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Abstract

Spillover Effects in Residential House Prices

We study the micro-level evolution of residential house prices using data on all repeat sales

on Manhattan Island from 2004 to 2015. We document that excess returns spill over to other

trades in the neighborhood — even after controlling for general house price movements on

the zip-code level. This effect quickly vanishes as the distance between trades increases.

In booming states of the housing market cycle, spillover effects are weaker in the nearest

neighborhood and stronger from more distant neighborhoods.

JEL Classification Codes: R30, R32
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1 Introduction

The recent boom and bust in house prices dramatically illustrates the need for a better

understanding of what drives prices of residential homes. Since the pioneering work of

Case and Shiller (1989), it is a well-established fact that returns on national and city-wide

house price indices are subject to strong autocorrelation. Beyond macroeconomic factors,

such as gradually changing credit conditions (e.g., Chambers, Garriga, and Schlagenhauf,

2009; Landvoigt, Piazzesi, and Schneider, 2015; Amromin, Huang, Silam, and Zhong, 2018),

on the local level, this autocorrelation can be partly explained by comovements in house

prices caused by events, such as gentrification (Guerrieri, Hartley, and Hurst, 2013), urban

revitalization (Rossi-Hansberg, Sarte, and Owens III, 2010) and foreclosures (Campbell,

Giglio, and Pathak, 2011). Yet, little is known about comovements in house prices in regular

sales, that we also refer to as spillovers throughout.

We contribute to this line of literature by investigating the micro-level price dynamics

of homes in urban areas using repeat sales on Manhattan Island between 2000 and 2015 to

show that the price at which a given home trades is significantly affected by recently observed

trading prices of homes in the neighborhood. Manhattan Island seems ideal for investigating

spillover effects in many regards. First, Manhattan Island is geographically separated from

other parts of New York through water, implying that real estate transactions outside Man-

hattan Island are less likely to significantly affect local price dynamics on Manhattan Island.

Second, Manhattan Island is a fairly liquid market for real estate. Third, Manhattan Island

is densely populated implying that new constructions are scarce and unlikely to have major

price impacts. Finally, the exact trading prices for all homes are publicly available from the

New York City Department of Finance,1 implying that information is easily available for all

market participants.

We document that spillover effects do not only exist in the presence of event-specific

externalities, but also in regular sales. Consistent with the evidence in Campbell, Giglio,

and Pathak (2011), Guerrieri, Hartley, and Hurst (2013), and Rossi-Hansberg, Sarte, and

Owens III (2010), spillover effects are strongest in the nearest neighborhood — particularly

within the same building — and disappear quickly with increasing distance between traded

homes. Our results are robust to controlling for the evolution of house prices on the borough

level on monthly basis as well as zip-code-year fixed effects. That is, even after controlling

for local house price dynamics, sales prices in the nearest neighborhood still matter. In

extensive robustness checks, we further document that our results withstand various other

assumptions and parameter choices.

1http://www1.nyc.gov/site/finance/taxes/property-rolling-sales-data.page

http://www1.nyc.gov/site/finance/taxes/property-rolling-sales-data.page


The existence of spillover effects in regular sales is largely driven through two main

channels. First, homes in the same neighborhood share common amenities, such as access

to schools, recreational areas, shopping facilities, etc. Hence, ceteris paribus, homes in the

same neighborhood should be better substitutes than more distant ones. The more prices

in a given neighborhood increase, the stronger the incentives for potential buyers to search

for cheaper homes in the nearest surrounding. This substitution effect should cause price

increases in the preferred neighborhood to spill over to close-by neighborhoods.

Second, spillover effects can be caused through the information channel. Available in-

formation is likely to affect both buyers’ and sellers’ behavior. For buyers, the market for

residential real estate is characterized by an information disadvantage (Coval and Moskowitz,

1999; Garmaise and Moskowitz, 2004; Kurlat and Stroebel, 2015). Information about lo-

cally realized sales prices that is not (yet) publicly available is typically easier to access for

sellers via private channels, such as mouth-to-mouth propaganda. Thus, buyers have an

incentive to use previous sales prices in the neighborhood to reduce the information gap.

Simultaneously, sellers should incorporate past sales prices in their offer prices and during

price negotiations – for instance, because they do not want to sell at a worse price than their

neighbors. Hence, past price changes in the neighborhood should spill over to present trad-

ing prices via both buyers’ and sellers’ incentives to use past sales prices as easily available

anchors. Furthermore, the particularly strong within-building spillover effects are likely to

be affected by a second anchoring effect: if a real estate agent has successfully sold a flat

in a given building, other households wishing to sell may want to hire the same real estate

agent, who would likely use his past realized sales price as an anchor for the new ask price.

Ask prices, in turn, are known to affect the level of transaction prices of properties in the

near neighborhood (Horowitz, 1992; Anenberg, 2016).

Liquidity and the volatility of house prices vary with the state of the housing market cycle,

suggesting that the state of the market cycle should affect how spillover effects manifest in

house price changes through two counteracting channels. On the one hand, the generally

higher liquidity in booming housing markets suggests that the number of trades in the

nearest neighborhood should be higher. From this liquidity channel, it may be sufficient to

consider prices in this neighborhood to understand local price dynamics. Hence, spillover

effects in neighborhoods should be more pronounced, whereas spillover effects from more

distant neighborhoods should be weaker. On the other hand, volatility in booming states of

the housing market cycle is generally lower, suggesting a higher quality of the price signal

from more distant trades. This volatility channel suggests that spillover effects from the

nearest neighborhood should be weaker and that those from more distant trades should

be stronger. Our empirical results show that the volatility channel outweighs the liquidity

2



channel: in booming states of the housing market cycle, spillover effects from more distant

neighborhoods are stronger and spillover effects are weaker from the nearest neighborhoods.

In contrast to the work of Rossi-Hansberg, Sarte, and Owens III (2010), Campbell, Giglio,

and Pathak (2011), or Guerrieri, Hartley, and Hurst (2013) that focuses on spillovers from

specific events, our goal is to quantify spillover effects in regular trades where prices are not

affected by specific shocks. It is therefore important to account for events that are likely

to systematically affect house prices in a given area. In our empirical analysis, we focus on

excess returns relative to the evolution of house prices on the zip-code level, which should

remove any event that affects an entire zip-code, such as changes in air quality (Chay and

Greenstone, 2005), for instance. Our results show that spillover effects only exist in the

nearest neighborhood and die out quickly with increasing distance. Hence, our results are

unlikely to be driven by events that affect larger neighborhoods within a zip-code.

Our work contributes to a growing strand of literature investigating micro-level dynamics

of house prices. This literature demonstrates that local events, such as gentrification (Guer-

rieri, Hartley, and Hurst, 2013), urban revitalization (Rossi-Hansberg, Sarte, and Owens III,

2010), air pollution (Chay and Greenstone, 2005), legislative amendment (Autor, Palmer,

and Pathak, 2014), unnatural deaths (Bhattacharya, Huang, and Nielsen, 2017), and foreclo-

sures (Harding, Rosenblatt, and Yao, 2009; Campbell, Giglio, and Pathak, 2011; Anenberg

and Kung, 2014; Gerardi, Rosenblatt, Willen, and Yao, 2015) are important drivers of micro-

level house price dynamics. Yet, none of these papers focuses on explaining local house price

dynamics in regular sales in the absence of specific events, which is the focus of our work.

Our results indicate that in addition to the well-documented autocorrelation in residential

house prices, spillover effects constitute an additional systematic risk factor. In particular,

spillover effects increase the correlation between house price changes on the local level, thus

increasing the risk of clustered mortgage defaults – particularly for smaller (regional) banks.

Spillover effects in the very local neighborhood are weaker during booming states of the

housing market cycle and stronger in others, leading to particularly high mortgage default

risk. Spillover effects should thus have important implications for ratings of banks as well as

banking regulation.

This paper proceeds as follows: Section 2 explains the existence of spillover effects in

a model and derives our main hypotheses. In section 3, we introduce our data. Section 4

presents our evidence on spillover effects in residential house prices. Section 5 documents

the robustness of our results. Finally, section 6 concludes.
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2 Model

In this section, we motivate spillover effects in residential house prices in a simple stylized

model and derive two hypotheses, which we test empirically in section 4.

We consider a set of homes, H1, H2, . . . , Hn. For simplicity, we assume that these homes

only differ by their location. We denote the physical distance between two homes Hi and Hj

by Di,j. Households typically have a preference for a certain location of their homes. This

preference could both reflect the neighborhood’s facilities, such as good schools, restaurants,

and shops, as well as social ties, such as other family members or friends living in the

neighborhood.

A home outside the preferred location is a substitute for the home at the preferred

location, because both homes provide households with the same housing services. The prices

Pi and Pj of the two homes Hi and Hj should therefore be positively correlated:

Pi = f (Pj) with
∂f

∂Pj

> 0. (1)

That is, spillover effects in residential house prices reflect that households react to price

increases for homes in a given neighborhood by purchasing substituting homes in close-by

neighborhoods, thus causing price increases in these neighborhoods.

The distance Di,j between two homes can be interpreted as a proxy for how good two

homes Hi and Hj can be substituted with each other. The distance is, among others, a good

proxy for the commuting costs and time it takes to get from Hi to the amenities at Hj.

The smaller the distance Di,j between two homes Hi and Hj, the better they proxy for each

other. That is, we can refine our model to

Pi = g (Pj, Di,j) with
∂g

∂Pj

> 0 and
∂g2

∂Pj∂Di,j

< 0. (2)

In other words, the evolution of two homes’ prices in the same neighborhood is positively

correlated. Such spillover effects in residential house prices are the stronger, the smaller the

distance between two homes.

Liquidity in housing markets varies substantially with the stage of the housing market

cycle (Stein, 1995). In markets with falling prices, volatility in returns is higher and the

number of trades is lower affecting the strength of spillover effects through both a volatility

and a liquidity channel. From the latter channel, th higher number of trades in booming

markets increases the number of substitutes in the nearest neighborhood and thus decreases

the need to consider more distant homes, suggesting that spillover effects from more distant
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homes should be weaker, i.e.:

∂g2

∂Di,j∂Pj

∣∣∣∣∣
Boom

<
∂g2

∂Di,j∂Pj

∣∣∣∣∣
Non−boom

. (3)

The volatility channel should have at least two counteracting effects on the predictive quality

of price movements in more distant homes. On the one hand, the higher number of trades

implies that more distant homes should have a poorer predictive power, because more distant

homes are less needed to attain a reasonable number of recent house price changes. In line

with the conclusion from the liquidity channel, more distant homes should thus have weaker

predictive power in boom periods:

∂g2

∂Di,j∂Pj

∣∣∣∣∣
Boom

<
∂g2

∂Di,j∂Pj

∣∣∣∣∣
Non−boom

. (4)

On the other hand, volatility in returns in booming markets is generally lower. The inverse

of this volatility can be interpreted as a measure for the precision of an informative signal

(Veronesi, 2000; Epstein and Schneider, 2008). The higher informative quality of the signals

from more distant homes in booming markets should cause stronger spillover effects from

such trades:
∂g2

∂Di,j∂Pj

∣∣∣∣∣
Boom

>
∂g2

∂Di,j∂Pj

∣∣∣∣∣
Non−boom

. (5)

In section 4.2, we investigate whether the counteracting effects caused through the liquidity

and volatility channel mainly offset each other or lead to systematic differences in the strength

of spillovers from more distant homes.

Before we test our model’s predictions in section 4, we first turn to introducing our data

in section 3.

3 Data

Our data is from the CoreLogic database, which covers 99.9% of all residential transactions

in the U.S.2 We focus on repeat sales in urban areas using data from Manhattan Island,

New York City. Manhattan Island seems ideal to study spillover effects in several regards.

First, Manhattan Island is separated from other parts of New York through the Hudson

River in the west, the Harlem River in the northeast, and the East River in the east and

south, implying that real estate transactions outside Manhattan Island are outside the local

2http://www.corelogic.com/industry/real-estate-solutions.aspx

5

http://www.corelogic.com/industry/real-estate-solutions.aspx


neighborhood and should therefore not affect local price dynamics on Manhattan Island.

Second, given that Manhattan Island is generally perceived as a very attractive place to live

at, the market for real estate is fairly liquid and foreclosures are rare.3 Third, compared

to more rural areas, Manhattan Island is densely populated and space for new buildings is

therefore extremely scarce. This severely limits the number of new construction and the

price impact of new buildings on existing places. Fourth, the exact prices of all trades

are publicly available at the New York City Department of Finance’s homepage. That is,

information about actual trading prices of adjacent homes is easily available for all market

participants and our results are less affected by information asymmetries. Our data spans

the time period from January 2004 to December 2015 including sales prices on the most

recent previous transactions ranging back to 2000.

3.1 Data cleaning

Initially, our data consists of 168,419 transactions. We focus on repeat sales of condominiums

and apartments and remove trades of other real estate units, such as parking lots, hotels,

office buildings, or warehouses, and observations that are not classified as resales or for which

information about the date of the transaction, the current or most recent preceding sales

price (prior sales price) is not available, leaving us with 42,301 observations. The removal

of duplicates with identical sales price, prior sales price, transaction dates, and geographic

coordinates leaves our sample with 41,905 observations. Following Landvoigt, Piazzesi, and

Schneider (2015), we remove speculative trades with holding periods of less than 180 days,4

leaving us with 41,283 observations. Finally, similar to Campbell, Giglio, and Pathak (2011),

for every year we remove outliers with current or prior sales prices in the first and 99th

percentile, respectively, leading to a cleaned data set of 39,771 observations. To account

for data errors or physical changes in a property, we follow S&P (S&P Dow Jones Indices,

2017) in removing outliers. More specifically, we remove observations in the third and 97th

percentile of the annualized return distribution.5 Our final data set then consists of 37,385

observations.

Figure 1 summarizes the evolution of residential house prices in our cleaned data set

using a repeat sales index (Case and Shiller, 1989) constructed on a monthly basis for the

time period from January 2000 to December 2015. Similar to house prices on the national

3According to RealtyTrac.com (http://www.realtytrac.com/statsandtrends/foreclosuretrends/ny/new-york-
county/new-york/ as of November 2017) only one in 24,721 trades in New York City relates to a foreclosure.

4Similarly, in the construction of the S&P 500 Case-Shiller house price index, observations with holding
periods of less than six months are removed (S&P Dow Jones Indices, 2017).

5The results are qualitatively robust to removal of one or two percent of each tail, but point estimates are
likely to be outlier driven.
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Figure 1
Evolution of house prices on Manhattan Island
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Nominal repeat sales index for Manhattan Island

Nominal repeat sales index of Manhattan Island’s condominium/apartment market based on our final data

set. The index level is normalized to 100 in January 2000.

level, from Figure 1, Manhattan Island experienced a significant boom during the 2000s with

prices more than doubling from 2000 to 2006. Thereafter, house prices did not show a clear

trend until house prices declined sharply in late 2008 – later than on the national level.6 This

relatively late decline may reflect that layoffs in the financial industry and their implications

for house prices on Manhattan Island did not occur instantly when house prices on national

level started declining, but with a certain delay.

3.2 Excess returns

The repeat sales in our data differ along two important dimensions that make a direct com-

parison of returns difficult. First, the lengths of the time intervals between two trades may

6In section 4.2, we exploit these differences in the general evolution of house prices to investigate whether
spillover effects vary with the state of the housing market cycle.
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differ substantially. Second, returns depend crucially on the state of the housing market cy-

cle. To control for these two effects, we compute annualized market-adjusted excess returns,

rt,t−, for properties traded at month t and previously traded at month t− as follows:

rt,t− =

(
Pt

Pt−

) 1
y(t,t−)

−
(
Ct

Ct−

) 1
y(t,t−)

(6)

in which Pt and Pt− denote the present and prior trading prices of the property in months

t and t−, respectively, y (t, t−) is the time distance in years between the two trades, and Ct

and Ct− denote the index levels of the Manhattan Island repeat-sales price index constructed

as in Case and Shiller (1989) from our cleaned data in months t and t−, respectively. By

subtracting the index return, we remove aggregate effects that should have a systematic

effect on house prices, such as inflation or seasonal effects.

3.3 Control variables

Our control variables can be broadly allocated into three different categories: (1) transaction-

specific , (2) locational , and (3) macro-financial control variables.

3.3.1 Transaction-specific variables

In our data cleaning procedure, we remove transactions with holding periods of less than 180

days, which are likely to be speculative trades. Yet, shorter holding periods may be targeted

at larger renovations during that period aiming at substantially increasing the property’s

value. Simultaneously, with short holding periods, sellers may use their purchasing price

rather than neighboring house prices as a reference point. To account for these possible

effects, we include mutually exclusive dummy variables for holding periods of less than one

or less than two years, respectively. The results in Landvoigt, Piazzesi, and Schneider (2015)

document that during the recent housing market boom, housing returns varied substantially

between homes in different price segments in a nonlinear fashion. To account for this effect,

we control for the log of the inflation-adjusted prior sales price (in January 2015 dollars)

as well as its square. Whereas private investors profit from both their home as a durable

consumption good and from house price appreciations, corporations should place higher

emphasis on earning higher returns on their investments. To control for these effects, we

include two dummies for whether a property is sold or bought by a corporation and a dummy

for whether a home is bought to become an owner-occupied home. Transactions in which the

buyer is a corporation or the home is bought to serve as an owner-occupied home are already

marked in our database. We define a seller as a corporation if the seller name contains key

8



words such as LLC, Bank, and Fund.7

3.3.2 Locational variables

The location of a residential home is one of the key factors determining its price (e.g., Can,

1990; Case and Mayer, 1996). To control for possible changes in the pricing of location-

specific factors, we control for the view on the Central Park and the waterfront as well as

the walking-distance to these two. We further control for distance to Times Square, New

York Stock Exchange, and the nearest entry to the subway.8 More specifically, we include

mutually exclusive dummies for a view and a walking-distance to the Central Park if the

beeline does not exceed 100 feet and the city block walking-distance does not exceed 500

feet, respectively. In a similar fashion, we include a waterfront-view-dummy if a home has a

direct view on the water surrounding Manhattan Island; i.e., if the home is separated from

water only by a road, a park, or both, but not any other building. We further include a

walking-distance dummy if the city block distance to the waterfront does not exceed 500

feet. To account for easy access to the subway system, we include two dummies: a dummy

for very close distances to the nearest entry for city block walking-distances of less than 100

feet and a dummy for close distances of 100 to less than 500 feet. For the Times Square

and the New York Stock Exchange we include two dummies for short walking-distance and

medium walking distance if the city-block distance is less than 1,000 feet or 1,000 to less

than 2,000 feet, respectively.

Guerrieri, Hartley, and Hurst (2013) document substantial differences in house price

growth across neighborhoods. To account for these differences, we proceed similar to Camp-

bell, Giglio, and Pathak (2011), who use census-tract-year dummies, and control for zip-

code-year fixed effects in the year of the current and the prior trade of the home. To attain

a reasonable number of observations per zip-code (at least 1,000 observations), we have to

cluster a few adjacent ones. A detailed overview over the clustered zip-codes can be found in

Appendix A. To control for the impact of liquidity in the local housing market on transaction

prices (Caplin and Leahy, 2011), we control for the log of one plus the number of trades in

the past 90 days on zip-code level.

3.3.3 Macro-financial variables

To control for changes in the macroeconomic environment, we include the seasonally adjusted

real growth rate of the GDP relative to the previous quarter with a lag of one period from

7A complete list of key words can be found in Appendix B.
8The geographic coordinates of the New York subway entries are from NYC Open Data (https://opendata.
cityofnewyork.us)
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the US Bureau of Economic Analysis, the seasonally adjusted monthly growth rate of the

unemployment rate in New York City from the Bureau of Labor Statistics, and the percentage

change average fixed mortgage lending rate from the Federal Housing Finance Board.

Since the pioneering work of Case and Shiller (1989), it is known that residential house

prices exhibit a significant degree of autocorrelation. To explain price movements, it is

therefore important to control for this persistence. Our analysis focuses on explaining excess

returns rather than raw returns thus removing this systematic component.

Table 1 summarizes key properties of our data. As to be expected, the annualized excess

return is not significantly different from zero.9 The average holding period is only about

5.5 years, indicating that Manhattan Island is a fairly liquid market for residential homes.

About 9% of properties are even resold within up to 2 years, which may, among others,

reflect institutional investors’ activities that account for 15% of sales. Yet, the majority of

trades (53%) still represents sales of owner-occupied places. With an average prior trading

price of 1.279 million dollars (inflation-adjusted to 2015 prices), prices on Manhattan Island

are among the most expensive ones in the U.S. This high average trading price suggests that

prices should be largely determined by location. In contrast, renovations or a new kitchen

should have a lower impact on the trading price, advocating the repeat sales approach.

Likewise, the short average holding period provides additional support for the repeat sales

approach.

3.4 Methodology

The goal of our work is to investigate how excess returns in residential house prices spill

over to other homes in the neighborhood. For that purpose, we define K mutually exclu-

sive neighborhoods for each observed trade. We refer to trades with coinciding geographic

coordinates, i.e., trades in the same building, as the first-order neighborhood throughout.

Additionally, we draw K − 1 circles around each observed trade. We want to end up with

roughly comparable numbers of observations inside all circles to make sure that all of them

bear a comparable informational content. We therefore draw the circles such that the area

inside each of them is essentially identical.

In our base-case setting, the first circle, also referred to as the second-order neighborhood

throughout, is characterized by a maximum distance of 500 feet, roughly corresponding to

two blocks. The borders of the third-, fourth-, fifth-, and sixth-order neighborhoods are then

707, 866, 1,000, and 1,118 feet, respectively, leaving us with roughly three historical trades

in the second- to sixth-order neighborhood for every current trade. Figure 2 visualizes our

9The small positive value reflects that the market return constructed using the Case-Shiller methodology
weighs observations unequally.
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Table 1
Summary statistics

Variable name Mean Std.

Annualized excess return 0.007 0.056
Holding period (in years) 5.401 2.666
Liquidity 87.639 52.871
Central Park view 0.029 0.167
Central Park walking 0.042 0.200
Very close subway 0.024 0.154
Close subway 0.185 0.389
Short distance Times Square 0.003 0.056
Medium distance Times Square 0.007 0.085
Short distance NYSE 0.013 0.114
Medium distance NYSE 0.019 0.135
Waterfront view 0.027 0.162
Waterfront walking distance 0.050 0.218
Dummy one year 0.018 0.134
Dummy two years 0.074 0.261
Price (in mio USD) 1.279 1.301
Seller corporation 0.103 0.304
Buyer corporation 0.156 0.363
Owner-occupied 0.531 0.499
Lagged GDP growth 0.005 0.005
Lagged unemployment growth -0.007 0.018
Lagged interest change * 10,000 -1.935 300.379

This table provides descriptive statistics of the variables used in our work. Annualized excess returns are

defined in Equation (6). Holding period (in years) is the number of years between two trades of a given

residential home. Liquidity is the number of sales during the past 90 days in the respective zip-code. Central

Park view and Central Park walking are two dummies indicating whether a home has a view on the Central

Park (distance of less than 100 feet beeline) and the city-block distance to the nearest entrance is less than

500 feet, respectively. Very close subway and Close subway are two mutually exclusive dummies indicating

whether the city-block distance to the nearest subway entrance is less than 100 feet or 100 to less than 500

feet, respectively. Short distance Times Square / NYSE and Medium distance Times Square / NYSE are

mutually exclusive dummies for whether the city-block distance to the Times Squares / NYSE is less than

1,000 feet or 1,000 to less than 2,000 feet, respectively. Water front view is a dummy indicating whether a

home has direct view on the water surrounding Manhattan Island. Waterfront walking distance is a dummy

indicating whether the city-block distance to the waterfront does not exceed 500 feet. Dummy one year

and Dummy two years are indicators for holding periods of one and two years, respectively. Price (in mio

USD) is the most recent available prior trading price of the home CPI-adjusted to January 2015 dollars.

Seller/Buyer corporation is a dummy indicating whether the seller/buyer is a corporation. Owner-occupied

is a dummy indicating whether the buyer is the new inhabitant. Lagged GDP growth is the previous quarter’s

U.S. GDP growth. Lagged unemployment growth is the previous month’s New York City wide unemployment

growth rate. Lagged interest change is the percentage change of the average fixed mortgage lending rate in

the month prior to the sale.
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Figure 2
Construction of neighborhoods
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This figure visualizes our construction of neighborhoods. The center symbolizes a trade for a given home.

Other trades in the same building are defined as trades in the first-order neighborhood. The dotted circles

surrounding the center depict edges of mutually exclusive neighborhoods of orders two to six.

construction of K = 6 neighborhoods for a specific property. For every neighborhood k,

we define a neighborhood-specific excess return, r̄ei,k as the average of the observed excess

returns in the T days prior to our trade. We employ the following regression setup:10

rei,t,t−,z = αz +
K∑
k=1

ρkr̄
e
i,k + δy(t),z − δy(t−),z +Xi,tβ + εi,t,t−,z (7)

in which rei,t,t−,z is the annualized excess return on property i in zip-code z realized between

time t− and t, δy(t),z and δy(t−),z are the zip-code-z specific deviations of the annualized excess

returns from the Manhattan Island wide index in years y(t) and y(t−), respectively. Xi,t is a

vector of control variables. εi,t,t−,z is a normally-distributed error term. The precision of our

estimate for the annualized excess return is generally increasing with the length of the time

interval between the two trades. Intuitively, when the two trades occur within a relatively

short time period, small deviations in observed trading prices of individual properties and

short-term fluctuations in the local house price index lead to significant amplifications when

10Equation (7) can be easily rewritten in spatial econometrics notation because r̄ei,k reflects the kth spatial
lag. Nevertheless, under the assumption of homoskedastic error terms, OLS is applicable since we account
for the time-directionality in constructing the spatial weights.
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being annualized. Hence, annualized excess returns tend to be subject to higher variation

when two trades occur within a relatively short time period. To account for this phenomenon

in our analysis, we allow the variance of εi,t,t−,z to depend on the difference D between t and

t−: Var (εi,t,t−,z) = exp (γ1 + γ2D) where γ1 and γ2 are regression-endogenously determined

coefficients.11

Our goal is to explore whether price changes in the neighborhood spill over to other

trades, i.e., whether the ρks are different from zero and, if so, whether such spillover effects

decay with increasing distance, i.e., whether |ρ1| > · · · > |ρK |.

4 Empirical Results

For our empirical analysis, we need to determine a few parameters for our model introduced

in section 3.4. Specifically, we need to choose the number of distinct neighborhoods that we

want to consider. In particular, we want to understand whether neighborhood effects are

strongest in the first-order neighborhood and whether they are dying out in more distant

neighborhoods. We therefore set the number of neighborhoods to K = 6.12

We further need to choose the maximum number of days prior to our trade, T , such

that trades on other properties should reasonably have the potential of affecting a home’s

price. The choice of T is driven by a tradeoff between two opposing objectives. On the

one hand, we want to estimate spillover effects as precisely as possible, suggesting that we

should use as much past data as possible. On the other hand, the precision can be reduced by

using outdated observations, that have little informational content for present prices, among

others, because it is already incorporated in more recent prices. We set T = 90 for three

main reasons. First, gathering information in the housing market costs more time than for

example gathering information about the stock market. Second, finding a buyer for a given

home typically takes time. Third, our choice of about a quarter of a year provides us with

a reasonable number of observations to estimate effects at a good precision.

4.1 Spillover Effects

In this section, we provide empirical evidence on the existence and strength of spillover effects

in residential house prices. Table 2 summarizes the results of five Maximum Likelihood

regressions explaining the annualized excess returns of repeat sales relative to trades on

11Our estimates are qualitatively robust to the homoskedastic case.
12Empirically, it turns out that a larger number of neighborhoods does not further contribute significantly

to explaining house prices while a smaller number does not allow us to fully capture the decay in spillovers
with increasing distance.
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Manhattan Island. The first-order neighborhood relates to trades in the same building.

Second-, third-, fourth-, fifth-, and sixth-order neighborhoods are less than 500, 500 to

707, 707 to less than 866, 866 to less than 1,000, and 1,000 to less than 1,118 feet. Our

choice of distances from the traded homes is motivated by the goal to build neighborhoods

of identical sizes to end up with similar numbers of traded homes in every neighborhood.

Locational controls are our measure for liquidity, dummies indicating Central Park view,

Central Park walking distance, a very close subway station, a close subway station, short

distance to the Times Square, medium distance to the Times Square, short distance to the

NYSE, medium distance to the NYSE, waterfront view, and waterfront walking distance.

Transaction-specific controls two dummy variables indicating a resale took place within one

year, or between one and two years, respectively, log inflation-adjusted prior sale price and

its square, two dummies indicating whether seller or buyer of the property is a corporation,

and a dummy indicating whether the property is owner-occupied. Marco-financial controls

are lagged GDP growth, lagged unemployment growth, and lagged percentage interest rate

change. Fixed effects are on the zip-code level (zip) or the zip-code-year level (zip-year).

From section 2, spillover effects should exist in residential house prices and decay as the

distance between homes increases. From Table 2, the coefficients for neighborhoods one to

five are all positive. That is, Table 2 confirms the existence of spillover effects. From the first-

to the sixth-order neighborhood the coefficients generally decrease, indicating that spillover

effects are the weaker, the larger the distance between two traded homes. Coefficients are

monotonically decreasing, except for the transition from the second- to the fourth-order

neighborhood, for which the strength of spillover effects is of roughly the same order of

magnitude.

For all specifications in Table 2, the sharpest decline in spillover effects is observed for the

transition from the first- to the second-order-neighborhood, where coefficients drop by more

than 80%. This result should be mainly driven through two channels. First, trades within the

same building should be among the closest substitutes, thus exhibiting very strong spillover

effects. Second, within the first-order neighborhood both the transmission of information

via informal channels, such as chats among neighbors, but also active search for information

should be most intense.

Local price movements should generally be driven by location-specific events. It is there-

fore important to control for them. A comparison of columns (1) and (2) reveals that after

including our locational controls and controlling for zip-code fixed effects, the coefficients

generally decrease, but remain highly significant for the first five neighborhoods. That is,

even after controlling for location-specific events, there is still a strong informational content

in house price movements in the closest neighborhoods. However, our results also reveal that

14



Table 2
Estimation results, base case

Variable Name (1) (2) (3) (4) (5)

First-order neighborhood 0.246*** 0.224*** 0.202*** 0.199*** 0.178***
(0.016) (0.016) (0.014) (0.015) (0.013)

Second-order neighborhood 0.086*** 0.050*** 0.048*** 0.045*** 0.029**
(0.010) (0.010) (0.009) (0.009) (0.009)

Third-order neighborhood 0.079*** 0.047*** 0.047*** 0.045*** 0.032***
(0.009) (0.009) (0.008) (0.008) (0.008)

Fourth-order neighborhood 0.088*** 0.053*** 0.049*** 0.046*** 0.037***
(0.009) (0.009) (0.008) (0.008) (0.008)

Fifth-order neighborhood 0.060*** 0.028** 0.023* 0.021* 0.013
(0.011) (0.009) (0.009) (0.009) (0.009)

Sixth-order neighborhood 0.036*** 0.002 0.000 -0.003 -0.017*
(0.009) (0.009) (0.008) (0.008) (0.009)

ln(1+Liquidity) -0.005*** -0.002*** -0.002* 0.000
(0.001) (0.001) (0.001) (0.001)

Central Park view 0.008** 0.007** 0.007** 0.008**
(0.002) (0.003) (0.003) (0.003)

Central Park walking distance 0.001 -0.001 -0.001 0.000
(0.003) (0.003) (0.003) (0.003)

Very close subway 0.004 0.004 0.004 0.004
(0.002) (0.002) (0.002) (0.002)

Close subway 0.003*** 0.003*** 0.003*** 0.004***
(0.001) (0.001) (0.001) (0.001)

Short distance Times Square -0.007** -0.006** -0.006** -0.008**
(0.002) (0.002) (0.002) (0.003)

Medium distance Times Square 0.001 -0.001 -0.001 -0.002
(0.002) (0.002) (0.002) (0.002)

Short distance NYSE -0.002 -0.005 -0.005 -0.013**
(0.005) (0.005) (0.005) (0.005)

Medium distance NYSE -0.012*** -0.012*** -0.011*** -0.018***
(0.002) (0.002) (0.002) (0.003)

Waterfront view 0.007** 0.005 0.004 0.001
(0.002) (0.003) (0.003) (0.003)

Waterfront walking distance -0.008*** -0.006*** -0.005*** -0.003
(0.002) (0.001) (0.001) (0.002)

Dummy one year 0.061*** 0.061*** 0.051***
(0.006) (0.006) (0.006)

Dummy two years 0.034*** 0.034*** 0.025***
(0.002) (0.002) (0.002)

ln(Price) -0.140*** -0.140*** -0.138***
(0.018) (0.017) (0.017)

ln(Price)2/100 0.488*** 0.488*** 0.482***
(0.064) (0.061) (0.061)

Seller corporation 0.010*** 0.011*** 0.011***
(0.002) (0.002) (0.002)

Buyer corporation 0.013*** 0.013*** 0.013***
(0.001) (0.001) (0.001)

Owner-occupied -0.001 -0.001* -0.001*
(0.001) (0.001) (0.001)

Lagged GDP growth -0.016 -0.070
(0.063) (0.060)

Lagged unemployment growth 0.106*** 0.064**
(0.021) (0.024)

Lagged interest change -0.006 -0.014
(0.009) (0.010)

Fixed effects no zip zip zip zip-year
Akaike criterion -117,162 -118,118 -120,307 -120,362 -121,404

This table summarizes the results of Maximum Likelihood regressions explaining the annualized excess return of repeat sales
relative to trades on Manhattan Island. The first-order neighborhood relates to trades in the same building. Second-, third-,
fourth-, fifth-, and sixth-order neighborhoods have distances to the traded home of less than 500 feet, 500 to less than 707 feet,
707 to less than 866 feet, 866 to less than 1,000 feet, 1,000 to less than 1,118 feet, respectively. For further variable descriptions
see Table 1. Fixed effects are on the zip-code level (zip) or the zip-code-year level (zip-year). Heteroskedasticity-robust standard
errors are clustered over the zip-code-year level and reported in parentheses. ***, **, and * denote significance at the 0.1%,
1%, and 5% level, respectively.

15



the coefficient for the most remote, the fifth-order, neighborhood becomes close to zero and

insignificant. In other words, our local controls and zip-code fixed effects already capture

local price trends quite well. Furthermore, the insignificance of the coefficient for the sixth-

order neighborhood in column (2) points to two conclusions: First, beyond local price trends,

the sixth-order neighborhood no longer contains price information. Second, the reduction

in the coefficients for the first- to fifth-order neighborhood largely reflects the removal of

the location and zip-code specific events. The locational controls and the zip-code fixed

effects thus not only capture the general price movement in the sixth-, but also the first- to

fifth-order neighborhoods very well.

Changes in our coefficients in the transition from column (2) to (3), where we include

transaction-specific controls, are rather small. In the transition from column (3) to (4),

where we include macro-financial controls, these changes are even smaller, indicating that

the excess returns, our work builds on, already capture the effects of macroeconomic events

very well.

Column (5) reports the estimates for our full specification. Compared to the model pre-

sented in column (4), we include zip-code-year fixed effects as opposed to zip-code fixed

effects. From column (5), 18% of the increase in the annualized excess return in the first-

neighborhood spill over to future home prices. For example, a one standard deviation increase

in the annualized excess return in the first-order neighborhood, i.e., an increase in the an-

nualized excess return by about 6%, leads to an increase in the expected annualized excess

return of future home prices of about 1.1%. With an average holding period of about 5

years, the realized excess return is about 5.5%. For the second- to fourth-order neighbor-

hoods these effects are around 80% weaker than for the first-order neighborhood. That is, a

one standard deviation increase in the second- to fourth-order neighborhood’s excess return

leads to an increase in the expected future excess return after the typical holding period

of 5 years of around 1%. With excess returns of identical signs in the first- to third-order

neighborhoods, spillover effects are accumulating and expected future excess returns can be

even higher. For example, a one standard deviation increase in all four neighborhoods leads

to an increase in the expected future excess return of around 8.5%.

4.2 Spillover Effects over the Housing Market Cycle

Having demonstrated the existence of spillover effects in residential house prices, we next ask

whether the strength of these effect varies with the state of the housing market cycle, i.e.,

whether the strength of spillover effects and the distance over which they are measurable

is different in periods where the housing market is booming compared to other periods.
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For our empirical analysis, we define boom and non-boom periods using our price index for

Manhattan Island from Figure 1. From that index, the boom in the early 2000s ends in

October 2005, and house prices start booming again in March 2013. We therefore define the

period from November 2005 to February 2013 as the non-boom period and the remaining

months as the boom period.13 Accordingly, we extend the base case from equation (7) to:

rei,t,t−,z = αz +
2∑

s=1

K∑
k=1

ρk,s × r̄ei,k × 1t∩s + δy(t),z − δy(t−),z +Xi,tβ + εi,t,t−,z, (8)

where the two states of the cycle are defined by s, and 1t∩s is an indicator function that

equals one if the housing market is in state s at time t.

Table 3 summarizes regression results explaining the annualized excess return of repeat

sales relative to trades on Manhattan Island in boom and non-boom periods. Consistent

with our results from Table 2 and our model prediction from section 2, we find evidence for

spillover effects decaying with increasing distance between traded homes through different

stages of the housing market cycle.

The state of the housing market cycle should affect how spillover effects drive house

prices through two counteracting channels. On the one hand, booming housing markets are

generally characterized by a high degree of liquidity. Hence, the number of trades in closer

neighborhoods is typically higher in boom periods. This suggests that households do not

need to rely on price signals from more distant trades. Consequently, from this liquidity

channel, the strength of spillover effects should be particularly pronounced in the nearest

neighborhood and die out quickly. On the other hand, the lower level of volatility in booming

states of the housing market cycle suggests that the informational content of more distant

trades is higher. Hence, more distant homes should have a stronger predictive power in

boom periods. Consequently, from this volatility channel, spillover effects should be weaker

in the nearest neighborhood and fade out less quickly with increasing distance. Overall, the

liquidity channel suggests that in booming states of the housing market cycle spillover effects

should be more pronounced in the nearest neighborhood, whereas the volatility channel

implies that in booming states of the housing market cycle spillover effects should be more

pronounced for more distant trades.

13Using the publicly available S&P CoreLogic Case-Shiller New York City condominium index
(download link https://us.spindices.com/documents/additionalinfo/20170926-589149/589149_

cs-condoindices-0926.xls?force_download=true), we identify a non-boom period between February
2006 and April 2012. Using the S&P Case-Shiller National home price index, we identify a period from
March 2006 to March 2012. Similarly, we characterize our non-boom period using a purely liquidity-based
approach building on the number of observed trades. In section 5.2, we document that our results are
robust to all these alternative specifications.
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Table 3
Estimation results, boom versus non-boom periods

Variable Name Boom Non-boom

First-order neighborhood 0.164*** 0.197***
(0.019) (0.017)

Second-order neighborhood 0.025 0.033**
(0.014) (0.012)

Third-order neighborhood 0.044*** 0.020
(0.012) (0.011)

Fourth-order neighborhood 0.050*** 0.022
(0.010) (0.012)

Fifth-order neighborhood 0.002 0.025*
(0.013) (0.012)

Sixth-order neighborhood -0.024 -0.010
(0.013) (0.011)

Locational controls yes
Transaction-specific controls yes
Macro-financial controls yes
Fixed effects zip-year

LR test (p-value) 0.032
Akaike criterion -121,402

This table summarizes Maximum Likelihood regression results explaining the annualized excess return of

repeat sales relative to trades on Manhattan Island in boom (January 2004 to October 2005, and March 2015

to December 2015) and non-boom (November 2005 to February 2013) periods. The first-order neighborhood

relates to trades in the same building. Second-, third-, fourth-, fifth-, and sixth-order neighborhoods have

distances to the traded home of less than 500 feet, 500 to less than 707 feet, 707 to less than 866 feet, 866

to less than 1,000 feet, 1,000 to less than 1,118 feet, respectively. The locational, transaction-specific and

macro-financial control variables are as defined in section 3.3. Fixed effects are on the zip-code-year level

(zip-year). The Likelihood Ratio test (LR test) is a test of joint equality of neighborhood coefficiets, i.e.

under the H0: ρ1,b = ρ1,nb, . . . , ρ6,b = ρ6,nb. Heteroskedasticity-robust standard errors are clustered over the

zip-code-year level and reported in parentheses. ***, **, and * denote significance at the 0.1%, 1%, and 5%

level, respectively.
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From Table 3, in the first- and second-order neighborhood, spillover effects are weaker in

booming markets. During boom periods, 16.4% of price changes in the first-order neighbor-

hood, i.e., in the same building, spill over, whereas 20% of price changes in other periods do.

For the second-order neighborhood, these values decrease to 2.5% and 3.3%, respectively.

Simultaneously, spillover effects are stronger from the third- and the fourth-order neighbor-

hood. During boom periods, about 5% of price changes spill over, whereas in other periods

only about 2% do. We conducted a likelihood ratio test to assess whether the coefficients

are significantly different between boom and bust periods. With a p-value of 0.032 we can

reject the null hypothesis that ρ1,b = ρ1,nb, ρ2,b = ρ2,nb, . . . , ρ6,b = ρ6,nb at the 5% level. Our

results thus reveal that the volatility channel generally outweighs the liquidity channel.

5 Robustness Analysis

This section documents the robustness of our key findings with respect to various assumptions

made throughout our manuscript. Section 5.1 provides evidence for our base case parameter

setting, in which we do not distinguish between boom and non-boom periods. Section 5.2

provides results for different definitions of the boom and non-boom periods.

5.1 Robustness of base case results

From our results in Table 2, spillover effects are important drivers of house prices on the

micro-level. In this section, we demonstrate the robustness of these effects to various assump-

tions underlying the results in Table 2. More specifically, we demonstrate the robustness

of our results with regard to four key dimensions and report these results in Table 4. To

simplify the comparison with our base-case results, we repeat the results from Table 2 in

Panel A of Table 4.

In Panel B of Table 4, we allow for a different number of past days used to compute

average excess returns in the neighborhoods. In our base case parameter setting, we used

the past T = 90 days, which we consider a good tradeoff between the two opposing goals of

having a reasonably larger number of observations and very recent up-to-date observations;

in Panel B, we explore the cases in which we set T = 60 or T = 120 days. Our results

for these two cases demonstrate the robustness of our key findings that effects are strongest

in the same building, i.e., the first-order neighborhood, remain significant in the second-

to fourth-order neighborhood, and fade out for higher-order neighborhoods. Similarly, the

point estimates for the strength of spillover effects in the various neighborhoods are of a

very similar order of magnitude. A notable exemption is the estimate for the second-order
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Table 4
Robustness, base case

Neighborhood order First Second Third Fourth Fifth Sixth

Panel A: Base case 0.178*** 0.029** 0.032*** 0.037*** 0.013 -0.017*
(0.013) (0.009) (0.008) (0.008) (0.0011) (0.009)

Panel B: Varying computation of excess returns in neighborhoods

T = 60
0.158*** 0.009 0.037*** 0.029*** 0.010 -0.009
(0.013) (0.008) (0.008) (0.007) (0.009) (0.009)

T = 120
0.186*** 0.031*** 0.032*** 0.043*** 0.017 -0.018
(0.014) (0.010) (0.010) (0.008) (0.010) (0.009)

Panel C: Varying neighborhood definitions

333 feet
0.178*** 0.033*** 0.000 0.039*** 0.030** 0.032***
(0.013) (0.010) (0.010) (0.009) (0.008) (0.009)

0.1, 0.25 miles
0.178*** 0.035*** 0.051***
(0.013) (0.010) (0.014)

Panel D: Varying maximum holding period

Seven years
0.165*** 0.023* 0.026** 0.029*** 0.007 -0.006
(0.015) (0.009) (0.009) (0.009) (0.009) (0.008)

Ten years
0.172*** 0.023** 0.028** 0.030*** 0.015 -0.011
(0.013) (0.009) (0.007) (0.007) (0.009) (0.008)

Panel E: City block and waterfront

City block metric
0.178*** 0.027** 0.028** 0.022** 0.025*** 0.016
(0.013) (0.009) (0.009) (0.008) (0.008) (0.010)

Exclude waterfront obs.
0.180*** 0.029** 0.028*** 0.033*** 0.016 -0.025**
(0.015) (0.010) (0.009) (0.008) (0.010) (0.009)

This table documents the robustness of our key results with respect to various assumptions. Panel B presents

results when varying the definition of T , the maximum number of past days used to compute average excess

returns in the neighborhood. Panel C presents results for different neighborhood definitions. In the row

“333 feet”, the second-order neighborhood is defined by a maximum distance of 333 feet. The subsequent

neighborhoods are defined, such that the area within each neighborhood is the same as in the second-order,

yielding borders of 470, 576, 666, and 744 feet. In the row marked “0.1, 0.25 miles”, the second- and

third-order neighborhoods are defined by maximum distances of 0.1 and 0.25 miles from the traded home,

i.e., 528 and 1,320 feet, respectively. In Panel D, observations with a holding period of more than seven

or ten years, respectively, are excluded. Panel E shows results for a change in the distance measure to

the city block metric, and when excluding observations for which the waterfront lies within at least the

sixth-order neighborhood (i.e., 1,118 feet). All regressions include the entire set of controls: locational,

transaction-specific, and macro-financial. Fixed effects are on the zip-code-year level. Heteroskedasticity-

robust standard errors are clustered over the zip-code-year level and reported in parentheses. ***, **, and

* denote significance at the 0.1%, 1%, and 5% level, respectively.
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neighborhood for the case with only T = 60 days of past trades used to compute average

excess returns in the neighborhood. In that case, the coefficient is an order of magnitude

smaller and not significantly different from zero, suggesting that setting T = 60 results

in a too small number of observations used in computing the average excess return in the

neighborhoods to attain a reasonably precise estimate. For instance, for T = 60, the share

of observations with one single observation in the second-order neighborhood is about 50%

higher than for T = 90.

In Panel C, we vary the definitions of the neighborhoods. In our base case parameter

setting, the second-order neighborhood was characterized by a maximum distance from the

traded home of not more than 500 feet, roughly corresponding to two blocks. Here, we

report results when shrinking this distance measure by two thirds, i.e., to 333 feet. Again, the

borders of the higher-order neighborhoods are defined such that the area is the same as in the

second-order neighborhood. We also depict results for the case, in which the neighborhoods

are defined as in Campbell, Giglio, and Pathak (2011), i.e., a maximum distance of 0.1 miles,

corresponding to 528 feet, for the second-order and 0.25 miles, corresponding to 1,320 feet, for

the third-order neighborhood. As in Campbell, Giglio, and Pathak (2011), we do not account

for neighborhoods of higher order. Our results in Panel C again document the robustness

of our key finding that spillover effects are strongest in the first-order neighborhood. With

smaller second- to sixth-order neighborhoods for the former case, results remain significant

even in the sixth-order neighborhood, reflecting that the maximum distance of a trade in this

neighborhood is 744 feet, corresponding to a trade in the fourth neighborhood in our base-

case parameter setting. Similar to the case with a shorter maximum number of past days

used to compute average excess returns in the neighborhood from Panel B, a more narrow

definition of neighborhoods again suffers from the problem of relatively small numbers of

historical trades in each of the neighborhoods, which, among others, leads to the coefficient

for the third-order neighborhood to be insignificant. For instance, the average number of

historical trades in this neighborhood decreases by 65% compared to our base-case parameter

setting with wider neighborhoods.

In Panel D, we restrict the maximum holding period to seven and ten years, respectively.14

Further restricting the maximum holding period to less than seven years leads to such a strong

decline in the number of observations that it no longer provides a representative picture of

market movements and – due to the lack of this information – predicts largely insignificant

effects. Specifically, reducing the maximum holding period to six years removes more than

a third of all trades and the information contained in these trades.

14For shorter holding periods, larger reconstructions and major changes in the neighborhood should be less
likely. That is, the repeat-sales approach should yield particularly precise estimates.
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In Panel E, we change the distance measure used in the definition of our neighborhoods

from the Euclidean to the city-block metric and ask whether excluding observations for

which the waterfront lies within at least the sixth-order neighborhood, affects our results.

Intuitively, for such observations, the area covered by higher-order neighborhoods may be

smaller than that of smaller-order neighborhoods giving rise to potentially significantly dif-

ferent numbers of past trades in the different neighborhoods. Our results for both cases

confirm our key findings that spillover effects are strongest in the first-order neighborhood

and fade out for the most distant neighborhoods. Under the city block metric, results are

still significant for the fifth-order neighborhood, reflecting that several observations that,

under the Euclidean norm, fall into the fourth-order neighborhood end up in the fifth-order

neighborhood, once the city block metric is used, which leads to higher values for the distance

measure for homes that are not in the same street.

Overall, our results in this section demonstrate the robustness of our key findings on

spillover effects to various assumptions in our base case parameter setting, in which we do

not split the sample into boom and non-boom periods. We next proceed to demonstrate

that our key results on spillover effects in boom and non-boom periods remain robust when

using different criteria to determine these two subpriods.

5.2 Robustness of boom versus non-boom

In section 4.2, we defined boom and non-boom periods based on our Manhattan Condo-

minium index that we constructed using the Case-Shiller methodology (Case and Shiller,

1989). Using this database, our non-boom period lasted from November 2005 to February

2013. We further documented that spillover effects in the first- and second-order neigh-

borhood are stronger during non-boom periods and weaker during boom periods. In this

section, we use alternative definitions for the boom and non-boom periods using different

house price indices and a liquidity measure.

The left panel of Figure 3 depicts the evolution of real house price indices for Manhattan

(dotted line), New York (dashed line), and the entire United States (solid line). Similar to

our proceeds from section 4.2, we define the beginning of a non-boom period as the month

in which a previously sharp incline in house prices ends. Likewise, the end of a non-boom

period is the month in which a new sharp incline in house prices begins. That is, for the

NYC Condominium Index, the non-boom period is March 2006 to April 2012 and for the US

National House Price Index, this period is March 2006 to February 2012. The right panel

in Figure 3 depicts the number of sold apartments and condominiums on Manhattan Island

after removing observations with missing values in sales prices, sales dates, and duplicates.
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Figure 3
Identification of non-booming periods
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The left panel of this figure depicts the evolution of the S&P US National House Price Index (solid line), the

S&P Case-Shiller Condominium Index for New York City (dashed line) and the Manhattan Condominium

Index constructed using the methodology of Case and Shiller (1989). Index levels are normalized to 100 in

January 2000. The right panel depicts the absolute number of sales of apartments and condominiums on

Manhattan Island from the first quarter 2004 to the fourth quarter 2015 after removing observations with

missing values in sales prices, sales dates, and duplicates.

From this panel, the number of sales declined from 4,381 trades 2,906 trades in October

2008 and did not recover systematically before March 2012. As an additional definition for

our non-boom period, we therefore use the time period October 2008 to March 2012 as a

liquidity-based definition of our non-boom period.

Table 5 summarizes in a similar fashion as Table 3 our results for the different definitions

of the non-boom period. For ease of comparison with our results in Table 3, these are

repeated in Panel A of Table 5. Consistent with our key findings from section 4.2, our

robustness results with different definitions of the non-boom period confirm that during non-

boom periods spillover effects are stronger from the first- and second-order neighborhood.

Similarly, spillover effects are stronger from the third- and fourth-order neighborhoods during

boom periods. Irrespective of the exact definition of our non-boom period, point estimates

for our coefficients are very similar. In other words, our results in Table 5 confirm the finding

from section 4.2 that the increased uncertainty during non-boom periods leads investors to

rely more on the more homogeneous signals from the nearest neighborhoods – even in times

of low liquidity.
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6 Conclusion

The housing market boom and bust of the early 2000s highlights the importance for a better

understanding of the evolution of residential house prices. We contribute to this challenging

endeavor by exploring the micro-level evolution of residential house prices using data from

trades on Manhattan Island between 2000 and 2015. Our work makes two main predictions.

First, sales prices of homes are significantly affected by sales prices in the nearest neigh-

borhood — even after controlling for the evolution of house price movements on the zip-code

level, monthly borough-wide house price movements, and various other controls. Second,

these spillover effects are strongest in the nearest neighborhood and die out quickly as the

distance between traded homes increases.

Liquidity and the volatility of house prices vary with the state of the housing market cycle,

suggesting that the state of the market cycle should affect how spillover effects manifest in

house price changes through two counteracting channels. On the one hand, the generally

higher liquidity in booming housing markets suggests that the number of trades in the nearest

neighborhood should be higher. From this liquidity channel, the number of substitutes in

the nearest neighborhood is higher. It may thus be sufficient to consider these prices. Hence,

spillover effects there should be more pronounced whereas spillover effects from more distant

neighborhoods should be weaker. On the other hand, volatility in booming states of the

housing market cycle is generally lower, suggesting a higher quality of the price signal from

more distant trades. This volatility channel suggests that spillover effects from the nearest

neighborhood should be weaker and that those from more distant trades should be stronger.

Our empirical results show that the volatility channel outweighs the liquidity channel: in

booming states of the housing market cycle, spillover effects from more distant neighborhoods

are stronger and spillover effects are weaker from the nearest neighborhoods.
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A Clustering of zip-codes

The zip-codes have been clustered the following way:

• 10001 & 10011 (Chelsea and Clinton)

• 10002 & 10003 & 10009 (Lower East Side)

• 10004 & 10005 & 10006 & 10007 & 10038 & 10280 & 10282 (Lower Manhattan)

• 10012 & 10013 (Greenwich Village/Lower Manhattan)

• 10017 & 10163 (Gramercy Park and Murray Hill)

• 10018 & & 10019 & 10036 & 10129 (Chelsea and Clinton)

• 10023 & 10069 (Upper Westside)

27

http://us.spindices.com/documents/methodologies/methodology-sp-cs-home-price-indices.pdf?force_download=true
http://us.spindices.com/documents/methodologies/methodology-sp-cs-home-price-indices.pdf?force_download=true


• 10026 & 10027 & 10030 & 10037 & 10039 (Central Harlem)

• 10029 & 10035 & 10128 (East Harlem, 10128 is Upper East)

• 10031 & 10032 & 10033 & 10034 & 10040 (Inwood and Washington Heights)

B Key words identifying a seller as corporation

A seller is identified as a corporation if the name includes one of the following key words.

ACQUI, ASSOC, AVENUE, BANK, BOARD, CORP, CREDITOR, EQUIT, ESTATE,

FUND, HDFC, HLDGS, HOLDING, HOUSING, HSNG, INC, INVEST, L*L*C, LLC, LP,

LTD, OWNER, PARTNER, PLC, PORTFOLIO, PROP, QUATAR, REALTY, STREET,

TRUST, *LP, where * signifies blank spaces. A manual comparison of more than 3,000

observations did not indicate any missing words.
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