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1. Introduction

In 2007-2009, the US economy experienced one of the largest financial crises
ever seen, that came to be interpreted as a systemic self-fulfilling bank run
(Gorton and Metrick 2012). The conventional policy response against bank
runs has generally been through the government commitment to insure deposits
up to a certain limit. Yet, in this period, we also observed one of the largest
government bailouts of the banking system ever seen: in October 2008, the
Treasury announced the “Paulson’s Plan”, which included an equity infusion
of US$125 billion in the ten largest banks of the country, and a three-year
government guarantee on their issuance of new unsecured debt. Moreover,
the Treasury invested more than US$400 billion in the “Troubled Asset
Relief Program”, to rescue several financial corporations deemed “systemically
important”, and the Federal Reserve, through its liquidity facilities, extended
credit to the US financial system for around US$1.5 trillion. As the crisis gained
an international dimension, the US government was not left alone in rescuing
the global financial system: in Germany, the federal government guaranteed
banks’ equity for around EUR480 billion; in the UK, the government put into
place two rescue packages and loan guarantees totalling GBP550 billion for the
nine largest banks of the country; in Switzerland, UBS alone received funds
for around EUR40 billion. Finally, after the systemic banking and sovereign
crisis of 2012, the EU recognized the need to strengthen the Economic and
Monetary Union by implementing a banking union, with the objective of
further enhancing financial stability and risk sharing, and weakening the link
between banks and national sovereign debts. However, while the first two pillars
of the banking union (namely, the Single Supervisory Mechanism and the
Single Resolution Mechanism) are already operational, there is still the need
to implement the third one (the European Deposit Insurance Scheme) and, in
particular, to understand its redistributive implications.

These narratives raise some compelling questions. How should a government
bail out a heterogeneous banking system subject to systemic (i.e. economy-
wide) self-fulfilling runs? What are the criteria to choose which banks are
systemically important and worth bailing out? And what are the effects of
such a government intervention on the banking system itself, in particular in
terms of redistribution and risk sharing? The aim of the present paper is to
provide an answer to these questions, by developing a theory of banking and
government bailouts in a heterogeneous banking system.

To this end, our starting point is the three-period model by Diamond and
Dybvig (1983). This is the standard workhorse model for both positive and
normative analyses of the banking system, as it rationalizes its existence as a
mechanism to decentralize the constrained-efficient allocation of resources, in an
economy subject to idiosyncratic shocks that force the agents to consume in an
interim period (i.e. before their investments mature). We modify this framework
by assuming that the economy is populated by a continuum of risk-averse
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agents, divided into a given number of groups that are heterogeneous with
respect to initial per-capita wealth and size. The economy is also populated by
a large number of banks, operating in a competitive market with free entry. The
banks collect the heterogeneous initial wealths of the agents/depositors and,
being the heterogeneity ex-ante observable, offer them a group-specific (or –
equivalently – wealth-specific) deposit contract. Thus, we focus our attention on
the behavior of one representative bank for each wealth group, homogeneously
serving the depositors within it. So, we indifferently talk about heterogeneous
wealth groups or heterogeneous banks.

We assume that all banks in the economy invest the deposits, which are the
only liabilities in their balance sheets, into a common productive asset. With
some positive probability, which represents the aggregate state of the economy,
this asset yields a positive return that negatively depends on the total number of
depositors who are withdrawing in the interim period in the whole economy. In
that sense, the productive asset features a cross-group investment externality,
in the spirit of Romer (1990) and Morris and Shin (2000). Moreover, this way of
modeling the investment externality is qualitatively equivalent to a pecuniary
externality generated by banks fire-selling their assets during a systemic self-
fulfilling run, in the presence of the cash-in-the-market pricing of Allen and
Gale (1994).

Due to the presence of strategic complementarities in the depositors’
decisions to withdraw in the interim period, the economy exhibits two
equilibria: one in which only the depositors who are hit by the idiosyncratic
shock withdraw in the interim period, and one in which all depositors withdraw,
thus starting a run. To characterize a unique equilibrium, we follow the
literature on “global games” (Carlsson and van Damme 1993; Morris and Shin
1998) and assume that each depositor in each wealth group observes a private
noisy signal about the realization of the aggregate state, based on which
she forms posterior beliefs about the true state and the signals of all other
depositors, and ultimately decides whether to run on her bank. As in Goldstein
and Pauzner (2005), an equilibrium in threshold strategies emerges, in which
two types of runs can start, depending on the signals that the depositors
receive: a “fundamental” run, whenever the signal is so low that all depositors
withdraw from their banks, irrespective of the behavior of the other depositors,
and a “self-fulfilling” run, whenever the signal is below a threshold that makes
the depositors indifferent between running or not, taking into account their
posterior beliefs, and that fully depends on the terms of the deposit contract.

Differently from Goldstein and Pauzner (2005), however, the threshold
signals for a self-fulfilling run are wealth-specific, due to the presence of
both within- and between-group strategic complementarities in the depositors’
decisions to run. While the former are already well-understood, the latter are
a novelty in the existing literature for two reasons. First, it is not obvious how
to model them: our chosen strategy is to introduce the investment externality,
so that the return on the productive asset depends on how many depositors
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withdraw in the interim period in the whole economy. Second, the presence
of strategic complementarities in a global game with heterogeneous agents
represents a theoretical challenge: in fact, Frankel et al. (2003) prove the
existence and uniqueness of the equilibrium in a similar environment, but
also that its characterization depends on the solution of a system of possibly
nonlinear indifference conditions (in our case, one for each wealth group),
and is manageable only under some suitable specifications. We address this
issue by showing that, as the volatility of the noisy signals goes to zero, the
wealth-specific threshold signals, below which a self-fulfilling run starts, tend
to cluster around a unique value. This means that, if the depositors get a
signal with low noise about a common aggregate state, they tend to run in
accordance with the same threshold strategy: in other words, a self-fulfilling
run is systemic. The common threshold signal fully depends on the terms of
the deposit contract that each representative bank chooses for her own wealth
group, and we characterize it by employing the “Belief Constraint” of Sakovics
and Steiner (2012). According to it, the “Laplacian Property” of Morris and
Shin (1998) holds on average: each depositor, given her beliefs and the fact
that she knows that all depositors (including herself) play a threshold strategy,
can infer the distribution function of the total number of depositors running,
in her own wealth group as well as in the whole economy. This result allows us
to characterize the common threshold signal for a systemic self-fulfilling run by
studying the average indifference condition for a depositor between running or
not.

With this tool in hand, we first solve for the decentralized banking
equilibrium, and then for the banking equilibrium with bailouts. As far as
the first one is concerned, each representative bank offers a deposit contract
satisfying a distorted Euler equation: the ratio between the marginal rate of
substitution between consumption in the interim period and consumption in
the final period and the expected return on the productive asset (which is
equal to 1 in an equilibrium with perfect information) is distorted by the fact
that each representative bank internalizes that its deposit contract affects the
common threshold signal and, as a consequence, also the welfare differential
that its own depositors enjoy from avoiding a systemic self-fulfilling run.

As far as the banking equilibrium with bailouts is concerned, we instead
assume the existence of an economy-wide government authority, operating as a
social planner, who expropriates a public good and redistributes it to the banks
with full commitment, through lump-sum liquidity injections, whenever the
fraction of depositors withdrawing is higher than the known fraction of early
consumers. Under these assumptions, a bailout always lowers the threshold
signal below which a systemic self-fulfilling run starts: on the one hand, the
expectation of a future liquidity injection makes the depositors less afraid of
a bank’s bankruptcy, thus increasing their incentives to run and increasing
the common threshold signal; on the other hand, a liquidity injection allows
the banks to serve in the final period more depositors who do not run, before
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declaring bankruptcy. Thus, under the assumption that the utility function
satisfies the Inada conditions, the second effect dominates, as some depositors
who do not run move from zero to a positive consumption. Hence, the total
effect of the bailout on the common threshold signal is to lower it.

Under some mild conditions on the exogenous parameters of the model, we
further show that a full bailout of the banking system, that completely rules
out systemic self-fulfilling runs, cannot be part of the equilibrium. This result
emerges as a consequence of the interaction between the government budget
constraint and bank incentives to provide risk sharing to their depositors, as
represented by the equilibrium conditions of the banking problem. In fact, the
wealth-specific injection-to-contribution ratio can only take two values, for the
government budget constraint to clear: it can either be equal to 1 in all wealth
groups or, if it is higher than 1 for one group, there must be at least one other
group for which it is lower than 1. While the latter case never satisfies the
equilibrium conditions of the banking problem, we find the sufficient conditions
under which also the former does not satisfy it. Interestingly, these conditions
rule out a full bailout of the banking system, even when feasible. As a full
bailout is feasible, also a partial bailout is feasible. Therefore, under the
sufficient conditions, the equilibrium government bailout can only be partial,
and always implies a redistribution of resources across wealth groups.

Under a partial government bailout, we characterize the optimal allocation
of liquidity injections. In particular, the partial government bailout should
inject liquidity so as to maximize the depositors’ marginal benefits of the
bailout. These marginal benefits are determined by a sufficient statistics, that
accounts for two bank characteristics: first, how poor the wealth group served
by the bank is, so as to maximize the effect of the liquidity injection on the
depositors’ marginal utility in the case of bankruptcy; second, how systemic
the bank is, in terms of the effects that a liquidity injection through it have
on the common threshold signal and on the total expected welfare differential
(for the whole economy) from avoiding a systemic self-fulfilling run. These
two characteristics have some direct counterparts in the real world, and thus
represent a fully theory-based but readily applicable way to bailout banks
facing systemic self-fulfilling runs. First, the bailout should target those groups
at the lower end of the wealth distribution, as deposit insurance does in the
real world. Second, it should target those wealth groups that impose higher
externalities on the whole economy. In that sense, our result provides a rationale
for the “contribution approach” (Staum 2012; Drehmann and Tarashev 2013;
Tarashev et al. 2016) to the measurement of the systemic relevance of a financial
institution, in contrast to the “participation approach” of Acharya et al. (2017).
Finally, such a government intervention, albeit partial, is still beneficial for the
whole economy, even for those wealth groups who finance the bailout scheme
but whose banks do not receive any liquidity injection: this happens because
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the liquidity injections lower the common threshold signal for a systemic self-
fulfilling run, and thus allow the banks in all wealth groups to provide better
risk sharing to their depositors against the idiosyncratic shocks.

The present paper contributes to the literature on banking and financial
crises in many respects. First, by developing a theory of a heterogeneous
banking system, where the probability of a systemic self-fulfilling run and
banks’ risk taking behavior are jointly and endogenously determined, this
paper is the first, to the best of our knowledge, to explicitly study the role
of wealth heterogeneity, which some new evidence suggests to be a key driver
of depositors’ behavior and runs (Iyer et al. 2015). To this end, the paper models
systemic self-fulfilling runs as global games among heterogeneous depositors,
and solves them by adapting to the Diamond and Dybvig (1983) framework
some novel results from economic theory (Sakovics and Steiner 2012). Second,
the paper contributes to the economics of government intervention during
financial crises. In a recent working paper, Allen et al. (2017) extend the
homogeneous economy of Goldstein and Pauzner (2005) by introducing a
benevolent regulator, who provides a bank guarantee in fixed amount. However,
this environment is not suitable to analyze the heterogeneity of a banking
system and the redistributive implications of a common bailout scheme. Cooper
and Kempf (2016) instead develop a banking model where the depositors
are heterogeneous with respect to wealth, and formally study taxation and
redistribution after a self-fulfilling run, in the absence of a committed regulator.
However, they only analyze self-fulfilling runs as sunspot-driven coordination
failures among the depositors. In other words, in their environment the
probability of a systemic self-fulfilling run is exogenous by assumption, and
depends only indirectly on the level of banks’ risk taking.

The rest of the paper is organized as follows: in section 2, we lay
down the environment of the model; in section 3, we study the strategic
complementarities among the depositors in the decision about whether to join a
systemic self-fulfilling run or not; in section 4, we characterize the decentralized
banking equilibrium; in section 5, we characterize the government bailout
scheme; finally, section 6 concludes.

2. A Model of a Banking System

2.1. Preferences and Endowments

The economy lives for three periods, labeled t = 0,1,2, and is populated by
a unitary continuum of agents, divided into G groups, indexed by j, each of
dimension mj . The groups are heterogeneous with respect to their endowments:
the agents in group j receive an initial group-specific endowment ej at date 0,
and a further endowment of a public good ē, equal for all groups, at date 1.
Although being all ex-ante equal, at date 1 the agents are hit by a private
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idiosyncratic shock θ, that takes value 0 with probability 1 − π and 1 with
probability π. The shocks affect the point in time at which the agents want to
consume, in accordance with the welfare function:

U (cj1, c
j
2, θ) = θu(cj1) + (1− θ)u(cj2) + ē. (1)

If θ = 1, the agents only want to consume at date 1, while, if θ = 0, they only
want to consume at date 2. Thus, in line with the literature, we call type-
0 and type-1 agents late (or “patient”) consumers, and early (or “impatient”)
consumers, respectively. The law of large numbers holds, so π and 1 − π are
the fractions of agents in the whole economy who turn out to be early or
late consumers. The utility function u(c) is twice continuously differentiable,
increasing, concave and with a coefficient of relative risk aversion greater than
1. Moreover, u(0) = 0 and the Inada conditions hold: limc→0 u

′(c) = +∞ and
limc→+∞ u′(c) = 0.1 The public good ē enters the welfare function linearly and
in a additive-separable fashion without loss of generality.

2.2. Banks and Technologies

The economy is also populated by a large number of banks, operating in a
competitive market with free entry. At date 0, the banks collect the endowments
of the agents, and invest them so as to maximize their profits, subject to
agents’ participation. Perfect competition and free entry ensure that the banks
solve an equivalent dual problem: they maximize the expected welfare of
their depositors, subject to budget constraints. To this end, the banks offer
a group-specific (or – equivalently – wealth-specific) standard deposit contract

{dj , djL(A)}, stating the uncontingent amount that the depositors can withdraw
at date 1, and the state-dependent amount that they can withdraw at date
2.2 As the realizations of the idiosyncratic types are private information, the
depositors must have the incentives to truthfully report their types. This implies
that the deposit contracts must satisfy the incentive compatibility constraint
dj ≤ djL(A), for every group j. The assumption that the banks offer a wealth-
specific deposit contract comes at no loss of generality, as the ex-ante wealth
heterogeneity is observable.

1. A typical utility function satisfying these assumption is the CRRA function u(c) =
((c+ψ)1−γ −ψ1−γ)/(1− γ), with γ > 1. The constant ψ can be interpreted as an exogenous
consumption that the agents enjoy, and can be chosen to be arbitrarily close to zero so as
to satisfy the Inada conditions.

2. In order to rule out uninteresting run equilibria, the amount of early consumption
dj must be smaller than min{1/π,R}. The relationship between depositors and banks is
exclusive, in the sense that the formers can only deposit their endowments into a bank,
and cannot interact one with each other. The fact that the banks have to offer a standard
deposit contract here is assumed. However, Farhi et al. (2009) show that a standard deposit
contract, with an uncontingent amount of early consumption, endogenously emerge as part
of the banking equilibrium, in the presence of non-exclusive deposit contracts.
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To finance the deposit contract, the banks invest the deposits – which are
the only liability on their balance sheets – in a productive asset that, for each
unit invested at date 0, yields a stochastic return A at date 2. This stochastic
return takes values R(1− ℓ) with probability p, and 0 with probability 1− p,
where ℓ is the total fraction of depositors who withdraw at date 1 in the whole
economy. The probability of success of the productive asset p represents the
aggregate state of the economy, and is distributed uniformly over the interval
[0,1], with (1− π)E[p]R > 1. Moreover, the productive asset can be liquidated
at date 1, i.e. before its natural maturity, and yield 1 unit of consumption for
each unit liquidated. Intuitively, this asset represents a productive investment
opportunity, whose return in case of success depends on how much of the
initial investment reaches maturity in the whole economy. Put differently, the
productive asset exhibits an investment externality. In Appendix A, we show
that this mechanism is qualitatively equivalent to an environment with an
explicit secondary market, where the banks sell the productive assets in order to
finance the early withdrawals, and a pecuniary externality originates financial
contagion.

At date 1, in accordance to the deposit contract chosen at date 0, the
banks pay dj to all the depositors who try to withdraw, and finance these
early withdrawals by liquidating the productive asset until their resources are
exhausted. When this happens, and the banks are not able to fulfil their
contractual obligations any more, they instead go into bankruptcy, in which
case they must liquidate all the productive assets in portfolio, and serve their
depositors according to an “equal service constraint”, i.e. such that all depositors
get an equal share of the available resources. Finally, at date 2 the depositors
who have not withdrawn at date 1 are residual claimants of an equal share of
the remaining resources.

We assume that the depositors cannot observe the true value of the
realization of the fundamental p, but receive at date 1 a noisy private signal
σ = p+ η. The term η is an idiosyncratic noise, indistinguishable from the true
value of p, that is uniformly distributed over the interval [−ε,+ε], where ε is a
positive but negligible constant. Given the signal received, each late consumer
decides whether to withdraw from her bank at date 2, as the realization of her
idiosyncratic shock would command, or "run on her bank” and withdraw at
date 1, in accordance to the scheme to be described in the incoming section.

2.3. Timing and Definitions

The timing of actions is the following: at date 0, the banks collect the initial
endowments, and choose the deposit contracts {dj , djL(A)}; at date 1, all agents
get to know their private types and signals, and the early consumers withdraw,
while the late consumers, once observed the signals, decide whether to run
on their banks or not; finally, at date 2, those late consumers who have not
withdrawn at date 1 withdraw an equal share of the available resources.
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As wealth heterogeneity is perfectly observable at date 0, the banks will
offer a wealth-specific deposit contract. Hence, we focus on the behavior
of G representative banks, each serving one wealth group. We solve the
model by backward induction, and characterize a pure-strategy Bayesian Nash
equilibrium, where the banks choose the same wealth-specific deposit contracts
and the depositors decide whether to run in accordance with the threshold
strategy:

aj(σ) =

{

wait if σ ≥ σj∗,

run if σ < σj∗.
(2)

Selecting threshold strategies comes at no loss of generality, as Goldstein and
Pauzner (2005) show in a similar environment that every equilibrium strategy
is a threshold strategy. The definition of equilibrium is as follows:

Definition 1. Given the distributions of the idiosyncratic and aggregate
shocks and of the individual signals, a decentralized banking equilibrium is a
deposit contract {dj , djL(A)} and depositors’ decisions to run in each group
j = 1, . . . ,G such that, for every realization of signals and idiosyncratic types
{σ, θ}:

• the depositors’ decisions to run maximize their expected welfare;
• the deposit contract maximizes the depositors’ expected welfare, subject to

budget constraints.

2.4. Banking Equilibrium with Perfect Information

As a benchmark for the results that follow, we start our analysis with the
characterization of the banking equilibrium with perfect information, where
a social planner who can observe the realization of the private idiosyncratic
shocks hitting the depositors maximizes their expected (or aggregate) welfare
subject to budget constraints. More formally, for each group j the social planner
solves:

max
dj

πu(dj) + (1− π)

∫ 1

0

pu

(

R(1− π)
ej − πdj

1− π

)

dp+ ē. (3)

The planner knows that, with probability π, a depositor in group j will turn
out to be an early consumer and consume dj and, with probability 1− π, she
will turn out to be a late consumer.3 In this case, the total amount of available
resources to a bank in group j in period 2 depends on the realization of the
aggregate state p, on the total number of late consumers in the whole economy,
equal to 1−

∑

j mjπ = 1− π, and on the amount of productive assets that are

3. In equilibrium, by the Inada conditions, both early and late consumption must be
positive.



Working Papers 10

not liquidated to pay early consumption, ej − πdj . The first-order condition
with respect to early consumption dj gives the equilibrium condition:

u′(dj) = (1− π)E[p]Ru′(R(ej − πdj)). (4)

Intuitively, this result shows that the planner provides an allocation satisfying
an Euler equation, i.e. so that the marginal rate of substitution between early
and late consumption is equal to the expected return of the productive asset
(equivalent to the marginal rate of transformation of a production technology).

Moreover, as the utility function u(c) is concave, dj∗ and dj∗L =R(ej − πdj∗) are
both nondecreasing in ej .4 Moreover, the concavity of the utility function and
the assumption that (1− π)E[p]R > 1 imply that the incentive compatibility
constraint is satisfied, hence this allocation is equivalent to a constrained
efficient allocation, in which the social planner has to induce truth-telling
among the depositors. In what follows, we assume that the parameters of the
model are such that this condition always holds.

3. Systemic Self-fulfilling Runs

We now move to the analysis of the banking equilibrium in the presence of
private signals regarding the aggregate state of the economy. As we will show,
these signals force the depositors to coordinate their actions: run under some
range of signals, and not run under another. This will allow us to determine
the probability of occurrence of a systemic self-fulfilling run for given deposit
contracts and – later on – the optimal bailout scheme as the best response
of the government to the strategic behavior of the depositors. The effect of
the signals is twofold: they provide private information about the state of the
fundamental and about the signals of the other depositors, which allows an
inference regarding their actions. Intuitively, obtaining a high signal increases
the incentives for a late consumer to wait until date 2 and not withdraw (i.e.
“run on her bank”) at date 1, because it induces the belief that the realization of
the aggregate state is good, and the signals of the other depositors are also high
(under the assumption that the volatility of the signal is sufficiently small).

More formally, a late consumer in group j receives a private signal σ at date
1, and takes as given the deposit contract fixed at date 0. Based on this, she
creates her posterior beliefs about how many depositors are withdrawing at date
1 in her own group as well as in the whole economy, and the probability of the
realization of the aggregate state A, and decides whether to withdraw or not.

4. To see this, notice that the objective function of the social planner exhibits increasing

differences in (ej , dj). Also, with a simple change of variable, namely letting xj = dj − ej

π

we can show that the objective function has decreasing differences in (xj , ej), which is

equivalent to having dj
L

increasing in ej .
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We assume the existence of two regions of extremely high and extremely low
signals, where the decision of a late consumer is independent of her posterior
beliefs. In the “lower dominance region”, the signal is so low that a late consumer
always runs, irrespective of the behavior of the others. This happens below the
threshold σj , that makes her indifferent between withdrawing or not, and is
defined by:

u(dj) = σju
(

R(ej − πdj)
)

, (5)

from where it is easy to see that the threshold σj is increasing in the early
consumption dj : the more the bank promises to an early consumer in group
j, the larger is the set of signals below which the depositors in that group
run irrespective of what the other late consumers do. In the “upper dominance
region”, instead, the signal is so high that a late consumer always wait until
date 2 to withdraw. Following Goldstein and Pauzner (2005), we assume that
this happens above a threshold σ̄j , where the investment is safe, i.e. p = 1,
and gives the same return R(1− π) at date 1 and date 2. In this way, a late
consumer is sure to get R(ej − πdj) at date 2, irrespective of the behavior of
all the other late consumers, and prefers to wait for any possible realization of
the aggregate state.

The existence of the lower and upper dominance regions, regardless of their
size, ensures the existence of an equilibrium in the intermediate region [σj , σ̄j ],
where the late consumers decide whether to run or not based on their posterior
beliefs. In this region, a late consumer runs if her signal is lower than a threshold
σj∗, which is the value of the signal that makes her indifferent between running
or not given her beliefs. More formally, define the utility advantage of waiting
versus running as:

vj(p,n,nj) =







σu
(

R(1− n) e
j−njdj

1−nj

)

− u(dj) if π ≤ nj < ej

dj ,

−u
(

ej

nj

)

if ej

dj ≤ nj < 1,
(6)

where nj and n are the total number of depositors who are withdrawing at
date 1 in group j and in the whole economy, respectively. These are given by:

nj = π + (1− π)prob(σ ≤ σj∗), (7)

n =
∑

k

mknk = π + (1− π)
∑

k

mkprob{σ ≤ σk∗}, (8)

where it is clear that the number of depositors withdrawing at date 1 is given by
the sum of the π early consumers plus those among the 1− π late consumers
who get a signal below the threshold σj∗. Importantly, as the signals σ are
random variables, the Laplacian Property (Morris and Shin 1998) ensures
that their cumulative distribution functions are uniformly distributed over the
interval [0,1]. Hence, nj is uniformly distributed over the interval [π,1] and its
probability distribution function is the constant f(nj) = 1/(1− π).
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The expression for vj(p,n,nj) highlights that, when the number of
depositors running is between π (i.e., when there is no run) and ej/dj (i.e.
the maximum number of depositors that the banks can serve according to
the contract with the available resources), a late consumer receiving a signal
σ holds the belief that the productive asset will turn out productive with
probability E[p] = E[σ − η] = σ. In that case, if she waits until date 2, she

consumes djL(R,n,nj) = R(1− n) e
j−njdj

1−nj or djL(0, n, n
j) = 0 otherwise, and if

she withdraws she consumes dj . In contrast, when the number of depositors
running is higher than ej/dj , the representative bank of group j goes into
bankruptcy: it is forced to liquidate all productive assets and equally share the
proceeds among the depositors. Hence, a late consumer gets zero if she waits,
and ej/nj if she withdraws.

The function vj(p,n,nj) exhibits both between- and within-group strategic
complementarities. To see that, calculate:

∂vj

∂nℓ 6=j
=

{

−Rσu′(djL(R,n,nj))mℓ e
j−njdj

1−nj if π ≤ nj < ej

dj ,

0 if ej

dj ≤ nj < 1,
(9)

and notice that the derivative in the first interval is always negative. As far as
the within-group strategic complementarity, instead:

∂vj

∂nj
=







Rσu′(djL(R,n,nj))
[

−mj ej−njdj

1−nj + (1− n) ej−dj

(1−nj)2

]

if π ≤ nj < ej

dj ,

u′
(

ej

nj

)

ej

nj2 > 0 if ej

dj ≤ nj < 1.

(10)
Interestingly, the derivative in the first interval is negative (i.e. we have one-
sided strategic complementarity) only if dj > Φj(n)ej , where:

Φj(n) =
(1− n)−mj(1− nj)

(1− n)−mjnj(1− nj)
, (11)

and Φj(n) is lower than 1.5

Given the function vj(p,n,nj), we derive the threshold signal σj∗ as the
value of the signal such that E[vj(p,n,nj)|σj∗] = 0, or the one solving:

∫ 1

π

∫ ej

dj

π

σj∗u

(

R(1− n)
ej − njdj

1− nj

)

dnjdn =

=

∫ 1

π





∫ ej

dj

π

u(dj)dnj +

∫ 1

ej

dj

u

(

ej

nj

)

dnj



 dn. (12)

5. For the rest of this section, we guess that this condition is satisfied. When characterizing
the equilibrium deposit contract, we show that dj > ej , thus confirming our conjecture.
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This gives:

σj∗ =

(1− π)





∫ ej

dj

π

u(dj)dnj +

∫ 1

ej

dj

u
(

ej

nj

)

dnj





∫ 1

π

∫ ej

dj

π

u
(

R(1− n) e
j−njdj

1−nj

)

dnjdn

, (13)

for every wealth group j = 1, . . . ,G. Following Frankel et al. (2003) and Sakovics
and Steiner (2012), we can prove the following:

Proposition 1. The Bayesian Nash equilibrium in threshold strategies
characterizing the withdrawing decisions of the depositors is unique. As the
volatility of the noise ε goes to zero, all threshold signals σj∗ converge to a
common limit σ∗, which is characterized by the average indifference condition:

∑

j

mj
E[vj(p,n,nj)|σ∗] = 0, (14)

and gives:

σ∗(d) =

(1− π)
∑

j m
j





∫ ej

dj

π

u(dj)dnj +

∫ 1

ej

dj

u

(

ej

nj

)

dnj





∑

j m
j

∫ 1

π

∫ ej

dj

π

u

(

R(1− n)
ej − njdj

1− nj

)

dnjdn

, (15)

where d = {dj}Gj=1.

Proof. In Appendix B. �

In order to show uniqueness, we rewrite the problem in terms of the
difference between the group-specific threshold signals σj∗ and threshold signal
σ∗ of a reference group, namely in terms of ∆j = (σj∗ − σ∗). The reasoning
behind this rescaling is as follows: on the one hand, if the signal lies above
all threshold signals, all groups wait; on the other hand, if the signal is
below all threshold signals, all groups run. It is only when the signal falls
within the cluster formed by the group threshold signals that there is strategic
uncertainty: certain groups run and others wait, and the depositors do not
know how many are choosing each action. The magnitude of the strategic
uncertainty depends on ∆, i.e. the vector of the ∆j-s. Facing this strategic
uncertainty, the agents in each group must form a belief about how many
agents in each group – and overall – are running. In order to do that, we
resort to the concept of “Belief Constraint” of Sakovics and Steiner (2012).
The Belief Constraint highlights that the Laplacian Property holds on average,
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meaning that the average cumulative distribution function of a random variable
is uniformly distributed over the interval [0,1]. This powerful results yields that
the total number of depositors n withdrawing in the whole economy is also
uniformly distributed, over the interval [π,1]. Then, the unique equilibrium
in threshold strategies is given by the solution to the system of G equations
Hj(σ∗,∆)(ε) = E[vj(σ∗,∆)] = 0 for every group j. We prove the uniqueness of
the solution by showing that if two solutions exist, a contradiction arises. The
second part of the Proposition instead shows that, whenever the volatility of
the noise of the signals is sufficiently low, the system of indifference equations
Hj(σ∗,∆)(ε) = 0 is well approximated by Hj(σ∗,∆)(0) = 0. Therefore, also the
solution to the system for a small ε lies in the neighbourhood of the solution to
the system when ε is zero. This last solution yields a unique threshold signal
σ∗(d), that solves

∑

j m
jHj(σ∗,∆)(0) = 0.

This result is crucial. Once the volatility of the noise is small, the group
threshold signals cluster around a common threshold σ∗(d), which uniquely
determines the probability of a systemic self-fulfilling run occurring in the
economy. This common threshold signal depends on the deposit contracts
chosen by the representative banks in each group. The following corollary sheds
light on this relationship.

Corollary 1. The threshold σ∗(d) is increasing in every dj.

Proof. In Appendix B. �

This result highlights the channels of financial contagion from one wealth
group to the rest of the economy: as the representative bank of group j promises
a higher amount of early consumption, its depositors anticipate that it might
not be able to serve them all, in the case of a systemic self-fulfilling run. In
addition to that, also the depositors in the other groups internalize the fact that
a run in one group might reduce the return on the productive asset, and force
their banks to go bankrupt. Hence, the range of signals for which a systemic
self-fulfilling run occurs increases with the early consumption offered by each
bank.

4. Decentralized Banking Equilibrium

Having characterized the endogenous threshold strategy played by the late
consumers at date 1, in this section we determine the optimal contract offered
by the representative banks in each wealth group at date 0. To this end, a bank
in group j solves the following problem:

max
dj

∫ σ∗(d)

0

u(ej)dp+

∫ 1

σ∗(d)

[

πu(dj) + (1− π)pu
(

R(ej − πdj)
)]

dp+ ē. (16)
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Whenever the signal is between 0 and σ∗(d) (remember that the noise term
is positive but negligible), a systemic run happens, either fundamental or self-
fulfilling, and all depositors receive the per-capita return from the liquidation
of the whole productive assets available in portfolio. When instead the signal is
between σ∗(d) and 1, no systemic self-fulfilling run happens, and the depositors
turn out to be early consumers with probability π and late consumers with
probability 1− π, as in the banking equilibrium with perfect information.6 To
complete the characterization of the decentralized banking equilibrium, define
the expected welfare gain from avoiding a run in group j as:

∆U j = πu(dj) + (1− π)σ∗(d)u(R(ej − πdj))− u(ej). (17)

Then, the first-order condition with respect to dj implicitly determines the
optimal contract:

π

∫ 1

σ∗

[

u′(dj)− (1− π)pRu′
(

R(ej − πdj)
)]

dp =
∂σ∗(d)

∂dj
∆U j. (18)

This distorted Euler equation highlights that the endogeneity of the threshold
signal σ∗(d) forces the banks to impose a wedge between the marginal rate
of substitution between early and late consumption and the expected return
on the productive asset. To see that more clearly, rewrite (18) in terms of the
marginal rate of substitution:

MRS ≡
u′(dj)

u′ (R(ej − πdj))
=

=
1

π(1− σ∗(d))

1

u′(R(ej − πdj)

∂σ∗(d)

∂dj
∆U j + (1− π)

1 + σ∗(d)

2
R. (19)

The right-hand side of (19) is higher than the expected return on the productive

asset, namely (1−π)R
2 , which is equal to the marginal rate of substitution

between early and late consumption in the banking equilibrium with perfect
information. In other words, the endogeneity of the threshold signal σ∗(d)
forces the banks to increase the marginal rate of substitution, i.e. lower the
amount of early consumption offered, with respect to the banking equilibrium
with perfect information. Yet, it can be proved that the decentralized banking
equilibrium still Pareto-dominates an autarkic equilibrium.

Lemma 1. In the decentralized banking equilibrium, dj > ej for every group
j = 1, . . . ,G.

Proof. In Appendix B. �

6. By the Inada conditions, the non-negativity constraints on early and late consumption
are always slack.
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The proof of this Lemma is based on showing that dj = ej for every group
j leaves some marginal benefits unexploited, and that if dℓ > eℓ for at least one
group ℓ, then it is not optimal to have dk = ek for any group k 6= ℓ. The Lemma
highlights that, despite the possible emergence of fundamental or systemic self-
fulfilling runs, the banking system provides better risk sharing than an autarkic
equilibrium, where the agents cannot access the banking system and have to
independently choose their own investments. In fact, in such a case, the agents
would invest all their endowments ej in the productive asset; then, an early
consumer would liquidate all of it and consume cj1 = ej, while a late consumer

would instead keep the investment, and consume either cj2 = Rej or cj2 = 0. In
other words, the banking system compresses the ex-post income profiles of the
risk-averse depositors, and improves welfare. However, it should be noted that
the amount of risk sharing that the banks offer in the decentralized banking
equilibrium is still lower than what they would offer in the banking equilibrium
with perfect information, as they internalize the fact that a high value of early
consumption has the negative consequence of increasing the threshold signal
σ∗(d).

5. Government Bailouts

Having characterized the decentralized banking equilibrium of the heteroge-
neous economy, in this section we study the optimal allocation of a government
bailout scheme, and how this affects in turns the amount of risk sharing
provided by the banks against the idiosyncratic risk. To this end, we assume
the existence of an economy-wide government authority, with the ability to
expropriate the public good ē and use it to attribute group-specific lump-sum
subsidies sj whenever the fraction of depositors withdrawing is higher than π. In
that sense, the government authority operates as a social planner, who chooses
a liquidity injection scheme to maximize the expected welfare of the depositors,
subject to limited available resources and fiscal instruments. Importantly, the
scheme is established with full commitment at the beginning of date 1, and is
implemented at the end of the same period. For the sake of clarity, here we
summarize the timing of actions: at date 0, the banks in each wealth group
collect the initial endowments, and choose the deposit contracts; at date 1, the
government authority chooses the liquidity injection scheme; then, all agents get
to know their private types and signals, and the late consumers decide whether
to run on their banks; finally, the liquidity injection scheme is implemented;
at date 2, those late consumers who did not withdraw at date 1 withdraw an
equal share of the available resources.

As in the previous section, we solve for the banking equilibrium with
bailouts by backward induction. Hence, we start by studying the decisions of the
late consumers about whether to join a run or not, depending on the deposit
contract and on the government bailout scheme. In the case of government
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intervention, the budget constraint of a bank in group j at date 1 reads:

Xj + sj = njdj , (20)

where Xj is the amount of productive assets that needs to be liquidated. Thus,
the amount of productive assets that gets to maturity is equal to ej −Xj , and
affects the utility that the late consumers get if they do not withdraw at date
1:

vj(p,n,nj , sj) =







σu
(

R(1− n) e
j+sj−njdj

1−nj

)

− u(dj) if π ≤ nj < ej+sj

dj ,

−u
(

ej+sj

nj

)

if ej+sj

dj ≤ nj ≤ 1.

(21)
The subsidy sj influences the advantage of waiting versus running in three ways:
(i) it increases the amount of liquidity available to the banks; (ii) it increases
the maximum fraction of depositors that can be served before the banks go into
bankruptcy; (iii) it increases the consumption of all depositors at bankruptcy.
Again, by the Belief Constraint, we characterize the endogenous threshold
signal below which all late consumers run from the average indifference
condition between running or not, and derive:

σ∗(d, s) =

(1− π)
∑

j m
j





∫
ej+sj

dj

π

u(dj)dnj +

∫ 1

ej+sj

dj

u

(

ej + sj

nj

)

dnj





∑

j m
j

∫ 1

π

∫
ej+sj

dj

π

u

(

R(1− n)
ej + sj − njdj

1− nj

)

dnjdn

, (22)

where s = {sj}j=1,...,G. From here, we can calculate the effect of a marginal
increase of a subsidy sj on the common threshold signal σ∗(d, s):

∂σ∗(d, s)

∂sj
=

(1− π)mj

∑

j m
j

∫ 1

π

∫
ej+sj

dj

π

u

(

R(1− n)
ej + sj − njdj

1− nj

)

dnjdn

×

×

[

∫ 1

ej+sj

dj

u′

(

ej + sj

nj

)

1

nj
dnj+

− σ∗(d, s)

∫ 1

π

∫
ej+sj

dj

π

u′(djL(R,n,nj))
R(1− n)

1− nj
dnjdn



 , (23)

where djL(R,n,nj) = R(1 − n) e
j+sj−njdj

1−nj . At a first sight, the sign of this
expression seems undetermined, as the subsidy has both a positive effect on
the incentives to run (it increases consumption at bankruptcy) and a negative
effect (it increases late consumption) However, by the Inada conditions:

lim
nj→ ej+sj

dj

u′(djL(R,n,nj)) = lim
c→0

u′(c) = +∞. (24)
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Hence, (23) is negative.7 This is an important result, because it shows that
the effect of the subsidy is to reduce the threshold signal, and therefore
the endogenous probability of a self-fulfilling run. Crucially, this result is a
consequence of the assumption that the government commits to intervene
whenever the fraction of depositors running is above π. In fact, in section 5.3,
we show that a government who cannot commit to intervene, and only bails
out banks ex post, actually increases the incentives of the depositors to run,
and therefore the threshold signal to start a systemic self-fulfilling run.

At the beginning of date 1, the government authority, given the deposit
contract chosen by the banks at date 0, and taking into account the best
responses of the depositors, maximizes their expected welfare, subject to its
own budget constraint. More formally, it solves the following problem:

max
sj

∑

j

mj

[

∫ σ∗(d,s)

0

u(ej + sj)dp+

+

∫ 1

σ∗(d,s)

[

πu(dj) + (1− π)pu(R(ej − πdj)) + ē
]

dp

]

, (25)

subject to the budget constraint:

∑

j

mjsj = ē, (26)

and to the lower and upper bounds for the subsidy sj ≥ 0 and sj ≤ dj − ej ,

where the second is the value of sj such that ej+sj

dj = 1, i.e. the bank in group
j is “run-proof”. As in the previous section, we characterize a pure-strategy
symmetric Bayesian Nash equilibrium in threshold strategies.

Definition 2. Given the distributions of the idiosyncratic and aggregate
shocks and of the individual signals, a banking equilibrium with bailouts is
a deposit contract {dj , djL(A)}, depositors’ decisions to run and a scheme of
subsidies {sj} for each group j = 1, . . . ,G such that, for every realization of
signals and idiosyncratic types {σ, θ}:

• the depositors’ decisions to run maximize their expected welfare;
• the subsidies maximize the depositors’ expected welfare, subject to the

government budget constraints.
• the deposit contract maximizes the depositors’ expected welfare, subject to

budget constraints;

7. Notice that the function vj(p,n, nj , sj) has a kink at nj = ej+sj

dj . In other words, it
is not differentiable in that point, hence the second integral of (23) takes a large but still
bounded value.
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The first-order conditions of the government problem allow us to
characterize the following Proposition:

Proposition 2. The government bailout scheme targets subsidies on the
groups with the largest statistics:

Ψj = −
∂σ∗(d, s)

∂sj

∑

k

mk∆Uk
B + σ∗(d, s)u′(ej + sj), (27)

where:

∆Uk
B = (1− π)

[

σ∗u(R(ek − πdk))− u(dk)
]

+ ē. (28)

There exists a unique group ĵ for which Ψĵ = 1, such that (i) those groups
with Ψj > 1 are fully subsidized and get sj = dj − ej > 0, (ii) those groups
with Ψj < 1 are not subsidized and get sj = 0, and (iii) those groups for which
Ψj = 1 get sj ∈ [0, dj − ej].

Proof. In Appendix B. �

The proof of the Proposition is based on the following lines of reasoning:
as the per capita marginal cost of subsidizing the representative bank of each
group is the same across groups, and equal to the Lagrange multiplier on the
government budget constraint, in equilibrium it is optimal to allocate subsidies
so that the marginal benefits of the subsidies are equal across groups. These
are equal to the sum of three parts: first, the difference between the Lagrange
multipliers of the upper and lower bounds of sj , that regulates whether a bank
is fully, partially or not subsidized; second, the marginal effect that a subsidy
to the representative bank of group j has on the common threshold signal
σ∗(d, s), and as a consequence on the total welfare differential from avoiding
a systemic run (the first element of (27)) that also takes into account the cost
that each groups incurs when financing the bailout scheme, in terms of not
enjoying the direct consumption of the public good; third, the marginal utility
of a subsidy to the representative bank of group j in the case of bankruptcy
(the second element of (27)). In equilibrium, it is optimal for the government
to rank the banks according to (27), and always fully subsidize the first one
of the ranking, i.e. s(1) = d(1) − e(1), where (j) represents the bank of the j-th
group in the ranking. Moreover, as the ranking is monotonic, it is also optimal
to fully subsidize all banks, until the government budget constraint clears.
Consequently, there can only be a unique threshold group (ĵ) in the ranking,
above which all groups are fully subsidized and above which all groups get zero.
In other words, either all banks are fully subsidized, whenever the threshold
group is the (G)-th, or some banks are fully subsidized at the top of the ranking,
and some others get zero.
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5.1. The Banking Equilibrium with Bailouts

Given the optimal allocation of the subsidies, characterized in the previous
section, we conclude the analysis of this economy with the characterization of
the banking equilibrium with bailouts.

We start our analysis by guessing that the threshold group is the (G)-th,
or ĵ = G. In this case, Proposition 2 states that all banks are fully subsidized,
meaning that, in the case of a run, they would be able to serve all depositors.
As a consequence, no systemic self-fulfilling run occurs in equilibrium. Yet, this
does not rule out fundamental runs, still happening in the lower dominance
regions of each group. The subsidies affect the threshold signals σj below which
a fundamental run occurs in group j:

σj =
u(dj)

u(R(ej + sj − πdj))
=

u(dj)

u(R(1− π)dj)
. (29)

This threshold is increasing in dj . To see that, calculate:

∂σj

∂dj
=

u′(dj)u(R(1− π)dj)− (1− π)Ru′(R(1− π)dj)u(dj)

(u(R(1− π)dj))2
, (30)

and notice that the numerator is positive, because (1− π)R> p(1− π)R, which
is larger than 1 by assumption, and because of the coefficient of relative risk
aversion being larger than 1.8 Then, a bank in group j at date 0 solves the
problem:

max
dj

∫ σj

0

u(dj)dp+

∫ 1

σj

[

πu(dj) + (1− π)pu(R(ej − πdj)) + ē
]

dp, (31)

and the first-order condition gives:

π

∫ 1

σj

[

u′(dj)− (1− π)pRu′(R(ej − πdj))
]

dp =
∂σj

∂dj
∆U j

B − σju′(dj), (32)

where:
∆U j

B = (1− π)
[

σju(R(ej − πdj))− u(dj)
]

+ ē. (33)

As in the decentralized banking equilibrium, it can be proved that, under
some mild conditions, the banking equilibrium with bailouts is better than an
autarkic equilibrium.

Lemma 2. Assume that u(c) is CRRA and ej ≥ ē. Then, in the banking
equilibrium with full bailouts, dj > ej for every j = 1, . . . ,G.

8. See footnote 10.
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Proof. In Appendix B. �

This lemma shows that, in an equilibrium with full bailouts, the
representative bank of group j still offers more insurance against the
idiosyncratic shock than what the depositors would get in autarky, despite
the fact that increasing early consumption also increases the threshold signal
below which there is a fundamental run. From here onwards, we assume that the
conditions of Lemma 2 hold, and conclude the characterization of the banking
equilibrium with bailouts.

Proposition 3. Assume that a full bailout is feasible and ej ≥ ē for every
group j, and that the utility function u(c) is CRRA with a coefficient of
relative risk aversion bounded from above. Then, there cannot exist a banking
equilibrium with full bailouts.

Proof. In Appendix B. �

Proposition 3 states the sufficient conditions that rule out a full government
bailout from the banking equilibrium. The intuition for this result is the
following. For a full bailout to be an equilibrium, the government budget
constraint must clear, meaning that

∑

j m
j(dj − ej)/ē = 1. Two cases are

possible: either the subsidy-to-contribution ratio (dj − ej)/ē is larger than 1 for
some groups j and lower than 1 for the remaining groups k 6= j, or it is equal to
1 for all groups. The first case, in particular when dj − ej < ē, does not satisfy
the equilibrium condition (32) of the banking problem. Assume instead that
dj − ej = ē for all groups j. In this case, early consumption dj has the double
effect of positively affecting (i) the threshold for a fundamental run σj and (ii)
the consumption of all depositors in group j when a fundamental run takes
place (the right-hand side of (32)). As the second effect dominates the first,
the sum of the two imposes a negative distortion between the marginal rate of
substitution between early and late consumption and the expected return on the
productive asset in the bank optimality condition (the left-hand side of (32)).
For the marginal rate of substitution to be lower than the expected return on
the productive asset, given that the agents are risk-averse, early consumption
must be high. Then, a sufficient condition for this not to be an equilibrium is
that the coefficient of relative risk aversion is sufficiently low (but still higher
than 1). Hence, under these conditions, a full bailout is not an equilibrium.

As the full bailout is feasible, also a partial bailout is feasible. Therefore, the
direct consequence of the previous Proposition is that, under some sufficient
conditions, the equilibrium government bailout can only be partial. In other
words, all groups see the public good expropriated, but only few groups get
subsidized. Hence, the implementation of an optimal partial government bailout
always implies a wealth redistribution of resources across groups.
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In the unsubsidized groups, the banking problem reads as in the
decentralized environment without bailouts in (16), with the two key differences
that the depositors enjoy the public good only when the signal is above the
threshold signal σ∗(d, s) (i.e. if no run happens) and the threshold signal
σ∗(d, s) itself is lower:

max
dj

∫ σ∗(d,s)

0

u(ej)dp+

∫ 1

σ∗(d,s)

[

πu(dj) + (1− π)pu
(

R(ej − πdj)
)

+ ē
]

dp.

(34)
The following corollary shows that, despite the expropriation of the public good,
the unsubsidized banks are still able to increase the amount of risk sharing
against the idiosyncratic shocks with respect to the decentralized banking
equilibrium, and therefore to increase the expected welfare of their depositors.

Corollary 2. In the banking equilibrium with partial government bailouts,
the unsubsidized banks offer higher early consumption than in the decentralized
banking equilibrium, or djB > dj for every j = 1, . . . ,G.

Proof. In Appendix B. �

The result of the Corollary shows that, despite losing the public good
without receiving any subsidy, all unsubsidized banks are able, through the
lower probability of a systemic self-fulfilling run, to improve risk sharing for
their depositors. A similar but stronger result also emerges for the subsidized
banks. In fact, the equilibrium condition of their banking problem under partial
bailout would read:

π

∫ 1

σ∗(d,s)

[

u′(dj)− (1− π)pRu′(R(ej − πdj))
]

dp =
∂σ∗(d, s)

∂dj
∆U j

B+

− σ∗(d, s)u′(dj), (35)

where:
∆U j

B = (1− π)
[

σ∗(d, s)u(R(ej − πdj))− u(dj)
]

+ ē, (36)

and:

∂σ∗(d, s)

∂dj
=

(1− π)mj

DEN

[

(1− π)u′(dj)− σ∗(d, s)

∫ 1

π

u′(R(1− n)dj)R(1− n)dn

]

,

(37)
which is positive.9 The equilibrium condition in (35) resembles the distorted
Euler equation in (32), with the key difference that now, as the bailout is only

9. In the expression above, DEN is the positive denominator of threshold signal σ∗(d, s).
To see that the threshold signal σ∗(d, s) is increasing in dj , we observe that, by the Inada
conditions, limn→1 u′(R(1− n)dj)R(1− n) = limn→1 u′′(R(1− n)dj)Rdj = −∞, where we
used the l’Hôpital Rule for the second equality. Hence, the term in the square brackets is
positive.
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partial, self-fulfilling runs can happen, but only below the lower threshold signal
σ∗(d, s) < σ∗(d,0). The expression in (35) makes clear that the subsidized
banks have one further reason, with respect to the unsubsidized banks,
to increase early consumption above the level of the decentralized banking
equilibrium: in order to get more subsidies in the case of a systemic self-fulfilling
run. In other words, it must also be the case that djB > dj for all those j
groups that are fully subsidized. To sum up, a government bailout scheme,
albeit partial, always allows better risk sharing for every group in the economy.

5.2. Discussion

Propositions 2 and 3 suggest a practical criterion to optimally bailout a
heterogeneous banking system subject to systemic self-fulfilling runs. In fact,
for given available resources to redistribute, a government authority should:

1. calculate the statistics Ψj for all groups j;
2. rank the groups in decreasing order of Ψj ;
3. fully bailout the banks of the groups with the highest Ψj , until the resources

are exhausted.

The statistics Ψj , representing the total expected marginal benefit from the
subsidy in group j, is the sufficient criterion to implement the optimal bailout.
It is made of two parts, each highlighting one group characteristic that the
scheme should target:

• High ∂σ∗(d,s)
∂sj

∑

k m
k∆Uk

B;
• High σ∗u′(ej + sj).

These two characteristics have some direct counterparts in practice. First, the
bailout should target the groups that impose the highest externalities on the
whole economy: Those should be the banks that are more interconnected to,
or impose the highest losses onto, the other banks in the economy. In that
sense, our result does not support the “participation approach” of Acharya
et al. (2017), that measures the systemic importance of a financial institution
in terms of its participation to the total systemic losses incurred by that
financial institution in the case of a financial crisis. In contrast, our result
provides a further rationale for the “contribution approach” of Staum (2012),
Drehmann and Tarashev (2013) and Tarashev et al. (2016), according to which
the systemic importance of a financial institution depends on its contribution
to the emergence of systemic risk for the whole economy. Second, the optimal
bailout scheme should target the banks of those wealth groups where the
marginal benefit of the subsidy is the largest. The government can achieve
that by targeting the subsidies at the lower end of the wealth distribution,
exactly as a common deposit insurance scheme does. In other words, our result
rationalizes at the same time the bailout of the most systemic banks and of the
poorest depositors.



Working Papers 24

Finally, it is worth mentioning that Propositions 2 and 3, despite being
quite general, are based on some sensible assumptions. First, the introduction
of a public good available in equal supply for all groups allows us to separate
in a parsimonious way the financing problem of the government from the
banking problem, as in Allen et al. (2017). Moreover, the assumption that
the endowments ej of each group are larger than the available amount of the
public good ē reflects the observation that, in modern economies, total banks’
liabilities are generally higher than 100 per cent of a country’s GDP. Second,
the hypothesis of full expropriation of the public good can be relaxed without
altering the results: for example, an alternative self-financed scheme, where
some banks get negative subsidies to finance the positive subsidies to the others,
would yield similar results, and in particular characterize the threshold group in
the ranking below which the banks have to finance the subsidies to the others.
Third, our assumption that the government scheme is established after the
banks’ decisions about the deposit contracts has no impact on the optimal
allocative mechanism of the subsidies. To see that, consider an alternative
timing, in which the government chooses the subsidy scheme at date t = 0,
before the banks determine the deposit contracts. Formally, the government
would maximize the total expected welfare of the depositors, by solving the
problem in (25), subject to its own budget constraint in (26) and to the
condition that the banks’ behavior is optimal, i.e. it satisfies the distorted
Euler equation in (18). The solution to this problem, once again, would have
the government ranking the groups in decreasing order of marginal benefit of
the subsidy, and fully subsidizing them starting from the top of the ranking,
until its budget clears.

5.3. Ex-Post Government Bailouts with Discretion

In the previous sections, we crucially assume that the government could commit
to a bailout scheme at the beginning of date 1, after the banks have chosen
the deposit contracts, but before they start liquidating the productive assets
and the revelation of the depositors’ idiosyncratic types and signals. In this
extension, we relax this hypothesis, and instead assume that the government
authority lacks commitment, and can only act ex post, after a systemic self-
fulfilling run has already taken place. For the sake of clarity, here we summarize
the modified timing of actions: at date 0, the banks in each wealth group collect
the initial endowments, and choose the deposit contracts; at date 1, all agents
get to know their private types and signals, and the late consumers decide
whether to run or not; then, if a run takes place, the government intervenes
with the subsidy scheme; finally, at date 2, all late consumers who did not
withdraw at date 1 withdraw.

We solve for the equilibrium by backward induction. The government
authority chooses the allocation of subsidies that maximizes the ex post welfare
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of the whole economy if a run has taken place:

max
sj

∑

j

mj
[

u(ej + sj)
]

, (38)

subject to the budget constraint:

∑

j

mjsj ≤ ē (39)

and to the non-negativity constraint sj ≥ 0. The equilibrium allocation of the
subsidies satisfies the first-order condition:

u′(ej + sj) + λj = u′(eℓ + sℓ) + λℓ, (40)

for every group j, ℓ, where λj is the Lagrange multiplier on the non-negativity
constraint of sj . Assuming an interior solution, this condition boils down to
ej + sj = eℓ + sℓ: it is optimal to equalize the ex post consumption of all
depositors in the economy, by engaging in a redistribution of the public good
from the wealth-rich groups to the poor ones.

Having characterized the optimal subsidy scheme, we analyze how it affects
the incentives of a late consumer to join a run. To this end, as in the previous
sections, we study the advantage of waiting versus running, which is given by:

vj(p,n,nj , sj) =







σu
(

R(1− n) e
j−njdj

1−nj

)

− u(dj) if π ≤ nj < ej

dj ,

−u
(

ej+sj

nj

)

if ej

dj ≤ nj ≤ 1.
(41)

From the previous expression, it is clear that the subsidy scheme only affects the
utility of the depositors after bankruptcy. Then, applying the Belief Constraint
as in the previous sections, we derive the threshold signal below which a late
consumer runs as:

σ∗(d, s) =

(1− π)
∑

j m
j





∫ ej

dj

π

u(dj)dnj +

∫ 1

ej

dj

u

(

ej + sj

nj

)

dnj





∑

j m
j

∫ 1

π

∫ ej

dj

π

u

(

R(1− n)
ej − njdj

1− nj

)

dnjdn

. (42)

The threshold signal σ∗(d, s) is now increasing in any subsidy sj : higher
subsidies increase the incentives of a late consumer to run, as she internalizes
that the ex-post bailout increases her consumption in the case of bankruptcy.
This effect is also present in the bailout scheme with full commitment of the
previous sections, but is counterbalanced by the fact that the banks can employ
the subsidy also to liquidate a lower amount of productive assets, and serve
more late consumers who do not run before bankruptcy.
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This result highlights the crucial difference that commitment makes in
the case of government bailouts: an anticipated ex-post intervention, while
redistributing optimally across wealth groups and increasing welfare if a run
happens, has the unintended consequence of increasing the probability of a
self-fulfilling run ex ante.

6. Concluding Remarks

With the present paper, we aimed at studying how a government should
bail out a heterogeneous banking system subject to systemic self-fulfilling
runs, what criteria to use in order to choose which banks are systemically
important, and what the effects of such a government intervention are on
the banking system itself, in terms of redistribution and risk sharing. To
this end, we develop a theory of heterogeneous banking, where systemic self-
fulfilling runs endogenously emerge as a consequence of a global game among
heterogeneous depositors. This framework represents a challenge because the
characterization of the endogenous threshold strategy in the presence of
heterogeneous depositors’ incentives to run is non-trivial: yet, we are able to
address this issue by applying – to the best of our knowledge, first in the
literature on self-fulfilling bank runs – the concept of Belief Constraint. With
this tool in hand, we show that the optimal bailout strategy involves some
degree of wealth redistribution, i.e. the full subsidization only of a limited group
of banks, and should target those whose bailout has the largest marginal impact
on the probability of a systemic self-fulfilling run, and are the poorest. Finally,
we also find that, albeit partial, the optimal government bailout scheme is still
beneficial for the whole economy, as all depositors enjoy a lower probability of a
systemic self-fulfilling run and better risk sharing. In other words, we provide a
clear criterion, which can be easily and directly implemented in the real world,
to improve expected welfare by bailing out banks during periods of financial
fragility.

The analysis presented here can be easily extended in two directions. First,
it would be worthwhile analyzing how alternative financing schemes for the
bailout fund might affect financial fragility and risk sharing: for example, we
might compare the centralized scheme analyzed here, that involves some degree
of wealth redistribution across groups, to one that maximizes the expected
welfare of the whole economy, but without a common budget. In this way, we
might shed some light on the impact of wealth redistribution, which is a heated
matter of debate in the discussion about the European Deposit Insurance
Scheme.

Second, the present environment is a natural place to study financial
regulation. In fact, the banks in equilibrium do not internalize their contribution
to financial fragility, in the sense that they choose how to serve their
depositors without taking into account the effect that this has on the the total
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welfare differential from avoiding a systemic self-fulfilling run for all the other
depositors in the economy. This failure of the first theorem of welfare economics
calls for the introduction of bank-specific limits to risk sharing, in the form of an
upper bound on the amount of early consumption that the banks can offer. In
addition to that, it should be noted that the implementation of a partial bailout
scheme might generate a “fiscal distortion”: in fact, a subsidized bank does not
take into account that, by increasing the amount of early consumption offered
to its depositors, also increases the amount of subsidies that is going to receive,
thus generating a further tightening of the government budget constraint. This
effect, which is reminiscent of the fiscal externality of Davila and Goldstein
(2016), should be addressed with some further regulatory intervention, in order
to limit the amount of risk sharing provided by the subsidized banks. This
argument calls for a differential regulatory treatment between subsidized and
unsubsidized banks, and in particular for tighter limits to risk sharing for the
first category. We leave a formal analysis of these issues for future work.
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Appendix A: Pecuniary Externalities

In this section, we show an alternative way to model the strategic
complementarities in a banking model with heterogeneous depositors. In
particular, we introduce in the model a pecuniary externality in the spirit
of the cash-in-the-market pricing of Allen and Gale (1994), and show that it
brings about results that are qualitatively similar to the investment externality
that we model in the main text.

To this end, extend the environment of the main text in the following
directions. The economy is populated also by a continuum of measure 1 of
agents with endowment e = {0,1,0} and utility:

u(c1, c2) = c2. (A.1)

These agents do not have access to any storage technology, but they can access
a secondary market for the productive assets, where they can buy those that the
banks sell in order to finance the depositors’ withdrawals. Then, the clearing
condition in this secondary market reads:

1 = P
∑

k

mknkdk, (A.2)

where the cash-in-the-market price of the productive asset:

P =
1

∑

k m
knkdk

(A.3)

equalizes their supply, coming from the banks liquidating them in order to
finance early withdrawals, to their demand, coming from the risk-neutral
buyers. With this in hand, further define Xj as the amount of productive assets
that the bank in group j has to liquidate. Then, the bank budget constraint at
date 1 reads:

PXj = njdj . (A.4)

Finally, assume that, if the bank goes bankrupt, it cannot access the secondary
market, and has to liquidate the productive asset by using a costly liquidation
technology with recovery rate r < 1.

Under these assumptions, the advantage of waiting versus running for a late
consumer in group j is given by:

vj(p,n,nj) =











σu

(

R
ej−(

∑
k mknkdk)njdj

1−nj

)

− u(dj) if π ≤ nj < ej

dj
∑

k mknkdk

−u
(

rej

nj

)

if ej

dj
∑

k mknkdk ≤ nj < 1

(A.5)
It is easy to see the sign of the cross-group strategic complementarities:
vj(p,n,nj) is decreasing in nℓ 6=j in the first interval, and = 0 in the second. The
within-group strategic complementarities, however, are more complex. Clearly,
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vj(p,n,nj) is increasing in nj in the second interval. In the first interval, instead:

∂vj

∂nj
=

σu′(djL(R,n,nj))R

(1− nj)2

[

−

[

mjnjdj2 + dj

(

∑

k

mknkdk

)]

(1− nj) + ej+

−

(

∑

k

mknkdk

)

njdj

]

. (A.6)

This derivative is negative whenever:

dj >
1

2






−

∑

k 6=j m
knkdk

mjnj(2− nj)
+

√

√

√

√

(

∑

k 6=j m
knkdk

mjnj(2− nj)

)2

+
4ej

mjnj(2− nj)






. (A.7)

This expression, despite being more complex, is essentially similar to Equation
(11) in the main text. In other words, the assumption of a investment
externality allows us to convey the same message of a pecuniary externality,
regarding how strategic complementarities arise in this economy, but in a more
parsimonious and elegant way.

Appendix B: Proofs

Proof of Proposition 1. We start by proving the first part of the Proposition.
The utility advantage of waiting versus running is:

vj(p,n,nj) =







σu
(

R(1− n) e
j−njdj

1−nj

)

− u(dj) if π ≤ nj < ej

dj

−u
(

ej

nj

)

if ej

dj ≤ nj < 1,
(B.1)

where nj and n are the aggregate actions, i.e. the total number of depositors
who are withdrawing at date 1 in group j and in the whole economy,
respectively. These are given by:

nj = π + (1− π)prob(σ ≤ σj∗), (B.2)

n =
∑

k

mknk = π + (1− π)
∑

k

mkprob{σ ≤ σk∗}. (B.3)

Define ∆j = (σj∗ − σ∗) as the difference between the threshold signal σj∗ of
group j and the threshold signal σ∗ of a generic group (which will turn out to
be the unique equilibrium threshold). Given this definition, we can rescale the
aggregate actions as:

ñj = π + (1− π)(1− F (σj∗ − p)) = π + (1− π)(1− F (∆j − ζ)) ≡ ñj(ζ,∆j),

(B.4)

ñ =
∑

k

mknk = π + (1− π)
∑

k

mk(1− F (σk∗ − p)) ≡ ñ(ζ,∆), (B.5)
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where ∆ is the vector of ∆j-s. Moreover, define ϑ(ñ,∆) as the inverse of ñ(ζ,∆)
with respect to ζ. Finally, define:

Hj(σ∗,∆) = E[vj(σ∗ + ϑ(ñ,∆), ñ(ζ,∆), ñj(ζ,∆j))]. (B.6)

We follow Frankel et al. (2003) and prove by contradiction that the solution to
the system of indifference conditions:

Hj(σ∗,∆) = 0, (B.7)

for all j = 1, ...,G is unique. Assume there exist two distinct solutions, namely
(σ∗,∆∗) and (σ∗′,∆∗′). We distinguish two cases: ∆∗ = ∆∗′ and ∆∗ 6= ∆∗′.
Suppose first that ∆∗ = ∆∗′, then it must be that σ∗ 6= σ∗′ and without loss
of generality, σ∗ < σ∗′. Since Hj(σ∗,∆) is increasing in σ∗, this implies that
H(σ∗,∆∗) < H(σ∗′,∆∗′). However, given that both (σ∗,∆∗) and (σ∗′,∆∗′) are
solutions to the system, we should have that H(σ∗,∆∗) =H(σ∗′,∆∗′) = 0, and
that is a contradiction.
Now suppose that ∆∗ 6= ∆∗′ and σ∗ ≤ σ∗′. Choose h ∈ argmaxj(∆

j∗′ −∆j∗)
and let D = maxj(∆

j∗′ −∆j∗) ≥ 0. Observe that ∆h∗′ −∆j∗′ ≥∆h∗ −∆j∗, for
all j = 1, ...,G, with strict inequality for at least one j. Define σ̃ = σ∗′ +D >
σ∗′ ≥ σ∗, hence:

Hh(σ̃,∆∗) ≥ Hh(σ∗,∆∗) = 0. (B.8)

In order to prove the contradiction, we have to show that:

Hh(σ̃,∆) ≥ Hh(σ∗′,∆∗′) = 0. (B.9)

To this end, rewrite:

Hh(σ̃,∆∗) =

∫ 1

0

∫ 1

0

vh(p,n,nh)dnhdn =

=

∫ ε

−ε

vh(σ̃h − ηh, ñ(∆h∗ − ηh,∆∗), nh(∆h∗ − ηh,∆h∗))dηh,

(B.10)

where σ̃h = σ̃ +∆h∗, and:

Hh(σ∗′,∆∗′) =

∫ ε

−ε

vh(σh∗′ − ηh, ñ(∆h∗′ − ηh,∆∗′), nh(∆h∗′ − ηh,∆h∗′))dηh,

(B.11)

where σh∗′ = σ∗′ +∆h∗′. It is easy to see that σh∗′ = σ̃h, as σ̃h = σ̃ +∆h∗ =
σ∗′ +D+∆h∗ = σ∗′ +∆h∗′ −∆h∗ +∆h∗ = σ∗′ +∆h∗′ = σh∗′. Moreover:

ñ(∆h∗′ − ηh,∆∗′) ≥ ñ(∆h∗ − ηh,∆∗), (B.12)

for all ηh, as:
∑

j

mj(1− F (∆j∗′ −∆h∗′ + ηh)) ≥
∑

j

mj(1− F (∆j∗ −∆h∗ + ηh)) (B.13)
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holds due to the observation above. Similarly:

F (∆j∗′ −∆h∗′ + ηh) ≤ F (∆j∗ −∆h∗ + ηh) (B.14)

for all ηh. Hence, Hj(σ̃,∆) ≥ Hh(σ∗′,∆∗′) because Hj(σ,∆) is decreasing in
ñ(ζ,∆) and ñj(ζ,∆). This gives a contradiction, and concludes the proof of the
first part of the Lemma.

As far as the second part of the Proposition is concerned, we start
by showing that, when ε is small, the system of indifference conditions
Hj(σ∗,∆)(ε) = 0 is well approximated by Hj(σ∗,∆)(0) = 0. Notice that, as
ε → 0, we have that ζ = 0 and ϑ(ñ,∆) = 0. Hence:

Hj(σ∗,∆)(ε) =

∫ 1

0

∫ ej

dj

π

[

(σ∗ + ϑ(ñ,∆))u

(

R(1− ñ(ζ,∆))ej − ñj(ζ,∆)dj

1− ñj(ζ,∆)

)

+

− u(dj)

]

dñj(ζ,∆)dñ(ζ,∆)−

∫ 1

0

∫ 1

ej

dj

u

(

ej

dj

)

dñj(ζ,∆)dñ(ζ,∆),

(B.15)

Hj(σ∗,∆)(0) =

∫ 1

0

∫ ej

dj

π

[

σ∗u

(

R(1− ñ(0,∆))ej − ñj(0,∆)dj

1− ñj(0,∆)

)

+

− u(dj)

]

dñj(0,∆)dñ(0,∆)−

∫ 1

0

∫ 1

ej

dj

u

(

ej

dj

)

dñj(0,∆)dñ(0,∆).

(B.16)

The intervals of integration of the two functions are the same. Moreover, the
integrands are both Lipschitz continuous in σ∗. Hence, there exists a constant
C1 such that:

|Hj(σ∗,∆)(ε)−Hj(σ∗,∆)(0)| ≤ C1ε. (B.17)

In other words, as ε goes to zero, the two systems of equations coincide. To
see that also the solutions of the two systems of equations coincide, let σ∗ and
∆∗ be the solution of the system of indifference conditions Hj(σ∗,∆)(0) = 0.
Given any neighbourhood N of (σ∗,∆∗), the function Hj(σ∗,∆)(0) is uniformly
bounded from 0 by some ι on S \N . Choosing ε̄ such that |Hj(σ∗,∆)(ε)−
Hj(σ∗,∆)(0)| ≤ ι for all ε < ε̄, the system of equations Hj(σ∗,∆)(ε) = 0 has
no solution outside of N.

Finally, to characterize the unique threshold signal σ∗(d) in (15), we
premultiply all group-specific indifference conditions (B.16) by mj , and sum
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across j:

∑

j

mjHj(σ∗,∆)(0) =
∑

j

mj





∫ 1

0

∫ ej

dj

π

[

σ∗u

(

R(1− ñ(0,∆))ej − ñj(0,∆)dj

1− ñj(0,∆)

)

+

− u(dj)

]

dñj(0,∆)dñ(0,∆)+

−

∫ 1

0

∫ 1

ej

dj

u

(

ej

dj

)

dñj(0,∆)dñ(0,∆)

]

. (B.18)

By the Laplacian Property, ñj(0,∆) ∼ U [π,1], hence the probability
distribution f(ñj(0,∆)) = 1

1−π
is independent of ∆. In a similar way, by the

Belief Constraint (Sakovics and Steiner 2012), the Laplacian Property holds
on average, meaning that also ñ(0,∆) ∼ U [π,1], therefore the probability
distribution f(ñ(0,∆)) = 1

1−π
is independent of ∆. Thus, the average

indifference condition takes the form:

∑

j

mj

∫ 1

π
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π
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u

(

ej

nj

)

dnj



dn. (B.19)

Rearranging this expression, we get threshold signal σ∗(d) in (15). This ends
the proof. �

Proof of Corollary 1. We study the sign of:

∂σ∗

∂dj
=
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dj
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 (B.20)
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This is clearly positive, as the utility function u(c) is increasing in c and ej/dj

is larger than π. This ends the proof. �

Proof of Lemma 1. We prove this Lemma by contradiction. We start by
assuming that dj = ej for all j = 1, . . . ,G. In this case, no self-fulfilling run
can happen in any group, because the representative bank is able to serve all
depositors, even in the case of a run. Hence, each group j is left only with runs
happening in their group-specific lower dominance region, below the thresholds
σj . Then, the first-order conditions of the banking problems at dj = ej read:

FOCj = π(1− σj)

[

u′(ej)−
1− π

2
(1 + σj)Ru′(R(1− π)ej)

]

+

−
u′(ej)− πσjRu′(R(1− π)ej)

u(R(1− π)ej)
(1− π)

[

σju(R(ej − πdj))− u(ej)
]

,

(B.21)

For every j. By definition of the lower dominance region, the last parenthesis
of (B.21) is exactly equal to zero. Moreover, as the coefficient of relative risk
aversion is larger than 1,10 we have that:

u′(ej)

u′(R(1− π)ej)
≥

R(1− π)ej

ej
. (B.22)

Hence:

FOCj ≥ π(1− σj)R(1− π)u′(R(1− π)ej)

[

1−
1 + σj

2

]

(B.23)

which is strictly positive, as σj is smaller than 1. This proves that there must be
at least one group ℓ for which dℓ > eℓ. We now study the first-order condition
of the remaining groups j 6= ℓ for which dj = ej, taking into account that,
as dℓ > eℓ, a systemic self-fulfilling run is possible, below the threshold signal
σ∗(d):

FOCj = π(1− σ∗(d))

[

u′(ej)−
1− π

2
(1 + σ∗(d))Ru′(R(1− π)ej)

]

+

−
∂σ∗(d)

∂dj
(1− π)

[

σ∗(d)u(R(1− π)ej)− u(ej)
]

. (B.24)

By definition of the lower dominance region, σj = u(ej)/u(R(1−π)ej)< σ∗(d),
meaning that the second part of (B.24) is positive. For the same lines of

10. The assumption about the coefficient of relative risk aversion is crucial for this result

to hold. To see this, rewrite −
u′′(c)c
u′(c)

> 1 as −
u′′(c)
u′(c)

> 1
c
. This, in turn, means that

−(log[u′(c)])′ > (log[c])′. Integrate between z1 and z2 > z1 so as to obtain log[u′(z1)] −

log[u′(z2)] > log[z2]− log[z1]. Once taken the exponent, the last expression gives u′(z1)
u′(z2)

>
z2
z1

. If z1 > z2, the inequality is reversed.
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reasoning above, also the first part of (B.24) is positive. Hence, FOCj > 0,
meaning that also dj > ej for all j 6= ℓ. To sum up, dj > ej for all groups
j = 1, . . . ,G. �

Proof of Proposition 2. Attach the Lagrange multiplier ξ to the government
budget constraint (26), and mjλj and mjχj to the upper and lower bounds of
sj , respectively. The first-order condition with respect to sj reads:

−
∂σ∗(d, s)

∂sj

∑

k

mk∆Uk
B + σ∗(d, s)u′(ej + sj) + λj − χj = ξ (B.25)

for all j = 1, . . . ,G, where ∆Uk
B is defined as in (28). Then, the government

bailout scheme satisfies the equilibrium condition:

−
∂σ∗(d, s)

∂sj

∑

k

mk∆Uk + σ∗(d, s)u′(ej + sj) + λj − χj =

= −
∂σ∗(d, s)

∂sℓ

∑

k

mk∆Uk + σ∗(d, s)u′(eℓ + sℓ) + λℓ − χℓ, (B.26)

for any two group j and ℓ. Calculate Ψj according to (27), which is obviously
positive for every group j, because we proved that σ∗(d, s) is a decreasing
function of the subsidy sj and u(c) is increasing. Then, rank the groups by
decreasing Ψj . For the condition (B.26) to hold, it must be the case that:

λ(1) − χ(1) < λ(2) − χ(2) < · · · < λ(G) − χ(G), (B.27)

where (j) indicates the j-th group in the rank. Assume that λ(1) − χ(1) > 0.
For this to be true, it must be that λ(1) > 0 and χ(1) = 0, meaning that
the group with the highest Ψj gets the lowest possible subsidy, or s(1) = 0.
But if λ(1) − χ(1) > 0, also λj − χj > 0 for all groups j, meaning that all
groups get the lowest possible subsidy, or sj = 0 for all j. Clearly, this cannot
be an equilibrium, because the threshold signal σ∗(d, s) is decreasing in the
subsidies sj , so the economy would be better off by using the proceeds from
taxation to positively subsidize at least one group. Hence, we must have that
λ(1) − χ(1) < 0, meaning that λ(1) = 0 and χ(1) > 0: in other words, the group
with the highest Ψj has to be fully subsidized, or s(1) = d(1) − e(1). On the
contrary, assume that λ(G) − χ(G) < 0. Then χ(G) > 0 and λ(G) = 0, implying
that s(G) = d(G) − e(G) > 0. However, if λ(G) −χ(G) < 0, also λj −χj < 0 for all
j, and sj > 0 for all j. This can be an equilibrium only if the budget constraint
is satisfied, i.e. if (26) holds. Otherwise, the only possible equilibrium left is one
where some groups are fully subsidized and some others are not. This implies
that there exists a threshold group for which there is indifference. This ends
the proof. �
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Proof of Lemma 2. We substitute dj = ej in the equilibrium condition of the
subsidized banking problem. Notice that, in this case:

σj =
u(ej)

u(R(1− π)ej)
. (B.28)

We now show that the first-order condition (32) is always strictly positive:

FOC = π(1− σj)

[

u′(ej)−
1− π

2
(1 + σj)Ru′(R(1− π)ej)

]

+

−
u′(ej)− (1− π)σjRu′(R(1− π)ej)

u(R(1− π)ej)
×

×

[

(1− π)

[

u(ej)

u(R(1− π)ej)
u(R(1− π)ej)− u(ej)

]

+ ē

]

+

+
u(ej)

u(R(1− π)ej)
u′(ej). (B.29)

As the coefficient of relative risk aversion is larger than 1, we have that:

u′(ej)

u′(R(1− π)ej)
≥

R(1− π)ej

ej
. (B.30)

Hence:

FOC ≥ π(1− σj)R(1− π)u′(R(1− π)ej)

[

1−
1 + σj

2

]

+

+
(1− π)σjRu′(R(1− π)ej)

u(R(1− π)ej)
ē+

u′(ej)

u(R(1− π)ej)

[

u(ej)− ē
]

, (B.31)

which is strictly larger than 0, as σj < 1 and u(ej) > ej ≥ ē with CRRA
utility. We provide a simple numerical example that proves this last point.

Assume u(c) = (c+ζ)1−γ−ζ1−γ

1−γ
, where ζ is a small but positive constant such

that u(0) = 0. The smaller ζ is, the higher is the value of x at which u(x) = x.
The example in Figure B.1 shows that, for ζ sufficiently small, u(c) is always
larger than c. This ends the proof. �

Proof of Proposition 3. To start the proof, notice that the government budget
constraint with full bailouts can be written as:

G
∑

j=1

m(j)d
(j) − e(j)

ē
= 1. (B.32)

Since the left-hand side of this expression is a weighted average of the subsidy-

to-contribution ratio d(j)−e(j)

ē
, there are only two possible cases that clear the

budget:

1. dj − ej = ē for every group j;
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Figure B.1: A CRRA utility function with γ = 2 and ζ = 0.1 (solid line) and ζ = 0.2

(dashed line) versus the linear function u(x) = x (dotted line).

2. dj − ej > ē for some group j and dℓ − eℓ < ē for some other group ℓ 6= j.

We analyze the two cases separately. For the first case, assume that dj = ej + ē
is an equilibrium. Analyze the equilibrium condition of the subsidized banking
problem. The right-hand side of (32) reads:

RHS =
u′(ej + ē)− (1− π)σjRu′(R(1− π)(ej + ē))

u(R(1− π)(ej + ē))
×

×

[

(1− π)u(ej + ē)

[

u(R(ej − π(ej + ē)))

u(R(1− π)(ej + ē))
− 1

]

+ ē

]

− σju′(ej + ē) =

= Θ+ u′(ej + ē)
ē− u(ej + ē)

u(R(1− π)(ej + ē))
, (B.33)

where Θ is a sum of negative values. Then, as the utility function u(c) is CRRA:

u(ej + ē) > ej + ē > ē (B.34)

hence the right-hand side of (32) is negative. Consequently, it must also be the
case that the left-hand side is negative. This implies that:

(1− σj)u′(ej + ē) < (1− π)
1− σj2

2
Ru′(R(ej − π(ej + ē))), (B.35)
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which can be rewritten as:

1− π

2

[

1 +
u(ej + ē)

u(R(1− π)(ej + ē))

]

R >
u′(ej + ē)

u′(R(ej − π(ej + ē)))
(B.36)

However, as the coefficient of relative risk aversion is larger than 1:

1− π

2

[

1 +
u(ej + ē)

u(R(1− π)(ej + ē))

]

>
ej − π(ej + ē)

ej + ē
=

ej

ej + ē
− π. (B.37)

Hence, a sufficient condition to rule out that dj = ej + ē is that:

π +
1− π

2

[

1 +
u(ej + ē)

u(R(1− π)(ej + ē))

]

−
ej

ej + ē
≤ 0 (B.38)

We numerically evaluate (B.38), assuming that u(c) = (c+ζ)1−γ−ζ1−γ

1−γ
, where

again ζ is a small but positive constant such that u(0) = 0.11 Figure B.2 shows
that the condition (B.38) is negative whenever the coefficient of relative risk
aversion γ is close to but higher than 1, is positive for high values of γ, and
monotonically increasing. Thus, there exists a unique threshold value of γ below
which dj = ej + ē is ruled out as a solution.

Now we move to the second case. Assume that dj < ej + ē is an equilibrium.
Again, analyze the equilibrium condition of the subsidized banking problem.
The left-hand side of (32) reads:

LHS = π(1− σj)

[

u′(dj)− (1− π)
1 + σj

2
Ru′(R(ej − πdj))

]

. (B.39)

As the coefficient of relative risk aversion is larger than 1, notice that:

u′(dj)

u′(R(ej − πdj))
≥

R(ej − πdj)

dj
. (B.40)

Hence:

LHS ≥ π(1− σj)Ru′(R(ej − πdj))

[

ej

dj
−

(

π + (1− π)
1 + σj

2

)]

. (B.41)

Remember that σj is increasing in dj . Thus:

π + (1− π)
1 + σj(dj)

2
< π + (1− π)

1 + σj(ej + ē)

2
<

ej

ej + ē
, (B.42)

where the second inequality comes from the condition in (B.38). Plugging this
into the left-hand side, we get:

LHS > (1− σj)Ru′(R(ej − πdj))

[

ej

dj
−

ej

ej + ē

]

, (B.43)

11. We assign the following values for the remaining parameters: π = .01, R = 2.1, ζ = .2,
ej = 1, ē = .9. The numerical results are robust to changes in any of these values.



Working Papers 40

Figure B.2: The condition (B.38) that rules out that a subsidy-to-contribution ratio
equal to 1 is an equilibrium, as a function of the coefficient of relative risk aversion
(on the x-axis).

which is strictly positive, again as dj < ej + ē. Finally, we go to the right-hand
side of the equilibrium condition (32):

RHS =
u′(dj)− (1− π)σjRu′(R(1− π)dj)

u(R(1− π)dj)
×

×

[

(1− π)u(dj)

[

u(R(ej − πdj))

u(R(1− π)dj)
− 1

]

+ ē

]

− σju′(dj) =

= Θ+ u′(dj)
ē− u(dj)

u(R(1− π)dj)
, (B.44)

where Θ is a sum of negative values, as dj ≥ ej . Then, as u(c) is CRRA:

u(dj) > dj > ē (B.45)

hence the right-hand side of (32) is negative. To sum up, we have that, under
dj < ej + ē, the left-hand side of (32) is positive and the right-hand side is
negative, which is impossible. Hence, dj < ej + ē cannot be an equilibrium.
This ends the proof. �

Proof of Corollary 2. In order to prove the Lemma, we want to show that the
objective function of the unsubsidized bank in (34) is supermodular. In fact, if
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that is the case, the equilibrium early consumption djB is an increasing function
of the subsidy sk, for any j and k (Topkis 1998): in other words, a positive
subsidy to any group would increase early consumption in all unsubsidized
groups.

As the bank objective function is the sum of twice continuously
differentiable functions, it is a twice continuously differentiable function itself.
Hence, to prove that it is supermodular it suffices to show that ∂2f/∂dj∂sk

and ∂2f/∂sk∂dj are both non-negative. The first-order conditions of (34) with
respect to dj and sj read:

∂f

∂dj
= π

∫ 1

σ∗(d,s)

[

u′(dj)− (1− π)pRu′(R(ej − πdj))
]

+

−
∂σ∗(d, s)

∂dj

[

πu(dj) + (1− π)σ∗(d, s)u(R(ej − πdj)) + ē− u(ej)
]

,

(B.46)

∂f

∂sk
= −

∂σ∗(d, s)

∂sk

[

πu(dj) + (1− π)σ∗(d, s)u(R(ej − πdj)) + ē− u(ej)
]

.

(B.47)

Hence, from (B.46) we get:

∂2f

∂dj∂sk
= −π

∂σ∗(d, s)

∂sk

[

u′(dj)− (1− π)σ∗(d, s)Ru′(R(ej − πdj))
]

+ (B.48)

− (1− π)
∂σ∗(d, s)

∂dj
∂σ∗(d, s)

∂sk
u(R(ej − πdj))+

−
∂2σ∗(d, s)

∂dj∂sk
[πu(dj) + (1− π)σ∗(d, s)u(R(ej − πdj)) + ē− u(ej)

]

.

(B.49)

The first two terms are positive, as the threshold signal σ∗(d, s) is decreasing
in sk. Regarding the last term, notice that its sign depends on the sign of the
cross derivative:

∂2σ∗

∂dj∂sk
=

mj





∑

j m
j

∫ 1

π

∫
ej+sj

dj

π

u

(

R(1− n)
ej + sj − njdj

1− nj

)

dnjdn





2×

×

[[

(1− π)
u′(dj)

dj
+

∂σ∗(d, s)

∂sk
×

×





∫ 1

π

∫
ej+sj

dj

π

u′(djL(R,n,nj))R(1− n)
nj

1− nj
dnjdn



+

+ σ∗(d, s)

∫ 1

π

∫
ej+sj

dj

π

u′′(djL(R,n,nj))(R(1− n))2
nj

(1− nj)2
dnjdn



×
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×





∑

j

mj

∫ 1

π

∫
ej+sj

dj

π

u

(

R(1− n)
ej + sj − njdj

1− nj

)

dnjdn



+

−
∂DEN

∂sk

[

(1− π)u′(dj)

(

ej + sj

dj

)

+

+ σ∗(d, s)

∫ 1

π

∫
ej+sj

dj

π

u′(djL(R,n,nj))R(1− n)
nj

1− nj
dnjdn







 .

(B.50)

where DEN is the denominator of σ∗(d, s). As σ∗(d, s) is decreasing in sk,
and its denominator is clearly increasing, we have that the cross derivative is

negative. Therefore ∂2f
∂dj∂sk

is strictly positive.
As far as the second cross derivative is concerned, we make use of (23) and

from (B.47) we calculate:

∂2f

∂sk∂dj
= −

[

(1− π)mj

DEN2

[

−
u′(dj)

dj
−

∂σ∗(d, s)

∂dj
×

×

∫ 1

π

∫
ej+sj

dj

π

u′(djL(R,n,nj))
R(1− n)

1− nj
dnjdn+

+ σ∗(d, s)

∫ 1

π

∫
ej+sj

dj

π

u′′(djL(R,n,nj))

(

R(1− n)

1− nj

)2

njdnjdn



×DEN+

−
∂DEN

∂dj

[

∫ 1

ej+sj

dj

u′

(

ej + sj

nj

)

1

nj
dnj+

− σ∗(d, s)

∫ 1

π

∫
ej+sj

dj

π

u′(djL(R,n,nj))
R(1− n)

1− nj
dnjdn







×

×
[

πu(dj) + (1− π)σ∗(d, s)u(R(ej − πdj)) + ē− u(ej)
]

+

−
∂σ∗(d, s)

∂sk

[

πu′(dj) + (1− π)
∂σ∗(d, s)

∂dj
u(R(ej − πdj))+

− (1− π)πσ∗(d, s)Ru′(R(ej − πdj))

]

. (B.51)

Again, as σ∗(d, s) is decreasing in sk and DEN is decreasing in dj , this cross
derivative is positive. This ends the proof. �


