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ABSTRACT 
We propose an accelerated static replication approach for pricing barrier options under a variety 

of models by employing Richardson extrapolation techniques. This approach is first introduced to 

accelerate the computational efficiency and accuracy of the method of Derman, Ergener, and 

Kani (1995) (the DEK method) in static hedging a European up-and-out call option under the 

model of Black and Scholes (1973). The error estimation of this approach aids to determine how 

many replication matched points should be considered for attaining to a desired accuracy. The 

application of this approach is further generalized to the constant elasticity of variance (CEV) 

model and we compare the performance of alternative methods such as the modified DEK 

method of Chung, Shih, and Tsai (2010). This approach is also extended to improve the method 

of Fink (2003) under Heston’s stochastic volatility model.  
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1. Introduction 

Hedging exotic options is an important work for the financial institutions to manage risks. The 

static hedge and the dynamic hedge approaches are two main hedging methods in the financial 

literature. Compared with the dynamic hedging approach, the static hedge may be cheaper when 

the transaction frequency is high and the transaction cost is large. There two categories of static 

hedging approaches developed. The first approach, proposed by Bowie and Carr (1994), Carr and 

Chou (1997), and Carr, Ellis, and Gupta (1998), is to construct static replication portfolio in a 

continuum of standard European options with the same maturity as the exotic option but different 

strike prices. The second approach, developed by Derman, Ergener, and Kani (DEK, 1995) 

utilize a standard European option to match the boundary at maturity of the exotic option and a 

continuum of standard European options with the same strike price but different maturities to 

match the boundary before the maturity of the exotic option. Chung, Shih, and Tsai (2010) show 

the modified DEK model improving performance of the static hedging method for barrier options 

significantly. The replication errors of the DEK model results from the non-zero value of the 

static replication portfolio on the barrier except at some discrete time points. It is able to increase 

the number of time points to enhance the accuracy of static hedging. However, increasing the 

number of time points will result in computationally time consuming. Therefore, we employ a 

new method to improve the efficiency of static hedging in the second category and show its 

superiority in static hedging. Pricing and hedging Barrier options is a major topic in the financial 

research.  

 In this paper, we provide a general accelerated static replication approach with the repeated 

Richardson extrapolation for pricing barrier options. This article provides an error estimation 

method to obtain the appropriate number of matched-points given an error tolerance level. 

Richardson extrapolation technique is often employed to derive an efficient computational 
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formula for evaluating the values of options. For example, Geske and Johnson (1984) firstly use 

Richardson extrapolation technique to price compound options. Chang, Chung, and Stapleton 

(2007) also use Richardson extrapolation technique to price American-style options. Chang, Guo, 

and Hung (2016) further employ Richardson extrapolation technique to derive a more general and 

computationally efficient formula for American options. However, while Richardson 

extrapolation technique succeeds in deriving efficient approximation formulae for options, its 

application in static hedging is seldom explored. Because the computationally time consuming 

problem of static hedging, it is important to enhance its computational efficiency and accuracy 

with Richardson extrapolation techniques. Employing Richardson extrapolation techniques to 

derive an approximation may also provide a way to determine the accuracy of the 

approximation.
1
 One question is how many options or time points we have to choose to achieve a 

given level of accuracy. Farago, Havasi, and Zlatev (2010) give a reliable error estimation 

method by applying Richardson extrapolation. We employ their method to determine the number 

of matched-points or options that should be included into a static replication portfolio to achieve 

a given desired replication accuracy.  

The rest of this paper is organized as follow: In the second section, we introduce the 

repeated Richardson extrapolation technique. Section 3 shows the application in static hedging a 

European up-and-out call option under the Black-Scholes model and its performance. In Section 

4, we describe an error estimation method with Richardson extrapolation techniques. Section 5 

further generalizes its application to the CEV model and compares the performance of alternative 

                                                           
1

 Ibanez (2002) obtains the correct order for the error term by applying the Richardson 

extrapolation for pricing American option. Chang, Chung, and Stapleton (2007) also use 

Richardson extrapolation technique to provide reliable error estimation for pricing American-

style options. 
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methods. Section 6 extends its application to the method of Fink (2003) under Heston’s 

stochastic volatility model. Finally, the conclusion is given in section 7. 

 

2. Repeated-Richardson Extrapolation 

Consider the problem of calculating an unknown quantity, 𝑓(0), for which an analytical formula 

is not provided. In place of the unknown solution 𝑓(0), take a discrete approximation 𝑓(ℎ) with 

the step-size ℎ > 0 to be a calculable function yielded by some numerical scheme
2
, such that  

limℎ→0 𝑓(ℎ) = 𝑓(0) = 𝑎0. Based on the existence of an asymptotic expansion, we assume that 

𝑓(ℎ) is a sufficiently smooth function written as:  

𝑓(ℎ) = 𝑎0 + 𝑎1ℎ𝑝1 + 𝑎2ℎ𝑝2 + 𝑎3ℎ𝑝3 + ⋯ + 𝑎𝑘ℎ𝑝𝑘 + Ο(ℎ𝑝𝑘+1)                       (1) 

with unknown parameters 𝑎0, 𝑎1, ⋯, and 0 < 𝑝1 < 𝑝2 < ⋯, where ℎ ∈ [0, 𝐻] for some basic step 

𝐻 > 0 and Ο(ℎ𝑝𝑘+1) denotes a quantity whose size is proportional to ℎ𝑝𝑘+1, or possibly smaller. 

The idea of the Richardson extrapolation is that we can find a linear combination of two different 

step-sizes. For the sequence of the estimations 𝑓(ℎ1), 𝑓(ℎ2), ⋯ , 𝑓(ℎ𝑛), we compute the function 

𝑓(ℎ) a number of times with successively smaller step-sizes, ℎ1 > ℎ2 > ⋯ > 0. According to 

Schmidt (1968), we can establish the following recursion when 𝑝𝑚 = 𝑝 × 𝑚, 𝑚 = 1, ⋯ , 𝑘.  

 

Recursion: 

For 𝑗 = 1, 2, 3, 4, ⋯ , 𝑖, the Richardson extrapolation and its repeated version are defined by 

𝑓𝑖,𝑗 = 𝑓𝑖+1,𝑗−1 +
𝑓𝑖+1,𝑗−1−𝑓𝑖,𝑗−1

(
ℎ𝑖

ℎ𝑖+𝑗
)

𝑝

−1

,                                                 (2) 

                                                           
2
 Arciniega and Allen (2004) apply Richardson extrapolation to increase the order of accuracy of 

the fully implicit and Crank-Nicolson difference schemes for solving option prices under the 

model of Black and Scholes (1973). 
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where 𝑓𝑖,0 = 𝑓(ℎ𝑖). In the following, we restrict our attention to the case of  𝑝 = 1, which is 

one of the commonly-used extrapolation schemes. We can establish the following 

extrapolation tableau stopped at the 𝑛–th order: 

                        

The sequence {𝑓(ℎ𝑖)} is taken as the first column in the extrapolation tableau. Each quantity 

𝑓𝑖,𝑗  is computed in terms of two successive approximations. The two-point Richardson 

extrapolation technique can be repeated, resulting in a numerical scheme which is extremely 

fast and can dramatically improve accuracy. The idea behind recursion (2) is to provide two 

mechanisms for enhancing the accuracy: by increasing 𝑖 one obtains a reduction in the step-

size parameter, while taking 𝑗 large implies more accurate approximations. Both mechanisms 

work simultaneously, which indicates that the quantities 𝑓𝑛,𝑛−1 are those of most interest. This 

provides us with the possibility of order control. The repeated Richardson extrapolation 

technique avoids complicated calculation and provides a better result of estimation. Therefore, 

the repeated Richardson extrapolation can be used to enhance the computational efficiency 

and accuracy of the static hedging.  

 

𝑓(ℎ1) = 𝑓1,0 𝑓1,1 𝑓1,2 𝑓1,3 ⋯ 𝑓1,𝑛 

𝑓(ℎ2) = 𝑓2,0 𝑓2,1 𝑓2,2    

𝑓(ℎ3) = 𝑓3,0  𝑓3,1     

𝑓(ℎ4) = 𝑓4,0      

⋮      

𝑓(ℎ𝑛+1) = 𝑓𝑛+1,0      
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3. Richardson Extrapolation Technique in Static Hedging under the Black-

Scholes Model 

In this section, the well-known Black-Scholes model is considered to be a basic model for the 

illustration of how to employ Richardson extrapolation technique to improve the efficiency and 

accuracy of static hedging barrier options. One reason for the Black-Scholes model is that the 

existing analytical formulae of barrier options can be treated as benchmarks. The basic model 

under the risk-neutral measure is given by 

𝑑𝑆𝑡 = (𝑟 − 𝑑)𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝑊𝑡,                                                        (3) 

where 𝑆𝑡 is the stock price at time 𝑡, 𝑟 is the risk-free interest rate, 𝑑 is the dividend yield, 𝜎 is the 

volatility, and 𝑊𝑡 denotes a Wiener process. 

To solve the possible problem of non-uniform convergence, Omberg (1987) and Chang, 

Chung, and Stapleton (2007) suggest using geometric-spaced exercise points generated by 

successively doubling the number of uniformly-spaced exercise dates. Therefore, we also employ 

Romberg sequence to implement the repeated Richardson extrapolation technique. Romberg 

sequence: {1, 2, 4, 8, 16, 32, 64, 128, ⋯ , 2𝑛}.  One reason for Romberg sequence is to 

increase the possibility that 𝑓(ℎi)  could monotonically converge to 𝑓(0)  by ensuring each 

matched replication set nesting the previous one. In addition to Romberg sequence, we also 

consider other three sequences: harmonic sequence: {1, 2, 3, 4, 5, 6, 7, 8, ⋯ , 𝑛 , ⋯}; double 

harmonic sequence: {2, 4, 6, 8, 10, 12, 14, 16, ⋯ , 2𝑛 , ⋯ }; Burlisch sequence: {2, 3, 4, 6, 8, 12, 

16, 24, 32, ⋯, 2𝑛 𝑘−2 , ⋯ } (for 𝑘 ≥ 4). Figure 1 shows the price convergence of a European up- 

and-out call (UOC) option (parameters: current stock price 𝑆0 = 105, strike price 𝐾 = 100, risk-

free interest rate 𝑟 = 0.055, dividend yield  𝑑 = 0.025, barrier 𝐵 = 110, volatility 𝜎 = 0.2, and 

time to maturity 𝑇 = 1 ) under the DEK model with four different sequences respectively, 
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including harmonic sequence, double harmonic sequence, Burlisch sequence, and Romberg 

sequence.  

[Figure 1 is here]                                                                      

All the above sequences show the uniform price convergence as the number of matched points 𝑁 

increases under the DEK model. In our study, the geometric-spaced matched points (i.e. Romberg 

sequence) and the arithmetic-spaced matched points (i.e. harmonic sequence) for pricing 

European UOC options are not necessary incurring the problem of non-uniform convergence.
3
 

 [Table 1 is here]                                                                     

However, the convergence speed of four different sequences may be quite different (see 

Table 1). For a large error tolerance level, TOL=10%, the convergence speeds of four sequences 

are not different from each other very much. As the error tolerance level being smaller, the 

harmonic sequence and the double harmonic sequences could become markedly computational 

time consuming. The computation time for the harmonic sequence could be approximately 110 

times longer than that for Romberg sequence. Because the computation time of geometric-spaced 

matched points could be much less than that of the arithmetic-spaced matched points, Romberg 

sequence is suggested when employing repeated Richardson extrapolation technique in static 

hedging barrier options. Hence, given a specific step size ℎ𝑖 = ∆𝑡 = 𝑇 2𝑖⁄  where  𝑇  is the time to 

maturity of the barrier option, let 𝑓𝑖,𝑗 denote its corresponding estimation value after applying 𝑗-

times of Richardson extrapolation to the DEK method. Table 2 indicates results after employing 

repeated Richardson extrapolation technique in the DEK method of static hedging a European 

                                                           
3
 Chang, Chuang and Stapleton (2007) find that exercise points of harmonic sequence may cause 

non-uniform price convergence for some American-style options and incur an efficiency 

reduction of Richardson extrapolation technique. 
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UOC option with parameters as those in Table 1. The benchmark value for this barrier option is 

0.0611 derived from the existing analytical formula under the Black-Scholes model.
4
 

[Table 2 is here]                                                                         

Table 2 shows that repeated Richardson extrapolation technique could improve the DEK method 

to provide more efficient and accurate estimators for static hedging European UOC options under 

the traditional Black-Scholes model.  

 

4. Error Estimation 

One advantage of the repeated Richardson extrapolation technique is that we are able to acquire 

the error bounds of the approximation. The repeated Richardson extrapolation can determine the 

accuracy of the approximation and how many matched points should be considered for attaining 

to a given desired accuracy.  

Farago, Havasi, and Zlatev (2010) show that the error of estimation based on the Richardson 

extrapolation method can be calculated by ERROR = |
𝜔𝑛−𝑍𝑛

2𝑝−1
|, where 𝜔𝑛 and 𝑍𝑛  are estimators 

and 𝑍𝑛 has the double step-size of 𝜔𝑛 . The estimation value for the specific step-size h is given 

by: 

                             𝑍𝑛 = 𝑓(ℎ) = 𝑎0 + 𝑎1ℎ𝑝1 + Ο(ℎ𝑝2).                                                  (4) 

For choosing another step-size,  

                                      𝜔𝑛 = 𝑓 (
ℎ

2
) = 𝑎0 + 𝑎1(

ℎ

2
)𝑝1 + Ο(ℎ𝑝2).                                                (5) 

By omitting the high order term and eliminating 𝑎0, we are able to obtain 

                                                           
4
 Refer to Hull (2012). 
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                                      𝑎1 =
2𝑝1(𝑓(

ℎ

2
)−𝑓(ℎ))

ℎ𝑝1(2𝑝1−1)
.                                                               (6) 

Substitute Eq. (6) into Eq. (5): 

                                      𝑓 (
ℎ

2
) − 𝑎0 =

𝑓(
ℎ

2
)−𝑓(ℎ)

2𝑝1−1
+ Ο(ℎ𝑝2).                                                  (7) 

The left side denotes the accurate error and the right side represents an estimation error. Based on 

the method of Farago, Havasi, and Zlatev (2010) and under the assumption of (𝑝1, 𝑝2) = (1,2), 

the estimated error of 𝑓𝑖+1,𝑗 would be by |𝑓𝑖+1,𝑗−𝑓𝑖,𝑗| and the accurate error is |𝑓𝑖+1,𝑗 − 𝑎0|, where 

𝑎0 is the theoretical value of the barrier option. We are able to show how the step size can be 

chosen to meet the error tolerance level in advance. 

 [Table 3 is here]                                                                    

The validity of the error estimation method may depend on the high order term Ο(ℎ2). We 

test the validity of our error estimation method over 1458 options with different parameters (𝑆0= 

70, 80, 90; 𝐵 =𝑆0+10, 𝑆0+20, 𝑆0+30; 𝐾= 𝐵-10, 𝐵-20, 𝐵-30; 𝑟=0.15, 0.2; 𝑑=0.01, 0.015, 0.02; 𝜎= 

0.1, 0.2, 0.3). The numerical testing results can be shown in Table 3. In Table 3, the denominator 

represents the number of options whose price estimators match |𝑓𝑖+1,𝑗−𝑓𝑖,𝑗|< the desired errors 

and the numerator is the number of options whose price estimators match |𝑓𝑖+1,𝑗−𝑓𝑖,𝑗| < the 

desired errors and |𝑓𝑖+1,𝑗 − 𝑎0| <the desired errors. In general, the error estimation model works 

well especially when the sum of 𝑖 and 𝑗 increases. This finding is consistent with the result of 

Chang, Chuang and Richard (2007), who utilize the Schmidt inequality (1968). For example, 

when (𝑖 − 1, 𝑖) = (2, 3) and 𝑗 =3, there are 424 options out of 425 options which satisfy the actual 

error less than the desired error (1% of the theoretical value) given the estimation error less than 

the desired error. Hence, the probability of estimates satisfying the required accuracy is more 

than 99 percent. Therefore, we can further provide a quite accurate estimator of the number of 
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options which would be used to consist of the static hedging portfolio to achieve the required 

replication accuracy. 

On the other hand, it is reasonable to control the step-size of the repeated Richardson 

extrapolation given an error tolerance parameter that makes the estimation error meet our 

requirement. Farago, Havasi, and Zlatev (2010) suggest a step-size control method which is given 

by 

ℎ𝑛𝑒𝑤 = 𝜔 × √
𝑇𝑂𝐿

𝐸𝑅𝑅𝑂𝑅

𝑝

ℎ𝑜𝑙𝑑                                                       (8) 

where  ω = 0.9 in experimental practices, p=1, and  

ℎ𝑛 = 𝑇
2𝑛⁄ .                                                                 (9) 

Substituting h from Eq. (9) into Eq. (8) , 

𝑛𝑛𝑒𝑤 = 𝑛𝑜𝑙𝑑 + 𝐿𝑜𝑔2 (
𝐸𝑅𝑅𝑂𝑅

𝑇𝑂𝐿
) − 𝐿𝑜𝑔2(𝜔) .                                        (10) 

Given a specific error tolerance level (TOL) and the initial value of 𝑛𝑜𝑙𝑑, we could obtain a better 

estimator of 𝑛𝑛𝑒𝑤 to achieve the required accuracy based on Eq. (10). However, the computation 

time of finding the best step-size may be time consuming if an improper initial parameter (𝑛) is 

used. In order to examine the robustness and the best initial value of 𝑛  by the repeated 

Richardson extrapolation method, we employ 324 different options (𝑆0= 90, 95, 105; 𝐵 =𝑆0+5, 

𝑆0+10, 𝑆0+15; 𝐾= 𝐵-5, 𝐵-10, 𝐵-15; 𝑟=0.15; 𝑑=0.01, 0.015, 0.02; 𝜎= 0.1, 0.2; 𝑇 = 1, 2) and three 

different-magnitude error tolerance level (TOL=10%, 1%, and 0.1%)  to test the step-size control 

method proposed by Farago, Havasi, and Zlatev (2010). 

[Table 4 is here] 

We define two measures as follows. One is the average-reset-times index (ARTI) which 

represents average times of 𝑛  being reset by Eq. (10) using the statistical results of the above 324 

options. Given a proper initial  𝑛𝑜𝑙𝑑 , the best situation is that the step-size control method of 
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Farago, Havasi, and Zlatev (2010) always finds the best 𝑛𝑛𝑒𝑤 at the first time and ARTI will be 

one. The other measure is the average-excess index (AEI) which represents the average difference 

between the best 𝑛 and the 𝑛 obtained by Eq. (10). The implication of AEI is to show how much 

resource is wasted to calculate an overestimated 𝑛 . Under the optimization situation, the 

parameter AEI should be zero. For example, in case of pricing the European UOC option 

mentioned above with a required TOL = 1% and specifying initial value of 𝑛 =5. Based on Eq. 

(10), we obtain the new 𝑛 = 8 and the corresponding error = 0.36%. But the best 𝑛 is 7 with the 

error =0.76%. In this numerical example, the variable 𝑛 is reset once, and the difference between 

the 𝑛 computed by Eq. (10) and the best 𝑛 is 8-7 = 1. Hence, the index ARTI  is 1 and AEI  is also 

1. 

The statistical results of the above 324 options have been shown in Table 4. In these 

numerical results, the step-size control method of Farago, Havasi, and Zlatev (2010) works quite 

well for pricing European UOC options with Richardson extrapolation of the DEK method under 

the Black-Scholes model. The average reset times are always less than twice in most cases. 

Except these cases of TOL=0.1% with initial 𝑛 =6 or 7 and TOL =1% with 𝑛 = 4, the average-

reset-times index is not larger than one (i.e. ARTI≤1). The step-size control method works quite 

well for pricing European UOC options with Richardson extrapolation of the DEK method under 

the Black-Scholes model. We can choose a proper initial 𝑛 for a required error tolerance level. 

For TOL=10%, 1%, and 0.1%, the best choice of the initial 𝑛 are those with the lowest sum of 

ARTI and AEI  (shown in gray grids) which are 𝑛 =5, 7, and 7, respectively. 

 

5. A Generalization to Constant Elasticity of Variance Model 
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In the constant elasticity of variance (CEV) model of Cox (1975) and Cox and Ross (1976) and 

under the risk-neutral probability measure, the stock price is given by 

 d𝑆𝑡 = (𝑟 − 𝑑)𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡
𝛽 2⁄

𝑑𝑊𝑡                                                (11) 

with 𝑆0 > 0 and where 𝑊𝑡 is a standard Brownian motion. The volatility 𝜎, the risk-free rate 𝑟, 

and the dividend yield 𝑑 are assumed constant. Schroder (1989) extended the CEV model by 

expressing the pricing formulae of a European call option with strike  𝐾 and time to maturity 𝑇 

for 𝛽 < 2  as follows:  

𝐶(𝑆0, 𝐾, 𝜎, 𝑟, 𝑑, 𝑇, 𝛽) = 𝑆0𝑒−𝑑𝑇𝑄 (2𝑦; 2 +
2

(2−𝛽)
, 2𝑥) − 𝐾𝑒−𝑟𝑇 (1 − 𝑄 (2𝑥;

2

(2−𝛽)
, 2𝑦))        (12) 

with 𝑄(𝜔; 𝑣, 𝜆) being the complementary distribution function of a non-central chi-square law 

with 𝑣  degrees of freedom and non-centrality parameter 𝜆 , and where 𝑦 = 𝑘𝐾(2−𝛽) , 𝑥 =

𝑘𝑆0
(2−𝛽)

𝑒((𝑟−𝑑)(2−𝛽)𝑇) , and 𝑘 =
2(𝑟−𝑑)

𝜎2(2−𝛽)(𝑒(𝑟−𝑑)(2−𝛽)𝑇−1)
. Even though we will concentrate our 

analysis in the case of  𝛽 < 2, the corresponding CEV call option formula for 𝛽 > 2 is also 

reproduced below: 

𝐶(𝑆0, 𝐾, 𝜎, 𝑟, 𝑑, 𝑇, 𝛽) = 𝑆0𝑒−𝑑𝑇𝑄 (2𝑥;
2

(2−𝛽)
, 2𝑦) − 𝐾𝑒−𝑟𝑇 (1 − 𝑄 (2𝑦; 2 +

2

(2−𝛽)
, 2𝑥)) .      (13) 

To facilitate the implementation of the improved DEK approach of Chung, Shih, and Tsai. (2010), 

we also reproduce the theta formulae of the European call option under the CEV model from Tsai 

(2014): 

𝜕𝐶

𝜕𝑡
(𝑆0, 𝐾, 𝜎, 𝑟, 𝑑, 𝑇, 𝛽) = 

𝑟𝐶(𝑆0, 𝐾, 𝜎, 𝑟, 𝑑, 𝑇, 𝛽) − (𝑟 − 𝑑)𝑆0
𝜕𝐶

𝜕𝑆
(𝑆0, 𝐾, 𝜎, 𝑟, 𝑑, 𝑇, 𝛽)

−1

2
𝜎2𝑆0

𝛽 𝜕2𝐶

𝜕𝑆2
(𝑆0, 𝐾, 𝜎, 𝑟, 𝑑, 𝑇, 𝛽)     (14) 
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with 

𝜕𝐶

𝜕𝑆
(𝑆0, 𝐾, 𝜎, 𝑟, 𝑑, 𝑇, 𝛽) = 𝑒−𝑑𝑇𝑄 (2𝑦; 2 +

2

(2 − 𝛽)
, 2𝑥) 

+𝑆0
2−𝛽

𝑒−𝑑𝑇(2 − 𝛽)𝑘𝑒(𝑟−𝑑)(2−𝛽)𝑇 [𝑄 (2𝑦; 4 +
2

(2 − 𝛽)
, 2𝑥) − 𝑄 (2𝑦; 2 +

2

(2 − 𝛽)
, 2𝑥)] 

−2𝐾𝑒−𝑟𝑇(2 − 𝛽)𝑘𝑆0
1−𝛽

𝑒(𝑟−𝑑)(2−𝛽)𝑇𝑝 (2𝑥;
2

2−𝛽
, 2𝑦)                    (15) 

𝜕2𝐶

𝜕𝑆0
2

(𝑆0, 𝐾, 𝜎, 𝑟, 𝑑, 𝑇, 𝛽) = 

𝑒−𝑑𝑇(2 − 𝛽)(3 − 𝛽)𝑘𝑆0
1−𝛽

𝑒(𝑟−𝑑)(2−𝛽)𝑇 [𝑄 (2𝑦; 4 +
2

(2 − 𝛽)
, 2𝑥) − 𝑄 (2𝑦; 2 +

2

(2 − 𝛽)
, 2𝑥)] 

+𝑆0
3−2𝛽

𝑒−𝑑𝑇[(2 − 𝛽)𝑘𝑒(𝑟−𝑑)(2−𝛽)𝑇]
2
                                      

[𝑄 (2𝑦; 6 +
2

(2 − 𝛽)
, 2𝑥) − 𝑄 (2𝑦; 4 +

2

(2 − 𝛽)
, 2𝑥) + 𝑄 (2𝑦; 2 +

2

(2 − 𝛽)
, 2𝑥)] 

−2𝐾𝑒−𝑟𝑇(2 − 𝛽)(1 − 𝛽)𝑘𝑆0
−𝛽

𝑒(𝑟−𝑑)(2−𝛽)𝑇𝑝 (2𝑥;
2

2 − 𝛽
, 2𝑦) 

+2𝐾𝑒−𝑟𝑇(2 − 𝛽)2𝑘2𝑆0
2−2𝛽

𝑒2(𝑟−𝑑)(2−𝛽)𝑇 [𝑝 (2𝑥;
2

2−𝛽
, 2𝑦) − 𝑝 (2𝑥;

2

2−𝛽
− 2,2𝑦)]    (16) 

Substituting Eqs. (12), (15), and (16) into (14) yields the theta of a European call option under the 

CEV model. 

     To replicate the European up-and-out call (UOC) option in the CEV model written at time 𝑡0 

with strike price 𝐾, expiration date 𝑇, and barrier value 𝐵, we follow  Tsai (2014) to select a 

European call option with the same strike and maturity as the UOC option. This process ensures 

that both the static replication portfolio and the target UOC option have the same payoff at 
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maturity, and the remaining work forces the static hedge portfolio with values matching the 

boundary conditions of the UOC before expiration at 𝑛 evenly spaced discrete points, that is 

𝑡0 = 0 < 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑛−1 = 𝑇 − ∆𝑡, where 𝑡𝑖 − 𝑡𝑖−1 = ∆𝑡 = 𝑇 𝑛⁄  for all 𝑖. For example, at 

time 𝑡𝑛−1  when the stock price is equal to the barrier price 𝐵, the value matching condition 

suggests that 

𝐶(𝐵, 𝐾, 𝜎, 𝑟, 𝑑, 𝑇 − 𝑡𝑛−1) + 𝑊𝑛−1𝐶(𝐵, 𝐵, 𝜎, 𝑟, 𝑑, 𝑇 − 𝑡𝑛−1) = 0                        (17) 

where the number of units of  the standard European option, 𝑊𝑖, at time 𝑡𝑖 can be determined by 

working backward using similar procedures. After solving  all 𝑊𝑖s, the value of the 𝑛-point static 

hedge portfolio 𝐶𝑛,𝑢𝑝−𝑎𝑛𝑑−𝑜𝑢𝑡 at time 0 is obtained as follows: 

𝐶𝑛,𝑢𝑝−𝑎𝑛𝑑−𝑜𝑢𝑡 =

𝐶(𝑆0, 𝐾, 𝜎, 𝑟, 𝑑, 𝑇) + 𝑊𝑛−1𝐶(𝑆0, 𝐵, 𝜎, 𝑟, 𝑑, 𝑇)

+𝑊𝑛−2𝐶(𝑆0, 𝐵, 𝜎, 𝑟, 𝑑, 𝑡𝑛−1)+. . . +𝑊0𝐶(𝑆0, 𝐵, 𝜎, 𝑟, 𝑑, 𝑡1).

                            (18) 

This is the way that Derman, Ergener, and Kani. (1995) employ at-the-money call options with 

different maturities to form a hedging portfolio. However, the value of such a call option may be 

sensitive to time changes, especially when the time to maturity approaches zero. Chung, Shih, 

and Tsai (2010) show the use of the DEK method to form the static replication portfolio may 

generate serious mismatches at the barrier and apply the improved DEK method by matching 

both values and thetas of the portfolio on the boundary condition of the UOC option before 

maturity at 𝑛 evenly spaced discrete points: 

𝐶(𝐵, 𝐾, 𝜎, 𝑟, 𝑑, 𝑇 − 𝑡𝑛−1) + 𝑊𝑛−1𝐶(𝐵, 𝐵, 𝜎, 𝑟, 𝑑, 𝑇 − 𝑡𝑛−1) 

+�̂�𝑛−1𝐵𝑖𝑛(𝐵, 𝐵, 𝜎, 𝑟, 𝑑, 𝑇 − 𝑡𝑛−1) = 0                                    (19) 

𝜕𝐶(𝐵,𝐾,𝜎,𝑟,𝑑,𝑇−𝑡𝑛−1)

𝜕𝑡
+ 𝑊𝑛−1

𝜕𝐶(𝐵,𝐵,𝜎,𝑟,𝑑,𝑇−𝑡𝑛−1)

𝜕𝑡
+ �̂�𝑛−1

𝜕𝐵𝑖𝑛(𝐵,𝐵,𝜎,𝑟,𝑑,𝑇−𝑡𝑛−1)

𝜕𝑡
= 0 ,              (20) 
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where 𝐵𝑖𝑛(𝑆, 𝐾, 𝜎, 𝑟, 𝑑, 𝑇) denotes a European cash or nothing binary call option with the payoff 

defined as one dollar if 𝑆𝑇 ≥ 𝐾. Tsai (2014) gives the pricing formula of the binary option and its 

Greeks by 

𝐵𝑖𝑛(𝑆0, 𝐾, 𝜎, 𝑟, 𝑑, 𝑇, 𝛽) = 𝑒−𝑟𝑇 (1 − 𝑄 (2𝑥;
2

(2−𝛽)
, 2𝑦))                         (21) 

𝜕𝐵𝑖𝑛

𝜕𝑆
(𝑆0, 𝐾, 𝜎, 𝑟, 𝑑, 𝑇, 𝛽) = 2𝑒−𝑟𝑇(2 − 𝛽)𝑘𝑆0

1−𝛽
𝑒(𝑟−𝑑)(2−𝛽)𝑇𝑝 (2𝑥;

2

2−𝛽
, 2𝑦)              (22) 

𝜕2𝐵𝑖𝑛

𝜕𝑆0
2

(𝑆0, 𝐾, 𝜎, 𝑟, 𝑑, 𝑇, 𝛽) = 

2𝑒−𝑟𝑇(2 − 𝛽)(1 − 𝛽)𝑘𝑆0
−𝛽

𝑒(𝑟−𝑑)(2−𝛽)𝑇𝑝 (2𝑥;
2

2 − 𝛽
, 2𝑦) 

−2𝑒−𝑟𝑇(2 − 𝛽)2𝑘2𝑆0
2−2𝛽

𝑒2(𝑟−𝑑)(2−𝛽)𝑇 [𝑝 (2𝑥;
2

2−𝛽
, 2𝑦) − 𝑝 (2𝑥;

2

2−𝛽
− 2,2𝑦)].    (23) 

Similarly, the theta of the binary option can be computed from the delta, gamma, and the price 

formulae with the equation (14). 𝑊𝑖 and �̂�𝑖 are then solved using the value-matching and theta-

matching conditions. Recursive procedures are used in the backward direction to determine the 

number of units of the options, 𝑊𝑖 and �̂�𝑖. All solutions of 𝑊𝑖 and �̂�𝑖 will yield the value of the 

𝑛-point improved static hedge portfolio  𝐶𝑛,𝑢𝑝−𝑎𝑛𝑑−𝑜𝑢𝑡
𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑

 at time 0: 

𝐶𝑛,𝑢𝑝−𝑎𝑛𝑑−𝑜𝑢𝑡
𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑

= 𝐶(𝑆0, 𝑋, 𝜎, 𝑟, 𝑑, 𝑇)

+𝑊𝑛−1𝐶(𝑆0, 𝐵, 𝜎, 𝑟, 𝑑, 𝑇) + �̂�𝑛−1𝐵𝑖𝑛(𝑆0, 𝐵, 𝜎, 𝑟, 𝑑, 𝑇)

+𝑊𝑛−2𝐶(𝑆0, 𝐵, 𝜎, 𝑟, 𝑑, 𝑡𝑛−1) + �̂�𝑛−2𝐵𝑖𝑛(𝑆0, 𝐵, 𝜎, 𝑟, 𝑑, 𝑡𝑛−1)

+. . . +𝑊0𝐶(𝑆0, 𝐵, 𝜎, 𝑟, 𝑑, 𝑡1) + �̂�0𝐵𝑖𝑛(𝑆0, 𝐵, 𝜎, 𝑟, 𝑑, 𝑡1).

                    (24) 

We start to compare the numerical results of static replications for the DEK, improved DEK, 

DEK Richardson extrapolation, and improved DEK Richardson extrapolation methods. 
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[Table 5 is here] 

Assume that the underlying price follows model of (11) with 𝛽 = 0,  𝜎𝑆0
𝛽 2⁄ −1

= 0.25, 

𝑟 = 0.10, and 𝑑 = 0. A closed form solution to the value of an up and out call option with 

𝑆0 = 100 , 𝐾 = 100 , 𝐵 = 120 , and 𝑇 = 1  is not yet known under the CEV model. The 

benchmark value of the UOC is 0.871 calculated by Tsai (2014) from the transformed trinomial 

tree of Boyle and Tian (1999) with 100,000 time-steps. In Table 5, the first column shows the 

parameter (𝑖) that determines the time period (ℎ𝑖 = ∆𝑡 = 𝑇 2𝑖⁄ ) between adjacent matched time 

points along the barrier boundary of the UOC option and the second column shows the estimation 

values obtained from the DEK static hedging. Numbers in brackets are time consumption 

measured by seconds. The third column shows results after employing Richardson extrapolation 

technique once ( 𝑗 = 1 ). The fourth column shows results after employing Richardson 

extrapolation technique twice (𝑗 = 2) and so on. The benefit to employ Richardson extrapolation 

technique is significant especially when there are only a few time points matched in static 

hedging. For example, when 𝑖 = 4, there are only 17 (17 = 42 + 1) matched time points along 

the barrier boundary.  Applying static hedging with the DEK method gives  𝑓4,0 = 1.041 and 

𝑓3,0 = 1.222 . After employing Richardson extrapolation once, we have 𝑓3,1 = 𝑓4,0 +

(𝑓4,0 − 𝑓3,0) (2 − 1)⁄ = 0.861  by Eq. (2). A reduction of error in percentage is 

(|𝑓4,0 − 𝑎0| − |𝑓3,1 − 𝑎0|) |𝑓4,0 − 𝑎0|⁄ = 94.12%  where 𝑎0 = 0.871 . If employing Richardson 

extrapolation twice, we will have 𝑓2,2 = 0.869 and a further reduction of error in percentage is 

(|𝑓4,0 − 𝑎0| − |𝑓2,2 − 𝑎0|) |𝑓4,0 − 𝑎0|⁄ = 98.82%.  

[Table 6 is here] 

In Table 6, we consider the modified DEK method proposed by Chung, Shih, and Tsai 

(2010) in static hedging UOC options with the theta-match condition. The first column shows the 
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parameter (𝑖) that determines the time period (ℎ𝑖 = ∆𝑡 = 𝑇 2𝑖⁄ ) between adjacent matched time 

points along the barrier boundary of the UOC option and the second column shows the estimation 

values obtained from the modified DEK method. Numbers in brackets are time consumption 

measured by seconds. The third column shows results if we further employ Richardson 

extrapolation technique once (𝑗 = 1) in the modified DEK method. The fourth column shows 

results after employing Richardson extrapolation technique twice (𝑗 = 2) and so on. Note that the 

benefit to employ Richardson extrapolation technique becomes less significant in the modified 

DEK method. For example,  𝑓4,0 = 0.883  and 𝑓3,0 = 0.902 . After employing Richardson 

extrapolation once, we have 𝑓3,1 = 𝑓4,0 + (𝑓4,0 − 𝑓3,0) (2 − 1)⁄ = 0.863. A reduction of error in 

percentage is (|𝑓4,0 − 𝑎0| − |𝑓3,1 − 𝑎0|) / |𝑓4,0 − 𝑎0| = 33.33% where 𝑎0 = 0.871. If employing 

Richardson extrapolation twice, we will have 𝑓2,2 = 0.866. The error reduction in percentage 

increases to 58.33 % (= (|𝑓4,0 − 𝑎0| − |𝑓2,2 − 𝑎0|) |𝑓4,0 − 𝑎0|⁄ ) . Although it may seem 

appropriate for employing the Richardson extrapolation in the modified DEK method, the benefit 

become less significant than that in the case of the DEK method. For instance, the Richardson 

extrapolation of the DEK method gives a more accurate value of 𝑓2,2=0.869 in Table 5 than that 

of 𝑓2,2=0.866 in Table 6. Meanwhile, the computation time of 𝑓2,2=0.869 in Table 5 with the 

Richardson extrapolation of the DEK method is 0.8514 seconds and that of 𝑓2,2=0.866 in Table 6 

with the Richardson extrapolation of the modified DEK method is 2.4019 seconds. Therefore, the 

Richardson extrapolation of the DEK method is more preferred an efficient approach to the 

Richardson extrapolation of the modified DEK method.  

[Table 7 is here] 

Table 7 compares the performance of alternative methods in static replication of an UOC 

option in terms of computation time and accuracy. Numbers in Columns 2 and 3 show that the 
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theta-matching condition in the modified DEK method actually improves the accuracy of value 

estimation of the DEK method especially when the number of discrete points,  2𝑖 + 1, is small . 

For instance, when 𝑖 = 3,  the modified DEK method gives a more accurate estimated value of 

0.902 with the computation time of 0.4278 seconds than that of the DEK method, which gives an 

estimated value of 1.222 with the computation time of 0.1428 seconds. To achieve a compatible 

accuracy, the DEK method must increase 𝑖 to six and its computation time is 7.4001 seconds. 

Therefore, the theta-match condition of the modified DEK method does improve the efficiency of 

the original DEK method. However, Table 7 also shows that our proposed DEK Richardson 

extrapolation method is superior to the modified DEK method in improving the efficiency of the 

DEK method. For instance, the accuracy of value estimation in gray grids is compatible with each 

other but their computation time is very different. When the Richardson extrapolation is applied 

to the DEK method for three times, the computation time of 𝑓2,3  will be 3.9872 seconds. 

Meanwhile, the modified DEK method spends 108.48 seconds in order to achieve the compatible 

accuracy. 

 

6. An Extension to Heston’s Stochastic Volatility Model 

In this section, we also extend the proposed approach to static hedging UOC options under 

Heston’s stochastic volatility model. We assume that the stochastic process that drives the price 

of the underlying asset is given by 

𝑑𝑆𝑡 = (𝑟 − 𝑑)𝑆𝑡𝑑𝑡 + √𝑉𝑡𝑆𝑡(𝜌𝑑𝑊𝑡
𝑉 + √1 − 𝜌2𝑑𝑊𝑡

𝑆),                                 (25) 

𝑑𝑉𝑡 = 𝜅(𝜃 − 𝑉𝑡)𝑑𝑡 + 𝜎√𝑉𝑡𝑑𝑊𝑡
𝑉,                                                  (26) 



18 
 

where 𝜅 determines the rate of mean reversion of the variance, 𝜃 is its long run mean, and 𝜎 

determines the volatility of the variance. 𝜎 is often referred to as “volatility of volatility.” 𝑊𝑡
𝑉 

and 𝑊𝑡
𝑆 are independent Wiener processes. Heston (1993) derives a semi-analytical formula for 

the value of a European call option when the stock price follows this process. Fink (2003) 

construct a static hedging whose value equals that of a barrier option for a set of points along the 

boundary for not just one volatility state, but for a set of volatility states. As before, to create a 

static hedging we require a portfolio that is equal in value to the up and out call at all points both 

on the barrier and at the terminal date. One may approximate such a hedge by matching not only 

at 𝑛 different points in time, but also at each of 𝑛𝑉 different volatility states. The approach is to 

construct a portfolio equal in value to the up and out call on the grid of points and having no 

payoff in the interior.  

[Table 8 is here] 

Assume that the underlying price follows model of (25) and (26) with 𝑉0 = 0.04, 𝜅 = 1.5, 

𝜃 = 0.04, 𝜌 = −0.5, 𝜎 = 0.2, 𝑟 = 0.055, and 𝑑 = 0.025. A closed form solution to the value of 

an up and out call option with 𝑆0 = 100, 𝐾 = 100, 𝐵 = 110, and 𝑇 = 1 is not yet known. The 

benchmark price is provided by Monte Carlo simulation. Fink (2003) shows the simulation 

yielded a price for the UOC option of $1.604 with a standard error of 0.005238. In Table 8, the 

first column shows the parameter (𝑖) that determines the time period (ℎ𝑖 = ∆𝑡 = 𝑇 2𝑖⁄ ) between 

adjacent matched time points along the boundary for each one of volatility states and the second 

column shows the estimation values obtained from this static hedging with two volatility states 

(𝑛𝑉 = 2, 𝑣1 = 0.04, and 𝑣2 = 1.00). Numbers in brackets are time consumption measured by 

seconds. The third column shows results after employing Richardson extrapolation technique 

once ( 𝑗 = 1 ). The fourth column shows results after employing Richardson extrapolation 

technique twice (𝑗 = 2) and so on. The benefit to employ Richardson extrapolation technique is 
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significant especially when there are only a few time points matched in static hedging. For 

example, when 𝑖 = 2, there are only 5 (5 = 22 + 1) matched time points along the boundary for 

each one of volatility states.  Applying static hedging with two volatility states gives  𝑓3,0 =

1.7222  and 𝑓2,0 = 1.8062 . After employing Richardson extrapolation once, we have 𝑓2,1 =

𝑓3,0 + (𝑓3,0 − 𝑓2,0) (2 − 1)⁄ = 1.6382  by Eq. (2). A reduction of error in percentage is 

(|𝑓3,0 − 𝑎0| − |𝑓2,1 − 𝑎0|) |𝑓3,0 − 𝑎0|⁄ = 71.07%  where 𝑎0 = 1.604 . If employing Richardson 

extrapolation twice, we have 𝑓1,2 = 1.6255  and a further reduction of error in percentage is 

(|𝑓3,0 − 𝑎0| − |𝑓1,2 − 𝑎0|) |𝑓3,0 − 𝑎0|⁄ =81.81%.  However, our proposed method of Richardson 

extrapolation of Fink shows its ability to improve the accuracy without the cost of computation 

time. For instance, the accuracy of value estimation in gray grids is compatible with each other 

but their computation time is very different. If the Richardson extrapolation is applied to the Fink 

method for two times, its computation time is 5.27 seconds. Meanwhile, the Fink method costs 

114.73 seconds in order to achieve the compatible accuracy. 

 

7. Conclusion  

This paper proposes an accelerated static replication approach for pricing barrier options by 

employing Richardson extrapolation techniques. This approach is first examined for barrier 

options under the Black-Scholes model with the method of Derman, Ergener, and Kani (1995). 

We employ four different sequences including harmonic sequence, double harmonic sequence, 

Burlisch sequence, and Romberg sequence to examine their convergence properties and speeds. 

All the above sequences indicate the uniform convergence. However, the computational time of 

geometric-spaced exercise points (Romberg sequence) is efficiently less than that of the 
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arithmetic-spaced exercise points (harmonic sequence). Based on the method of Farago, Havasi, 

and Zlatev (2010), our proposed model can provide a reliable error estimation method and 

acquire the specific replication portfolio under any given error tolerance level by utilizing the 

repeated Richardson extrapolation technique. Numerical results demonstrate that the error 

estimation method works well and aids to determine how many replication matched points should 

be considered for attaining to a given desired accuracy. 

       Then, the application of our approach is further generalized to the constant elasticity of 

variance model. Our approach could perform better than alternative methods in static hedging 

European up-and-out call option in terms of accuracy and computational time. Finally, this 

approach is extended to improve the method of Fink (2003) in static hedging barrier options 

under Heston’s stochastic volatility model. Numerical results demonstrate that there is a 

significant reduction of error in percentage after employing our approach especially when there 

are only a few time points matched in static hedging. A further extension of our proposed 

approach to other option static hedging problems is left for future studies. 
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Table 1 Computation Time of Four Sequences with Different Error Tolerance  

                   TOL 

Sequences 

TOL=10% TOL=1% TOL=0.1% 

harmonic 0.0311 4.8958 2383.4222 

double harmonic 0.0209 1.8489 919.3173 

Burlisch sequence 0.0302 0.8696 33.7024 

Romberg sequence 0.0337 1.4474 21.5560 

The computation time of four sequences respectively employed in static hedging a European 

UOC option with 𝑆0=105, 𝐾= 100, 𝐵=105, 𝑟=0.055, 𝑑=0.025, σ=0.2, and 𝑇=1. The computation 

time is measured by seconds. For a large error tolerance level, TOL=10%, the convergence 

speeds of four sequences are not different from each other very much. As the error tolerance level 

being smaller, the harmonic sequence and the double harmonic sequences could become 

markedly computational time consuming. The computation time for the harmonic sequence could 

be approximately 110 times longer than that for Romberg sequence. 
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Table 2 Numerical Results of Repeated Richardson Extrapolation Employed in the 

DEK method under the Black-Scholes Model 

𝑓𝑖,𝑗 
DEK Richardson Extrapolation of DEK 

𝑗 = 0 1 2 3 4 5 6 7 

𝑖 = 1 0.2073 0.1016 0.0775 0.0685 0.0646 0.0628 0.0619 0.0615 

2 0.1280 0.0805 0.0691 0.0647 0.0628 0.0619 0.0615  

3 0.0924 0.0705 0.0650 0.0629 0.0619 0.0615   

4 0.0760 0.0657 0.0630 0.0620 0.0615    

5 0.0683 0.0634 0.0620 0.0615     

6 0.0646 0.0622 0.0615      

7 0.0628 0.0616       

8 0.0619       

Numerical results of repeated Richardson extrapolation employed in the DEK method of static 

hedging a standard European up-and-out call option with model parameters: 𝑆0 = 105, 𝐾 = 100, 

𝑟 = 0.055 , 𝑑 = 0.025 , 𝐵 = 110 , 𝜎 = 0.2 , and  𝑇 = 1 . The price of this option is 0.0611 

obtained from the analytical formula under the Black-Scholes model. Note that  𝑓1,𝑗  quickly 

converges to the theoretical benchmark value 0.0611 as 𝑗 increases. 
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Table 3 Statistics Results for Error Estimation  
                 j 

 (i-1, i) 
1 2 3 4 5 6 7 

Panel A : Desired error = 1%*theoretical value 

(1,2) 46/56   
0.8214 

72/79   
0.9114 

149/154   
0.9675 

441/443   
0.9955 

869/870   
0.9989 

1159/1160   
0.9991  

(2,3) 66/72   
0.9167 

138/142   
0.9718 

424/425   
0.9976 

856/858   
0.9977 

1155/1155   
1   

(3,4) 121/122   
0.9918 

389/392   
0.9923 

836/838   
0.9976 

1148/1150   
0.9983    

(4,5) 311/316   
0.9842 

790/792   
0.9975 

1142/1143   
0.9991     

(5,6) 699/700   
0.9986 

1125/1125   
1      

(6,7) 1063/1066   
0.9971       

Panel B : Desired error = 0.2%*theoretical value 

(1,2) 22/24   
0.9167 

31/33   
0.9394 

45/45   
 1 

66/66  
  1 

126/126  
  1 

334/337   
0.9911  

(2,3) 28/33   
0.8485 

45/45   
 1 

66/66   
 1 

123/125   
0.984 

333/334   
0.997   

(3,4) 42/44   
0.9545 

64/66   
0.9697 

117/119   
0.9832 

321/325   
0.9877    

(4,5) 62/62  
  1 

104/105   
0.9905 

311/312   
0.9968     

(5,6) 93/96   
0.9688 

283/284   
0.9965      

(6,7) 225/226   
0.9956       

Panel C : Desired error = 0.05%*theoretical value 

(1,2) 12/12   
1 

13/17   
0.7647 

22/24   
0.9167 

32/32   
1 

45/45   
1 

66/66   
1  

(2,3) 12/16  
 0.75 

21/23   
0.913 

31/32   
0.9688 

45/45  
 1 

66/66   
1   

(3,4) 20/21   
0.9524 

29/31   
0.9355 

45/45   
1 

65/66   
0.9848    

(4,5) 27/28  
 0.9643 

45/45   
1 

64/65  
 0.9846     

(5,6) 42/42  
 1 

63/64   
0.9844      

(6,7) 61/62  
 0.9839       
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We test the validity of the error estimation method over 1458 options with different parameters 

(𝑆0= 70, 80, 90; 𝐵 =𝑆0+10, 𝑆0+20, 𝑆0+30; 𝐾= 𝐵-10, 𝐵-20, 𝐵-30; 𝑟=0.15, 0.2; 𝑑=0.01, 0.015, 

0.02; 𝜎= 0.1, 0.2, 0.3). In Table 3, the denominator represents the number of options whose price 

estimators match |𝑓𝑖+1,𝑗−𝑓𝑖,𝑗|< the desired errors and the numerator is the number of options 

whose price estimators match |𝑓𝑖+1,𝑗−𝑓𝑖,𝑗| < the desired errors and |𝑓𝑖+1,𝑗 − 𝑎0| <the desired 

errors. In general, the error estimation model works well especially when the sum of 𝑖 and  𝑗  

increases. 
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Table 4 Statistics Results for Step-size Control Method 

                                 

Initial 𝑛 TOL=10% TOL=1% TOL=0.1% 

𝑛 =4 (0.62,0.35) (1.01,0.94) (1.08,1.00) 

𝑛 =5 (0.15,0.41) (0.96,0.16) (1.12,0.10) 

𝑛 =6 (0.03,1.23) (0.76,0.30) (1.00,0.22) 

𝑛 =7 (0.00,2.21) (0.51,0.51) (1.00,0.18) 

 

In order to examine the robustness and the best initial value of 𝑛 by the repeated Richardson 

extrapolation method, we employ 324 different options (𝑆0= 90, 95, 105; 𝐵 =𝑆0+5, 𝑆0+10, 𝑆0+15; 

𝐾= 𝐵-5, 𝐵-10, 𝐵-15; 𝑟=0.15; 𝑑=0.01, 0.015, 0.02; 𝜎= 0.1, 0.2; 𝑇 = 1, 2) and three different-

magnitude error tolerance level (TOL=10%, 1%, 0.1%) to test the step-size control method 

proposed by Farago, Havasi, and Zlatev (2010). Results for the step-size control method are 

given in the form of (ARTI, AEI). The average-reset-times index (ARTI) which represents average 

times of 𝑛  being reset by Eq. (9) using the statistical results of the above 324 options.Tthe 

average-excess index (AEI) which represents the average difference between the best 𝑛 and the 𝑛 

obtained by Eq. (9). The average reset times are always less than twice in most cases. Except 

these cases of TOL=0.1% with initial 𝑛 =6 or 7 and TOL =1% with 𝑛 = 4, the average-reset-times 

index is not larger than one (i.e. ARTI≤1). The step-size control method works quite well for 

pricing European UOC options with Richardson extrapolation of the DEK method under the 

Black-Scholes model. We can choose a proper initial 𝑛 for a required error tolerance level. For 

TOL=10%, 1%, and 0.1%, the best choice of the initial 𝑛 are those with the lowest sum of ARTI 

and AEI  (shown in gray grids) which are 𝑛 =5, 7, and 7. 
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Table 5 Numerical Results of Repeated Richardson Extrapolation Employed in the 

DEK method under the CEV Model 

𝑓𝑖,𝑗 

i 

DEK Richardson Extrapolation of DEK 

𝑗 = 0 1 2 3 4 5 6 

2 
1.606 

(0.0426) 
0.837 

(0.1855) 

0.869 

(0.8514) 

0.871 

(3.9872) 

0.871 

(18.939) 

0.871 

(92.205) 

0.871 

(456.04) 

3 
1.222 

(0.1428) 
0.861 

(0.6660) 

0.870 

(3.1357) 

0.871 

(14.952) 

0.871 

(73.266) 

0.871 

(363.83) 
 

4 
1.041 

(0.5232) 
0.868 

(2.4698) 

0.871 

(11.817) 

0.871 

(58.313) 

0.871 

(290.57) 
  

5 
0.955 

(1.9466) 
0.870 

(9.3467) 

0.871 

(46.497) 

0.871 

(232.25) 
   

6 
0.912 

(7.4001) 
0.871 

(37.150) 

0.871 

(185.76) 
    

7 
0.892 

(29.750) 

0.871 

(148.61) 
     

8 
0.881 

(118.86) 
      

 

Numerical results arise from employing repeat Richardson extrapolation with the DEK method in 

static hedging an up- and-out call option with 𝑆0 = 100, 𝐾 = 100, 𝐵 = 120,  𝑇 = 1, 𝛽 = 0, 

𝜎𝑆0
𝛽 2⁄ −1

= 0.25, 𝑟 = 0.10, and 𝑑 = 0. The benchmark value of the UOC is 0.871 calculated by 

Tsai (2014) from the transformed trinomial tree of Boyle and Tian (1999) with 100,000 time-

steps. The first column shows the parameter (𝑖) that determines the time period (ℎ𝑖 = ∆𝑡 = 𝑇 2𝑖⁄ ) 

between adjacent matched time points along the barrier boundary of the UOC option and the 

second column shows the estimation values obtained from this static hedging. Numbers in 

brackets are time consumption measured by seconds. The third column shows results after 

employing Richardson extrapolation technique once (𝑗 = 1). The fourth column shows results 

after employing Richardson extrapolation technique twice (𝑗 = 2) and so on.  
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Table 6 Numerical Results of Repeated Richardson Extrapolation Employed in the 

modified DEK method under the CEV Model 

𝑓𝑖,𝑗 

i 

Modified DEK Richardson Extrapolation of Modified DEK 

𝑗 = 0 1 2 3 4 5 6 

2 
0.951 

(0.1081) 

0.854 

(0.5360) 

0.866 

(2.4019) 

0.870 

(11.691) 

0.871 

(60.533) 

0.871 

(315.69) 

0.871 

(1627.4) 

3 
0.902 

(0.4278) 

0.863 

(1.8659) 

0.869 

(9.2891) 

0.870 

(48.842) 

0.871 

(255.15) 

0.871 

(1311.8) 
 

4 
0.883 

(1.4381) 

0.868 

(7.4231) 

0.870 

(39.553) 

0.871 

(206.31) 

0.871 

(1056.6) 
  

5 
0.875 

(5.9850) 

0.870 

(32.130) 

0.871 

(166.76) 

0.871 

(850.30) 
   

6 
0.873 

(26.145) 

0.870 

(134.63) 

0.871 

(683.54) 
    

7 
0.871 

(108.48) 

0.871 

(548.91) 
     

8 
0.871 

(440.43) 
      

 

Numerical results arise from employing repeat Richardson extrapolation with the modified DEK 

method in static hedging an up- and-out call option with 𝑆0 = 100, 𝐾 = 100, 𝐵 = 120,  𝑇 = 1, 

𝛽 = 0 , 𝜎𝑆0
𝛽 2⁄ −1

= 0.25 , 𝑟 = 0.10 , and 𝑑 = 0 . The benchmark value of the UOC is 0.871 

calculated by Tsai (2014) from the transformed trinomial tree of Boyle and Tian (1999) with 

100,000 time-steps. The first column shows the parameter (𝑖) that determines the time period 

(ℎ𝑖 = ∆𝑡 = 𝑇 2𝑖⁄ ) between adjacent matched time points along the barrier boundary of the UOC 

option and the second column shows the estimation values obtained from this static hedging. 

Numbers in brackets are time consumption measured by seconds. The third column shows results 

after employing Richardson extrapolation technique once (𝑗 = 1). The fourth column shows 

results after employing Richardson extrapolation technique twice (𝑗 = 2) and so on.  
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Table 7 Performance Comparison of Alternative Methods of Static Replication 

under the CEV Model 

𝑓𝑖,𝑗 

i 
Modified 

DEK 
DEK 

Richardson Extrapolation of DEK 

𝑗 =1 2 3 4 5 6 

2 
0.951 

(0.1081) 

1.606 

(0.0426) 

0.837 

(0.1855) 

0.869 

(0.8514) 

0.871 

(3.9872) 

0.871 

(18.939) 

0.871 

(92.205) 

0.871 

(456.04) 

3 
0.902 

(0.4278) 

1.222 

(0.1428) 

0.861 

(0.6660) 

0.870 

(3.1357) 

0.871 

(14.952) 

0.871 

(73.266) 

0.871 

(363.83) 
 

4 
0.883 

(1.4381) 

1.041 

(0.5232) 

0.868 

(2.4698) 

0.871 

(11.817) 

0.871 

(58.313) 

0.871 

(290.57) 
  

5 
0.875 

(5.9850) 

0.955 

(1.9466) 

0.870 

(9.3467) 

0.871 

(46.497) 

0.871 

(232.25) 
   

6 
0.873 

(26.145) 

0.912 

(7.4001) 

0.871 

(37.150) 

0.871 

(185.76) 
    

7 
0.871 

(108.48) 

0.892 

(29.750) 

0.871 

(148.61) 
     

8 
0.871 

(440.43) 

0.881 

(118.86) 
      

 

Numerical results arise from employing repeat Richardson extrapolation with the DEK method 

and its modified version in static hedging an up- and-out call option with 𝑆0 = 100, 𝐾 = 100, 

𝐵 = 120,  𝑇 = 1, 𝛽 = 0, 𝜎𝑆0
𝛽 2⁄ −1

= 0.25, 𝑟 = 0.10, and 𝑑 = 0. The benchmark value of the 

UOC is 0.871 calculated by Tsai (2014) from the transformed trinomial tree of Boyle and Tian 

(1999) with 100,000 time-steps. The first column shows the parameter (𝑖)  that determines the 

time period (ℎ𝑖 = ∆𝑡 = 𝑇 2𝑖⁄ ) between adjacent matched time points along the barrier boundary 

of the UOC option. Other columns show the estimation values of the UOC option obtained from 

alternative methods of static replication. Numbers in brackets are time consumption measured by 

seconds. 
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Table 8 Numerical Results of Repeated Richardson Extrapolation Employed in the 

DEK method under Heston’s Stochastic Volatility Model 

𝑓𝑖,𝑗 

i 

Fink Richardson Extrapolation of Fink 

𝑗 = 0 1 2 3 4 5 6 

1 1.9361 
 (0.77) 

1.6763 
 (2.04) 

1.6255 
 (5.27) 

1.6165 
(15.42) 

1.6147 
(48.34) 

1.6141 
(163.07) 

1.6140 
(599.54) 

2 1.8062 
(1.28) 

1.6382 
 (4.50) 

1.6177 
 (14.65) 

1.6148 
(47.57) 

1.6141 
(162.30) 

1.6140 
(598.77) 

 

3 1.7222 
 (3.22) 

1.6228 
 (13.38) 

1.6152 
 (46.30) 

1.6142 
(161.02) 

1.6140 
(597.50) 

  

4 1.6725 
 (10.15) 

1.6171 
 (43.08) 

1.6143 
 (157.80) 

1.6140 
(594.28) 

   

5 1.6448 
 (32.92) 

1.6150 
 (147.65) 

1.6141 
 (584.12) 

    

6 1.6299 
 (114.73) 

1.6143 
 (551.20) 

     

7 1.6221 
 (436.47) 

      

 

Numerical results arise from employing repeat Richardson extrapolation in static hedging an up 

and out call option with 𝑆0 = 100, 𝐾 = 100, 𝐵 = 110,  𝑇 = 1, 𝑉0 = 0.04, 𝜅 = 1.5, 𝜃 = 0.04, 

𝜌 = −0.5, 𝜎 = 0.2, 𝑟 = 0.055, and 𝑑 = 0.025. A closed form solution to the value of this up 

and out call option is not yet known. The benchmark price is found via Monte Carlo simulation. 

Fink (2003) shows the simulation yielded a price for the option of $1.604 with a standard error of 

0.005238. In Table 7, the first column shows the parameter (𝑖) that determines the time period 

(ℎ𝑖 = ∆𝑡 = 𝑇 2𝑖⁄ ) between adjacent matched time points along the barrier boundary for each one 

of volatility states and the second column shows the estimation values obtained from this static 

hedging with two volatility states (𝑛𝑉 = 2, 𝑣1 = 0.04, and 𝑣2 = 1.00). Numbers in brackets are 

time consumption measured by seconds. The third column shows results after employing 

Richardson extrapolation technique once ( 𝑗 = 1 ). The fourth column shows results after 

employing Richardson extrapolation technique twice (𝑗 = 2) and so on.  
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Figure 1. Price Convergence of Static Replication of a European UOC Option 

Using the DEK Method with Four Different Sequences 

 

Price convergence of four different sequences (harmonic sequence, double harmonic sequence, 

Burlisch sequence, and Romberg sequence) for static replication of a European UOC option with 

parameters: 𝑆0 =105, 𝐾 = 100, 𝐵 =105, 𝑟 =0.055, 𝑑 =0.025, σ =0.2, and 𝑇 =1. All the above 

sequences show the uniform price convergence to its theoretical value as the number of matched 

time points (𝑁) increases using the DEK method. 

 


