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ABSTRACT 

 

 We examine whether people form expectations by placing a larger weight on 

more reliable signals. To test this notion, we analyze subjective probabilities inferred 

from odds offered on the outcomes of men's tennis matches, exploiting exogenous 

variation in information reliability related to whether a tennis match is played in a long 

or short format. The premise of our tests is that higher-skilled players, who are more 

likely to win any single point, will win more often in longer matches, where more points 

are generally played. This notion, which is confirmed in the data, suggests that skill-

related signals are relatively more reliable in longer matches, and should thus affect 

odds in those matches more strongly. However, we find that the likelihood of higher-

ranked players winning in longer matches is under-estimated. This result is robust to 

inferring expectations from odds offered by professional bookmakers, or odds achieved 

on a person-to-person betting exchange. The resulting biases in expectations are costly. 

Results from various robustness tests, including a laboratory experiment and a placebo 

test using women’s tennis data where all matches are played in the same length, support 

our conclusions. Overall, our analysis suggests that information reliability neglect 

influences expectations and outcomes in real-world markets. 
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I. INTRODUCTION 

 The diagnostic value of information depends both on its content and its reliability. 

To illustrate, suppose two professional Formula 1 drivers will race identical cars in a 1-

mile straight line. A punter, who is considering placing a bet on this race, observes an 

additional “signal”, that the driver of a specific car is the highest ranked driver in the 

world. In this case, the punter should revise his probability that this driver wins the race 

upward, but not by much since skill is less relevant in such a straight-line race. In a 

different scenario, suppose that the race will take place in a 20-mile bendy track. In this 

case, the signal is much more reliable, since the race allows the higher-ranked driver to 

utilize his skills, thus it should influence the punter’s expectations more strongly. 

 Several scholars have examined whether people respond optimally to information 

reliability in controlled laboratory experiments using abstract tasks. The results from 

these tests suggest that people neglect variations in information reliability, which results 

to systematic errors in expectations (e.g., Tversky and Kahneman, 1974; Griffin and 

Tversky, 1992). Much less research, however, has explored whether this bias influences 

expectations in real-world markets, where experienced agents are operating in their 

natural habitat, and where the incentives to “get it right” are much higher. We examine 

whether expectations reflect information reliability (henceforth IR) in the field, 

analyzing subjective probabilities inferred from odds offered by bookmakers on the 

outcomes of tennis matches. To conduct the test we exploit exogenous variation in IR, 

which is related to the length that different matches are played. 

Specifically, men’s singles tennis matches are played in two formats: A best-out-

of-three set format (BO3), where a player must win two out of possible three sets to 

win a match, and a best-out-of-five set format (BO5), where a player must win three 
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out of possible five sets to win a match.1 In our sample, the BO5 matches are called 

“Grand Slams” (GS), and the BO3 matches are called “ATP World Tour Masters 1000” 

(MS). In each of these match types, bookmakers set their odds after estimating the 

probability that a player wins the match, using signals that relate to a player's skill, such 

as the player’s official ranking.2  

The premise of our tests is that the length of the match (i.e., BO3 vs. BO5) is 

related to the reliability of skill-related signals such as rankings. This point is based on 

the following reasoning: the more skillful player is expected to win any given point 

with a higher probability. Therefore, in the longer BO5 matches, where more points are 

generally played, the overall probability that the higher-ranked player wins the match 

is higher than in the shorter BO3 matches.3 A second reason that longer matches may 

favor higher-skilled players, is that they allow more flexibility to try out new strategies 

during the game. In line with this logic, we find that higher-ranked players are 7.2% 

more likely to win in longer GS matches. This result shows that ranking is a more 

reliable signal for GS, therefore bookmaker's probabilities for higher-ranked players 

winning GS matches should be adjusted accordingly upward. Our objective is to test 

whether such an adjustment takes place. 

 For our main analysis, we use subjective probabilities inferred from fixed decimal 

odds offered by several major betting houses on professional men's tennis matches for 

the period 2005 to 2014. For each match, we infer the subjective probability that the 

                                                 
1 Each set is comprised by individual games, and to win one set a player must win at least 6 games. To 

win one game a player must win at least four points. For more information on the rules of tennis see 

http://www.atpworldtour.com. 
2 Official rankings are based on the amount of points accumulated by a player during their past 52 weeks 

from a total of 18 tournaments. For more information on how rankings are calculated see 

http://www.atpworldtour.com/en/corporate/ rulebook. For each match, we refer to the player with the 

highest ranking (i.e., a smaller ranking number), as the higher-ranked player. 
3 An implicit assumption here is that the outcomes of different points are independent and identically 

distributed. Klaassen and Magnus (2014) analyse data from the Wimbledon, and conclude that, even 

though this assumption is weakly rejected by the data, it still “provides a reasonable approximation in 

many applications” (Klaassen and Magnus, 2014, p. 171).  
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higher-ranked player wins the match from bookmaker odds, π, estimate the “objective” 

probability as the fitted value from a logit model, 𝑝̂, and define bias as π - 𝑝̂. We test 

our hypothesis based on the difference in the average bias between MS and GS (Δbias). 

If bookmakers adjust π for GS to reflect the increase in 𝑝̂ due to the longer match format 

(BO5), then this difference should be 0.  

 Our alternative hypothesis is based on experimental findings that people are not 

fully sensitive to IR when forming probabilities, where IR is usually measured with the 

size of the sample that generates a particular signal. For example, in a seminal study, 

Griffin and Tversky (1992) observed that subjects do not appreciate the effect of sample 

size on the posterior probability, thus under-react to information from large samples.4 

Kahneman and Tversky (1972), suggest that this behavior generally arises because 

subjects are insensitive to the effect of sample size on sampling errors.  

 In our analysis, match length is an element of the information set that is related 

to the reliability of rankings, similar to the role of sample size in laboratory 

experiments.5 If bookmakers are insensitive to variations in IR related to match format, 

they will under-estimate the likelihood that the higher-ranked player wins a GS match. 

Therefore, under the hypothesis of IR-neglect, bias should be lower for GS matches 

(Δbias < 0).6 

 Our results show that Δbias is -3.3% and highly statistical significant. Given that 

𝑝̂ is 7.2% higher for GS matches, this result shows that bookmakers are adjusting their 

probabilities for GS matches in the correct direction, but stop roughly half-way from 

                                                 
4Benjamin, Rabin, and Raymond (2016) review the experimental literature on Bayesian Updating and 

conclude that expectations formed using information from large samples are always below the 

corresponding Bayesian posteriors. 
5 However, in the experimental literature variations in IR come from different signals, whereas in our 

tests such variations come from applying the same signal (i.e., rankings) in two environments, MS vs. 

GS. 
6 In Appendix A we use a simple model to illustrate the hypothesis. 
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the level implied by full Bayesian Reasoning. This is the central finding of our paper, 

which suggests that under-reaction due to information reliability neglect influences 

expectations in real-world markets. 

 Could our findings reflect strategic efforts by rational bookmakers to exploit 

“irrational” punters? In this setting bookmakers set the odds on both players, thus could 

“salt” them in opportune directions. For example, Levitt (2004) finds that, in spread-

betting markets, bookmakers offer biased prices to exploit the tendency of punters to 

bet on the favorite.  

 To examine whether strategic behavior is driving our results, we re-do our tests 

using subjective probabilities inferred from odds which are set competitively in a 

person-to-person real-life market called Betfair. In this setting strategic incentives do 

not exist, since the odds for the two players are determined competitively in two 

different markets.7 Analyzing tennis matches for the period 2009-2014, we find that 

Δbias is -2.6% and statistically significant.  

 To further analyze the role of strategic incentives, we examine whether 

bookmakers are increasing their profitability by offering better than fair odds on the 

higher-ranked player in GS, which amounts to a more negative bias. Note that, by 

analogy, this implies that the odds on the lower-ranked player for GS matches are worse 

than fair. Therefore, if the volume on the lower-ranked player is sufficiently high, it 

may be optimal to set the odds in this way.  

 Contrary to this notion, we find that bookmaker's profits per match (as a 

proportion of the total volume staked) are lower for GS matches by an average of -

2.6%.8 Moreover, we find that bookmaker’s profitability is significantly higher in a 

                                                 
7 In these markets, prices converge to satisfy no arbitrage conditions, i.e., the sum of the implied 

probabilities for each player winning are close to 1. 
8 This means that the volume that backs the lower-ranked player is not sufficiently higher in GS so that 

a negative bias for the higher-ranked player is optimal. This is not surprising, given the strong preference 
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counterfactual scenario, where their odds on are set according to 𝑝̂ from the logit model. 

Overall, the analysis of profits suggests that IR-neglect is costly to bookmakers. 

 Our analysis implicitly assumes that MS and GS matches are the same in every 

respect, except from the length of the match. However, GS matches offer more ranking 

points, higher prize money to players, and attract more attention from punters. Could 

our findings reflect these differences?  

 To address this issue, we conduct a placebo test using data for professional 

women's tennis matches. For women, GS matches also offer more ranking points and 

prize money, and attract more betting volume but they are played in a BO3 format, 

exactly like the MS tournaments. Hence, women's matches preserve the key differences 

across match formats except for the change in the reliability of rankings across MS and 

GS. If the bias we document is driven by factors other than IR-neglect, bias should be 

lower for GS in the women's data as well.  

 Logistic analysis confirms that the type of match (MS vs GS) does not affect the 

probability that the higher-ranked player wins for women's matches, consistent with no 

difference in IR in rankings across match formats. Therefore, bookmakers should not 

adjust π upward for GS. When we compare bias calculated from bookmaker odds for 

MS and GS we find that the difference is insignificant (Δbias = 0). When we do the same 

for bias calculated from betting exchange odds, we find that Δbias is higher in GS by 

1.6%. Overall, the results obtained from the women's data are starkly different to those 

obtained from the men data, which suggests that our baseline results more likely reflect 

under-reaction due to IR-neglect. 

                                                 
of punters to bet on the favorite, since on average 86% (82%) of the volume in GS (MS) matches backs 

the higher-ranked player. This preference for the favorite is also shown in Levitt (2004). 
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 We conduct various robustness checks with different specifications for bias, for 

example obtaining the objective probability using non-parametric methods, or from 

specifications where the higher-skilled player is identified based on odds instead of 

rankings. Our results continue to hold in these alternative specifications. We also 

discuss several alternative explanations for our results, such as probability weighting 

(Snowberg and Wolfers, 2010), biased priors, or a general bias of under-reaction toward 

information, and conclude that these explanations do not offer a parsimonious 

explanation for all our findings. The robustness tests and alternative explanations are 

discussed in detail Section III.F of the paper. 

  Our last robustness check is a laboratory experiment, which tests the IR-neglect 

hypothesis in a setting where market-related factors are irrelevant. Since our field 

analysis suggests a sharp hypothesis that can be tested easily in the laboratory, this is a 

useful validity test.  

 We invited university students who were involved in tennis activities to 

participate in the experiment. These students participated in two different sessions, and 

in each session they were asked to consider upcoming matches from two tournaments, 

one MS and the other GS, and to assign probabilities to each player winning. Their 

responses were incentivized using the quadratic scoring rule. Our objective was to test 

whether subjects adjust their probabilities for the effect of the length of the match on 

the probability that the higher-ranked players wins.  

 The results from the experiment reveal a significant bias of under-reaction due to 

IR-neglect, with Δbias equaling to a statistically significant -3.30%. The students’ 

subjective probabilities of the higher-ranked player wining show no upward adjustment 

for GS, contrary to what we observe in the data for bookmakers and punters (where 

partial adjustment occurs). This suggests that field agents are more sophisticated.  
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Overall, the experimental analysis provides further support to the claim that IR-neglect 

influences expectations.  

 For our final test, we examine whether IR-neglect influences outcomes in other 

sports betting markets. The premise of this analysis is that the degree to which we can 

predict outcomes in different sports varies. For example, outcomes are relatively less 

predictable in low scoring sports like soccer, compared to higher scoring ones like 

basketball. This implies that the IR of skill-related signals also varies across sports, 

according to whether outcomes in these sports contain more or less “noise”. The IR-

neglect hypothesis predicts that bias is lower for sports that contain less noise.  

 To rank different sports according to the noise the contain we use the analysis in 

Mauboussin (2012), who shows that football is more noisy than soccer, and soccer is 

more noisy than basketball. Using odds data from Betfair, and following the same 

methodology as we did for the tennis analysis, we find that average bias is equal to 

2.81% in football, 1.69% in soccer, and -0.44% in basketball, with the differences being 

statistically significant. This finding suggests that IR-neglect influences expectations in 

betting markets more broadly. 

 Our findings are consistent with theories of choice under uncertainty that 

incorporate constraints on attention or computing capacity, such as “sparse thinking” 

(Gabaix, 2014) or “local thinking” (Gennaioli and Shleifer, 2010). Sparse thinkers, for 

example, may neglect variations in some parameters that are more costly to monitor, 

setting them equal to a default value (Gabaix, 2014). Local thinkers, due to limited and 

selective memory recall, may under-emphasize certain aspects of the information set 

that stand out less in one’s memory (Gennaioli and Shleifer, 2010). The finding that 

people are sensitive to IR when combining spatial information (e.g., Ernst and Banks, 
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2002), where variations in IR are more “tangibly” experienced, supports the view that 

IR-neglect in the domain of expectation formation reflects cognitive constraints. 

 Given the importance of Bayesian Updating for the paradigm of rational 

expectations, the experimental evidence from psychology that errors in expectations are 

systematic (e.g., Kahneman, Slovic, and Tversky, 1982) have received much attention 

from economists, especially in validating whether they emerge in experimental 

economics conditions (e.g., Grether, 1980; Charness, Karni, and Levin, 2010; 

Antoniou, Harrison, Lau, and Read, 2017). What is particularly valuable is to determine 

whether these phenomena influence decisions in the field with significant economic 

consequences. Along these lines, De Bondt and Thaler (1990) examine whether the 

earnings forecasts of sell-side analysts are influenced by representativeness, and Chen, 

Moskowitz, and Shue (2016) examine whether the decisions of asylum judges, loan 

officers and baseball umpires are affected by the gambler's fallacy.9 

 We contribute to this literature by conducting a field test of Bayesian reasoning 

with three attractive features: Firstly, subjective probabilities are inferred from the 

decisions of expert agents who are pricing securities in their natural habitat with 

significant monetary consequences. Secondly, uncertainty is fully resolved when the 

match is finished, which allows us to test for a bias in subjective probabilities with 

relatively weak assumptions. Thirdly, and most importantly, in the tennis data variation 

in IR is completely exogenous, in the sense that it is governed solely (and transparently) 

by the rules of the game. Our findings suggest that people cannot accurately determine 

the reliability of the signals they use, thus under-react when confronted with more 

reliable signals. 

                                                 
9 In other related work scholars have examined whether decisions in the field are influenced by heuristics 

(e.g., Simonsohn and Loewenstein, 2006; Lacetera, Pope, and Sydnor, 2012), or loss aversion (Coval 

and Shumway, 2005; Pope and Schweitzer, 2011)  
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 Because we test the same hypothesis in a very similar task using both field and 

laboratory data our work also contributes to the general literature on economic 

methodology, which debates whether laboratory findings carry-over into the field (e.g., 

List, 2003;  Harrison and List, 2004; Levitt and List, 2008; Camerer, 2015 Al-Ubaydli, 

List, and Suskind, 2017). Our results show that errors in expectations in the 

experimental data are similar to those in the field data (i.e., of the same sign), which 

suggests that, in this context, the process of belief formation is broadly similar in the 

two domains. However, the results also show that laboratory subjects are less 

sophisticated, since their probabilities show no adjustment to the increase in the 

reliability of rankings for GS matches. 

 Finally, our analysis contributes to the behavioral finance literature, which has 

attributed various asset pricing anomalies to investor under-reaction to information 

(i.e., Ball and Brown, 1968; Jegadeesh and Titman, 1993; Loughran and Ritter, 1995; 

Ikenberry, Lakonishok, and Vermaelen, 1995; Michaely, Thaler, and Womack, 1995; 

Zhang, 2006; Jiang and Zhu, 2017). According to this explanation, investors fail to 

recognize that certain information signals are good indicators of fundamentals, and 

therefore do not price them in stocks as strongly as they should. With the passage of 

time, as the fundamentals are slowly revealed and expectations are corrected, prices 

drift toward their equilibrium values. However, a caveat of these interpretations is that 

they rely on assumptions related to expected equity returns, or what Fama (1998) calls 

the bad model problem. A notable exception is Moskowitz (2015), who tests for the 

existence of asset pricing anomalies in sports betting markets where risks are 

completely idiosyncratic, and therefore the Fama (1998) critique does not apply. In a 

similar spirit, we contribute, by showing that under-reaction is a real phenomenon that 

influences asset prices in real-world markets. 



10 

 

 The next section describes our data, methods and hypothesis. The third section 

presents and discusses the results, and the fourth section concludes the paper. 

II. DATA AND METHODS 

II.A. Data 

 For our baseline analysis, we obtain data from www.tennis-data.co.uk.10 For 

every match this database contains data the name of the tournament, the date of the 

match, the names of the two competing players, their official ATP rankings, the winner 

of the match, as well as fixed decimal odds from various international betting houses 

on both players.11 In our analysis, we average the odds offered by the various 

bookmakers on the two players and then use these average odds to infer subjective 

probabilities.12 

 We include in our sample Grand Slam (GS) matches, which are played in a BO5 

format, and ATP World Tour Masters 1000 matches (MS), which are played in a BO3 

format. GS tournaments are the most prestigious, with the winner receiving 2,000 

ranking points, and on average collecting $2.5 million dollars (in 2015). For 

comparison, the winner of an MS tournament earns 1,000 ranking points and, on 

average, $0.8 million dollars (in 2015). There are other tournaments that are played in 

a BO3 format, which yield, for example, 500 or 250 ranking points to the winner of the 

tournament, and offer less prize money. Such tournaments are significantly less 

prestigious, involving on average lower-ranked players, and attracting less attention 

from punters. To ensure that the BO3 matches are as similar as possible to the BO5 

matches, we focus on the more prestigious tournaments from the BO3 class.  

                                                 
10 Data from this database has been used previously by academic work on tennis matches (e.g., Forrest 

and McHale, 2007; Del Corral and Prieto-Rodríguez, 2010). 
11 This dataset contains odds from eight different bookmakers; Bet365, Centrebet, Expekt, Ladbrokes, 

Interwetten, Pinnacles Sports, Stan & James, and Unibet. 
12 The odds offered by any two bookmakers on the same match are very highly correlated (at least 0.92). 

Thus, we lose little information by averaging odds across bookmakers. 
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 We apply the following criteria to the initial dataset (n = 10,790) to create our 

final sample: (i) we drop matches that were not completed, matches with missing 

rankings information, matches with no odds for either player, and matches that entail a 

negative housetake13 (n = 10,266); (ii) we drop matches where the higher-ranked player 

is indicated as an outsider by bookmakers even though he is ranked by at least 15 places 

higher than his opponent at the beginning of the tournament (n = 9,230). Such cases are 

likely to reflect recent developments like injuries, which are not yet incorporated in the 

rankings, thus making them outdated indicators of skill.14 

 Our final sample consists of 9,230 tennis matches from 2005-2014. Table I breaks 

down the matches by year and tournament. Overall, we have data for 4 GS tournaments, 

and for 11 MS tournaments. Some MS tournaments are discontinued and others are 

introduced at various point in time.  

[Insert Table I here] 

II.B. Methods 

 Assume a tennis match between players X and Y. The bookmaker offers fixed 

decimals odds for player X to win equal to dX, and for player Y equal to dY, where dX 

and dY are greater than 1. To obtain subjective probabilities, we first invert the quoted 

odds for X, 𝑂𝑋 =
1

𝑑𝑋
, and for Y, 𝑂𝑌 =

1

𝑑𝑌
. In a perfectly competitive and frictionless 

market with a risk-neutral bookmaker, OX and OY correspond to true subjective beliefs. 

However, typically OX + OY > 1, which reflects the housetake, a form of commission 

collected by the bookie. To obtain subjective probabilities, we normalize OX and OY to 

                                                 
13 To obtain the housetake odds are inverted and added together. In bookmaker markets this sum is 

typically greater than 1, reflecting a form of commission collected by the bookmaker. Matches with 

negative housetake are likely to be data errors. 
14 Our conclusions remain the same if we do not impose this filter. This is discussed in more detail in 

Section III.F of the paper. 
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sum to 1, using 𝜋𝑋 =
𝑂𝑋

𝑂𝑋+𝑂𝑌
 and 𝜋𝑌 =

𝑂𝑌

𝑂𝑋+𝑂𝑌
. Thus, the housetake is split proportionally 

between the two players, depending on their relative odds.15 Throughout the analysis 

we refer to πi as the subjective probability that the higher-ranked player wins match i. 

 To examine whether the reliability of rankings changes across match format (MS 

vs. GS) we use the logistic model, shown below: 

  Pr(Yi = 1|GSi, RSkilli) = F(α + βiGSi + β2RSkilli)  (1) 

 The dependent variable, Yi is a binary indicator taking the value of 1 if the higher-

ranked player wins match i, and 0 otherwise. GSi is a dummy variable that equals 1 if 

match i is Grand Slam, and 0 otherwise. RSkilli captures differences in player rankings 

for match i and is calculated as log(lower-ranked player ranking) - log (higher-ranked 

player ranking), following the specification in Klaassen and Magnus (2001).16 F is the 

logistic distribution. 

 As we discuss in more detail in the next section, GS matches entail more players 

in the draw, and therefore entail higher average ranking differences between the two 

players. The model in equation (1) captures the effect of the change in the reliability of 

rankings across MS and GS, whilst controlling for these ranking differences. That is, 

the coefficient on GS should be positive and significant, reflecting that rankings are 

more reliable predictors in GS matches.  

                                                 
15 This method of recovering beliefs from odds is typical in the literature (e.g., Croxson and Reade, 2014; 

Smith, Paton, and Williams, 2009). 
16 As discussed in Klaassen and Magnus (2001) player skill in tennis resembles a pyramid (i.e., the 

difference in skill between players ranked #1 and #10 is higher than the skill difference between players 

ranked #80 and #90), therefore a logarithmic transformation is appropriate. Note also that the ranking of 

the lower-ranked player is a larger number than the ranking of the higher-ranked player. Our results are 

the same if we calculate RSkill on the basis of differences in the ranking points of the two competing 

players. 
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 To estimate the bias in subjective probabilities we use 𝑏𝑖𝑎𝑠𝑖 = 𝜋𝑖 − 𝑝̂𝑖, where 𝑝̂𝑖 

is the fitted value from the logit model. We test our hypothesis based on the difference 

in average bias between MS and GS matches, Δ𝑏𝑖𝑎𝑠 = 𝑏𝑖𝑎𝑠𝐺𝑆
̅̅ ̅̅ ̅̅ ̅̅ − 𝑏𝑖𝑎𝑠𝑀𝑆

̅̅ ̅̅ ̅̅ ̅̅ ̅.  

 Under the null hypothesis of Bayesian reasoning, where subjective probabilities 

are properly adjusted according to variations in IR between MS and GS, Δbias = 0. The 

alternative hypothesis of under-reaction due to information reliability neglect is Δbias < 

0. We test these hypotheses by examining the sign and statistical significance (using 

two-sided tests) of β1 in the ordinary least square regression shown below: 

   biasi = α + β1GSi + β2RSkilli + εi  (2) 

II.C. Descriptive Statistics 

 Table II presents descriptive statistics for our main sample, separately for GS 

(Panel A) and MS (Panel B) matches. The average posted odds offered by bookmakers 

that the higher-ranked player wins the match (HROdds) are much lower than those for 

the lower-ranked player (LROdds) (1.35 vs. 6.05 for GS and 1.48 vs. 4.10 for MS), which 

shows that player ranking is indeed an indicator of skill that is used by bookmakers. 

The average Housetake is very similar in the two match formats (0.05 in GS and 0.06 

in MS); moreover, Housetake has low volatility across matches, as noted by other 

authors (Forrest and McHale, 2007). For GS the average ranking of higher- and lower-

ranked players (HRRank and LRRank) is 28 and 99 respectively, whereas for MS the 

corresponding rankings are 22 and 67. GS matches entail higher ranking differences 

because GS tournaments allow more players in the draw.17 The larger ranking 

                                                 
17 GS matches involve 128 players, whereas MS matches involve 64 players on average (96 players: 

Indian Wells and Miami; 56 players: Monte Carlo, Madrid, Rome, Montreal, Toronto, Cincinnati, 

Shanghai; 48 players: Paris). In all tournaments the “seeded” players are allowed to compete 

automatically in the tournament, for example the top 32 players in the world. The remaining positions 

are filled by lower-ranked players who earn their position by qualifying in a single elimination 

tournament prior to the main event. The number of seeded players varies by tournament, and is higher in 

GS than in MS. 
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differences in GS imply that the probability of the higher-ranked player winning a GS 

match is higher, therefore we test the hypothesis using the model in equation (2), which 

includes RSkill as a control variable.  

 The next two rows show the average estimate of the objective probability 

obtained as the fitted value from the model in equation (1), 𝑝̂. As it can be seen, 𝑝̂ is 

higher for GS than MS (0.78 vs 0.69), consistent with the view that higher-ranked 

players are more likely to win a GS match (we present the full results from the logit 

model in section III.A). The penultimate row in the table shows the average subjective 

probability that the higher-ranked player wins the match (π), which is higher for GS 

compared to MS (0.74 vs. 0.68). This means that bookmakers are adjusting their 

subjective probabilities for GS matches relative to MS matches in the direction 

predicted by Bayes Rule. However, this adjustment seems insufficient, i.e., it does not 

completely reflect the increase in 𝑝̂ for GS. This result, shown in Figure I, provides 

some early support to the IR-neglect hypothesis, which we formally test in the next 

section.  

[Insert Table II and Figure I here] 

 

III. ANALYSIS 

III.A. Changes in Information Reliability in MS vs GS 

 We start our analysis by examining whether the higher-ranked player is more 

likely to win a GS as opposed to an MS match using the model shown in equation (1).  

 The marginal effects associated with each variable are shown in Table III. From 

column (1), we observe that the marginal effect associated with GS is 9.5% and highly 

statistically significant, indicating that higher-ranked players are more likely to win a 

GS match. Once we control for RSkill in column (2) the marginal effect associated with 

GS reduces to 7.2%, but remains highly statistically significant. RSkill is also positive 
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and highly significant. In column (3), we add surface (clay vs. hard), 18 year, and round 

fixed effects (1 to 7), and obtain very similar results. 

 Overall, this analysis shows that higher-ranked players are more likely to win GS 

matches that are played in a BO5 format.  

[Insert Table III here] 

III.B. Biases in Subjective Probabilities 

 Table IV shows our main results. In a univariate setting in Panel A, we find that 

𝑏𝑖𝑎𝑠𝐺𝑆
̅̅ ̅̅ ̅̅ ̅̅   is equal to -3.7% and  𝑏𝑖𝑎𝑠𝑀𝑆

̅̅ ̅̅ ̅̅ ̅̅ ̅  is equal to -0.4%, making Δbias equal to -3.3%, 

and highly statistically significant.  

 In Panel B, we test the hypothesis whilst controlling for the effect of RSkill. In 

column (1) it is shown that the coefficient on GS is essentially the same, equal to -3.1% 

and highly statistically significant. In column (2), we estimate an additional 

specification that includes surface, year, and round fixed effects, and find that the 

coefficient on GS remains negative and significant in this specification. 

 The coefficient of RSkill is also negative and significant, indicating that 

bookmakers are under-estimating the probability that the higher-ranked player wins, 

when the ranking differential is high. However, this result will not be robust throughout 

all our tests.  

 Overall, the results in Table IV show that bookmakers are under-estimating the 

probability that the higher-ranked player wins a GS match, consistent with the 

hypothesis of IR-neglect.  

[Insert Table IV here] 

                                                 
18 One GS match is played on grass, one on clay, and two on hard courts. In terms of MS tournaments, 

seven are played on hard courts and four are played on clay courts. In our sample, the only tournament 

played on grass is the Wimbledon (GS), and the only tournament played on carpet is Paris (MS) between 

2005 and 2008. Because in terms of speed, grass and carpet surfaces are more similar to hard than clay 

surfaces, we include them in the hard court category. 
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III.C. Betting Exchange Data 

 Do the results in the previous section reflect the strategic incentives of rational 

bookmakers to exploit punters? To address this question, we test our hypothesis using 

subjective probabilities inferred from odds achieved on a person-to-person betting 

exchange called Betfair.19 In this setting, strategic incentives do not exist because the 

odds on the two players are set in two different markets. Our sample contains 4,893 

observations for the period 2009-2014. Descriptive statistics for this sample are shown 

in Table A. 1 of the Appendix. One noteworthy feature of this data is that because odds 

are determined in a market setting and thus do not entail a housetake, the sum of “raw” 

implied probabilities is closer to 1.20  

 The results are shown in Table V. In a univariate setting in Panel A, we find that 

𝑏𝑖𝑎𝑠𝐺𝑆
̅̅ ̅̅ ̅̅ ̅̅  is equal to -1.8% and 𝑏𝑖𝑎𝑠𝑀𝑆

̅̅ ̅̅ ̅̅ ̅̅ ̅ is equal to 0.5%, making Δbias equal to -2.3%, and 

highly statistically significant. As shown in Panel B, controlling for RSkill and 

additional fixed effects does not change our findings.21  

  Overall, this analysis shows that the bias IR-neglect also exists in the betting 

exchange data, where strategic incentives do not exist.  

[Insert Table V here] 

 

 

                                                 
19 Betfair is the largest person-to-person betting exchange, with almost one million active users (Croxson 

and Reade, 2014). The Betfair dataset was purchased from Fracsoft available at http://www.fracsoft.com. 

The dataset has incomplete coverage of the Australian Open (GS tournament), with no observations for 

2009 and 2010. Moreover, it does not include data for matches that were completed in more than one 

day (for example due to rain delays). We use “back” odds on the two players to calculate subjective 

probabilities (i.e., odds available to punters who want to bet that a specific player wins). 
20 However, to ensure consistency and comparability to our previous results, we normalize the inverted 

odds to add to 1. 
21 The coefficient on RSkill is insignificant in this setting, which indicates that the market is pricing 

correctly ranking differentials.  
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III.D. Profits 

 In this section, we examine whether the negative bias documented in Section III.B 

is costly to bookmakers. To set the stage for this test, equation (3) below shows the per 

unit return on bets for the higher-ranked player, where dHR  are the odds offered on the 

higher-ranked player by bookmakers, and DHR is an indicator that equals to one if the 

higher-ranked player won the match.  

 

    𝑟𝐻𝑅 = {
1                       𝑖𝑓 𝐷𝐻𝑅 = 0

−(𝑑𝐻𝑅 − 1)   𝑖𝑓 𝐷𝐻𝑅 = 1 
                                      (3) 

 

 We define the per-unit return on bets on the lower-ranked player, 𝑟𝐿𝑅, in the same 

way. Columns (1) and (2) in Table VI show that, due to the negative Δbias, bookmakers 

in GS matches are earnings less on bets on the higher-ranked player, and more on bets 

on the lower-ranked player. Thus, if a sufficiently large proportion of volume backs the 

lower-ranked player in GS, a negative bias actually increases bookmakers’ total 

profitability.22  

 We estimate bookmaker's total profits per match, as a proportion of the total 

volume staked for match i, Πi, using the equation below:23 

   𝛱𝑖 = 1 − 𝑅𝑉𝑜𝑙𝐻𝑅𝑑𝐻𝑅𝐷𝐻𝑅 − 𝑅𝑉𝑜𝑙𝐿𝑅𝑑𝐿𝑅𝐷𝐿𝑅  (4) 

 RVolHR is the proportion of the total volume that backs the higher-ranked player 

calculated using data from the betting exchange market; 24 dHR  and DHR  are defined as 

in equation (3). RVolLR, dLR and DLR are analogously defined for the lower-ranked 

                                                 
22 We discuss in more detail the conditions that a negative bias is optimal in Appendix B. 
23 To conduct this test we use the volume information from the betting exchange. Therefore, an implicit 

assumption is that that betting volume behaves similarly in bookmaker and betting exchange markets. 
24 Therefore, an implicit assumption here is that that betting volume behaves similarly in bookmaker and 

betting exchange markets. 
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player. Because the data for the betting exchange start in 2009, the sample used for this 

test is smaller. 

   From the third column of Table VI, we observe that Πi is equal to 2.5% for GS 

matches, and 5.10% for MS matches, for a significant difference of -2.6%.25 This result 

implies that the volume backing the lower-ranked player in GS is not sufficiently higher 

to justify a negative bias;26 hence bookmakers are earning a smaller proportion of the 

volume staked in GS compared to MS matches. 

 For our final test, we construct the hypothetical profit HΠi collected by 

bookmakers, in a counterfactual scenario where subjective probabilities for the higher-

ranked player for GS matches are set equal to 𝑝̂ from the logit model in equation (1). 

This involves adjusting the odds offered for the two players, as well as RVol.
27 As 

shown in column (4) of Table VI average HΠi for GS matches is equal to 5.1%, 

significantly different from the actual average Πi of 2.5%.28 This result suggests that 

bookmakers’ profitability would have been higher, if they had used the logit model to 

set their odds.29  

 Overall the analysis in this section suggests that IR-neglect is costly to 

bookmakers.  

[Insert Table VI here] 

 

                                                 
25 Our results hold in a multivariate setting, when we regress Πi on a GS dummy and RSkill, including 

round, time, and surface fixed effects. 
26 This finding is in line with Levitt (2004), who finds that punters in pari-mutual markets show an 

excessive preference toward the favourite. This preference is also shown in our data, since 86% of the 

volume in GS backs the higher-ranked player, who wins about 78% of the matches (Table A. 1, Panel 

A). 
27 We discuss in detail how we adjust odds and RVol in Appendix B. 
28 Moreover, the cross-sectional standard deviation of HΠi for GS matches is 32%, and of Πi 33%. So 

this adjustment does not change materially the volatility of profits in GS for bookmakers. 
29 This finding is in line with the finding that simple, statistical algorithms can outperform human 

judgement (e.g., Dawes, Faust, and Meehl, 1989).  
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III.E. A Placebo Test 

 Our tests implicitly assume that the only difference across MS and GS matches 

is match format, i.e., BO3 vs. BO5. However, as mentioned, GS tournaments are more 

prestigious than MS tournaments, offering more prize money and ranking points, and 

attracting higher betting volumes. To examine whether our findings are affected by 

these differences, we conduct a placebo test using data for women's tennis matches. 

This data provide an ideal setting for such a test as they preserve the key differences 

across MS and GS that are observed in the men's sample (i.e., GS are more prestigious, 

offer more prize money and ranking points, and attract more betting volume), but for 

women there is no change in the reliability of rankings, because both MS and GS are 

played in a BO3 format. Therefore, if our results do not reflect IR-neglect, Δbias should 

continue to be negative and significant in the women data.  

 We construct the women's sample using an approach similar to that used in our 

baseline analysis with the men's data. GS tournaments are the same for women as for 

the men, and for MS tournaments we again focus on the more prestigious 

tournaments.30 After applying the same filters to the initial sample as those for the men 

we end up with 2,527 MS matches and 3,624 GS matches from 2007-2014 for the 

bookmaker sample, and 1,425 MS matches and 2,259 GS matches from 2009-2014 for 

the betting exchange sample. 

 Table A. 2 and Table A. 3 in the Appendix present descriptive statistics for the 

women samples for MS and GS, and show that the housetake and ranking differentials 

                                                 
30 Pre-2009, the top tier masters tournaments were called Tier-I and post-2009 they are called Premier 

Mandatory. For the bookmaker sample, we have 12 MS tournaments prior to 2009 (Berlin, Charleston, 

Doha, Indian Wells, Miami, Montreal, Moscow, Rome, San Diego, Tokyo, Toronto, and Zurich) and the 

4 Premier Mandatory tournaments after 2009 (Beijing, Indian Wells, Madrid, Miami). The betting 

exchange sample starts in 2009 so we have data on the 4 Premier Mandatory tournaments. The GS 

matches for women are the same as for the men (Australian Open, French Open, Wimbledon, and US 

Open). 
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are very similar as those found in the men data. From Table A. 3, we observe that TotVol 

is lower for women than for men, whereas RVol is the same (85% in GS and 82% in 

MS). Overall, the women samples are broadly similar to the men samples. 

 In Table VII, we present results from the logistic regressions shown in equation 

(1) using the women data (Panel A: bookmaker; Panel B: betting exchange). As shown 

in column (2), the coefficient on the GS dummy is insignificant once we control for 

RSkill, consistent with no change in IR in GS matches. Thus, bookmakers should not 

upwardly adjust their subjective probabilities of the higher-ranked player winning a GS 

match.  

[Insert Table VII here] 

 The results from the model in equation (2) with women data are shown in Table 

VIII. From column (2) in Panel A (bookmaker), we observe that the coefficient on GS 

is negative but statistically insignificant. The corresponding results in Panel B (betting 

exchange) show that the coefficient on GS is positive and significant, equal to 1.6%, 

reflecting the fact that punters are increasing their subjective probabilities for the 

higher-ranked player winning a GS match, even though this increase is unwarranted.  

 Overall, the placebo test with the women's data produces results that are in stark 

contrast from those obtained with the men's data. This suggests that our baseline results 

in Table IV and Table V more likely reflect biases due to information reliability neglect.  

[Insert Table VIII here] 

 

 

 

 

 

 



21 

 

III.F. Robustness and Alternative Explanations 

III.F.I. Robustness Checks 

 In this section, we conduct various tests of robustness, presenting the results in 

Table IX. In Panel A, we define bias using probabilities inferred from bookmaker odds 

and in Panel B using betting exchange odds.  

 In our baseline analysis, bias depends on the specification of the logit model used 

to calculate 𝑝̂. In column (1), we test the hypothesis using a non-parametric 

specification for the objective probability. We first rank our sample according to match 

format (MS and GS) and then rank again within each format into deciles based on 

RSkill. In each decile, we use the proportion of matches won by the higher-ranked 

player, 𝑝𝐻𝑅, as the estimate of the objective probability, and define bias as π - 𝑝𝐻𝑅. The 

results are robust in this specification, as the coefficient of GS is equal to -3.4% in Panel 

A and -2.6% in Panel B, both statistically significant. 

 In column (2), we avoid altogether estimating an objective probability, and define 

bias as π - DHR, where DHR is a dummy that equals 1 if the higher-ranked player won 

the match, and 0 otherwise. The coefficient on GS continues to be negative and 

significant.  

 Our procedure of estimating 𝑝̂ uses full sample information, which may introduce 

some look-ahead bias. To make sure that such a bias does not influence our findings in 

column (3), we estimate the logit model using only backward-looking information. For 

example, for matches played in 2006 (2007) we calculate 𝑝̂ estimated from a logit 

model that only uses data from 2005 (2005 and 2006), etc. The coefficient of GS is 

equal to -4.2% in Panel A and -2.8% in Panel B, both statistically significant. 

 Because GS matches offer more prize money it is possible that higher-ranked 

players “time” their form to peak at GS matches. Such timing effects could influence 

our findings. To address this issue in column (4), we add an additional control variable 
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in our models (including the logit model used to estimate 𝑝̂), RStreak, calculated as the 

difference in the proportion of matches won by the higher- and lower-ranked player in 

the two previous tournaments. The results show that the coefficient on GS remains 

negative and significant in this specification, equaling -2.4% in both panels.31 

 The information signal we use is the ranking of the players at the start of the 

tournament. However, bookmakers are observing other information besides rankings 

before setting their odds. We examine whether our findings hold when we define as the 

higher-skilled player the one who is favored by the bookmakers (as shown by the odds). 

The results from this test are shown in column (5), whereby the coefficient on GS is 

negative and significant (-3.0% in Panel A and -2.8% in Panel B).32  

 For our baseline results, we control for RSkill and test our hypothesis by observing 

the coefficient on the intercept dummy GS. An alternative method is to use a slope 

dummy, interacting RSkill with GS,33 expecting that the coefficient on the interaction 

is negative and significant. The results shown in column (6) show that this coefficient 

is indeed negative and significant, and that the total effect of RSkill on bias is negative 

for GS matches (-0.003 - 0.010 = -0.013 in Panel A and 0.005 - 0.007 = -0.002 in Panel 

B).  

 In untabulated analysis, available from the authors on request, we find that our 

results hold even when we do not impose filter (ii) from Section II.A. In this sample, 

the coefficient of GS is -2.41% for bookmaker data, and -1.98% for betting exchange 

data, statistically significant in both cases. Moreover, to control for the effect of any 

outliers, we estimate equation (2) using a quantile regression model, expressing the 

                                                 
31 This model entails a smaller number of observations due to missing values in RStreak, which occur 

when a player did not compete in the two previous tournaments. 
32 For this test we have more observations because we do not impose filter (ii) from Section II.A. 
33 In this specification, 𝑝̂𝑖 = 𝑃𝑟(𝑌𝑖 = 1|𝑅𝑆𝑘𝑖𝑙𝑙𝑖 , 𝑅𝑆𝑘𝑖𝑙𝑙𝑖 × 𝐺𝑆𝑖) = 𝐹(𝛼 + 𝛽1𝑅𝑆𝑘𝑖𝑙𝑙𝑖 + 𝛽2𝑅𝑆𝑘𝑖𝑙𝑙𝑖 × 𝐺𝑆𝑖). 
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median of the conditional distribution of bias as a linear function of the independent 

variables. The coefficient of GS is negative and significant in this specification. 

 Overall, the results in this section show that our conclusions are robust to different 

bias and sample specifications.  

 [Insert Table IX here]  

 

III.F.II. Alternative Explanations 

 Snowberg and Wolfers (2010) show that the long-shot bias in the odds for horse 

races is driven by errors in expectations related to probability weighting (i.e., Quiggin, 

1982). To examine whether probability weighting affects our findings, we estimate 

bookmaker’s probabilities assuming the probability weighting function of Prelec 

(1998). We use two different values for the probability weighting parameter, one used 

in Snowberg and Wolfers (2010) (0.928) and the other proposed by Kahneman and 

Tversky (0.65). As shown in Table X, we find that the coefficient on GS does not 

change materially from our baseline specification.34  

 [Insert Table X here]  

 

 Our analysis implicitly assumes that bookmakers start from a correct prior, which 

they update after observing rankings information and considering the match format 

(MS vs GS).35 However, what if bookmakers start their calculations from a biased 

prior, which they update correctly for both MS and GS? Due to the non-linearity of the 

                                                 
34 Probability weighting does not significantly change the results, because the difference in probabilities 

between the favorite and the long-shot is relatively small in tennis data, and thus the shape of the 

probability weighting function does not change drastically in this region. Probability weighting, on the 

other hand, is more important for horse races, where the long-shot in each race is a very low probability 

event (i.e., odds of 200 to 1).  
35 Before any information on the two players is observed, it is logical to assume that each player is equally 

likely to win the match. 
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adjustment, for a specific set of biased priors,36 we can end up with Δbias < 0, even 

though bookmakers responded to variations in IR correctly.  

 The main challenge to the biased priors explanation for the negative Δbias for 

men’s matches, is that it requires biases in priors of different nature for women’s 

matches, since Δbias is different in these markets. It is not clear a priory why biases in 

priors should be so different in the two datasets. Moreover, in the case of a biased prior, 

the sign of bias in MS and GS should be the same. However, in the men’s betting 

exchange data, bias is positive in MS and negative in GS (Table V, Panel A).

 Notwithstanding these caveats, we can make an adjustment to the probabilities to 

examine whether a biased prior is sufficient to explain our results. Specifically, we can 

back-out the probability that the higher-ranked player wins a single set. Under the null, 

Δbias calculated from single-set probabilities should be equal to 0, even in the presence 

of biased priors. Under the alternative of IR-neglect Δbias < 0. 

 Specifically, assuming that the outcomes of different sets in each match are 

independently and identically distributed, we can express the observed probabilities as: 

   𝑀𝑆: 𝜋3 = (
3
2

) × 𝜋1,3
2 × (1 − 𝜋1,3) + (

3
3

) × 𝜋1,3
3   (5) 

 In the above expression, π3 is the probability that the higher-ranked player wins 

an MS match, and π1,3 is the corresponding probability that the same player wins only 

one set. Similarly, we can re-write the probabilities for GS, π5, as: 

 𝐺𝑆: 𝜋5 = (
5
3

) × 𝜋1,5
3 × (1 − 𝜋1,5)

2
+ (

5
4

) × 𝜋1,5
4 × (1 − 𝜋1,5) + (

5
5

) × 𝜋1,5
5  (6) 

 We can express both subjective and objective probabilities according to equations 

(5) and (6), back out the corresponding π1,3 and π1,5 , re-calculate bias and test whether 

                                                 
36 Specifically, Δbias < 0 if the subjective prior is greater than the correct prior, and vice-versa. 
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it is equal across MS and GS. The results, shown in Table X column (3), show that the 

coefficient on GS is negative and significant, which suggests that biased priors cannot 

explain our results.37 

 Another possibility is that our results are driven by a more general bias in 

expectations, and not IR-neglect. To illustrate, assume that an agent receives two 

normally distributed signals, SMS and SGS, with their reliability indexed by their 

variance, and 𝜎𝑀𝑆
2 > 𝜎𝐺𝑆

2 . The means of the two signals are the same. However, the 

agent mis-perceives their variances by the same proportion κ as: 𝜎𝑃𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑,𝑀𝑆
2 = 𝜅𝜎𝑀𝑆

2  

and 𝜎𝑃𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑,𝐺𝑆
2 = 𝜅𝜎𝐺𝑆

2 , where κ >1 (<1) leads to underreaction (overreaction). Due 

to the fact that the effect of κ on the posterior probability depends on the variance of 

the signal, Δbias is negative when κ <1. There are three challenges to this explanation: 

First, the sign of the biases in MS and GS must be the same, if the same κ is applied to 

all signals. However, in the betting exchange data, the bias is positive in MS and 

negative in GS (Table V, Panel A). Secondly, κ <1 implies overreaction, and therefore 

a positive bias in both MS and GS, which again is not what we observe in the data. And 

thirdly, it must be the case that the general bias is of different nature for women’s 

matches, and it is not clear why should this be the case.  

  Overall, the alternative explanations we have considered do not seem to offer a 

parsimonious explanation for our findings, across bookmaker and betting exchange 

markets, for both men’s and women’s tennis matches.  

 

 

 

                                                 
37 In a different scenario, biases in priors may be different for GS and MS. We cannot empirically exclude 

this possibility. 
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III.F.III.  A Laboratory Experiment 

 Our final robustness test is a laboratory experiment which allows us to test our 

hypothesis in a setting that removes potential confounds arising from market-related 

factors.  

 The experiments were conducted using students at the University of Surrey, U.K. 

To make sure that our subjects knew about tennis, and could therefore appreciate the 

effect of match length on the probability that the higher-ranked player wins, we invited 

students that were involved in the Tennis Society to participate. Our experiment 

attracted 17 students,38 who participated in two different sessions lasting roughly an 

hour each. The second session was conducted two weeks after the first one.39 For both 

sessions students received a show-up fee of £10 and a performance-related payment, 

which depended on the accuracy of their predictions. The average total payment for 

each session was £22. 

 In the experiment, subjects were asked to provide a probability that each player 

wins for several upcoming matches. In the first session the 33 matches were from the 

Rome ATP World Tour Masters 1000 (MS; BO3) and in the second the 64 matches 

were from the French Open (GS; BO5). Both tournaments are played on the same 

surface (clay). For each match we provided to subjects the name and ranking of each 

player at the start of the tournament. Moreover, our instructions in the beginning of 

each session explicitly mentioned the format that these matches were played (BO3 or 

BO5). We used the quadratic scoring rule to incentivize subjects’ choices, and the 

                                                 
38 Our sample is smaller than what is usually observed in experiments because we were only interested 

in subjects who knew about tennis. Moreover, our sessions could only occur at a specific day and time, 

after the first-round matches were determined but not yet played. This time constraint also contributed 

to the small sample size. However, because each subject made a number of choices in each session, the 

total number of observations is quite large. In our models, we control for correlated responses as we 

cluster standard errors on the subject level.  
39 This gap was necessary because students had to make their choices after the draw for each tournament 

is made, and before the games are actually played. 
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random lottery procedure to determine their performance-related payment in each 

session.40 Our full instructions, additional details about our experimental protocol, and 

various descriptive statistics are provided in Table A. 4 of the Appendix. 

 In the first session, prior to the main task, subjects where firstly asked to consider 

the extent to which the expression “I follow tennis closely” applies to them (1 = Strongly 

Disagree, 2 = Disagree, 3 = Neutral, 4 = Agree, 5 = Strongly Agree). The mean response 

to this question was 3.64, indicating that on average our subjects did indeed follow 

tennis. To confirm this statement, we also gave students 8 tennis-related quiz questions 

(4 in each session), and found that on average students answered 5.4 of those questions 

correctly. The correlation between the response to the first question and the number of 

correctly answered quiz questions was 0.7. These findings suggest that our subjects 

were knowledgeable about tennis.  

 The results are shown in Table XI. We used the same procedure as with the field 

data to calculate bias for MS and GS. In Panel A, in a univariate setting, we see that π 

and 𝑝̂ for the MS matches are equal to 66.6%, and bias is equal to 0. For GS, we observe 

that 𝑝̂ increases to 73%, but π only increases to 69.8%. Δbias is -3.2% and statistically 

significant, consistent with our field results from bookmakers and the betting exchange. 

In Panel B, we conduct a regression that controls for RSkill. The coefficient on GS 

remains negative at -3.3% and statistically significant.  

 Although the magnitude of Δbias in the experiment is very similar to the one found 

in the field data, closer inspection reveals that the extent of the bias is potentially larger 

in the laboratory. In unreported analysis, when we regressed π on GS and RSkill, we 

found that the coefficient on GS is insignificant. This means that subjects do not 

                                                 
40 The quadratic scoring rule assumes subjects are risk neutral. However, experimental work has shown 

that subjects are risk averse in the laboratory (e.g., Holt and Laury, 2002). Because our tests are based 

on within-subject responses across the two sessions, assuming risk neutrality is unlikely to bias our 

results (assuming that risk attitude does not change systematically across the two sessions). 
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consider the effect of match length at all, and only increase their π's for GS matches 

responding to the higher RSkill in those matches.  

 One concern with our experimental design is that because there is a two week lag 

between the first and second session, some feedback effects may be influencing our 

results. For instance, it may be the case that our results are driven by “disappointed” 

subjects that performed poorly in the first task, who provided more conservative 

estimates for π in the second session.41 To address this concern, in column (3) of Panel 

B, we include the payment of the subject in the first session as an additional explanatory 

variable.42 The results in this specification are unchanged from those presented in 

column (2). Finally, in column (4) of Panel B, to capture any effect related to 

unobserved heterogeneity between subjects, we include subject fixed effects. The 

results are again unchanged in this specification.  

 At the end of the second session, after all the data were collected, we asked 

students to list the major factors that influenced their responses in order of significance 

(see Figure II). Player rankings was the most important factor by nearly all the students, 

whereas no student mentioned match format (MS vs. GS).  

 Overall, the results from the experiment suggest the IR- neglect induces biases in 

expectations.  

[Insert Table XI and Figure II here] 

 

 

                                                 
41 If the subject expresses a probability that is closer to 0.5, the ex-ante dispersion in final payment 

outcomes is reduced (Andersen, Fountain, Harrison, and Rutström, 2014). 
42 We stress however that the performance-related payment of the subject for the first session was actually 

paid at the end of the second session. However, the subject after the first session could have checked the 

outcome of the game that would determine her payment, and estimate the payment for the first session.  



29 

 

III.F.IV. Information Reliability Neglect in Other Sports Betting Markets 

 For our final test, we examine whether IR-neglect influences outcomes in other 

sports betting markets. The premise of this test is that outcomes in some sports are less 

noisy, which makes skill-related signals for such sports more reliable. The IR-neglect 

hypothesis predicts that bias is lower for less noisy sports.  

 To conduct the test we use the analysis in Mauboussin (2012) who ranks five 

sports according to the noise they contain, producing the following ranking (from most 

to least noisy): 1. Ice hockey, 2. Football, 3. Baseball, 4. Soccer and 5. Basketball 

(figure 1-1, pp. 23).43 We collect data from Betfair for three of these sports (football, 

soccer, and basketball),44 follow the procedure previously explained in the paper, and 

examine whether bias is higher in the more noisy sports. 

 The results are shown in Table XII.45 We that the higher-skilled team wins 80.2% 

of the time in basketball, and 78.3% in soccer and 64.9% in football, which supports 

the analysis of Mauboussin (2012), that basketball is less noisy, followed by soccer and 

then football.  

 In line with the IR-neglect hypothesis, we find that average bias is equal to 2.8% 

in soccer, 1.7% in soccer and -0.4% in basketball. The hypothesis that average bias is 

equal across the three sports is strongly rejected in the data.46 

 Overall, these results suggest that IR-neglect influences outcomes in sports 

betting markets more broadly. 

                                                 
43 To perform this calculation the author calculates empirically the degree of mean reversion in these 

sports. A higher mean reversion implies that luck plays a relatively more important role. For more details 

see the Appendix in  Mauboussin (2012). 
44 Betfair contains odds data for a very small number of ice hockey and baseball games (<100), thus we 

do not use them in the analysis. 
45 The methodology used for this test is similar to that in column (1) of Table IX. From more details see 

the caption of Table XII. 
46 The results continue to hold in a multivariate regression framework, which controls for the odds 

difference in each match. 
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[Insert Table XII here] 

IV. CONCLUDING REMARKS 

 We conduct a field test of Bayesian reasoning by examining whether agents form 

expectations by placing a larger weight on more reliable cues. Our results are robust to 

inferring probabilities from odds offered by professional bookmakers, or odds achieved 

in a person-to-person betting exchange. Several tests of robustness, including a placebo 

test using women’s matches where all matches are played in the same format, and a 

laboratory experiment support our conclusions. Overall, our findings suggest under-

reaction due to “information reliability neglect” influences expectations and outcomes 

in real-world markets.  
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APPENDIX A. A MODEL OF DECISION-MAKING UNDER 

RELIABILITY NEGLECT 

 Assume an agent who correctly identifies that the prior distribution for variable 

m takes the form 𝑚~𝑁(ℎ, 𝜎𝑃
2). Starting from this prior the agent receives two signals 

on two different occasions, 𝑆1~𝑁(𝑔, 𝜎1
2) and 𝑆2~𝑁(𝑔, 𝜎2

2) , where 𝜎1
2 > 𝜎2

2 indicates 

their difference in reliability. To draw a parallel with the tennis analysis, m is a variable 

that maps onto the probability that a player wins the match, and S is the signal related 

to his relative skill, i.e., whether he is the higher-ranked player. The agent then observes 

the signal and updates his probability. Because the higher-ranked player is on average 

more skillful (i.e., g > h) the adjustment is upward for the higher-ranked player (and, 

conversely, downward for the lower-ranked player).  

 To simplify the illustration, we can set h = 0 without losing any generality. Under 

the null of Bayesian updating the agent's posterior expectation for m after observing S1 

is: 

  𝐸(𝑚|𝑆1) =
𝑔(𝜎1

2)
−1

(𝜎1
2)

−1
+(𝜎𝑃

2)
−1  (1) 

And, equivalently, his posterior expectation for m after observing S2 is:  

 

  𝐸(𝑚|𝑆2) =
𝑔(𝜎2

2)
−1

(𝜎2
2)

−1
+(𝜎𝑃

2)
−1  (2) 

 In this case bias (i.e., difference between the conditional expectation after each 

signal and the corresponding Bayesian posterior) is equal to 0 in both cases, and Δbias = 

bias2 - bias1 is also 0. 

 Now suppose that the agent is not fully sensitive to variations in reliability across 

signals. A simple way to capture this behavior is to assume that the agent starts the 
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calculation from a default level of reliability 𝜎2 , equal to, for example, the average 

reliability from the two signals. The agent then adjusts this default value according to 

the reliability in each observed signal, however this adjustment is insufficient. The 

cognitive mechanism driving this behavior could be “sparse thinking” as discussed by 

Gabaix (2014): “To supply the missing elements....people rely on defaults-which are 

typically the expected values of variables...When taking into account some information, 

agents anchor on the default and do a limited adjusted toward the truth, as in Tversky 

and Kahneman's (1974) “anchoring and adjustment” (Gabaix, 2014 pp.1663).  

 This mechanism leads to IR-neglect. The agent is under-estimating the variance 

of S1 and over-estimating the variance of S2, such that the perceived reliabilities of the 

two signals are 𝜎1
2 = 𝜅𝜎1

2 and 𝜎2
2 = 𝜆𝜎2

2 , where k < 1 and λ > 1. 

 The agent's posterior expectation for m conditional on S1 is: 

  𝐸(𝑚|𝑆1) =
𝑔(𝜅𝜎1

2)
−1

(𝜅𝜎1
2)

−1
+(𝜎𝑃

2)
−1  (3) 

 And similarly, the agent's posterior expectation for m conditional on S2 is: 

  𝐸(𝑚|𝑆2) =
𝑔(𝜆𝜎2

2)
−1

(𝜆𝜎2
2)

−1
+(𝜎𝑃

2)
−1  (4) 

 In this Δbias is equal to: 

  𝛥𝑏𝑖𝑎𝑠 =
𝑔𝜎𝑃

2𝜎2
2(1−𝜆)

(𝑔+𝜆𝜎2
2)(𝜎2

2+𝜎𝑃
2)

−
𝑔𝜎𝑃

2𝜎1
2(1−𝜅)

(𝑔+𝜅𝜎1
2)(𝜎1

2+𝜎𝑃
2)

  (5) 

 Due to IR-neglect (i.e., λ > 1 and κ < 1), the agent overreacts to S1 and 

underreacts to S2, therefore Δbias < 0. 
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APPENDIX B. BIAS AND EXPECTED PROFITS 

Bias and Expected Profits 

 The overall profitability of bookmakers depends on how the objective probability 

of the higher-ranked player wining compares to the relative volume that backs this 

player. To illustrate, assume that the objective probability that the higher-ranked player 

wins a match is 𝑝𝐻𝑅, and correspondingly for the low ranked player is 𝑝𝐿𝑅 = 1 − 𝑝𝐻𝑅. 

The bookmaker starts from this probability, adjusts to reflect a housetake, v, and a bias 

b, arriving at 𝑝𝐻𝑅
∗ : 

    𝑝𝐻𝑅
∗ = (𝑝𝐻𝑅 + 𝑏)(1 + 𝑣)                                               (1) 

 Correspondingly, the adjusted probability for the low ranked player is: 

 

  𝑝𝐿𝑅
∗ = (1 − 𝑝𝐻𝑅 − 𝑏)(1 + 𝑣)  (2) 

 The odds offered for the higher- and lower-ranked player are thus 𝑑𝐻𝑅 =
1

𝑝𝐻𝑅
∗  and 

𝑑𝐿𝑅 =
1

𝑝𝐿𝑅
∗ , respectively. Furthermore, VolHR and VolLR are the volumes that back the 

higher- and lower-ranked players respectively, and TotVol = VolHR + VolLR is the total 

volume staked. 

 The profit for the bookmaker for each match is therefore: 

  Π($) = 𝑇𝑜𝑡𝑉𝑜𝑙 − 𝑉𝑜𝑙𝐻𝑅𝑑𝐻𝑅𝐷𝐻𝑅 − 𝑉𝑜𝑙𝐿𝑅𝑑𝐿𝑅𝐷𝐿𝑅  (3) 

 Dividing through by ToVol leads to equation (3) in the paper, where 𝑅𝑉𝑜𝑙𝐻𝑅 =

𝑉𝑜𝑙𝐻𝑅

𝑇𝑜𝑡𝑉𝑜𝑙
 and 𝑅𝑉𝑜𝑙𝐿𝑅 =

𝑉𝑜𝑙𝐿𝑅

𝑇𝑜𝑡𝑉𝑜𝑙
: 

 Π(%) = 1 − 𝑅𝑉𝑜𝑙𝐻𝑅𝑑𝐻𝑅𝐷𝐻𝑅 − 𝑅𝑉𝑜𝑙𝐿𝑅𝑑𝐿𝑅𝐷𝐿𝑅  (4) 
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 To illustrate the conditions that a negative bias (b < 0) is optimal it is useful to 

express the above equation in expectation form, replacing the ex-post indicators DHR 

and DLR with the corresponding probabilities: 

 E(Π) = 1 − 𝑅𝑉𝑜𝑙𝐻𝑅𝑑𝐻𝑅𝑝𝐻𝑅 − 𝑅𝑉𝑜𝑙𝐿𝑅𝑑𝐿𝑅𝑝𝐿𝑅  (5) 

 Expressing the odds as a function of 𝑝𝐻𝑅, b and v: 

 𝐸(𝑅Π) = 1 −
𝑝𝐻𝑅𝑅𝑉𝑜𝑙𝐻𝑅

(𝑝𝐻𝑅+𝑏)(1+𝑣)
−

(1−𝑝𝐻𝑅)(1−𝑅𝑉𝑜𝑙𝐻𝑅)

(1−𝑝𝐻𝑅)(1+𝑣)
  (6) 

 In Figure A. 1 in this section of the Appendix, we plot E(Π) for different values 

of b and RVolHR, setting 𝑝𝐻𝑅 = 0.79 and v = 0.05. From the top panel of Figure A. 1, 

starting with the black solid line where 𝑅𝑉𝑜𝑙𝐻𝑅 = 𝑝𝐻𝑅, we observe that E(Π) is inverse 

U-shaped, with a unique maximum at b = 0 equal to v. When 𝑅𝑉𝑜𝑙𝐻𝑅 < 𝑝𝐻𝑅, E(Π) 

increases as b decreases, and this relationship is steeper as RVolHR becomes smaller. 

Conversely, when 𝑅𝑉𝑜𝑙𝐻𝑅 > 𝑝𝐻𝑅, E(Π) decreases as b becomes smaller, and this 

relationship is steeper as RVolHR becomes larger.  

 In the bottom Panel of Figure A. 1, we plot the corresponding standard deviation 

of these profits, σ(Π). If 𝑅𝑉𝑜𝑙𝐻𝑅 = 𝑝𝐻𝑅, and b = 0 the bookmaker faces no risk. When 

𝑅𝑉𝑜𝑙𝐻𝑅 < 𝑝𝐻𝑅 a negative bias lowers σ(Π), whereas the opposite is true when 

𝑅𝑉𝑜𝑙𝐻𝑅 > 𝑝𝐻𝑅. 

 This analysis shows that bookmakers increase their expected profit by allowing a 

negative b only if punters under-bet the higher-ranked player (𝑅𝑉𝑜𝑙𝐻𝑅 < 𝑝𝐻𝑅). If, on 

the other hand, punters over-bet the higher-ranked player (𝑅𝑉𝑜𝑙𝐻𝑅 > 𝑝𝐻𝑅), then the 

bookmaker is better off by increasing b, receiving higher expected profits with lower 

standard deviation. 

[Insert Figure A. 1 here] 
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Hypothetical Odds 

 To calculate hypothetical profits HΠi in each GS match, we set πHR equal the 

fitted value from the logit model, 𝑝̂, (and πLR =1-𝑝̂), obtain the new hypothetical odds 

as per equations (1) and (2) from the previous section in the Appendix, HOHR,i and 

HOLR,i, and calculate the hypothetical profits, HΠ following equation (4) in Section 

III.D of the paper. 

 However, before we use the hypothetical odds to determine profits we need to 

consider how changing the odds would influence RVol in this counterfactual scenario. 

To obtain an estimate for the hypothetical RVolHR we use the model below, estimated 

using the betting exchange data for GS matches: 

𝑅𝑉𝑜𝑙𝐻𝑅,𝑖 = 𝛼 + 𝛽𝑂𝐻𝑅,𝑖 + 𝜖𝑖 

 We find that α is equal to 1.43 and β is equal to -0.42, both highly statistically 

significant. This shows that when the odds on the higher-ranked player increase (i.e., 

when he becomes less of a favorite), RVolHR decreases. This result reflects the 

preference of punters to bet on the favorite (e.g., Levitt, 2004). We obtain the 

hypothetical RVolHR for each GS match by calculating 𝛼̂ + 𝛽̂𝐻𝑂𝐻𝑅,𝑖. We use 

hypothetical volumes and odds, and the actual game outcomes (as indicated by DHR) to 

calculate profits in this counterfactual scenario using equation (4) in Section III.D of 

the paper. 
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APPENDIX C. LABORATORY EXPERIMENT 

Instructions and Procedures 

 In this section, we include the full-instructions seen by the students, shown below. 

The statements in brackets in italics are clarifying additions, not seen by the students. 

Welcome to the experiment!  

 This experiment is about predicting the outcome of professional tennis matches. 

The matches that you will be predicting in this session are matches that will be played 

at the ATP 1000 Masters event that is happening right now in Rome. The winner is 

decided in a best-of-three-set match. Before moving to the predictions please answer 

the questions below. For each of the quiz questions in Section 3 that you answer 

correctly you will receive an additional 50 pence (£0.50) at the end of the session.  

 [For the second session, the second and third sentence where replaced with: The 

matches that you will be predicting in this session are matches that will be played at the 

French Open that is happening right now in Paris. The winner is decided in a best-of-

five-set match.] 

 [Students then provided the following information: Name, student ID, and Degree 

title.] 

 [Students then were asked to circle the answer that most applied to them in 

relation to the statement “I follow tennis closely”, from “strongly agree” to “strongly 

disagree” (5 levels)] 

 [Students then answered 4 tennis related trivia questions, like “How many Grand 

Slam titles has Roger Federer won?] 

 [Students then proceeded to the next part of the instructions] 

About probabilities 
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 For each match we will tell you the players involved and their corresponding 

rankings. Your task is to think how likely each player is to win the match, and express 

this likelihood as a probability between 0% and 100%. Of course, we do not know yet 

the outcome of the match, so there is uncertainty.  

 To provide you with some background about probabilities, suppose we have a 

normal six-sided die, and you want to calculate the probability of rolling the die and 

getting a three (3). To calculate this probability you need to count how many outcomes 

lead to a “win”, and divide that by how many outcomes are possible. In this case, a win 

occurs with only one outcome, which is to roll the die and get a three (3). There are six 

(6) possible outcomes (numbers 1 to 6) and, therefore, the probability of rolling a three 

(3) in one roll is 1/6 (or roughly 17%). If instead you want to calculate the probability 

of rolling the die and getting an even number (2, 4, 6), then this probability is higher 

because you win with three outcomes instead of one, therefore the probability of 

winning in one roll is 3/6 (or 50%).  

 A similar logic can be applied when thinking about probabilities of players 

winning a tennis match. For example, suppose that we have a match between players A 

and B. To calculate the probability of each player winning this match you need to 

estimate how many matches each player would win, if they hypothetically played 100 

matches in total. For example, suppose that you think that B is a better player than A, 

so B would win 70 matches out of 100 (and correspondingly A would win 30 matches 

out of 100). This means that your estimated probability of B winning the match is 

70/100 (or 70%) and of A 30/100 (or 30%).  

 Your task is to think along these lines for each match and provide your best 

estimate of the probability of each player winning the match. Note that the 
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probabilities you express for the two players in each match must equal to 100% 

when added together! (in the above example 70%+30%=100%)  

 Please note that in our analysis we will use your predictions in the experiment 

anonymously.  

 [Students first read the above silently, and then it is read aloud by the experiment 

asking for clarifying questions.] 

 [Students then proceeded to the next part of the instructions] 

How you will get paid for your predictions.  

 Apart from the money that you will be paid for showing up and for answering 

correctly the quiz questions, you will also be paid a performance-based payment. 

This payment will be based on the accuracy of your predictions using a procedure that 

is commonly used in economics experiments, known as the quadratic scoring rule.  

[Students received £0.5 for each quiz question answered correctly] 

 To illustrate how this works, let’s return to our hypothetical example between 

players A and B where your best guess of the probability that B wins is 70% (or 0.7). 

In this case, your payment would be calculated using the formula below:  

𝑃𝑎𝑦𝑚𝑒𝑛𝑡 = £13 − £13(𝐷 − 𝑝)2 

 The symbol p in the equation stands for your estimate of the probability that 

player B wins, in this case 0.7. D is an indicator, which takes the value of 1 if B has 

won the match, or 0 if A has won the match. Of course you do not know D when you 

make your choices, this will be revealed after the match is played and we know the 

winner. 
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 Assume, for example, that the match is now finished and player B has won. This 

means your prediction in this case was good in the sense that you assigned a higher 

probability to B winning. Your payment in this case would be: 

𝑃𝑎𝑦𝑚𝑒𝑛𝑡 = £13 − £13(1 − 0.7)2 = £13 − £13(0.3)2 = £13 − £1.17 = £11.83 

 [This equation is written on the board and explained by the experimenter, when 

he read the instructions aloud]  

 If you had assigned a higher probability to B winning, say 0.8, your payment 

would be even higher and equal to:  

£13 − £13(1 − 0.8)2 = £12.48 

 However, you need to be careful, because the higher the probability you give for 

B winning, the lower your payment will be if A wins. 

 For example, when your probability of B winning is 0.7, your payment if A wins 

is: 

£13 − £13(0 − 0.7)2 = £13 − £13(−0.7)2 = £13 − £6.37 = £6.63 

When your probability of B winning is 0.8, your payment if A wins is even lower:  

£13 − £13(0 − 0.8)2 = £13 − £13(−0.8)2 = £13 − £8.32 = £4.68 

In general, with this payoff scheme, the largest possible payment is £13, which you will 

receive if you assign a 100% chance to B wining, and B wins. However, if you choose 

to assign 100% probability to B but A wins, your payment will be the lowest possible, 

equal to £0.  

 Since your prediction is made before the match is played and therefore you do 

not know what will actually happen, the best thing you can do to maximize the 

expected payoff is to simply state what is your best guess for the probability that 
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B wins the match. Any other prediction will decrease the amount you can expect 

to earn. 

 You will assign probabilities to players for several matches, and at the end we 

will randomly choose one of these matches to calculate your performance payment. 

This random choice will be made in your presence, at the end of this session. Of course 

we won’t know the outcome of the match at the end of the session, so we will calculate 

your payment in a few days after the winner is announced. You will collect your 

performance-payment for this session after the second session of this experiment is 

completed. The details on how to collect your performance-based payment will be 

given to you at the end of the second session.  

 The second session will be held on Sunday 28th May at 10:00 a.m. 

 [Students first read the above silently, and then it is read aloud by the experiment 

asking for clarifying questions.] 

 [Students then proceeded to provide their choices for the different matches] 

 [When all the students finished, each student approached the experimenter 

individually to receive the show-up fee and to select the match that would determine 

their performance-related payoff. The performance-related payoff for the first session 

was paid at the end of the second session, and the performance related payment for the 

second session was paid a few days after the end of that session when the games were 

completed.] 

 [In our sessions we also asked students to make predictions for the women's 

matches in the corresponding tournaments, and found results that are in line with those 

in the paper for the betting exchange (i.e., Δbias > 0). To conserve space we do not report 

these results here, but they are available from the authors on request. The performance-
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based payment for each student in each session was calculated on the basis of one 

randomly selected match]. 
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TABLE I 

Observations by Tournament and Year 

Year 

Tournament 05 06 07 08 09 10 11 12 13 14 Total 

Panel A: Grand Slam (GS) 

Australian Open 111 112 111 114 112 112 108 108 117 99 1,104 

French Open 107 102 101 111 109 115 114 114 112 116 1,101 

US Open 109 108 107 117 109 109 104 114 108 109 1,094 

Wimbledon 105 107 98 101 103 107 107 108 105 108 1,049 

Other 6 6 1 0 0 0 0 0 0 0 13 

Total 438 435 419 443 433 443 433 444 442 432 4,361 

Panel B: Masters (MS) 

Cincinnati 57 59 47 43 46 45 47 51 46 51 492 

Hamburg 53 53 48 47 0 0 0 0 0 0 201 

Indian Wells 81 78 85 78 80 79 72 80 74 85 792 

Madrid 40 36 43 41 43 45 49 50 53 50 450 

Miami 75 69 77 79 81 79 77 82 73 76 768 

Monte Carlo 50 59 46 45 50 48 48 50 47 48 491 

Montreal 55 0 49 0 50 0 50 0 49 0 253 

Paris 37 38 43 38 41 43 41 42 43 40 406 

Rome 54 46 46 42 51 49 45 49 51 48 481 

Shanghai 0 0 0 0 44 47 48 52 49 50 290 

Toronto 0 51 0 52 0 47 0 44 0 51 245 

Total 502 489 483 465 486 482 477 500 485 499 4,869 

 Notes. This table shows a breakdown of the sample used in the analysis sorted by tournament and 

year. The data are retrieved from www.tennis-data.co.uk. Panel A contains data for Grand Slam (GS) 

matches which are played in a best-out-of-five format, and Panel B for ATP World Tour Masters 1000 

(MS) matches, which are played in a best-out-of-three format. We drop non-completed matches, matches 

with missing information or negative housetake, and matches where the higher-ranked player is indicated 

as an outsider by the odds even though he is ranked by at least 15 places higher than then lower-ranked 

player. Our final sample contains 9,230 matches from 2005-2014. 
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TABLE II 

Descriptive Statistics 

Variable Mean σ Min Q1 Median Q3 Max 

Panel A: GS 

HROdds 1.35 0.42 1.00 1.10 1.24 1.48 6.79 

LROdds 6.05 5.73 1.09 2.62 4.01 7.17 60.00 

Housetake 0.05 0.01 0.00 0.05 0.06 0.06 0.11 

HRRank 28 29 1 7 19 38 279 

LRRank 99 96 2 48 80 119 1,370 

𝑝̂  0.78 0.10 0.60 0.70 0.78 0.86 0.99 

πHR 0.74 0.15 0.14 0.64 0.76 0.87 0.98 

Prize Money ($) 2,525,000       

Panel B: MS 

HROdds 1.48 0.46 1.01 1.19 1.38 1.61 7.45 

LROdds 4.10 3.25 1.09 2.27 3.01 4.58 32.80 

Housetake 0.06 0.01 0.01 0.05 0.06 0.06 0.09 

HRRank 22 22 1 6 15 30 414 

LRRank 67 83 2 29 49 78 1,517 

𝑝̂  0.69 0.12 0.50 0.58 0.67 0.78 0.98 

πHR 0.68 0.15 0.13 0.59 0.69 0.79 0.97 

Prize Money ($) 790,000       

 Notes. This table shows descriptive statistics for the main variables used in our analysis. HROdds 

(LROdds) are the average decimal odds offered by the betting houses that the higher-ranked (lower-ranked) 

player wins a match. Housetake is the housetake, which is obtained by summing the inverse of the odds 

for the higher- and lower-ranked players and subtracting one. HRRank and LRRank are the rankings for the 

higher- and lower-ranked player, respectively. 𝑝̂ is the estimated "objective" probability, obtained from 

averaging the predicted values from the logit model shown in equation (1) for MS and GS. πHR is the 

subjective probability that the higher-ranked player wins the match, as derived from the bookmaker odds. 

The sample consists of 9,230 matches that satisfy the criteria outlined in Table I. The last row in the table 

shows the average prize money collected by the winner of an MS and a GS tournament using 2015 prize 

money. 
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TABLE III 

Likelihood that Higher-ranked Player Wins 

Variable (1) (2) (3) 

GS 0.095*** 0.072*** 0.069*** 

 (0.009) (0.009) (0.009) 

RSkill  0.122*** 0.124*** 

  (0.005) (0.005) 

Surface F.E. NO NO YES 

Year F.E. NO NO YES 

Round F.E. NO NO YES 

N 9,230 9,230 9,230 

pseudo-R2 0.010 0.071 0.072 

  Notes. This table presents results from logit models, where 

the dependent variable takes the value of 1 if the higher-ranked player 

has won the match, and 0 otherwise. GS is a dummy variable that 

equals 1 if the match is GS, and 0 otherwise. RSkill is calculated as 

the log (lower-ranked player ranking) - log (higher-ranked player 

ranking). The table reports marginal effects associated with each of 

the independent variables. The sample consists of 9,230 matches that 

satisfy the criteria outlined in Table I. The robust standard errors 

shown in brackets are calculated using the Huber-White estimator. *, 

**, *** indicate statistical significance at the 10%, 5%, and 1% levels, 

respectively. 
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TABLE IV 

Biases in Subjective Probabilities 

Panel A: Univariate 

 MS GS GS – MS 

π 0.681 0.743  

𝑝̂ 0.686 0.780  

bias -0.004 -0.037 -0.033*** 

   (0.002) 

N 4,869 4,361  

Panel B: Multivariate 

Variable (1) (2)  

GS -0.031*** -0.034***  

 (0.002) (0.002)  

RSkill -0.007*** -0.005***  

 (0.001) (0.001)  

Surface F.E. NO YES  

Year F.E. NO YES  

Round F.E. NO YES  

N 9,230 9,230  

R2 0.027 0.050  

  Notes. This table reports biases in subjective probabilities 

for GS and MS tennis matches. In Panel A, we present univariate 

analysis, and in Panel B multivariate analysis. In Panel A, π and 𝑝̂ 

denote the average subjective and the average (estimated) objective 

probabilities that the higher-ranked player wins an MS or a GS match. 

𝑝̂ is obtained by averaging the predicted values from the logit model 

shown in equation (1) for MS and GS, and π is derived from the 

average odds on the higher-ranked player to win the match offered by 

the bookmakers. bias is the average difference between π and 𝑝̂ for 

MS and GS. In Panel B, we present results from OLS regressions with 

an intercept. The dependent variable is bias and the independent 

variables are GS and RSkill, defined as in Table III. The sample 

consists of 9,230 matches from 2005 to 2014 that satisfy the criteria 

outlined in Table I. In Panel B, the robust standard errors shown in 

brackets are calculated using the Huber-White estimator. *, **, *** 

indicate statistical significance at the 10%, 5%, and 1% levels, 

respectively. 
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TABLE V 

Biases in Subjective Probabilities – Betting Exchange Data 

Panel A: Univariate 

 MS GS GS – MS 

π 0.701 0.764  

𝑝̂ 0.696 0.782  

bias 0.005 -0.018 -0.023*** 

   (0.003) 

N 2,751 2,142  

Panel B: Multivariate 

Variable (1) (2)  

GS -0.022*** -0.026***  

 (0.003) (0.003)  

RSkill -0.001 0.001  

 (0.001) (0.002)  

Surface F.E. NO YES  

Year F.E. NO YES  

Round F.E. NO YES  

N 4,893 4,893  

R2 0.010 0.023  

Notes. This table reports biases in subjective probabilities for 

GS and MS tennis matches. The analysis in Panel A and in Panel B for 

columns (1) and (2) is the same as in Table IV. We drop non-completed 

matches, matches with missing information or housetake greater than 

0.05, and matches which do not satisfy criterion (ii) in Section II.A of the 

paper. The sample consists of 2,751 MS matches and 2,142 GS matches 

from 2009-2014. In Panel B, the robust standard errors shown in brackets 

are calculated using the Huber-White estimator. *, **, *** indicate 

statistical significance at the 10%, 5%, and 1% levels, respectively. 
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TABLE VI 

Bookmaker Profits 

Variable 
rHR 

(1) 

rLR 

(2) 

Π 

(3) 

ΗΠ 

(4) 

ΗΠ - Π 

(4) – (3) 

MS 0.046*** 0.101*** 0.051***   

 (0.013) (0.031) (0.007)   

 2,745 2,745 2,745   

GS 0.013 0.278*** 0.025*** 0.051*** 0.025*** 

 (0.013) (0.039) (0.007) (0.007) (0.005) 

 2,142 2,142 2,142 2,142  

Δ(GS - MS) -0.031* 0.178*** -0.026**   

 (0.019) (0.050) (0.010)   

 Notes. This table reports average values for different metrics of profitability using bookmaker 

odds. The top row shows the variable analyzed. rHR and rLR are the per unit profit earned by the 

bookmaker for the higher- and lower-ranked player, respectively, and is calculated using equation 

(3). Π is an estimate of the actual profit earned by the bookmakers, using volume information from 

the betting exchange, and is calculated using equation (4). ΗΠ is the average hypothetical profit 

earned by bookmakers for GS matches, in a hypothetical world where for each GS match 

bookmakers raised their subjective probability on the higher-ranked player and set equal to 𝑝̂ from 

the logit model. The procedure used for this test is explained in Appendix B. The final column 

presents the difference between ΗΠ and Π for GS matches. Δ(GS – MS) shows the difference 

between MS and GS. The standard errors are shown in brackets. *, **, *** indicate statistical 

significance at the 10%, 5%, and 1% levels, respectively. 
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TABLE VII 

Likelihood that Higher-ranked Player Wins – Women’s Data 

 Panel A: Bookmaker Panel B: Betting Exchange 

 (1) (2) (3) (4) 

GS 0.043*** 0.017 0.028* 0.004 

 (0.012) (0.011) (0.015) (0.015) 

RSkill  0.128***  0.123*** 

  (0.006)  (0.008) 

Surface F.E. NO YES NO YES 

Year F.E. NO YES NO YES 

Round F.E. NO YES NO YES 

N 6,151 6,151 3,684 3,684 

R2 0.002 0.065 0.001 0.060 

 Notes. This table presents results from logit models, where the dependent variable takes the value 

of 1 if the higher-ranked player has won the match, and 0 otherwise. All variables are defined as in Table 

III and Table IV. In columns (1) and (2), we estimate subjective probabilities using the bookmaker odds, 

and in columns (3) and (4) using the betting exchange odds. The robust standard errors shown in brackets 

are calculated using the Huber-White estimator. *, **, *** indicate statistical significance at the 10%, 

5%, and 1% levels, respectively. 
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TABLE VIII 

Biases in Subjective Probabilities – Women’s Data 

 Panel A: Bookmaker Panel B: Betting Exchange 

 (1) (2) (3) (4) 

GS 0.001 0.003 0.016*** 0.016*** 

 (0.002) (0.003) (0.004) (0.003) 

RSkill -0.008*** -0.008*** -0.000 -0.000 

 (0.001) (0.001) (0.002) (0.002) 

Surface F.E. NO YES NO YES 

Year F.E. NO YES NO YES 

Round F.E. NO YES NO YES 

N 6,151 6,151 3,684 3,684 

R2 0.007 0.017 0.005 0.008 

 Notes. This table reports biases in subjective probabilities for GS and MS women's tennis 

matches, presenting results from OLS regressions that include an intercept. The dependent variable is 

bias and the independent variables are GS and RSkill, defined as in Table IV. In columns (1) and (2), we 

present results when subjective probabilities are derived from the bookmaker odds, and in columns (3) 

and (4) when subjective probabilities are derived from the betting exchange odds. The robust standard 

errors shown in brackets are calculated using the Huber-White estimator. *, **, *** indicate statistical 

significance at the 10%, 5%, and 1% levels, respectively. 
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TABLE IX 

Robustness Checks 

Variable (1) (2) (3) (4) (5) (6) 

Panel A: Bookmaker 

GS -0.034*** -0.030*** -0.042*** -0.024*** -0.030***  

 (0.002) (0.009) (0.002) (0.003) (0.000)  

RSkill -0.002* -0.007* -0.004 -0.007***  -0.003** 

 (0.001) (0.004) (0.001) (0.001)  (0.001) 

RStreak    -0.017***   

    (0.004)   

ROdds     -0.001***  

     (0.000)  

RSkill x GS      -0.010*** 

      (0.001) 

N 9,230 9,230 8,290 6,362 10,266 9,230 

R2 0.048 0.003 0.058 0.069 0.533 0.038 

Panel B: Betting Exchange 

GS -0.026*** -0.021* -0.028*** -0.024*** -0.028***  

 (0.003) (0.012) (0.004) (0.004) (0.001)  

RSkill 0.003** 0.002 0.007*** 0.005**  0.005*** 

 (0.002) (0.005) (0.002) (0.002)  (0.002) 

RStreak    -0.020***   

    (0.006)   

ROdds     0.0002***  

     (0.000)  

RSkill x GS      -0.007*** 

      (0.001) 

N 4,893 4,893 4,164 3,524 5,406 4,893 

R2 0.023 0.005 0.074 0.078 0.259 0.051 

 Notes. This table reports various robustness checks. In column (1), we estimate the objective 

probability by sorting the sample for each format by RSkill in deciles, and obtaining the frequency that 

the higher-ranked player wins in each decile, pHR. We then calculate bias as π - pHR. In column (2), we 

estimate bias as π - D, where D is a dummy that equals 1 if the higher-ranked player has won the match 

and 0 otherwise. In column (3), we estimate 𝑝̂ with a logit model that uses only backward-looking 

information (i.e., for matches in 2006 we use observations in 2005, for matches in 2007 we use 

observations in 2005 and 2006, etc.). In column (4), we add RStreak as an additional control variable, 

calculated as the difference in the proportion of matches won by the higher- and lower-ranked players in 

the previous two tournaments. In column (5), we define the higher-ranked player based on odds, and in 

column (6), we test our hypothesis by interacting GS with RSkill. More details for these tests are provided 

in Section III.F of the paper. All models include an intercept term and surface, year, and round fixed 

effects. In Panel A, we derive subjective probabilities using bookmaker odds and in Panel B using betting 

exchange odds. The robust standard errors shown in brackets are calculated using the Huber-White 

estimator. *, **, *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively. 
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TABLE X 

Alternative Explanations 

Variable (1) (2) (3) 

 α=0.928 α=0.65  

Panel A: Bookmaker 

GS -0.033*** -0.036*** -0.018*** 

 (0.002) (0.003) (0.002) 

RSkill -0.004*** -0.008*** -0.007*** 

 (0.001) (0.001) (0.001) 

N 9,230 9,230 9,230 

R2 0.047 0.044 0.054 

Panel B: Betting Exchange 

GS -0.026*** -0.032*** -0.012*** 

 (0.003) (0.004) (0.002) 

RSkill 0.001 -0.006*** 0.002* 

 0.002 (0.002) (0.001) 

N 4,893 4,893 4,893 

R2 0.022 0.028 0.018 

 Notes. This table presents estimates from OLS models that include an intercept term and surface, 

year, and round fixed effects. The dependent variable in all models is bias, which is however derived 

from different expressions for the subjective probabilities. In columns (1) and (2), we adjust subjective 

probabilities assuming the probability weighting function in Prelec (1998), using two different values for 

the probability weighting parameter (α). In column (3), we calculate bias using single-stage probabilities 

for GS and MS tennis matches, using equations (5) and (6) in Section III.F.II. *, **, *** indicate 

statistical significance at the 10%, 5%, and 1% levels, respectively. 

 

 



55 

 

TABLE XI 

Laboratory Experiment 

Panel A: Univariate 

 MS GS GS – MS 
 

π 0.666 0.698   

𝑝̂ 0.666 0.730   

bias 0.000 -0.032 -0.032**  

   (0.007)  

N 459 1,071   

Panel B: Multivariate 

Variable (1) (2) (3) (4) 

GS -0.032** -0.033** -0.033** -0.033** 

 (0.012) (0.012) (0.012) (0.012) 

RSkill  0.003 0.003 0.003 

  (0.007) (0.007) (0.007) 

Pay   0.009**  

   (0.004)  

Subject FE NO NO NO YES 

N 1,530 1,530 1,530 1,530 

R2 0.012 0.013 0.050 0.325 

 Notes. This table reports biases in subjective probabilities for GS and MS men’s tennis matches, 

presenting results from OLS regressions that include an intercept. The dependent variable is bias and the 

independent variables are GS and RSkill, defined as in Table III. Subjective probabilities, π, were obtained 

from a laboratory experiment, where 17 subjects expressed probabilities for 97 professional men's tennis 

matches, 33 played in an MS format and 64 played in a GS format. Objective probabilities,𝑝̂, where 

obtained using the logit model in equation (1) in Section II.B of the paper, when fitted to these matches. 

RSkill is calculated as in the previous tables. Pay is the amount of money (in £’s) won by the subject after 

the end of the first experimental session. The experiments were conducted at the University of Surrey, 

and included students who where involved in the Tennis Society. We incentivized students’ choices using 

the quadratic scoring rule, and used the random lottery procedure to determine the payment. Details on 

our experimental procedures and descriptive statistics are shown in Appendix C. In both panels, the 

standard errors shown in brackets are clustered on the subject level. *, **, *** indicate statistical 

significance at the 10%, 5%, and 1% levels, respectively. 
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TABLE XII 

 Biases in Football, Soccer and Basketball 

 Football Soccer Basketball 
Equality F-Test 

(p-value) 

π 0.677 0.800 0.797  

𝑝𝐻𝑅 0.649 0.783 0.802  

bias 0.028 0.017 -0.004 0.000 

     

N 1,108 163,583 10,042  

Notes. This table reports biases in subjective probabilities for football, soccer, and basketball matches. 

The data for this test were obtained directly from Betfair. We retain the last odds posted on each outcome 

before the match begins (indicated as out of play). We drop matches where the absolute value of the 

housetake is greater than 0.05. Our final sample consists of 1,108 football matches, 163,583 soccer 

matches and 10,042 basketball matches, for the period 2004-2016. To calculate bias, we follow the 

procedure in column (1) of Table IX, ranking all matches in each sport into deciles according to the 

difference in the odds (because football has three possible outcomes, we take the difference between the 

most and least favorite outcome). We use the proportion of times that the favorite outcome materializes 

in each decile as the estimate for the objective probability. In the last column, we present the p-value from 

an F-test that examines whether bias is equal across the three sports. 
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FIGURE I 

Probabilities in MS vs GS 

 This figure depicts average objective probabilities (blue bars) and average subjective probabilities 

(red bars) for MS and GS matches. 
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FIGURE II 

Factors Affecting Probabilities in the Lab Experiment 

 This chart shows the factors that subjects considered when assigning probabilities in the 

experiment. Subjects were asked to rank factors according to how significant they were for their 

expectations. The red bar indicates how often subjects’ indicated a specific factor as their first choice. 

The blue bar indicates how often subjects listed a specific factor in any of their choices. 
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TABLE A. 1 

Descriptive Statistics – Men’s Betting Exchange Data 

Variable Mean σ Min Q1 Median Q3 Max 

Panel A: GS 

HROdds 1.39 0.49 1.01 1.09 1.26 1.52 8.60 

LROdds 10.06 14.25 1.12 2.84 4.70 10.50 100.00 

Housetake 0.01 0.01 0.00 0.00 0.01 0.01 0.05 

HRRank 27 29 1 7 18 36 285 

LRRank 96 91 2 45 78 118 1,120 

TotVol 240 450 4 44 86 210 6,200 

RVol 0.86 0.20 0.02 0.85 0.94 0.97 1.00 

𝑝̂  0.78 0.11 0.58 0.70 0.79 0.87 0.99 

πHR 0.76 0.17 0.12 0.65 0.79 0.91 0.99 

Panel B: MS 

HROdds 1.52 0.54 1.01 1.21 1.40 1.66 9.00 

LROdds 5.69 7.37 1.12 2.46 3.40 5.60 90.00 

Housetake 0.01 0.01 0.00 0.00 0.01 0.01 0.05 

HRRank 21 23 1 5 14 29 414 

LRRank 64 74 2 27 47 77 1,171 

TotVol 170 220 2.3 39 84 200 2,200 

RVol 0.82 0.23 0.02 0.81 0.91 0.96 1.00 

𝑝̂  0.70 0.13 0.50 0.59 0.69 0.80 0.99 

πHR 0.70 0.16 0.11 0.60 0.71 0.82 0.99 

 Notes. This table shows descriptive statistics for the main variables used in the analysis with the 

betting exchange data. The variables are defined in Table II. TotVol is the total volume that backs the 

higher-ranked player ($000's), and RVol is the proportion of the total volume bet in the match on both 

players that backs the higher-ranked player. πHR is the subjective probability that the higher-ranked player 

wins the match, as derived from the betting exchange odds. We drop non-completed matches, matches 

with missing information or housetake greater than 0.05, and matches which do not satisfy criterion (ii) 

in Section II.A. The sample consists of 2,751 MS matches and 2,142 GS matches from 2009-2014. 
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TABLE A. 2 

Descriptive Statistics – Women’s Bookmaker Data 

Variable Mean σ Min Q1 Median Q3 Max 

Panel A: GS 

HROdds 1.38 0.46 1.01 1.12 1.27 1.51 9.40 

LROdds 5.17 4.05 1.06 2.55 3.71 6.34 35.40 

Housetake 0.06 0.01 0.00 0.05 0.06 0.06 0.08 

HRRank 28 27 1 8 19 38 252 

LRRank 94 84 2 49 80 113 1,208 

𝑝̂  0.75 0.11 0.55 0.65 0.74 0.83 0.98 

πHR 0.73 0.15 0.10 0.63 0.74 0.85 0.97 

Prize Money ($) 2,525,000       

Panel B: MS 

HROdds 1.46 0.42 1.01 1.19 1.36 1.59 5.47 

LROdds 3.91 2.52 1.14 2.31 3.13 4.51 22.00 

Housetake 0.06 0.01 0.02 0.05 0.06 0.06 0.09 

HRRank 24 25 1 7 16 35 248 

LRRank 73 83 2 32 54 86 1,132 

𝑝̂  0.70 0.11 0.53 0.60 0.69 0.79 0.98 

πHR 0.69 0.14 0.17 0.59 0.70 0.79 0.96 

Prize Money ($) 665,000       

 Notes. This table shows descriptive statistics for the main variables used in the analysis of the 

women bookmaker data. The variables and the sample construction criteria are defined as in Table II. 

The sample consists of 2,527 MS matches and 3,624 GS matches from 2007 to 2014. 

.
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TABLE A. 3 

Descriptive Statistics – Women’s Betting Exchange Data 

 

Variable Mean σ Min Q1 Median Q3 Max 

Panel A: GS 

HROdds 1.44 0.54 1.01 1.15 1.33 1.57 11.50 

LROdds 6.88 8.62 1.09 2.68 3.90 7.20 100 

Housetake 0.01 0.01 0.00 0.01 0.01 0.01 0.05 

HRRank 27 27 1 8 19 37 252 

LRRank 92 82 2 48 79 113 1,208 

TotVol 120 250 0.4 19 43 110 2,900 

RVol 0.85 0.21 0.01 0.84 0.93 0.97 1.00 

𝑝̂  0.74 0.11 0.55 0.65 0.73 0.82 0.97 

πHR 0.73 0.16 0.09 0.63 0.75 0.86 0.99 

Panel B: MS 

HROdds 1.52 0.47 1.02 1.24 1.41 1.67 6.20 

LROdds 4.56 4.18 1.17 2.44 3.30 4.80 46.00 

Housetake 0.01 0.01 0.00 0.01 0.01 0.01 0.05 

HRRank 24 24 1 7 16 35 217 

LRRank 71 77 2 32 53 82 1,004 

TotVol 56 82 0.4 13 26 59 690 

RVol 0.82 0.23 0.02 0.79 0.91 0.96 1.00 

𝑝̂  0.71 0.11 0.54 0.61 0.70 0.79 0.97 

πHR 0.69 0.15 0.16 0.59 0.70 0.80 0.98 

 Notes. This table shows descriptive statistics for the main variables used in the analysis of the 

women’s betting exchange data. The variables are defined in Table II. TotVol is the total volume that 

backs the higher-ranked player ($000's), and RVol is the proportion of the total volume bet in the match 

on both players that backs the higher-ranked player. πHR is the subjective probability that the higher-

ranked player wins the match, as derived from the betting exchange odds. We drop non-completed 

matches, matches with missing information or housetake greater than 0.05, and matches which do not 

satisfy criterion (ii) in Section II.A. The sample consists of 1,425 MS matches and 2,259 GS matches 

from 2009-2014. 
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TABLE A. 4 

Descriptive Statistics – Laboratory Experiment 

Variable Mean σ Min Q1 Median Q3 Max 

Panel A: Participants (N=17) 

Knowledge 3.65 1.06 1 4 4 4 5 

% Correct  65 30 13 50 63 88 100 

Payment (£’s) 44.23 3.76 33.52 43.29 44.81 46.62 49.18 

Panel B: GS 

HRRank 41 31 1 17 33 59 129 

LRRank 125 82 37 70 98 153 463 

𝑝̂  0.73 0.10 0.59 0.63 0.75 0.79 0.95 

πHR 0.70 0.17 0.20 0.60 0.70 0.80 1.00 

Panel C: MS 

HRRank 31 21 1 14 29 50 76 

LRRank 83 86 21 32 52 87 403 

𝑝̂  0.67 0.10 0.56 0.58 0.63 0.72 0.93 

πHR 0.67 0.17 0.10 0.55 0.65 0.80 1.00 

 Notes. This table shows descriptive statistics for the sample generated in the laboratory 

experiment. 17 subjects participated, who made choices for 33 MS matches and 64 GS matches. The GS 

matches were all first-round matches. The MS matches contained 7 qualifying matches, 17 first round 

matches and 9 second round matches. For each of the second-round matches, we asked students to make 

assessments for each of all possible combinations that could have resulted from the first round matches, 

which were unknown at the time that the MS session was held. The qualifying matches and the second 

round matches were included to increase the MS sample. In Panel A, Knowledge is the self-reported 

knowledge of subjects in tennis (1 to 5), % Correct is the percentage of correct answers given to the 

tennis quiz questions (8 in total), and Payment is the total payment collected by subjects for both sessions. 
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FIGURE A. 1 

Expected Profit and Bias 

 This figure in the top panel depicts expected profits (Y-axis) for different levels of bias (X-axis), 

following the procedure explained in Appendix B. The figure in the bottom Panel depicts the 

corresponding standard deviations. 
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