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Abstract 

In this paper, we examine the existence and stability of the long-run equilibrium relation 

between the price of credit risk in the stock and CDS markets for a sample of non-financial 

iTraxx Europe companies during the 2004-2014 period. We show that standard cointegration 

tests with no breaks frequently fail to detect cointegration. Once we formally account for the 

breaks in the cointegrating vector, we are able to detect cointegration over the entire sample 

period for the vast majority of the companies considered. An application of these results to 

CDS-equity trading shows that the profitability of traditional trading strategies crucially 

depends on the presence of cointegration and on the stability of the cointegrating vector. 
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1. Introduction  

Information on the credit risk of a particular company should be incorporated into the 

price of its credit-sensitive claims, such as bonds, credit default swaps (CDS) or stocks. This 

is the primary reason why understanding the interconnectedness between the credit and 

equity markets became relevant to regulators and market participants. On the one hand, 

financial regulators have put credit-sensitive markets under increased scrutiny since the onset 

of the recent global financial crisis. A special focus has been placed on the largely 

unregulated and opaque CDS market, which has been blamed for fomenting financial 

instability and creating systemic risk (Cont 2010; Stulz 2010; Augustin et al. 2016). Against 

this backdrop, it became crucial to determine which of these markets incorporates first the 

information regarding credit risk (i.e., which of these markets leads in price discovery). On 

the other hand, market participants began to exploit market inefficiencies in the CDS and 

equity markets in order to profit from mispricing between the debt and equity of the same 

underlying reference entity (Yu 2006; Duarte et al. 2007). This trading strategy, popularly 

known as capital structure arbitrage (CSA), exploits short-term deviations but asks that 

markets ultimately converge in their opinion regarding the credit risk.
1
 In either case, drawing 

inferences on the information revelation and pricing efficiency needs to be based on the prior 

examination of the existence and stability of the long-run equilibrium relation. Formal 

analysis of this question, however, was neglected in the previous literature. In this paper, we 

fill this gap. 

If credit risk is priced equally in the stock and CDS markets in the long-run, then 

these markets should be cointegrated, and the common factor can be considered the implicit 

efficient price of credit risk. Although the literature on the CDS-equity relation is wide, 

surprisingly, only a couple of studies incorporate the long-run equilibrium relation in the 

                                                           
1
 In other words, CSA is implicitly based on the assumption that there exists a long-run equilibrium between the 

stock and CDS markets. 
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analysis.
2
 The vast majority of the studies focus instead on the short-term dynamics and 

information revelation by investigating lead-lag relations between changes in CDS spreads 

and stock returns under the vector autoregressive specification (Longstaff et al. 2003; Norden 

and Weber 2009; Trutwein and Schiereck 2011; Hilscher et al. 2015; Marsh and Wagner 

2016; Tolikas and Topaloglou 2017). The long-run equilibrium relation between the stock 

and CDS markets was taken into account in Forte and Peña (2009), Narayan et al. (2014), 

Forte and Lovreta (2015) and Kryzanowski et al. (2017). However, these studies as well 

primarily focus on the short-term dynamics and time variation of the relative market 

contributions to price discovery while being silent about the nature of the long-run dynamics.  

In this paper, contrary to previous research, we focus exclusively on the long-run 

equilibrium relation between the price of credit risk in the stock and CDS markets and its 

stability over time. We provide empirical evidence on the long-run dynamics by considering 

not only the standard Johansen and Engle-Granger cointegration tests but also the 

econometric techniques of Gregory and Hansen (1996 a,b), Johansen et al. (2000) and Qu 

(2007) which allow us to formally test the presence of structural breaks in the cointegrating 

vector. Previous empirical evidence on this issue is rather scarce and limited to the standard 

cointegrating vector with no breaks. Kryzanowski et al. (2017), for example, estimate weekly 

vector error correction model (VECM) on a firm-specific basis but do not analyze the 

presence of cointegration. Narayan et al. (2014) consider panel cointegration but all reported 

trace statistics point out to the full rank (i.e. two cointegrating vectors within two-

dimensional system).
3
 Forte and Peña (2009), for the 2001-2003 period, find statistical 

                                                           
2
 This is in contrast with the bond and CDS markets which have been commonly related within the cointegrating 

framework in the academic literature (Blanco et al., 2005; Zhu, 2006; Baba and Inada, 2009; Norden and 

Weber, 2009; Forte and Peña, 2009; Coudert and Gex, 2013; Arce et al., 2013). 
3
 Narayan et al. (2014), however, directly relate stock prices and CDS spreads within the cointegrating 

framework. Strictly speaking, such a relation is not theoretically grounded in one underlying efficient economic 

variable. Kryzanowski et al. (2017) stress out that from a theoretical point of view the stock and CDS markets 

can be linearly related through three possible economic variables: unlevered firm’s asset value (implied in the 

stock and CDS markets), equity (observable in the stock and implied in the CDS market), and credit risk 

(implied in the stock and observable in the CDS market).   
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evidence of cointegration for 23.5% of their sample of companies at a 5% significance level. 

Along the same line, Forte and Lovreta (2015) consider a longer time period, 2002-2008, and 

find evidence of cointegration between the stock and CDS markets for 55.4% of their sample 

at a 5% significance level. We hypothesize that this relatively low percentage of detected 

cointegrating relationships might be the result of the presence of structural breaks in the data. 

Namely, it has been shown in the literature that structural breaks may bias the results of 

conventional cointegrating tests (Gregory et al. 1996; Kim 2003; Qu 2007). Standard 

cointegration tests have ‘non-cointegration’ as the null hypothesis and assume that under an 

alternative hypothesis, the cointegrating vector is time-invariant. If there is a change in the 

cointegrating vector, then these tests will not be appropriate; they may falsely fail to reject the 

null hypothesis and therefore falsely conclude that there is no long-run relationship.  

To be able to relate these two markets within the cointegrating framework, we need 

one homogeneous and comparable measure of credit risk. In the CDS market, credit risk is 

explicitly traded, and CDS spread (i.e., the fee that the buyer of the credit protection pays to 

the seller) serves as the market observable proxy for the “pure” credit spread. In the case of 

the stock market, we follow Forte and Peña (2009), Forte and Lovreta (2015) and 

Kryzanowski et al. (2017) and use stock market implied credit spreads (ICS) derived by 

means of the structural credit risk model. As discussed in Forte and Peña (2009), the 

functional relationship between stock prices and credit spreads is highly non‐linear and must 

be accounted for in the analysis. That is, a cointegrating relationship cannot be theoretically 

justified if the stock prices instead of ICS are considered.
4
 Given that we relate the stock and 

CDS markets in a dynamic framework, we essentially utilize the structural credit risk model 

to non-linearly transform stock prices into credit spreads. Consequently, as long as the main 

parameters of the model remain constant, the main contributor to change in ICS will be 

                                                           
4
 Forte and Peña (2009) provide an intuitive example “if both equity capital and debt levels double during a 

given period. Other things being equal, CDS, ... and ICS should exhibit a stable pattern .... Stock prices, on the 

contrary, will show twice their original value”. 
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precisely the change in the equity price (Yu 2006; Forte and Peña 2009). In this paper, we 

utilize the CreditGrades structural credit risk model, considered to be an industry benchmark 

in quantifying credit risk and implementing capital structure arbitrage (Yu 2006; Duarte et al. 

2007; Cao et al. 2011).  

We contribute to the existing literature in several ways. First, we provide empirical 

evidence that the CDS and ICS series are cointegrated over the entire 2004-2014 period for 

the vast majority of the companies considered. Second, we show that the failure to detect 

cointegration is largely due to the presence of structural breaks in the cointegrating vector. 

Utilizing the standard Johansen cointegration test, we find supporting evidence of 

cointegration for only 31.7% of the sample. Once we allow structural breaks in the 

parameters of the cointegrating vector using the Johansen et al.’s (2000) procedure, the 

percentage of companies for which we detect the presence of cointegration rises to 76.2%. 

Moreover, the ‘strong’ evidence of cointegration is supported by at least one of the five 

considered econometric tests for as much as 88.9% of the sample, suggesting that credit risk 

is priced equally in the stock and CDS markets in the long-run. Third, we provide evidence 

that the absolute majority of detected breaks falls in the 2007-2008 period, which coincides 

with the onset of the global financial crisis. However, commonly exogenously imposed break 

dates in the empirical analysis—June 2007 and the Lehman Brothers collapse in September 

2008—are not among the most frequent ones. None of the breaks fall in September 2008, and 

only 0.6% of the statistically significant structural breaks fall in June 2007. Finally, to 

provide some recommendations for traders, we study the implications of our results on the 

capital structure arbitrage trading and provide evidence that the presence of cointegration is 

the primary requirement for successful trading strategy. We report high annualized Sharpe 

ratios for companies with cointegrated CDS and ICS spreads as opposed to a low profitability 

of trading pairs that lack evidence of cointegration. Moreover, we show that the profitability 
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of CDS-equity trading based on traditional trading strategies depends not only on the 

presence of cointegration but also on the stability of the cointegrating vector. For traditional 

trading strategies, based on pricing errors, we report higher Sharpe ratios for companies with 

no breaks in the cointegrating vector. This difference, however, disappears if the trading 

strategy is based on cointegrating residuals instead.  

The remainder of the paper is structured as follows. Section 2 describes the CDS and 

ICS data. Section 3 presents and applies the econometric methodology of cointegration under 

the presence of a structural break. Section 4 applies the main results to the capital structure 

arbitrage trading, and Section 5 concludes. 

2. Data Set 

2.1  Credit default swaps  

The single-name CDS represents a type of bilateral insurance contract that transfers 

the credit risk of an underlying reference entity from the buyer to the seller. The buyer of the 

protection pays the seller a periodic premium, called a CDS spread, as compensation for 

protection against the default of the particular reference entity (the premium leg). In the case 

of default, the contract terminates, and the seller of the protection pays the difference between 

the par value and the recovery value of the reference obligation to the buyer (the default leg). 

At the time the contract is initiated, the CDS spread is set so that the present value of the 

premium leg equals the present value of the default leg. The CDS spread is therefore a 

directly observable market measure of credit spread. Moreover, not only the CDS market 

allows credit risk to be explicitly traded but is also shown to be less affected by non-default 

factors than the bond market (Longstaff et al. 2005).  

In this paper, we use a sample of non-financial companies that belong to the iTraxx 

Europe index, which we track during the period that spans from January 2004 to December 

2014. The iTraxx Europe index comprises the most liquid 125 CDS-referencing European 
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investment-grade companies. We exclude all companies in the banking and financial sector 

due their different capital structure. Additionally, we exclude all companies for which we 

lack data on either market capitalization or CDS spreads for the overall sample period (for 

example, acquired or delisted companies). Data on CDS spreads are downloaded from 

Datastream. For the purposes of this study, we consider only the most liquid Euro-

denominated 5-year CDS contracts on senior unsecured debt. 

After the initial filtering, we are left with a sample of 75 actively traded names. The 

final sample is homogeneous—that is, all companies are tracked during the entire 2004-2014 

period. In this way, we avoid the possibility of obtaining spurious results due to changes in 

the sample composition over time. Table 1 reports the main characteristics of the companies 

in the sample. The average company in the sample has a market capitalization of €23 billion, 

leverage of 0.54, and a historical equity volatility of 30%. The complete list of companies 

considered is provided in Appendix A. 

<Table 1 about here> 

2.2  Stock market implied credit spreads 

 Structural credit risk models provide a theoretical relationship between credit spreads 

and equity price. This class of models derives from the seminal work of Merton (1974) and is 

based on the idea that both equity and debt can be considered contingent claims on the 

underlying driving state variable, i.e., the firm’s asset value. Default occurs the first time a 

firm’s asset value reaches the default barrier, defined as the amount of the firm’s asset that 

remains in the case of default. In this paper, we rely on the CreditGrades structural credit risk 

model, jointly developed by Deutsche Bank, Goldman Sachs, JP Morgan and RiskMetrics 

Group and commonly used by market participants to quantify credit risk (Yu 2006; Cao et al. 

2011).  
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Under the CreditGrades model, the firm’s asset value is assumed to evolve according to the 

geometric Brownian motion with zero drift: 

   
  

       (1) 

where    is the firm’s asset value at time t,   is the asset volatility, and    is the standard 

Brownian motion. The default barrier is defined as a log-normally distributed random 

variable and is given by 

            
     (2) 

where   is a random global recovery rate on all liabilities of the firm with mean         

and standard deviation             ,   is a standard normal random variable, and D is the 

firm’s debt.  

 The CreditGrades model provides closed-form solutions for the survival probability 

and the credit spread. The survival probability up to time t,     , is given by 

        
  
 
 
     

  
      

  
 
 
     

  
    (3) 

where      is the cumulative normal distribution function, and 

  
  

   
  

 
  

  
          

The credit spread, c, that makes the value of a CDS contract with maturity t equal to 0 

is equal to 

                  
                       

                              
   (4) 

where r is the risk-free interest rate, R is the recovery on a specific debt issue that constitutes 

the underlying asset for the CDS,        , and function G is given by 
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with             . 

 Finally, CreditGrades relates the asset volatility ( ) and equity volatility (  ) using the 

linear approximation of the firm’s asset value,        , where   is the market value of 

equity. This assumption implies that asset volatility can be calculated by applying the gearing 

ratio,          , to the reference equity volatility (  
 ). For a detailed description of the 

CreditGrades model, see Finkelstein et al. (2002). 

In a nutshell, we estimate the stock market implied credit spreads (ICS) at daily 

frequency as the function of a firm’s asset value and other variables necessary to specify the 

model: the global recovery rate, the standard deviation of the global recovery rate, the bond-

specific recovery rate, the risk-free rate and asset volatility. The global recovery rate,   , 

which actually determines the default barrier, is calibrated to the CDS data so that the sum of 

squared pricing errors between actual CDS spreads and fitted credit spreads is minimized. For 

the sample considered, the calibrated mean global recovery rate is found to be 0.58. The 

standard deviation of the global recovery rate,  , is set to 0.3, following the suggestion of the 

CreditGrades Technical Document (Finkelstein et al. 2002). The bond-specific recovery rate 

is set to 0.4. The proxy chosen for the risk-free rate in the structural model is the swap rate. A 

firm’s debt is defined, following Yu (2006) and Duarte et al. (2007), as the value of total 

liabilities of the firm. Daily data on market capitalization, 5-year local swap rates and 

accounting items (short- and long-term liabilities) are downloaded from Datastream.  

In this paper, given our goal to study the long-run relation between the price of credit 

risk in the stock and CDS markets, the input to the model should be an estimate of the long-

run volatility. Accordingly, the reference equity volatility is calibrated to match the realized 

equity volatility for the overall sample period.
5
 Our choice to use constant volatility as an 

                                                           
5
 Alternatively, when the other parameters of the model are held fixed, pricing errors could be thought of as 

deviations of the estimated from implied asset volatility (i.e., the level of asset volatility for which the structural 
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input in the model is motivated by several reasons. First, any rolling-window historical 

volatility estimate would introduce “ghost effects” in the ICS time series, thus potentially 

contaminating the results. Second, it has been shown in the literature that pricing errors 

decline with the estimation horizon and that estimates based on recent data are inappropriate 

(Finkelstein et al. 2002; Cao et al. 2011). Third, we disregard the possibility of using implied 

volatility from equity options as we aim to focus exclusively on the long-run relation between 

the stock and CDS markets. Therefore, including information from another credit-sensitive 

market would bias our findings. In addition, Bedendo et al. (2011) study the gap between 

model and market credit spreads and show that model spreads tend to overreact to 

movements in the equity option market. They demonstrate that these large gaps tend to be 

subsequently reabsorbed, showing some type of mean-reverting behavior. Appendix B 

provides evidence that ICS based on constant volatility estimate clearly dominate any other 

volatility assumption in explaining the time-series variation of CDS spreads. 

Finally, we refrain from any recalibration of other model parameters because this 

would clearly not be appropriate for the purposes of our study. Recalibration of model 

parameters to market observable CDS spreads would obviously artificially force 

cointegration (and contaminate any price discovery) by imputing information from CDS 

spreads into ICS, but we could make no conclusions regarding the actual existence of the 

long-run equilibrium between the considered markets over the entire sample period. In 

contrast, our primary concern is that the main contributor to changes in ICS is the change in 

equity price and, in the context of this application, we can simply think about the structural 

model at hand as a non-linear function that translates stock prices into credit spreads.
6
 For our 

choice of model parameters and for the sample of companies considered, the mean CDS 

                                                                                                                                                                                     
model recovers the CDS price). Therefore, another valid approach for studying the long-run relationship 

between the stock and CDS markets would be to use mean implied asset volatility from observed CDS quotes. 
6
 Similar arguments are used in Yu (2006) for the purposes of capital structure arbitrage and in Forte and Peña 

(2009) for the purposes of credit risk discovery in stock, CDS and bond markets. 
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spread on a cross-sectional basis is equal to 107.29 bp, whereas the mean ICS is slightly 

lower, 105.43 bp. Appendix A provides the mean CDS spread and the mean ICS estimates on 

a company-by-company basis.  

3. Methodology 

The problem with the conventional cointegration tests is that the null hypothesis of 

non-cointegration may not be rejected when structural shifts are present in the data. In that 

case, we would falsely conclude that the series in question were not cointegrated. To 

investigate whether this issue has important implications for defining the long-run relation 

between the price of credit risk in the stock and CDS markets, we consider several tests that 

allow the possibility of regime shifts in the cointegrating vector. Specifically, we utilize 

Gregory and Hansen’s (1996 a,b) residual-based test, Johansen et al.’s (2000) cointegration 

test when structural breaks are present in the deterministic trend, and the non-parametric 

procedure of Qu (2007). Each test is designed to test for cointegration in the presence of 

structural breaks. As explained later, these tests treat the issue of the break presence 

differently, but in a way that enables thorough investigation of long-run relations with a 

structural break. When applicable, we combine results from different approaches. 

We first conduct Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) tests for 

the presence of unit roots in CDS and ICS series. We use weekly data to minimize market 

microstructure effects and log-transform data to emphasize the focus on relative pricing in the 

cointegrating relation. Our sample size, T, is equal to 575 weeks. The ADF unit root test is 

performed for the three possible alternatives: without constant or trend, with constant and 

without trend, and with constant and trend. The lag length is selected on the basis of a 

downward t-test starting from the maximum number of lags, set to 18 in accordance with 

Schwert’s (1989) rule.
7
 Likewise, for the PP test, the number of lags of the residual 

                                                           
7
                 , where     denotes the integer part. 
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autocorrelations is set to 18. We exclude all companies for which the null hypothesis of the 

presence of unit-roots in CDS or ICS series is rejected at the 5% significance level for one of 

the tests and at least at 10% for the other. In total, we exclude 12 companies that present 

some evidence of stationarity in at least one of the series. The null hypothesis of non-

stationarity for the first differences in the CDS spread and ICS series is rejected for all 

companies in the sample.  

The point of interest in modeling the long-run relation is the time development of the 

basis i.e., the difference between the ICS and CDS spreads, and its time-series properties. The 

basis exhibits on average a decreasing pattern over the time period considered. Pricing errors 

were higher at the beginning of the sample period and lower towards the end for as many as 

90.5% of 63 companies with non-stationary CDS-ICS pairs. For illustrative purposes, Figure 

1 depicts the time development of the cross-sectional mean of the firm-specific basis for the 

log-transformed variables. Notably, the mean basis seemingly shows an overall trended 

divergence, with marked valleys in the 2007-2008 period. As a result, the inclusion of only a 

constant might not be sufficient for modeling the long-run relation, and we a priori do not 

rule out including the linear trend in the cointegrating equation.
8
 We suspect that given the 

time period we examine, this time development of the basis might be the consequence of 

common liquidity shocks in the CDS market and their potentially persistent behavior. 

Bedendo et al. (2011), for example, find that liquidity has a significant impact on the gap 

between the model and market credit spreads. 

<Figure 1 about here> 

3.1  Gregory and Hansen’s (1996 a,b) residual-based test  

Gregory and Hansen (1996 a,b) propose a residual-based test for cointegration that 

allows the possibility of a one-time regime shift in the cointegrating vector. The null 

                                                           
8
 The aim would be to capture the effect of potentially present non-default systematic components that are not 

explicitly modeled but might have permanent effects on either the CDS market or the stock market.  
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hypothesis of non-cointegration is tested against the alternative of cointegration in the 

presence of a possible single regime shift of unknown timing. We examine several forms of 

structural change in the parameters of the cointegrating vector: the level shift model (C), the 

level shift with trend model (C/T), the regime shift model (C/S) and the most general model 

with regime and trend shifts (C/S/T). For the two-variable setting, the considered models are 

defined as follows: 

Model C allows the shift in the intercept of the cointegrating equation: 

                                    (5.1) 

Model C/T introduces a time trend in the level shift model: 

                                          (5.2) 

Model C/S allows the shift in the intercept and the slope: 

                                                    (5.3) 

Model C/S/T allows the shift in the intercept, the slope and the trend: 

                                                               (5.4) 

where    is a     vector of the time series of credit spreads;   ,    and    represent the 

intercept, the slope and the trend coefficient, respectively, before the structural break;   ,    

and    are the corresponding changes in the coefficients after the break; and       is a 

dummy variable that takes a value of 0 if      and 1 if     . 

We compute the ADF test statistic and the Phillips (1987) test statistics,    and   , for 

each possible break point   in the interval                  . For the ADF test, the lag 

length is selected on the basis of a downward t-test. For the    and    test statistics, we 

follow Gregory and Hansen (1996 a,b) and use the quadratic spectral kernel in combination 

with the Andrews bandwidth estimator. The statistics of interest for testing the null 

hypothesis of non-cointegration against the alternatives described in Equations (5.1)-(5.4) is 

the largest negative value across all computed values: 
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        (6.1) 

                  
     

           
       (6.2) 

                
     

           
       (6.3) 

The results of Gregory and Hansen’s (1996 a,b) residual-based test for the sub-sample 

of 63 companies with non-stationary CDS and ICS series are presented in Table 2. For 39 

companies (62%), all three test statistics (ADF
*
,   , and   ) are statistically significant for at 

least one of the models (C, C/T, C/S and C/S/T), strongly rejecting the null hypothesis of 

non-cointegration. The shift in the intercept (model C) is supported by all three test statistics 

for 36 companies (57.1%), while models C/S and C/T are supported for 27 (42.9%) and 25 

(39.7%) companies, respectively. The most general alternative (model C/S/T) is supported by 

all three test statistics for 19 companies (30.2%). Overall, we find some evidence of 

cointegration for the vast majority of companies considered. That is, for 53 companies 

(84.1%), at least one test statistic is statistically significant at 10% level.  

<Table 2 about here> 

The absolute majority of the estimated break dates fall in the 2007-2008 period but do 

not coincide with commonly exogenously imposed breakpoints in empirical analyses: June 

2007 and Lehman Brothers’ collapse in mid-September 2008. When the timing of the 

structural break under the alternative hypothesis is determined endogenously, only 0.6% of 

the statistically significant structural breaks fall in June 2007, and none of the breaks falls in 

September 2008. The majority of the detected breaks (81.2%) fall in the interim period, July 

2007 – August 2008. More narrowly, 77.5% of the detected breaks concentrate in the August 

2007 – April 2008 period. Only 10.4% of detected breaks fall before June 2007, and only 

7.8% fall after September 2008. For illustrative purposes, Figure 2 depicts the cross-sectional 

mean of the        statistics over a truncated sample for all models considered. Figure 2 

clearly reveals that on average, the smallest test statistics fall during the onset of the global 
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financial crisis. Given that major breaks occur in the middle of the sample period, it seems 

that the time period considered is suitable for testing the presence of structural breaks in the 

two markets.
9
 

<Figure 2 about here> 

If the null hypothesis of non-cointegration is rejected, this does not necessarily imply 

that there is a break in the cointegrating vector. This is because Gregory and Hansen’s (1996 

a,b) test subsumes as a special case the standard Engle-Granger (1987) ADF cointegration 

test with no structural breaks. Therefore, if the conventional ADF test also rejects the null 

hypothesis of non-cointegration, we cannot conclude that there is a structural break. The 

results of the ADF cointegration test for none (n), constant (c) and constant and trend (ct) 

possibilities for the deterministic component are presented in Table 2. The Engle-Granger 

(1987) test provides little evidence in favor of cointegration: the null hypothesis of non-

cointegration is rejected for 12 companies (19%) at a 5% significance level and for 16 

companies (25.4%) at a 10% significance level. This result clearly shows that if we did not 

account for structural breaks in the data, we would falsely conclude that there was no long-

run equilibrium relationship between the stock and CDS markets for a substantial number of 

companies.
10

  

3.2  Johansen et al.’s (2000) test 

Johansen et al. (2000) generalize the multivariate likelihood procedure of Johansen 

(1988) by admitting structural breaks in the cointegration space. For comparison purposes, 

we start by applying the standard Johansen cointegration test with no breaks (Johansen 1988, 

1991, 1996; Johansen and Juselius 1990) to each non-stationary CDS-ICS pair using the full 

sample period. The initial cointegrated vector autoregressive model without any breaks is 

given by the following expression: 

                                                           
9
 It would be difficult to account for breaks that occur at the very beginning or at the very end of the sample 

period.  
10

 Gregory et al. (1996) show that the power of the ADF test falls sharply in the presence of a structural break. 
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         (7) 

where   is the first difference operator,    is a     vector of stochastic variables,   and   

are     matrices of full rank,   is a vector of constants, k is the order of the vector 

autoregressive model, and    is a vector of i.i.d. error terms.  

To model deterministic terms, we start from the most general specification—the linear 

trend model—and further successively restrict parameters   and  .
11

 Specifically, we 

consider the trend, the constant and the model with no deterministic component. The model 

with trend entering cointegration space restrictedly implies that the constant is present in the 

cointegrated VAR model. The model with the constant restricted to the cointegration space 

does not have any deterministic component in the cointegrated VAR model. The model with 

no deterministic components within the cointegration space has a constant entering the 

cointegrated VAR model. The number of lags is determined using the general to specific 

approach starting from the VAR model of order 20. Johansen’s trace test is calculated from 

eigenvalues 1 and 2 , which are involved in maximizing the log-likelihood function of 

model (7) to estimate cointegrated vectors   . Within our two-dimensional system, 

Johansen’s trace test for the null hypothesis that cointegration does not exist is defined as 

           
 
   .  

This test shows evidence of cointegration for only 20 companies (31.7%). Detailed 

results for this sub-sample are presented in Table 3. It is worth noting that for a substantial 

number of companies, the trend component is found to be statistically significant and is thus 

included in the cointegration space. As expected, the economic effect of the trend component 

in the cointegrating relation is small; however, it helps to ‘fine-tune’ the cointegrating 

relation. For all those companies, the overall trend component is found to have the same sign, 

                                                           
11

 The quadratic trend model is not considered. 
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which is in line with the preliminary analysis and indicative of the systematic behavior of 

pricing errors during the time period considered. 

<Table 3 about here> 

For the remaining 43 companies, we allow breaks in the deterministic component 

using the procedure of Johansen et al. (2000). These authors extend the standard VECM, 

presented in Equation (7), by adding a number of dummy variables to account for structural 

breaks in the cointegrating space. We consider the possibility of one structural break and 

consider two models: one with a broken level and the other with a broken trend. The VECM 

model with one structural break is given by 

                 
 
 
 
 

 
    
   

         

   

   

         

 

   

        (8) 

where             
  is a vector of dummy variables;      takes a value of 1 if the 

observation t falls in period j and 0 otherwise, for       and the first k observations of each 

sub-sample set to 0;          ;      
    

   ;    is an indicator function that takes a value 

of 1 if observation t is the i
th

 observation in the second period.  

The procedure of Johansen et al. (2000) requires that the timing of the break date be 

known. The break date is first chosen according to the results of Gregory and Hansen’s (1996 

a,b) procedure. If the break date appears insignificant, then the points of instability found 

within the recursively calculated eigenvalues and trace statistics are taken into account. The 

results of Johansen et al.’s (2000) cointegration test are presented in Table 4. The trace test is 

used again, but it is now associated with model (8), which requires specific set of critical 

values provided by Johansen et al. (2000). When cointegration is tested and estimated in the 

presence of a structural break, a cointegrating relationship is found for 28 companies more. It 

is clear that without accounting for the presence of a structural break, we would fail to 

confirm cointegration for a substantial number of companies. Notably, in a number of cases, 
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the result is the cointegration under the change in the parameters of the linear trend. This 

result could indicate the eventual change in non-default components that have long-term 

effects on the CDS market and/or the stock market but do not cancel each other out.  

<Table 4 about here> 

3.3  Qu’s (2007) non-parametric test 

Kim (2003) shows that the failure to detect a cointegrating relationship is in many 

cases due to segmented cointegration, which is characterized by temporary non-stationary 

deviations from the long-run relation. This situation might occur when, for example, crisis 

events temporarily ‘switch off’ cointegration that prevails in other parts of the sample period. 

Kim (2003) shows that even a relatively short duration of non-stationary deviations may lead 

to a failure to detect cointegration. For our dataset, the results of Gregory and Hansen’s (1996 

a,b) test and Johansen et al.’s (2000) test reveal that the presence of structural changes in the 

long-run relation between the stock and CDS markets is largely due to the recent global 

financial crisis. In view of these findings, the time period examined provides a suitable 

setting for testing the presence of segmented cointegration. 

To investigate this issue, we utilize the non-parametric test of Qu (2007). The test is 

able to reveal whether a cointegrating relationship holds in any or more parts of the sample 

and assumes that the timing of regime changes is unknown. Therefore, compared to 

previously applied tests, Qu’s (2007) has one additional useful feature: it can detect 

cointegration if multiple regime changes occur. The null hypothesis of interest is that 

cointegrating rank r0 is zero for the full sample (H0: r0=0) and is tested against the alternative 

hypothesis that there exist r>r0 cointegrating relationships in some sub-sample,        . 

We consider the       test statistics that assume that the number of structural changes is 

known and    and    test statistics that allow an unknown number of regimes. The 

minimum length of a regime segment relative to the sample size, , is set to 0.2.  
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The       test allows m structural breaks (i.e.,     regimes) under the alternative 

hypothesis. The test statistic is constructed in the following way. For a given partition of the 

sample,          , the     vector of the OLS residuals is obtained by regressing an n-vector 

of time series,   , on the vector of deterministic terms segment by segment. Within each 

segment, k, moment matrices    and    are constructed:  

            
      

  

        

   
  

            
        

 

        

      

 

        

 

   

        

 

The ratio of the moment matrices,   , is defined as        
          

    . Let 

       denote the ith smallest eigenvalues of   . Then,                   are the ordered 

solutions of the eigenvalue problem:           .  

For each admissible partition of the sample, the sum of the      smallest 

eigenvalues over the     segments, i.e.,                     
    
   

   
   , is 

calculated. The       test statistics are then defined as the supremum over all possible 

partitions: 

                          
    

  
      

         

    

   

   

   

 (9) 

with 

                                            

We consider two additional tests,    and   , that allow an unknown number of 

regimes. The    and    tests are given by 

                                   
             

             
       (10) 
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      (11) 

where               is the critical value of the       test at significance level  . 

Table 5 presents the results of      ,    and    tests for the sub-sample of 63 

companies with non-stationary CDS and ICS series.
12

 We consider three possibilities for the 

deterministic component: no deterministic terms (none), only a constant term (constant), and 

a constant and a trend (trend). The    and    tests for an unknown number of changes 

reject the null hypothesis of zero cointegrating rank for 31 and 29 companies, respectively, at 

least at the 10% level. For the       test, we allow a maximum of 3 regime changes. The 

      test rejects the null hypothesis for 41 companies (65.1%), at least at the 10% level. 

The existence of multiple regime changes, however, is detected for 35 companies (55.6%). 

The       test statistic that allows for 2 regime changes is significant for 27 companies, 

while the       test that allows 3 regime changes is significant for 30 companies. That is, 

for 14 companies, we detect one break; for 5 companies, 2 breaks; and for 30 companies, at 

least 3 breaks. In total, for 49 companies (77.8%), cointegration holds in one or more parts of 

the sample, i.e., there exists at least one regime with a cointegrating rank higher than 0.  

<Table 5 about here> 

For robustness purposes, we consider      ,    and    tests for the trimming 

parameter,  , set to 0.25.
13

 In this case, we obtain even stronger evidence in favor of the 

presence of cointegration in one or more parts of the sample. By way of example, for a higher 

trimming parameter, the    and    tests reject the null hypothesis of zero cointegrating 

rank for 45 and 47 companies, respectively, at least at the 10% level. In total, we find 

supporting evidence for the presence of cointegration in at least some part of the sample for 

52 companies (82.5%). Better results obtained when the minimum length of a regime 

                                                           
12

 We thank Zhongjun Qu for providing the GAUSS code.  
13

 Critical values are simulated using the GAUSS code provided by Zhongjun Qu. 
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segment is augmented, further confirm that cointegration is present in the greater part of the 

sample. These results are available upon request.   

3.4  Summary 

In this section, we provide a summary of all applied tests. For Gregory and Hansen’s 

(1996 a,b) test, we denote the evidence of cointegration as ‘strong’ if all three tests statistics 

(ADF
*
,   , and   ) are found to be significant for at least one of the models. For Qu’s (2007) 

test, we denote the evidence of segmented cointegration as ‘strong’ if all three tests statistics 

(     ,    and   ) are found to be significant for at least one of the models. For both 

Gregory and Hansen’s (1996 a,b) test and the Qu (2007) test, the evidence of cointegration is 

termed as ‘weak’ if at least one test statistic is significant at the 10% level. Finally, for 

Johansen’s test with no breaks and Johansen et al.’s (2000) cointegration test with structural 

breaks, the cointegration is denoted as ‘strong’ if significant at the 5% level.
14

  

The evidence of cointegration in its ‘strong’ form is supported by at least one of the 

considered tests for as many as 56 companies, that is, 88.9% of the sub-sample of companies 

with non-stationary CDS and ICS series. On the other hand, all three tests support 

cointegration for 37 companies (58.7%) at least in the “weak” form. The evidence of breaks 

in the ‘strong’ form is supported for 50 companies (79.4%) by at least one of the tests.
15

 

When these results are compared with the standard Johansen cointegration test, which is able 

to detect cointegration for 20 companies (31.7%) when applied to the full sample, it becomes 

clear that allowing for structural breaks is relevant for modeling the long-run equilibrium 

between the stock and CDS markets. 

  

                                                           
14

 A summary of all applied tests in a table format is available upon request. 
15

 For Gregory and Hansen’s (1996 a,b) test, we exclude companies for which the Engle-Granger (1987) test 

shows evidence of cointegration. 
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4. Capital structure arbitrage 

 Capital structure arbitrage (CSA) refers to trading strategies that are based on the 

relative mispricing between different financial instruments across the capital structure of the 

same firm. In recent years, due to the rapid development of the CDS market, it has become 

increasingly popular to exploit mispricing between market CDS spreads and model-implied 

credit spreads (ICS), that is, to trade on the CDS and equity of the same firm (Yu 2006; 

Duarte et al. 2007). If CDS spreads are found to be overpriced (underpriced), an arbitrageur 

will sell (buy) CDS and short sell (buy) equity as a hedge and will eventually profit if the 

market and model spreads revert to the equilibrium level. The standard CDS-equity trading 

strategies of Yu (2006) and Duarte et al. (2007) are based on the assumption that the 

equilibrium is reached when CDS spreads and ICS converge to each other, which means that 

the theoretical (1 -1) cointegrating vector is explicitly imposed to all companies. Although 

characterized as a convergence-type strategy, these authors report that convergence actually 

occurs for only a small fraction of individual trades. Specifically, Yu (2006) reports that out 

of all initiated trades, fewer than 10% end in convergence.  

In this section, as an application of our previous results, we investigate the importance 

of convergence as an essential condition for successful CDS-equity trading. We study the 

effect of the existence of the long-run equilibrium and/or the presence of structural breaks in 

the cointegrating vector on the performance of trading strategies. If there is no cointegration 

between market and model spreads, pricing errors are non-stationary, and there is no 

guarantee that convergence will eventually occur. As a result, we would expect 

underperformance of trading strategies for companies for which we lack evidence of 

cointegration. The presence of structural breaks in the cointegrating vector, on the other hand, 

may mask reversion to equilibrium and confound investors. When breaks are present, an 

increase in pricing errors might just mean convergence to a new equilibrium level. In that 
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case, arbitrageurs might wrongly interpret enter/exit signals, crucially affecting trading 

performance. To investigate these two issues, we proceed in two steps. First, we compare the 

performance of the standard trading strategies of Yu (2006) and Duarte et al. (2007) for 

companies with cointegrated vs. non-cointegrated CDS-ICS pairs. Second, for comparison 

purposes, we evaluate the performance of CSA trading strategies based not on pricing errors 

but on equilibrium cointegrating errors, that is, based on the estimated cointegrating vector.  

We first resemble the benchmark CSA trading strategy of Yu (2006) and Duarte et al. 

(2007) based on pricing errors (     ). Specifically, for each observation t, we check 

whether                or               , where the trigger level,  , is assumed 

to be 0.5. If the market spread (CDS) is substantially higher (lower) than the ICS, an 

arbitrageur sells (buys) the CDS contract with the notional amount of €1 and short sells 

(buys) equity as a hedge. The positions are liquidated if the market and model spread 

converge or if the maximum holding period is reached, whichever occurs first. We consider a 

holding period of 180 days, but to be consistent with our previous analysis of cointegration, 

we use weekly frequency.
16

 We consider static hedging, and for simplicity, we ignore 

transaction costs. An initial level of capital for every opened CDS position is set to €0.5. The 

value of the outstanding CDS position and the equity hedge ratio are calculated according to 

Yu (2006) and Duarte et al. (2007).
17

 We refer interested readers to the original papers for 

details.  

The results for the      , presented in Panel A of Table 6, allow several 

observations. First, the relative proportion of the number of trades entered into ( ) is 

substantially higher for companies with non-cointegrated CDS-ICS pairs. For the non-

cointegrated sub-sample arbitrageurs that rely on the standard trading rule would see an 

                                                           
16

 We assume that new trade can be opened/closed at weekly intervals. Replicating the analysis at daily 

frequencies does not alter the main results. 
17

 We diverge slightly from original studies and proxy market quotes on an existing CDS contract by 

interpolating 4-year and 5-year CDS quotes on newly initiated contracts (instead of using only 5-year CDS 

quotes). 
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opportunity for trading for as much as 68.4% of the time. This particularly contrasts with 

companies with a stable cointegrating vector, for which this percentage decreases to 43.8%. 

Second, the cointegrated sub-sample dominates the non-cointegrated sub-sample in terms of 

the risk-return tradeoff. When long-run equilibrium is not formally confirmed, the fraction of 

trades that end in convergence (  ) is lower, while the fraction of trades with negative 

holding period returns (  ) is higher, altogether indicating a higher risk of CSA trading.
18

 

The mean holding period return (HPR) before transaction costs is statistically significantly 

lower for the non-cointegrated sub-sample (1.58%) than for the cointegrated sub-sample 

(2.32%).
19

 Finally, we confirm our expectations that the presence of structural breaks in the 

cointegrating vector negatively affects the performance of standard trading strategies. 

Although CSA trading on CDS-ICS pairs with shifts in the long-run equilibrium still 

outperforms the non-cointegrated sub-sample, the presence of breaks leads to a higher 

percentage of opened arbitrage trades, a higher fraction of trades with a negative HPR, a 

lower percentage of trades ending in convergence and a lower HPR when compared with 

trading on CDS-ICS pairs with a stable equilibrium. 

<Table 6 about here> 

Next, we illustrate the performance of the trading algorithm based on the long-run 

equilibrium previously estimated in Section 3.2. using either the standard Johansen procedure 

or Johansen et al.’s (2000) procedure, whichever is appropriate. We define the entry/exit 

trading trigger on the basis of deviations from the estimated long-run equilibrium. That is, we 

assume that a new trade is opened when a sufficiently large deviation from the long-run 

relation is identified. To keep in line with the previous trading structure, we assume that this 

                                                           
18

 The fraction of drawdowns exceeding 20% (  ) is small for all companies, though slightly higher for the non-

cointegrated sub-sample. 
19

 t=-8.924
*** 
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occurs if             , where    is the cointegrating error, and h is the trading trigger, set 

to 0.5. The trade is closed out when the equilibrium spread levels are reached. Intuitively, we 

should expect an improved performance of CSA trading strategy based on cointegrated errors 

(     ). Pricing errors depend on the level of estimated model spreads, in which case model 

mismeasurement becomes an important issue. This is at least partially solved if cointegrating 

residuals are instead taken into account. 

The results for the       are presented in Panel B of Table 6. As expected, the       

trading strategy outperforms the       trading strategy. The frequency of trading is reduced 

from 51.7% to 23.5%; the percentage of trades that end in convergence is increased from 

18.2% to 41.3%; the percentage of trades with negative holding period returns is reduced 

from 22.3% to 17%; and, finally, the mean HPR is increased from 2.32% to 3.02%, with the 

difference being statistically significant at the 1% level. Another important finding refers to 

trading performance of the CDS-ICS pairs with structural breaks. When trades are triggered 

on the basis of cointegrating residuals, the HPR for this sub-sample of companies increases to 

3.10%. In contrast, for companies with a stable cointegrating vector, we find no significant 

change in the HPR when the       strategy is applied. 

Finally, in line with previous literature, we construct monthly return indices. For each 

sub-sample of companies, we calculate weekly excess returns on individual trades, form an 

equally weighted portfolio of all open trades, and finally compound weekly excess returns 

into monthly frequency. Summary statistics of monthly excess returns are presented in Panel 

C and D of Table 6. When CDS and ICS spreads are cointegrated, the portfolio of individual 

trades based on       produces positively skewed monthly excess returns with a statistically 

significant mean of 0.26% and an annualized Sharpe ratio of 0.68. In contrast, monthly 

excess returns for the non-cointegrated portfolio are negatively skewed, with a mean of 

0.15% (which is not significant) and an annualized Sharpe ratio of 0.46. Kurtosis is in all 
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cases higher than would correspond to the normal distribution. The mean monthly excess 

return and Sharpe ratio increase substantially when the trading trigger is based on 

cointegrating residuals but only for companies with the presence of a break in the 

cointegrating vector. For companies with a stable long-run equilibrium, however, the mean 

monthly excess return and the Sharpe ratio are virtually identical for the       and       

trading strategies. 

5. Conclusions 

Regulators and market participants are increasingly monitoring pricing efficiency in 

credit-sensitive markets and their interlinkage. Special attention has been placed on the CDS 

market, which has been criticized to give rise to financial system instability, and its link to the 

equity market. In analyzing the CDS-equity relation academic literature has mainly focused 

on questions related to information revelation in respective markets, detection of where 

informed traders operate and the profitability of the capital structure arbitrage trading. 

Answering these questions is essential for efficient allocation of resources and design of 

adequate regulatory actions aimed at preserving financial stability. However, the underlying 

question of all: is there a long-run equilibrium relation between the equity and CDS markets?, 

has been largely neglected in the previous literature. In this paper we fill this gap. We find 

that such a relation does exist in the majority of the cases but only if structural breaks are 

accounted for. 

In the presence of structural breaks, the standard cointegration tests might fail to 

detect a cointegrating relationship (Gregory et al. 1996; Kim 2003; Qu 2007). Structural 

breaks may ‘switch off’ cointegration or simply move the cointegrating relationship to 

another level, a situation that might arise, for example, in times of economic crisis. In this 

paper, we test the existence and structural stability of the long-run relation between the price 

of credit risk in the stock and CDS markets for a sample of non-financial iTraxx Europe 
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companies during the 2004-2014 period. We utilize not only the standard Johansen and 

Engle-Granger cointegration tests but also the econometric techniques of Gregory and 

Hansen (1996 a,b), Johansen et al. (2000) and Qu (2007) to formally test for cointegration in 

the presence of structural breaks.  

Our results allow several conclusions. First, we find clear evidence of a long-run 

equilibrium between the price of credit risk in the stock and CDS markets for the entire 2004-

2014 period. Second, we show the importance of accounting for structural breaks in the 

cointegrating relationship between the considered markets. Empirical evidence based on 

standard cointegration tests is not as supportive as one would expect. The standard Johansen 

cointegration test detects cointegration for 31.7% of the sample. However, once we account 

for the breaks in the cointegrating vector, we find empirical evidence that the stock and CDS 

markets do price credit risk equally in the long-run for a vast majority of the companies 

considered. Third, we show that major break dates fall between August 2007 and April 2008 

but do not coincide with commonly exogenously imposed break dates in the empirical 

analysis. Fourth, we study the implications of our results for capital structure arbitrage 

trading. We show that CDS-ICS pairs that are characterized with a long-run equilibrium yield 

a higher return with less risk. The presence of structural breaks in the cointegrated vector, 

however, negatively affects the performance of standard trading strategies based on pricing 

errors.  
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Table 1. Main characteristics of the companies in the sample 

 

This table reports the main descriptive statistics on a cross‐sectional basis for the initial set of 75 non-

financial companies within the European region. MC refers to market capitalization in million euros. 

Equity volatility is defined as the unconditional historical volatility, calculated as the annualized standard 

deviation of the continuously compounded returns on equity. Leverage is defined as the ratio of the book 

value of total liabilities to the proxy for the market value of the firm (i.e., sum of the market value of 

equity and the book value of total liabilities).  

 

Mean Median St. Dev Min Max

MC in m € 23,814.29 15,248.12 24,213.77 3,051.99 130,792.57

Leverage 0.54 0.53 0.14 0.28 0.87

Equity Volatility 0.30 0.29 0.06 0.19 0.44
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Table 2. Gregory and Hansen’s (1996 a,b) residual-based test 

 

C C/T C/S C/S/T C C/T C/S C/S/T C C/T C/S C/S/T n c ct

1 -5.294 *** -5.934 *** -5.249 ** -6.620 *** -43.935 ** -57.396 *** -42.905 * -59.023 ** -4.667 ** -5.389 ** -4.612 -5.473 * -1.457 -1.435 -1.756

2 -4.768 ** -4.495 -4.676 -4.510 -35.126 -32.427 -35.576 -33.856 -4.171 -3.923 -4.242 -4.018 -1.412 -1.659 -0.570

3 -4.856 ** -5.349 ** -4.827 * -5.405 * -41.636 ** -46.969 * -41.797 -46.887 -4.598 * -4.856 * -4.609 -4.862 -1.422 -1.463 -0.901

4 -4.609 * -5.085 ** -4.445 -5.212 -38.267 * -48.405 ** -36.443 -50.092 -4.361 * -4.991 ** -4.240 -5.065 -1.361 -1.774 -2.145

5 -5.405 *** -5.580 *** -5.211 ** -5.951 ** -47.171 ** -49.933 ** -46.926 * -51.885 -4.868 ** -5.031 ** -4.840 * -5.126 -1.651 -1.679 -0.780

8 -4.866 ** -4.960 * -5.021 ** -4.927 -28.776 -40.181 -34.324 -40.008 -3.817 -4.635 -4.167 -4.609 -1.160 -1.624 -2.991

9 -4.258 -4.440 -4.180 -4.760 -25.836 -29.283 -30.035 -44.758 -3.612 -3.857 -3.921 -4.815 -1.214 -1.427 -1.595

10 -7.156 *** -7.643 *** -7.632 *** -7.598 *** -91.636 *** -88.354 *** -92.253 *** -89.420 *** -7.003 *** -6.856 *** -6.997 *** -6.877 *** -3.580 *** -3.444 ** -3.443

11 -6.243 *** -6.508 *** -5.670 *** -5.922 ** -53.241 *** -58.855 *** -48.799 ** -54.031 * -5.181 *** -5.509 *** -4.963 ** -5.261 * -1.777 -2.147 -2.006

12 -4.830 ** -4.644 -4.584 -4.876 -38.677 * -35.594 -42.971 * -38.987 -4.420 * -4.166 -4.644 -4.371 -1.644 -2.583 -3.247

14 -4.429 * -4.763 * -6.345 *** -6.494 *** -38.723 * -41.930 -69.233 *** -70.782 *** -4.548 * -4.647 -5.977 *** -6.014 ** -1.688 -1.574 -2.581

15 -5.654 *** -5.689 *** -5.870 *** -5.864 ** -54.741 *** -54.731 ** -54.627 ** -54.657 * -5.309 *** -5.307 ** -5.298 ** -5.299 * -2.422 -2.459 -3.386

16 -4.992 ** -4.975 * -5.534 *** -5.316 * -52.765 *** -50.741 ** -59.273 *** -56.553 * -5.189 *** -5.078 ** -5.514 *** -5.375 * -1.152 -1.629 -2.220

17 -4.101 -5.024 ** -4.241 -4.961 -27.171 -45.893 * -28.744 -43.727 -3.699 -4.854 * -3.808 -4.736 -2.028 -2.246 -2.206

18 -4.363 * -4.178 -5.059 ** -4.859 -39.860 * -37.272 -53.089 ** -48.665 -4.453 * -4.286 -5.160 ** -4.885 -0.482 -1.365 -2.320

19 -5.054 ** -5.368 ** -5.122 ** -5.424 * -56.532 *** -68.980 *** -59.706 *** -69.284 ** -5.347 *** -5.957 *** -5.504 *** -5.970 ** -2.404 -2.372 -2.566

20 -5.331 *** -5.382 ** -6.255 *** -6.245 *** -49.531 ** -53.470 ** -91.675 *** -91.122 *** -5.053 ** -5.273 ** -6.941 *** -6.914 *** -3.457 *** -3.631 ** -3.406

21 -4.017 -3.834 -4.061 -4.146 -35.685 -35.241 -35.092 -35.098 -4.162 -4.130 -4.122 -4.122 -1.035 -1.761 -3.886 **

22 -4.785 ** -5.674 *** -4.652 -5.723 ** -32.603 -44.825 * -32.307 -47.053 -3.956 -4.734 * -3.934 -4.847 -1.909 -1.703 -2.011

23 -4.908 ** -5.506 *** -4.840 * -5.502 ** -42.039 ** -52.503 ** -41.224 -52.269 -4.659 ** -5.313 ** -4.589 -5.227 -2.232 -1.840 -2.511

24 -4.189 -3.957 -4.395 -4.454 -30.694 -28.160 -32.731 -34.876 -4.034 -3.720 -4.082 -4.167 -1.850 -3.238 * -2.472

25 -6.034 *** -6.426 *** -6.626 *** -6.662 *** -50.554 *** -56.606 ** -57.568 *** -58.512 * -5.086 ** -5.372 ** -5.413 ** -5.459 * -0.566 -2.078 -2.468

26 -4.799 ** -5.023 ** -5.664 *** -5.098 -47.130 ** -54.451 ** -57.041 ** -58.190 * -4.867 ** -5.264 ** -5.389 ** -5.453 * -1.930 -2.348 -2.562

27 -5.490 *** -4.890 * -5.537 *** -5.070 -48.163 ** -41.084 -49.564 ** -45.243 -4.964 ** -4.484 -5.043 ** -4.674 -1.554 -2.451 -2.665

28 -4.655 ** -4.647 -4.700 * -5.036 -36.056 -46.172 * -38.170 -49.895 -4.356 * -4.870 * -4.455 -5.060 -2.535 * -2.834 -2.785

29 -4.958 ** -4.609 -5.086 ** -4.944 -34.230 -30.721 -39.446 -36.549 -4.130 -3.938 -4.433 -4.253 0.451 -1.611 -3.470

31 -4.663 ** -4.440 -4.133 -4.296 -37.937 * -35.014 -33.923 -39.695 -4.452 * -4.233 -4.103 -4.501 -2.060 -2.083 -2.609

34 -4.629 ** -4.488 -4.648 -4.732 -33.445 -33.734 -34.779 -34.809 -4.165 -4.184 -4.240 -4.242 -0.318 -2.329 -2.357

35 -5.357 *** -5.403 ** -5.589 *** -5.695 ** -47.221 ** -48.558 ** -54.078 ** -54.666 * -4.913 ** -4.926 * -5.234 ** -5.280 * -0.887 -2.149 -2.371

36 -4.033 -4.116 -3.943 -4.202 -28.641 -31.589 -30.152 -31.927 -3.747 -3.970 -3.849 -3.987 -1.176 -3.293 * -4.155 **

37 -4.484 * -4.552 -4.723 * -4.655 -30.340 -32.535 -31.491 -33.122 -3.890 -4.040 -3.966 -4.077 -3.247 ** -4.332 *** -5.373 ***

38 -4.761 ** -4.682 -4.657 -4.722 -40.976 ** -40.698 -42.229 * -43.120 -4.557 * -4.520 -4.634 -4.664 -3.906 *** -3.830 ** -3.955 **

39 -4.002 -4.186 -3.836 -5.166 -35.478 -39.296 -39.182 -53.362 * -3.997 -4.268 -4.207 -5.067 -1.292 -1.469 -1.641

41 -5.265 *** -4.931 * -5.133 ** -5.214 -55.260 *** -54.810 ** -58.679 *** -59.765 ** -5.317 *** -5.318 ** -5.473 *** -5.560 ** -2.068 -2.067 -4.190 **

42 -4.723 ** -5.099 ** -5.160 ** -5.322 * -33.337 -34.741 -40.283 -36.819 -4.039 -4.130 -4.410 -4.189 -1.725 -1.688 -3.162

43 -6.145 *** -5.714 *** -6.104 *** -5.715 ** -50.226 *** -52.147 ** -50.828 ** -52.179 -5.686 *** -5.564 *** -5.709 *** -5.753 ** -0.249 -2.385 -4.169 **

ADFADF* Zα* Zt*comp
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Table 2. Gregory and Hansen’s (1996 a,b) residual-based test (cont.) 

 

This table reports the results from Gregory and Hansen’s (1996 a,b) residual-based test for the sub-sample of 63 companies. Models for structural change in parameters of the 

cointegrating vector, C, C/T, C/S and C/S/T, are defined in Equations (5.1)-(5.4), respectively. ADF
*
,   

 , and   
  are test statistics defined in Equations (6.1)-(6.3), 

respectively. The trimming parameter is set to 15%. ADF is the standard Engle-Granger (1987) ADF test, performed for the three possible alternatives: without constant or 

trend (n), with constant and without trend (c), and with constant and trend (ct). For the ADF and ADF* test, the lag length is selected on the basis of a downward t-test. *, **, 

and *** indicate significance at the 10%, 5% and 1% levels, respectively. 

C C/T C/S C/S/T C C/T C/S C/S/T C C/T C/S C/S/T n c ct

44 -4.587 * -5.246 ** -4.580 -5.542 ** -40.658 ** -55.063 ** -40.258 -54.190 * -4.498 * -5.307 ** -4.474 -5.267 * -2.198 -2.006 -2.319

45 -4.757 ** -4.496 -5.128 ** -4.900 -43.655 ** -44.406 * -42.832 * -40.450 -4.670 ** -4.624 -4.595 -4.385 -1.416 -1.341 -1.540

47 -3.078 -3.718 -3.118 -4.125 -17.542 -34.046 -17.123 -33.371 -2.952 -4.168 -2.912 -4.106 -1.192 -2.362 -3.799 **

49 -6.285 *** -6.602 *** -6.253 *** -6.598 *** -65.093 *** -67.279 *** -63.101 *** -67.494 ** -5.737 *** -5.896 *** -5.696 *** -5.897 ** -1.544 -1.943 -3.806 **

50 -2.706 -3.190 -3.315 -3.512 -12.886 -17.412 -19.191 -22.406 -2.562 -2.961 -3.188 -3.317 -1.500 -1.405 -2.667

51 -4.921 ** -4.611 -4.519 -4.514 -38.594 * -35.531 -37.211 -35.358 -4.353 * -4.050 -4.256 -4.046 -1.615 -1.649 -1.648

52 -3.856 -4.017 -3.923 -3.853 -27.764 -26.193 -26.721 -34.265 -3.735 -3.546 -3.622 -3.850 -1.137 -2.106 -1.951

54 -4.975 ** -5.108 ** -4.865 * -5.548 ** -53.546 *** -61.856 *** -52.648 ** -76.727 *** -5.216 *** -5.658 *** -5.166 ** -6.318 *** -2.022 -3.079 * -2.650

55 -3.608 -3.657 -5.528 *** -5.524 ** -36.372 * -38.012 -78.855 *** -77.989 *** -4.309 -4.401 -6.429 *** -6.398 *** -1.253 -2.008 -2.503

56 -5.071 ** -5.184 ** -5.407 ** -5.726 ** -46.648 ** -45.607 * -54.970 ** -60.169 ** -4.820 ** -4.748 * -5.158 ** -5.453 * -0.595 -1.779 -2.015

57 -5.268 *** -6.443 *** -5.159 ** -5.646 ** -54.541 *** -61.858 *** -51.982 ** -60.501 ** -5.220 *** -5.592 *** -5.098 ** -5.528 ** -1.561 -3.054 * -2.677

59 -4.391 * -4.508 -4.346 -4.415 -25.789 -29.389 -49.884 ** -49.964 -3.836 -4.059 -5.048 ** -5.058 -4.597 *** -4.086 *** -4.153 **

60 -5.048 ** -5.847 *** -4.988 ** -5.740 ** -51.023 *** -66.447 *** -51.540 ** -70.010 *** -4.973 ** -5.816 *** -5.008 ** -6.007 ** -1.380 -2.591 -2.310

61 -5.258 *** -4.691 -5.280 ** -4.718 -36.569 * -31.605 -36.884 -34.043 -4.268 -3.987 -4.287 -4.151 -1.388 -1.517 -1.312

62 -4.817 ** -5.041 ** -4.851 * -4.974 -38.800 * -38.344 -38.846 -38.520 -4.465 * -4.415 -4.455 -4.424 -1.378 -1.374 -1.153

63 -3.194 -3.654 -3.158 -4.949 -21.755 -25.090 -19.224 -45.838 -3.124 -3.434 -2.893 -4.774 -1.672 -1.472 -1.598

64 -5.852 *** -5.673 *** -5.680 *** -5.643 ** -47.409 ** -44.888 * -44.660 * -44.604 -4.909 ** -4.778 * -4.769 * -4.763 -1.571 -0.708 -1.681

65 -4.849 ** -5.235 ** -5.019 ** -5.573 ** -45.008 ** -49.974 ** -45.594 * -56.477 * -4.927 ** -5.202 ** -4.877 * -5.416 * -1.405 -1.425 -1.788

66 -5.991 *** -5.994 *** -6.018 *** -6.013 ** -39.024 * -38.319 -37.576 -36.875 -4.440 * -4.399 -4.361 -4.321 -1.742 -1.785 -2.132

67 -4.291 -5.369 ** -4.664 -5.789 ** -33.254 -33.586 -49.798 ** -48.501 -4.135 -4.137 -5.057 ** -4.950 -2.043 -1.914 -2.348

68 -5.764 *** -5.754 *** -5.759 *** -5.746 ** -54.528 *** -58.604 *** -52.243 ** -56.063 * -5.152 *** -5.377 ** -5.040 ** -5.250 * -1.052 -2.171 -4.970 ***

69 -5.206 *** -5.047 ** -4.638 -5.063 -34.895 -35.417 -36.370 -40.234 -4.319 -4.273 -4.409 -4.525 -1.895 -1.893 -1.867

70 -4.213 -4.639 -4.125 -5.521 ** -36.977 * -44.817 * -34.973 -54.031 * -4.196 -4.696 -4.076 -5.230 0.492 -2.202 -3.218

72 -2.591 -4.617 -3.513 -4.718 -14.554 -38.263 -26.757 -44.830 -2.616 -4.425 -3.578 -4.798 -2.132 -2.105 -3.144

73 -4.273 -3.985 -4.918 * -4.304 -31.824 -28.980 -38.331 -33.950 -3.978 -3.670 -4.322 -4.005 -1.433 -1.417 -0.737

74 -4.108 -3.870 -4.181 -3.864 -35.735 -34.368 -35.806 -35.828 -4.192 -4.144 -4.207 -4.237 -1.728 -2.592 -3.315

75 -5.460 *** -5.502 *** -5.480 *** -5.871 ** -45.638 ** -42.667 -47.105 ** -53.727 * -4.818 ** -4.652 -4.897 * -5.179 -1.101 -1.702 -3.390

ADFADF* Zα* Zt*comp
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Table 3. Standard Johansen cointegration test 

 

This table reports the results of the standard Johansen’s trace test for the sub-sample of 20 companies for which 

the test shows evidence of cointegration. The number of lags is determined using the general to specific 

approach starting from the VAR model of order 20. 

  

Comp Hypothesis Eigenvalue Trace test p -value
Deter.

Comp.

lags 

VAR

0.050 32.01 0.01

0.006 3.23 0.84

0.038 26.98 0.03

0.010 5.56 0.52

0.039 27.57 0.03

0.009 5.08 0.59

0.031 23.64 0.09

0.010 5.77 0.50

0.031 19.87 0.01

0.004 2.14 0.14

0.028 21.47 0.03

0.010 5.81 0.21

0.031 22.29 0.02

0.008 4.59 0.34

0.038 27.23 0.03

0.010 5.48 0.54

0.035 24.93 0.06

0.008 4.47 0.68

0.031 21.13 0.01

0.006 3.15 0.07

0.034 23.12 0.02

0.007 3.90 0.44

0.056 36.59 0.00

0.008 4.54 0.67

0.043 28.83 0.02

0.007 4.08 0.73

0.028 18.36 0.09

0.004 2.31 0.72

0.039 26.21 0.00

0.007 3.97 0.05

0.035 22.76 0.02

0.006 3.12 0.57

0.035 21.52 0.03

0.003 1.89 0.80

0.060 38.05 0.00

0.007 3.70 0.78

0.064 41.10 0.00

0.008 4.38 0.69

0.044 29.48 0.02

0.008 4.47 0.68

Cointegrated vector

trend

trend

trend

trend

none

const.

const.

trend

trend

none

const.

trend

trend

const.

none

const.

const.

trend

trend

trend

17

19

11

15

19

15

19

15

8

19

18

19

11

17

13

16

17

18

19

19

10

12

14

15

17

19

21

24

35

37

38

43

45

47

59

60

62

66

67

69

 

)61.13(     )87.19(         

trend003.0cds56.1ics

 -



 

(10.15)       (-5.45)         

0.002trend0.50cdsics 

 

(15.72)      (-12.08)       

0.003trend0.36cdsics 

 

(5.38)       (-9.97)        

0.001trend0.64cdsics 

 

        (-7.92)        

0.91cdsics 

 

(2.33)   (-4.65)        

3.81.97cdsics 

 

3.62)(  (-4.03)        

1.810.52cdsics





 

(4.18)        (-5.92)        

0.003trend0.53cdsics 

 

(8.58)       (-13.03)       

0.001trend0.57cdsics 

 

       (-9.81)        

0.91cdsics 

 

3.51)(  (-10.02)       

1.390.76cdsics





 

(3.80)       (-13.63)       

0.001trend0.66cdsics 

 

(11.75)      (-7.12)        

0.003trend0.38cdsics 

 

(2.34)    (-5.94)        

2.591.58cdsics 

 

        (-10.76)       

0.98cdsics 

 

24.15)(  (-12.10)      

3.670.35cdsics





 

6.87)(   (-15.17)     

1.630.72cdsics





 

(15.54)       (-9.67)       

0.004trend0.96cdsics 

 

(5.94)         (-6.67)       

0.009trend2.52cdsics 

 

(14.41)      (-15.04)       

0.003trend0.80cdsics 

0r:H0 

1r:H0 

0r:H0 

1r:H0 

0r:H0 

1r:H0 

0r:H0 

1r:H0 

0r:H0 

1r:H0 

0r:H0 

1r:H0 

0r:H0 

1r:H0 

0r:H0 

1r:H0 

0r:H0 

1r:H0 

0r:H0 

1r:H0 

0r:H0 

1r:H0 

0r:H0 

1r:H0 

0r:H0 

1r:H0 

0r:H0 

1r:H0 

0r:H0 

1r:H0 

0r:H0 

1r:H0 

0r:H0 

1r:H0 

0r:H0 

1r:H0 

0r:H0 

1r:H0 

0r:H0 

1r:H0 
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Table 4. Johansen et al.’s (2000) cointegration test 

 

This table reports the results of Johansen et al.’s (2000) cointegration test for the sub-sample of 26 companies 

for which the test shows evidence of cointegration after accounting for structural breaks. “Const.’ refers to a 

model with a broken level, and ‘trend’ refers to a model with a broken trend. The number of lags is determined 

using the general to specific approach starting from the VAR model of order 20. 

Comp Eigenvalue
Trace 

test
p -value

Deter.

Comp.

lags 

VAR

Break

date (t)
Cointegrated vector

0.048 38.61 0.03

0.020 11.25 0.38

0.050 41.89 0.01

0.023 13.20 0.26

0.060 43.08 0.01

0.015 8.58 0.66

0.055 40.05 0.02

0.015 8.65 0.64

0.055 39.64 0.02

0.015 8.21 0.67

0.026 24.99 0.07

0.019 10.46 0.12

0.038 26.57 0.05

0.009 4.94 0.64

0.046 39.37 0.03

0.023 13.06 0.27

0.035 31.94 0.01

0.021 12.08 0.06

0.038 26.84 0.04

0.028 5.37 0.56

0.038 32.99 0.01

0.020 11.44 0.08

0.046 37.63 0.04

0.020 11.40 0.40

0.073 54.31 0.00

0.021 11.67 0.33

0.053 32.66 0.01

0.004 2.23 0.94

0.044 36.14 0.05

0.020 10.96 0.40

0.036 25.01 0.07

0.008 4.53 0.68

0.045 36.65 0.00

0.019 10.95 0.10

0.054 39.28 0.00

0.014 8.24 0.25

0.050 39.91 0.02

0.020 11.52 0.38

0.033 31.02 0.01

0.022 12.34 0.06

0.033 34.26 0.09

0.028 15.78 0.12

0.042 29.57 0.02

0.010 5.53 0.54

0.044 37.32 0.05

0.021 11.97 0.35

0.063 40.97 0.00

0.083 4.40 0.69

0.042 37.62 0.04

0.025 13.81 0.22

0.027 25.60 0.06

0.018 10.29 0.13

0.047 38.99 0.03

0.021 11.83 0.36

0.057 36.03 0.00

0.006 3.59 0.80

1 trend 19 30/05/2007

3 trend 17 13/02/2008

4 trend 17 12/12/2007

5 trend 19 10/10/2007

8 trend 15 25/08/2010

11 const. 17 25/04/2007

16 const. 11 27/05/2009

22 trend 14 02/01/2008

23 const. 15 15/08/2007

25 const. 19 05/09/2007

26 const. 19 01/08/2007

29 trend 17 02/04/2008

31 trend 16 28/03/2007

34 const. 14 06/06/2007

39 trend 19 16/05/2007

44 const. 14 10/10/2007

49 const. 12 10/10/2007

51 const. 11 09/05/2007

54 trend 17 02/01/2008

55 const. 19 11/04/2007

56 trend 15 29/08/2007

57 const. 14 03/10/2007

63 trend 14 19/03/2008

64 const. 11 30/05/2007

65 trend 19 07/11/2007

68 const. 16 05/09/2007

70 trend 14 02/01/2008

75 const. 19 10/10/2007

 

(1.13)                2.33)(         (-9.34)         

0.002trend)(t0.004trend0.97cdsics



 t

 

(7.85)               5.49)(           (-5.53)         

0.008trend)(t0.006trend0.86cdsics



 t

 

(1.87)               2.47)(          (-5.69)         

0.01trend)(t0.015trend2.69cdsics



 t

 

(2.07)                2.17)(          (-8.34)         

0.003trend)(t0.004trend1.06cdsics



 t

 

(4.27)                 (2.21)          (-10.29)        

0.002trend)(t0.001trend0.33cdsics  t

 

3.83)(      (2.90)        (-9.38)         

1.094)0.48(t0.86cdsics



 t

 

3.74)(    (5.10)        (-2.91)         

2.15)1.23(t0.51cdsics



 t

 

(4.64)                5.58)(          (-6.43)         

0.008trend)(t0.010trend0.96cdsics



 t

 

17.46)(    (4.79)        (-8.75)         

3.14)0.63(t0.51cdsics



 t

 

11.01)(   (6.27)       (-13.38)        

2.23)0.79(t0.74cdsics



 t

 

(2.01)      (4.73)        (-5.90)         

1.88)1.60(t1.72cdsics  t

 

(5.39)                  (2.75)           (-4.98)         

0.007trend)(t0.004trend0.69cdsics  t

 

(4.77)               4.90)(           (-7.86)         

0.007trend)(t0.008trend0.61cdsics



 t

 

3.85)(    (9.65)       (-11.37)        

1.33)1.04(t0.91cdsics



 t

 

(2.02)                 2.81)(          (-7.42)         

0.003trend)(t0.004trend0.46cdsics



 t

 

(2.93)      (5.02)          (-6.32)         

4.00)2.67(t2.313cdsics  t

 

8.73)(    (6.83)       (-10.92)        

2.31)1.34(t0.83cdsics



 t

 

7.77)(    (7.18)       (-11.47)        

2.04)1.10(t0.81cdsics



 t

 

(8.39)             10.09)(         (-6.82)           

0.009trend)(t0.013trend0.92cdsics



 t

 

5.53)(     (2.00)         (-2.13)         

3.37)0.314(t0.32cdsics



 t

 

(3.94)                3.23)(         (-2.40)         

0.005trend)(t0.004trend0.22cdsics



 t

 

(1.07)       (7.09)      (-17.32)        

0.69)2.32(t1.64cdsics  t

 

(2.10)                 3.86)(          (-3.08)         

0.002trend)(t0.004trend0.28cdsics



 t

 

0.88)(    (7.98)        (-7.22)         

0.48)2.67(t1.39cdsics



 t

 

(1.65)                2.01)(          (-7.34)         

0.003trend)(t0.004trend1.15cdsics



 t

 

0.38)(    (4.00)        (-5.75)         

0.31)1.61(t1.21cdsics



 t

 

(7.40)               7.96)(           (-3.09)         

0.015trend)(t0.017trend0.62cdsics



 t

 

(0.52)       (9.65        (-9.93)         

0.27)1.98(t1.39cdsics  t
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Table 5. SupQ
m

, SQ and WQ test 

 

This table reports the results of the       test for the known number of structural changes and    and    test 

that allow an unknown number of regimes. For the       test, we allow 1 to 3 regime changes under the 

alternative hypothesis. The trimming proportion is set to 0.2.   

SupQ
m

m SQ WQ SupQ
m

m SQ WQ SupQ
m

m SQ WQ

1 4.462 * 3 4.483 2.690 2.451 1 5.176 2.724 7.328 1 14.279 7.328

2 3.859 * 2 5.101 2.572 2.562 1 5.384 2.822 14.664 * 3 12.750 6.573

3 1.237 1 2.866 1.629 2.606 1 5.102 2.606 16.093 ** 3 14.642 7.800

4 1.700 1 3.678 1.978 2.046 1 3.961 2.046 6.371 1 12.217 6.371

5 4.572 * 3 4.945 2.653 1.904 1 4.437 2.534 5.127 1 10.877 5.750

8 1.130 1 2.636 1.506 2.032 1 4.635 2.603 8.221 * 1 15.465 * 8.221

9 7.233 *** 3 8.115 *** 4.547 *** 9.143 ** 3 10.317 ** 5.482 ** 17.708 ** 3 18.395 ** 9.868 **

10 2.322 1 4.485 2.322 3.890 1 7.242 3.890 21.803 *** 3 23.794 *** 11.952 ***

11 3.942 ** 1 5.913 * 3.942 * 2.200 1 4.454 2.254 14.918 * 3 14.294 7.446

12 2.905 * 1 5.320 2.905 2.074 1 4.028 2.074 15.456 * 3 15.839 * 8.667 *

14 1.529 1 3.934 2.405 2.864 1 5.330 2.864 19.818 *** 3 18.591 ** 10.278 **

15 3.201 ** 1 4.973 3.201 2.643 1 4.736 2.643 7.650 1 13.392 7.650

16 1.932 1 3.992 2.060 1.753 1 4.681 2.928 14.501 * 3 12.786 6.796

17 2.860 * 1 4.756 2.860 3.606 1 6.349 3.606 8.109 * 1 15.609 * 8.109

18 1.940 1 4.157 2.218 11.318 *** 3 12.602 *** 6.706 *** 20.695 *** 3 18.500 ** 10.060 **

19 0.939 1 2.128 1.189 2.600 1 5.187 2.600 8.376 * 1 15.515 * 8.376

20 2.204 1 4.063 2.204 10.370 *** 3 9.146 ** 6.693 *** 17.775 ** 3 14.295 8.575 *

21 2.239 1 3.748 2.239 2.926 1 5.834 2.926 5.426 1 10.509 5.426

22 4.963 ** 3 6.287 * 3.421 * 2.774 1 5.671 2.896 14.581 * 3 13.787 7.680

23 2.803 * 1 4.599 2.803 2.511 1 4.796 2.511 4.810 1 9.270 4.810

24 5.086 ** 3 6.487 * 3.510 * 2.022 1 4.945 2.922 7.936 * 1 15.130 7.936

25 1.437 1 2.724 1.437 2.239 1 4.595 2.356 10.050 ** 1 17.222 ** 10.050 **

26 1.449 1 2.623 1.449 3.181 1 6.366 3.184 6.033 1 12.157 6.125

27 2.383 1 4.730 2.383 1.680 1 4.397 2.717 7.269 1 14.696 7.427

28 4.585 * 3 6.231 * 3.222 * 2.977 1 5.293 2.977 4.234 1 10.276 6.042

29 1.130 1 2.666 1.536 2.433 1 4.658 2.433 8.340 * 1 15.088 8.340

31 2.173 1 3.749 2.173 2.346 1 4.535 2.346 6.296 1 12.245 6.296

34 2.215 1 3.594 2.215 1.217 1 2.797 1.580 15.754 ** 3 18.357 ** 9.503 **

35 1.961 1 3.327 1.961 3.088 1 5.463 3.088 16.602 ** 3 17.403 ** 9.511 **

36 1.065 1 3.132 2.067 2.214 1 5.164 2.950 5.896 1 10.773 5.896

37 9.083 *** 3 19.524 *** 11.519 *** 7.347 ** 2 12.190 *** 7.052 *** 12.375 * 2 17.015 ** 8.803 *

38 4.011 *** 1 6.247 * 4.011 * 7.414 * 3 10.233 ** 5.838 ** 14.898 * 3 19.153 ** 9.608 **

39 4.365 * 3 5.945 * 3.650 * 2.282 1 4.766 2.484 16.371 ** 3 16.117 * 8.455 *

41 2.341 1 3.785 2.341 2.206 1 4.201 2.206 4.664 1 9.096 4.664

42 4.299 * 2 5.084 2.866 3.442 1 6.810 3.442 7.124 1 14.536 7.412

43 2.602 * 1 4.265 2.602 2.752 1 5.097 2.752 14.640 * 3 13.073 7.414

44 1.835 1 3.950 2.115 3.360 1 6.316 3.360 5.676 1 10.886 5.676

45 7.456 *** 3 13.353 *** 7.629 *** 4.614 ** 1 8.540 ** 4.614 * 15.858 ** 3 19.071 ** 9.860 **

47 1.919 1 3.451 1.919 3.446 1 6.587 3.446 12.333 * 2 15.251 8.002

49 4.170 * 2 4.881 2.780 7.891 ** 2 7.400 5.075 ** 5.199 1 11.988 6.789

50 1.393 1 3.065 1.673 1.979 1 3.471 1.979 5.565 1 9.318 5.565

51 4.291 * 3 8.375 *** 4.528 *** 3.585 1 6.405 3.585 14.797 * 3 16.606 * 8.934 *

52 4.029 * 2 5.407 2.721 2.880 1 4.914 2.880 4.745 1 9.164 4.745

54 1.104 1 2.266 1.162 2.229 1 4.309 2.229 10.921 *** 1 17.687 ** 10.921 **

55 4.272 *** 1 6.144 * 4.272 *** 2.292 1 4.572 2.292 6.347 1 12.036 6.347

56 2.697 * 1 4.215 2.697 3.020 1 5.221 3.020 6.056 1 11.483 6.056

57 3.318 ** 1 5.247 3.318 * 3.225 1 6.436 3.225 14.731 * 3 17.243 ** 8.697 *

59 1.767 1 3.512 1.767 2.355 1 4.484 2.355 5.677 1 10.426 5.677

60 2.783 * 1 4.967 2.783 3.218 1 5.851 3.218 5.657 1 11.341 5.684

61 1.273 1 3.174 1.901 9.614 *** 2 14.363 *** 7.640 *** 13.876 ** 2 18.091 ** 9.003 *

62 4.848 ** 3 8.900 *** 5.205 *** 3.664 1 7.306 3.664 5.620 1 11.739 6.119

63 1.630 1 3.086 1.630 2.988 1 5.811 2.988 6.232 1 11.507 6.232

64 4.702 ** 3 5.030 3.042 2.131 1 5.645 3.515 4.289 1 9.740 5.451

65 4.651 * 3 5.629 * 2.977 2.150 1 5.753 3.602 9.284 ** 1 15.931 * 9.284 **

66 1.298 1 2.976 1.678 4.410 * 1 7.833 * 4.410 * 6.299 1 11.717 6.299

67 1.141 1 2.479 1.338 2.423 1 5.148 2.726 5.498 1 12.046 6.547

68 3.304 ** 1 5.298 3.304 * 2.625 1 5.705 3.080 5.107 1 11.471 6.364

69 1.826 1 3.635 1.826 2.144 1 4.282 2.144 9.673 ** 1 16.608 * 9.673 **

70 0.770 1 1.722 0.952 1.408 1 4.471 3.063 6.592 1 13.079 6.592

72 1.900 1 3.681 1.900 2.454 1 4.800 2.454 14.638 * 3 15.482 * 8.150

73 2.185 1 4.150 2.185 8.408 ** 3 7.002 4.032 17.771 ** 3 18.258 ** 9.055 *

74 1.457 1 3.650 2.193 2.509 1 4.529 2.509 7.833 1 14.257 7.833

75 4.124 * 3 5.242 2.725 1.967 1 4.344 2.378 6.340 1 14.164 7.824

none constant trend
comp
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Table 6. Summary

 

strong weak no breaks breaks strong weak

1 Y Y N Y N Y Y Y

2 N Y N N N Y N N

3 Y Y N Y N Y Y Y

4 Y Y N Y N N Y Y

5 Y Y N Y N Y Y Y

8 N Y N Y N Y Y Y

9 N N N N Y Y Y Y

10 Y Y Y N Y Y Y Y

11 Y Y N Y Y Y Y Y

12 Y Y Y N Y Y Y Y

14 Y Y Y N Y Y Y Y

15 Y Y Y N N Y Y Y

16 Y Y N Y N Y Y Y

17 Y Y Y N N Y Y Y

18 Y Y N N Y Y Y Y

19 Y Y Y N N Y Y Y

20 Y Y N N Y Y Y Y

21 N N Y N N N Y N

22 Y Y N Y Y Y Y Y

23 Y Y N Y N Y Y Y

24 N N Y N Y Y Y Y

25 Y Y N Y Y Y Y Y

26 Y Y N Y N N Y Y

27 Y Y N N N N Y Y

28 N Y N N Y Y Y Y

29 N Y N Y N Y Y Y

31 Y Y N Y N N Y Y

34 N Y N Y Y Y Y Y

35 Y Y Y N Y Y Y Y

36 N N N N N N N N

37 N Y Y N Y Y Y Y

38 Y Y Y N Y Y Y Y

39 N Y N Y Y Y Y Y

41 Y Y N N N N Y N

42 N Y N N N Y N N

43 Y Y Y N N Y Y N

44 Y Y N Y N N Y Y

45 Y Y Y N Y Y Y Y

47 N N Y N N Y Y N

49 Y Y N Y N Y Y Y

50 N N N N N N N N

51 Y Y N Y Y Y Y Y

52 N N N N N Y N N

54 Y Y N Y Y Y Y Y

55 Y Y N Y Y Y Y Y

56 Y Y N Y N Y Y Y

57 Y Y N Y Y Y Y Y

59 N Y Y N N N Y N

60 Y Y Y N N Y Y Y

61 N Y N N Y Y Y Y

62 Y Y Y N Y Y Y Y

63 N N N Y N N Y Y

64 Y Y N Y N Y Y Y

65 Y Y N Y Y Y Y Y

66 Y Y Y N Y Y Y Y

67 N Y Y N N N Y N

68 Y Y N Y N Y Y Y

69 N Y Y N Y Y Y Y

70 N Y N Y N N Y Y

72 N N N N N Y N N

73 N Y N N Y Y Y Y

74 N N N N N N N N

75 Y Y N Y N Y Y Y

GH (1996 a,b) Johansen et al., (2000) Qu (2007) coint breakscomp
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Table 7. Capital structure arbitrage strategies 

 

This table reports summary statistics for capital structure arbitrage strategies.   is the fraction of the total 

number of trades entered into over the total number of available observations.    is the fraction of trades ending 

in convergence.    is the fraction of trades with drawdown exceeding 20%.    is the number of trades with 

negative holding period returns. HPR is the mean holding period return. 

 

Table 8. Summary statistics of monthly excess returns 

 

This table reports summary statistics of the monthly index excess returns for sub-samples of companies with 

cointegrated (no breaks and one break) and non-cointegrated CDS-ICS pairs.   

  

Trading

strategy
Sample N N1 N2 N3 HPR

no coint. 68.41% 14.04% 1.83% 31.32% 1.58%

coint. 51.68% 18.23% 1.59% 22.27% 2.32%

no breaks 43.78% 21.06% 1.36% 20.47% 2.84%

one break 57.32% 16.68% 1.71% 23.25% 2.04%

coint. 23.47% 41.32% 1.12% 16.91% 3.02%

no breaks 17.13% 47.70% 0.76% 14.67% 2.85%

one break 27.99% 38.53% 1.28% 17.89% 3.10%

Panel A:

CSApe

Panel B:

CSAce

Trading

strategy
Sample Mean t-stat SD Min Max Skew Kurtosis

Sharpe

ratio

no coint. 0.15% 1.54 1.15% -6.75% 5.71% -1.04 16.83 0.46

coint. 0.26% 2.25 ** 1.31% -4.68% 6.66% 0.35 9.51 0.68

no breaks 0.29% 2.49 ** 1.35% -6.49% 6.55% 0.26 11.92 0.75

one break 0.22% 1.73 * 1.46% -7.27% 6.77% -0.22 11.62 0.52

coint. 0.31% 2.98 *** 1.18% -3.35% 6.47% 1.25 10.26 0.90

no breaks 0.26% 2.50 ** 1.21% -3.42% 7.55% 1.49 13.79 0.75

one break 0.35% 2.81 *** 1.43% -3.74% 8.48% 1.34 11.06 0.85

Panel A:

CSApe

Panel B:

CSAce
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Figure 1. Time development of the mean basis 

 

This figure depicts the time development at a weekly frequency of the mean basis calculated as the cross-

sectional mean of the log differences between ICS and CDS spreads.  

Figure 2.        statistics 

 

This figure shows the cross-sectional mean of the        statistics for models C, C/T, C/S and C/S/T, defined 

in Equations (5.1)-(5.4). The        statistics are computed sequentially for each possible break point τ. The 

trimming parameter is set to 15%.  
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Appendix A 

List of companies 

 

 

 

 

 

 

 

 

 

No. Company Mean CDS Mean ICS No. Company Mean CDS Mean ICS

1 Accor SA 104.16 103.81 39 Lafarge SA 198.97 217.50

2 Airbus Group NV 83.65 80.28 40 Linde AG 50.23 21.23

3 Akzo Nobel NV 66.87 65.04 41 Lufthansa AG 133.51 131.75

4 Anglo American PLC 123.67 122.78 42 LVMH  SE 56.02 44.68

5 BAE Systems PLC 81.90 67.56 43 Marks & Spencer PLC 142.82 147.78

6 BAT PLC 55.65 26.80 44 Metro AG 110.99 113.74

7 Bayer AG 51.09 25.95 45 Michelin SCA 107.62 105.77

8 BMW AG 77.56 76.54 46 National Grid PLC 64.53 53.93

9 BP PLC 55.02 61.88 47 Orange SA 70.62 59.95

10 BT Group PLC 84.74 76.97 48 Pearson PLC 57.44 43.66

11 Carrefour SA 72.57 75.90 49 Peugeot SA 250.92 280.45

12 Casino Guichard SA 117.20 109.02 50 Portugal Telecom SGPS SA 230.80 176.87

13 Compass Group PLC 53.73 41.17 51 Renault SA 185.98 194.74

14 Continental AG 244.51 272.20 52 Repsol SA 138.40 146.06

15 Daimler AG 96.51 100.33 53 Rolls-Royce Holdings PLC 62.19 36.34

16 Danone SA 48.64 37.41 54 RWE AG 57.06 51.97

17 Deutsche Telekom AG 70.68 69.41 55 Sainsbury PLC 107.22 100.16

18 Diageo PLC 50.80 36.55 56 Saint Gobain SA 111.89 114.29

19 E.ON SE 56.09 48.83 57 Siemens AG 52.23 50.83

20 Electrolux AB 70.25 69.08 58 Sodexo SA 57.46 37.89

21 EnBW AG 54.19 49.79 59 STMicroelectronics NV 75.34 75.44

22 Endesa SA 93.19 89.36 60 Stora Enso OYJ 232.35 250.74

23 Enel SPA 128.27 142.88 61 Technip 82.54 66.98

24 Energias de Portugal SA 189.26 202.45 62 Telecom Italia SPA 190.17 196.08

25 Finmeccanica SPA 172.17 195.07 63 Telefonica SA 128.11 130.25

26 Fortum OYJ 50.94 42.15 64 Tesco PLC 63.90 55.97

27 GKN PLC 170.10 179.14 65 Total SA 39.76 41.86

28 Hellenic Telecom SA 386.26 539.68 66 Unilever NV 31.31 27.19

29 Henkel & Co KGaA AG 47.33 33.14 67 United Utilities Group PLC 71.67 58.46

30 Holcim Ltd 136.26 140.80 68 UPM Kymmene OYJ 208.72 220.53

31 Iberdrola SA 109.69 89.59 69 Valeo SA 151.16 156.08

32 Imperial Tobacco Group PLC 98.17 58.32 70 Veolia Environnement SA 88.98 84.63

33 Investor AB 66.22 52.81 71 Vodafone Group PLC 66.00 64.07

34 Kering SA 138.05 146.41 72 Volkswagen AG 87.61 45.69

35 Kingfisher PLC 119.73 130.04 73 Volvo AB 128.57 130.62

36 Koninklijke KPN NV 84.37 73.95 74 Wolters Kluwer NV 62.56 57.38

37 Koninklijke Philips NV 58.50 57.23 75 WPP PLC 101.10 101.96

38 Ladbrokes PLC 222.27 223.65
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Appendix B 

We compare the explanatory power of ICS for different choices of equity volatility: historical 

volatility (for estimation horizons of 22, 63, 126, 250 and 1000 days) and constant volatility. 

Following the current literature, we run firm-specific time-series regressions on a weekly basis, in 

which changes in CDS spreads are regressed on contemporaneous and one-lag changes in ICS and 

one-lag changes in CDS spreads: 

                                                

 

   

                        B.1 

Panel A of Table B.1 reports the summary results of the firm-specific regressions and the 

correlation between changes in CDS spreads and changes in ICS. The mean explanatory power and 

mean correlation are highest when the volatility parameter is set to a constant. In addition, we 

corroborate results reported in previous studies that have found that the performance of ICS estimates 

is worse for volatility measures over short time horizons. These results also hold on the “market” 

level. Panel B of Table B.1 reports the results from regressing changes in the cross-sectional mean of 

CDS spreads (CDSm) on changes in the cross-sectional mean of ICS (ICSm).  

Table B.1. Time-series regressions 

 

Panel A reports the average coefficients and t-statistics (in parentheses) from 75 firm-specific time-series 

regressions. Panel B reports the coefficients and t-statistics (in parentheses) from the time-series regression of 

changes in the cross-sectional mean of CDS spreads (CDSm) on changes in the cross-sectional mean of ICS 

(ICSm). Standard errors are calculated as Newey–West HAC Standard Errors. *, **, and *** denote significance 

at the 10%, 5% and 1% levels, respectively. 

 

Panel A

constant ai 0.06 0.06 0.07 0.10 0.16 0.11

(0.14) (0.16) (0.18) (0.28) (0.50) (0.30)

DICSi,t-k,k=0,1 Sbi,t-k 0.02 0.10 ** 0.19 *** 0.26 *** 0.50 *** 0.64 ***

(0.86) (2.18) (2.86) (2.63) (3.46) (4.02)

DCDSi,t-1 gi,t-1 0.23 *** 0.20 *** 0.20 *** 0.23 *** 0.25 *** 0.26 ***

(3.18) (2.71) (2.93) (3.34) (3.51) (3.57)

Adj R
2

0.09 0.13 0.15 0.16 0.20 0.21

corr(DCDS,DICS) 0.10 0.25 0.27 0.27 0.32 0.34

Panel B

constant am 0.07 0.07 0.09 0.15 0.32 0.11

(0.20) (0.22) (0.31) (0.52) (1.23) (0.48)

DICSm,t-k,k=0,1 Sbm,t-k 0.01 0.17 *** 0.32 *** 0.42 *** 1.00 *** 1.25 ***

(0.32) (5.02) (6.82) (4.49) (9.21) (9.60)

DCDSm,t-1 gm,t-1 0.21 *** 0.10 ** 0.13 ** 0.25 *** 0.30 *** 0.32 ***

(2.82) (2.14) (2.57) (4.41) (4.18) (3.52)

Adj R
2

0.05 0.20 0.25 0.29 0.45 0.49

corr(DCDS,DICS) 0.09 0.42 0.49 0.49 0.63 0.65

Variable Coefficient
22 days 63 days 126 days 252 days 1,000 days

constant
Historical Volatility


