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Abstract

In this paper, we develop and implement a dynamic portfolio strategy
for European corporate bonds. We introduce a strategy in which we
forecast both future factors as well as bonds’ future exposure to these
factor. We apply the strategy to a complete sample of monthly European
corporate bond returns from 1991 to 2013, on both an index level and an
individual bond level. At the index level, we find that the strategy based
on forecasted factors outperforms the benchmark strategies, whereas the
strategy based on forecasted exposures does not. There is, however, ample
time variation in the performance, related to uncertainty and the level
of market integration. At the individual bond level, we find significant
outperformance of the dynamic strategy over the benchmark.
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1 Introduction

In this paper, we develop and implement a dynamic portfolio strategy for Eu-
ropean corporate bonds. Building on an asset pricing model containing country
and industry factors, we introduce a dynamic portfolio strategy in which port-
folio weights are a function of forecasts of both future factors as well as the
future exposure to these factor. We apply the strategy to a complete sample of
monthly European corporate bond returns from 1991 to 2013, on both an index
level and an individual bond level. At the index level, we find that the strategy
based on forecasted factors outperforms portfolios based on an nave allocation
and mean-variance and minimum-variance optimisations , whereas the strategy
based on forecasted factor exposures does not. There is, however, ample time
variation in the performance, related to uncertainty and the level of market in-
tegration. At the individual bond level, we find significant outperformance over
the nave portfolio. Our results are robust to equal or value weighting, and the
exact set of countries.

This paper contributes to a large literature on dynamic portfolio strategies.
Several papers propose dynamic portfolio strategies under different settings.
These include dynamic portfolio strategies with portfolio insurance (Perold and
Sharpe, 1988), for investors facing inflation (Brennan and Xia, 2009), with
transaction costs (Dumas and Luciano, 1991), in markets with arbitrage op-
portunities (Liu and Longstaff, 2004), in either bear or bull market (Cesari and
Cremonini, 2003) and optimal strategies with event risks (Lui et al., 2003).

While the results of those papers are significant for these specific settings , we
are interested in achieving an outperformance in a more generalized setting. Li
and Ng (2000) show how to derive the analytical optimal solution to the mean-
variance formulation in multi-period portfolio selection. Brandt and Santa-
Clara (2006) propose that the optimal dynamic strategy can be approximated
by the static Markowitz solution. While both studies propose more generalized
form solutions of the Markowitz model, neither demonstrate performance vis-
a-vis a benchmark such as the naive portfolio. Since they are extensions of the
Markowitz solution, they also implicitly carry the problem of estimation error

which hampers their ability to outperform the naive portfolio.



Indeed, the classical Markowitz model ignores estimation error. The imple-
mentation of this model in a static setting implies that investors only care about
the mean and the variance with moments estimated via their sample analogues.
This is prone to lead to extreme weights that fluctuate substantially over time
and perform poorly out of sample (DeMiguel et al., 2009). We therefore need
to turn to a strand of literature that has devoted considerable effort to the issue
of handling estimation error for clues on how we can improve the performance
of the Markowitz model. A prominent role in this vast literature is played by
the Baynesian approach to estimation error. Multiple implementations range
from the purely statistical approach, relying on diffuse priors (e.g.: Barry, 1974;
Bawa et al., 1979) to a shrinkage estimator (e.g.: Jobson et al., 1979; Jobson and
Korkie, 1980; Jorion, 1985 and 1986). More recent approaches rely on an asset-
pricing model for establishing a prior (e.g.: Pastor, 2000; Pastor and Stambauch,
2000). Equally rich is the set of non-Baynesian approaches to reduce estimation
error in the Markowitz model. These include robust portfolio allocation rules
(e.g.: Goldfarb and Iyengar, 2003; Garlappi et al., 2007), portfolio rules designed
to optimally diversify across market and estimation risk (Kan and Zhou, 2007),
portfolios that exploit the moment restrictions imposed by the factor structure
of returns (MacKinley and Pastor, 2000), methods that focus on reducing the
error in estimating the covariance matrix (Best and Grauer, 1992; Chan et al.,
1999, Ledoit and Wolf, 2004a and 2004b) and, finally, portfolio rules that impose
short-selling constraints (Frost and Savarino, 1988;Chopra, 1993; Jagannathan
and Ma, 2003). While the out-of-sample Sharpe ratios of the extended models
are better than the classical Markowitz model, a direct statistical comparison
on out-of-sample performance is lacking from those papers.

DeMiguel et al. (2009) is the benchmark study to compare the out-of-sample
performance of the sample-based mean-variance model with some extensions to
the naive (equally-weighted) portfolio allocation. Using the mean return and
variance of the previous period to determine the optimal weights of the next
period, they forecast the out-of-sample period returns. Their model extensions
include Baynesian approaches to estimation error, moment restrictions, portfolio
constraints and optimal combinations of portfolios. They find that their fore-

casted performances are not consistently better than the naive portfolio. The



explanation is two-fold. First, there are still estimation errors in the expected
returns and variance-covariance matrix. Secondly, using portfolios of stocks in-
stead of individual stocks leads to diversified portfolios with less idiosyncratic
risk. The loss from the naive as opposed to the optimal diversification is much
smaller when allocating wealth across portfolios. Overall, the gain from optimal
diversification is more than off-set by the size of the estimation error. They
therefore derive an analytical expression for the critical length of the estimation
window that is needed for the sample-based mean-variance strategy to achieve
a higher certainty-equivalent (CEQ) return. All the models need very long esti-
mation windows (3,000 months for a portfolio of 25 assets) before they are able
to beat the naive portfolio.

De Miguel et al. (2009) show that there are still many miles to go before the
gains promised by optimal portfolio choice can actually be realized out of sample.
We are not attempting to improve the Markowitz model by reducing estimation
error, but take a different approach altogether using country and industry factors
and betas. Different to most other studies is that the European corporate
bond market is our domain. Country factors dominate industry factors in the
return variation of Furopean corporate bonds over a long period of 1991 to 2013
(Pieterse-Bloem et al., 2013). This result is in contrast to country and industry
factor results for stock markets. Studies that use the Heston and Rouwenhorst
(1994) decomposition of return variation on equitiesfind that country factors
dominate industry factors until around the year 2000 (e.g.: Griffin and Karolyi,
1998; Rouwenhorst, 1999; Brooks and Del Negro, 2001). After the turn of
the millennium, industry factors are documented to play an increasingly larger
role in stock returns relative to country factors, especially in Europe which
introduces the Euro to form one single market at that time (e.g.: Baca et
al., 2000; Cavaglia et al., 2000 ; Adjaoute and Danthine, 2003; Flavin, 2004;
Phylaktis and Xia, 2006).

The country and industry factors in European corporate bonds also inhibit
considerable time-variation, however, whereby it is shown that the relative domi-
nance of country factors changes considerably (Pieterse-Bloem et al., 2016). The
dominance of country factors in European corporate bond returns reduces in the

years leading up to the European Economic and Monetary Union (EMU), and



again after the introduction of the Euro. This coincides with a tendency among
European corporate bond portfolio managers to switch from a country to an
industry allocation in the financial industry (Brooks, 1999). This change of tact
is somewhat misinformed since country factors not only remain dominant in
those early and good days of EMU, they also strengthen as the global financial
crisis in 2007 develops into the European sovereign debt crisis (Pieterse-Bloem
et al., 2016).

In this paper, we are capitalizing on the time-varying country and industry
factor findings of Pieterse-Bloem et al. (2016) and define a dynamic portfolio
strategy for European corporate bonds. Despite the dominance of country fac-
tors over industry factors, we cannot rely on a country allocation alone to deliver
a mean-variance outperformance. Rolling spanning and efficiency tests to eval-
uate the performance of the country-only and industry-only portfolios over time
show that we need both. This is consistent with the finding in Pieterse-Bloem
and Mahieu (2013), who apply spanning and efficiency tests with country and
industry portfolios from a static decomposition but over different time windows.
We therefore construct a dynamic portfolio strategy based on both forecasted
country and industry factors as well as forecasted betas or factor exposures. We
use an Autoregressive Moving-Average (ARMA) model as our prefered method
of forecasting the factors. Our second method is to apply the GARCH-BEKK
model from Pieterse-Bloem et al. (2016) to forecast the country and industry
betas. In both cases, we use the factors and betas calculated over a previous
window of 100 months to forecast the weights for the next out-of-sample pe-
riod. We compare the performance of the indexes that we are thus able to
construct to three benchmark portfolios, being the mean-variance portfolio, the
minimal-variance portfolio and the naive portfolios on either an equal-weight
and an individual weight basis. We calculate the out-of-sample performance
of all three benchmarks from the sample-based weights which we project for-
ward to the next period. We compare performance on maximum Sharpe ratio,
minimal variance and highest certainty-equivalent (CEQ) return.

In the corporate bond market, we need to build indexes from individual bond
returns. Our dataset contains 8,446 individual bond series over a sample period

of January 1991 to January 2013. Through our method of collection, our dataset



is representative for the European corporate bond market in this period. Each
individual bond belongs to one of eight European countries and one of seven
main industries. This closed set allows us to perform a dynamic decomposition
of return variance to derive the time-varying country and industry factors and
betas, similar to Pieterse-Bloem et al. (2016).

A major finding is that our portfolios constructed from forecasted factors
outperforms the naive strategy, the mean-variance portfolio and the minimum-
variance portfolio on Sharpe ratios and CEQ return, though the outperformance
is not significant. The difference in our result from De Miguet et al. (2009) is
arguably that bond portfolios contain higher idiosyncratic volatility than stock
portfolios. The outperformance of the dynamic factor portfolio is not achieved
on the minimal variance measure where, naturally, the minimal variance portfo-
lio continues to perform better out-of-sample. The performance of the strategy
based on forecasted factors is better than for the forecasted betas in general,
and improves specifically in low-volatile periods and in periods when industry
factors gain in strength relative to country factors. When looking at differ-
ent subsets of countries, we find that the results do not change much for core,
periphery and non-EU countries.

A practical drawback of the strategy described above is that investors cannot
directly buy the indexes that we create; they would have to form them them-
selves, which might not be feasible for smaller investors. We therefore replicate
our dynamic forecasting strategy on the individual bond level. The outperfor-
mance that we achieve at an individual bond level over the naive portfolio is
positive, and statistically significant. We find that our dynamic portfolio from
forecasted factors and factor exposures for individual bonds beats the naive
portfolio on all three measure of performance. Since this strategy can be repli-
cated by investors, we also consider turnover. We find that the required turnover
of our dynamic portfolio strategy is actually less than that of the naive port-
folio. This is because the composition of the European corporate bond market
changes every month, while the optimal holding period for our dynamic strategy
leaves the portfolio unchanged for five consecutive months.

Our results transcend the finance literature on dynamic portfolio strategies

to the level of demonstrated outperformance. Our results are meaningful for



the academic debate, since we are among the very few to design a dynamic
portfolio strategy that is able to outperform these hard to beat benchmarks.
Since the portfolios from individual bonds can be replicated, our results are also
very meaningful for investors.

The remainder of his paper is organized as follows. Section 2 describes
the data we use and in Section 3 we introduce our dynamic portfolio strategy.
Section 4 list the methods we utilize. Section 5 presents the results, and Section

6 a number of robustness checks. Section 7 concludes the paper.

2 Data

In contrast to stocks, corporate bond indexes are not readily available. There-
fore, we hand-collect the daily prices of European corporate bonds in local cur-
rencies and calculate monthly holding-period returns. To obtain the common
returns, the end-of-month exchange rates of the local currencies against the US
dollar (USD) are also collected from Datastream.®.

The final data sample includes 8,446 corporate bonds covering the period
from January 1991 to January 2013 containing 265 monthly observations. The
data set constitutes a closed set, since each bond belongs to one country and one
industry in the sample. In total, we have eight country indexes and seven indus-
try indexes. The countries that are represented in the analysis are Belgium and
Luxembourg (BL), France (FR), Germany (GE), the Netherlands (NE), Italy
(IT), Spain (SP), Sweden (SW) and the United Kingdom (UK). The industries
that are represented are financial and funds (FF), government institutions (GI)2,
consumer goods (CO), communications and technology (CT), basic materials

and energy (BE), industries (IN) and utilities (UT).

Insert Table 1 here

IMore detailed explanations of the data collection process can be found in Pieterse-Bloem

et al. (2016).
2Government Institutions include the bonds from quasi-sovereigns and local authorities.

Quasi-sovereigns are entities within the government but are not the same as the sovereign issuer
itself. Examples include KFW in Germany, CADES in France, Nederlandse Waterschapsbank

in the Netherlands. Local authorities are provinces and municipalities.



Table 1 shows how the bonds distribute over different countries and indus-
tries. Panel A of Table 1 shows that Germany constitutes 37.8% in our sample,
which is the largest proportion of FEuropean corporate bonds among the eight
countries. France and the United Kingdom follow with 15.4% and 15.1% of
total sample each. For the industries, Panel B shows that the financial and
funds sector dominates with 67.0% of corporate bonds in the whole sample. On
a value-weighted basis®, the dominance of Germany and the financial industry
is largely reduced. Panel D indicates that the value-weighted share of Germany
now consists of only 19.5% among the whole sample. On a value-weighted basis,
the United Kingdom and Italy are among the largest issuing countries besides
Germany. Among the industries the dominance of the financial industry is like-
wise reduced. On a value-weighted basis the financial sector still accounts for
43.4% of the sample. These results imply that both Germany and the financial
and funds industry give out a relatively large number of bonds with relative low
notional value.

Table 1 indicates that each country has at least one bond in each industry.
Therefore, there are good diversification opportunities in our sample and all
countries are industrially diversified. Nevertheless, certain patterns of industry
concentration in the European countries are visible from Panels C and D. For
example, France is more concentrated in the consumer and industrial sectors.
Germany, the Netherlands and Sweden have some concentrations in the govern-
ment sector. The United Kingdom is relatively concentrated in consumers and

utilities. All countries have relatively heavy weights in the financial industry.
Insert Table 2 here

Table 2 lists the summary of the monthly percentage mean and standard de-
viation of European corporate bond returns classified by country (Panel A) and
by industry (Panel B). The table shows that although country and industry sec-
tor returns are very similar, the variation in average returns and return volatility
is larger among the country indexes than the industry indexes. Judging from
the value-weighted mean country index returns, countries with above-average

returns are the United Kingdom and Spain, while Germany and France are

3We use the bonds’ notional value to calculate the value-weighted returns.



below the average. For the value-weighted industry index mean returns, the
highest returns can be found among the utilities, whereas the industries sector
is the lowest. On a value-weighted basis, the difference between the highest and
lowest mean index return among all countries is 0.21%, while the difference is
only 0.09% among all industries. The range in the standard deviation of the
returns is 0.49% for all countries and 0.18% for all industries. The correlation
matrixes in Table 2 indicate that different countries are less correlated with each

other than different industries are, both on an equal and a value-weighted basis.

3 The Dynamic Portfolio Strategy

We build our dynamic portfolio strategy on an asset pricing model consisting of
two factors: an industry factor and a country factor. That is, we assume that

individual bond returns are driven by the following model:

Tngt = &+ Brfre + Bifi (1)

in which f;+ and f;; are the country and industry factor relevant for bond n
at time t.

If we want to forecast the returns of bond n in this framework, we can
forecast the country and industry factors. Furthermore, from Pieterse-Bloem
et al. (2016), we know that the factor exposures S and (; are also time-
varying. Therefore, predicting future factor exposures is also relevant if we want
to predict bond returns. A higher exposure to one of the factors results, ceteris
paribus, in a higher expected return for the bond given the (unconditionally)
positive expected factor returns. Once we have forecasts of factors as well as
factor exposures, we use this information to form dynamic portfolios.

We first apply time-varying spanning and efficiency tests to analyze whether
country-only or industry-only portfolios outperform during different periods
from January 1991 to January 2013. The outcome of this first test will give
us an indication about the potential of time-varying investment strategies in
the European corporate bond market. Subsequently, we forecast country and

industry factors as well as factor exposures and form dynamic portfolios on two



levels: the index level and the individual bond level. Specifically, at the index
level we approach the country and industry factors themselves as investable as-
sets, and try to find an optimal portfolio of factors. Subsequently we go to the

individual bond level and use forecasted bond returns to form portfolios.

3.1 Forecasting Factors using the ARMA Model

We first construct dynamic portfolios from forecasted country and industry fac-
tors using the autoregressive-moving-average (ARMA) model. We forecast the
country and industry factors f,;’t and fj,-’t for month 101 to 265 based on an
ARM A(p, q) model with p autoregressive terms and ¢ moving-average terms.

The model contains the AR(p) and M A(q) models:

p q
Xi =C+8t+Z<Pz‘Xt—1 +29i8t—1 (2)

i=1 i=1
where X; and X;_; are the factor returns in time ¢ and ¢t — 1, ¢ is the constant,
€¢,; is the white noise error terms, and ¢; and 6; are the parameters to be
estimated. We use a rolling window of 100 periods to forecast the country and
industry factors for month 101 to month 265. The forecasted factor values are

the basis for calculating the weights for the dynamic portfolios.

3.2 Forecasting Factor Exposures using the GARCH Model

We next construct dynamic portfolios from forecasted country and industry
betas using the multivariate GARCH (GARCH-BEKK) model from Pieterse-
Bloem et al., (2016). We forecast the one-step ahead conditional covariance and
variance of bond returns and country (industry) factor using spanning windows.
The first window is month 1 to 100 and the last window is month 1 to 265. We
only include the bonds that have data on the last month of the estimation
periods. With the conditional covariance and variance forecasted, we obtain
the conditional country and industry betas for each bond using the following

equations:

koo Cov(rn.t, frt)
(. var(fr.t)
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j Cov(rn,ta fj,t) (4)
T ()

We use the median value of the betas for the bonds as the country and

industry betas to calculate the weights?.

3.3 Creating Portfolio Weights

The returns of the dynamic portfolios can be written as follows:

K J
Rpi =Y wiiRy,+> wiiRy, (5)
k=1 i=1

where wy, ; represents the weight country k in the dynamic portfolio at time ¢
and w; ¢ represents the weight industry j in the dynamic portfolio at time ¢
The dynamic weights wy; and w;; are calculated using two methods, by

forecasted factors as in Equation 2 and by forecasted betas as in Equation 3.

K J K J

Wi = (Fo)2/ O Fe)? + D (505 wie = (F00/ O (Fe)? + D (f;.0%)
k=1 j=1 k=1 j=1

(6)

K

J J
2"‘2 ), wiie = ﬂt Z 2+Z(ﬂg)2)

k=1 j=1

Mx

wie = (B)%/(

>
Il
—

where f,;’t and f]/',t are the forecasted country and industry factors using the
ARMA model, 8F is the median value of the forecasted country betas for all
the bonds in country k at time t and 87 is the median value of the forecasted

industry betas for all the bonds in industry j at time t°.

4We also calculate the country and industry betas using value-weighted weights. The

results are similar and available upon request.
5We also use the value-weighted weights for individual bond betas to calculate the country

and industry betas. The results do not change and are available upon request.
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4 Methods

4.1 Retrieving Country and Industry Indexes

We obtain the time-series country and industry factors fi; and f;; employing
the Heston and Rouwenhorst (1994) method using cross-sectional regressions.
For each month from January 1991 to January 2013, the returns for the individ-
ual bonds that exist in that month can be decomposed into a country, industry,

and an idiosyncratic component, using the following regression equation:

K J

Tnt = Q+ ka,tfnk,t + +ij,tfnj,t +Ent (8)
k=1 j=1

where 7, ; represents the vector of individual bond returns of company n existing
in month ¢. I,;; is an industry dummy variable which equals one if asset
n belongs to industry j at time ¢ and zero otherwise. Likewise, the country
dummy I, equals one if asset n belongs to country k in period ¢ and zero
otherwise. The coefficients f;; and f ; capture the returns that can be assigned
to a specific industry and country respectively.

Equation (8) cannot be estimated in its present form because it is uniden-
tified due to perfect collinearity. Intuitively, this is because every bond belongs
to both an industry and a country, so that industry and country effects can be
measured only relative to a benchmark. To resolve the indeterminacy, we follow
Heston and Rouwenhorst (1994) and impose the restriction that the weighted

sum of industry and country effects equal zero at every point in time:

K
Z’Uk,tfk,t =0 (9)
k=1

J
> wjifie=0 (10)
j=1

where w; ; and vy + represent the weight of industry j and country k in the total
universe of Eurobonds at time ¢. In this paper, we focus on both equal and
value weights. The value weights are constructed from the USD equivalent of

the amounts issued. Imposing such restriction is equivalent to measuring the
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size of each industry and country relative to the average size. The country and

industry weights sum to unity:

K
> =1 (11)
k=1

J
> wip=1 (12)
j=1

4.2 Rolling Spanning and Efficiency Tests

We adopt a time-varying mean-variance approach to test whether the country-
only or the industry-only portfolios outperform over time. If this were to be the
case, a dynamic strategy giving time-varying weights to country and industry
factors will never add value. When none of the factors individually stochastically
dominate the others, and that the diversification benefit is time-varying, there
is room for a dynamic strategy.

Our starting point is an investor who wants to optimize her portfolio in
the European corporate bond market constructed from country and industry
sub-indexes. We use both spanning and efficiency tests to compare the perfor-
mance between the industry-only and the country-only portfolios, building on
Pieterse-Bloem and Mahieu (2013) but now in a dynamic setting. The spanning
tests inform us whether adding extra country (industry) asset has effects on the
mean-variance frontier of a benchmark industry (country) portfolio. If the null
hypothesis that the mean-variance frontier of the portfolio consisting of country
(or industry) indexes alone coincides with the frontier of both together cannot
be rejected, we can say that the country (or the industry) portfolio spans the
set of both industry and country indexes together. The efficiency test shows the
relative performance of the country-only versus the industry-only portfolios by
directly comparing their maximum Sharpe ratios.

We employ rolling-window settings to the spanning and efficiency tests to
see how the results of the both tests change over time. We use a rolling window
of 36 months. From our sample period we thus obtain 229 time-series spanning
and efficiency tests statistics. We also link our rolling spanning and efficiency

test statistics to the VIX, also with a rolling window of 36 months, to see if there
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is a correlation between the volatility of the financial markets and the relative

performances of the country-only and industry-only strategies.

4.3 Benchmark Strategies

We use three different portfolio strategies as the benchmarks. They are 1/N
naive strategy, the mean-variance portfolio, and the minimum variance portfolio.

The naive strategy involves holding a portfolio weight w = 1/N in each of the
N risky assets. There are two reasons for using the naive rule as a benchmark.
First, it is easy to implement because it does not rely either on estimation of the
moments of asset returns or on optimization. Secondly, investors continue to use
such simple allocation rules for allocating their wealth across asset despite the
sophisticated theoretical models developed in the last decades and the advances
in methods for estimating the parameters of these models . In our case, the
nave portfolios are either with equal weights or value-weighted weights. The
equal-weighted naive strategy is formed by allocating equal weights to eight
country and seven industry indexes. Therefore, we have fifteen assets in total.

The returns of the equal-weighted naive portfolios are as follows:

K J
Ryer= (D Ry,+ Y R;,)./15 (13)

k=1 j=1
The value-weighted naive strategy allocates the assets based on the values of
each country and each industry index. The returns of the value-weighted naive

portfolios can be written as follows:

K J
Vit V;
) Jrt
Ryyt = E wk,tRk,t-i-E wj By, Wit = — T Wy =

k=1 i=1 > Vi + E Vit ZI‘(/k,t + EL{/t
o= k=1 (134_)1
The second benchmark is the mean-variance portfolio, which maximizes the
in-sample Sharpe ratio. In the mean-variance model of Markowitz (1952), the
investor optimizes the trade-off between the mean and the variance of portfolio
returns. We can think of the optimization problem as follows. At each time ¢,

X, is selected to maximize expected utility:

14



max &7 u; — %mtT Zt T, (15)

in which « can be interpreted as the investor’s risk aversion. The solution of
the above optimization is z, = (1/7) E;l u. The vector of relative portfolio

weights invested in the N risky assets at time ¢ will then be:

_1u
t
Wy = ¢

B 1NZt_lut

To implement the mean-variance model of Markowitz (1952), we follow the

(16)

classic "plug-in” method. We use the sample mean and covariance matrix to
solve the optimization problem. wu; is the expected return over the risk-free
rate. ), is the NV x N variance-covariance matrix of returns. Iy to indicate the
N x N identity matrix. x, is the vector of portfolio weights invested in the N
risky assets, with 1 — 1%z, invested in the risk-free asset. The constraint that
the weights sum to 1 is incorporated implicitly by expressing the optimization
problem in terms of returns in excess of the risk-free rate.
The third benchmark is the minimum-variance portfolio. Under the minimum-

variance strategy, we choose the portfolio of risky assets that minimizes the

variance of the returns as follows:

min w; Zt w,, s.t15w, =1 (17)

To implement this strategy, we use only the estimate of the covariance matrix
of asset returns (the sample covariance matrix) and ignore the estimates of the
expected returns.

For both the mean-variance strategy and minimum-variance strategy, we
forecast the weights in the next period using the same spanning window as
in our dynamic strategy. To be more specific, for month 1 to month 100, we
estimate the weights according to different benchmark strategies and we use the
estimated weights as the forecasted weights for month 101. To forecast month
102, we estimate the weights for the period from month 1 to month 101. We
continue the process until month 265. The portfolio returns can be written as

follows:
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K J
Rt = Zwk’tRk,t + ij,tRJ,t (18)
k=1 j=1

where wy, ; and w;; are the one-month ahead forecasted weights using the
spanning window for both the mean-variance portfolio and the minimum-variance

portfolios.

4.4 Performance Evaluation

We use three performance measures to compare between the different portfolio
strategies. First, we measure the out-of-sample Sharpe ratios strategy i, defined
as the sample mean of out-of-sample excess returns (over the risk-free rates),

w;, divided by their sample standard deviation, o;:

SR; =1 (19)

g;

To test whether the Sharpe ratios of two strategies are statistically different,
we use the method by Iedoit and Wolf (2008). Iedoit and Wolf (2008) argue
that the test by Jobson and Korkie (1981) is not valid even with the correction
made in Memmel (2003) for returns that have tails heavier than the normal
distribution or are of a time series nature. They propose the use of robust
inference methods to compare between different Sharpe ratios. Specifically, they
suggest to construct a studentized time series bootstrap confidence interval for
the difference of the Sharpe ratios and to declare the two ratios different if zero
is not contained in the obtained interval. This approach has the advantage
that one can simply resample from the observed data as opposed to some null-
restricted data.

As a second performance measure, the certainty-equivalent (CEQ) return is
defined as the risk-free rate that an investor is willing to accept rather than
adopting a particular risky portfolio strategy. The CEQ return of strategy i is
computed as follows:

CEQy = pi — 207 (20)

We assume v to be 1 as common practice. To test whether the CEQ returns

from two strategies are statistically different, we compute the p-value of the
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difference, relying on the asymptotic of functional forms of the estimators for

means and variance.

5 Results

5.1 Rolling Spanning and Efficiency Tests

Table 3 shows the results of the rolling spanning tests in Panel A and efficiency
tests in Panel B for the country and industry indexes (value-weighted). In
Panel A, HO: Spanning K (J) shows the results of testing the null hypothesis
that country (industry) indexes are spanned by industry (country) indexes. The
critical value at 95% confidence interval are indicated in Column 2 of the Panel

A. Column 3 of Panel A shows the median values of the spanning test statistics.
Insert Table 3 here

The results show that spanning tests cannot be rejected at 95% confidence
interval. Therefore, country indexes are not spanned by industry indexes on
average over our sample period, and vice versa. We argue that the diversi-
fication benefits of the portfolio of country (industry) indexes can be further
improved by adding industry (country) indexes to the portfolio. Column 3 of
Panel B shows the results of rolling efficiency tests. The null hypothesis of equal
maximum Sharpe ratios between country and industry portfolios cannot be re-
jected on average at 95% confidence level. Therefore, the country and industry
portfolios cannot be distinguished in terms of their maximum Sharpe ratios.
The difference in the values of the Sharpe ratios is consistently defined as that
of the industry-based portfolios less that of the country-based portfolios. As
we can see from Panel B, the maximum Sharpe ratio is consistently higher for
the country portfolios than for the industry portfolios but the difference is not
statistically significant. The results confirm the findings in Pieterse-Bloem and
Mahieu (2013) from the static spanning and efficiency tests.

The results in Table 3 only show the average test statistics over the full sam-
ple. To see how the results vary over time, we link the test statistics to market

volatility through VIX data. Columns 4 and 5 of Table 3 show the correlation
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coefficients and the p-values by linking the VIX with the rolling spanning test
statistics in panel A and with efficiency test statistics in Panel B. We see that the
correlation between the rolling test statistic of the country indexes (Chi_K) and
the VIX is 0.2567. Between that of the industry indexes (Chi_J) and the VIX,
the correlation coefficient is 0.2859. Both correlations are positive and highly
significant. Therefore, the spanning tests are more likely to be rejected when
the market is more volatile, which means that it is more important to include
both country and industry indexes during these periods. During high volatility
periods, the correlations between the assets tends to increase. Therefore, it is
more beneficial to include both country and industry indexes to achieve higher
risk reductions. The correlation coefficient between the VIX data and the effi-
ciency test statistics are positive but not significant. The difference in Sharpe
ratios of the industry versus the country portfolios are negatively (-0.0405) cor-
related with the VIX data but also not significant at 90 percent confidence level
(p-value of 0.5422). Though not significant, we can say that when the mar-
ket is more volatile, the industry-only and country-only portfolios differ more
in performance, with worse performance of industry-only portfolios relative to
country-only portfolios.

All in all, we can conclude that the country (industry) indexes do not signif-
icantly dominate the industry (country) indexes. Furthermore, there is ample
time-variation in the degree to which the two sets of assets perform and co-move.
As such, there is scope for a dynamic investment strategy that takes advantage

of this time-variation.

5.2 Dynamic Portfolio Strategy: Index Level

Table 4 shows the performance measures of the dynamic portfolio strategy,
including the mean, standard deviation, Sharpe ratio, and CEQ return. The
portfolios include the dynamic portfolios constructed using the forecasted factors
alone, forecasted betas alone and both forecasted factors and betas, as well as

the benchmark strategies®.

6The value-weighted naive strategy has a lower Sharpe ratio and a higher turnover ratio
than the equal-weighted naive strategy. Therefore, we use only equal-weighted naive strategy

as the benchmark in our analysis.
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Insert Table 4 here

The dynamic portfolio based on forecasted factors, DS1, has the highest
Sharpe ratio of all portfolios. The dynamic strategy based on forecasted betas,
DS2, does not outperform any of the benchmark strategies. This result is con-
sistent across performance measures. This result is driven by both a relatively
high expected return and a relatively low standard deviation. The Sharpe ra-
tio is not significantly higher, though. The combined strategy, both forecasted
factors and forecasted betas, in DS3, also does not outperform.

We plot the rolling difference in Sharpe ratios of the dynamic strategy us-
ing forecasted factors and forecasted betas and the three benchmark strategies
using a rolling window of 36 months. Figure 1 shows the differences in Sharpe
ratios between the strategy using forecasted factors and the benchmark strate-
gies. Figure 2 plots the rolling differences between the dynamic strategy using

forecasted betas and the benchmark strategies.

Insert Figure 1 here

Insert Figure 2 here

From Figures 1 and 2, we observe that there is substantial time-variation
in the performance difference between the strategies. The patterns for the two
dynamic strategies and across benchmarks is highly comparable: The dynamic
strategies outperform the benchmarks in the first part of the sample, roughly
until 2007, but underperform the benchmarks in the second half of the sample.

We investigate whether the time-variation of the Sharpe ratios corresponds
with market conditions. If this is the case, it helps to decide when to apply
the dynamic portfolio strategy. Table 5 shows the relation between the perfor-
mance difference between the dynamic strategy based on forecasted factors and
the benchmark strategies and lagged VIX and lagged market integration. We
measure integration by the relative importance of country versus industry fac-
tors”. for a 36-month rolling period. Likewise, the rolling difference in Sharpe
ratios between different strategies with a window of 36 months is calculated for
month 101 to 265.

"We calculate the median value of country factor squared minus industry factor squared

divided by industry factor squared
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Insert Table 5 here

Column 2 of Table 5 shows how the differences in performance correlates
with market volatility measured by the VIX. We find that the dynamic portfo-
lio performs better than the benchmark portfolios when the VIX is low. The
relation is significant at a 99% confidence level. This results is driven by both
the return and the volatility component. Therefore, we argue that when the
market is more volatile, it is less beneficial to conduct our dynamic portfolio
strategy. As for the lagged market integration in column 3 of Table 5, we find
that the dynamic strategy performs better when market integration is relatively
low. This result is again driven by both the return and the variance part of the
Sharpe ratio.

All in all, we can conclude that the performance of the dynamic portfolio
strategy at the index level is mainly strong when the strategy is based on fore-
casted factors. Furthermore, the performance of the strategy is especially strong
is periods of low volatility and low market integration. In the next section, we
will study the performance of the dynamic portfolio strategy at the individual

bond level.

5.3 Dynamic Portfolio Strategy: Individual Bond Level

We apply the dynamic portfolio strategies based on individual bonds instead of
bond indexes. The reason is that the country and industry indexes we use as
assets in the previous section are not investable indexes; that is, investors would
have to create the indexes themselves. This is feasible for larger investors, but
perhaps not for small investors.

The dynamic strategy is constructed as follows. For each bond, we calculate
the expected returns as the expected betas multiplied by the expected factors,
as shown in Equation (1). We use three different combinations. The first is to
use the forecasted betas using the GARCH model multiplied by the average of
the country/industry factor up until the period in which the forecast is made.
The second method is based on the forecasted betas using the GARCH model
multiplied by the factors forecasted using the ARMA model. The third com-
bination is to multiply the forecasted factors using the ARMA model by the
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unconditional betas estimated using OLS until the period when the forecast is
made. This approach allows us to isolate the added value of the forecasted betas
from the added value of the forecasted factors in the portfolio performance.
Based on the expected returns using the three methods, we form our dynamic
portfolio by investing only in the bonds with top 10, 20, 30, or 40 percent
expected returns in the previous month. We also construct portfolios using
bonds that consistently rank in the top 10% in terms of expected returns in the
previous two to six months. As for the benchmark strategies, we can only use
the naive strategy because our data is uneven over time. Therefore, it is not
possible to calculate the mean-variance nor the minimum-variance portfolios.
We report the returns, the standard deviations, and the Sharpe ratios of
these dynamic portfolios together with the benchmark portfolio in Table 6 (with
both forecasted factors and forecasted betas), Table 7 (with unconditional beta
and forecasted factors), and Table 8 (with forecasted betas and unconditional

factors).
Insert Table 6 here
Insert Table 7 here
Insert Table 8 here

As for the dynamic portfolio with both forecasted betas and factors, the
results in Table 6 show that the Sharpe ratio is always higher for the dynamic
strategy than for the naive strategy. The Sharpe ratios of the portfolios based
on the top 10 and top 30 percent expected return deciles are significantly better
than that of the naive strategy. We observe that the performance of the dynamic
strategies tends to decrease as lower expected return deciles are added to the
portfolio, as can be expected. This decrease originates mainly from the return
part of the Sharpe ratio, as the standard deviation remains constant.

Since the top 30 percent decile portfolio has the most significant difference
with the benchmark, we also construct portfolios consisting of bonds that are
consistently in the top 30% expected return decile over the previous 2 to 6
months. We find that for bonds with top 30% performance in the previous 2, 3

and 5 months, the dynamic portfolio significantly outperform the naive strategy.
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Therefore, we argue that our dynamic strategy investing in individual bonds
based on their expected returns has the potential to significantly outperforms
the naive strategy.

The strategy based on the forecasted factors and unconditional betas, shown
in Table 7 outperforms the naive strategy for all portfolios. In this case, the per-
formance difference also tends to be significant. For the second strategy, based
on forecasted betas only, we find in Table 8 that the dynamic portfolios consis-
tently outperform the naive strategy. The performance difference, however, is
never significant. This suggests that the significant performance difference we
observed in Table 6 was mainly driven by the forecasted factor returns. This
confirms our earlier finding that the significant outperformance in Table 6 was
mainly driven by the forecasted factors. This result is consistent with our earlier

findings of the performance of the dynamic portfolio strategy at the index level.

6 Robustness Checks

We run a number of robustness tests to see to what extent our results are sensi-
tive to the set of countries in our sample. As such, we separate our data sample
into several country groups. First of all, we focus on the core countries, which
include Belgium and Luxembourg, France, Germany, and Netherlands; periph-
ery countries, which are Italy and Spain; and non-Euro countries consisting
of Sweden and the UK. We form the same dynamic strategies and benchmark
strategies as in the main analysis. Tables 9 to 11 present the results.

The results generally hold for different country groups with some minor
differences. For the set of core countries, in Table 9, we find highly comparable
results. The portfolio based on forecasted factors significantly outperforms the
naive strategy whereas the other configurations do not. For the peripheral
countries, in Table 10, we also find outperformance for the dynamic strategy,
but not significantly so. This is explained by the fact that returns in peripheral
are more volatile causing performance differences to be less significant. This
finding is also consistent with our earlier finding that the dynamic portfolio
strategy performs better in tranquil periods.

When splitting up the sample in Euro versus non-Euro countries, in Tables
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11 and 12, we observe substantial outperformance of the dynamic strategies, es-
pecially for the non-Euro countries. The differences, though, are not significant.
The latter finding implies that the significant outperformance we observed for
the full set of countries is partly driven by the combination of Euro and non-Euro

countries, which arguably provides for additional diversification benefits.
Insert Table 9 here
Insert Table 10 here
Insert Table 11 here

Insert Table 12 here

7 Conclusions

In this paper, we propose a dynamic portfolio strategy for European corporate
bonds based on a two-factor pricing model. Our results show that it is im-
portant to include both country and industry factors to improve diversification
benefits, especially during periods of high volatility. We construct our dynamic
portfolios based on either forecasted factors, forecasted betas, or a combination
of both. The results show that the performance of the dynamic portfolio con-
structed using only forecasted factors significantly outperforms the benchmark
strategies. It is especially beneficial to implement the dynamic strategies when
market volatility is relatively low or when integration in the European corporate
bond market is relatively low. These results hold for both the index level and
the individual bond level. The results continue to hold in a subset of core Euro-
pean countries. In addition, we find that a combination of Euro and Non-Euro

countries is important for outperformance.
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Tables and Figures

Figure 1: Difference in Performance between the Dynamic and Benchmark
Strategies
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Notes: The graph shows the rolling difference in the Sharpe ratios between the dynamic
strategy using only the forecasted factors and the benchmark strategies. We use 36 months

as our rolling window period.
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Figure 2: Difference in Performance between the Dynamic and Benchmark
Strategies
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Notes: The graph shows the rolling difference in the Sharpe ratios between the dynamic
strategy using only the forecasted betas and the benchmark strategies. We use 36 months as

our rolling window period.
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Table 1: Country and Industry Composition

A. By country (number and percent of total)

Belgium/Luxembourg BL 260 3.08%
France FR 1305 15.45%
Germany GE 3196 37.84%
Ttaly IT 611 7.23%
Netherlands NE 997 11.80%
Spain SP 136 1.61%
Sweden SW 668 7.91%
United Kingdom UK 1273 15.07%
Total 8446 100%
B. By industry (number and percent of total)
Financials&Funds FF 5662 67.04%
Government Institute GI 784 9.28%
Consumer Goods CcO 691 8.18%
Comm.Technology CcT 313 3.711%
Basic material&Energy BE 246 2.91%
Industrials IN 292 3.46%
Utilities UuT 458 5.42%
Total 8446 100%
C. Number of bonds by country and industry

FF GI CO CT BE IN UT Total
Belgium/Luxembourg 163 13 16 9 24 16 19 260
France 624 95 203 79 90 111 103 1305
Germany 2652 241 137 40 35 58 33 3196
Ttaly 454 47 22 28 14 6 40 611
Netherlands 641 206 28 42 24 22 34 997
Spain 78 16 5 12 4 7 14 136
Sweden 336 146 70 38 17 37 24 668
United Kingdom 714 20 210 65 38 35 191 1273
Total 5662 784 691 313 246 292 458 8446
D. Average weights of country/industry in the value-weighted European market:
in percentage FF GI CO CcT BE IN uT Total
Belgium/Luxembourg 0.48 0.33 0.03 0.15 0.19 0.09 0.21 1.48
France 6.14 2.18 231 1.92 1.03 1.66 2.28 17.52
Germany 12.08 2.8 156 0.72 0.44 1.02 0.74 19.36
Ttaly 232 13.76 031 073 029 0.13 0.6 18.05
Netherlands 6.27 3.63 0.26 0.6 0.3 0.3 0.39 11.75
Spain 0.57 1.95 0.03 0.18 0.11 0.12 0.28 3.24
Sweden 6.43 2.04 0.1 0.2 0.03 0.06 0.32 9.18
United Kingdom 9.87 0.61 3.07 176 054 0.67 2.87 19.39
Total 44.16 27.21 7.67 6.26 293 4.05 7.69 100

Notes: Panels A and B give for each country and industry the number of bonds included
in the total sample and as a percentage of the total number of bonds. Panel C gives for
each country by industry the number of bonds included in the total sample. Panel D gives
the average weight of the (live) bonds in the country by industry cross-sector in the total
value-weighted market over the whole sample. Percentages do not add up to precisely 100
due to rounding. 31
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Table 3: Rolling Spanning and Efficiency Tests of the Country and Industry Indexes

Country and Industry Indexes from: Critical Level = Median Statistics  Correlation  P-value

A. Bond Returns (Spanning Tests)
HO:spanning K (26.296) 17.382 0.2576 0.0001
HO:spanning J (23.685 21.964 0.2859 0.0000

B. Bond Excess Returns (Efficiency Tests)
HO:Efficiency 3.842 2.284 0.0050 0.9369
Difference in Sharpe Ratio (Lamda) -1.228 -0.0405 0.5422

Notes: The table shows the results of the rolling spanning and efficiency tests performed on value-weighted
country and industry indexes. Panel A shows the results of the rolling spanning tests. HO:spanning K (J) is
the results for the null hypothesis that country (industry) indexes are spanned by industry (country) indexes.
The median value in Column 3 is obtained from the test statistics between January 1991 to January 2013.
Column 4 shows the correlation coefficient between the test statistics and the VIX, and column 5 the p-value
of this correlation. Panel B lists the results for the rolling efficiency tests. HO: efficiency is the result that
the maximum Sharpe ratios of the country and industry portfolios are the same. The results of the spanning
and efficiency tests can be compared with the critical levels at the 95% level.
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Table 5: Relative Performance and Market Conditions

Relative Portfolio Performance Lag Volatility Lag Integration

A. Dynamic VS Naive SR -0.4480 -0.1739
P-Value 0.0000 0.0488

B. Dynamic VS Mean-V SR -0.6702 -0.5398
P-Value 0.0000 0.0000

C. Dynamic VS Mini-V SR -0.7145 -0.5950
P-Value 0.0000 0.0000

D. Dynamic VS Naive Return -0.5723 -0.2768
P-Value 0.0000 0.0015

E. Dynamic VS Mean-V Return -0.6273 -0.4166
P-Value 0.0000 0.0000

F. Dynamic VS Min-V Return -0.8003 -0.5854
P-Value 0.0000 0.0000

H. Dynamic VS Naive Variance -0.8441 -0.8716
P-Value 0.0000 0.0000

I. Dynamic VS Mean-V Variance 0.5683 0.7357
P-Value 0.0000 0.0000

J. Dynamic VS Mini-V Variance -0.3823 0.1651
P-Value 0.0000 0.0615

Notes: The table shows how the relative performance between our dynamic portfolio
constructed with forecasted factors and the three benchmark portfolios relate to the
lagged volatility (VIX) and the lagged market integration measures.
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