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Abstract

The sample estimator of the covariance matrix is often found to be unstable due to estimation error.
But more sophisticated covariance matrix estimators that rely on factor models, shrinkage towards
some Bayesian prior or principal component analysis do not substantially improve on the sample
estimator when portfolios are short-sale constrained. Moreover, all models assume the true covariance
matrix to be relatively constant over time, while in reality financial asset returns are known to exhibit
heteroskedasticity with volatility clustering and time-varying in-between correlations. In response,
the use of multivariate Generalised Autoregressive Conditional Heteroskedasticity (“GARCH”) and
Exponentially Weighted Moving Average (“EWMA”) models in low-dimensional covariance matrix
problems for portfolio optimisation (across diversified assets) has recently been suggested. This study
investigates, whether there is any value to be derived by practitioners in employing such more complex
regularisation methods over the sample covariance matrix estimator in high-dimensional covariance
matrix problems. We, thus, provide a comprehensive review and comparison of nine covariance matrix
regularisation models and additionally test an heuristic, portfolio resampling method. Our findings
suggest that only employing GARCH and EWMA methods leads to a significant improvement in the
covariance matrix forecast and, thus, better out-of-sample portfolio performance when dealing with
a high-dimensional covariance matrix of stock returns (i.e. when we include more than approx. 100
assets). In fact, for any smaller set of stocks none of the estimators improves much on the sample
covariance matrix. We then extend our findings to popular low and diversified risk asset allocation
rules and show that using GARCH and EWMA models for estimating the covariance matrix generally
leads to a superior attainment of strategy specific targets and lower ex-post portfolio volatility.
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1 Introduction

Following the wake of the financial crisis, low volatility investing has attracted a considerable amount

of interest. Although low volatility portfolios tend to perform poorly relative to the cap-weighted

benchmark in bullish markets, empirical evidence suggests that they provide superior long-term re-

turns with lower risk (Chow et al, 2014). Even from a scientific point of view, it has been recognised

that mean-variance investment rules can underperform naive and low volatility investment strategies

(e.g. DeMiguel et al. (2009); Himbert and Kapraun (2017b)). This notion has left asset managers in

the search for more robust investment rules and sparked the rush for low and diversified risk diversi-

fication methods, which led to a variety of alternatively weighted indices and ETFs. Among the most

popular portfolio optimisation methods are the Minimum Variance (Markowitz, 1952; Clarke et al.,

2006), Equal Risk Contribution or Risk Parity (Qian, 2006; Maillard et al., 2010b; Asness et al., 2012)

and Most Diversified portfolios (Choueifaty and Coignard, 2008). All these strategies only rely on an

estimate of the covariance matrix as an input to the optimisation problem.

There is a common consensus that it is mainly the vector of expected returns, which is considered

notoriously hard to estimate (Merton, 1980), that causes large discrepancies between the expected

and observed ex-post performance of most mean-variance investment allocations. Since the estimation

error in the covariance matrix is known to be relatively smaller than in the vector of expected returns,

one may be tempted to believe that low volatility investing is not sensitive to estimation error. On the

contrary, Kan and Zhou (2007) show that, when the ratio of portfolio size (N) to the sample size (T )

for each asset is large, the impact of misspecification of the covariance matrix estimates when using

the sample estimator can be as important. We believe that more research should, thus, be devoted

to reducing estimation risk in covariance matrix estimates for application in low and diversified risk

investment strategies.
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The standard approach to estimating the covariance matrix is the sample estimator, an equally

weighted average of observed asset covariances. While it is still the most commonly employed method

amongst practitioners, it has been found to be unstable (e.g. Kondor et al. (2007)). This finding

motivated research into more robust methods of estimating the elements of the covariance matrix. An

intuitive approach to forgo estimation error, is to reduce the number of parameters to be estimated

by imposing a structure on the covariance matrix (e.g. in the form of the constant correlation model

of Elton and Gruber (1973)) or by employing explicit factor models (e.g. Chan et al. (1999)). The

resulting estimators are, however, biased if the true return generating model does not correspond to

the assumed model. To find a compromise between bias and estimation error, Ledoit and Wolf (2003)

propose shrinkage methods as introduced by James and Stein (1961). They suggest combining the

properties of the sample estimator and those of a more structured estimator. In addition, implicit

factor models based on principal component analysis have recently gained considerable attention (e.g.

Plerou et al. (2002)). Kan and Zhou (2007) and Gosier et al. (2005), among others, respectively ana-

lyse the out-of-sample performance of such Bayesian estimators and factor models. They find that

when short-sales are allowed, regularisation methods work well in improving covariance estimates and

yield significantly better forecasts than the sample estimator. Pantaleo et al. (2011) and Coqueret

and Milhau (2014) extend this analysis with similar results. Both studies confirm that when the

mean-variance portfolios are in themselves short-sale constrained, the sample estimator, shrinkage and

factor models mostly perform equally well (in line with earlier findings by Jagannathan and Ma (2003)).

Yet these approaches are only valid if one assumes the true (unobserved) covariance matrix to be

constant over time or to at least vary slowly. The latter is implicit, since these methods are only

targeted at reducing the estimation risk that stems from sampling error. When employing a very large

T (implying a sufficiently large amount of data is available) sampling error should not be a concern and

the sample covariance estimator should be reliable (Merton, 1980). A large strand of literature has,

however, proven that financial asset returns exhibit heteroskedasticity with volatility clustering and

the assumption of constant correlations between financial asset returns is often found to be violated.

More advanced time-varying covariance matrix models as proposed by Engle (2002) have been shown

to better capture the time-varying properties of the covariance matrix. Research on using forward

looking properties of multivariate time-varying volatility models in portfolio optimisation, however, is

sparse. Harris and Nguyen (2013), among others, only recently suggest using multivariate Generalised
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Autoregressive Conditional Heteroskedasticity (“GARCH”) (Engle and Bollerslev, 1986) and Exponen-

tially Weighted Moving Average (“EWMA”) (Longerstaey, 1996; Zumbach, 2004) models in portfolio

optimisation to reduce the impact of estimation error in the covariance matrix. Zakamulin (2015) finds

that such methods cut the forecast error compared to the sample estimator and shrinkage methods in

half. This could translate into a remarkable improvement in robustness of optimal portfolio weights

and benefit the whole class of low and diversified risk investment policies. The practical merits of

Zakamulin’s work are, however, limited to a set of Fama-French factor and index portfolios (which

are taken as assets and, thus, in themselves diversified) and only proven valid for low dimensional

covariance matrix problems.1

It lies at hand that the range of proposed estimators for the covariance matrix of asset returns is

not only wide, but also highly commercialised. As a result, portfolio managers and index providers

often rely on pre-packaged, black-boxed methodologies when optimising the asset portfolio towards

some target.2 Our research is set out to investigate whether there is any value to be derived by prac-

titioners in employing such more complex regularisation methods over the simple sample covariance

matrix estimator. While we are clearly not the first to conduct a comparative study of covariance

matrix estimators, we complement existing literature on several levels. Firstly, we include the novel

Fama-French five factor model (Fama and French, 2015) as well as fairly recent principal compon-

ent and hyperbolically decaying EWMA methods in our study of covariance regularisation methods.

Secondly, we extend research on the use of time-varying volatility models in portfolio optimisation by

Zakamulin (2015) and Harris and Nguyen (2013) to high dimensional covariance matrix problems. We

examine these in direct comparison to the heuristic “resampling” method (Michaud, 1989) that expli-

citly targets a reduction in sampling error and has been shown to improve on the use of more complex

shrinkage estimators or factor models (Markowitz and Usmen, 1996; Becker et al., 2015a). Moreover,

we are not only concerned with the question of which method works best in forecasting the covariance

matrix, but with the implications for portfolio management. Diversified risk strategies such as Most

Diversified, for example, are significantly more sensitive to estimation error than Minimum Variance

portfolio allocations that are commonly tested for in this context (Himbert and Kapraun, 2017a). Fi-

nally, without imposing maximum weight constraints, the Minimum Variance portfolio generally is too
1The largest number of assets included in any dataset in Zakamulin (2015) is N = 10.
2For example, the S&P 500 Minimum Volatility Index is optimised using the covariance specifications of the “North-

fields optimiser”, which in itself allows for a range of unclear decisions in regards to how parameters are estimated. MSCI
frequently employs their “Barra Global Equity Model” that is also commercially available.

4



concentrated for most investors or to be used in alternatively weighted index products. As funds are

often bound by short-sale constraints and regulatory rules commonly prescribe maximum holdings of

no more than 10% in any asset (while alternative indexing methods have even more restrictive weight

constraints), we put additional emphasis on the impact of such natural limitations on estimation risk.

The remainder of this study is structured as follows. In section 2 we review a representative set of

available covariance matrix estimation methods. In Section 3 we employ these methods to real datasets

consisting of U.S. and European large-cap stocks and assess their ability to predict the volatility of

the short-sale constrained minimum-variance portfolio, depending on N . Section 4 compromises an

application of the selected methods to popular low and diversified risk investment strategies.
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2 A review of covariance matrix estimation methods

2.1 The Sample Estimator

The sample estimator of the covariance matrix Σ serves as the benchmark model to the range of

enhanced estimation methods we consider. Denote by rt and rft respectively the vectors of rates of

return on N risky assets and the risk-free asset at time t (t = 1, 2, ..., T ). Then the excess returns

(from here on “returns”) at time t are defined as Rt = rt− rft1N , where 1N is a N × 1 vector of ones.

When µ̂ = 1
T

∑T
t=1Rt is the vector of the assets’ expected returns estimated over the period of length

T , the (unbiased) sample covariance estimator is given by:

Σ̂
se

=
1

T − 1

T∑
t=1

(Rt − µ̂)(Rt − µ̂)′ (1)

A well-known problem in portfolio optimisation is that the sample covariance matrix is singular

(non-invertible) when N ≥ T . For once, the known linear solution to the short-sale unconstrained

minimum-variance portfolio problem relies on the invertibility of the covariance matrix. But even

for short-sale constrained portfolio problems, this causes problems in most optimisers (Kondor et al.,

2017). Merton (1980) has shown that the sample covariance matrix is an unbiased and convergent

estimator of the true covariance matrix when T → ∞, since statistically it provides the maximum

likelihood estimate under the assumption of i.i.d. returns and covariance stationarity. The availab-

ility of historical data may, however, be limited and additionally problems of non-stationarity of the

variance-covariance structure have been documented (Engle, 1993). To mitigate the former and to en-

sure an invertible covariance matrix, we turn to higher frequency (daily) data which generally benefits

the sample estimator of the covariance matrix (Gosier et al., 2005).

2.2 Explicit Factor Model Estimators

Chan et al. (1999) suggest that estimates of the sample covariance matrix are biased by specific events

that affect several stocks at a time but may not persist in the future. They, thus, propose to “strip out

the idiosyncratic components of the covariance structure” by introducing common factors that drive
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asset returns. In the spirit of Ross (1976) it is assumed that the return of each stock i (i = 1, 2, ..., N)

can be decomposed into a combination of K factors and an idiosyncratic term:

Ri,t = βi0 +

K∑
k=1

βikfk,t + εi,t, for k = 1, 2, ...K. (2)

Here Ri,t denotes the excess return of an asset i and fk,t the return of the k-th common factor at time

t, while εi,t is a residual term. The coefficients βik can be understood as the loadings of stock i on

each of the K factors. When B̂ is the (N ×K) matrix of factor loadings of the assets that contains the

least-squares estimators βik and Ω̂ denotes the sample covariance matrix of factor returns, the factor

estimator of the covariance matrix is given by:

Σ̂
fac

= B̂Ω̂B̂′ + D̂, (3)

with D̂ being a diagonal matrix that contains the residual return variances (from (2)). Employing

factor models significantly decreases the number of parameters to be estimated. While the sample co-

variance matrix estimator requires the estimation of N × (N + 1)/2 off-diagonal elements, the number

of parameters required in the factor model is limited to N ×K betas, K × (K + 1)/2 factor covari-

ances and N idiosyncratic variances. Reducing the number of covariance matrix elements decreases

the chance of estimation outliers that can dominate an optimised portfolio, something that is often

referred to as error maximisation (Michaud, 1989). Factor model, thus, appear particularly attractive

for high-dimensional covariance matrix problems where the risk of extremely erroneous parameter es-

timates is higher.

The use of a single factor model for estimating the covariance matrix goes back to Sharpe (1964),

who considers the stock market index as the unique factor. But Fama and French (1993), among

others, show that a single factor does not sufficiently capture stock price movements and suggest using

a multi-factor model. When choosing these factors, it is important that they are rewarded in the long-

run. Only factors that help to explain asset returns can be expected to reduce the unexplained variance

(Chan et al., 1999). We, thus, employ the most widely recognised three-factor asset pricing model of

Fama and French (1993) and their most recent extension of a five-factor model (Fama and French,

2015) that, to our knowledge, has so far not been considered in this context. The respective factors

are the cap-weighted market index, the small-minus-big capitalisation factor and the high-minus-low
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book-to-market factor that are complemented by the high-minus-low profitability and the conservative-

minus-aggresive investment factor in Fama-French’s five factor model. Products available to portfolio

managers such as the “Barra Risk Factor Analysis” incorporate over 40 factors. While incorporating

a larger number of factors can help to reduce the unexplained variance, it also increases the number

of parameters to be estimated. In this context, Chan et al. (1999) test a variety of factor models

that include up to 10 factors and find that when lower and upper weight constraints are imposed in

portfolio optimisation, a one-factor model can perform as well as a multi-factor model.

2.3 Shrinkage Estimators

The sample covariance matrix is known to be (asymptotically) unbiased, but exhibits a significant

degree of estimation error. At the other extreme one finds structured estimators such factor or constant

correlation matrix models (e.g. Chan et al. (1999); Elton and Gruber (1973)) that have little estimation

error but tend to be biased. James and Stein (1961) suggest that there must exist an optimal trade-off

between bias and estimation error and propose compromise between the two by computing a convex

linear combination between the sample matrix and a Bayesian prior. What is referred to as shrinkage

can, thus, be understood as taking a weighted average of the sample covariance matrix with some

target matrix F that has less estimation error:

Σ̂
shrink

= (1− b) · Σ̂
se

+ b · F. (4)

Here bε(0, 1) denotes the shrinkage intensity that controls how much structure is imposed to the shrunk

covariance matrix estimator. Michaud (1989) reviews a variety of such shrinkage estimators and finds

that most of them break down when N ≥ T , since the derivation of the optimal shrinkage intensity b

in its original form relies on the inverse of the sample covariance matrix that is not attainable when

the number of assets exceeds the number of data points in the estimation set. In response to this find-

ing, Ledoit and Wolf (2003, 2004) propose a set of shrinkage estimators where the optimal shrinkage

intensity is derived under the Frobenius norm.3

In this study, we explore two alternative models for the shrinkage target - shrinkage towards a single

factor estimator and shrinkage towards the constant correlation matrix. As laid out in 2.2, there is yet
3The shrinkage coefficient, thus also depends on the shrinkage target F. For a detailed derivation we refer the

interested reader to Ledoit and Wolf (2003) and Ledoit and Wolf (2004).

8



no consensus on the identity and the number of factors K to be used in a factor model since these can

be very different across datasets. In fact, Chan et al. (1999) suggest that a single index model with

the market as the only factor (which corresponds to the model of Sharpe (1964)) may be a sufficiently

structured estimator in most applications. Ledoit and Wolf (2003), thus, propose an estimator of

the form (3) as a shrinkage target with the single factor being the return of the market portfolio

(where we take the Fama French market factor as a proxy of the return on the market portfolio).

The second, more structured, shrinkage target we consider is the covariance matrix derived under the

constant correlation matrix model as introduced by Elton and Gruber (1973) and used in Ledoit and

Wolf (2004). Here all pairwise correlations are assumed to be identical and thus the average of all

the sample correlations is the estimator of the common constant correlation. The shrinkage target is

then obtained by multiplying the constant correlation matrix with the sample standard deviations.

One major drawback of shrinkage remains the fact that the choice of shrinkage target is somewhat

arbitrary.

2.4 Random Matrix Theory Principal Component Estimator

Methods of estimating the covariance matrix through principal component analysis avoid pre-specified,

explicit factor models in favour of extracting relevant factors from the data. Hence, one does not as-

sume returns to be described by a factor model that includes risk factors such as profitability or size.

Principal component analysis instead relies on the eigendecomposition of the sample covariance (or

correlation) matrix. The extracted eigenvectors (“factors”) are orthogonal and, by design, their vari-

ances are the eigenvalues of the covariance matrix. It can be shown that the ratio of each eigenvalue

to the sum of eigenvalues is the proportion of the total variance of observations which is explained by

the corresponding factor (Coqueret and Milhau, 2014). Factors that exhibit the highest eigenvalue,

thus, explain the largest share of total variance. In order to decide, which factors are relevant and

should be kept, eigenvectors are ranked by order of the corresponding decreasing eigenvalues. There is

yet no consensus in literature on how many factors should be kept (Bai and Ng, 2002). Most research

concludes that six to seven factors can sufficiently capture the co-movements between the assets. (e.g.

Alessi et al. (2010)). In our study we use a more recent principal component estimator that was first

proposed by Laloux et al. (2000) and is also used by Pantaleo et al. (2011). The estimator requires

the eigendecomposition of the sample correlation matrix Ĉ such that:
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Ĉ = EΛE′, (5)

where Λ is a diagonal matrix of eigenvalues λi i (i = 1, 2, ..., N), sorted by decreasing order, and E is

an orthogonal matrix that contains the corresponding eigenvectors. As in Laloux et al. (2000) we make

use of Random Matrix Theory (“RMT”) to determine the number of factors that are kept. Subject to

RMT, if the N variables of the system are i.i.d. with unit variance, in the limit N,T → ∞ the ratio

N/T converges to a constant ν different from 1 and all eigenvalues of the sample correlation matrix

are bounded from above by:4

λmax = (1 +
√
ν)2. (6)

When applied to finite samples, the constant ν is estimated by the ratio N/T . We then follow Plerou

et al. (2002) in applying RMT to the covariance estimation problem. In doing so, we factorise the

sample correlation matrix as in (5) and define the diagonal matrix Λ∗ of which the diagonal elements

are given by:

λ∗i = λi if λi > λmax and λ∗i = 0 otherwise. (7)

Thus, one essentially replaces all eigenvalues smaller than λmax by 0 in order to eliminate their corres-

ponding eigenvector. We then plug the modified diagonal matrix back into (5) and estimate the new

matrix product:

Ĉ∗ = EΛ∗E′. (8)

In order to transform the factor correlation matrix into a covariance matrix estimate, we set the

diagonal elements of Ĉ∗ equal to one. We then obtain the covariance matrix estimator by multiplying

Ĉ∗ with a diagonal matrix Σ̂D, whose diagonal elements are the sample volatilities of the individual

assets:5

Σ̂
pca

= Σ̂DΛ∗Σ̂D. (9)

In unreported results we also examine the eigendecomposition of the covariance matrix and retain

the eigenvectors with the six largest eigenvalues. We find that this estimator consistently underperforms

the eigendecomposition of the correlation matrix as proposed by Plerou et al. (2002) and, thus, omit

its results in the interest of brevity.
4Coqueret and Milhau (2014) points out that the assumption of unit variance across all assets explains why one

considers the eigendecomposition of the correlation matrix, as opposed to that of the covariance matrix.
5This corresponds to Σ̂

se
in which the off-diagonal elements are set to zero.
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2.5 Exponentially Weighted Moving Average Estimators

All of the estimators considered so far are subject to the assumption that one is modelling a stable

return process and, therefore, each point in time contains equally relevant information. This implies

stable variances and correlations among assets in a diversified portfolio. If this held true, estimation

risk stemming from sampling error could easily be controlled for by assuming a sufficiently large T .

There is, however, considerable evidence that asset returns exhibit heteroskedasticity with volatility

clustering and the assumption of constant correlation among assets is violated (Engle, 1993). Imposing

a factor model of the form (2) does not resolve this issue, since even between factor returns, changing

correlations and volatilities persist. This induces an additional component of estimation risk, which

is independent from sampling error. To capture the time-varying nature of volatilities, Longerstaey

(1996) proposes the exponentially weighted moving average model. The EWMA model for estimating

variances better captures the dynamics of return shocks by putting more weight on recent observations

and can easily be transformed into a multivariate context for estimating covariances. In what follows

we assume that Rt is given by:

Rt = µt + εt, (10)

where µt denotes the Nx1 vector of time-varying (“conditional”) expectations of Rt (that is the vector

of mean asset returns) and εt the Nx1 vector of random disturbances at time t such that Et−1[εt] = 0.

We then assume that the conditional returns Rt follow a multivariate normal distribution with mean

zero (µt = 0) and conditional covariance matrix Ht.6 The EWMA covariance matrix is then defined

recursively over t (t = 1, 2, ..., T ):

Ht = (1− κ)εt−1ε
′
t−1 + κHt−1, (11)

for a constant κε(0, 1) that determines the intensity of reaction of covariances to return shocks in

the first term as well as persistence in covariances in the second term. κ is usually set to 0.94 for

daily frequency data as recommended by Longerstaey (1996), while the full-sample covariance matrix

is chosen as the required, initial value H0. By definition, extreme returns, therefore, become less

important in the average as the data window slides along. The input covariance estimator for portfolio
6Note that the elements of µt and Ht must be measurable w.r.t. the σ-field Ft−1 generated by Rt−j for j ≥ 1.
In practice, the zero-mean assumption is satisfied by de-meaning Rt.
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optimisation is then simply defined as:

Σ̂
ewma1996

= HT , (12)

the conditional covariance matrix recursively estimated over T days.

Zumbach (2006) suggest an improved version of the EWMA estimator in which the weights on

past covariances decay hyperbolically rather than exponentially. It is estimated as a weighted sum of

several realistic EWMAs instead of a single EWMA as in (11). Formally, it is given by:

Ht =
L∑

l=1

wlHl,t (13)

Hl,t = (1− κl)εt−1ε′t−1 + κlHl,t−1

wl =
1

g
(1− ln(τl)

ln(τ0)
)

κl = exp(− 1

τl
)

τl = τ1ρ
l−1 for l = 1, 2, ..., L

where g is a normalisation constant that ensures
∑L

l=1 wl = 1. τ1 denotes the lower cut-off (i.e. the

shortest time scale at which covariances are measured), whereas τL defines the upper cut-off (which

increases exponentially in L) and τ0 is the logarithmic decay factor. The parameter ρ, required

to operationalise the model, is set to
√

2, τ0 = 1560 (days), τ1 = 4 (days) and τL = 504 (days)

corresponding to Zumbach (2006) or Harris and Nguyen (2013).7 Depending on its parametrisation,

the estimator generally exhibits a “longer memory” of past covariances (Zumbach, 2004). Again,

the input covariance estimator for portfolio optimisation, now subject to problem (13), is recursively

defined as defined as:

Σ̂
ewma2006

= HT . (14)
7Zumbach (2006) actually assumes τL = 512 which is equivalent to L = 15. We employ an estimation period of only

504 days, and, thus set τL = 504. The impact of this adjustment may be considered negligible.
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2.6 Dynamic Conditional Correlation GARCH Estimator

In the EWMA model, the forecast of average covariances over any forecast horizon is set equal to the

current estimate of conditional covariances (just as the sample covariance matrix estimator). Since

conditional volatilities are assumed constant by the model, so are the estimates of conditional correla-

tions. Alexander (2008), thus, argues that the EWMA model can be reduced to a constant correlation

model without any superior forecasting ability. Multivariate Generalised Autoregressive Conditional

Heteroskedasticity models, on the other hand, specify the dynamics volatilities and correlations to es-

timate the parameters. Such models have been shown to better capture volatility clusters by allowing

volatility to increase following periods of high realised volatility, or below-normal returns, and allowing

volatility to decrease following periods of low realised volatility, or above-normal returns (e.g. Engle

and Bollerslev (1986)). As for the EWMA method, we assume that Rt | Ft−1 ∼ N (0,Ht). This

implies that:

Rt = εt = H
1/2
t zt, (15)

where H
1/2
t is any square matrix such that Ht = H

1/2
t (H

1/2
t )′ and zt ∼ N (0, IN ) with IN being the

identity matrix of order N . The quasi-log-likelihood function under the assumed multivariate Gaussian

pdf of zt for a sample of T observed vectors Rt is then given by:

`T (θ) = −1

2

T∑
t=1

(N ln(2π) + ln | Ht| +ε′tH−1t εt), (16)

where θ denotes the vector of parameters appearing in µt, Ht and (if any) in the pdf of zt.

In conditional correlation models, conditional covariances are decomposed into the conditional

standard deviations (
√
hi,t) for i = 1, 2, ..., N and the conditional correlations qij,t for j = 2, 3, ..., N

and i < j. The conditional covariance matrix may, thus, also be expressed as:

Ht = DtΓtDt (17)

where Dt is a diagonal matrix of time-varying standard deviations with
√
hi,t as its ith diagonal

element, and Γt the time-varying correlation matrix of order N . The specification of Ht is, thus,

a function of model choice for each conditional variance and a choice of the conditional correlation

matrix. By substituting (13) into (12) one obtains the log-likelihood function of the estimator and
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can define ε̃t = D−1t εt ∼ N (0,Γt) , the vector of residuals standardised by their conditional standard

deviation, where:8

`T (θ) = −1

2

T∑
t=1

(N ln(2π) + ln | Dt|+ log | Γt| +ε̃′tΓ
−1
t ε̃t). (18)

Hence, the conditional correlation is given through the conditional covariance between the standardised

disturbances. The conditional variances hi,t are modelled as univariate GARCH processes, which in

its most commonly assumed GARCH(1,1) form is given by:

hi,t = ωi + δiε
2
i,t−1 + γihi,t−1. (19)

Here ωi denotes the weighted long-run variance, δiε2i,t−1 the moving average term with weight δi as-

signed to the lagged squared innovation and γihi,t−1 the autoregressive term with assigned weight γi

for the lagged variance .9

Literature suggest several specifications for choosing the conditional correlation matrix Γt, with

one of the most popular being the Dynamic Constant Correlation model proposed by Engle (2002).

He proposes the following relationship:

Γt = Q∗−1t QtQ
∗−1
t (20)

Qt = (1− a− c)Q̄ + aε̃t−1ε̃
′
t−1 + cQt−1,

where Q∗t = (diag(Qt))
1
2 . Q̄ is the unconditional covariance of the standardised residuals (Q̄ =

E[ε̃tε̃
′
t]), while a and c are scalars and assumed constant across different pairs of assets.10 (20) thereby

ensures that Γt is positive definite and | qij,t |≤ 1.

For portfolio optimisation, it is necessary to derive a p-step ahead forecasts of the conditional

covariance matrix that is determined by the desired investment horizon or rebalancing interval. The
8For a derivation and description of the estimation process we refer the interested reader to Engle (2002).
9ωi ≥ 0, γi ≥ 0, δi ≥ 0 and γi + δi ≤ 1.

10Note that Q0 must be positive definite.
0 ≤ a+ c ≤ 1.
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univariate conditional variances (that are the diagonal elements of Dt) can be forecast through:

hi,t+p =

p−2∑
m=1

ωi(δi + γi)
m + (δi + γi)

p−1hi,t−1. (21)

The DCC evolution process, however, is non-linear and Engle and Sheppard (2001) suggest using a

direct forecast of the conditional correlation matrix:

Et[Γt+f ] =

p−2∑
m=0

(1− a− c)Γ̄(a+ c)m + (a+ c)p−1Γt+1, (22)

based on the approximation Q̄ ≈ Γ̄ (where the latter denotes the unconditional correlation matrix)

and Et[Qt+1] ≈ Et[Γt+1]. The p-step ahead forecast of the conditional covariance matrix is then given

by:

HT+p = DT+pΓT+pDT+p. (23)

Assuming a rebalancing period of length P , we obtain the input covariance matrix through:

Σ̂
dcc−garch

=
1

P

P−1∑
p=0

HT+p. (24)

2.7 Incorporating heuristic methods: Resampled Efficiency

It is established in literature that the solution to the mean-variance portfolio optimisation problem

preferentially includes assets with high return and low risk. A number of studies (e.g. Nawrocki

(1991)) show that estimation error in exactly these assets tends to be highest, increasing the impact of

estimation error on portfolio weights and leading to what is known as error maximisation. The problem

is magnified since the optimal weights in mean-variance portfolios are known to be very sensitive to the

input estimates.11 Michaud (1989) first suggests resampled efficiency, a method aimed at reducing the

impact of estimation error by smoothing weights in the asset allocation (i.e. preventing outliers that

stem from a large sampling error) as a remedy. The method does not directly provide an alternative

covariance matrix estimation method, but is aimed at finding the average optimal weights subject to

a large number of realistic covariance matrix estimates. It follows a straightforward algorithm, based

on Monte-Carlo methods:
11Such problem is even more of a concern for mean-variance portfolios other than the minimum-variance portfolio,

since they additionally rely on noisy estimates of return.
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1. Given a multivariate return series for N assets of length T , estimate the unknown parameters µ

and Σ by their empirical moments µ̂ and Σ̂.12

2. Resample from a multivariate normal distribution N (µ̂,Σ̂) taking T independent draws and

generate N return series of length T . Estimate Σ̂ by its empirical moment ˆ̂
Σ.

3. Find the optimal portfolio composition ˆ̂w, subject to the specified portfolio optimisation problem,

based on ˆ̂
Σ.

4. Repeat steps 2. to 3. 499 times.

5. Let ˆ̂ws be the portfolio of draw s = 1, 2, ...500, calculate the average optimal portfolio weight

vector ŵ through ŵ = 1
500

∑500
d=1

ˆ̂ws and allocate portfolio weights accordingly.

Portfolio resampling, thus, works by generating a large number of statically equivalent samples of the

actual time series of returns with the same length that average optimal portfolio weights are based

upon. Averaging, in fact, ensures that the weights in the portfolio ŵ also sum up to one. Some authors

argue that the method is heuristic and has no economic justification based on the optimising behaviour

of rational agents. Scherer (2002) specifically points to the problem of “optionality” for the allocation

of assets that arises from combination of long-only constraints and the averaging procedure. He finds

that an increase in volatility of an asset (assuming its expected return remains constant) leads to an

increase in the average weight allocation to this asset - a result which cannot be aligned with the

assumption of risk-aversion of rational agents. In addition, we want to point out that the method also

assumes return and covariance stationarity and, thus, only works in reducing estimation risk that stems

from sampling error. Evidence of the value of resampled efficiency in mean-variance portfolio prob-

lems is, therefore, mixed. Most notably, Markowitz and Usmen (1996) compare Bayesian covariance

matrix estimation methods with resampled efficiency in a simulation study and, against their expect-

ations, find portfolio resampling to work relatively better. Similar results are reported by Fletcher

and Hillier (2001) in an empirical study, while Becker et al. (2015a) show shrinkage estimators to out-

perform Michaud’s resampling procedure. Some researchers even argue that resampled efficiency can

simply not be compared with Bayesian methods of covariance matrix estimation as for “every distri-

bution a prior will be found that outperforms resampling and vice versa” (Frahm, 2015). Our study is

set out to also investigate its value in application to low and diversified volatility investment strategies.

12We employ the unbiased sample estimator (1) but other covariance estimators may also be used in conjunction with
the resampling method.
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Table 2.1: Summary of employed covariance matrix estimators and methods

Method Estimated Covariance Matrix (Σ̂
y
)

Sample Estimator Σ̂
se

Fama French 3-factor Model Estimator Σ̂
fac−3

Fama French 5-factor Model Estimator Σ̂
fac−5

Shrinkage Estimator - Constant Correlation Matrix Σ̂
shrink−cc

Shrinkage Estimator - Single Index/Factor Model Σ̂
shrink−si

Random Matrix Theory Principal Component Estimator Σ̂
pca

EWMA Estimator (RiskMetrics 1996) Σ̂
ewma1996

EWMA Estimator (RiskMetrics 2006) Σ̂
ewma2006

DCC-GARCH Estimator Σ̂
dcc−garch

Resampled Efficiency - Portfolio Resampling n/a*

*Resampled Efficiency is a heuristic method that relies on resampling of the sample covariance matrix to extract
sampling error (as described in section 2.7).
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3 A test of covariance matrix estimation methods

3.1 Data and research design

Our primary U.S. and European datasets respectively consist of daily returns on all assets that have

been part of the S&P 500 and Euro Stoxx large cap indices over the 17-year period between January

2000 and December 2016 with little concern for selection bias.13 From each dataset we randomly select

N = {25, 50, 100, 150, 200, 250} stocks for analysis. We then employ a rolling window analysis, where

at the beginning of each quarter (every P = 63 days) from January 2002 through December 2016 we

estimate as an input to the portfolio optimisation the covariance matrix, subject to the chosen method,

using the T = 504 preceding days (which also avoids the issue of facing a non-invertible covariance

structure). Σ̂
y
may, thus, be labelled the ex-ante estimated covariance matrix, subject to the chosen

regularisation method y. The optimal weights of a Minimum Variance portfolio are then determined

by the solution to the following problem:

ŵy
MV = arg min

w
w′Σ̂

y
w s.t. 1′Nw = 1 andw ≥ 0. (25)

By focusing on the Minimum Variance portfolio problem, where the vector of expected asset returns

is not involved, we can exclude estimation risk that stems of erroneous estimates of expected returns

(Ingersoll, 1987). As in Zakamulin (2015) we impose short-sale constraints since most private investors

cannot engage in short-selling activities due to budget constraints and it is commonly forbidden by

fund rules. The portfolio is held over the following O = 63 days and then rebalanced.14 Following

this procedure yields a 15-years long out-of-sample return series from which the annualised ex-post

volatility is determined. Any covariance estimation method that yields the lowest ex-post portfolio

volatility may then be considered the superior method.15 We additionally test the effect of including a

maximum weight constraint of 10% for each individual asset and hope to contribute to the discussion
13The sample, thus, consists of 361 stocks (S&P 500) and 345 stocks (Euro Stoxx large cap) respectively.
14Hence, we set P = O.
15In unreported results we follow Pantaleo et al. (2011) in averaging the ex-post portfolio volatilities, each estimated

over their respective O-days out-of-sample period by
√

(ŵy
mv)′Σ̊ŵy

mv , where Σ̊ denotes the ex-post covariance matrix
estimated over O days. Results of this analysis correspond to the results reported in this paper.
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of whether (and when) the inclusion of such constraint effectively reduces ex-post portfolio volatility.

Pantaleo et al. (2011) finds that Minimum Variance portfolios based on regularised covariance

matrix estimates are on average more diversified in terms of portfolio holdings than those based on

the sample covariance matrix. In order to confirm such effect we assess the average “Effective Number

of Stocks”, which is the inverse of the Herfindahl Index and over 60 (d = 1, 2, ..., 60) out-of-sample

periods of length O for i (i = 1, 2, ..., N) defined as:

ES
y

MV =
1

60

60∑
d=1

ESy,d
MV =

1

60

60∑
d=1

1∑N
i=1(ŵy,d

MV,i)
2
, (26)

where ŵy,d
MV,i denotes the ex-ante optimal weight of an asset i that is estimated over the respective,

preceding estimation period. In addition, we are interested in the average portfolio diversification in

terms of individual asset volatilities and, thus, track the average “Diversification ratio” as proposed by

Choueifaty and Coignard (2008):

DR
y

MV =
1

60

60∑
d=1

DRy,d
MV =

1

60

60∑
d=1

(ŵy,d
MV )′̊ed

σ̄y,d
MV

. (27)

Here e̊d represents the N × 1 vector of individual assets’ ex-post sample volatilities and σ̄y,d
MV is the

realised portfolio volatility (both estimated over the d-th out-of-sample period).

3.2 Results from studying selected covariance matrix estimators

In this section we present the results of repeated portfolio optimisation towards the Minimum Variance

target using the range of covariance matrix estimators from section 2. Table 3.1 summarises the

annualised, ex-post volatilities over the 15-years out-of-sample period in dependency of the chosen

covariance matrix regularisation method and the number of assets used as an input to the optimiser.

The volatility obtained from using the sample estimator, reported in the first line of each panel, serves as

a benchmark to all covariance matrix estimation methods. Our findings are best illustrated in Figure

3.1 that evidences differences in ex-post portfolio volatility subject to the choice of the covariance

matrix estimator.
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Table 3.1: Out-of-sample (annualised) volatilities for estimated Minimum Variance portfolios

N

Σ̂
y

25 50 100 150 200 250

U.S.

se 0.1445 0.1396 0.1362 0.1531 0.1673 0.1691

shrink-cc 0.1437 0.1392 0.1354 0.1542 0.1693 0.1717

shrink-si 0.1438 0.1392 0.1352 0.1522 0.1670 0.1687

fac-3 0.1432 0.1395 0.1357 0.1562 0.1665 0.1682

fac-5 0.1439 0.1400 0.1356 0.1543 0.1672 0.1688

pca 0.1452 0.1404 0.1368 0.1544 0.1673 0.1689

res 0.1444 0.1403 0.1361 0.1526 0.1668 0.1691

ewma1996 0.1428 0.1415 0.1381 0.1491* 0.1546*** 0.1537***

ewma2006 0.1427 0.1417 0.1367 0.1448*** 0.1541*** 0.1512***

dcc-garch 0.1436 0.1432 0.1395 0.1565 0.1616** 0.1625**

Europe

se 0.1445 0.1458 0.1428 0.1578 0.1693 0.1680

shrink-cc 0.1437 0.1460 0.1439 0.1635 0.1726 0.1716

shrink-si 0.1438 0.1453 0.1419 0.1572 0.1688 0.1677

fac-3 0.1682 0.1452 0.1433 0.1658 0.1728 0.1714

fac-5 0.1680 0.1448 0.1412 0.1653 0.1717 0.1705

pca 0.1452 0.1471 0.1429 0.1579 0.1694 0.1680

res 0.1445 0.1461 0.1417 0.1537 0.1685 0.1675

ewma1996 0.1428 0.1539*** 0.1484** 0.1530* 0.1556*** 0.1556***

ewma2006 0.1426 0.1527*** 0.1467* 0.1527** 0.1549*** 0.1538***

dcc-garch 0.1436 0.1493 0.1451 0.1524** 0.1598*** 0.1586***

Ex-post annualised average volatility of the Minimum Variance portfolio between January 2002 and December
2016, subject to the respective covariance matrix estimator. Values are estimated from daily excess returns
and portfolios are rebalanced quarterly. F-test for equality of variances between sample covariance portfolio
and portfolio optimised subject to the respective estimator: ***p-value of the null hypothesis <1%, **p-value of
the null hypothesis <5%, *p-value of the null hypothesis <10%. Explanations to all abbreviations are given in
Table 2.1. “U.S.” and “Europe” relate to a subset of N stocks drawn from the S&P 500 and Euro Stoxx large
cap indices respectively.
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Figure 3.1: Out-of-sample, annualised volatilities for estimated Minimum Variance portfolios

(a) Portfolios drawn from U.S. stocks (S&P 500)
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(b) Portfolios drawn from European stocks (Euro Stoxx Large)
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This figure illustrates the annualised average volatility of the Minimum Variance portfolio between January
2002 and December 2016, subject to the respective covariance matrix estimator. Values are estimated from
daily excess returns and portfolios are rebalanced quarterly. Explanations to all abbreviations are given in
Table 2.1.

These results stand in stark contrast to Pantaleo et al. (2011), Jagannathan and Ma (2003) or

Coqueret and Milhau (2014), who do not include time-varying volatility models in their comparison

and find that none of the other regularisation methods performs much better than the sample covari-

ance estimator when short-sales are constrained and T > N . Our findings instead suggest that when

dealing with a high-dimensional covariance matrix of stock returns (that is approx. N > 100), em-

ploying ewma1996, ewma2006 or dcc-garch methods for modelling volatilities and covariances reduces

estimation risk and, thus, ex-post volatility of the Minimum Variance portfolio. For example, in a

set of N = 200 assets drawn from the S&P 500 stock universe, the average annualised out-of-sample

portfolio volatility using the sample estimator is relatively 8.6% larger than when using the ewma2006

estimator. ewma1996 and ewma2006 methods that forecast the covariance matrix under the assump-

tion of constant volatilities and conditional correlations in fact outperform the more sophisticated

dcc-garch method, with the ewma2006 estimator as suggested by Zumbach (2006) yielding the lowest

ex-post portfolio volatility. While this finding may appear surprising at first, it is in line with Harris

and Nguyen (2013) and Zakamulin (2015) who can neither attest any superior forecasting abilities of

GARCH methods over EWMA covariance matrix models.
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One must point out that the value from using such methods can only be derived when facing a

large N , where the sample estimator is particularly noisy. When N is rather small, ex-post portfolio

volatility from employing time-varying covariance matrix models can be higher than from using the

sample estimator. This in turn means that the benefit from using EWMA and GARCH methods in

portfolio optimisation may not be substantial (or in fact negative) to private investors, who tend to

hold a smaller number of assets in their portfolio. Furthermore, our findings are not very sensitive

to variations of T , which can be explained by the daily frequency of the data.16 When using daily

returns, T is generally substantially larger than N . Hence, increasing N affects the ratio N/T (often

referred to as the determinant of estimation risk) relatively more.

Zakamulin (2015), in fact, proves a significantly superior forecasting ability of ewma1996 and dcc-

garch methods over the sample estimator in small portfolios where N is no larger than 10. All of

his datasets are, however, composed of Fama French, industry or stock and bond index portfolios (all

taken as assets) and with N ≤ 10 the number of assets effectively held by the Minimum Variance

portfolio routine is small. To reconcile his findings with ours we, in unreported results, replicated the

analysis using 25 value-weighted Fama French portfolios formed on Size and Book-to-Market ratio and

obtain similar results. For once, this evidence suggests that EWMA and GARCH models generally

work relatively better in forecasting covariance matrix structures of diversified portfolios and indices.17

In line with existing literature, we show that estimation risk is not substantially reduced compared

to the sample estimator by employing shrinkage methods, factor or principal component models. At

least when short-sale constraints are in place, they perform equally well in forecasting the covariance

matrix and lead to similar ex-post portfolio volatility. Resampled efficiency as suggested by Michaud

(1989), does neither yield any significant improvement over the simple sample covariance estimator,

supporting results by Fletcher and Hillier (2001). In all these respects, our results hold when impos-

ing a 10% upper bound on individual portfolio weights. Pantaleo et al. (2011) further demonstrate

that portfolios based on covariance regularisation methods are on average more diversified. We can
16In unreported results, we test for T = 252 and T = 1008.
17Which they have also initially been intended for.
We also find Zakamulin’s analysis to be biased towards time-varying volatility models, since his estimation of the 1-

month covariance matrix forecast relies on 120 months of past daily data. A larger T only benefits the sample covariance
estimator when correlations and volatilities are stationary, which is unlikely over such long period.
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only support this notion for portfolios based on ewma1996, ewma2006 and dcc-garch methods, drawn

from the S&P 500 stock universe, since using the sample estimator generally yields portfolios that are

comparably (if not more) diversified in terms of average holdings and volatilities (Table 3.2).

Figure 3.2: Out-of-sample, annualised volatilities for 10% maximum weight constrained estimated
Minimum Variance portfolios (U.S. stocks)
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This figure illustrates the annualised average volatility of the Minimum Variance portfolio (with 10% constraint
on the weight of each asset) between January 2002 and December 2016, subject to the respective covariance
matrix estimator. Values are estimated from daily excess returns and portfolios are rebalanced quarterly. Ex-
planations to all abbreviations are given in Table 2.1.

Looking at volatility in dependency of N in the S&P 500 stock universe, we observe that it decreases

with an expanding opportunity set up until approx. N = 100. This corresponds to the natural

expectation in the absence of estimation error, as lower volatility arises from a higher diversification

benefit. For any larger N , the loss that arises from forecasting error, however, outweighs the gain

from a bigger opportunity set and ex-post volatility increases. We additionally find that the effect of

limiting asset weights to 10% is dissimilar for small and large N , as revealed by the comparison of

Figure 3.2 with Figure 3.1. Consistent with the shrinkage interpretation of weight constraints (e.g.

Jagannathan and Ma (2003)), upper limits slightly reduce ex-post volatility for all but EWMA and

GARCH estimators when N is large and estimation risk is relatively higher. When is N is small,

imposing additional structure to the optimisation problem leads to higher ex-post volatility (which

concurs with the ex-ante expectation in the absence of estimation risk).
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Table 3.2: Average ex-post Diversification ratio and Effective Number of Stocks for estimated
Minimum Variance portfolios (U.S. stocks)

N

25 50 100 150 200 250

DR
y
MV

se 1.4748 1.6044 1.6492 1.7747 1.8559 1.8592

shrink-cc 1.4558 1.5740 1.6222 1.7534 1.8260 1.8341

shrink-si 1.4674 1.5990 1.6408 1.7684 1.8536 1.8599

fac-3 1.4521 1.5766 1.6014 1.7480 1.8439 1.8471

fac-5 1.4543 1.5804 1.6088 1.7445 1.8359 1.8402

pca 1.4606 1.5941 1.6513 1.7774 1.8616 1.8677

res 1.4848 1.6227 1.6791 1.8026 1.8673 1.8719

ewma1996 1.4769 1.6030 1.6754 1.7901 1.8603 1.8639

ewma2006 1.4824 1.6217 1.6806 1.7926 1.8567 1.8728

dcc-garch 1.4491 1.5420 1.5965 1.7650 1.8115 1.8261

ES
y
MV

se 6.4853 9.1730 16.8818 81.8553 142.8479 183.9476

shrink-cc 6.4679 8.9895 16.9129 82.5847 152.2784 197.5327

shrink-si 6.4599 9.2257 17.1018 81.9928 142.8477 182.0813

fac-3 6.6475 9.3534 17.0108 88.0195 143.7146 181.8329

fac-5 6.6084 9.2560 16.3221 82.7142 143.3930 181.6845

pca 6.0803 8.8346 16.7381 83.4074 141.7944 180.8351

res 6.7763 10.1439 15.4117 78.9028 141.4517 180.8423

ewma1996 5.5821 8.2288 18.7030 97.2466 154.0454 192.6962

ewma2006 5.6520 9.0039 20.1556 88.7622 150.4771 188.8731

dcc-garch 5.6987 7.7341 15.8215 103.0192 164.3124 214.5769

Average Diversification ratio (DR
y
MV ) and Effective Number of Stocks (ES

y
MV ) of the Minimum Variance

portfolio between January 2002 and December 2016, subject to the respective covariance matrix estimator.
Values are estimated from daily excess returns and portfolios are rebalanced quarterly. Explanations to all
abbreviations are given in Table 2.1.
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4 Application to low and diversified risk investment strategies

4.1 Employed low and diversified risk strategies

Recent years have seen increasing demand for new forms of passive investment benchmarks other than

the traditional capitalisation weighted indices. So-called Smart Beta strategies, alternatively weighted

index products, systematically re-weight an existing index portfolio subject to quantitative investment

rules. The majority of quantitatively optimised Smart Beta indices only relies on portfolio risk optim-

isation and as a result on an estimate of the covariance matrix. In this section we, therefore, explore

the implications of our findings for portfolio managers and index providers of low and diversified risk

strategies. A representative set of covariance matrix estimation methods from section 2 is respectively

applied to the Minimum Variance, Most Diversified , Equal Risk Contribution and Inverse Volatility

(index) portfolio strategies. Optimal portfolio allocations derived from Minimum Variance and Most

Diversified optimisation methods are, however, often too concentrated for most institutional investors

to hold or to represent an alternatively weighted index. Moreover, funds are mostly bound by short-sale

constraints and regulatory requirements that commonly prescribe maximum holdings of no more than

10% in any asset. To adhere with these constraints, we limit the maximum weight of a single asset to

10%. Strategies, tested in addition to the Minimum Variance portfolio allocation can be summarised

as follows.

Most Diversified portfolio - Choueifaty and Coignard (2008) propose the Most Diversified

portfolio that maximises the ex-ante Diversification ratio of a portfolio and, thus, the distance between

portfolio volatility and individual components’ volatility. The Most Diversified portfolio is defined as:

ŵy
MDP−C = arg max

w

w′êy√
w′Σ̂

y
w

s.t. 1′Nw = 1 and 0 ≤ w ≤ 0.1, (28)

where êy constitutes the Nx1 vector of estimated, individual assets’ volatilities subject to method y.

Himbert and Kapraun (2017a) show that Most Diversified portfolios, for example, are significantly

more sensitive to estimation error than e.g. Minimum Variance portfolio allocations.
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Equal Risk Contribution/Risk Parity portfolio - Qian (2006) and Maillard et al. (2010b)

define the marginal risk contribution of an asset to total portfolio volatility that is given by:

∂σ̂p
∂wi

=
wiσ̂

2
i +

∑
j 6=i wj σ̂ij

σ̂p
, (29)

where σ̂2
i is the estimated sample variance of asset i, σ̂ij is the estimated sample covariance of assets

i and j (for i, j = (1, 2, ..., N)) and σ̂p =
√
w′Σ̂w denotes the sample volatility of the index portfolio.

The total risk contribution ψi of an asset to portfolio risk is then:

ψi = wi
∂σ̂p
∂wi

. (30)

In other words, the index volatility can be decomposed into the sum of total risk contributions. To

create portfolios that are more diversified, in the sense of having a more balanced contribution to risk by

its constituents, Maillard et al. (2010b) suggest Equal Risk Contribution portfolios - i.e. ψi = ψj ∀ i, j.

The Risk Parity portfolio is given by the solution to the following optimisation problem:

ŵy
ERC−C = arg min

w
gy(w) s.t. 1′Nw = 1 and 0 ≤ w ≤ 0.1 (31)

gy(w) =

N∑
i=1

N∑
j=1

(wi(Σ̂
y
w)i − wj(Σ̂

y
w)j)

2,

where (Σ̂
y
w)i denotes the i-th row vector from the product of Σ̂

y
and w and the covariance matrix

estimates subject to method y are used. Hence, the strategy optimal index portfolio is described by

the vector of constituent weights that minimises the variance of the rescaled risk contributions. Equal

Risk Contribution strategies diversify across all assets of the opportunity set while taking their single

and joint risk contributions into account.

Inverse Volatility portfolio - Finally, we employ a heuristic low volatility strategy that does not

rely on covariance estimates, but only on direct estimates of volatility. To find the Inverse Volatility

weighted portfolio, we estimate the standard deviation of each stock in the underlying portfolio and

find its inverse (hence, the stock with the highest ex-ante volatility will have the lowest inverted ex-ante
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volatility). The portfolio weight of stock i (i = 1, 2, ..., N) is then calculated by dividing its inverse

volatility σ̂−1i by the sum of all inverted standard deviations and is, thus, given by:

ŵy
IV−C,i =

(σ̂y
i )−1∑N

i=1(σ̂y
i )−1

. (32)

Note that since the strategy naturally diversifies across all assets of the underlying portfolio, with

increasing N it more closely resembles an equally weighted portfolio. It must also hold that 0 ≤

ŵy
IV−C,i ≤ 0.1, which is never violated in our dataset (but overall weights would be rescaled where

ŵy
IV−C,i > 0.1).

4.2 Data and research design

We follow the rolling-window procedure laid out in section 3.1 for assessing the ex-post performance of

various strategies, subject to the respective covariance matrix regularisation method over the complete

15-years out-of-sample period from January 2002 through December 2016. N is set equal to the

number of all assets that have been part of the S&P 500 large cap index over the 17-year period

between January 2000 and December 2016 (i.e. N = 361). Every P = 63 days we estimate as an

input to the portfolio strategy the covariance matrix estimator Σ̂
y
, subject to the chosen regularisation

method y, using the T = 504 preceding days and the strategy optimal weights are determined. The out-

of-sample return series from quarterly rebalancing then serves as the basis for performance evaluation.

From an investors point of view, one of the covariance matrix estimation methods can be said to be

strictly dominant over another when it allows for an improvement in a strategy’s explicit target (i.e.

lowest ex-post portfolio volatility or better portfolio diversification in terms of volatilities), while at the

same time attaining a similar or better return-to-risk performance (i.e. constant or improved Sharpe

ratio). In contrast to common belief, these objectives cannot always be aligned and are, thus, difficult

to balance. For example, as pointed out in Himbert and Kapraun (2017a), strategies that (ex-ante)

do not explicitly optimise the portfolio towards having the highest Sharpe ratio may not benefit in

terms of ex-post Sharpe ratio when reducing estimation risk. Hence, bringing the ex-ante portfolio

allocations of the Most Diversified portfolio closer to the ex-post optimal weights ensures an improved

Diversification ratio but not necessarily a higher ex-post Sharpe ratio.
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4.3 Results from studying low and diversified volatility investment strategies

Our results, presented in Table 4.1, support findings from section 3. Employing ewma2006 and dcc-

garch methods for estimating the covariance matrix largely leads to superior attainment of strategy

specific targets. The out-of-sample volatility of Minimum Variance, Risk Parity and Inverse Volat-

ility portfolios constructed from ewma2006 or dcc-garch based estimates of the covariance matrix is

smaller than ex-post volatility from using the sample estimator. It is striking that employing any

other structured estimator in these strategies does not lead to a significant improvement over the

sample estimator or even has an adverse affect on out-of-sample volatility. The additional structure

that comes from using such regularisation methods does clearly not outweigh the accepted bias that

arises. For the Most Diversified Portfolio, on the other hand, the improvement in Diversification ratio

from employing any estimators other than the sample estimator is not substantial. Here only portfolio

resampling appears to have an edge over other methods, which may be explained by the particular

strength of this method in controlling estimation risk that purely arises from sampling error.18

Consistent with Chan et al. (1999) we find the heuristic Inverse Volatility weighting of constituents

to perform not much worse than Minimum Variance portfolio allocation, both in terms of volatility and

performance ratios. It, in fact, attains a lower out-of-sample portfolio volatility when using the sample

estimator but is on average less diversified than portfolios from Minimum Variance asset allocation. In

this regard, note that Risk Parity portfolios are most diversified in terms of average portfolio holdings

but also have a lower Diversification ratio than e.g. Minimum Variance portfolios (which proponents

of Equal Risk Contribution strategies often fail to mention).

With respect to overall portfolio performance we find the Most Diversified portfolio to post the

highest Sharpe ratio in our set of strategies, which comes at the cost of highest ex-post volatility.

In consideration of the Omega ratio, the share of realised positive returns yet outweighs the realised

lower partial moment of the return series the most, compared to all other strategies. Achieving the

largest ex-post diversification through improved covariance matrix estimation does, however, not align

with the best ex-post portfolio performance as measured by both Sharpe and Omega ratios. When

managers are benchmarked by such portfolio performance measures, they may be better off using
18As pointed out by Himbert and Kapraun (2017a) the MDP strategy is subject to significantly more estimation risk

that stems from sampling error than all other low risk strategies. It so appears that resampling only benefits where
sampling error is high and otherwise induces unnecessary, additional estimation error.
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Table 4.1: Out-of-sample performance statistics for portfolios based on selected covariance matrix
estimators - January 2002 to December 2016 (U.S. stocks)

Return Volatility SR
y

OR
y

DR
y

ES
y

GC
y

Minimum Variance

se 0.0568 0.1730 0.3282 1.0640 1.8868 268.6064 0.2491

shrink-si 0.0557 0.1732 0.3217 1.0627 1.8868 268.3366 0.2484

fac-5 0.0560 0.1733 0.3234 1.0631 1.8831 269.2987 0.2516

pca 0.0559 0.1741 0.3209 1.0626 1.8867 268.2286 0.2435

res 0.0577 0.1754 0.3292 1.0644 1.8847 282.2497 0.2296

ewma2006 0.0595 0.1650 0.3604 1.0682 1.8945 270.5425 0.2508

dcc-garch 0.0621 0.1633 0.3804 1.0705 1.8605 298.0290 0.2232

Most Diversified

se 0.1631 0.2601 0.6270 1.1228 2.0079 15.4293 0.9698

shrink-si 0.1608 0.2653 0.6061 1.1184 2.0036 15.7442 0.9692

fac-5 0.1603 0.2749 0.5832 1.1145 1.9873 16.5568 0.9678

pca 0.1637 0.2629 0.6225 1.1221 2.0044 15.3918 0.9697

res 0.1248 0.2252 0.5541 1.1081 2.1014 35.7721 0.9262

ewma2006 0.1185 0.2216 0.5346 1.1021 2.0161 14.2232 0.9728

dcc-garch 0.1413 0.2561 0.5517 1.1041 2.0005 15.0371 0.9712

Risk Parity

se 0.0631 0.1857 0.3397 1.0668 1.8505 324.8385 0.1800

shrink-si 0.0628 0.1853 0.3388 1.0666 1.8510 323.6529 0.1803

fac-5 0.0635 0.1854 0.3426 1.0673 1.8508 323.0893 0.1824

pca 0.0631 0.1857 0.3397 1.0667 1.8503 324.8618 0.1799

res 0.0630 0.1858 0.3390 1.0666 1.8501 325.7256 0.1796

ewma2006 0.0601 0.1824 0.3296 1.0643 1.8550 324.7892 0.1875

dcc-garch 0.0615 0.1823 0.3373 1.0657 1.8442 325.5477 0.1738

Inverse Volatility

se 0.0583 0.1729 0.3373 1.0660 1.7877 260.0170 0.2775

shrink-si 0.0583 0.1729 0.3373 1.0660 1.7877 260.0170 0.2775

fac-5 0.0583 0.1729 0.3371 1.0660 1.7874 260.0736 0.2776

pca 0.0583 0.1729 0.3373 1.0660 1.7877 260.0170 0.2775

res 0.0583 0.1729 0.3370 1.0660 1.7888 260.7114 0.2756

ewma2006 0.0566 0.1671 0.3388 1.0656 1.7893 251.7814 0.2839

dcc-garch 0.0556 0.1668 0.3335 1.0643 1.7804 246.7405 0.2985

SR
y: Sharpe ratio; OR

y: Omega ratio - the ratio of upper to lower partial moments of the respective ex-post
return series as suggested by Keating and Shadwick (2002); DR

y: Average Diversification ratio; ES
y: Average

Effective Number of Stocks; GC
y: Average Gini coefficient of risk contributions - a measure of differences

within a distribution of risk contributions as suggested by Maillard et al. (2010b), 0 (no differences) - 1 (large
dispersion). Values are estimated from daily excess returns and portfolios are rebalanced quarterly.
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the sample estimator.19 For Minimum Variance portfolios, however, the covariance matrix forecasts

derived from using ewma2006 and dcc-garch methods lead to both, a reduction in portfolio volatility

and an improvement in portfolio performance. The implications of this finding are far-reaching, since

the benefits of using these models as a general input in mean-variance portfolio optimisation could be

substantial.

5 Conclusion

It has been established in literature that low and diversified volatility portfolio optimisation is signific-

antly affected by estimation errors in the covariance matrix. This lead to a variety of commercialised

methodologies becoming available, which promise more robust estimation of the input parameters.

In section 2 we provide a comprehensive overview of such improved estimation methods, available to

investors today. We then investigate (i) whether there is any value to be derived by practitioners in

employing these regularisation methods over the simple sample covariance matrix estimator and if so,

(ii) under which conditions (with respect to the size of the asset universe) they are enhancing the out-

of-sample performance of the corresponding optimal portfolios? From studying the Minimum Variance

portfolio, the majority of literature (e.g. Pantaleo et al. (2011); Jagannathan and Ma (2003)) finds

that when portfolios are short-sale constrained estimation risk is not substantially reduced compared

to the sample estimator by using a variety of covariance matrix regularisation methods. But Zakam-

ulin (2015) recently proposed adding EWMA and GARCH methods to the comparison and attests a

superior forecasting ability in low-dimensional (diversified assets) covariance matrix problems over the

sample estimator. Our findings suggest that employing ewma1996, ewma2006 or dcc-garch methods

only leads to a significant improvement in the covariance matrix forecast and, thus, better ex-post port-

folio performance when dealing with a high-dimensional covariance matrix of stock returns. Across nine

tested covariance regularisation methods, the ewma2006 estimator as suggested by Zumbach (2006)

yields the lowest ex-post portfolio volatility of the Minimum Variance portfolio (across both U.S. and

European datasets) when the set of assets includes more than approx. 100 stocks. For any smaller

set of stocks, none of the estimators improves much on the sample covariance matrix. Furthermore,

consistent with the shrinkage interpretation of maximum weight constraints, we find that imposing a

weight limit can reduce ex-post volatility in high-dimensional covariance matrix estimation problems.

When portfolio are small, however, imposing additional structure to optimisation problem generally
19The same goes for the Equal Risk Contribution and Inverse Volatility strategies.
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leads to worse out-of-sample performance.

We then extend our findings to popular low and diversified risk asset allocation rules and show that

employing ewma2006 and dcc-garch methods for estimating the covariance matrix generally leads to

a superior attainment of strategy specific targets and lower realised portfolio volatility. In addition,

we confirm that employing any other structured estimator in these strategies does not lead to a

significant improvement over the sample covariance matrix. With regard to portfolio performance

(beyond strategy specific targets) we find that only for Minimum Variance portfolios the covariance

matrix forecasts derived from using ewma2006 and dcc-garch models lead to both, a reduction in

portfolio volatility and an improvement in portfolio performance. This underlines our hypothesis that

in contrast to common belief, objectives of reducing estimation risk and attaining best performance in

terms of measures such as the Sharpe or Omega ratios cannot always be aligned. Or in other words,

there may persist positive effects of estimation risk for benchmarked portfolio managers.
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