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Abstract

We analyze model risk for the pricing of barrier options. In contrast to existing literature,

this paper is based on an empirical data set of over 40,000 bonus certificates to analyze

the real market extent of model risk for traded barrier options instead of purely synthetic

options. For this purpose a local volatility model, the Heston model and the Bates model

are applied. Furthermore, we add to the literature on the behavior of issuers of retail

derivatives in terms of model choice. We find evidence that the majority of the issuers

prefer stochastic volatility over local volatility models, while they do not use the even more

realistic Bates model which incorporates jumps in the underlying.
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1 Introduction

Derivative pricing is subject to model risk, as the stochastics of the underlying price process

and the corresponding market price(s) of risk are unobservable. Besides the usually less

important modelling of interest rates, models can broadly be classified into pure-diffusion

models (extending the seminal paper of Black and Scholes (1973), which assumes geometric

Brownian motion) and jump-diffusion models (introduced by Merton, 1976), and into

models with deterministic volatility (such as the local volatility approach pioneered by

Breeden and Litzenberger (1978) and further developed by Dupire (1994) and Derman

and Kani, 1994) and those with stochastic volatility (one of the most popular being the

approach of Heston, 1993). Regarding plain vanilla options, a large number of empirical

tests have been presented in the literature, for example by Bakshi et al. (1997) to name

one of the most influential studies.

A second-order problem is the pricing of exotic derivatives when the prices of plain-vanilla

options are given. In this regard, a trader of exotic options faces model risk as the risk

that different models yield different prices for the same exotic product even though the

models are calibrated to the same observable prices of plain-vanilla options. This paper

analyzes model risk for actually traded barrier options embedded in retail derivatives.

Furthermore, we provide insight in the preferences of market participants regarding their

model choice.

Recent literature has dealt with this sort of model risk from a theoretical perspective, ana-

lyzing price deviations for several synthetical exotic options. Hull and Suo (2002) analyze

the model risk of compound options and barrier options when traders apply a “practi-

tioner’s Black-Scholes model”, which is basically a local-volatility model, in comparison

to a stochastic volatility model similar to Heston (1993) with fictitious parameters. Hirsa

et al. (2003) calibrate the constant elasticity of variance model (Cox and Ross, 1976),

two variants of the variance gamma model (Madan et al., 1998), and the local volatility

model to S&P 500 index options and compare the model prices of synthetic up-and-out call

options. Similarly, Schoutens et al. (2004) calibrate the models of Heston (1993), Bates

(1996) (including both stochastic volatility and jumps), Barndorff-Nielsen and Shephard

(2001), and some Lévy models with stochastic time to a set of plain vanilla options on the

Eurostoxx 50 and analyze price deviations for several sorts of exotic derivatives. Another
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sort of model risk, namely the dependency of the model outcome on different calibrations,

is analyzed by Guillaume and Schoutens (2012).

Besides the impact on derivatives prices, a number of studies also address the sensitivity

of hedging performance with respect to different models. Model risk in terms of hedging

performance is also an issue for plain vanilla options, as it does depend on the dynamics

of the underlying even if market prices of plain-vanilla options are perfectly matched for

one instance of time. An influential paper in this regard is Dumas et al. (1998), who

find no significant improvement for several calibrations of a local-volatility model over the

simple Black-Scholes model. In particular for exotic options, the hedging performance

with respect to model choice is addressed by An and Suo (2009), Engelmann et al. (2009),

and Nalholm and Poulsen (2006).

All these papers analyze the extent of model risk not for real, but for synthetic options,

which is not surprising, as usually exotic options are not traded at public exchanges.

Within the segment of structured retail derivatives, there are however products with em-

bedded exotic options, in particular barrier options, with observable market prices. Our

paper makes use of these products to present a first comprehensive study of model risk

for actually traded exotic options. To be more precise, we analyze a data set of bonus

certificates, a product which can be seen as a combination of the underlying with a down-

and-out put option. These types of products have already been studied by Baule and

Tallau (2011) with regard to fair values obtained by different models. However, they

focus on the calibration of the simple Black-Scholes model and analyze model risk with

respect to the stochastic volatility approach of Heston as the only alternative. In our

paper, we study three substantially different models beyond Black-Scholes: the Heston

(1993) model as a representative of the class of diffusions with stochastic volatility, the

local-volatility model according to Dupire (1994) as a deterministic approach, and the

Bates (1996) model as an approach with jumps in the underlying. As all these models are

reasonable and nonetheless different choices for a trader (or, issuer) of bonus certificates,

we can quantify the model risk for this product class with an empirical data set of traded

products.

In contrast to liquidly traded plain-vanilla options, bid and ask prices for retail derivatives

such as bonus certificates are dominated by the issuing bank as a market maker (e.g.,
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Baule, 2011). Thus, observed market prices reflect not necessarily fair values, but are the

result of the pricing policy of the respective issuer. This pricing policy has been studied

in the literature in a number of directions, including life cycle and order flow (Baule,

2011), competition (Schertler, 2016), and complexity (Henderson and Pearson, 2011). As

a second major contribution, we extend this strand of literature by an analysis of model

choice.

Both at issuance and in the secondary market, issuers of retail derivatives face the problem

of determining a fair value for the product and quoting a price, which consists of the fair

theoretical value plus a margin. In this regard, the market for retail derivatives is different

from most other financial markets (e.g., Entrop et al., 2016). For plain-vanilla products,

such as discount certificates on liquid underlyings, calculating a fair theoretical price is

quite easy, as the product is perfectly duplicated by a position in the underlying and a

plain-vanilla option, for which a market price at the options exchange exists. Hence, for

those products, there is no considerable model risk, which gives issuers the chance to price

these products quite aggressively, resulting in low margins (e.g., Baule (2011), Schertler,

2016).

For more complex products with exotic components such as barrier options or multiple

underlyings, margins have been found to be considerably larger (e.g., Wallmeier and Di-

ethelm (2009), Stoimenov and Wilkens (2005), Baule and Tallau (2011), Henderson and

Pearson, 2011). Reasons for higher margins are an increased opaqueness for investors

leading to a greater leeway for issuers to impose a margin, and higher structuring costs.

As a part of the structuring costs argument, in contrast to plain-vanilla products, issuers

do face model risk in the calculation of a theoretical fair value, since there is no refer-

ence exchange for liquid exotic options at which market prices could be observed. Hence,

valuation requires the choice of a valuation model and is subject to model risk.

The local-volatility model is often criticized for its unrealistic assumption of a deterministic

volatility surface (e.g., Hagan et al., 2002). Traders nonetheless like the model because

it has the appealing property that all market prices of plain-vanilla options are perfectly

matched (e.g., Hull and Suo, 2002). In fact, traders need not to “believe” in the model

and its deterministic volatility, but can use it to price exotic options consistently with

plain-vanilla options—similar to the use of the simple Black-Scholes model with adjusted
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implied volatility to price plain-vanilla options similar to those observed at the market.

As Engelmann et al. (2009) show, the local-volatility approach performs satisfactorily for

the hedging of barrier options in many cases. In contrast, stochastic volatility models are

assumably more realistic, but due to a limited number of parameters not able to capture

all plain-vanilla options simultaneously. A first question therefore is:

Do issuers prefer models with deterministic or with stochastic volatility?

Even more realistic, but also more complicated are models with jumps. The second ques-

tion to be addressed is:

Do issuers prefer pure-diffusion models or models with jumps?

Furthermore, there might be differences in the model choice between issuers. A third

question therefore is:

Do issuers agree in their model preferences, or does the model choice vary

between different issuers?

The remainder of the paper is organized as follows. Section 2 outlines the construction of

bonus certificates and discusses the different valuation models together with an approach

to measure model risk. Section 3 presents the methods applied for model calibration.

Section 4 presents the empirical data. Section 5 shows the results of the model risk

analysis. Section 6 discusses the model choice analysis and answers the questions raised.

Section 7 concludes.

2 Valuation Models

2.1 Bonus Certificates

A classic bonus certificate is a combination of two parts. It consists of the underlying

(or, a zero-strike call on the underlying) and a down-and-out put option on the same

underlying. This construction leads to two different payoff possibilities. In the first case,

the underlying never crosses the barrier during the product’s lifetime, which results in a

payment equal to the value of the underlying at maturity, yet at least equal to a bonus

level, which equals the strike price of the down-and-out put. In the second case, the barrier
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is touched or crossed by the underlying at least once during the product’s lifetime, which

results in a payment equal to the price of the underlying at maturity. Hence, a breaching

of the barrier knocks out the chance of a bonus payment. If St is the underlying price at

time t ∈ [0;T ], where T is the maturity date, H stands for the barrier and B defines the

bonus level, the payoff BC at maturity can be summed up as follows:

BC =


ST if min

t∈[0;T ]
St ≤ H,

max{ST ;B} else.

(1)

An extension of this construction is the so called capped bonus certificate. In this variant,

the maximum possible payoff is capped at a certain level. As a consequence, investors do

not have the chance of unlimited gains. This additional feature is constructed by including

a short call option in the duplicating portfolio with the strike equal to the cap level. With

the aforementioned symbols and C describing the cap level, the payoff CBC at time T

can be written as

CBC =


min{ST ;C} if min

t∈[0;T ]
St ≤ H,

min{max{ST ;B};C} else.

(2)

To receive the fair value of a bonus certificate or a capped bonus certificate, it is sufficient

to calculate and sum up the fair values of all parts of the duplicating portfolio. The fair

value of a zero-strike call equals the underlying price minus the present value of dividends

paid during the product’s lifetime. Due to the fact that this paper examines only options

written on the DAX performance index, it is not necessary to incorporate possible dividend

payments. Therefore, it remains to calculate the fair value of the down-and-out put to

determine the bonus certificate’s fair value. To get the capped bonus certificate’s fair

value, one has to additionally calculate the short call’s fair value.

The analysis so far results in a fair value without the consideration of the issuer default

risk. In general, securitized retail derivatives are uncollateralized instruments subject to

issuer default risk (see Baule et al. (2008) for a deeper discussion). Throughout this paper,

the default-free prices are adjusted by using the Hull and White (1995) model to account

for default risk. Assuming independence between market risk and default risk, the fair

value without credit risk, FV , of a certificate with maturity T , is discounted with the
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issuer’s credit spread c. Therefore, the adjusted value FV of the certificate is given by

FV = e−c·T · FV. (3)

2.2 Local Volatility

The local volatility model is based on the work of Dupire (1994) and Derman and Kani

(1994). The volatility varies over time and depends on a combination of the given point in

time and the corresponding price of the underlying according to a deterministic function.

The evolution of the underlying price process is given by the following partial differential

equation:
dSt
St

= rdt+ σ(St, t)dWt, (4)

where St denotes the price of the underlying at time t, r is the continuous risk free interest

rate, Wt is a standard Wiener process, and σ(St, t) is the local volatility function.

An advantage of the local volatility model is the possibility to perfectly calibrate it to a

given data set of plain-vanilla options. This is possible, since the model has an infinite

number of parameters regarding the time dimension and the underlying price dimension.

Another advantage is the straight forward simulation of the underlying price process since

there exist only one source of randomness in the model whereas stochastic volatility models

use at least two sources of randomness. The local volatility model is skew-consistent and

features all empirical conditions regarding volatility surfaces due to the fact that a perfect

calibration is possible. Therefore, it is a useful tool to price exotic options even though it

lacks the dynamics of a real world volatility process.

2.3 Heston Model

The Heston model is a stochastic volatility model. It consists of two correlated partial

differential equations, one describing the underlying price process and the other one de-

scribing the volatility process. The model is given by the following equations:

dSt = rStdt+
√
vtStdW

1
t , (5)

dvt = κ(θ − vt)dt+ ξ
√
vtdW

2
t , (6)

where St denotes the price of the underlying at time t, r is the continuous risk free interest

rate, vt is the variance at time t, W 1
t and W 2

t are two correlated standard Wiener processes,
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κ is the mean reversion speed, θ the mean reversion level and ξ the volatility of volatility.

Furthermore, the initial variance is given by v0. The two Wiener processes are correlated

with the correlation coefficient ρ, that is 〈dW 1
t , dW

2
t 〉 = ρdt.

The volatility follows a mean reversion process, so the instantaneous volatility tends to

evolve in the direction of the long term average volatility level. The higher the mean

reversion speed κ, the faster the return to the mean reversion level. By using the Heston

model one has to take care of the volatility process because volatility always has to be

non-negative. This property is guaranteed if the model parameters fulfill the Feller (1951)

condition 2 · κθ− ξ ≥ 0. This condition prevents the volatility process from reaching zero

and therefore from becoming negative since the initial value should always be positive.

The small number of five model parameters leads to a non-perfect model calibration. The

result of this imperfect calibration is a good fit for long maturities and some differences

between observed and theoretical option prices for short maturities. While the model is

able to capture the volatility dynamics for the long haul, it is not able to reproduce the

steep volatility smile for short maturities due to the lack of jumps in the underlying price

process and/or the volatility process. Typically, the correlation parameter ρ takes negative

values. As a result, the volatility tends to fall if the underlying rises and vice versa, which

is a well-established empirical fact.

A useful property of the Heston model, which holds also true for the Bates model and a

variety of other stochastic volatility models, is the availability of closed-form solutions for

plain vanilla options (see Bakshi and Madan (2000) for the pricing formula for an Euro-

pean call option). This is a real advantage regarding model calibration. Unfortunately,

there exist no formulas for barrier options, which causes the necessity to use a numerical

approach.

2.4 Bates Model

The Bates (1996) model combines the stochastic volatility model of Heston with log-

normally distributed jumps in the underlying price process. These jumps occur randomly

and are independent of the evolution of the diffusion process and independent of the

evolution of the volatility process. By incorporating random jumps, the Bates model

features another empirical fact of stock markets, which has been shown for example by
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Andersen et al. (2002) or Eraker (2004). The Bates model is given by the two following

partial differential equations:

dSt = (r − λµJ)Stdt+
√
vtStdW

1
t + JtStdNt (7)

dvt = κ(θ − vt)dt+ ξ
√
vtdW

2
t . (8)

The volatility process equals the one from the Heston model. Nt is a Poisson process with

intensity λ and Jt is the random jump size which is log-normally distributed:

log(1 + Jt) ∼

(
log(1 + µJ)−

v2
J

2
; vJ

)
, (9)

where µJ is the expected jump size and vJ is the standard deviation of the jump size. Due

to the existence of jumps, one has to adjust the drift rate of the diffusion term to make

sure that the expected return in the risk neutral world equals the risk free interest rate. As

in the Heston model, the underlying price process and the volatility process are correlated

with 〈dW 1
t ,dW

2
t 〉 = ρdt. The negative dependence between the underlying price process

and the volatility process is even more pronounced in the Bates model compared to the

Heston model. The jumps are independent of the other sources of randomness, that is,

〈dW 1
t ,dNt〉 = 0 and 〈dW 2

t ,dNt〉 = 0.

If one allows for jumps in the model, the short end of the volatility surface will be better

captured by the model while random jumps have no real effect in the long run. Jumps

can increase stock price kurtosis for short maturities to reasonable levels (Bakshi et al.

(1997) or Das and Foresi, 1996). For longer dated options the jump effect disappears

and the fits of the Heston model and the Bates model are comparable. To assure that

the volatility process always stays positive, the Feller condition should be fulfilled. The

underlying price process will stay positive even if jumps occur, because the jumps are

modeled as multiplicative jumps regarding the logarithm of the underlying price process.

Therefore, the worst case scenario is a jump to zero which results in an instant default of

the modeled underlying.

European plain-vanilla options can be priced analytically by the same technique as for

the Heston model, with only minor adaptions. Hence, a model calibration to plain-vanilla

prices is possible in a similar way.
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2.5 Model Risk

Model risk is a well known problem in academia and practice and even though it exists a

broad strand of literature about model risk in finance there is no clear cut definition.1 In

the case of derivative pricing, model risk can be described as the risk that different models

yield different prices for the same exotic product even though the models are calibrated

to observable prices of plain-vanilla products and reproduce these prices perfectly. This

general definition of model risk can be further decomposed since model risk is manifold.

Tunaru (2015) presents a comprehensive overview of model risk regarding the pricing of

derivatives, defining five sub-categories of model risk. The first one is parameter estimation

risk which results from wrong or inaccurate parameter estimations. The next component

is model selection risk which deals with the risk resulting from not choosing the best

model if the correct model class is known. The most common definition of model risk

in general is model identification risk, which is the risk stemming from the usage of an

suboptimal model and without knowledge about the true model class. The fourth category

is model implementation risk and the last one is model protocol risk which has its origin

in different understandings of the model or its parameters by two or more people. The

last two categories can be seen as a kind of operational risk and are therefore excluded

from the following model risk definition. The first three categories are kept and the

parameter estimation risk is further divided into two sub-categories, calibration risk and

recalibration risk. Calibration risk describes the risk resulting from different calibration

methods or the usage of different calibration instruments. Meanwhile, recalibration risk

deals with a time component and captures the risk originated in periodical recalibration

using the same methods and comparable calibration instruments. An overview of model

risk and its components is given in figure 1.

[INSERT FIGURE 1 ABOUT HERE]

This study focuses on model identification risk and parameter estimation risk. It is not

possible to analyze model selection risk since no optimal class of models for the purpose

of derivative pricing is known. To measure model risk, the approach proposed by Cont

1See for example Derman (1996), Green and Figlewski (1999), Kerkhof et al. (2010), or Branger and

Schlag (2004) for the examination of model risk in finance.

9



(2006) is followed, who introduced a coherent model risk measure. Assume a set of models

Q = {Q}ni=1 and a set of calibration instruments H = {H}mi=1 with corresponding bid

and ask prices Cbidi and Caski , i = 1, . . . ,m. The models are calibrated in a way that all

resulting model prices are between the bid and ask prices. Then, a coherent measure of

model risk for a contingent claim C is given by

ψQ(C) = π(C)− π(C), (10)

with π = supi∈{1,...,n} EQi(C) and π = infi∈{1,...,n} EQi(C) which is nothing else than the

lowest and the highest theoretical model price. Therefore, it is sufficient to take the

range of model prices to get a measure of model risk. Obviously, model risk measured in

empirical studies is just a lower bound of the real model risk since not every model can

be used. Due to this restriction, one has always to consider the set of employed models in

model risk analyzes.

3 Model Calibration

3.1 Monte-Carlo Simulation

Regarding the models described in the preceding sections, it is not possible to use closed

form solutions to price barrier options. Therefore, it is necessary to use numerical meth-

ods for option pricing, in particular, a Monte-Carlo approach. To simulate the underlying

price process, an Euler discretization is applied for all models. Regarding the Heston

model and the Bates model, the volatility process is discretized using a Milstein scheme.2

To improve the convergence order of the used simulation approach, we use the Richard-

son extrapolation method, which yields a discretization with a convergence order of two

without applying higher order discretization schemes.3 The Richardson extrapolation uses

two different outputs of the Monte-Carlo simulation, one with step size n and one with

step size n
2 and combines them to reduce the included error. The improved estimator is

f∞ = 2fn−fn
2
, where fn and fn

2
are the estimates using a step size of n and n

2 , respectively.

It is possible that the underlying price process crosses the barrier between two consecu-

tive simulation points, leading to upward biased results. To minimize this problem, the

2For details on the discretization methods see for example Gatheral (2006).

3For details see for example Glasserman (2004).
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probability of a barrier crossing between two succeeding steps i and i + 1 is calculated.

This probability can be derived as

πi =


1 if min{Si;Si+1} < H,

exp

(
−2 (Si−H)(Si+1−H)

S2
i σ

2
i ∆t

)
else,

(11)

where Si and Si+1 are the underlying prices at step i and i+ 1, respectively. The barrier

level is denoted by H, the volatility for the interval between step i and i + 1 is called σi

and ∆t is the step size. The probability that the barrier is not crossed over the whole

path is therefore

1− π =
∏
i

(1− πi). (12)

This result can be used to calculate a more reliable estimator of the option price by

multiplying the payoff under no barrier crossing with the calculated crossing probability.

The inclusion of jumps in the Bates model requires an extension of the Monte-Carlo

approach. The number of jumps and the jump size have to be simulated. Instead of

simulating jump times, we simulate the number of jumps and the according jump sizes

in a certain interval, although this approach can cause problems similar to the barrier

crossing problem described above. Nevertheless, this second approach is computationally

more efficient and the potential problems occur rarely with our calibrated parameter set.

After carrying out some numerical tests it is sufficient to use 100,000 simulation paths and

step sizes of 1
100 years and 1

50 years, respectively. This parameter choice leads to stable

option price estimates and reduces the remaining simulation error to a sufficient extent.

3.2 Calibration of the Local Volatility Model

According to Dupire (1994), it exists a unique connection between European call option

prices and the corresponding local volatility parameters. This relation can be expressed

as

σ2(St, t;S0) = 2
∂C
∂T + rK ∂C

∂K

K2 ∂2C
∂K2

∣∣∣∣∣
K=St;T=t

, (13)

where St is the price of the underlying at time t, C denotes the price of an European call

option with strike K and maturity T , and r is the continuous risk-free interest rate. To

apply this formula, the partial derivatives of the call option price with respect to the strike
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price K and the time T have to be calculated. This has to be done numerically. Due to

market imperfections and noise in the market data, these derivatives tend to be unstable,

leading to potentially unrealistic local volatility parameters such as a negative volatility

for example. To avoid this problem, a smoothed implied volatility surface instead of option

prices is used to calculate the local volatility parameters. The corresponding formula to

calculate the local volatility based on the implied volatility is given by

σ2(t, St) =
∂w(k,T )
∂T

1− k
w(k,T )

∂w(k,T )
∂k + 1

4

(
−1

4 −
1

w(k,T ) + k2

w2(k,T )

)(
∂w(k,T )
∂k

)2
+ 1

2
∂2w(k,T )
∂k2

(14)

where σ2
BS(k, T ) denotes the implied Black-Scholes variance, w(k, T ) = σ2

BS(k, T ) ·T is the

total implied variance, k is the log-forward moneyness defined as k = log
(
K
FT

)
with the

forward price FT = Ste
r·(T−t).4 To handle the problem of intractable partial derivatives,

a parametric volatility surface is fitted to the given implied volatility to receive a smooth

volatility surface free of static arbitrage with stable partial derivatives.5 The iterative

approach proposed by Gatheral and Jacquier (2014) is used to fit arbitrage-free volatility

surfaces to the given Black-Scholes implied volatility. First, a whole arbitrage-free volatil-

ity surface is fitted to the given data, before this volatility surface is differentiated for every

observable maturity to achieve a better overall fit. The starting surface is parameterized

as

w(k, θt) =
θt
2
{1 + ρϕ(θt)k +

√
(ϕ(θt)k + ρ)2 + (1− ρ2)} (15)

with ϕ(θt) = η√
θt

and w(k, θt) is a parameterized version of the total variance. While

θt varies for different time horizons, the other two parameters ρ and η remain constant

for every maturity. This surface is fitted to the data by minimizing the sum of squared

distances between given implied variances and theoretical variances. The minimization is

carried out with a quasi-Newton method that allows for parameter constraints introduced

by Byrd et al. (1995). The resulting parametric volatility surface is arbitrage-free, but

normally it does not fit the given data in a sufficient way. Therefore, some additional

optimization steps are applied to achieve a better overall fit while retaining the no-arbitrage

property. Since the best possible fit for every observable time horizon should be calculated,

4See for example Gatheral (2006) for a detailed derivation of this formula.

5See for example Gatheral and Jacquier (2014) for a definition of arbitrage-free volatility surfaces.
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it is not useful to have common parameters for different time horizons, anymore. Therefore,

the following parametrization is used for single time horizons

w(k,Θ) = a+ b{ρ(k −m) +
√

(k −m)2 + σ2} (16)

with the parameter vector Θ = (a, b, ρ,m, σ). The shape of the fitted volatility smile for a

given time horizon t is defined by these five parameters. By an iterative procedure which

obtains the no-arbitrage property, a better overall fit than the initial parametrization is

obtained. The local volatility parameters are calculated by applying Formula (14) to this

volatility surface with numerical differentiation. For this purpose, in the time dimension an

inter- or extrapolation is required. Following Gatheral and Jacquier (2014), the Stineman

(1980) interpolation method is applied, which yields monotonically increasing values in

contrast to the often used cubic spline interpolation.

3.3 Calibration of the Heston Model and the Bates Model

The calibration of the Heston model and the Bates model is carried out in a similar

way. The calibration is based on the fact that there are closed-form solutions for pricing

European call options in both models. Therefore, it is possible to directly minimize the

differences between observable and theoretical call option prices influenced by the model

parameters. The chosen objective function to be minimized is the root mean squared error

between observed and theoretical call option prices√√√√ 1

n

n∑
i=1

(
Ciobs − Cimodel

)2 → min (17)

where n is the number of observed options, Ciobs is the observed price of the i-th call option

and Cimodel is the theoretical value of the i-th call option. The main problem regarding

the calibration process is the existence of different local minima. Therefore, it is necessary

to either use a local optimization algorithm with a reasonable initial value close to the

global minimum or a global optimization algorithm. In this paper, a global optimization

algorithm is applied to make sure that the global minimum is detected without the risk of

sticking at a local minimum. If the parameters that correspond to a local minimum are

used to price the certificates, an additional model risk, namely calibration risk, is present

in the theoretical model prices.
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We apply the differential evolution algorithm proposed by Storn and Price (1997) to

calibrate the models, which generally leads to the global minimum.6 The optimization

has to be carried out under some constraints. First, initial limits for the parameters are

used which can be seen as a minimal requirement. Second, it is assured that the boundaries

are wide enough to allow for an increase or decrease of 50% for every parameter value from

one day to another as long as the theoretical limits are not violated. In this way, the initial

boundaries can be expanded through the second condition.7

If both the Heston and the Bates model are calibrated to the same data set under the same

parameter constraints with the same objective function, the optimal solution regarding

the Bates model should yield an objective function value smaller or equal to the optimal

objective function value in the Heston case.8 This property is useful for the validation of

the calibration results. The differential evolution algorithm needs a terminal condition to

stop searching. Some numerical tests lead to the finding that a number of 200 iteration

steps is sufficient for the algorithm to find the optimal solution in the Heston case, no

matter the market environment. Regarding the Bates model, a number of 200 iteration

steps seems to be sufficient, too. Nevertheless, in nearly 10% of the trading days, the

calibration method results in higher objective function values compared to the calibration

of the Heston model. Therefore, the optimization process for these days is repeatedly

continued with an additional 100 iteration steps until the objective function value regarding

the Bates model is smaller or equal than the objective function value in the case of the

Heston model.

An overview of the optimal model parameters is given in Table 1. Regarding the Hes-

ton model calibration, two different data sets are used. First, all available options are

used, and second, the model is calibrated to the standard DAX options only, excluding

the weekly options with short maturities. Due to the fact that the Bates model yields

6For the calibration of the Heston model via the differential evolution algorithm see for example Gilli

and Schumann (2010) or Vollrath and Wendland (2009).

7The initial boundaries are given by 0 and 0.5 for v0, θ and vJ , 0 and 5 for κ, 0 and 2 for ξ, −1 and

0.3 for ρ, 0.1 and 1.5 for λ and −0.25 and 0.1 for µJ . There were in fact several days with an expansion

of the initial boundaries, in most cases for the mean reversion speed κ.

8This only holds true if one allows for the parameter λ to become zero or for the parameters µJ and

vJ to become zero simultaneously, which is possible in this study.
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better calibration results for short maturities, the weekly options are not excluded for the

Bates model calibration. The Heston model has no such advantages for short maturities

and therefore the two different data sets are considered to analyze if the fit for longer

maturities improves with lesser short dated options. Additionally, it is possible to analyze

the calibration risk in the case of the Heston model.

[INSERT TABLE 1 ABOUT HERE]

Table 1 reveals that no real difference is visible for the parameters v0 and θ in both Heston

model calibrations. While ξ tends to be slightly lower if the model is calibrated to fewer

options, ρ tends to be a little higher. The parameter κ experiences the biggest shift. Using

fewer options to calibrate the model results in a considerably lower κ regarding the mean

value.

Comparing the Bates model with the Heston model results for the whole data set, it

is obvious that every parameter except κ is shifted downwards, while κ itself is shifted

upwards significantly. The calibration results seem to be reasonable from an economic

point of view.

4 Data

4.1 Market Data

The certificates’ prices are calculated using the models described in section 2. Regardless

which model is applied, one needs the same input data, including the continuous risk-free

interest rate, option prices of plain-vanilla options, the price of the underlying, and issuer

individual credit spreads.

The continuous risk-free interest rate is derived from German government bonds. The

whole yield curve is modeled with the approach proposed by Svensson (1994). The model

parameters are provided by the Deutsche Bundesbank on a daily basis via its internet site.

Daily settlement prices for European put and call options written on the DAX and traded

at the EUREX are used for the model calibrations. Standard DAX options with expiry at

the maturity month’s third Friday as well as weekly DAX options are used. The weekly

option data is provided by the Karlsruher Kapitalmarktdatenbank, while the basic option

data is provided by Thomson Reuters EIKON.
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The underlying prices of the DAX performance index are observed simultaneously to the

quotes of the certificates to guarantee synchronicity. DAX tick data is provided by the

Karlsruher Kapitalmarktdatenbank as well.

Daily credit spreads for all issuers are obtained via Thomson Reuters EIKON.

Models are calibrated to settlement prices of EUREX options, which are settled at 5:30

p.m. on every trading day. Therefore, the last available certificate bid and ask prices

before 5:30 p.m. are obtained to guarantee the best possible synchronicity. The bid and

ask prices from EUWAX are provided by VWD.

4.2 Certificates Data

The data set consists of classic and capped bonus certificates written on the DAX, issued

between May 2, 2014 and December 30, 2015. Only certificates which mature before

December 30, 2015 are included to make sure that an analysis over the whole life cycle

is possible. Issuers with a very small amount of outstanding products are excluded. All

information about the certificates such as barrier and bonus level, issue date, maturity

date and issuer are provided by Deriva GmbH.

The product selection results in 40,670 certificates of 11 issuers. The majority of these

products are capped bonus certificates with a number of 26,373 in contrast to 14,297 classic

bonus certificates. A detailed overview of the data set is given in Table 2.

[INSERT TABLE 2 ABOUT HERE]

The certificates have an average time to maturity of 168 days with a minimum of 7 days

and a maximum of 590 days. The average moneyness at issuance, which is the relative

distance to the bonus level, is given by 45.94% for classic bonus certificates and 61.85% for

capped bonus certificates. The average cushion at issuance is equal to 15.31% for classic

bonus certificates and 14.87% for capped bonus certificates. The cap and the bonus level

are equal for all capped bonus certificates.

The number of certificates per issuer is unevenly distributed. While the data set for

Citigroup consists of about 500 certificates, the data set of Goldman Sachs contains more

than 10,500 certificates. Unicredit, HSBC and Vontobel have issued only capped bonus

16



certificates during the period under study.9 The time to maturity is around 0.5 years

for most issuers and product types. Longer time horizons are visible for DZ Bank and

BNP regarding classic bonus certificates and Citigroup and BNP regarding capped bonus

certificates. Shorter time spans are observable for Goldman Sachs regarding classic bonus

certificates and Deutsche Bank, Goldman Sachs, Société Générale and HSBC for capped

bonus certificates.

Regarding the moneyness, it is obvious that Citigroup uses by far the lowest bonus levels

for both types of certificates. Most issuers show comparable values for both types with

Deutsche Bank and Société Générale being the exceptions. Société Générale uses signif-

icantly lower bonus levels while Deutsche Bank tends to use extraordinary high values.

Only HSBC issues capped bonus certificates with even higher bonus levels than Deutsche

Bank. These two issuers have a lot of certificates in their respective portfolio with bonus

levels between 40,000 and 50,000 index points.

The huge range of the bonus levels reveals different understandings or marketing ap-

proaches regarding bonus certificates. While a higher bonus level suggests that the retail

investor gets a defined amount of money as a bonus if the barrier is still in place at ma-

turity, the very low bonus level used by Citigroup suggests a capital protection with the

chance to earn an additional bonus. Even though the products are constructed in identical

ways, they can be sold under different understandings which is an example of the framing

effect.

The cushion does not vary much between the issuers and there are no substantial deviations

between the two types of certificates regarding the single issuers. The lowest cushion and

thereby the highest barrier is used by Goldman Sachs with nearly 10%. The result of the

combination of extremely high bonus levels and really low cushions are products with very

high risk.

9HSBC issued 32 classic bonus certificates which are excluded from the data set since the sample is too

small.
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5 Model Risk Analysis

5.1 Model Identification Risk

In this section the extent of model identification risk is analyzed. Since there is no real

parameter estimation risk in the case of the Heston model, both Heston prices are incor-

porated in the analysis. Model identification risk ψ of a given certificate C is measured

by the range of theoretical model prices in relation to the mean of the product’s bid and

ask prices:

ψ(C) =
max{CHfull, CHpartial, CB, CL} −min{CHfull, CHpartial, CB, CL}

0.5 · (Cbid + Cask)
(18)

with CHfull, CHpartial, CB, CL, Cbid and Cask the price of the certificate in the Heston

model calibrated to the full data set, the Heston model calibrated to the partial data set,

the Bates model, the local volatility model, the bid price, and the ask price, respectively.

A histogram of the resulting model risk for classic and capped bonus certificates combined

is given in Figure 2.10

[INSERT FIGURE 2 ABOUT HERE]

Obviously, a lot of situations with low model risk exist, but there are situations with

a substantial amount of model risk as well. It is obvious that model risk can reach

a significant extent and that it is necessary to account for it in pricing purposes and

investment decisions. The mean model risk is 1.11%. More key figures of the distribution

are given in Table 3.

[INSERT TABLE 3 ABOUT HERE]

Regarding the construction of bonus certificates, model risk might depend on product

parameters. The main features are (i) the relative distance to the barrier which, is called

cushion:

Cushiont =
St −B
St

, (19)

10All results presented in this section were derived for classic and capped bonus certificates separately.

Since the differences in the results between both types of bonus certificates were negligible, only aggregated

results are reported.
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with St the underlying price at time t and the product’s barrier B, and (ii) the remaining

time to maturity. Since the figures should be comparable for all bonus certificates, the

relative product lifetime is defined as

Lifetimet =
t− t0
T − t0

, (20)

where t0 denotes the issuance and T the maturity date.

The dependency on the product’s lifetime is shown in Figure 3 (a). There is no striking

relation between model risk and the relative lifetime except for the last 15 percent of the

products’ lifetime. Model risk declines in this area and nearly disappears at maturity.

This decline is expected since the payoff at maturity becomes less uncertain at the end

of a product’s lifetime, at least in the majority of possible situations. This fact holds

especially true for capped bonus certificates close to maturity, if the underlying lies above

the bonus level.

[INSERT FIGURE 3 ABOUT HERE]

Regarding the relative distance to the barrier, there is a more pronounced relation which is

given in Figure 3 (b). No significant amount of model risk is visible for a higher distance

to the barrier, since the knockout is unlikely regardless the model. As the underlying

approaches the barrier, the model risk rises with the maximum close to the barrier at a

relative distance of about two percent. Directly above the barrier, the model risk experi-

ences a sharp decline. This pattern can be explained with the probability of reaching the

barrier, which takes different values in different models and causes broader price ranges.

At a point close to the barrier, these probabilities are very high for every model, leading

to the sharp decline in model risk.

To analyze the common influence of the aforementioned factors on model risk, polynomial

regressions including interaction terms are performed to find the best possible fit to the

data set. The resulting model risk surface in dependence of the relative lifetime and the

relative distance to the barrier is given in Figure 3 (c). It is obvious that model risk tends

to decrease with an increasing distance to the barrier regardless the remaining lifetime.

The surface is more or less flat with the exception in the area where short distances to the

barrier and short remaining times to maturity coincide. In this case, model risk reaches its

highest values by far. On first sight this seems to be surprising since a decrease in model
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risk for products close to maturity is shown above. Since this is true in general, a special

case is given by products close to the barrier. Different model prices and therefore model

risk result from different barrier hit probabilities. Regarding products close to the barrier,

the longer the time to maturity the more probable are high barrier hit probabilities for

all models under study, since a minor downside movement of the underlying is sufficient

to hit the barrier. Regarding products close to the barrier and close to maturity, there

are bigger differences between barrier hit probabilities, since the different dynamics of the

underlying in the different models result in diverging short term behavior. The difference

between model prices in this situation is mainly introduced by the distance between the

local volatility model and the other two models. The local volatility model experiences

far more barrier hits and therefore yields lower prices. The reason for this is given by the

local volatility surface, since there is a really high level of volatility for short maturities

which causes the underlying to experience higher deviations and thereby increases the risk

of hitting the barrier.

Model risk arises from the range of barrier hit probabilities as was already mentioned

above. Due to this fact, we additionally calculate these probabilities for all three models.

These probabilities are the number of simulated paths that cross the respective barrier

divided by the total number of simulated paths. The model risk in dependence of the

range of barrier hit probabilities is shown in Figure 3 (d). Since all models are calibrated

to the same option data they will produce comparable distributions of the underlying price

at maturity. Therefore, price differences mainly occur due to different behavior along the

paths. That is the explanation for the nearly absence of model risk for really small ranges

of barrier hit probabilities. The model risk appears to grow linearly with an increasing

range of barrier hit probabilities.

5.2 Model-by-Model Analysis

The results stated above reveal that a significant amount of model risk is measurable and

that there exist situations which are prone to high model risk. This section analyzes the

question which model drives the model risk.

Since the Bates model is an extension of the Heston model it can be expected that the

resulting model prices are close to each other. If this assumption holds true, the results
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given above are mainly a consequence of the difference between the local volatility model

and the two other models. To verify this assumption, the pairwise differences between the

three models are analyzed. The key figures of the distribution of the pairwise differences

are given in Table 3. It becomes clear that no model dominates another model for every

observation. Nevertheless, it is possible to find a hierarchy between the models, since a

clear relation between different model prices is visible for the majority of observations.

Both the Heston model and the Bates model yield higher theoretical product prices than

the local volatility model, on average. The Bates model results in the highest product

prices. The mean difference between the theoretical prices is minimal for the comparison

of the Heston model and the Bates model with 0.41%. The mean difference between the

local volatility model and the two other models is bigger with 0.56% compared to the

Heston model and 0.97% compared to the Bates model.

Regarding the influencing factors on model risk, the main difference between the local

volatility model and the two stochastic volatility models is caused by price deviations for

certificates close to the barrier, which can be seen in Figure 4. As already stated above,

this deviation can be explained by the higher volatility level for short maturities and far

away from the at-the-money point. Especially for DAX values far below the real DAX

value at the time of calibration, the local volatility takes on some significantly higher values

than the overall local volatility level. This is the most crucial situation, since a certificate

tends to be close to the barrier in this situation and therefore a higher volatility which

corresponds to higher absolute price movements results in a higher barrier-hit probability

and consequently a lower product price.

[INSERT FIGURE 4 ABOUT HERE]

In the case of the two stochastic-volatility models, a less pronounced pattern is visible

regarding the dependance on the distance to the barrier. There is still an increase in model

risk, followed by a decline as the underlying approaches the barrier, but the maximum

is substantially further away from the barrier compared to the results stated above at a

relative distance of about 10%. One reason for this behavior can be the presence of jumps

in the underlying price process. Since the expected return in the risk neutral world has to

be equal to the continuous risk free interest rate, the drift rate in the Bates model has to

be adjusted due to the presence of jumps. The average jump size is negative and therefore
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the negative expected return caused by jumps has to be compensated via a higher drift

rate. This higher drift rate in combination with the rarely occurring jumps leads to lower

barrier hit probabilities and potentially higher payoffs and consequently to higher product

prices.

Regarding the relative lifetime, the results stated above for the comparison of all three

models hold true for the two model case, as well. The relative lifetime has no obvious

impact on the model risk except for the last few percent of the relative lifetime where

model risk converges to zero.

5.3 Recalibration Risk

In this section the evolution of model risk over time is analyzed, that is, recalibration risk.

To decide whether model risk is stable over time or not, the daily differences in model

risk on a single product basis are determined. Let ρi,t be the model risk for product i at

trading day t, then the change of model risk from one trading day to the next is given

by ρi,t − ρi,t−1. Some figures about the distribution of these daily changes of model risk

are given in Table 3. There is not a lot of variation in the data with the mean change

equal to −0.003% and a standard deviation of 0.49%. These results show that model risk

remains stable over time and is not significantly effected by the daily recalibration of the

models. Nevertheless, there seem to exist situations with a little higher deviation between

consecutive observations of model risk for single products. Since these higher deviations

are rare events, in general the model risk for the whole portfolio of bonus certificates does

not vary significantly on a daily basis.

Regarding the different model parameters, especially in the case of the Heston model and

the Bates model, the results are contrary. The model parameters vary significantly over

time, which is necessary to achieve the best fit to the plain vanilla option data. Since

these varying parameters have no significant influence on the extent of model risk for

bonus certificates, it is not necessary to account for model risk induced by periodical

recalibration as long as the same calibration procedure is used.
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5.4 Calibration Risk

Calibration risk is analyzed in the case of the Heston model. Therefore, the resulting

optimal parameter sets for the Heston model based on two different sets of calibration

instruments are analyzed. The model is calibrated to all available options including weekly

options on one hand and only to standard options on the other hand. An overview of the

resulting optimal parameter sets is given in Table 1. Obviously, there are no substantial

differences between the optimal model parameters. The only parameter with a slightly

bigger shift is the mean-reversion speed κ, which experiences a decline of about 7.6% if

only the standard options are used as calibration instruments. Since the influence of the

mean-reversion speed on option prices is least pronounced for all model parameters one

would not expect a significant amount of model risk induced through this difference.11

Key figures about the distribution of the resulting model risk are given in Table 3. There

is no significant extent of calibration risk in the case of the Heston model, since nearly all

observations lie in an interval from −0.2% to 0.2% with a mean of -0.04% and a median

of -0.01%.

6 Model Choice of the Issuers

In this section we analyze, which models are used by the issuers to calculate certificates’

prices. Therefore, the issuer bid-ask prices are compared to the theoretical product prices.

It is not possible to directly compare these values, since the market prices include un-

known issuer margins. Additionally, the product prices calculated on consecutive days are

probably highly correlated. To get rid of the two aforementioned problems, daily returns

are calculated for every product with each theoretical model and additionally with the

actual mid price of the issuers.

To identify the model which issuers actually use, we apply a regression approach similar to

Baule and Tallau (2011). The returns based on issuer market data rmarketi,t are explained

by the theoretical returns rmodeli,t under the incorporation of daily fixed effects αt for every

11We also carried out sensitivity analyses regarding the influence of the different model parameters on

the prices of bonus certificates. These numerical analyses reveal that a variation of the mean reversion

speed has the smallest impact on product prices.
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day t:

rmarketi,t =
∑
t

αt + β · rmodeli,t + εi,t. (21)

These regressions are performed separately for each issuer. If the market price is a combi-

nation of a certain model price under the incorporation of default risk and an additional

issuer margin, the model’s corresponding beta factor is (close to) one and the error term

is (close to) zero.

Empirical literature on issuer pricing of certificates shows strong evidence that issuer

margins decrease over a product’s lifetime. Therefore, the daily returns based on market

prices should be lower than their theoretical counterparts. This effect should result in

negative alpha coefficients, on average.12

Based on the regression coefficients, we can infer the likelihood that issuers prefer a specific

model over another. This likelihood is the larger, the closer the beta coefficient to one and

the closer the error terms to zero (equivalently, the larger the regression R2). However,

even if the issuer actually uses a certain model, we cannot expect perfect results because

of a number of potential sources of deviation, for example the calibration method, the

calibration instruments, or the applied discretization scheme. Furthermore, statistical

noise, for instance due to a non-perfect synchronization of prices, will blur the results.

Nevertheless, the appropriate model should yield the lowest deviations from the ideal

results. In particular, we judge by the standard deviation of the residuals to decide

whether a given model is close to that used by the issuer.

The regression results, separately for classic bonus certificates and capped bonus certifi-

cates, are given in Table 4.

[INSERT TABLE 4 ABOUT HERE]

Regarding classic bonus certificates, except for Goldman Sachs, the adjusted R2 is above

96% for at least some models for all issuers. This result is confirmed by the standard

deviation of the residuals which are fairly low for all issuers except for Goldman Sachs.

These observations are a first indication that the issuers indeed use a model close to the

theoretical models of our study.

12Since the alpha coefficients absorb all other effects not explained by the simple linear model, we cannot

expect all coefficients to be negative.
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The identification of the most likely model is mainly based on the standard deviations.

The standard deviations for the Heston model reach the lowest value for every issuer.

The only other model with fairly low values for all issuers is the Bates model. The Bates

model has only a slight advantage over the Heston model regarding Goldman Sachs, which

was already identified as an issuer who potentially uses a different model than the ones

under study. Based on the standard deviations, the local volatility model seems to be no

potential choice for any issuer.

Based on the beta coefficients, again the only strong candidate to be used by the issuers is

the Heston model. The Bates model yields fairly good results as well but the Heston model

is always at least slightly closer to one. In combination with the observations regarding

the standard deviations, we conclude that the Heston model is more likely to be used than

the Bates model. The beta coefficients for the local volatility model are significantly lower

than one, so this model is no appropriate candidate to be the one used by the issuers.

In summary, none of the analyzed models seems to be used by Goldman Sachs. The

remaining issuers most likely use the Heston model or at least a Heston-like model, that

means, a model with similar properties as in the Heston case. This could be an extension of

the Heston model or a different modeling approach which results in comparable properties.

The Bates model is a probable choice, too, but the results are always slightly inferior to

the Heston results. The local volatility model is pretty unlikely to be used by the issuers.

The regression results for capped bonus certificates show mainly comparable results. Re-

garding the adjusted R2, Goldman Sachs values are lower than the majority of the other

issuers corresponding values. In contrast to the results for classic bonus certificates, the

adjusted R2 for UBS is extremely low for all models with values lower than 70%. This

indicates that UBS uses different models or extremely different pricing policies for the

two types of bonus certificates. Since the product features are comparable for classic and

capped bonus certificates issued by UBS, the difference does not seem to be based on the

product construction.

Regarding the standard deviation of the residuals, the observations for classic bonus cer-

tificates can be confirmed. The Heston model yields the lowest values with the Bates

model close behind. The local volatility model seems not to be used by the issuers.
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The results based on the analysis of the beta coefficients can be confirmed, too. The

Heston model yields the best values and for the majority of the issuers they are close to

one. An exception is HSBC which has a maximal beta coefficient of about 70%. This

could be seen as an indication that HSBC uses a different model or a different pricing

policy than the assumed one. This impression is confirmed by the standard deviations of

the residuals which are among the highest values behind only Goldman Sachs and UBS.

In summary, Goldman Sachs, UBS, and maybe also HSBC use other models than the ones

under study. All remaining issuers seem to use the Heston model. The Bates model is

always slightly worse and the local volatility model is unlikely to be used by the issuers

for pricing purposes.

As robustness checks, the calculations were repeated under the incorporation of default

risk and without the use of daily fixed effects. The results remain nearly the same and

therefore they are not reported.

So we can answer the questions raised in the introduction as follows:

• Issuers prefer models with stochastic volatility over deterministic volatility.

• Issuers prefer pure-diffusion models over models with jumps.

• Most issuers agree in their model preferences. Some issuers however apply completely

different pricing policies.

7 Conclusion

In this paper, the extent of model risk present in tradable bonus certificates written on

the DAX is analyzed. Therefore, theoretical model prices are calculated and the resulting

range of prices is a measure of model risk. This measure is mainly influenced by the

considered set of models. Since it is impossible to use every available model, the analyzed

model risk has to be seen as a lower bound of the real model risk. Often, the starting

point for model selection is the famous Black-Scholes model. Although the stock price

dynamics with constant volatility are not overly realistic, the model yields reasonable

product prices if the volatility is calibrated to similar traded derivatives. Since barrier

options are not traded liquidly, the Black-Scholes model is not applied in this study. The

chosen models are the local volatility model by Dupire, the stochastic volatility model
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by Heston, and the jump-diffusion model with stochastic volatility by Bates. This set

of models is frequently used in academia and practice and therefore the resulting model

risk seems to be an appropriate measure for practical purposes. Furthermore, this seems

to be a natural choice, since the Black-Scholes model as a starting point is consequently

expanded by the more sophisticated models to incorporate empirical findings about stock

price and volatility behavior.

More than 40,000 certificates from 11 issuers with more than 3 million single observations

are analyzed. The result is an amount of model risk of about 1.1% on average. This

figure is substantial, compared to average issuer margins in the range of 2%–3% (Baule

and Tallau, 2011). The extent of model risk depends on different factors. The highest

model risk is present if a certificate is close to maturity and close to the barrier. Regarding

the barrier, model risk tends to rise if the underlying approaches the barrier and reaches

it maximum close to the barrier at a relative distance to the barrier of about 2%. If the

underlying further approaches the barrier, model risk experiences a sharp decline, since

the probability of a potential barrier hit converges for the models under study and the

model risk is directly linked to the uncertainty about barrier hits.

A second analysis relates to the question which models are actually used by the issuers. To

analyze this question, the returns based on market prices are regressed on the correspond-

ing returns based on different model prices. This analysis reveals that the issuers tend

to use models related to the Heston model. In some cases the Bates model is a possible

choice, too. Regarding the local volatility model, there is no evidence that it is used by

the issuers for the purpose of the pricing of bonus certificates. Only a few issuers seem to

use completely different models or different pricing policies.
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Figure 1. Overview of model risk and its components.
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Figure 2. Distribution of empirical model risk in percent. Model risk is defined as the difference between

maximum and minimum model prices of the local volatility model, the Heston model (with two different

calibrations), and the Bates model. The data base covers 40,670 classic and capped bonus certificates from

11 issuers observed between May 2014 and December 2015.
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Figure 3. Model risk in dependence of different influencing factors. Subfigures (a) and (b) refer to relative

lifetime and relative distance to the barrier, respectively, Subfigure (c) to both factors. Subfigure (d) shows

model risk in dependence of the range of barrier hit probabilities. Subfigures (a), (b), and (d) show a range

of boxplots, with the upper whiskers limited by 1.5 times the inter-quartile range.
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Figure 4. Pairwise differences between the different models in dependence of the relative distance to

the barrier. Each subfigure shows a range of boxplots, with the upper whiskers limited by 1.5 times the

inter-quartile range.
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Heston full Heston partial Bates

Parameter Mean Min Max Mean Min Max Mean Min Max

v0 0.043 0.011 0.171 0.042 0.012 0.168 0.041 0.009 0.176

θ 0.047 0.036 0.058 0.047 0.036 0.058 0.032 0.019 0.056

κ 2.722 0.966 11.230 2.514 0.951 9.300 3.998 0.353 31.880

ξ 0.482 0.333 0.979 0.469 0.325 0.889 0.350 0.135 1.005

ρ −0.771 −0.997 −0.556 −0.762 −0.949 −0.543 −0.865 −0.999 −0.559

λ - - - - - - 0.167 0.100 1.316

µJ - - - - - - −0.125 −0.249 0.098

vJ - - - - - - 0.280 0.000 0.479

Table 1. Results of model calibrations. For the Bates model, the Heston model “full” (calibrated to every available option data), and the Heston “partial”

model (with the exclusion of short dated weekly options), average, minimum, and maximum optimal parameter values over the period of 422 trading days are

reported.
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Classic Bonus Certificates Capped Bonus Certificates

Issuer # Certificates Maturity Moneyness Cushion # Certificates Maturity Moneyness Cushion

Citigroup 322 0.57 0.34% 24.85% 209 0.69 2.97% 21.31%

Commerzbank 998 0.50 23.22% 13.18% 3,162 0.52 20.03% 16.60%

DZ Bank 884 0.67 20.32% 22.24% 2,892 0.58 38.07% 21.91%

Deutsche Bank 1,985 0.57 36.91% 13.45% 2,276 0.35 140.99% 13.79%

Goldman Sachs 5,353 0.26 67.71% 9.31% 5,373 0.26 66.95% 9.27%

Unicredit - - - - 2,253 0.43 55.90% 12.33%

BNP 2,098 0.68 29.84% 19.25% 3,640 0.72 28.21% 18.78%

Société Générale 1,095 0.54 57.80% 19.28% 315 0.20 12.32% 24.45%

HSBC - - - - 2,179 0.29 210.05% 13.65%

UBS 1,530 0.49 31.72% 26.03% 722 0.56 24.78% 25.57%

Vontobel - - - - 3,292 0.52 20.51% 11.43%

Sum 14,297 0.46 45.94% 15.31% 26,373 0.46 61.85% 14.87%

Table 2. Certificate data separated by the type of bonus certificates. For each issuer, the number of certificates, the average maturity in years, the average

moneyness, and the average cushion are given.
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Minimum 25% Quantile Median Mean 75% Quantile Maximum Standard deviation

All models 0.00% 0.31% 0.66% 1.11% 1.39% 35.85% 1.32%

Local volatility minus Heston -34.09% -0.66% -0.28% -0.56% -0.04% 20.00% 1.07%

Local volatility minus Bates -35.85% -1.32% -0.57% -0.97% -0.14% 24.26% 1.36%

Bates minus Heston -25.07% -0.07% 0.14% 0.41% 0.66% 20.90% 0.76%

Recalibration -47.20% -0.10% 0.00% 0.00% 0.10% 47.19% 0.49%

Heston full minus Heston partial -20.01% -0.04% -0.01% -0.04% 0.00% 15.10% 0.14%

Table 3. Key figures of different model risk distributions. The first part refers to model risk based on all models, the second part to pairwise differences between

the models, the third part to recalibration risk, and the fourth part to calibration risk for the Heston model (calibrated to all available calibration instruments

versus standard options only).
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Citi Commerz DZ Deutsche Goldman UniCredit BNP SocGen HSBC UBS Vontobel

Panel A: Classic Bonus Certificates

Heston R2 0.9963* 0.9916* 0.9931* 0.9806* 0.9023 - 0.9886* 0.9636* - 0.9898* -

Heston sd 0.0007* 0.0017* 0.0011* 0.0025* 0.0089 - 0.0014* 0.0058* - 0.0017* -

Heston β 0.9411* 0.9051* 0.9184* 0.7562* 0.6650 - 0.8828* 0.8956* - 0.8386* -

Bates R2 0.9950 0.9907 0.9857 0.9769 0.9048 - 0.9840 0.9603 - 0.9881 -

Bates sd 0.0008 0.0018 0.0016 0.0028 0.0088 - 0.0016 0.0061 - 0.0018 -

Bates β 0.7874 0.8540 0.8597 0.7179 0.6474 - 0.8443 0.8638 - 0.8242 -

Local R2 0.9939 0.9855 0.9694 0.9696 0.8531 - 0.9672 0.9286 - 0.9720 -

Local sd 0.0009 0.0022 0.0024 0.0032 0.0110 - 0.0023 0.0082 - 0.0028 -

Local β 0.8834 0.8611 0.8372 0.6159 0.5562 - 0.8442 0.8453 - 0.7300 -

Panel B: Capped Bonus Certificates

Heston R2 0.9956* 0.9806* 0.9544* 0.9733* 0.9074 0.9904* 0.9897* 0.9626* 0.9702* 0.6748 0.9699*

Heston sd 0.0006* 0.0021* 0.0036* 0.0043* 0.0086 0.0033* 0.0012* 0.0017* 0.0058* 0.0095 0.0029*

Heston β 0.9280* 0.9022* 0.8321* 0.7533* 0.6560 0.9526* 0.8788* 1.0355 0.6780* 0.7992 0.9181*

Bates R2 0.9941 0.9797 0.9517 0.9708 0.9101 0.9899 0.9826 0.9443 0.9637 0.6697 0.9683

Bates sd 0.0007 0.0021 0.0037 0.0045 0.0085 0.0034 0.0016 0.0021 0.0064 0.0096 0.0030

Bates β 0.8640 0.8659 0.8093 0.7306 0.6392 0.9210 0.8396 0.9677* 0.6543 0.7564 0.8904

Local R2 0.9861 0.9614 0.9063 0.9512 0.8629 0.9746 0.9661 0.8986 0.9397 0.6632 0.9407

Local sd 0.0010 0.0029 0.0052 0.0058 0.0105 0.0054 0.0022 0.0028 0.0082 0.0097 0.0041

Local β 0.8052 0.8324 0.7512 0.6852 0.5562 0.9060 0.8386 0.8825 0.5733 0.7237 0.8809

Table 4. Results of the model choice regressions, separated by certificate type (classic vs. capped) and issuer. The adjusted R2, the standard deviation of the

residuals, and the beta coefficient of the theoretical returns are given. The respectively best value is denoted by an asterisk, if the corresponding R2 exceeds 95%.

39


