pt = E t [mt+1xt+1] , (2.1)

where pt is the price of any stock, mt+1 is the true SDF, xt+1 is the future
payoff of the stock, and E t is the conditional expectation operator.

An asset pricing model identifies a particular SDF that is a function of
observable variables and the model parameters. Empirical estimation on
this model can be done by using the two-stage GMM to estimate,

minb

[
gT (b)

′
W gT (b)

]
, (2.2)

where gT are the moment conditions and W is a weighting matrix. Most
earlier papers use this Hansen’s JT test statistics to estimate and test each
model on the same set of asset returns – testing correct specification against
the alternative of incorrect specification. I assume that there are two models.
One is the CCAPM with the SDF y(1)

t+1 =β
(

Ct+1
Ct

)−γ
, and the other is the CAPM

with the SDF y(2)
t+1 = a+ θRm,t+1, where Rm,t+1 is the market return. Use

the J-statistics, I can find that the over-identification restrictions are not
rejected for y(1)

t+1 but for y(2)
t+1. However, does the above result mean that the

CCAPM y(1)
t+1 is superior? No. Ludvigson (2011) stated that Hansen’s JT test

statistic depends on the model specific S matrix. Hence, the CCAPM can
look better since its SDF and the pricing errors are more volatile than those
of CAPM.

2.1 The Hansen–Jagannathan Distance

Hansen and Jagannathan (1997) suggest a solution to this problem. They
assume that the proposed SDF yt+1 can be approximated as a linear function
of factors

yt+1 = θ
′
f t+1, (2.3)

where f t denotes the pricing factors. By using the pricing equation, I can
derive the below equation

αt(θ)= Rt yt(θ)− IN = Rtθ f
′
t − IN , (2.4)
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where Rt =
[
R1,t,R2,t, ...,RN,t

]′
are the gross returns on N assets, and αt(θ)

is the vector of pricing errors. Hence, the maximum pricing error per unit
norm of any portfolio of N assets (or HJO) is given by[

HJO
]2 = E

[
(αt(θ))

′][
E(RtR

′
t)
]−1

E [αt(θ)] . (2.5)

The HJO measure is equivalent to a GMM estimator with the moment

condition E [αt(θ)] = 0 and the weighting matrix
[
E(RtR

′
t)
]−1

, which is dif-
ferent from the optimal matrix (see Appendix for details). There are two ad-
vantages that I choose to use the HJ distance. The first advantage is stated
by Ludvigson (2011) that the HJ distance does not reward SDF volatility.
As a result, it is suitable for model comparison. Second, the HJ distance
provides a measure of model misspecification. The HJ distance also gives
the maximum pricing error of any portfolio formed from the N assets. From
the economic point of view, the HJ distance can be explained by the mini-
mum distance between a candidate discount factor y and the space of true
discount factors, which can be understood the same as the minimum value

of the J-statistic criterion but with W = E
(
xx

′)−1
as weighting matrix1.

If excess returns are used to measure model misspecification, one cannot
specify a proposed SDF in a way such that it can be zero for some values of
θ. Kan and Robotti (2008) suggest defining the SDF as a linear function of
the demeaned factors in order to avoid the affine transformation problem.
Hence, the modified HJ distance (HJM) measure is defined as[

HJM
]2 = minθE

[
αT (θ)

′]
V−1

22,T E [αT (θ)] , (2.6)

where V−1
22,T is the covariance matrix of the test portfolios.

Another problem I need to consider about is that all of the above SDFs
can be either positive or negative. For instance, if the markets are incom-
plete, candidate SDFs such as the CAPM and linear factor models as sug-
gested by Ross (1973) do not need to be strictly positive (Cochrane and Hansen
(1993)). It is, however, possible for an SDF to price all the test assets cor-
rectly and yet to take on negative values with positive probability. This
happens when these exist arbitrage opportunities among test portfolios (e.g.
derivatives on test assets) and it could be problematic to set the SDF to price
payoffs. Therefore, it is necessary to constrict the admissible SDFs to be
non-negative.

1Ren and Shimotsu (2009) improve the finite sample properties of the HJ distance test by

using the weighting matrix W = E
(
xx

′)−1
.
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Gospodinov, Kan and Robotti (2010) (Gospodinov et al. (2010)) solve for
the constrained HJ distance as[

HJC
]2 = minmt,t=1,...,T

1
T

T∑
t=1

(yt −mt)2 , (2.7)

subject to
1
T

T∑
t=1

mtRt = q̄,

mt ≥ 0, t = 1, ...,T,

where yt denotes the candidate SDF, mt stands for admissible SDF in the
set ℵ+, qt−1 is the vector of corresponding costs of N assets and E[qt−1] 6= 0.

2.2 Multiple Comparisons Tests for the HJ Distance

The traditional HJ distance test compares HJ distance measures statisti-
cally by making pairwise model comparison null hypothesis, i.e., HJO

2 may
be less than HJO

1 ; are they statistically different from one another once we
account for sampling error?

Gospodinov et al. (2013) propose a new Lagrange multiplier test for joint
testing of misspecification of more than two asset pricing models. They de-
velop chi-squared versions of model comparison tests for strictly non-nested,
nested and overlapping models. They also provide a multiple model com-
parison test that allows us to compare a benchmark model with a set of
alternative models in terms of their HJ distance metrics. They suggest that
we should separate models into three categories: nested, strictly non-nested
and overlapping. For non-nested and overlapping models they introduce a
multivariate inequality test based on Wolak (1987) and Wolak (1989).

Let ρ = (ρ2, ...,ρp+1), where ρ i = δ2
1−δ2

i . We set δ2
1 as the winner, and test

H0 : ρ ≤ 0p. We assume that

p
T(ρ̂−ρ) A→ N(0p,Ωρ̂). (2.8)

Let ρ̃ be the optimal solution in the following quadratic programming
problem:

minρ(ρ̂−ρ)
′
Ω̂−1
ρ̂ (ρ̂−ρ), (2.9)

s.t.ρ ≤ 0r, (2.10)

where Ω̂−1
ρ̂

is a consistent estimator of Ω−1
ρ̂

. The likelihood ratio test of the
null hypothesis is

LR = T(ρ̂− ρ̃)
′
Ω̂−1
ρ̂ (ρ̂− ρ̃). (2.11)
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Since the null hypothesis is composite, to construct a test with the de-
sired size, they require the distribution of LR under the least favorable value
of ρ, which is ρ = 0P . Under this value, LR follows a ‘chi-bar-squared distri-
bution’,

LR A→
p∑

i=0
wi(Ω−1

ρ̂ )X i, (2.12)

where the X i are independent χ2 random variables with i degrees of freedom
and χ2

0 is simply defined as the constant zero. An explicit formula for the
weights wi(Ω−1

ρ̂
) is given in Kudo (1963).

For nested models, Gospodinov et al. (2013) suppose that yA
t (λ∗

1 )= yi
t (λ

∗
i )

can be written as a parametric restriction of the form ϕi(λ∗
i )= 0ki−k1 , where

ϕ(·) is a twice continuously differentiable function in its argument. The null
hypothesis for multiple model comparison can therefore be formulated as
H0 : ϕ2 = 0k2−k1 , ...,ϕp+1(λ∗

p+1) = 0kp+1−k1 . The comparison test statistic fol-

lows Wald test with the degree of freedom (
∑p+1

i=2 ki − pk1).
Besides the new tests developed in Gospodinov et al. (2013) on multiple

model comparison test, we also apply the Chen and Ludvigson (2009)’s test
method. We denote the squared HJ distance for model j as

δ2
1,T = min(d2

j,T )K
j=1. (2.13)

Hence, the null hypothesis is stated as follows:

H0 : δ2
1,T −δ2

2,T ≤ 0,

where d2
2,T is the competing model with the next smallest squared distance.

Now we define the test statistic as TW = max2,...,5
p

T(d2
1,T −d2

j,T ), based on
White (2003). The distribution of TW is computed via block bootstrap. We
note that the justification for the bootstrap rests on the existence of a multi-
variate, joint, continues, limiting distribution for the set (d2

j,T )K
j=1 under the

null.
By repeated sampling, the bootstrap estimate of the p-value is

pW = 1
B

B∑
b=1

I(TW ,b>TW ), (2.14)

where B is the number of bootstrap samples and TW ,b stands for White’s
original bootstrap test statistic. If the null is true, the historical value of TW

should not be unusually large, given sampling error. Given the distribution
of TW , reject the null if its historical value, TW , is greater than the 95th
percentile of the distributions for TW . At a 5% level of significance, we reject
the null if pW is less than 0.05, but do not reject otherwise.
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2.3 The Inference on Hansen-Jagannathan Mean-Variance Sets

Chernozhukov, Kocatulum and Menzel (Chernozhukov et al. (2012)) develop
the inference methods on HJ sets defined by nonlinear inequality restrictions
to check which ‘families’ of SDFs price the assets correctly and which do not.

They define K be a compact convex body in R2, and the set of admissible
means and standard deviations in K

Θ0 := {
admissible(µ,σ2) ∈R2 ∩K

}
, (2.15)

is introduced by Hansen and Jagannathan (1991) and known as the Hansen-
Jagannathan (HJ) set. The boundary of this set is known as the HJ bound.

They also define Γ = (Sυυ,Sυ1,S11)
′
, where Sυυ = υ

′
Σ−1υ, Sυ1 = υ

′
Σ−11N ,

S11 = 1
′
NΣ

−11N , υ and Σ denote the vector of mean returns and covariance
matrix to assets 1,2, ..., N, which are assumed not to vary with information
sets at each period t. Then the minimum variance σ2

HJ(µ) achievable by a
SDF given mean µ is equal to

σ2
HJ(µ)= Sυυµ

2 −2Sυ1µ+S11. (2.16)

Hence, the HJ set is equal to

ΘHJ = {
(µ,σ) ∈ (R×R+)∩K :σHJ(µ)−σ≤ 0

}
. (2.17)

Chernozhukov, Kocatulum and Menzel construct a confidence region R
such that

l imn→∞P {ΘHJ ⊆ R}= 1−α, (2.18)

dH (ΘHJ ,R)=Op
(
1/
p

n
)
, (2.19)

where dH is the distance measure. Following Chernozhukov, Kocatulum and
Menzel (2012), I construct confidence regions for the set ΘHJ using LR and
Wald-type Statistics, and ΘHJ can stand for the HJ bounds that determines
which combinations of ΘHJ the first two moments of the SDF generated by
a given family of asset pricing models fall in the HJ set. Specifically, ΘHJ ={
µ(ς),σ(ς),ς ∈ [0,∞)

}
, where ς is the elasticity of power utility function, and

we can check which values of γ give us overlap of ΘHJ with the confidence
set R for the HJ set.

Different from Chernozhukov, Kocatulum and Menzel (2012), however,
my paper empirically applies different set estimate and inference to check
which ‘families’ of SDFs price our test assets correctly. I firstly estimate con-
fidence sets for the HJ sets of mean-variances of SDFs using unweighted
Wald-type statistics that complements other approaches based on the direct
Hausdorff distance suggested in Beresteanu and Molinari (2008), Hausdorff
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distance in Molchanov (1998) and a structured projection approach. The
reason is that these three approaches show different test powers on set in-
ference, where the structured projection approach seems much more natural
and “economically appealing”. However, the structured projection approach
remains very conservative and is much less powerful than the approach
based on the optimally weighted LR-type (the Hausdorff distance) and W-
statistics (Chernozhukov, Kocatulum and Menzel (2012)).

3 Data and Candidate Models

3.1 Data

The main empirical analysis uses both monthly and quarterly return data
over the period 1967 - 2012 for the U.S. market. I use two test assets, the
Fama-French 25 size- and book-to-market sorted portfolios (FF25) and 30
industry portfolios. The industry portfolios are included to provide a greater
challenge to the various asset-pricing models, as recommended by Lewellen
et al. (2010). In the multiple comparison tests of asset pricing models, I
use both gross and excess returns on test assets. I also use the one-month
and three-month T-bill rate from FRED at the Federal Reserve Bank of St.
Louis over the period January 1967 to December 2012 as the riskless rate of
interest. Moreover, the Fama–French factors and the momentum factor are
from the Kenneth French’s website and the Hou, Xue and Zhang (2015) four
factors obtain from the original paper of Hou et al. (2015).

I use personal consumption expenditures (PCE) on nondurables and ser-
vices (obtained from the Bureau of Economic Analysis), including food, cloth-
ing and shoes, housing, utilities, transportation, and medical care. This
series is then deflated by a weighted average of the price indices for non-
durables and services. My durable consumption renews Yogo’s (2006) and
I update it to 2012. My non-housing consumption is measured by the non-
durables consumption but excludes services such as shoes, clothing and hous-
ing.

The factors used as conditional variables include: (i) the aggregate con-
sumption to wealth ratio cayt in Lettau and Ludvigson’s (LL, 2001) condi-
tional CCAPM (available on Professor Ludvigson’s website); (ii) the housing
collateral ratio mymot in Lustig and Van Nieuwerburgh’s (LVN, 2004) con-
ditional CCAPM; mymot is computed by the ratio of collateralizable housing
wealth to non-collateralizable human wealth, which are from the Historical
Statistics for the US (Bureau of the Census) and the Flow of Funds data
(Federal Board of Governors), and (iii) the non-housing consumption expen-
diture share st in Piazzesi, Schneider and Tuzel (SPST, 2007) conditional
CCAPM; the expenditure share relies on per-period dollar expenditures on
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the item in NIPA.

3.2 Description of Candidate Models

I focus mainly on empirically motivated linear asset pricing models given
their popularity in applied work. These include the Fama and French three-
factor model, the Fama–French and Carhart momentum four-factor model,
the Fama and French five-factor model and the Hou, Xue and Zhang (HXZ)
investment-based model. In addition to these empirical models, I also in-
clude the Capital Asset Pricing Model (CAPM).

In their stochastic discount factor (SDF) representations, these models
can be written as follows. The CAPM in which the expected excess return
on an asset equals the market risk θ1 of the asset times the expected excess
return on market portfolio (excess return (in excess of the one-month T-bill
rate) on the value-weighted stock market index (NYSE-AMEX-NASDAQ)),

yCAPM
t+1 = θ0 +θ1vwt+1, (3.1)

where vwt+1 denotes excess returns on the market portfolios.
Fama and French (1992) (FF3) document the role of size and book/market

ratio and Fama and French (2015) (FF5) the role of profitability and invest-
ment factors in explaining the cross-section of expected stock returns.

yFF3
t+1 = θ0 +θ1vwt+1 +θ2smbt+1 +θ3hml t+1, (3.2)

and

yFF5
t+1 = θ0 +θ1vwt+1 +θ2smbt+1 +θ3hml t+1 +θ4rmwt+1 +θ5cmat+1, (3.3)

where smb is the difference between the return on diversified portfolios of
small and large stocks, hml is the difference between the return on diver-
sified portfolios of high and low book-to-market stocks, rmw is the differ-
ence between the return on diversified portfolios of stocks with robust prof-
itability and weak profitability, and cma is the difference between the return
on diversified portfolios of stocks with low investment and high investment
stocks.

HXZ propose an empirical q-factor model with following pricing factors:

yHX Z
t+1 = θ0 +θ1vwt+1 +θ2me t+1 +θ3 iat+1 +θ4roe t+1, (3.4)

where me is the difference between the return on diversified portfolios of
small size stocks and the return on a portfolio of big size stocks, ia is the
difference between the return on diversified portfolios of stocks with low and
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high investment, and roe is the difference between the return on on diver-
sified portfolios of stocks with high profitability and low profitability, where
profitability is measured by the return on equity (roe).

Finally, I use the Carhart four-factor model with the momentum effect
(Carhart (1997)),

yCarhart
t+1 = θ0 +θ1vwt+1 +θ2smbt+1 +θ3hml t+1 +θ4momt+1, (3.5)

where smb is the difference between the return on diversified portfolios of
small and large stocks, hml is the difference between the return on diversi-
fied portfolios of high and low book-to-market stocks, and mom is the aver-
age of the return on two (big and small) high prior return portfolios minus
the average of the returns on two low prior return portfolios.

My consumption-based linear factor models include the consumption-
based CAPM (CCAPM) that can be written as

yCCAPM
t+1 = θ0 +θ1cndur

t+1 , (3.6)

where cndur
t+1 is the growth rate of non-durable consumption.

I also use the Yogo (2006) CCAPM where includes durable consumption
risk

yDUR
t+1 = θ0 +θ1vwt+1 +θ2cndur

t+1 +θ3cdur
t+1 , (3.7)

where vwt+1 is the excess returns on market portfolios and cdur
t+1 denotes the

consumption growth rate of durable goods.
Further I use the Piazzesi, Schneider and Tuzel (2007) that introduces

the consumption-housing CCAPM

yPST
t+1 = θ0 +θ1cnh

t+1 +θ2st+1, (3.8)

where cnh
t+1 is the growth rate of non-housing consumption and st+1 denotes

the log non-housing consumption expenditure share.
Finally I use a set of conditional asset pricing models. They include

the conditional CCAPM of Lettau and Ludvigson (2002), which shows the
consumption-wealth ratio can capture the time-varying risk premiums,

yLL
t+1 = θ0 +θ1cndur

t+1 +θ2cayt +θ3cndur
t+1 cayt, (3.9)

where cndur
t+1 is the growth rate of non-durable consumption and cayt−1 is the

consumption-wealth ratio.
My second candidate is the scaled CCAPM with the non-consumption

expenditure share of Piazzesi, Schneider and Tuzel (2007). They find that
while the non-housing expenditure ratio changes, the composition risk that
relates changes in asset prices also changes,

ySPST
t = θ0 +θ1cndur

t+1 +θ2st +θ3cndur
t+1 st, (3.10)
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where st is the non-housing consumption expenditure share.
Finally, I also use the scaled CCAPM with the collateral-consumption ra-

tio of Lustig and Van Nieuwerburgh (2005) where shows the ratio of housing
wealth to human wealth changes the conditional distribution of consump-
tion growth across households in a model with collateralized borrowing and
lending,

yLV N
t+1 = θ0 +θ1cndur

t+1 +θ2myt +θ3cndur
t+1 myt, (3.11)

where myt is the housing collateral ratio.

4 Main Results

4.1 The HJ Distance Comparison Results

In Table 2, I report the results of the model comparison tests using both the
gross returns and the excess returns on test assets. To enable comparison
with the earlier papers, we discuss the results mainly with respect to the
combination of FF25 and 30 Fama–French industry portfolios as test assets.

In Panel A, I report the HJ distance
(
HJO)

, the modified HJ distance(
HJM)

and the constrained HJ distance
(
HJC)

measures for all the models
that we consider. These results allow us to compare the HJ distance mea-
sures across the models without formally testing for their differences. Here,
lower values of the measures are preferred as they show lower levels of mis-
specification. The results show that across all the models and HJ distance
measures that I consider, all the HJ distance measures are greater than zero.
These results suggest that all the models are potentially misspecified. The
model with the lowest HJO, HJM and HJC measures is the Carhart model
when using the gross returns on the test assets, and when using excess re-
turns the Carhart model has lowest HJO and HJM measures. Overall the
results suggest that the Carhart model is the least misspecified of all the
models I consider. The FF5 is the next best followed by the FF3 model. The
CAPM is the most misspecified irrespective of whether we use gross or excess
returns and across the three HJ distance measures.

In Panel B, I present the results of the two formal tests of model com-
parison. In both these tests, I take as our model of choice, the one that has
the lowest HJO, HJM and HJC measures among all the models in Table
2 Panel A. The three HJ distance measures of alternative models are then
formally tested again the measures of our chosen model, the Carhart model.

The first test is a multiple comparison test of whether the HJO, HJM

and HJC measures of any of the alternative models are significantly greater
than the distance measures of our chosen model. The null hypothesis in
this test is that our chosen model has a HJO, HJM and HJC measure that

14



is less than that of any of the alternative models. A failure to reject the
null means that our chosen model is the least misspecified model. Using
gross returns, I find that the null is not rejected for any of the HJ distance
measures. This suggests that the Carhart model is the least misspecified.
When considering excess returns, I find that for the HJM and the HJC,
the null rejects at 5% and 10% respectively. Noting, how the measures are
computed, the overall conclusion that we can draw is that the Carhart model
is the least misspecified model, particularly when a more conservative size
of the test is considered.

The second test is a pairwise comparison test of whether the HJO, the
HJM and the HJC measures of each of the alternative models are signif-
icantly greater than the distance measures of our chosen model. The null
hypothesis in this test is that the chosen model has a HJO, HJM and HJC

measure that is less than each of the alternative models. As in Panel A, the
tests are conducted using gross and excess returns on the test assets. The
results show that across tests using gross and excess assets, the comparison
tests with the FF3 and the FF5 reject the null at the 5% or 10% level of sig-
nificance. At 1% level of significance the Carhart model retains its position
as the least misspecified of all the models.

In Table 3, I run tests for the HJ measures and the multiple comparison
tests only on the FF25 portfolios. In Table 3 Panel A, I find that all the mod-
els are misspecified with the Carhart model the least misspecified of all the
models. In Panel B, the multiple comparison tests using a conservative size
of 1%, the results support the conclusions from the main results in Table 2.
However, some models do better than the Carhart model at less conservative
test sizes and depending on whether I look at gross or excess returns on the
test assets. This suggests that the any conclusions drawn are potentially
sensitive to the choice of test assets.

Table 4 shows the pricing performance of our set of consumption-based
asset pricing models to explain returns on Fama–French 25 size/book-to-
market plus 30 industry portfolios. The results show that all the HJ dis-
tance measures are greater than zero significantly. These results suggest
that all the models are potentially misspecified. The model with the low-
est HJO, HJM and HJC measures is the Yogo durable consumption-based
CAPM model when using the gross returns on the test assets, and when
using excess returns the Yogo model has lowest HJM and HJC measures
while the HJO measure for all models is not significant different from zero.
Overall the results suggest that the Yogo model is the least misspecified of
all the consumption-based CAPM models I consider.

Table 5 reports pricing errors in the case of the set of conditional consumption-
based asset pricing models. In explaining returns on Fama–French 25 size/book-
to-market ratio and 30 industry portfolios, the Lettau and Ludvigson model
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(2001) has the smallest normalized pricing error relative to the other models
based on the HJ, the modified HJ and the constrained HJ distance measures.

Panel B in Table 5 gives the multiple comparison test of whether the
HJO, HJM and HJC measures of any of the alternative models are signif-
icantly greater than the distance measures of candidate models. The null
hypothesis in this test is that our chosen model has a HJO, HJM and HJC

measure that is less than that of any of the alternative models. A failure
to reject the null means that the Lettau and Ludvigson model is the least
misspecified model. Using both gross and excess returns, I find that the null
is not rejected for any of the HJ distance measures. This suggests that the
Lettau and Ludvigson model is the least misspecified. Then, I show the pair-
wise comparison test of whether the HJO, the HJM and the HJC measures
of each of the alternative models are significantly greater than the distance
measures of the Lettau and Ludvigson model.

4.2 Sequential Selection Procedure and Rank Tests

Gospodinov et al. (2014) show that in the presence of misspecification and
the lack of identification, the finite sample distributions of the statistics of
interest can depart substantially from the standard asymptotic approxima-
tions developed under the assumption of correctly specified and fully identi-
fied models. Moreover, they propose an easy-to-implement sequential proce-
dure that allows us to eliminate the useless factors from the model and show
its asymptotic validity.

In this section, I report the results of the ranks tests of the individual
factors, the model misspecification tests, rank tests of the models and the
sequential testing procedure.

In Table 6 Panel A, I report the results of the rank restriction test of the
factor and the corresponding p-value of the null hypothesis that the N ×K
matrix B = E[xt(1, f it)] is of column rank 1. This test is important since
the presence of a useless factor leads to a violation of a crucial condition for
identification which is that B is of full rank. The results show that we can
reject the null of the factor being of column rank of one at the 5% level of
significance for all of the risk factors that we consider. This suggests that all
of the factors can be considered as potentially useful.

In Table 6 Panel B, we report the results of the rank test of the models’
misspecification. The tests based on the HJ distance measures show that
none of the models pass the tests. The null of the HJ distance equal to zero
is rejected at 1% level of significance for all the models. The implication is
that all the models we consider are potentially misspecified based on the HJ
distance measures. Since the HJ distance measures have been shown to sub-
stantially over reject the null, we also conduct a LM test, which has better
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size and power properties. The results are similar to those of the HJ tests in
that all the models reject the null, suggesting that the HJ distance results
are not driven by the finite sample properties of the HJ distance tests. This is
consistent with the notion that all asset pricing models are but approximate
representations of reality and are therefore potentially misspecified.

In rank test of the models, I find that three of the five models I consider,
i.e. the CAPM, the FF3 and the Carhart models do not suffer from identifi-
cation problems at 1% level. And indeed all of the models are identified at
5% level with p-values of 0.015 and 0.026 for the FF5 and the HXZ models.
This is consistent with the fact that the factors we consider are correlated
with returns on the test assets. Gospodinov et al. (2014) note that the vw,
smb and hml factors are highly correlated with the test asset returns.

However, all the macro variables are useless, such as the non-durable
consumption (cndur), the durable consumption (cdur), the non-housing con-
sumption (cnh), the expenditure ratio (s) in the Piazzesi, Schneider and Tuzel
model, the consumption-wealth ratio (cay) and the collateral consumption
ratio (my) in the Lustig and Van Nieuwerburgh model.

Overall these findings from Panel A and Panel B suggest that the em-
pirical factor models do not suffer from identification issues, although all
of the models are misspecified. However, all the macro factors are useless;
the identification condition fails for macro factors and this may also affect
the validity of any statistical inference. Hence, I will use the HJ set infer-
ence and entropy to further explain the consumption-based and conditional
consumption-based asset pricing models’ results.

In Table 6 Panel C and D, I report the results of the sequential selection
procedure under correct model specification (Panel C) and potential model
misspecification (Panel D) assumptions. The sequential testing methodology
uses the Bonferroni correction to allow for multiple testing. The t-statistics
under correct specification in Panel C show that while the vw factor in the
CAPM is significant, in the FF3 model, the vw and the hml are significant.
In the Carhart model, the vw, the hml and the mom are significant. In
the FF5 model, the vw and the hml are useful while the smb, the rmw
and the cma do not survive the sequential testing procedure. In the HXZ
model the vw and the ia factors survive the sequential testing procedure at
the 5% significance level. The factors that survive all the specifications they
are included in are the mom and the ia factors, followed by the vw and the
hml which is significant in ten out of the thirteen and three out of the five
specifications they are included in. The results in panel D are identical to
the results in Panel C, except for the me factor in the Hou et al. (2015) that
appears to be useful assuming correct model specification, turns to be not
useful when potential model misspecification is taken into account.
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4.3 The HJ Set Inference

Now I have analyzed the economic reasons that why theoretical motivated
models outperform others to explain specific test portfolios by using the HJ
set inference.

There are two families of SDFs on the candidate asset pricing models:
the consumption-based and the conditional consumption-based models. I
treat both the consumption and the conditional (scaled) consumption based
models as the augmented CCAPM models. For the conditional consumption-
based models, any of these asset pricing model can be expressed as multiple
factor models by multiplying out the conditioning variables and the funda-
mental factor (CCAPM) (Ludvigson (2011), and Cochrane (2001)).

Figure 1 shows HJ sets using weighted LR statistic and the structured
projection approaches when the consumption-based models explain the gross
returns on Fama–French 25 size and book-to-market ratio portfolios. The
first row gives the CCAPM, the second row is Piazzesi, Schneider and Tuzel
(2007) housing consumption model and the third row shows the Yogo durable
consumption model. The blue dashed line in the left is the 95% confidence
region based on the weighted LR statistic, and the blue dashed in the right
denotes the 95% confidence region based on the structured projection. Both
approaches’ confidence regions cover most of the bootstrap draws below the
HJ bounds. However, it should also be noted that the confidence bound based
on the weighted LR statistic is fairly tight relative to the confidence bound
based on the projection; the structured projection confidence set performs
quite poorly relative to the LR-based confidence set: in particular the latter
is much smaller and lies strictly inside the former. In fact, the precision of
the confidence set based on structured projection is poor enough to overturn
the major empirical conclusion that the consumption-based CAPM cannot
be reconciled with small values of risk aversion. This should be expected
since the projection confidence bounds are based on a confidence set for the
point-identified parameters that does not account for the specific shape of the
bounds as a function of Γ. Again, I result that the Yogo durable consumption-
based CCAPM outperforms because of the recursive utility function that re-
quires a relatively smaller risk aversion to solve equity premiums.

Figure 2 shows the confidence set for HJ sets using excess returns on
test portfolios. Comparing with the confidence set for HJ sets using gross re-
turns, the current HJ sets are a little bit flatter. Hence, the HJ bound using
the structured projection approach is much easier to arrive at for the Pi-
azzesi, Schneider and Tuzel (2007) housing consumption model, whose util-
ity function is the CES-composite power utility with the non-separability be-
tween the non-durable consumption and housing services. According to the
second row in Figure 2, the housing consumption model requires the relative
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risk aversion equal to 5 to explain the cross-sectional equity premiums.
The HJ sets for industry portfolios look sharper than the HJ sets for

Fama–French 25 size and book-to-market portfolios. This is the same result
as we find in Figure 2, in which the industry portfolios obtain the highest
HJ bound to reach. However, the structure projection that are based on a
confidence set for the point-identified parameters makes the 95% confidence
set like a ‘bowl’ as shown in all figures on the right side of Figure 3.

When using excess returns on industry portfolios, the ‘bowl’ will be much
wider, therefore all conditional models can reach the bound by choosing small
relative risk aversion. Here, both Lustig-Van Nieuwerburgh and Piazzesi-
Schneider-Tuzel models follow the same power utilities with the non-separability
between non-durable consumption and housing services or collateral housing
ratio, but their intratemporal elasticity of substitution index are different,
where the Lustig-Van Nieuwerburgh’s intratemporal elasticity of substitu-
tion is smaller than one and the Piazzesi-Schneider-Tuzel model chooses the
index above one. I result that the Lettau and Ludvigson scaled consumption-
based CAPM outperforms other conditional consumption-based model to ex-
plain gross and excess returns on momentum portfolios in Figure 4 and Fig-
ure 5. Overall, to explain specific test assets, the least misspecification asset
pricing models depend on two elements: the theoretical motivated model
structure and the HJ bounds of test assets.

4.4 The Decomposition of the Modified HJ Distance

In this section, I show that the HJ distance results will depend on the choice
of test assets if the asset pricing models need to explain returns on test as-
sets, or the researchers only focus on the scenario that which asset pricing
model is able to price the factors in the other asset pricing model.

I show that another form of the squared modified HJ distance (MHJD) is[
HJM

]2 =α
′
M1Σ

−1αM1 = Sh ( f1, f2,R)2 −Sh ( f1)2 , (4.1)

where Sh(·) denotes the maximum squared Sharpe ratio (the mean excess
return over standard deviation) obtainable from portfolios of the given re-
turns, αM1 = (0,α21,αR1) denotes the alpha vector for evaluating the pricing
of all these investments under the more parsimonious model M, f1 could be
the CAPM, f2 could be the CAPM nested model Fama–French three-factor
model and R denotes returns on test assets. The first element shows that
the alphas of f1 on f1 are necessarily 0. The second element α21 refers to the
alphas of f2 on f1, and the last element αR1 is the alphas of R on f1, and V
is the covariance matrix for ( f1, f2,R).
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We can rewrite the equation (4.1) into[
HJM

]2 = Sh( f1, f2,R)2−Sh( f1, f2)2+Sh( f1, f2)2−Sh( f1)2 =α
′
RΣ

−1αR+α
′
21Σ

−1
21α21.

(4.2)
The equation (4.2) shows that the squared MHJD is the sum of the quadratic

form for adding the test assets R to ( f1, f2) plus the quadratic form for adding
the factors to f2 to f1. To explain the equation (4.2), I can establish the nested
models, M1 and M, for instance, M1 is the CAPM and M is the Fama–French
three-factor model. First, I would like to see how excluded factors (the SMB
and the HML factors) could influence the squared MHJD for a given test
assets. We can obtain the squared MHJD of the CAPM (M1) as[

HJM
m,M1

]2 =α1
R1Σ

−1
R1αR1, (4.3)

so the influence that f2 has put on the squared MHJD is[
HJM

]2 −
[
HJM

m,M1

]2 =α
′
RΣ

−1αR −α1
R1Σ

−1
R1αR1 +α

′
21Σ

−1
21α21 ≡

[
HJM

m, f

]
.

(4.4)
Here,

[
HJM

m, f

]2
is denoted as the difference between the squared MHJD

of model M and that of M1 when factor f2 is added into M1. It reflects the
added-factors influence on the squared MHJD of M, or part of the squared
MHJD of derived from added factors, when test assets remain constant.

According to the equation (4.4), we define α
′
RΣ

−1αR −α1
R1Σ

−1
R1αR1 as the

difference between two nested models’ GRS test statistics. The second part
α

′
21Σ

−1
21α21 is defined as the GRS test statistics of the SMB and the HML

factors effects when comparing the Fama–French three-factor and the CAPM
models.

I can result that the choice of cross-sectional test portfolios influences
the MHJD between two linear factor models through the GRS test statistics
channel but not the excluded factors channel. Hence, to tell which linear
factor model is better than the other linear factor model to explain cross-
sectional returns given the test portfolios, if we want to use the MHJD for
evaluating their pricing performances, we need to tell how much effect comes
from the excluded factors and how much effect comes from the GRS test
statistics. However, the MHJD statistics in Kan and Robotti (2008) gener-
alized these two parts simultaneously and statistically. More importantly,
they provide the asymptotic distribution of the MHJD.

4.5 The Entropy Explanation

Supposing the Euler equation will be hold in equilibrium for the probabil-
ity measure which is unobserved, I non-parametrically extract filtered SDFs
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via a relative entropy minimization (Kitamura and Stutzer (1997)) based
on Kullback-Leibler information criterion (KLIC) under the asset pricing re-
strictions coming from the Euler equation2. Interestingly, those least mis-
specified filtered SDF components follow some clear financial market cycle
patterns; especially they have significant correlation with financial market
crashes unrelated to economy-wide contractions.

I present that the difference between the least and the most misspeci-
fied candidates in entropy. The recession period data comes from NBER and
the financial market crashes and bull periods data come from Mishkin and
White (2002). Here financial market crashes means a 20% drop in the mar-
ket; speed is another feature. Therefore, I look at declines over windows of
three months and one year.

At three months, the Dow additionally identifies, several more months
in the 1930-1932 slide, November and December 1987, October, November
and December 1937, and June 1962. Similarly, the S&P500 finds crashes in
1930-1933, 1937, 1962, 1974, and 1987, with June 1940 narrowly missing at
19.2 percent. For the NASDAQ, there are crashes in a three-month window
in 1974, 1987, 1990, 2000, 2001.

For the Dow Jones, declines in the 12 month window in excess of 20%,
pick out 1930-1933, 1937, 1938, 1970, 1974, and 1988. Using the S&P500
and a 12 month window there are crashes, ending in months in 1930-1933,
1937, 1938, 1941, 1947, 1970, 1974, and 1975. Looking at the NASDAQ for
one year crashes, we pick out the same years as using a three month window,
plus 1973, 1975, 1982, 1983, and 1984.

The Figure 6 shows that movements of filtered SDF for the consumption-
based asset pricing models. The green dash line plots the benchmark consumption-
based CAPM. The least misspecified Yogo (2006) is plotted in blue line. The
gray shaded areas represent NBER-dated recessions, the red line stands for
the financial market crashes periods and the aquamarine line is the financial
market bull periods. While obtaining the same time-varying volatile filtered
SDF, its correlation with the financial market crashes and bull periods are
almost near 92.31%.

The Figure 7 gives us another graph showing the least misspecified one
comparing to the benchmark for conditional consumption-based models. The
Lettau and Ludvigson conditional consumption model (the blue line) varies
more sharply than the consumption-CAPM. Moreover, the Lettau and Lud-
vigson model captures the financial crashes in 1962, in 1974, and in 1987,
the correlation with the financial market crashed is 76.2%.

The drawback of entropy is that it can only extract the filtered SDF
within nested models. The model like Santos and Veronesi (2006) can be

2The Appendix shows details on entropy and the filtered pricing kernel process.
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filtered via entropy only by using mimicking portfolios, i.e., the excess re-
turns on market portfolios, therefore making a nested model to CAPM.

5 Conclusions

In this paper, I use an invariant measure, the HJ distance to compare the
degree of misspecification between a set of prominent linear factor models.
I create a level playing field by having a common set of the most equity
test assets; size, the Fama–French size and book-to-market and industry
portfolios over a long time period. I use recently developed tests that allow
me to compare the HJ-distance across different models based on a statistical
criterion. In addition, I use set inference techniques that allow us to coma
pore families of SDFs.

The main result is that my set of candidate asset pricing models are un-
able to consistently price the cross-section of even the most basic set of test
assets and that no model paper to dominate. Specifically, the Carhart model
should be a reasonably good model to use in a practical setting where risk
adjustment is necessary. Among consumption-based models, the Yogo model
does better than the Piazzesi, Schneider and Tuzel and the classical CCAPM
model when pricing most test portfolios. In comparisons of conditional asset
pricing models, I find that the Lettau-Ludvigson model obtain smaller HJ
distances than the other candidates when the test assets are the size and
book to market and industry portfolios. I note that my conclusions are drawn
from empirical tests where I use the size and book-to-market and industry
portfolios as test assets. This choice mitigates concerns about there being a
factor structure in the size and book-to-market portfolios (see for example,
Lewellen et al. (2010)) but importantly, this allows for the comparison of re-
sults from the previous work that considers variants of the conditional and
unconditional consumption-based CAPM and the ICAPM such as Gospodi-
nov et al. (2014) and others by using a similar set of test assets.

I acknowledge that our model comparison and ranking could be sensitive
to the choice of test assets. I study the confidence regions for the HJ set of
admissible stochastic discount factors as in (Chernozhukov et al. (2012)). I
find that there is a large variation in the shape and curvature of these confi-
dence sets that makes it difficult for any single SDF to satisfy them. Second,
when using excess returns on test assets, the shape of derived confidence
sets for the HJ set is flatter than that when using gross returns. My analy-
sis helps in understanding why none of candidate models is able to dominate
in pricing the set of test assets. However, the tests we employ require us to
make a specific choice of test assets. If asset pricing models are to be com-
pared such that the tests are invariant to the test assets, one approach could
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be to go down the route which considers the ability of factors in one model
to price factors in another model form as a basis for model comparison. My
general conclusion is that while we may never have a model that can price
the cross-section of a broad range of test assets, further efforts are required
in building models that can do better across a set of basic test assets.
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A Appendix

A.1 Sample Estimates on the Hansen–Jagannathan Distance
In sample estimation, if the test portfolios are in gross returns, we can define

DT = 1
T

T∑
t=1

∂αt(θ)
∂θ

= 1
T

R
′
f , (A.1)

gT (θ)= 1
T

T∑
t=1

αt(θ)= DTθ− IN , (A.2)

GT = 1
T

T∑
t=1

RtR
′
t =

1
T

R
′
R, (A.3)

where
R = [R1,R2, ...,RT ]

′
,

f = [ f1, f2, ..., fT ].

The sample analog of the HJ distance is thus

δT =
√

minθ gT (θ))′G−1
T gT (θ). (A.4)

Taking the derivative of the above equation

D
′
TG−1

T gT (θ)= 0, (A.5)

which gives an analytic expression for the sample minimizer

θ̂ = (D
′
TG−1

T DT )−1D
′
TG−1

T IN . (A.6)

From Hansen (1982) the asymptotic variance of θ̂ is given by

var(θ̂)= 1
T

(D
′
TG−1

T DT )−1D
′
TG−1

T ΩTG−1
T DT (D

′
TG−1

T DT )−1, (A.7)
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where, if the data is serially uncorrelated, the estimate of the variance matrix of
pricing errors is given by

ΩT = 1
T

T∑
t=1

αt(θ̂)αt(θ̂)
′
. (A.8)

That is the estimator θ̂ that is equivalent to a GMM estimator defined by Hansen(1982)
with the moment condition E[g(θ)]= 0 and the weighting matrix G−1.

Following Kan and Robotti (2008), if the test portfolios are in excess returns, we
can define

yt+1(θ)= 1−θ′
f t+1, (A.9)

E t[yt+1(θ)Rt+1]= 0N , (A.10)

the estimates of risk premiums will change into

θ̂ =−(D
′
tG

−1
t Dt)−1D

′
tG

−1
t R̄t, (A.11)

where R̄t is the average excess return across N.

A.2 Testing the Hansen–Jagannathan Distance

If the weighting matrix is optimal in the sense of Hansen (1982), then Tδ2
T is asymp-

totically a random variable of χ2 distribution with N −K freedom, where is the di-
mension of θ.

However, if G is generally not optimal, Tδ2
T is not asymptotically a random vari-

able of χ2. Instead, under the hypothesis that the SDF prices the returns correctly,
the sample HJ distance follows:

T[δ̂2] d→
N−K∑
j=1

a jχ
2(1), (A.12)

where χ2(1) are independent chi-squared random variables with one degree of free-
dom, and a j are N −K nonzero eigenvalues of the matrix A given by

A =Ω 1
2 G

−1
2 [IN − (G

−1
2 )

′
D(D

′
G−1D)−1D

′
G

−1
2 ](G

1
2 )

′
(Ω

1
2 )

′
. (A.13)

Here Ω = E[αtα
′
t] denotes the variance of pricing errors, and D = E(R

′
t f t). The

1
2 means the upper-triangle matrices from the Cholesky decomposition. As long
as we have a consistent estimate ΩT of the matrix Ω, we can estimate the matrix
A by replacing Ω and G by ΩT and GT , respectively. Under the hypothesis that
the SDF prices the returns correctly, The Ω can be estimated consistently by ΩT =
T−1 ∑T

t=1[αtα
′
t].

Following Jagannathan and Wang (1996), to adjust for the small sample bias,
we use Monte Carlo method to calculate the empirical distribution of HJ distance
(under the null hypothesis). First, draw M⊗ (N−K) independent random variables
from χ2(1) distribution. Then, calculate u j = ∑N−K

i=1 aiχ
2(1). Here M is the number

of simulation. Then the empirical p-value of the HJ distance is

ˆpHJ = 1
M

M∑
j=1

I(u j≥T[HJT (θT )]2), (A.14)
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where I(.) is an indicator function which equals one if the expression in the brackets
is true and zero otherwise.

A.3 Testing the Constrained Hansen–Jagannathan Distance
To test the constrained HJ distance, we follow Gospodinov, Kan and Robotti (Gospodi-
nov et al. (2012)). They state an asset pricing model is correctly specified if there
exists a θ ∈Γ such that yt(θ) ∈ ℵ+, which implies that ι= 0N and δ+ = 0; the model is
misspecified if yt(θ) ∉ ℵ+ for all θ ∈Γ, which implies that δ+ > 0.

They show that
(a) if δ+ = 0, the pricing model is correctly specified,

Tδ̂2+
A→

N−K∑
t=1

ςiυi, (A.15)

where the υi are independent chi-squared random variables with one degree of free-
dom and the ςi are the eigenvalues of

A = P
′
U− 1

2 SU− 1
2 P, (A.16)

with S =∑∞
j=−∞ E[(xt yt(θ∗)−qt−1)(xt+ j yt+ j(θ∗)−qt+ j−1)

′
], D = E[xt

∂yt(θ∗)
∂θ

′ ], U = E[xtx
′
t],

and P being an N × (N −K) orthonormal matrix whose columns are orthogonal to
U− 1

2 D. This is the same as traditional HJ distance test.
(b)if δ+ > 0, the pricing model is misspecified,

p
T(δ̂2+−δ2

+) A→ N(0,υ), (A.17)

where υ=∑∞
j=−∞ E[(ϕt(λ∗)−δ2+)(ϕt+ j(λ∗)−δ2+)

′
] and δ= [θ

′
, ι

′
].

To conduct inference, the variance matrix should be replaced by consistent esti-
mator. In sample, we can replace A with Â, and Û = 1

T
∑T

t=1 xtx
′
t, I also can obtain Ŝ

using a nonparametric heteroskedasticity and autocorrelation consistent estimator.

28



Table 1: Statistical Summary on Pricing Factors

Notes: I use monthly return data over the period 1967 - 2012 for the U.S. market. The table
shows the statistical summary for all the pricing factors, including vw the market portfolios
in the CAPM; the size effect smb, the book-to-market ratio effect hml, the difference between
the returns on diversified portfolios of stocks with robust and weak profitability rmw and
the difference between the returns on diversified portfolios of low and high investment
stocks cma in the Fama–French three- and five-factor models; the difference between the
return on a portfolio of small size stocks and the return on a portfolio of big size stocks me,
the difference between the return on a portfolio of low investment stocks and the return on
a portfolio of high stocks ia, and the difference between the return on a portfolio of high
profitability return on equity stocks and the return on a portfolio of low profitability roe
in the Hou, Xue and Zhang (2015); the average of the returns on two (big and small) high
prior return portfolios minus the average of the returns on two low prior return portfolios
mom in the Carhart (1997). cndur is the growth rate of non-durable consumption for the
consumption-based CAPM. cdur denotes the consumption growth rate of durable goods for
the Yogo (2006) CCAPM. cnh is the growth rate of non-housing consumption and s denotes
the log non-housing consumption expenditure share of Piazzesi, Schneider and Tuzel (2007).
Moreover, cay is the consumption-wealth ratio in the conditional CCAPM of Lettau and
Ludvigson (2002). my and mymor are the housing collateral ratio in the Lustig and Van
Nieuwerburgh (2005).

Variable Number Obs Mean Std.Dev. Minimum Maximum

vw 552 0.0046 0.0463 -0.2324 0.161

smb 552 0.0011 0.0319 -0.22 0.1101

hml 552 0.0046 0.0296 -0.0978 0.1384

rmw 552 0.0028 0.0233 -0.1911 0.1352

cma 552 0.0036 0.0207 -0.0688 0.0955

mom 552 0.0068 0.0440 -0.3458 0.1838

me 552 0.0034 0.0314 -0.1439 0.2213

ia 552 0.0045 0.0191 -0.0716 0.0925

roe 552 0.0058 0.0257 -0.1385 0.1038

cndur 263 0.4752 0.9028 -4.87 10.16

cdur 263 1.0192 2.6564 -1.13 11.63

cnh 263 1.467 0.958 -2.952 8.419

s 263 0.7655 0.0421 0.576 0.791

cay 263 -0.019 1.6707 -4.06 3.93

my 263 0.9776 0.0056 0.9651 0.9891
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Table 2: Test Portfolios: FF25 plus 30 Industry Portfolios

Notes: the table represents the results of the model comparison tests using both the gross
returns and the excess returns on 25 size and book-to-market sorted plus 30 industry sorted
portfolios. Panel A reports the HJ distance

(
HJO

)
, the modified HJ distance

(
HJM

)
and the

constrained HJ distance
(
HJC

)
measures for all the models described in Section 2.2. Panel

B presents the results of the two formal tests of model comparison. The null hypothesis
in the first test is that our chosen model has a HJO , HJM and HJC measure that is less
than that of any of the alternative models. The second test is a pairwise comparison test of
whether HJO , HJM and HJC measures of each of the alternative models are significantly
greater than the distance measures of our chosen model.

Gross Returns Excess Returns

HJO HJM HJC HJO HJM HJC

Panel A: HJ Measures

CAPM 0.5313 0.5313 0.5343 CAPM 0.5234 0.6142 0.292

FF3 0.5099 0.5099 0.5132 FF3 0.5056 0.5852 0.281

FF5 0.5086 0.5086 0.512 FF5 0.5003 0.5761 0.2779

Carhart 0.4896 0.4896 0.4956 Carhart 0.4752 0.5384 0.2807

HXZ 0.5073 0.5073 0.512 HXZ 0.508 0.585 0.2794

Panel B: HJ Multiple Comparison

Carhart < (HX Z/FF5/FF3/CAPM) Carhart < (FF5/HX Z/FF3/CAPM)

H0 : (pval) 0.1922 0.1922 0.1644 H0 : (pval) 0.1148 0.0561 0.04982

Carhart < Candidates

CAPM (pval) 0.0598 0.0536 0.054 CAPM (pval) 0.0994 0.109 0.0942

FF3 (pval) 0.0318 0.0312 0.0268 FF3 (pval) 0.0378 0.0446 0.0382

FF5 (pval) 0.0384 0.0306 0.0306 FF5 (pval) 0.0322 0.037 0.0308

HXZ (pval) 0.0594 0.0516 0.0532 HXZ (pval) 0.0958 0.1026 0.1004
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Table 3: Test Portfolios: FF 25 Size and Book-to-Market Ratio

Notes: the table represents the results of the model comparison tests using both the gross
returns and the excess returns on 25 size and book-to-market sorted portfolios. Panel A
reports the HJ distance

(
HJO

)
, the modified HJ distance

(
HJM

)
and the constrained HJ

distance
(
HJC

)
measures for all the models described in Section 2.2. Panel B presents the

results of the two formal tests of model comparison. The null hypothesis in the first test is
that our chosen model has a HJO , HJM and HJC measure that is less than that of any
of the alternative models. The second test is a pairwise comparison test of whether HJO ,
HJM and HJC measures of each of the alternative models are significantly greater than the
distance measures of our chosen model.

Gross Returns Excess Returns

HJO HJM HJC HJO HJM HJC

Panel A: HJ Measures

CAPM 0.3586 0.3586 0.3598 CAPM 0.417 0.4588 0.1706

FF3 0.3209 0.3209 0.3226 FF3 0.3833 0.4147 0.1479

FF5 0.3195 0.3195 0.3209 FF5 0.3708 0.3989 0.1465

Carhart 0.3068 0.3068 0.3119 Carhart 0.3406 0.362 0.1476

HXZ 0.3153 0.3153 0.3195 HXZ 0.3739 0.402 0.1483

Panel B: HJ Multiple Comparison

Carhart < (HX Z/FF5/FF3/CAPM) Carhart < (FF5/HX Z/FF3/CAPM)

H0 : (pval) 0.0214 0.0221 0.0191 H0 : (pval) 0.013 0.057 0.048

Carhart < Candidates

CAPM (pval) 0.0454 0.0428 0.0374 CAPM (pval) 0.1744 0.1694 0.184

FF3 (pval) 0.0156 0.017 0.012 FF3 (pval) 0.0174 0.0214 0.0202

FF5 (pval) 0.0158 0.0164 0.0406 FF5 (pval) 0.0132 0.0142 0.0166

HXZ (pval) 0.04 0.0382 0.0318 HXZ (pval) 0.1552 0.1528 0.1642
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Table 4: Test Portfolios: FF25 plus 30 Industry Portfolios

Notes: the table represents the results of the consumption-based CAPM models comparison
tests using both the gross returns and the excess returns on 25 size and book-to-market
sorted plus 30 industry sorted portfolios. Panel A reports the HJ distance

(
HJO

)
, the

modified HJ distance
(
HJM

)
and the constrained HJ distance

(
HJC

)
measures for all the

models described in Section 2.2. Panel B presents the results of the two formal tests of model
comparison. The null hypothesis in the first test is that our chosen model has a HJO , HJM

and HJC measure that is less than that of any of the alternative models. The second test
is a pairwise comparison test of whether HJO , HJM and HJC measures of each of the
alternative models are significantly greater than the distance measures of our chosen model.

Gross Returns Excess Returns

HJO HJM HJC HJO HJM HJC

Panel A: HJ Measures

CCAPM 0.7877 0.7421 0.8267 CCAPM 0.753 0.18 0.2235

Yogo 0.7806 0.7806 0.8224 Yogo 0.7421 0.1798 0.223

Piazzesi 0.7853 0.7853 0.826 Piazzesi 0.6925 0.1822 0.2241

Panel B: HJ Multiple Comparison

Y ogo < (CCAPM/Piazeesi) Y ogo < (CCAPM/Piazeesi)

H0 : (pval) 0.2776 0.1922 0.1644 H0 : (pval) 0.8895 0.9127 0.8901

Y ogo < Candidates

CCAPM (pval) 0.0332 0.0332 0.054 CCAPM (pval) 0.0286 0.109 0.0942

Piazzesi (pval) 0.0334 0.0334 0.0268 Piazzesi (pval) 0.0398 0.0446 0.0382

32



Table 5: Test Portfolios: FF25 plus 30 Industry Portfolios

Notes: the table represents the results of the conditional consumption-based asset pricing
models comparison tests using both the gross returns and the excess returns on 25 size and
book-to-market sorted plus 30 industry sorted portfolios. Panel A reports the HJ distance(
HJO

)
, the modified HJ distance

(
HJM

)
and the constrained HJ distance

(
HJC

)
measures

for all the models described in Section 2.2. Panel B presents the results of the two formal
tests of model comparison. The null hypothesis in the first test is that our chosen model has
a HJO , HJM and HJC measure that is less than that of any of the alternative models. The
second test is a pairwise comparison test of whether HJO , HJM and HJC measures of each
of the alternative models are significantly greater than the distance measures of our chosen
model.

Gross Returns Excess Returns

HJO HJM HJC HJO HJM HJC

Panel A: HJ Measures

cayC 0.7743 0.7743 0.8148 cayC 0.744 0.1764 0.2211

LVNC 0.7862 0.7862 0.8258 LVNC 0.7509 0.1774 0.2215

PISC 0.7862 0.7862 0.8261 PISC 0.6912 0.1784 0.2233

Panel B: HJ Multiple Comparison

cayC < (LV NC/PISC) cayC < (LV NC/PISC)

H0 : (pval) 0.2574 0.21 0.6639 H0 : (pval) 0.223 0.23 0.8901

cayC < Candidates

LVNC (pval) 0.0282 0.028 0.0342 LVNC (pval) 0.02 0.0216 0.0168

PISC (pval) 0.0338 0.0336 0.041 PISC (pval) 0.024 0.0272 0.0254
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Table 6: Rank Test and Misspecification Identification

Notes: the table presents the results of the ranks tests of the individual factors, the model
misspecification tests, and rank tests of the models. The models are estimated using monthly
and quarterly gross returns from 1967:12 until 2012:12 on the 25 size and book-to-market
Fama–French portfolios, the 30 Fama–French industry portfolios, and the one-month T-bill.
Panel A reports the rank restriction test (w) and its p-value of the null that E[xt(1, f it)]
has a column rank of one. In Panel B, I report the sample HJ distance (δ̂), the Lagrange
multiplier (LM) test, and the rank restriction test (W∗) with the corresponding p-values for
each model. Panels C and D shows t-tests of the model selection procedures based on the
standard errors under correct model specification and model misspecification, respectively.
The boldface denotes the 5% significance level.

Panel A: Rank test for individual factors
Test vw smb hml rmw cma mom me ia roe
w 190.8 187.6 178.1 143.1 160.6 81.8 179.2 152.0 126.8
p-val 0.000 0.000 0.000 0.000 0.000 0.011 0.000 0.000 0.000
Test cndur cdur cnh(s) cay my
w 65.7 61.9 67.2/43.0 61.7 56.8
p-val 0.153 0.245 0.124/0.88 0.249 0.407

Panel B: HJ-distance, Lagrange multiplier, and rank tests
Model δ̂ p-val LM p-val W∗ p-val
CAPM 0.611 0.000 152.707 0.000 190.8 0.000
FF3 0.580 0.000 137.606 0.000 186.2 0.000
FF5 0.568 0.000 133.141 0.000 75.3 0.015
Carhart 0.534 0.000 106.155 0.000 82.7 0.004
HXZ 0.573 0.000 135.194 0.000 73.7 0.026

Panel C: Selection by standard errors under correct model specification
Model vw smb hml rmw cma mom me ia roe
CAPM -2.39
FF3 -3.09 -0.65 -4.18

-3.37 -4.20
FF5 -3.65 -1.02 -0.75 -1.67 -1.41

-3.45 -1.05 -4.40 -2.08
-3.50 -0.69 -0.34 -1.82

Carhart -3.54 -1.47 -4.37 -3.44
-2.91 -2.81

HXZ -3.48 -2.55 -3.60 -2.47
-3.22 -1.61 -3.56
-3.85 -3.32 -1.65

Panel D: Selection by model misspecification-robust standard errors
Model vw smb hml rmw cma mom me ia roe
CAPM -2.38
FF3 -3.03 -0.61 -4.00

-3.35 -4.03
FF5 -3.49 -0.80 -0.47 -1.42 -0.91

-3.38 -0.85 -4.10 -1.79
-3.25 -0.63 -0.23 -1.22

Carhart -3.44 -1.36 -4.15 -3.44
-2.91 -2.70

HXZ -3.44 -2.43 -3.39 -2.23
-3.16 -1.59 -3.27
-3.80 -3.09 -1.50
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Figure 1: Confidence Set for the HJ Set for Gross Returns on Fama–
French 25 Size and Value Portfolios

Notes: Figure shows Hansen-Jagannathan (HJ) sets using weighted LR statistic and the
structured projection approaches when the consumption-based models explain the gross re-
turns on Fama-French 25 size and book-to-market ratio portfolios. The first row gives the
CCAPM, the second row is the Piazzesi, Schneider and Tuzel (2007) housing consumption
model and the third row shows the Yogo (2006) durable consumption model. The blue dashed
line in the left is the 95% confidence region based on the weighted LR statistic, and the blue
dashed in the right denotes the 95% confidence region based on the structured projection.
Both approaches’ confidence regions cover most of the bootstrap draws below the HJ bounds.
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Figure 2: Confidence Set for the HJ Set for Excess Returns on Fama-
French 25 Size and Value Portfolios

Notes: Figure shows Hansen-Jagannathan (HJ) sets using weighted LR statistic and the
structured projection approaches when the consumption-based models explain the excess re-
turns on Fama-French 25 size and book-to-market ratio portfolios. The first row gives the
CCAPM, the second row is the Piazzesi, Schneider and Tuzel (2007) housing consumption
model and the third row shows the Yogo (2006) durable consumption model. The blue dashed
line in the left is the 95% confidence region based on the weighted LR statistic, and the blue
dashed in the right denotes the 95% confidence region based on the structured projection.
Both approaches’ confidence regions cover most of the bootstrap draws below the HJ bounds.
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Figure 3: Confidence Set for the HJ Set for Gross Returns on Industry
Portfolios

Notes: Figure shows Hansen-Jagannathan (HJ) sets using weighted LR statistic and the
structured projection approaches when the conditional consumption-based models explain
the gross returns on 30 industry portfolios. The first row gives the Lettau and Ludvigson
(2001) scaled CCAPM, the second row is the Piazzesi, Schneider and Tuzel (2007) hous-
ing consumption conditional CCAPM model and the third row shows the Lustig and Van
Nieuwerburgh (2005) housing collateral conditional CCAPM. The blue dashed line in the left
is the 95% confidence region based on the weighted LR statistic, and the blue dashed in the
right denotes the 95% confidence region based on the structured projection. Both approaches’
confidence regions cover most of the bootstrap draws below the HJ bounds.
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Figure 4: Confidence Set for the HJ Set for Excess Returns on Indus-
try Portfolios

Notes: Figure shows Hansen-Jagannathan (HJ) sets using weighted LR statistic and the
structured projection approaches when the conditional consumption-based models explain
the excess returns on 30 industry portfolios. The first row gives the Lettau and Ludvig-
son (2001) scaled CCAPM, the second row is the Piazzesi, Schneider and Tuzel (2007) hous-
ing consumption conditional CCAPM model and the third row shows the Lustig and Van
Nieuwerburgh (2005) housing collateral conditional CCAPM. The blue dashed line in the left
is the 95% confidence region based on the weighted LR statistic, and the blue dashed in the
right denotes the 95% confidence region based on the structured projection. Both approaches’
confidence regions cover most of the bootstrap draws below the HJ bounds.
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Figure 5: Yogo and CCAPM in the Entropy Scenario
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Figure 6: Lettau and Ludvigson and CCAPM in the Entropy Scenario
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