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Abstract

This paper proposes a methodology to measure cyber risks, using ordinal data, to
prioritise appropriate interventions. The method relies on the construction of a Crit-
icality index, whose properties are derived and compared with alternative measures
employed in operational risk measurement. The proposed construction is illustrated
in the context of a telecommunication service company, a case-study that provides
a rather general benchmark. The proposed measure is found to be quite effective to
rank cyber risk types and, therefore, allow selective preventive actions.
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1 Introduction

Operational risk has been defined, by the Basel Committee on Banking Supervision, as ”the

risk of a monetary loss caused by human resources, information technology (IT) systems,

by organisation processes or by external events”. Among operational risks caused by IT

systems, cyber risks are gaining increasing importance, due to technological advancements

and to the globalisation of financial activities.

Cyber risks can be defined as ”any risk emerging from the use of information and

communication technology (ICT) that compromises the confidentiality, availability, or the

integrity of data or services” (see e.g. [3], [7], [14]).

Financial institutions are encouraged by regulators to use statistical approaches to esti-

mate the capital charge covering operational risk, which include cyber risks. This requires

the presence of historical loss data, in a quantitative format. Within this framework, op-

erational risks are usually classified in event types, according to the type of risk involved;

and in business lines, according to area of the company that is mostly affected. To measure

operational risks, past losses in each business line and event type are collected and, then,

the corresponding severity and frequency distributions are calculated. Their convolution,

by means of a Monte Carlo simulation, leads to the Value at Risk, which corresponds to

the total economic capital required to protect an institution against possible operational

losses (see e.g. [6], [2], [10]).

However, besides the regulatory purpose, financial institutions are motivated to measure

cyber risk by the need of having under control the quality of their processes, a motivation

that applies to non financial institutions as well. In this framework, cyber risk measurement

is usually seen as a preventive diagnostics, based on data, expressed in ordinal categories,

such as ”high”, ”medium” or ”low” risk, rather than in terms of quantitative data.
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Ordinal data cannot be used to derive the total economic capital required to cover

operational risk, as that requires quantitative data but, however, can be used to rank

risks by their ”criticality”, so to prioritising interventions and, therefore, trigger mitigating

actions.

We remark that cyber events are typically rare and not repeatable, being very specific.

It is quite natural, therefore, to measure them with a less demanding ordinal approach

rather than using quantitative data which are often not available.

While the literature on the quantitative measurement of operational risks (see e.g. [5],

[15]), based on loss data, constitute a reasonably large body, that on cyber risk measurement

and, particularly, on ordinal cyber risk measurement, is very limited. To our knowledge,

the works on the matter are [11] and [12], that, however, mainly promote measurement

methods and discuss about problems occurring with simple scoring methods. A recent

paper [1] focus on the problem of the scarsity of available data in this context.

Our contribution tries to fill this gap in the literature, providing a cyber risk measure,

based on ordinal data, that can be used to rank cyber risks and, therefore, prioritise

interventions.

More precisely, we propose a methodology to measure cyber risks, starting from ordinal

random variables, that represent the levels of severity for different risk events, in different

business lines. In particular we propose, for each business line and event type, a cyber-

security risk index that is based on the relative frequencies of the severity levels. As a

result, we obtain an ordinal measure of risk which will be used to compare different events

and business lines, producing an ordering among risks useful to prioritise intervention in

process controls.

For completeness, we emphasize that our measure bears some resemblance to ordinal

measures proposed in other fields. For example, in customer satisfaction, [4] propose ordinal
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models to assess the perceived quality of academic teaching. In quality control framework

[8] propose a priority intervention indicator for measuring the risk of failure of a product

or process, when the quality is expressed on ordinal scale. Last, [9], propose a stochastic

dominance nonparametric measure of operational risk, that is also suited for ordinal vari-

ables. For this reason, in the paper we also apply the measure proposed by [9] to cyber

risk measurement and compare it to our proposal.

Besides the theoretical proposal, we will present empirical evidences on the performance

of our index, using a real data set, that concerns cyber risk measurement in a telecommu-

nication company. This is a very general and interesting benchmark, which can easily be

generalised to other industries.

The paper is organized as follows. The next section contains our methodological pro-

posal: the definition of the criticality index and its properties. Section 3 contains the

application of the index to the telecommunication data. Finally, the last section contains

some concluding remarks.

2 Proposal

In this section we present our methodological proposal for the measurement of cyber risks.

Data for cyber risk measurement is typically summarised in a matrix, composed of I event

types (the columns of the matrix) and J business lines (the rows of the matrix).

Let Eji be a risk event, in the j-th business line (j = 1, . . . , J) and in the i-th event type

(i = 1, . . . , I). For each combination of event type and business line, two different measures

of risk are usually considered: the frequency (how many risk events have appeared in that

combination) and the severity (the mean loss of the events in that combination).

In the loss data framework, the severity is a continuous random variable, while in
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the context of ordinal risk data, the severity is generally expressed in an ordinal scale,

characterised by K distinct levels, ordered according to the corresponding magnitude: for

example K = 3, with H=high severity (k = 1); M=medium severity (k = 2) and L=low

severity (k = 3). To summarise the frequency and the severity in a summary measure,

we may structure a loss contingency table, which counts, for each combination, how many

people expect that (the frequency).

More formally, let r1ji, r2ji and rKji be the number of times for which high, medium or

low severity occur for the event type i = 1, . . . , I in the j = 1, . . . , J business line.

These frequencies can be reported in a contingency table composed of J rows, representing

the business lines (BL1, . . . , BLJ) and I × S columns, equivalent to the number of event

types multiplied by the levels of severity K under analysis (in our example three: high=H,

medium=M and low=L). Each cell in the table contains the frequency of a combination of

business line (row) and event type*severity level (column). Table 1 exemplifies what just

described.

Table 1 about here
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ET1 . . . ETi . . . ETI

H M L H M L H M L

BL1 r111 r211 r311 . . . r11i r21i r31i . . . r11I r21I r31I

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BLj r1j1 r2j1 r3j1 . . . r1ji r2ji r3ji . . . r1jI r2jI r3jI

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BLJ r1J1 r2J1 r3J1 . . . r1Ji r2Ji r3Ji . . . r1JI r2JI r3JI

Table 1: Cybersecurity contingency table

The measure we propose is based on the cumulative distribution function of the severity

variable, conditionally to a specific combination of business line-event type. Before deriving

the measure, we remark that, for ease of notation, in what follows we omit the indices j, i

from the subscript of the frequencies rkji.

For the j-th business line and the i-th event type, let X ∼ {xk, pk; k = 1, 2, . . . , K}

be a categorical random variable with ordered categories xk and probabilities pk = P (xk),

that represents a severity variable, with decreasing levels, k = 1, 2, . . . , K. We denote

the parametric space of X as PK−1 ≡ (p1, p2, . . . , pk, . . . , pK−1),
∑K−1

j=1 pk ≤ 1 and pK =

1−
∑K−1

k=1 pk ≥ 0.

Let U ∼ {uk = k, pk; k = 1, 2, . . . , K} be a discrete stochastic variable corresponding to

X, with parametric space PK−1.

We define a Criticality Index for the categorical random variable X with the following

expression:

I =
1

K − 1

K−1∑
k=1

(K − k)pk =

∑K
k=1 Fk − 1

K − 1
, (1)
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where Fk =
∑k

l=1 pl are the values of the cumulative distribution function of U , for k =

1, 2, . . . , K.

The index is based only on the cumulative probabilities of the ordinal variable X, and

it is a natural measure of risk for ordinal variables, with values in [0, 1]. It thus provides

a risk measure with extreme values that are univocally defined and intermediate values

expressed as percentages.

We also remark that the lower and upper bounds of the measure occur in the two

situations of minimal heterogeneity. In particular, I = 0 occurs when the risk event does

not appear or it is concentrated only on values with lowest severity (pK = 1 and pl = 0

for l < K). I = 1 occurs when the risk event is concentrated only on values with highest

severity (p1 = 1 and pl = 0 for l > 1). Note also that, in the case of maximum heterogeneity,

when the frequencies of the event type in a business line are equal for all levels of severity,

we obtain that I = K+1
2

, a sort of mean value, that corresponds to a uniform distribution.

The described properties of the index make it natural to interpret and easy to use for

the comparison of the risk level between different risk events and/or business lines.

We propose to estimate cybersecurity risk in each business line/event type combination

by the sample version of the Criticality Index, obtained by replacing the probabilities pk

with their estimators p̂k = rj/n.

More formally, the cybersecurity in a specific combination will be estimated by the

following, for k = 1, 2, . . . , K − 1:

Î =
1

K − 1

K−1∑
k=1

(K − k)
rk
n

=

∑K
k=1 F̃k − 1

K − 1
, (2)

where

F̃k =
∑k

l=1
rl
n

for k = 1, 2, . . . , K,
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is the empirical cumulative distribution function, rl = ](x̃i ≡ xl) is the number of observa-

tions in the sample equal to the category xl, with rl ∈ N and
∑K

l=1 rl = n (n is the total

number of risk events observed for the i-th event type and j-th business line).

Note that, starting from a matrix of business lines-event type frequencies we can derive

a matrix of Î criticality indicators of risk, one for each combination. Such matrix can be

employed to compare the risks in different events of interest and in different business lines,

producing an ordering among risks. This may be very useful, from an applied viewpoint,

to prioritize and to implement interventions, in a control systems, to prevent failures and

to reduce ex-ante the impact of risks.

From a mathematical viewpoint, [8] have derived the statistical properties of the above

estimator and have also derived its exact and asymptotic distributions. They showed

that the estimator is unbiased, consistent and asymptotically normal distributed: Î ∼

N(I, V ar(Î)), with variance

V ar(Î) =
1

n(K − 1)

[
K−1∑
k=1

(K − k)2pk(1− pk)− 2
K−1∑
k=1

(K − k)pk

k−1∑
l=1

(K − l)pl

]
. (3)

The above finding allows to derive confidence interval risk measures for cyber risk

measures based on ordinal data. More precisely, asymptotic (1− α)% confidence intervals

can be obtained as:

Î − hc · s ≤ I ≤ Î + hc · s

where s is the estimator of the standard deviation of Î, obtained replacing pk with p̂k in

Equation (3) and setting hc = Φ(1− α/2).

We remark that it may be necessary to aggregate different event type risks in a single

business line or to aggregate different business line risks in a single event type. The proposed

measure allows this calculation. Formally, let Îij be the sample estimate of the risk index

for the i-th event type and for the j-th business line. To aggregate the risks of each event
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types in a specific business line we can express the overall business line risk as a geometric

mean of the risk measures associated with each event type in that business line, as follows:

Îj =

(
I∏

i=1

Îij · ni

)1/I

(4)

where ni are the frequencies of each event type.

Similarly, to aggregate different business line risks in a specific event type, we can

express the overall event type risk as a geometric mean of the measure of risk associated

with each business line in that event type, as follows:

Îi =

(
J∏

j=1

Îij · nj

)1/J

(5)

where nj are the frequencies of each business line.

The previous expressions show that risks over different units may be assumed to interact

in a multiplicative way, as if they were units of an integrated system, and this is consistent

with the fact that cyber risks, triggered by one event, typically impact, sooner or later, the

whole system.

From a methodological viewpoint, we propose the geometric mean because it is a nec-

essary condition to preserve stochastic dominance ranking when aggregating distribution

functions [13]. This is very useful in the context of cyber risk, based on ordinal data.

3 Application

In this section we apply our proposal to real data provided by a telecommunication company

that, for brevity, we anonymously call ”T”. T installs telephone exchange systems and offers

post-installation technical assistance for upgrading and problem resolution in different event
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types, that include, in particular, Network communications. The service is offered to a wide

range of customers, that are grouped in several business lines.

The main research problem of T is to estimate, for each business line and for each event

type, a measure of operational risk, based on ordinal data collected by the customer care

center.

To this aim, we were supplied a data set, composed of observations on 1126 customers

(PBX systems), whose generating process can be described as follows. A customer from

a specific business line calls the customer care of T to signal problems in user experience.

Problems which may be triggered by cybersecurity attacks, especially when the event type

Network communication is involved. The customer care center operators input to the

system a reference to the call, listing the PBX number of the customer and the level of

severity of the problem as reported by the customer (high, medium, low).

The structure of the data collected is thus a data base which contains, for each customer,

the severity of the reported problems. Note that a single customer could report more then

one problem in a given period of time.

We focus our analysis on the event type Network communication as a problem of this

kind may likely due to a cyber attack. The considered data can be grouped as in Table

2 below: each row shows a business line and each column reports how many times a

Network communications problem has been reported, for levels of severity equal to high

(H), medium (M) and low (L). In Table 2 we also report, following expression (1), the

estimated Criticality Index Î, and the corresponding asymptotic standard error (SE).

Table 2 about here

From Table 2, note that Construction is the business line with the highest level of

risk, followed, at a considerable distance, by Defence and Health. Therefore, a mitigation
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Business Line H M L I SE

Banking 23 128 4 0.561 0.023

Computers 3 26 0 0.552 0.040

Construction 1 1 0 0.750 0.250

Cooperatives 13 93 2 0.551 0.024

Defence 34 149 7 0.571 0.023

Education 0 19 4 0.413 0.056

Electronics 1 14 0 0.533 0.046

Government 0 13 0 0.5 0

Health 43 222 8 0.564 0.018

Hotels 10 108 3 0.529 0.021

Industry 13 94 7 0.526 0.028

Table 2: The Criticality Index estimates and the corresponding standard errors for different

business lines and the Network communication event type.
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intervention to prevent cyber risk should prioritise the construction business line, and the

customers in that business line.

We remark that, besides the criticality index, the analysis of its precision, described

by the inverse of the standard error, is also very important. Indeed Table 2 indicates

that business lines with a low total problem reporting, such as Construction, Education,

Electronics and Government are less precise. Note that the standard error of Government

is equal to zero since there is minimal heterogeneity for the severity variable.

Furthermore, as discussed in Section 2, the criticality index can be easily aggregated

over different business lines. We can, for example, apply the geometric mean to derive an

overall measure of risk for the Network communication event type and compare it with the

risk of other event types. Doing so, we obtain a value of 0.541, which indicates a ”medium”

overall risk. A level that can be compared with that of other event types.

To evaluate the robustness of our results we have compared them with what could be

obtained with the approach proposed by [9] in the context of operational risks. We applied

their Stochastic Dominance Index (SDI) to our data, and applied their suggested Bayesian

procedure to derive a confidence interval, by means of a Gibbs Sampling algorithm with

R=10000 interactions.

In Table 3 we report, for the business lines that have at least about 30 reported prob-

lems, and for the Network communication event type, our criticality index and its asso-

ciated asymptotic confidence interval along wiht the SDI value, and the related Bayesian

confidence interval.

Table 3 about here

Looking at the results in Table 3, note that our index and the SDI produce a consistent

ranking, indicating similar priorities of intervention.
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Business line I CI SDI Bayesian CI

Banking 0.561 0.517-0.606 0.708 0.685-0.728

Computers 0.552 0.473-0.630 0.701 0.654-0.734

Cooperatives 0.551 0.503-0.599 0.701 0.676-0.723

Defence 0.571 0.527-0.616 0.714 0.692-0.735

Health 0.564 0.529-0.599 0.709 0.692-0.726

Hotels 0.529 0.488-0.570 0.686 0.665-0.706

Industry 0.526 0.472-0.580 0.684 0.657-0.711

Table 3: I and SDI risk measure estimates and their respective confidence intervals (CI)

However, the confidence intervals associated with the two indices are different: while I

has intervals whose length decreases with the number of problems in the business line, the

SDI has similar length intervals. Statistical theory and intuition suggest that interval length

should vary with the sample size: the more the data, the more precise the measurement

and, therefore, the smaller the confidence interval should be. In this sense, we can say that

I is better than SDI.

Indeed, from a mathematical viewpoint, the two indices are calculated in a different

way: the SDI is based on the observed frequencies, whereas our proposed Criticality Index

is based on the observed frequencies, conditional on the total of that business line and,

therefore, it more correctly take into account the relevance of the considered business line,

and not only the distribution of the severity.

Another advantage of our proposed method with respect to the SDI measure lies in the

simpler computation of confidence intervals.

As described in Section 2, when n ' 30, as is the case for many business lines, is not
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strictly necessary to apply a Bayesian approach to derive confidence intervals. Bayesian

confidence intervals, albeit elegant from a mathematical viewpoint, require Monte Carlo

simulations, which are computationally expensive, and also introduce an extra variability

due to Monte Carlo sampling. Bayesian confidence intervals may instead be useful for

”rare” problem business lines, for which an asymptotic confidence interval is not possible.

4 Conclusions

We have proposed a novel measure, the Criticality Index, which can measure cybersecurity

risk, on the basis of ordinal data, that only require a ranking of the perceived risks, rather

than a quantitative measure.

The index has nice mathematical properties, and could be easily aggregated by means

of a geometric mean. From an applied viewpoint, the confidence intervals that can be built

on it reflect the sample size precision contained in the data.

Our proposed measure can thus be employed as a simple and effective measurement to

prioritise cyber risk, as our application to the Network communication risks of a telecom-

munication company has demonstrated.

Further research work involve the application of the proposed method to other cyber-

security contexts and data.

References

[1] Afful-Dadzie, A., and Allen, T.T. (2017). Data-Driven Cyber-Vulnerability Mainte-

nance Policies, Journal of Quality Technology, 46: 234-250.

14



[2] Alexander, C. (2003). Operational risk: regulation, analysis and management. Pren-

tice Hall, New York.

[3] Cebula, J.J., and Young, L.R. (2010). A Taxonomy of Operational Cyber Secu-

rity Risks, Technical Note CMU/SEI-2010-TN-028, Software Engineering Institute,

Carnegie Mellon University, 1-34.

[4] Cerchiello, P., Dequarti, E., Giudici, P., and Magni, C. (2010). Scorecard models to

evaluate perceived quality of academic teaching, Statistica & Applicazioni, 8: 145-155.

[5] Cox, L.A.Jr (2012). Evaluating and improving risk formulas for allocating limited

budgets to expensive risk-reduction opportunities, Risk Analysis, 32: 1244-1252.

[6] Cruz, M. (2002). Modeling, measuring and hedging operational risk. Wiley, New York.

[7] Edgar, T.W., and Manz, D.O. (2017). Research Methods for Cyber Security, Elsevier.

[8] Facchinetti, S., and Osmetti, S.A. (2018). A risk index for ordinal variables and its

statistical properties: a priority of intervention indicator in quality control framework,

Quality and Reliability Engeneering International, In press.

[9] Figini, S., and Giudici, P. (2013). Measuring risk with ordinal variables, Journal of

Operational Risk, 8: 35-43.

[10] Giudici P. (2003). Applied data mining for business and industry. Wiley, New York.

[11] Hubbard, D.W., and Seiersen, R. (2016). How to Measure Anything in Cybersecurity

Risk. Wiley, New York.

[12] Hubbard, D.W., and Evans, D. (2010). Problems with scoring methods and ordinal

scales in risk assessment, Journal of Research and Development, 54: 2-10.

15



[13] Jean, W.H. (1980). The geometric mean and stochastic dominance, Journal of finance,

39: 527-534.

[14] Kopp, E., Kaffenberger, L., and Wilson, C. (2017). Cyber Risk, Market Failures, and

Financial Stability, IMF Working Paper WP/17/185, 1-35.

[15] MacKenzie, C.A. (2014). Summarizing Risk Using Risk Measures and Risk Indices,

Risk Analysis, 4: 2143-2162.

16


