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Abstract

We introduce a model for derivations of individual equity option prices that captures 
persistent and transient factor structure in equity options. We derive a closed-form 
equation for pricing individual equity options and show how transient and persistent 
factor loadings affect the instantaneous expected returns of equity options. For the firms 
listed on Dow Jones Index, we find that the option-implied transient betas are always 
greater than those of persistent betas, implying that large capitalization firms listed in the 
Dow Jones index co-move more with transient (larger) variations in market. The different 
sensitivities to the transient and persistent systematic risks are important for a portfolio 
manager who hedges her portfolio exposure to transient versus persis-tent systematic 
market variations. Our closed-form sensitivity expressions make this analysis readily 
available. In cross-sectional analysis, our model predicts that firms with higher transient 
beta have a steeper term structure of implied volatility and a steeper implied volatility 
moneyness slope. Our model also predicts that variances risk premiums have more 
significant effect on the equity option skew when the transient beta is higher. On the 
empirical front, for the firms listed on the Dow Jones index, our model provides a good fit 
to the observed equity option prices. At the market index level, we use data from the S&P 
500 index and options markets and obtain negative prices for persistent and transient 
variance components, implying that investors are willing to pay for insurance against 
increases in volatility risk, even if those increases have little persistence. Our empirical 
results indicate that unlike stochastic volatility model, join restrictions do not lead to the 
poor performance of two-factor SV model, measured by Vega-weighted root mean squared 
errors.

JEL Classification: G10; G12; G13
Keywords: equity options; factor structure; skewness; variance risk premium; two-
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1 Introduction

The dynamics of index return volatility and their role in pricing options have had a long
history following the classic early works by Wiggins [1987] and Heston [1993], that recognized
the volatility’s stochastic nature and managed to derive closed form expressions for the
resulting European options. Related early contributions were also by Duan [1995], Duan
et al. [1999], and Heston and Nandi [2000] under GARCH return dynamics, with option
prices derived either by numerical methods or with closed form expressions. More recent
studies, however, have pointed out that a single factor stochastic volatility (SV) or GARCH
is not sufficient to represent both the underlying (P ) and the risk neutral (Q) measures of
the joint dynamics of returns and variances for the key S&P 500 index and its options.1 In
particular, these studies show that one-factor models are incapable of simultaneously fitting
the persistence of volatility and the volatility of volatility, and that two volatility factors
(one with persistent dynamics and one with transient dynamics) are needed to explain return
volatility dynamics; similar considerations apply also to option-based risk neutral returns.

At the market index level, this paper examines index option pricing under two SV factors,
where aggregate market volatility is decomposed into a more persistent volatility component,
which has nearly a unit root, and a transitory volatility component, which has more rapid
time decay. Building up on Christoffersen et al. [2009] model, we adopt an affine two-factor
SV process for the underlying index returns and introduce an admissible pricing kernel to
derive the risk-neutral index dynamics and to price European options.2

We investigate empirically the pricing performance of our two-factor SV model in S&P
500 options by estimating the joint dynamics of returns and variances under the P and Q
measures.3 First, we filter two vectors of daily spot variances using the Particle Filter (PF)
method.4 We follow the conventional filtration procedure of similar studies but provide a
novel and methodologically important solution for the challenging issue of how to separate
the two variance components’ paths. We then use a likelihood-based loss function that
combines a return-based and an option-based likelihood functions to obtain a consistent set
of structural parameters for the two-factor SV model.5 The resulting parameter estimates

1See, for instance, Bollerslev and Zhou [2002], Alizadeh et al. [2002], and Chernov et al. [2003] for the
P -returns and Bates [2000], Christoffersen et al. [2008], and Christoffersen et al. [2009] for the option-based
Q-distribution.

2Note that the extracted risk-neutral dynamics are not restricted to the introduced admissible pricing
kernel, where investor’s variance risk preference is distinguished from her equity risk preference. We obtain
the same risk-neutral dynamics by assuming a standard stochastic discount factor in Appendix F.

3Joint estimation appropriately weights returns and option data and simultaneously address the model’s
ability to fit the time-series of returns and cross-section of option prices. The importance of joint estimation
of the structural parameters of the underlying returns and volatility dynamics has been addressed in Bates
[1996], Chernov and Ghysels [2000], Pan [2002], Eraker [2004], and Broadie et al. [2007] among others.

4For the application of PF in estimating the model parameters see Gordon et al. [1993], Johannes et al.
[2009], Johannes and Polson [2009], Christoffersen et al. [2010], and Boloorforoosh [2014].

5The main challenge in such an efficient joint estimation procedure is its heavy computational burden. To
overcome this challenge, previous studies mostly focused on a very short time-series and/or weekly/monthly
option dataset, See Pan [2002] and Eraker [2004]. However, efficient programming and parallel computing
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are therefore consistent with the return data and option data. Further, joint estimation allow
us to obtain two separate variance risk premiums; a transient variance risk premium and a
persistent variance risk premium. To the best of our knowledge, this is the first study that
estimates consistent P - and Q-parameters from underlying index return and option data6

and reports variance risk premium for a persistent and a transient component.

At the individual equity level, we extend the insights of two factor stochastic volatility models
into the pricing of equity options, formulates the simultaneous equilibrium of both equity
underlying and option markets, and tests empirically the derived results. In particular,
we examine how individual equity option prices respond to the existence of two volatility
components and so to the transient and persistent factor loadings. We find that the existence
of multiple volatility components in the dynamics of index has significant implications for
equity option prices.

We extend the one-volatility-factor model in Christoffersen et al. [2015] and assume that
individual equity returns are related to the market index with two distinct systematic com-
ponents (two constant factor loadings), and an idiosyncratic component which is stochastic
and follows the standard square root process. Hence, equity returns are related to the mar-
ket index with two distinct betas; a transient beta and a persistent beta. We find that
option-implied transient beta is always higher than option-implied persistent beta, implying
that for large capitalization firms listed in the Dow Jones index, transient (larger) variations
in market tends to be related to the proportionally larger systematic price reactions than
persistent and smaller variation in the market index.

In empirical analysis of the index model, we find that one of the volatility factors is highly
persistent (persistent component) while the immediate impact of volatility shocks on the
other volatility factor is bigger but short-lived (transient component). We obtain negative
correlation between shocks to the market returns and each variance component, implying that
both components are important in capturing the so-called leverage effect. We find the point
estimate of the transient correlation parameter is less negative (ρ2 = −0.2173) compared to
that of the persistent correlation (ρ1 = −0.6918) and therefore has a less significant effect
on the skewness and kurtosis dynamics of index and on the volatility smirk.

We find negative prices for both variance components, namely λ1 = −1.0798 and λ2 =
−1.0355. Our finding implies that investors are willing to pay for an insurance against an
increase in volatility risk, even if that increase has little persistence. To the best of our
knowledge none of the previous studies of two-factor stochastic volatility models reports
the price of the variance risk factors as they either focused on the options market data or
the underlying returns data. The negative variance risk premium for both transient and
persistent variance components are consistent with the findings in Adrian and Rosenberg
[2008]. Using a large cross-section of stock returns data, they find negative and significant

techniques allow us to keep a large time-series of returns and the entire cross-section of daily option prices
over the same time span.

6According to Christoffersen et al. [2009, Section 6], “an integrated analysis of multifactor models using
option data as well as underlying returns out to be done.”

3



prices for both short-run and long-run volatility components.7

At the individual equity level, we estimate the structural parameters and filter spot idiosyn-
cratic variance for the firms listed in the Dow Jones index. We find that proposed option
pricing model provides a good fit to the observed equity option prices across all of the 27
firms, both in-sample and out-of-sample. Further, the in-sample performance of our model
over the one-factor structure of Christoffersen et al. [2015] together with its cross-sectional
implications regarding IV term-structure, moneyness slope, and equity option skew support
the importance of transient and persistent factor loadings in pricing equity options. Our
estimation results show that the transient and persistent betas have quite different values
across all the firms: in our sample of 27 firms, the transient beta has values ranging from
1.01 to 1.35, while the persistent beta is about half the value, range from 0.34 to 0.68.

The proposed factor structure has a number of important cross-sectional implications for
equity options. Our model predicts that firms with transient betas have higher implied
volatilities. It also predicts that firms with higher transient betas have steeper term struc-
tures of implied volatility while the persistent beta has a marginal effect on the implied
volatility term structure. It also predicts that the implied volatility moneyness slope is
steeper for the firms with the higher transient betas while the persistent beta has a much
less significant effect on the moneyness slope. Consistent with previous studies, we find that
the variance risk premium has a significant effect on the equity option skew. More to the
point, our model predicts that it is the transient variance risk premium that mainly drives
the slope of equity implied volatility smile for individual equities.

Our models’ framework is especially important for a portfolio manager who hedges her
portfolio’s exposure to the systematic risk factors in the portfolio of stocks and options.8

Our proposed factor structure and closed-form option pricing equation make this analysis
readily available and yields similar closed-form expressions for the exposure of equity options
to the transient and persistent market variance components in addition to its exposure
to the overall market returns. We also obtain a closed-form expression for the expected
equity option returns and show that exposures to the level of market index and market
variance components affect the expected equity option returns. In other words, we are
able to disentangle the effect of market risk premium from those of persistent and transient
variance risk premiums on the expected equity option returns.

Our proposed factor structure in equity options is motivated by the extensive empirical evi-
dence that supports the presence of two variance components in the dynamics of the market
index.9 In the P -distribution domain, they document that two volatility factors are needed
to explain the volatility dynamics, since one-factor models are incapable of simultaneously
fitting the persistence of volatility and the volatility of volatility in the dynamics of the

7Note that unlike discrete time model of Adrian and Rosenberg [2008] we do not impose any restrictions
on the variance dynamics other than independence of variance shocks.

8The proposed framework is equally important for risk managers and dispersion traders.
9The aggregate market volatility is decomposed into two independent components, one with persistent

dynamics and the other one with transient dynamics.
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market index. Chernov et al. [2003] suggest that the addition of a second volatility factor
breaks the link between tail thickness and volatility persistence and leads to a significant
improvement relative to a single SV models in capturing the return dynamics. Bollerslev
and Zhou [2002] and Alizadeh et al. [2002] documents the importance of two volatility com-
ponents in capturing the dynamics of exchange rates. According to Dai and Singleton [2000;
2002] multifcator volatility models are needed to model the term structure of the interest
rate.

Extensive empirical evidence in the Q-distribution domain also point toward the existence of
two variance components. Egloff et al. [2010] and Menćıa and Sentana [2013] find that two-
factor SV models have more flexibility to fit the term structure of the volatility and to control
the level and the slope of the volatility smirk in cross-sections of option prices. Egloff et al.
[2010, Page 1289] show that the upward sloping autocorrelation term structure of variance
swap rate quotes points to the existence of multiple variance risk factors. Christoffersen et al.
[2009] show that multiple SV models can better capture the time-varying nature of the smirk
as ut can generate sufficient amounts of conditional skewness and kurtosis. In a model free
framework, they show that the first two principal components of the Black-Scholes implied
variances on a sample of S&P 500 index options together explain more than 95% of the
variation in the implied variances.

Similar inconsistencies in the joint estimation of the SV model are illustrated by Broadie
et al. [2007]. They note the failure of SV model to reconcile the P - and Q-estimates of certain
structural parameters of the SV model, namely the correlation coefficient and volatility of
volatility, and conclude that the SV model is basically misspecified. They also show that the
joint restrictions on the returns and volatility dynamics under the P and Q measures leads
to the poor performance of the SV model, measured by the high level of IVRMSE. However,
in our empirical analysis, we find that joint restrictions on the P and Q dynamics does not
lead to the poor performance of our two-factor SV model.

Although our study is not the first one to examine multifactor SV models, it is the only one
to present consistent P - and Q-parameter estimates both theoretically and empirically. For
instance Bates [2000] examined a multifactor specification in option pricing by relying on
the Q-distribution only. Christoffersen et al. [2008] introduced a two-component GARCH
model, which can generate more flexible skewness and volatility of volatility dynamics in
capturing the dynamics of the S&P 500 index returns and in pricing European S&P 500 call
options. They document that the empirical performance of the volatility component model
is significantly better than that of the benchmark GARCH(1,1) model, both in-sample and
out-of-sample. They also find that the proposed volatility component specification could
better capture the volatility term structure. Nonetheless, the absence of an explicit pricing
kernel linking the P - and Q-distributions in that study necessitated either the use of an
arbitrary price of volatility risk or the estimation of the risk neutral parameters by relying
on theQ-distribution only. Christoffersen et al. [2009] explore multiple variance factors model
under Q-distribution only and find that it can generate stochastic correlation between total
instantaneous volatility and stock returns.
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The paper proceeds as follows. Section 2 presents the theoretical model for pricing index op-
tions and individual equity options. In Section 3 we discuss the properties and implications
of the model. Section 4 contains the description of the data sets. In Section 5 we discuss
the estimation methodologies for both index and equity options. Section 6 contains the esti-
mation results and parameter estimates for index and 27 individual equities and investigate
the performance of the models. Section 7 nvestigate the performance of the model and re-
port goodness-of-fit statistics. Section 8 examines the stability of the model and reports the
out-of-sample performance. Section 9 concludes. The appendix provides the proofs of the
theoretical results and further details on discretization of the model and the Particle Filter
Methods.

2 Model Setup

We start by a multiple-factor stochastic volatility dynamics that governs the market index
returns under the P -distributions and then introduce a pricing kernel that links the P -
dynamics to their risk-neutral counterparts by imposing appropriate martingale’s restrictions
on pricing kernel. We complete the the index model by deriving a closed-form pricing
equation for index options. We then describe the dynamics of individual equity returns
under P distribution and introduce an appropriate stochastic discount factor (SDF) to find
the equity dynamics under Q measure. Last, we derive a closed-form equation that gives the
price of individual equity options.

2.1 The Multifactor Stochastic Volatility Model

We assume the following two-factor stochastic volatility process governing the dynamics of
the market index returns and variance under the physical distributions.

dSt/St = (r + µ1v1,t + µ2v2,t)dt+
√
v1,tdz1,t +

√
v2,tdz2,t

dv1,t = κ1(θ1 − v1,t)dt+ σ1
√
v1,tdw1,t

dv2,t = κ2(θ2 − v2,t)dt+ σ2
√
v2,tdw2,t

(1)

with two independent variance components as described in the following stochastic structure.

〈dw1,t, dz1,t〉 = ρ1dt, −1≤ρ1≤ +1

〈dw2,t, dz2,t〉 = ρ2dt, −1≤ρ2≤ +1

〈dw1,t, dw2,t〉 = 0

ρ2
1 + ρ2

2 ≤ +1

ρ2
1 + ρ2

2 ≤ +1

(2)

6



As in the Heston [1993] SV model: θ1 and θ2 are the unconditional average variances of
persistent and transient components, κ1 and κ2 capture the speed of mean reversion of
each variance components, and σ1 and σ2 measure the volatility of variance components.
The market equity risk premiums are denoted by µ1v1,t and µ2v2,t. Following Bollerslev and
Zhou [2006] we expect that µ1 and µ2 measure the persistent and transient “continuous-time”
volatility feedback effects or risk-return trade-offs. The instantaneous correlation between
shocks to the market returns and shocks to the persistent variance component is measured
by ρ1 and the instantaneous correlation between shocks to market returns and shocks to the
transient variance component is given by ρ2. As in Bollerslev and Zhou [2006], we expect
that ρ1 and ρ2 account for persistent and transient “continuous-time” leverage (asymmetry)
effect.

Note that (2) implies that the total return variance and the correlation between return and
total variance are as follows.

Vart[dSt/St] = v1,tdt+ v2,tdt = vtdt

Corrt[dSt/St, dVt] =
ρ1σ1v1,t + ρ2σ2v2,t√

σ2
1v1,t + σ2

2v2,t
√
v1,t + v2,t

dt (3)

We may then prove the following result.

Proposition 1. The market index has the following dynamics under the risk-neutral mea-
sure:

dSt/St = rdt+
√
v1,tdz̃1,t +

√
v2,tdz̃2,t ,

dv1,t = κ̃1(θ̃1 − v1,t)dt+ σ1
√
v1,tdw̃1,t ,

dv2,t = κ̃2(θ̃2 − v2,t)dt+ σ2
√
v2,tdw̃2,t ,

(4)

where, κ̃1 = κ1 + λ1, κ̃2 = κ2 + λ2, θ̃1 = k1θ1
k1+λ1

, θ̃2 = k2θ2
k2+λ2

. The market prices of risk factors
are

ψ1,t =
σ1µ1 − ρ1λ1

σ1(1− ρ2
1)

√
v1,t , ψ2,t =

σ2µ2 − ρ2λ2

σ2(1− ρ2
2)

√
v2,t ,

ψ3,t =
λ1 − ρ1σ1µ1

σ1(1− ρ2
1)

√
v1,t , ψ4,t =

λ2 − ρ2σ2µ2

σ2(1− ρ2
2)

√
v2,t .

(5)

One admissible pricing kernel that links the physical dynamics in (1) to the risk-neutral
dynamics in (4) takes the following exponential affine form.

Mt

M0

=
(St
S0

)φ
exp

[
δt+ η1

∫ t

0

v1,sds+ η2

∫ t

0

v2,sds+ ζ1(v1,t − v1,0) + ζ2(v2,t − v2,0)
]

(6)
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As in the Christoffersen et al. [2013], {δ, η1, η2} governs the time-preferences, while {φ, ζ1,
ζ2} governs the respected risk aversion to the index and variance risk factors, all of which
are defined in the appendix.

Proof. See Appendix A.

We note that the introduced nonlinear log pricing kernel in (6) is one way of “completing
the market” and linking P - to Q- dynamics, where ζ1, ζ2 capture the nonlinearity of the log
pricing kernel.10 Transforming the physical dynamics in (1) into the risk neutral dynamics
in (4) can also be done by assuming the following standard stochastic discount factor and
without explicit assumptions about the investor’s variance preferences. The proof of such a
transformation together with a more general SDF that also includes the price of risk factors
for individual equities are provided in appendix F.

dMt

Mt

= −rdt− ψ′tdWt , (7)

where ψt ≡ [ψ1,t, ψ2,t, ψ3,t, ψ4,t] is the vector of market price of risk factors and Wt ≡
[z1,t, z2,t, w1,t, w2,t] is the vector of innovations in return and variance.

To embed the options market data into the estimation of structural parameters, we determine
a closed-from expression for the price of the European call options, with strike price K and
time to maturity τ , by inverting the conditional characteristic function of the log spot index
prices, xt = ln(St).

Ct(St, K, v1,t, v2,t, τ) = StP1 −Ke−rτP2 , (8)

where,

P1 =
1

2
+

1

π

1

Sterτ

∫ ∞
0

<
[e−iφ lnK f̃(v1,t, v2,t, τ, φ− i)

iφ

]
dφ ,

P2 =
1

2
+

1

π

∫ ∞
0

<
[e−iφ lnK f̃(v1,t, v2,t, τ, φ)

iφ

]
dφ ,

(9)

and where the risk-neutral conditional characteristic function of the natural logarithm of the
index price at expiration, xt+τ , is

f̃(v1,t, v2,t, τ, φ) ≡ EQ
t [exp(iφxt+τ ) | xt] . (10)

10Note also that ζ1, ζ2 affect a wedge between physical and risk neutral structural parameters of volatility
dynamics.
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Since the two-factor SV model in (4) is an affine process, following Heston [1993], the condi-
tional risk-neutral characteristic function in (10) has the following affine exponential form.11

f̃(v1,t, v2,t, τ, φ) = exp
[
iφxt + iφrτ +A1(τ, φ) + A2(τ, φ) +B1(τ, φ)v1,t +B2(τ, φ)v2,t

]
, (11)

where12 for every j = {1, 2}

Aj(τ, φ) =
κ̃j θ̃j
σ2
j

[
(κ̃j − ρjσjiφ− dj)τ − 2 ln

[1− cje−djτ
1− cj

]]
Bj =

κ̃j − ρjσjiφ− dj
σ2
j

[ 1− e−djτ

1− cje−djτ
]

cj =
κ̃j − ρjσjiφ− dj
κ̃j − ρjσjiφ+ dj

dj =
√

(κ̃j − ρjσjiφ)2 + σ2
jφ(φ+ i) .

(12)

2.2 The Individual Equity Model

For individual equities, we assume that equity returns are related to the market returns with
two distinct systematic risk factors and two constant factor loadings βi1 and βi2. Following
Bakshi et al. [2003] we assume that idiosyncratic shocks to equity returns ξit follows a stan-
dard square-root process. This assumption allows us to characterize the differences in the
moments’ dynamics of individual equity and index options. 13

dSit/S
i
t = µidt+ βi1(µ1v1,tdt+

√
v1,tdz1,t) + βi2(µ2v2,tdt+

√
v2,tdz2,t) +

√
ξitdz

i
t

dξit = κi(θi − ξit)dt+ σi
√
ξitdw

i
t

(13)

where κi, θi, and σi can be defined as for their market counterparts. ρi is the correlation
coefficient between idiosyncratic return innovations and idiosyncratic variance innovations
for every individual equity i. This parameter derives an asymmetry in the relation between

11Note that the conditional risk-neutral characteristic function of the natural logarithm of return,
xt+τ − xt = ln(St+τ/St), can be defined with the same expression as (11) but without the first component,
iφxt.

12Following Duffie et al. [2000], the coefficients A1, A2, B1, and B2 are the solutions of a system of
Riccati equations subject to appropriate boundary conditions. For the ease of computation we modify these
solutions based on the little Heston trap formulation of Albrecher et al. [2006].

13Our model can be extended to examine the idiosyncratic variance risk premium while incorporating
two factor structure in the dynamics of equity returns. We discuss the implications of priced idiosyncratic
variance in the following section.
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idiosyncratic volatility and returns for individual equities.14 Given the specification (13), the
total instantaneous variance for stock i at time t under physical measure is given by

vit ≡ (βi1)2v1,t + (βi2)2v2,t + ξit (14)

Proposition (2) gives the risk neutral dynamics of an individual equity by assuming a con-
ventional stochastic discount factor, given the physical dynamics (1) and (13). As in the
index model, we also assume that the prices of market variance components are proportional
to the spot volatility components.15.

Proposition 2. Using a conventional stochastic discount factor similar to (11) and given
the dynamics of the individual equity returns under P -measure (13), the following dynamics
govern its Q-measure counterparts.

dSit/S
i
t = rdt+ βi1

√
v1,tdz̃1,t + βi2

√
v2,tdz̃2,t +

√
ξitdz̃

i
t

dξit = κi(θi − ξit)dt+ σi
√
ξitdw

i
t

(15)

The market prices of risk factors are

ψ1,t =
σ1µ1 − ρ1λ1

σ1(1− ρ2
1)

√
v1,t , ψ2,t =

σ2µ2 − ρ2λ2

σ2(1− ρ2
2)

√
v2,t ,

ψi1,t =
µi − r√

ξit(1− (ρi)2)
, ψi2,t = −µ

i − r√
ξit

ρi

1− (ρi)2

(16)

Proof. See Appendix B.

As the dynamics of individual equities are affine, the conditional risk-neutral characteristic
function of the natural logarithm of the equity price i is derived analytically in the following
proposition. We may then compute a closed-from pricing equation for European equity call
options with strike price K and time to maturity τ . See also Appendix C.

Proposition 3. Given the dynamics of the individual equity returns under the Q-measure
(15), the risk-neutral conditional characteristic function of the natural logarithm of individual
equity price i, xit+τ = ln(Sit+τ ), is:

14Following Andersen et al. [2001] we expect that the observed asymmetry should be weaker but still
present for individual equities.

15We can simply extend our model and consider the priced idiosyncratic variance risk by assuming that
idiosyncratic variance risk is also proportional to the spot idiosyncratic volatility. In this case, κ̃i = κi + λi,

θ̃i = kiθi

ki+λi . Further details are provided in the proof of the Proposition (1).
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f̃ i(xit, v1,t, v2,t, ξ
i, βi1, β

i
2, τ, φ) ≡ EQ

t

[
exp(iφxit+τ ) | xit

]
= exp

[
iφxit + iφrτ − A1(τ, φ)− A2(τ, φ)−B(τ, φ)

+ C1(τ, φ)v1,t + C2(τ, φ)v2,t +D(τ, φ)ξit
]
,

(17)

where, the expressions for A1(τ, φ), A2(τ, φ), B(τ, φ), C1(τ, φ), C2(τ, φ), and D(τ, φ) are
provided within the proof. Then, individual equity option prices may be found as follows.

Ci
t(S

i
t , K, τ) = SitP

i
1 −Ke−rτP i

2 , (18)

where,

P i
1 =

1

2
+

1

π

1

Site
rτ

∫ ∞
0

<
[e−iφ lnK f̃ i(v1,t, v2,t, ξ

i
t, τ, φ− i)

iφ

]
dφ ,

P i
2 =

1

2
+

1

π

∫ ∞
0

<
[e−iφ lnK f̃ i(v1,t, v2,t, ξ

i
t, τ, φ)

iφ

]
dφ .

(19)

Proof. See Appendix C.

3 Model Properties and Implications

This section explores, both theoretically and numerically, some of the implications of the
proposed two-factor structure in the dynamics of equity returns. In particular, we examine
the relative importance of the transient and persistent factors on the sensitivity of the equity
option prices with respect to the level of the market index and with respect to each variance
component. We also investigate the effects of factor loadings βi1 and βi2 and their importance
on the instantaneous expected returns of individual equity options. We close this section
by exploring a number of important cross-sectional implications of two-factor structure in
equity options, some of which shed some lights on the relations between the systematic risk
factors and moments of the conditional distribution of equity returns.

In the numerical analysis, we fix parameters as follows; structural parameters for the market
index model are from Christoffersen et al. [2009], for individual equities the parameters are
set to replicate the observed patterns in the one-factor model of Christoffersen et al. [2015].
Further, these parameter values highlight the importance of two-factor structure relative to
one-factor structure in examining the properties and cross-sectional implications of factor
structure in equity options. Since we are interested in the role of the persistent beta, βi1, and
transient beta, βi2, we explore the model properties for different sets of betas while keeping
the total unconditional risk-neutral equity variance constant.
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The total unconditional risk-neutral equity variance is evaluated at its mean reverting value
equal to ṽi ≡ (βi1)2θ̃1 + (βi2)2θ̃2 + θi = 0.11. Note that we fix the total unconditional risk-
neutral market variance to 0.05, with its persistent component θ̃1 = 0.006 and transient
component θ̃2 = 0.044. Therefore, for every set of betas, the unconditional idiosyncratic
equity variance can be defined by θi = ṽi − (βi1)2θ̃1 − (βi2)2θ̃2. The spot market persistent
and transient variance components are set to v1,t = 0.012 and v2,t = 0.048 respectively and
the total spot equity variance is set to vit = 0.05. Consequently, for different sets of betas,
the spot idiosyncratic variance under the physical measure can be defined as ξit = vit −
(βi1)2v1,t−(βi2)2v2,t. We choose the remaining structural parameters of the market and equity
dynamics as follows: {κ̃1 = 0.18, κ̃2 = 2.8, σ1 = 3.6, σ2 = 0.29, ρ1 = −0.96, ρ2 = −0.83} and
{κ̃i = 0.8, σi = 0.2, ρi = 0}. We fix the risk-free rate at 4% per year and examine at-the-
money equity options with 3 months to maturity. We explore the model properties and their
cross-sectional implications by assuming the ratio of spot index price over spot equity price
as Sit/St = 0.1.

The proposed two-factor structure explicitly shows how changes in the level of the spot
market index are translated into the equivalent changes in the equity option prices. It also
allow us to examine how equity option prices respond to variations in the persistent and
transient market variance components. The following proposition establishes these relations
and creates a basis for further sensitivity analysis.

Proposition 4. Given the closed-form equity option pricing expression in Proposition (3),
the sensitivity of the individual equity call option prices Ci

t with respect to the level of the
market index St may be given by:

∂Ci
t

∂St
=
∂Ci

t

∂Sit

Sit
St

(βi1 + βi2) . (20)

Further, the sensitivity of the individual equity call option prices Ci
t with respect to the market

variance components v1,t and v2,t are:

∂Ci
t

∂v1,t

=
∂Ci

t

∂vit
(βi1)2 ,

∂Ci
t

∂v2,t

=
∂Ci

t

∂vit
(βi2)2 .

(21)

where the total spot variance for equity i is vit = (βi1)2v1,t + (βi2)2v2,t + ξit.

Proof. See Appendix D.

We interpret the expression (20) as the “market delta” and the expressions (21) as the
“persistent market vega” and “transient market vega” for call options on equity i. Figure
(1) shows the market sensitivity of the model-implied equity call option prices, given the
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structural parameter values defined above. We plot the market delta for different sets of
betas to examine the relative importance of transient and persistent factors. Consistent
with Christoffersen et al. [2015], we find that firms with different sets of betas have different
sensitivities to changes in the level of the market index. Consistent with Proposition (4), we
observe that firm’s with higher transient (persistent) beta are more sensitive to the changes
in the level of the market index when we keep persistent (transient) beta constant. The same
is also true for firms with higher average beta. Although, we cannot distinguish between the
effect of transient and persistent betas on market delta per se, we observe that at-the-moeny
equity call option prices are relatively more sensitive to the transient beta. Note that the
top panel of figure (1) replicates the market delta following the calibration in the one-factor
model of Christoffersen et al. [2015].

[Figure (1) about here]

Figures (2) and (3) plot the sensitivity of the model-implied equity call option prices with
respect to the persistent and transient market variance components using the parameter
values described above. Christoffersen et al. [2015] find that firms with higher betas are
more sensitive to changes in the market volatility. Our model predicts the same pattern
with respect to the total market volatility. More to the point, we find that firms with higher
persistent betas are more sensitive to changes in the persistent variance component while the
effect of the transient beta on the persistent market vega is marginal but reverse. Further,
firms with higher transient betas are more sensitive to changes in the transient variance factor
while the effect of the persistent beta on the transient market vega is reverse but significant.
In other words, persistent beta has an important effect on the transient market vega across
different levels of moneyness (See Figure (3)). This distinctive property of our model allows
a portfolio manager to better examine the exposure of her portfolio to the variations in
market returns,16 a feature that is absent in the single factor structure of Christoffersen
et al. [2015]. Comparing the level of transient market vega and persistent market vega, our
model predicts that equity call option prices are more sensitive to the transient volatility
component compared to the persistent volatility component.

[Figure (2) about here]

[Figure (3) about here]

Our two-factor structure and closed-form equity option pricing formula allow us to shed
some light on the relation between the expected returns of individual equity options and the
characteristics of market returns and variance components as expressed in Proposition (5)

16Remember that option market vega is the amount of money per underlying share that the option value
will gain or loose as market volatilities rise or fall by 1%. It is also important as value of some option
strategies are partially sensitive to changes in volatility.
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below. This result allows us to disentangle the effect of the market risk premium from those
of variance component risk premiums on the equity option returns. It also shows how equity
betas play a direct role on the equity option returns. In particular, the second component
in the right-hand-side (RHS) of equation (22), which is related to the market risk premium,
affects the equity option returns through the market delta by an adjustment factor which
includes the persistent and transient betas. Moreover, the third component in the RHS of
(22), which is related to variances risk premiums, shows how equity betas affect the equity
option returns through the total market vega of equity options. Note that ∂Ci

t/∂vt measures
the total market vega of equity options.

Proposition 5. Given the closed-form equity option pricing expression (18)-(19), the dy-
namics of the market index (1) and individual equity returns (13), the instantaneous expected
excess returns on individual equity call options under the physical measure can be character-
ized as follows.

1

dt
EP
t

[dCi
t

Ci
t

− rdt
]

=
[
(µi − r)S

i
t

Ci
t

]∂Ci
t

∂Sit

+
[βi1µ1v1,t + βi2µ2v1,t

βi1 + βi2

St
Ci
t

]∂Ci
t

∂St

+
[(βi1)2λ1v1,t + (βi2)2λ2v2,t

(βi1)2 + (βi2)2

1

Ci
t

]∂Ci
t

∂vt

(22)

Proof. See Appendix D.

Our proposed two-factor structure has also important cross-sectional implications for equity
options. Christoffersen et al. [2015] document that firms with higher betas have a steeper
term structure of implied volatility. However, our model moves further and provides a novel
term structure effect. In particular, we show how the term structure of implied volatility
responds differently to the transient and persistent variations in market returns. Using the
parameter values introduced at the beginning of this section, we show how βi1 and βi2 have
different and non-trivial effects on the implied volatility term structures of individual equity
options. Figure (4) plots the model implied volatility for at-the-money equity call options
with respect to time-to-maturity for different sets of betas. Consistent with the finding in
Christoffersen et al. [2015] (the top LHS panel), the higher the average betas the steeper the
term structure of the implied volatility of equity options (the top RHS panel). In particular,
our model predicts that the term structure of implied volatility of equity options is more
sensitive to the Transient beta (the bottom LHS panel) while the impact of the persistent
beta on the term structures of implied volatility of equity options is marginal (the bottom
RHS panel).17 In other words, firms with higher transient betas have a term structure of
implied volatility that co-moves more with the market term structure of IV.

17Note that in all the graphs the total unconditional equity variance under the risk neutral measure is
fixed at ṽi = (βi1)2θ̃1 + (βi2)2θ̃2 + θi = 0.11.
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[Figure (4) about here]

We close this section by discussing the implications of two-factor structure on the relation
between the market variance risk premiums and the equity option skew. Figure (6) plots
the difference between the model implied volatility for three-month equity call options with
respect to the moneyness (S/K) for different sets of betas. The implied volatility difference
is computed as the difference between equity call option IV when we increase variance com-
ponent risk premiums from λ1 = λ2 = −0.5 to λ1 = λ2 = 0. As expected, the variance
risk premiums have a more significant effect on the implied volatility of equity call options
when the beta is higher (the top RHS panel). In particular, we observe that the transient
beta has a more significant effect on the slope of equity implied volatility smile (the bot-
tom LHS panel) compared to the persistent beta (the bottom RHS panel). In other words,
in-the-money equity call options are getting relatively more expensive for firms with higher
transient betas when we increase variance risk premiums. Note that for all the graphs the
total unconditional equity variance is fixed ṽi = (βi1)2θ̃1 + (βi2)2θ̃2 + θi = 0.11. Note also that
the top LHS panel replicates the same pattern following the calibration in the one-factor
model of Christoffersen et al. [2015].

[Figure (5) about here]

We close this section by discussing the implications of two-factor structure on the relation
between the market variance risk premiums and the equity option skew. Figure (6) plots
the difference between the model implied volatility for three-month equity call options with
respect to the moneyness (S/K) for different sets of betas. The implied volatility difference
is computed as the difference between equity call option IV when we increase variance com-
ponent risk premiums from λ1 = λ2 = −0.5 to λ1 = λ2 = 0. As expected, the variances risk
premiums have more significant effect on the implied volatility of equity call option when
the beta is higher (the top RHS panel). In particular, we observe that the transient beta has
more significant effect on the slope of equity implied volatility smile (the bottom LHS panel)
compared to the persistent beta (the bottom RHS panel). In other words, in-the-money
equity call options are getting relatively more expensive for firms with higher transient beta
when we increase variance risk premiums. Note that for all the graphs the total unconditional
equity variance is fixed ṽi = (βi1)2θ̃1 + (βi2)2θ̃2 + θi = 0.11. Note also that the top LHS panel
replicates the same pattern following the calibration in one-factor model of Christoffersen
et al. [2015].

[Figure (6) about here]
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4 Data

We obtain daily prices of S&P 500 index options from the OptionMetrics volatility surface
data set, which is based on the midpoint of bid-ask quotes. Our sample of S&P 500 index
options is from January 4, 1996 through December 29, 2011. We follow the data cleaning
routine commonly used in the empirical option pricing literature: we remove options with
implied volatility less than 5% and greater than 150%; we also follow the filtering rules in
Bakshi et al. [1997] to remove options that violate various no-arbitrage conditions. We focus
on out-of-the-money (OTM) options with maturity up to and including one-year and with
10% moneyness (spot price over strike price).18,19 Our option-based optimization function
minimizes the squared deviations between model and market option prices and therefore may
put greater weight on expensive in-the-money (ITM) and long-maturity options.20 Moreover,
ITM S&P 500 call options are less liquid than OTM call options. To prevent such biases
in our optimization, we discard all ITM options and use OTM S&P 500 put options and
convert them into ITM call options. After cleaning, we have 345,710 S&P 500 index option
quotes together with daily underlying returns. This is the data set that we use to filter daily
spot variances and to estimate a set of structural parameters.

For individual equities, we choose all the firms listed in the Dow Jones Industrial Average
index and collect equity options data from OptionMetrics.21 We keep all options up to 10%
moneyness and with maturity up to and including 1 year. Note that options on individual
equities are American, the price of which could be affected by early exercise premium. To
prevent any bias in the estimation of the structural parameters of equities and daily spot
idiosyncratic variance, the loss function needs to be defined based on the implied volatility as
implied volatilities and deltas for the equity options reported in OptionMetrics are computed
by the Cox et al. [1979] binomial tree model. Otherwise, if the loss function is based on
mean-squared option pricing errors, we either need to restrict our sample to out-of-the-
money equity options that are less sensitive to early exercise premium or have to covert
the American-style equity options into European-style equity options by taking into account
the early exercise premium. Due to the computational burden of such adjustments and
considering the closed-from European option pricing equation in Proposition (3), we focus
on OTM equity options.22

18This range of moneyness implies that we keep OTM call options with moneyness less than 1.1 and OTM
put options with moneyness greater than 0.9.

19As discussed in previous section, multiple-factor SV models could better capture the slope and the
level of smirk compare to single-factor SV models. Therefore, unlike similar analysis, we undertake a more
extensive calibration exercise by incorporating the information content of options on longer maturity horizons
and wider moneyness ranges. For instance, Ait-Sahalia and Kimmel [2007, Section 7] only include short-
maturity at-the-money S&P 500 Index Options; Eraker [2004] use 3,270 call options contracts recorded over
1,006 trading days; Jones [2003] models are estimated using a sample of 3537 S&P 100 index options from
January 1986 to June 2000.

20See Huang and Wu [2004].
21Note that we drop the Bank of America, the Kraft Foods Incorporation, and the Travelers Companies

Incorporation.
22See Bakshi et al. [2003] and Christoffersen et al. [2015].
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To filter daily spot market transient and persistent variance components, we use data from
S&P 500 index and option markets. We obtain S&P 500 index option prices from the
OptionMetrics volatility surface data set from January 4, 1996 through December 29, 2011.
We follow the data cleaning routine commonly used in the empirical option pricing literature:
we remove options with implied volatility less than 5% and greater than 150%; we also follow
the filtering rules in Bakshi et al. [1997] to remove options that violate various no-arbitrage
conditions. We focus on out-of-the-money (OTM) option contract with maturity up to and
including one-year and with moneyness (spot over strike price) up to 10%.23 After cleaning,
our sample contains 345,710 S&P 500 index option contracts.

The data for daily equity prices, equity returns, daily index level, index returns, and the div-
idend yields are from CRSP. In the empirical analysis, we first adjust daily equity prices and
index level with dividend yields and then compute option prices using the dividend-adjusted
returns. Risk-free interest rates for all maturities are estimated by linear interpolation be-
tween the closest zero-coupon rates of the Zero Coupon Yield Curve from OptionMetrics.

Table (1) presents the descriptive statistics of the index call option contracts in our sample
sorted by moneyness (stock price over strike price) and day-to-maturity (DTM). Note that
we focus on OTM option contracts, which means S/K is below 1 for OTM call contracts.
After cleaning, we have 208,098 out-of-the-money call option contracts with an average day-
to-maturity of 143 days, an average price of $35.59, an average implied volatility of 20.64%,
and an average delta of 0.37. Table (2) reports the descriptive statistics of the index put
option contracts in our sample sorted by moneyness and day-to-maturity. After cleaning, we
use 137,612 out-of-the-money (S/K is above 1) put option contracts with an average day-
to-maturity of 136 days, an average price of $32.11, an average implied volatility of 24.34%,
and an average delta of -0.29. Note that Panel C in Tables (1) and (2) reflect the well-known
volatility smirk in index options, as implied volatility is larger for OTM put options (Table
(2), Panel C) compared to the OTM call options (Table (1), Panel C).

[Table (1) about here]

[Table (2) about here]

Table (3) presents the descriptive statistics of the equity option contracts that are used
to filter daily spot idiosyncratic variance, and to estimate the structural parameters for
individual equities and market index. This table reports the number of available call and
put option contracts for each firm after data cleaning. For every firm, we also report the
average number of days-to-maturity and average implied volatility of option contracts in our
sample. Overall, we have 4,241,990 equity call options and 3,209,990 equity put options with
an average days-to-maturity of 135 days. On average, for every firm we have 275,999 option
contracts with an average implied volatility of 28.52%.

23See Ghanbari [2016] for detailed description of the S&P 500 index options data set and its summary
statistics.
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[Table (3) about here]

Tables (4) and (5) provide further details regarding equity call options and put options.
On average we observe that equity call options in our sample are more expensive (2.688 for
calls versus 2.344 for puts), more sensitive to underlying equity prices and volatilties, have
lower implied volatility (27.32% for calls and 29.73% for puts), and have a greater number
of days-to-maturity (137 days for calls and 134 days for puts.)

[Table (4) about here]

[Table (5) about here]

5 Estimation Methodology

Our estimation methodology is twofold. At the market index level, we do a joint-estimation
by filtering the vectors of daily spot variance components and estimating a set of structural
parameters for the market index dynamics. Then, for every individual equity, we filter spot
idiosyncratic variance and structural parameters, given the filtered transient and persistent
spot variance components of the market index.

5.1 Estimation of the Index Model

We follow the approach in the Appendix (E) and estimate structural parameters and filter
persistent and transient daily spot variance components of the market index model by com-
bining information from underlying index and option markets (known as joint estimation).
We use a two-component likelihood function, a return-based component and an option-
based component, to impose consistency between structural parameters under P and Q
distributions. To filter unobserved transient and persistent spot variance components, we
use the sampling-importance-resampling (SIR) implementation of the Particle Filter (PF)
methods.24

Our optimization function is as follows.

max
Θ,Θ̃

(
LLR + LLO

)
(23)

24See Appendix E for implantation of PF in the context of two-factor stochastic volatility model. See
Pitt [2002] for a detailed description of the PF algorithm.
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where LLR is the return-based and LLO is the option-based likelihood functions and Θ is
the set of structural parameters of the market index model under P -measure and Θ̃ is the
equivalent set under Q-measure.

LLR ∝
T∑
t=1

ln
( 1

N

N∑
j=1

W̆ j
t (Θ)

)
(24)

where W̆ j
t is the normalized weight of particle j at time t, N is the number of daily particles,

and Θ ≡ {κ1, κ2, θ1, θ2, σ1, σ2, ρ1, ρ2, λ1, λ2}.

LLO ∝ −1

2

(
M ln(2π) +

M∑
n=1

(
ln(s2) + η2

n/s
2
))

, (25)

where M is the total number of index option contracts and ηn is the Vega-weighted loss
function for option n.

ηn = (CO
n − CM

n (Θ̃, v̂Q1 , v̂
Q
2 , St, K, τ))/V egan , n = 1, . . . ,M (26)

where CO
n is the observed price of call option n and CM

n (Θ̃, v̂Q1 , v̂
Q
2 , St, K, τ) is the model

price of call option n. V egan is the Black and Scholes [1973] option Vega for the same option
contract. Note that we obtain daily persistent (v̂Q1,t) and transient (v̂Q2,t) spot variance com-
ponents under Q measure as the average of smoothly re-sampled particles of daily variance
components.

v̂Q1,t =
1

N

N∑
j=1

vj1,t , v̂Q2,t =
1

N

N∑
j=1

vj2,t (27)

Our index optimization algorithm is iterative. Each iteration starts with an initial set of
structural parameters, which then will be used to filter transient and persistent daily spot
variance components using the information content of index returns. Then, given spot
variance components, structural parameters of the index, and observed option prices, the
next set of optimal parameters can be reached by minimizing the option pricing errors over
the entire sample. The procedure iterates until an optimal set of structural parameters is
reached and thereby we obtain the final vectors of transient and persistent spot variance
components.

5.2 Estimation of the Individual Equity Model

We estimate a set of structural parameters Θ̃i ≡ {κi, θi, σi, ρi, βi1, βi2} and a vector of daily
spot idiosyncratic variances {ξit} for each individual equity in our sample following the two-
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step iterative approach of Bates [2000] and Huang and Wu [2004]. In the first step, given
a set of initial structural parameters for each equity, Θ̃i

0, we estimate a vector of daily
spot idiosyncratic variance conditional on a set of risk-neutral structural parameters of the

market model, ˆ̃Θ, and filtered daily risk-neutral spot variance components, {v̂Q1,t, v̂
Q
2,t}. Using

a Vega-weighted loss function, the set of daily spot idiosyncratic variance ξ̂it for every firm i
can be obtained as the solution to the following optimization problem, which minimizes the
Vega-weighted daily mean-squared option pricing errors.

ξ̂it = arg min
ξit

M i
t∑

n=1

(Ci,O
n,t − C

i,M i
t

n,t (Θ̃i
0,

ˆ̃Θ, v̂Q1,t, v̂
Q
2,t, ξ

i
t))

2/(V egain,t)
2 , t = 1, . . . , T , (28)

where M i
t is the total number of available option contracts for the equity i on day t, Ci,O

n,t is

the observed price of equity option n for stock i on day t, C
i,M i

t
n,t is the model price for the

same option obtained from equity pricing equation (18), and V egain,t is the Black-Scholes
option Vega for the same equity option contract. Note that we repeat the optimization in
(28) every day and for every equity to estimate a vector of spot idiosyncratic variances over
the entire sample.

The second step estimates the structural parameters Θ̃i for firm i, by minimizing sum of
daily Vega-weighted mean-squared option pricing errors over the entire sample, given filtered
daily spot idiosyncratic variance obtained in the first step, the dynamics of the market index
and the filtered daily spot variance components. We may then solve the the following
optimization problem.

ˆ̃Θi = arg min
ξit

M i∑
n=1

(Ci,O
n − Ci,M i

n (Θ̃i, ˆ̃Θ, v̂Q1,t, v̂
Q
2,t, ξ̂

i
t))

2/(V egain)2 , (29)

where M i ≡
∑T

t=1M
i
t is the total number of available option contracts for equity i. For

every equity, the procedure iterates between the optimizations in (28) and (29) to minimize
the pricing error until the change in the RMSE of the estimation in the second step is no
longer significant. Note that every new iteration starts based on the structural parameters

of the previous iteration, Θ̃i
0 = ˆ̃Θi.

6 Parameter Estimation Results

This section first reports the filtered daily spot variance components together with the struc-
tural parameter estimates for the two-factor SV model. We use a long time-series of daily
S&P 500 index returns and the entire cross-section of S&P 500 option prices that span the
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period from January 4, 1996 to December 29, 2011. Given the slow mean-reversion in the
dynamic of market volatility, it is important to let the data set span a long time series.
This is in particular important in our analysis as we decompose the overall market volatility
into two independent components and would like to characterize the dynamics of transient
and persistent variance components. We also report structural parameters and daily spot
idiosyncratic variance for 27 firms listed in the Dow Jones Industrial Average Index. The
parameter estimates and latent idiosyncratic variances are conditional on the transient and

persistent spot variance components v̂Q1,t and v̂Q2,t and structural parameters ˆ̃Θ of the index
model.

To provide a basis for further comparison and to examine the model fit under the joint-
estimation, we also report the structural parameters of the market model, estimated only
from option data.

6.1 Parameter Estimates, The Market Index Model

In what follows we set the market risk premium µ is set to the sample average daily index
returns. We use OTM index options with up to 10% moneyness and then convert the OTM
puts into ITM calls through put-call parity. Table (6) reports structural parameter estimates
(under P measure) that characterize the dynamics of index returns and its persistent and
transient variance components. Panel A provides result of the joint estimation; a consistent
set of parameters under P and Q measures. Therefore, the speeds of mean reversion and the
unconditional mean of the persistent and transient variance components under Q-measure
are linked to their P -measure equivalents through the market prices of the volatility risk
factors (κ̃1 = κ1 + λ1, κ̃2 = κ2 + λ2, θ̃1 = k1θ1

k1+λ1
, θ̃2 = k2θ2

k2+λ2
).25 To provide a basis for

further comparison and to examine the goodness of fit of the two-factor SV model under
the joint-estimation, we also estimate structural parameters using only option data. This
result is provided in Panel C. Note that we assume that the transient and persistent beta
coefficients are the same under P and Q measures following Serban et al. [2008].

[Table (6) about here]

As discussed, the purpose of two-factor stochastic volatility model is to capture independent
movements in the underlying returns and option prices over time. Consistent with previous
studies in both discrete time GARCH models and continuous time stochastic volatility mod-
els, we find that one of the volatility factors is highly persistent and the other one is highly
mean-reverting. In joint-estimation, we find that the first variance component is slowly
mean-reverting with κ1 = 1.4271 under physical measure while the rate of mean reversion
in the second variance component is much higher with κ2 = 3.5874 under the physical mea-
sure.26 The point estimate of mean reversion parameters from option-based estimation is

25See Proposition (1).
26These value correspond to a daily variance persistence of 1− 1.4271/365 = 0.9961 for the first component
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similar to those from joint estimation. Using options data only, we find that κ̃1 = 0.2267
and κ̃2 = 2.9137, which is consistent with the speed of mean reversion from joint estimation
where under Q-measure κ̃1 = 0.3473 and κ̃2 = 2.5520.

To gain a better intuition about persistent and transient variance components we define
the half-life (T1/2) of a variance component as the number of weeks that it takes for auto-
correlation of each variance component to decay to half of its weekly autocorrelation level.
Half-life can be computed as T1/2 = ln(φ/2)/ ln(φ) where ∆t = 7/365 and φ = exp(−κ∆t),
denoting weekly autocorrelation of time-series each variance component. The risk neutral
point estimate of mean reversion speed in transient variance component implies a half-life
around 15 weeks while it is 105 weeks in the persistent variance component, almost 7 times
larger than its transient counterpart. These values confirm that first variance component
is highly persistent while the second one is highly auto-correlated and thus the immediate
impact of variance shocks on this component is larger but short-lived.

We observe that the unconditional persistent variance under P -measure is θ1 = 0.0026, which
is much less than the unconditional transient variance θ2 = 0.0171. The unconditional risk
neutral persistent and transient variance components are θ̃1 = 0.0106 and θ̃2 = 0.0240 which
correspond to 10.30% and 15.49% volatility per year. Note that the unconditional variance
of both components are consistent with the average filtered daily spot persistent variance
and daily spot transient variance over the entire sample.

Consistent with our intuition, we observe a wide spread between the volatility of variance
in the persistent and transient variance components. As a result of joint estimation we find
that σ1 = 0.0855 and σ2 = 0.3496. This result is consistent with the option-based estimation
where we find that transient variance component is much more volatile with σ2 = 0.5678
compared to the persistent variance component with σ1 = 0.0958. Higher level of volatility
of variance in option-based estimation compared to the joint estimation is consistent with
previous studies.27

We find negative prices for both variance components where λ1 = −1.0798 and λ2 = −1.0355.
These negative prices imply that investors are willing to pay for an insurance against an in-
crease in volatility risk, even if that increase has little persistence. To the best of our
knowledge none of the previous studies of two-factor stochastic volatility models in option
market reports the prices of the variance risk factors as they either focused on the options
market data or the underlying index returns data. Our negative prices for both variance
components is consistent with asset pricing studies where the short-run and the long-run
volatility components are priced cross-sectional asset pricing factors. Adrian and Rosenberg
[2008] use a a large cross-section of individual stocks over a very long period and find that
prices of both short-run and long-run variance components are negative and highly signif-
icant. Therefore, our join estimation result confirm that there is a consensus of opinions
about the price of transient and persistent variance components among option traders and

and 1− 3.5874/365 = 0.9901 for the second component.
27For instance, Bates [2000] reports that option-based estimates of volatility of variance is larger than the

one obtained from time-series-based estimates.
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equity traders.

Our joint estimation results show that correlation between shocks to the index returns and
shocks to the persistent variance component is ρ1 = −0.6918. The correlation between shocks
to the index returns and shocks to the transient variance component is ρ2 = −0.2173. ρ1 and
ρ2 captures asymmetry in the response of persistent and transient variance components to
positive versus negative return shocks and can be considered as the persistent and transient
continuous time leverage (asymmetry) effect. The leverage effect induces negative skewness
in index returns and thus yields a volatility smirk. Our results show that that leverage effect
is more significant in the persistent variance component compared to the transient variance
component. Therefore, persistent variance component has more significant effect on the
dynamic of index skewness. Using the data from option market only, we find that ρ1 = −0.91
and ρ1 = −0.49. The higher absolute level of option implied correlation coefficients compared
to those of joint estimation is partly related to the well documented fact that risk neutral
distribution is more negatively skewed.

Our persistent and transient correlation coefficients are almost consistent with those of pre-
vious studies in option market. The average correlation coefficients in Christoffersen et al.
[2009, Table 3] are ρ1 = −0.96 for their first variance component and ρ2 = −0.83 for their
second variance component.28 Bates [2000] also reports the structural parameter estimates
of a two-factor SV model using 1988-1993 S&P 500 futures option prices. He obtains one
set of structural parameters over the entire sample where ρ1 = −0.78 and ρ2 = −0.38. To
provide a basis for comparison, we also estimate structural parameters using options data
only over the same sample period and find ρ1 = −0.91 and ρ2 = −0.49. There are potential
explanations for differences between the reported estimates of the correlation coefficients in
these studies, not in the least, the very different data set and the very different time span.
Despite differences in the magnitude of the coefficients, the point estimates for the correla-
tion coefficients are negative for both persistent and transient variance components across
all these studies. Further, the transient variance component has lower (in absolute value)
level of correlation compared to the persistent variance components in all these studies.

To provide some empirical evidence on the difference between persistent and transient vari-
ance components over time, we plot the paths of filtered variance components. Figure (7)
plots filtered time series of risk-neutral spot variance component of S&P 500 index based on
our two-factor stochastic volatility model. Panel A shows time series of persistent variance
component and Panel B shows time series of transient variance component. The blue plots
are based on the Particle Filter method using data from both S&P 500 index and option
markets (joint estimation) and the red plots are filtered spot variances using only S&P 500
options data.

[Figure (7) about here]

28Christoffersen et al. [2009] use data on European S&P 500 call option quotes over the period 1990-2004.
Note that they estimate a separate set of structural parameters for every year in their sample.
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Naturally, the overall patterns of persistent and transient variance components filtered from
joint estimation are consistent with those filtered from options data only. However, option
implied variance components are more volatile in the sense that when variance increases,
it tends to do more sharply compared to the one filtered based on joint estimation and
thus exhibit more spikes. In particular, this pattern in more pronounced in the transient
variance component (Panel B). The observed sharper spikes in option-based filtered variance
in the two-factor SV model is consistent with previous studies of one-factor SV model. The
smoother variance paths in joint-estimation is partly due to smooth resampling procedure in
SIR PF method and partly due to imposed consistency between parameter estimates under
P and Q measures.

To provide more intuition about the total risk neutral variance in our two-factor SV model,
Figure (8) combines persistent and transient variance components and plots time series of
total spot variance versus model-free option-implied VIX volatility index. As we expect,
the time series of option implied total spot variance is closely related to the VIX volatility
index. Further, the time series of total spot variance from joint estimation follow the same
pattern as the VIX volatility index. However, due to joint restrictions, the total spot variance
from joint estimation do not exhibits volatility spikes as large as those observed in the VIX
volatility index.

[Figure (8) about here]

6.2 Parameter Estimates, The Individual Equity Model

The data for individual equities starts from June 1, 1996 rather than January 1, 1996. Note
that we drop the first 5 months of each equity’s data set to prevent any estimation bias, as
the filtered spot market variance components are noisy in the first months of the estimation
period. Note also that S&P 500 Index options are European style while the individual equity
options are American style, the price of which might be affected by early exercise premium.
To reduce the bias in the calculation of equity option prices using the closed-form pricing
equation in Proposition (3) we focus on OTM options.29,30

Table (7) reports the structural parameter estimates that characterize the dynamics of the

29Bakshi et al. [2003] show that for OTM S&P 100 American options the early exercise premium is
negligible. They estimate two separate implied volatilities: the implied volatility that equates the option
price to the American option price from binomial tree model, and the implied volatility that equates the
option price to the Black-Scholes price where the discounted dividends are subtracted from the spot price.
They find that although American option implied volatility is smaller than its Black-Scholes counterparts,
the difference is negligible and within the bid-ask spread.

30Using the data of the firms listed on Dow Jones Index, Christoffersen et al. [2015] show that the early
exercise premium is negligible for equity call options. As a robustness test, we also estimate the equity model
by using only the equity call options rather than OTM calls and puts. We find that the point estimates of
structural parameters are quite similar to our base case estimation where we use OTM put and call option
contracts. This result is available from the author upon request.

24



individual equity returns and idiosyncratic variance under the Q measure. The table also
contains the point estimates of the persistent and transient betas for 27 firms in our sample.

[Table (7) about here]

The speed of mean reversion for risk-neutral idiosyncratic variance ranges from κ̃i = 0.3920
for Coca Cola to κ̃i = 1.7078 for 3M. This range of κ̃i is implies that most of the firms in our
sample have highly persistent idiosyncratic variance with average speed of mean reversion
0.8055. In other words, the average half-life of idiosyncratic variance for the firms in our
sample is almost 46 weeks, implying that it takes 46 weeks for the idiosyncratic variance
autocorrelation to decay to half of its weekly autocorrelation. We also find that most of the
firms in our sample have an idiosyncratic variance that is more persistent than the overall
market variance.

The unconditional risk neutral idiosyncratic variance of the firms in our sample starts from
θ̃i = 0.0093 for General Electric and increases up to θ̃i = 0.0756 for Hewlett-Packard. The
point estimates for the volatility of the idiosyncratic variance range from σi = 0.0670 for
General Electric to σi = 0.3967 for Hewlett-Packard. For all the firms in our sample, the
average point estimates for the volatility of the idiosyncratic variance is 0.1823. The corre-
lation between shocks to equity returns and shocks to idiosyncratic variance is negative for
all the equities (except for Verizon) and ranges from ρi = −0.99 for JP Morgan to ρi = 0.512
for Verizon.

The betas estimates are novel and to the best of our knowledge this is the first study that
reports the option-implied persistent beta and transient beta for individual equities and
thus there is no benchmark for further comparisons. However, we find that firms respond
differently to transient and persistent variations in market index returns. The persistent beta
ranges from βi1 = 0.3430 for American Express to βi1 = 0.6798 for IBM. The transient beta
starts from βi2 = 1.0125 for Procter & Gamble and increases to βi2 = 1.3466 for JP Morgan.
The average persistent beta is 0.4899 and the average transient beta is 1.2284. Across all 27
firms in our sample the transient beta is always greater than the persistent beta, implying
that for the large capitalization firms listed in the Dow Jones index, transient and larger
variations in the market tend to be related to the proportionally larger systematic price
reactions across equities than persistent and smaller variations in the market index.

Our point estimates of the transient and persistent option-implied betas are similar to the
continuous beta and jump beta of Todorov and Bollerslev [2010] who introduce a framework
to separate and identify continuous and discontinuous systematic risks. Using high frequency
data from a large cross-section of forty large-capitalized individual stocks, they find that the
average jump betas are larger than the continuous betas with few exceptions. Although we
only use option data and estimate ad-hoc constant beta over the entire sample, we observe
a similar pattern as theirs between our transient and persistent betas.31

31The assumption of constant transient and persistent betas allow us to keep the affine specification of
the dynamics of individual equity and derive a closed-form equity option pricing equation. We can, however,
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As discussed in Section 3, the proposed two-factor structure has important implications for
equity option market deltas, market Vegas, and instantaneous expected returns of equity
options. We also show how this two-factor structure affects the slope of the term structure
and moneyness of implied volatility of individual equity options. Along these lines, our
findings of different sensitivities to the systematic transient and persistent risk factors may
corroborate the theoretical implications of our model. The beta estimates have further
implications for portfolio management, suggesting the importance of different strategies for
hedging transient versus persistent systematic market variations.

We close this section by providing more intuition about the idiosyncratic variance across the
firms in our sample by presenting the distributional properties of the filtered spot idiosyn-
cratic variance. Table (8) reports the mean, median, standard deviation, and the maximum
of the filtered spot idiosyncratic variances for every firm conditional on the structural param-
eters of the two-factor SV model of index and the filtered market spot variance components.
We observe that for all the firms the median is significantly lower than the mean, implying
that the mean estimates of the filtered spot idiosyncratic volatilities are driven by outliers
that may be common to all firms.

[Table (8) about here]

7 Model Performance and In-Sample Fit

We measure the goodness of fit of the market index model using the following Vega-weighted
root mean squared option pricing errors (Vega RMSE) as it is consistent with the loss function
that we used in the optimization routine.

Vega RMSE ≡

√√√√ 1

N

M∑
n,t

(CO
n,t − CM

n,t(
ˆ̃Θ, v̂Q1,t, v̂

Q
2,t)

V egan,t

)2
, (30)

where, CO
n,t is the observed price of index option n on day t, CM

n,t is the model price for the
same index option on the same day, and V egan,t is the Black-Scholes option Vega for the
same option contract on the same day. To provide a reference for comparison, we also report
the implied volatility root mean squared error (IVRMSE) of option pricing model.

estimate time-varying betas by modifying our estimation procedure. We can fix the structural parameters of
the market and individual equities and estimate conditional betas and spot idiosyncratic variance on a daily
basis, given the transient and persistent spot variance components using a loss function very similar to 29.
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IVRMSE ≡

√√√√ 1
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, (31)

where, IV O
n,t is the Black-Scholes implied volatility of observed index option n on day t and

IV (CM
n,t(

ˆ̃Θ, v̂Q1,t, v̂
Q
2,t)) is the Black-Scholes implied volatility of the model option price for the

same index option on the same day.

For individual equities, Vega RMSEs and IVRMSEs are computed with equations similar to

(30) and (31) while replacing CO
n,t with CO,i

n,t , CM
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Table (9) reports in-sample goodness-of-fit statistics for the two-factor stochastic volatility
model over the entire sample, 1996 through 2011 for various maturities. Panels A and B
report in-sample fit statistcis for calls and puts separately. The left panel reports model fit
based on the joint estimation while the right panel gives reports option-based fit. We find that
the overall Vega-weighted RMSE of joint estimation and option-based estimation are 2.56%
and 0.98% respectively. Note that the overall IVRMSE are 2.59% and 0.99% respectively,
which means that Vega-weighted RMSE could be used as an approximation of IVRMSE.
Overall, our two-factor SV model provides a better fit to call option contracts compared to
put option contracts, which is consistent with the findings in one-factor stochastic volatility
model.

Note that joint estimation imposes a consistency between physical and risk neutral param-
eters which are otherwise not identical. Such a restriction is not required in option-based
estimation which could partly explain the better in-sample fit of option-based estimation
compared to joint estimation. However, the reported RMSEs confirms that unlike stochastic
volatility model, joint restrictions on return and variance dynamics under P and Q measures
does not lead to the poor performance of the two-factor SV model.

Broadie et al. [2007] refer to the inconsistency between the option-based estimates of certain
structural parameters in SV model and the parameter estimates from underlying time-series
of returns and indicate that the SV model is basically misspecified. In particular, they
state that the point estimates of the correlation coefficient and volatility of volatility are
incompatible under the P and Q measures. They also show that the joint restrictions on the
returns and volatility dynamics under the P and Q measures lead to the poor performance
of the stochastic volatility model, measured by high level of RMSE. Using S&P 500 returns
and futures options data over the period of 1987 through 2003, they find IVRMSE of 1.1%
for the option-based estimation and 8.73% while imposing time-series consistency.

They note that this poor performance of SV model indicates the inability of the SV models to
generate sufficient amounts of conditional skewness and kurtosis. This drawback in standard
SV models is mainly attributed to the fact that the estimated conditional higher moments
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are highly correlated with the estimated conditional variance. By contrast, in-sample fit of
our two-factor SV model is significantly improved relative to the Heston SV model. Further,
the spread between Vega-weighted RMSE of joint estimation and option-based estimation is
reduced significantly in the two-factor SV model versus the Heston SV model. The better
performance of two-factor SV model is due to the fact that it can generate stochastic cor-
relation between volatility and stock returns. This feature enables the two-factor SV model
to better capture the conditional skewness and kurtosis of the index dynamics.32

Table (14) provides goodness-of-fit statistics for 27 the firms in our sample, both in-sample
and out-of-sample. Using option data over the period 1996-2011, we find that all the firms
in our sample has a Vega RMSE below 2 except for Cisco and Chevron. We find similar
in-sample performance when the goodness-of-fit is measure by IVRMSE. The average Vega
RMSEs and IVRMSEs across all the firms are 1.61% and 1.59% respectively. The average
relative IVRMSE, measured as the ratio of IVRMSE over the average Black-Scholes IV, is
5.66%. We find that Boeing has the best fit with IVRMSE of 1.35% and Cisco has the worst
fit with IVRMSE of 2.12%; however, the fit is quite similar across the firms. Overall we
conclude that the model provides a reasonably good fit for all 27 firms.

We find that our model has a relatively better in-sample fit compared to the one-factor
structure model. For the firms listed on Dow Jones index, Christoffersen et al. [2015, Table 4]
find that the average IVRMSE is 1.66%.33 Further, comparing goodness-of-fits in our model
with those of Heston model for the same firms, reported in Christoffersen et al. [2015, Table
A.2], also supports the performance of our model. Overall, the in-sample performance of our
model over the one-factor structure together with its cross-sectional implications regarding
IV term-structure, moneyness slope, and equity option skew support the importance of
transient and persistent factor loadings in pricing equity options.

8 Model Stability and Out-of-Sample Performance

In order to examine the stability of the two-factor SV model of the market index and its
out-of-sample performance, we divide the dataset into two subsample periods. The first
subsample is from January 1996 through December 2003 and contains 169,800 daily option
contracts. The second one is from January 2004 to December 2011 which contains 175,910
daily option contracts. Using both daily returns and option data we filter spot daily persis-
tent variance path and transient variance path and repeat the joint estimation routine within
each subsample. Table (10) reports the parameter estimates within each subsample (Panels
A and B). For the sake of comparison, Panels C and D also report the parameter estimates
from option-based estimation. The main results of the subsample tests are as follows.

First, we find that the PF method is a reliable filtering technique even within shorter sample

32Previous studies show that using the option data only two factor SV model improves on the benchmark
SV model both in-sample and out-of-sample, see Christoffersen et al. [2009, Section 3.1].

33Note that their sample span the period 1996 to 2010.
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period of 8 years. We observe that the time series of total spot daily variances under risk
neutral measure is largely consistent with the time series of the VIX option implied volatility
index within each subsample period.

Second, the parameter estimates within each subsample period is largely inline with those
obtained from whole-sample estimates. Moreover, within each subsample period, the joint
estimation results is also consistent with option-based parameter estimates. We find that
point estimate for the transient mean reversion parameter is higher in the second subsample
period while the opposite is true for the persistent mean reversion speed. Overall, the level
and the order of parameter estimates are almost consistent within both subsample periods
and also across both estimation methods (joint estimation and option-based estimation).34

Third, the correlation coefficients between transient and persistent variance shocks and re-
turn shocks within subsample periods remain consistent with the ones estimated over the
entire sample period and those reported in previous studies35 in the sense that the magni-
tude of persistent correlation coefficient is higher than its transient counterpart. Further,
persistent and transient variance risk premiums remain negative with the same order within
two subsample periods, confirming our previous findings that investors are willing to pay to
avoid transient and highly mean reverting volatility shocks.

Fourth, we evaluate our model fit within both subsample periods and report Vega RMSEs
and IVRMSEs separately for calls and puts and for different maturities. Entries in Table
(11) and Table (12) are inline with model fit over the entire sample period, reported in Table
(9). Our joint estimation result show a better in-sample fit over the second subsample period
as Vega RMSEs and IVRMSEs are reduced.

Fifth, in order to measure the out-of-sample performance of the two-factor SV model in
capturing the behaviour of S&P 500 index options, we use the parameter estimates form
the first subsample (1996-2003). Given the parameter estimates from the first subsample
period, we use Particle Filter methods to filter risk neutral spot daily persistent and transient
variance components over the second subsample period and then compute the IVRMSEs
and Vega RMSE over the second subsample (2004-2011). Table (13) reports the summary
statistics of the out-of-sample performance for different maturities and for calls and puts
separately. Comparing out-of-sample entries in (13) with those of in-sample in (12) over
the same period supports the stable performance of the two-factor SV model either in joint-
estimation or in option-based estimation.

Entries in the last column of Table (14) reports out-of-sample performance of the equity
model. We divide the data set into two subsample periods. using data from 1996 to 2003

34Christoffersen et al. [2009, Table 3] report annual risk neutral parameter estimates for the two-factor
SV model over the period 1990 through 2004 using data from S&P 500 index option data. Our option-based
subsample parameter estimates are mostly consistent with their average annual result except for the volatility
of volatility parameter. Apart from differences in the size of sample, this difference in point estimates may
partly be explained by the fact that the annual parameter estimates in Christoffersen et al. [2009] does not
satisfy the Feller condition. Feller [1951] shows that a square root process is strictly positive if 2κθ > σ2.

35See Section 6.
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we estimate structural parameters for the index model, for every individual equity, and
filter persistent and transient daily spot index variance components, and spot idiosyncratic
variance for all the firms. In the next step we filter spot idiosyncratic variance for all the firms
over the period 2004 to 2011, given spot variance components and structural parameters in
the first subsample period. Note that we use an optimization function similar to (28). We
find that the model provides good out-of-sample fit. For most of the firms, the out-of-sample
Vega RMSEs are consistent with their in-sample Vega RMSEs. Overall, the average Vega
RMSE is 1.81% across all 27 firms.36

9 Concluding Remarks

In this paper we investigate a two-factor stochastic volatility model where the aggregate
market volatility is decomposed into a persistent and a transient volatility components. We
extend the pricing kernel in Christoffersen et al. [2013], where investor’s equity preference is
distinguished from her variance preference, and introduce an admissible pricing kernel that
links the proposed market dynamics under P and Q measures. We also discuss alternative
pricing kernel for risk neutralization without separating equity and variance preferences. As
the proposed two-factor specification is affine, we obtain a closed-from pricing expression
for European call options. We use a long time-series of daily S&P 500 index returns and
the entire cross-section of S&P 500 option prices over the same time span. We filter time
series of persistent and transient spot variance components and simultaneously estimate a
set of structural parameters that characterizes the dynamics of index return and variance
components.

Motivated by the extensive empirical evidence that supports the existence of two volatility
components in the dynamics of index, we examine how individual equity option prices re-
spond to transient and persistent factor loadings. We adopt a two-factor stochastic volatility
model as in Ghanbari [2016] where aggregate market volatility is decomposed into two in-
dependent volatility components, a transient component and a persistent component. Then
we extend the model in Christoffersen et al. [2015] and assume that individual equity re-
turns are related to market index returns with two distinct systematic components and an
idiosyncratic component, which is stochastic and follows a standard square root process. We
derive a closed form pricing equation for individual equity call options where equity option
prices depend on two constant factor loadings, a transient beta and a persistent beta.

In empirical analysis, we show that the proposed decomposition of volatility can be character-
ized by different sensitivity of the variance components to the volatility shocks and different

36The out-of-sample performance can also be examined with spot idiosyncratic variance obtained from
one-day ahead (t+ 1) forecast of idiosyncratic variance for individual equity i given the in-sample structural
parameter estimates and time t spot idiosyncratic variance. One-day ahead (t+ 1) forecast of idiosyncratic

variance may be computed as ξ̂it+1|t ≡ Et[ξ
i
t+1] = θi + (ξit − θi)(1− exp(− κi

252 )). However, this approach may
be more suitable for instance if in-sample fit is based on a Wednesday options and then out-of-sample fit can
be examined based on the Thursday options.
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persistence in variance components. Consistent with the previous studies in both discrete
time GARCH models and continuous time stochastic volatility models, we find that one of
the volatility component is highly persistent and the other one is highly mean-reverting,
where immediate impact of volatility shocks on the transient volatility component is bigger
but short-lived. We obtain negative risk premium for both variance components, implying
that investors are willing to pay for insurance against increases in volatility risk, even if
such increases have little persistence. The negative risk premiums of both variance compo-
nents are consistent with the findings in equity market where Adrian and Rosenberg [2008]
find that short-run and long-run variance components are priced factors with negative risk
premium. We also obtain negative correlations between shocks to the index returns and
shocks to the transient and persistent variance components. In particular, we observe that
the persistent correlation coefficient has more significant effect on the dynamics of index
skewness.

Our model provides good fit to observed option prices both in- and out-of-sample, measured
by Vega-weighted root mean squared option pricing errors and implied volatility root mean
squared errors. More to the point, we find that unlike stochastic volatility model, joint
restrictions on return and variance dynamics under P and Q measures does not lead to the
poor performance of our two-factor SV model.

For the firms listed on Dow Jones Index, we estimate structural parameters and filter spot
idiosyncratic variances, which together characterize the dynamics of the individual equity
under the risk-neutral measure. Given the level of IVRMSEs, we find that our model provides
a good-fit both in-sample and out-of-sample. We also report the point estimates of transient
and persistent betas for 27 firms. We find that for all the firms, the transient beta is always
greater than the persistent beta, implying that for large capitalization firms listed in the
Dow Jones index, transient and larger variations in the market tends to be related to the
proportionally larger systematic price reactions across equities than persistent and smaller
variations in the market index. It also supports the presence of a two-factor structure
in our model. Along this line, the different sensitivities to the systematic transient and
persistent risks may corroborate the theoretical implication of our model. The beta estimates
have further implications for portfolio management, suggesting the importance of different
strategies for hedging transient versus persistent systematic market variations.

Our equity option pricing model sheds some lights on the impact of systematic price changes
on the equity option prices. We find closed-form expressions for the sensitivity of the equity
option prices to the changes in the index level (market delta) and changes in the persistent
and transient variance components (persistent and transient market vega) and show how
transient and persistent betas may affect the expected returns of individual equity options
through market delta and vegas. Our closed-form pricing equation and proposed factor
structure allow a portfolio manager to hedge her portfolio exposure to the level of the market
index, and to the persistent and transient variations in the market index.

We show that the proposed two-factor structure has important cross-sectional implications
for equity options. Consistent with the findings of Duan and Wei [2009], our model predicts
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that firms with a higher beta have a higher implied volatility. More to the point, we find that
firms with a higher transient beta have a steeper term structure of implied volatility and a
steeper implied volatility moneyness slope. We also observe that the variance risk premium
has a more significant effect on the implied volatility smile of equity options (equity option
skew) when the transient beta is higher. Overall, the in-sample performance of our model
over the one-factor structure, its out-of-sample performance, together with its cross-sectional
implications regarding IV term structure, moneyness slope, and equity option skew support
the importance of transient and persistent factor loadings in pricing equity options.
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Appendix

A Proof of Proposition 1

We impose the condition that the product of the price of any traded asset and the pricing
kernel under physical measure is a martingale. We also impose the condition that the
discounted price of any traded asset under risk neutral measure is also a martingale. We show
that the two-factor stochastic volatility process under physical measure in (1) are linked to its
risk-neutral counterpart in (4) by the unique arbitrage free pricing kernel introduced in (6)
and deduce restrictions on the time-preference parameters, {δ, η1, η2}, risk-aversion (equity
aversion) parameter, φ, and variance preference parameters (variance aversion), {ζ1, ζ2}. We
close this proof by showing how physical Wiener processes {z1,t, z2,t, w1,t, w2,t} are linked to
risk neutral Wiener processes {z̃1,t, z̃2,t, w̃1,t, w̃2,t} by equity premium {µ1, µ2} and variance
premium {λ1, λ2} parameters.

Consider that index return under physical and risk-neutral measures follows the dynamics
(A.1) and (A.2).

dSt/St = (r + µ1v1,t + µ2v2,t)dt+
√
v1,tdz1,t +

√
v2,tdz2,t
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√
v1,t(ρ1dz1,t +

√
1− ρ2

1dB1,t)

dv2,t = κ2(θ2 − v2,t)dt+ σ2
√
v2,t(ρ2dz2,t +

√
1− ρ2

2dB2,t)

(A.1)
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(A.2)

Then, following Christoffersen et al. [2013], we show that the pricing kernel links the physical
and risk neutral measures has the following exponential affine form.

Mt
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(St
S0

)φ
exp

[
δt+ η1

∫ t

0

v1,sds+ η2

∫ t

0

v2,sds+ ζ1(v1,t − v1,0) + ζ2(v2,t − v2,0)
]

(A.3)

Note that in the sprite of Cox et al. [1985] and Heston [1993] we assume that the market
price of each variance risk factor is proportional to spot variance. Therefore, the risk neutral
process in (A.2) can be defined as follows.
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dSt/St = rdt+
√
v1,tdz̃1,t +

√
v2,tdz̃2,t

dv1,t = (κ1(θ1 − v1,t)− λ1v1)dt+ σ1
√
v1,tdw̃1,t

dv2,t = (κ2(θ2 − v2,t)− λ2v2)dt+ σ2
√
v2,tdw̃2,t

(A.4)

The log stock price process under physical measure and log pricing kernel process have the
following dynamics respectively.

d(log(St)) = (r + µ1v1,t + µ2v2,t −
1

2
v1,t −

1

2
v2,t)dt+

√
v1,tdz1,t +

√
v2,tdz2,t (A.5)

d(log(Mt)) = φ · d(log(St)) + (δ + η1v1,t + η2v2,t)dt+ ζ1dv1,t + ζ2dv2,t (A.6)

Replacing (A.5) and (A.1) into (A.6) we have:

d(log(Mt)) =
[
φ(r + µ1v1,t + µ2v2,t −

1

2
v1,t −

1

2
v2,t) + δ + η1v1,t + η2v2,t

+ ζ1κ1(θ1 − v1,t) + ζ2κ2(θ2 − v2,t)
]
dt

+
[
φ
√
v1,t + ζ1ρ1σ1

√
v1,t

]
dz1,t +

[
φ
√
v2,t + ζ2ρ2σ2

√
v2,t

]
dz2,t

+
[
ζ1σ1
√
v1,t

√
1− ρ2

1

]
dB1,t +

[
ζ2σ2
√
v2,t

√
1− ρ2

2

]
dB2,t.

(A.7)

As dMt/Mt = d(log(Mt)) + 1
2
[d(log(Mt))]

2 we have

dMt/Mt =
[
φ(r + µ1v1,t + µ2v2,t −

1

2
v1,t −

1

2
v2,t) + δ + η1v1,t + η2v2,t

+ ζ1κ1(θ1 − v1,t) + ζ2κ2(θ2 − v2,t) +
1

2
φ2(v1,t + v2,t)

+ φ(ζ1ρ1σ1v1,t + ζ2ρ2σ2v2,t) +
1

2
ζ2

1σ
2
1v

2
1,t +

1

2
ζ2

2σ
2
2v

2
2,t

]
dt

+
[
φ
√
v1,t + ζ1ρ1σ1

√
v1,t

]
dz1,t +

[
φ
√
v2,t + ζ2ρ2σ2

√
v2,t

]
dz2,t

+
[
ζ1σ1
√
v1,t

√
1− ρ2

1

]
dB1,t +

[
ζ2σ2
√
v2,t

√
1− ρ2

2

]
dB2,t.

(A.8)

The first restriction on the pricing kernel is that the product of the money market account,
Bt = B0 exp(rt), and the pricing kernel, Mt, should be a martingale under physical measure.
Therefore, E[d(Bt ·Mt)] = 0 or E[dMt/Mt] = −rdt.
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[
φ(r + µ1v1,t + µ2v2,t −

1

2
v1,t −

1

2
v2,t) + δ + η1v1,t + η2v2,t + ζ1κ1(θ1 − v1,t) + ζ2κ2(θ2 − v2,t)

+
1

2
φ2(v1,t + v2,t) + φ(ζ1ρ1σ1v1,t + ζ2ρ2σ2v2,t) +

1

2
ζ2

1σ
2
1v

2
1,t +

1

2
ζ2

2σ
2
2v

2
2,t

]
dt = −rdt

(A.9)

As (A.9) holds for v1,t = v2,t = 0,

δ = −r(φ+ 1)− ζ1κ1θ1 − ζ2κ2θ2. (A.10)

(A.9) also holds for v1,t = v2,t =∞.

η1 = −φµ1 + 1/2φ+ ζ1κ1 − 1/2(φ2 + ζ2
1σ

2
1 + 2φζ1σ1ρ1)

η2 = −φµ2 + 1/2φ+ ζ2κ2 − 1/2(φ2 + ζ2
2σ

2
2 + 2φζ2σ2ρ2)

(A.11)

The second restriction on the pricing kernel is based on the fact that [St.Mt] is also a mar-
tingale under physical measure. Therefore, E[d(St ·Mt)] = 0. As a result of this restriction
we have

v1,t(µ1 + φ+ ζ1σ1ρ1) + v2,t(µ2 + φ+ ζ2σ2ρ2) = 0,

φ =
−1

v1,t + v2,t

[
(µ1 + ζ1σ1ρ1)v1,t + (µ2 + ζ2σ2ρ2)v2,t

]
.

(A.12)

If we impose the restriction that µ1 + ζ1σ1ρ1 ≡ µ2 + ζ2σ2ρ2, then (A.12) can be simplified as
follows.

φ = −(µ1 + ζ1σ1ρ1) = −(µ2 + ζ2σ2ρ2) (A.13)

We impose the third restriction on pricing kernel so that for any asset U ≡ U(S, v1, v2, t),
[U(t).Mt] is also a martingale under P -distribution. Therefore, E[d(U ·Mt)] = E[dU.Mt +
U.dMt+dU.dMt] = 0. Replacing Mt and dMt into this equation we have the following restric-
tion where US = ∂U(S, v1, v2, t)/∂S, Uv1 = ∂U(S, v1, v2, t)/∂v1, and Uv2 = ∂U(S, v1, v2, t)/∂v2.
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− rU + Ut + US(r + µ1v1,t + µ2v2,t)S + Uv1,tκ1(θ1 − v1,t) + Uv2,tκ2(θ2 − v2,t)

+
1

2
USS(v1,t + v2,t) +

1

2
Uv1,tv1,tσ

2
1v1,t +

1

2
Uv2,tv2,tσ

2
2v2,t + USv1,tρ1σ1v1,t + USv2,tρ2σ2v2,t

+ (USS
√
v1,t + Uv1,tρ1σ1

√
v1,t)(φ

√
v1,t + ζ1ρ1σ1

√
v1,t)

+ (USS
√
v2,t + Uv2,tρ2σ2

√
v2,t)(φ

√
v2,t + ζ2ρ2σ2

√
v2,t)

+ Uv1,tζ1σ
2
1v1,t(1− ρ2

1) + Uv2,tζ2σ
2
2v2,t(1− ρ2

2) = 0
(A.14)

The last restriction is based on the fact that discounted price process should be a martingale
under risk neutral measure. Therefore, for any asset, U(S, v1, v2, t), whose payoff depends
on the state variables {S, v1, v2}, U/Bt is a Q-martingale. This restriction implies that
EQ[d(U/Bt)] = 0 or equivalently EQ[d(U(S, v1, v2, t))] = rU(S, v1, v2, t).

Ut + rSUS + Uv1,t(κ1(θ1 − v1,t)− λ1v1,t) + Uv2,t(κ1(θ1 − v1,t)− λ2v2,t) +
1

2
USS(v1,t + v1,t)

+
1

2
Uv1,tv1,tσ

2
1v1,t +

1

2
Uv2,tv2,tσ

2
2v2,t + USv1,tρ1σ1v1,t + USv2,tρ2σ2v2,t = rU.

(A.15)

Replace (A.15) from the last restriction into (A.14) from the third restriction.

US(µ1v1,t + µ2v2,t)S + Uv1,tλ1v1,t + Uv2,tλ2v2,t

+ (USS
√
v1,t + Uv1,tρ1σ1

√
v1,t)(φ

√
v1,t + ζ1ρ1σ1

√
v1,t)

+ (USS
√
v2,t + Uv2,tρ2σ2

√
v2,t)(φ

√
v2,t + ζ2ρ2σ2

√
v2,t)

+ Uv1,tζ1σ
2
1v1,t(1− ρ2

1) + Uv2,tζ2σ
2
2v2,t(1− ρ2

2) = 0

US(µ1v1,t + µ2v2,t)S + Uv1,tλ1v1,t + Uv2,tλ2v2,t

+ USSφv1,t + USSζ1ρ1σ1v1,t + Uv1,tρ1σ1φv1,t + Uv1,tζ1σ
2
1v1,t

+ USSφv2,t + USSζ2ρ2σ2v2,t + Uv2,tρ2σ2φv2,t + Uv2,tζ2σ
2
2v2,t = 0

(A.16)

From the second restriction in (A.12) we know that µ1v1,t + µ2v2,t = −φv1,t − ζ1ρ1σ1v1,t −
φv2,t − ζ2ρ2σ2v2,t. Therefore, we can further simplify (A.16).

Uv1,t

(
ρ1σ1φ+ λ1 + ζ1σ

2
1

)
v1,t + Uv2,t

(
ρ2σ2φ+ λ2 + ζ2σ

2
2

)
v2,t = 0 (A.17)

One admissible solution for (A.17) would be:
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ρ1σ1φ+ λ1 + ζ1σ
2
1 = 0

ρ2σ2φ+ λ2 + ζ2σ
2
2 = 0

(A.18)

If we combine restrictions in (A.18) with those introduced in (A.13) and replace them back
into (A.13) we have φ, ζ1, and ζ2.

ζ1 =
ρ1σ1µ1 − λ1

σ2
1(1− ρ2

1)

ζ2 =
ρ2σ2µ2 − λ2

σ2
2(1− ρ2

2)

(A.19)

φ = −µ1 −
ρ2

1σ
2
1µ1 − λ1ρ1σ1

σ2
1(1− ρ2

1)
= −µ2 −

ρ2
2σ

2
2µ2 − λ2ρ2σ2

σ2
2(1− ρ2

2)
(A.20)

Therefore, an admissible pricing kernel linking the P and Q dynamics in (A.1) and (A.2) is
as follows.

dMt

Mt

= −rdt− µ1
√
v1,tdz1,t − µ2

√
v2,tdz2,t +

ρ1σ1µ1 − λ1

σ2
1(1− ρ2

1)
dB1,t +

ρ2σ2µ2 − λ2

σ2
2(1− ρ2

2)
dB2,t

(A.21)

This is the pricing kernel introduced in (1).

Now, we show that how physical shocks are linked to risk neutral shocks through equity
premium {µ1, µ2} and variance premium {λ1, λ2} parameters.

dz̃1,t = dz1,t + (ψ1,t + ρ1ψ3,t)dt

dz̃2,t = dz2,t + (ψ2,t + ρ2ψ4,t)dt

dw̃1,t = dw1,t + (ψ3,t + ρ1ψ1,t)dt

dw̃2,t = dw2,t + (ψ4,t + ρ2ψ2,t)dt

(A.22)

Replace physical shocks in return dynamics (1) by risk neutral shocks introduced in (A.22).

dSt/St = (r + µ1v1,t + µ2v2,t)dt

+
√
v1,tdz̃1,t − (ψ1,t + ρ1ψ3,t)

√
v1,tdt+

√
v2,tdz̃2,t − (ψ2,t + ρ2ψ4,t)

√
v2,tdt

(A.23)
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As a result of risk neutralization in (A.23), the expected stock returns in (A.23) should be
equal to the risk free rate of returns. Therefore, we have the following restriction.

(µ1v1,t + µ2v2,t)dt = (ψ1,t + ρ1ψ3,t)
√
v1,tdt+ (ψ2,t + ρ2ψ4,t)

√
v2,tdt (A.24)

One possible solution of (A.24) is as follows.

µ1
√
v1,t = ψ1,t + ρ1ψ3,t

µ2
√
v2,t = ψ2,t + ρ2ψ4,t

(A.25)

Similarly, we replace the proposed transformation in (A.22) into the dynamics of volatilities
in (1).

dv1,t = κ1(θ1 − v1,t)dt+ σ1
√
v1,tdw̃1,t − σ1

√
v1,t(ψ3,t + ρ1ψ1,t)dt

dv2,t = κ2(θ2 − v2,t)dt+ σ2
√
v2,tdw̃2,t − σ2

√
v2,t(ψ4,t + ρ2ψ2,t)dt

(A.26)

The risk-neutral variance dynamics in (A.26) should be equivalent to those in (A.4), where
the market price of variance risk factors is proportional to spot variance. Therefore, we have
following restrictions:

σ1
√
v1,t(ψ3,t + ρ1ψ1,t) = λ1v1,t

σ2
√
v2,t(ψ4,t + ρ2ψ2,t) = λ2v2,t

(A.27)

Combining the restrictions in (A.25) and (A.27), we have the following results, which link
the physical distribution (1) to the risk neutral distribution (4).

ψ1,t =
σ1µ1 − ρ1λ1

σ1(1− ρ2
1)

√
v1,t

ψ2,t =
σ2µ2 − ρ2λ2

σ2(1− ρ2
2)

√
v2,t

ψ3,t =
λ1 − ρ1σ1µ1

σ1(1− ρ2
1)

√
v1,t

ψ4,t =
λ2 − ρ2σ2µ2

σ2(1− ρ2
2)

√
v2,t

(A.28)
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B Proof of Proposition 2

We transform the physical dynamics of individual equity returns (B.1) to its risk neutral
counterparts (B.2) by assuming an appropriate stochastic discount factor (SDF).

dSit/S
i
t = µidt+ βi1(µ1v1,tdt+

√
v1,tdz1,t) + βi2(µ2v2,tdt+

√
v2,tdz2,t) +

√
ξitdz

i
t

dξit = κi(θi − ξit)dt+ σi
√
ξitdw

i
t

(B.1)

dSit/S
i
t = rdt+ βi1

√
v1,tdz̃1,t + βi2

√
v2,tdz̃2,t +

√
ξitdz̃

i
t

dξit = κi(θi − ξit)dt+ σi
√
ξitdw

i
t

(B.2)

where

〈dzit, dwit〉 = ρidt

〈dzit, dw
j
t 〉 = 0 ∀(i 6= j)

(B.3)

As individual equity returns are linked to the market index returns with a two-factor model
and two constant factor loadings β1 and β2, the proposed SDF should jointly specify the risk
neutral distributions of the market index and individual equity returns. Remember that the
dynamics of market index returns under the P - and Q-measure are as follows.

dSt/St = (r + µ1v1,t + µ2v2,t)dt+
√
v1,tdz1,t +

√
v2,tdz2,t

dv1,t = κ1(θ1 − v1,t)dt+ σ1
√
v1,t(ρ1dz1,t +

√
1− ρ2

1dB1,t)

dv2,t = κ2(θ2 − v2,t)dt+ σ2
√
v2,t(ρ2dz2,t +

√
1− ρ2

2dB2,t)

(B.4)

dSt/St = rdt+
√
v1,tdz̃1,t +

√
v2,tdz̃2,t

dv1,t = κ̃1(θ̃1 − v1,t)dt+ σ1
√
v1,t(ρ1dz̃1,t +

√
1− ρ2

1dB̃1,t)

dv2,t = κ̃2(θ̃2 − v2,t)dt+ σ2
√
v2,t(ρ2dz̃2,t +

√
1− ρ2

2dB̃2,t)

(B.5)

where

〈dw1,t, dz1,t〉 = ρ1dt, −1≤ρ1≤ +1

〈dw2,t, dz2,t〉 = ρ2dt, −1≤ρ2≤ +1

〈dw1,t, dw2,t〉 = 0

ρ2
1 + ρ2

2 ≤ +1

(B.6)

We assume the following standard SDF.
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dMt

Mt

= −rdt− ψ′tdWt , (B.7)

where ψt ≡ [ψ1,t, ψ2,t, ψ3,t, ψ4,t, ψ
i
1,t, ψ

i
2,t] i = {1, 2, · · ·, n} is the vector of market price of

risk factors and Wt ≡ [z1,t, z2,t, w1,t, w2,t, z
i
t, w

i
t] i = {1, 2, · · ·, n} is the vector of innovations

in market return, market variance components, equity i return, and equity i idiosyncratic
variance. Given the SDF in (B.7), the change-of-measure from P - to Q-distribution has the
following exponential form.

dQ

dP
(t) ≡Mt exp(rt) = exp

[
−
∫ t

0

ψ
′

udWu −
1

2

∫ t

0

ψ
′

ud〈W,W
′〉uψu

]
(B.8)

where 〈W,W ′〉 is the covariance operator.

We follow the notion of Doléans-Dade exponential (stochastic exponential) and define the
stochastic exponential ε(·) as follow.

ε
(∫ t

0

ϑ
′

udWu

)
≡ exp

[ ∫ t

0

ϑ
′

udWu −
1

2

∫ t

0

ϑ
′

ud〈W,W
′〉uϑu

]
(B.9)

Therefore, the change-of-measure (B.8) can be expressed in term of stochastic exponential
as

dQ

dP
(t) = ε

(∫ t

0

−ψ′

udWu

)
(B.10)

Applying Ito’s lemma, for every individual equity i, we have the following dynamic under
the physical measure.

log
(Sit
Si0

)
=
[
µi + βi1µ1v1,t + βi2µ2v2,t −

1

2
(βi1)2v1,t −

1

2
(βi2)2v2,t −

1

2
ξit
]
t

+ βi1

∫ t

0

√
v1,udz1,u + βi2

∫ t

0

√
v2,udz2,u +

∫ t

0

√
ξiudz

i
u

(B.11)

Given (B.11) and definition of stochastic exponential (B.9) we have

Sit
Si0

= exp
[
(µi + βi1µ1v1,t + βi2µ2v2,t)t

]
ε
(∫ t

0

βi1
√
v1,udz1,u +

∫ t

0

βi2
√
v2,udz2,u +

∫ t

0

√
ξiudz

i
u

)
(B.12)

Note that
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ε
(∫ t

0

βi1
√
v1,udz1,u

)
= exp

[ ∫ t

0

βi1
√
v1,udz1,u −

1

2

∫ t

0

(βi1)2v1,udu
]

(B.13)

To find the market prices of risk we impose the restriction that the product of the price
of any individual equity and the pricing kernel under physical measure is a P -martingale.
Given the change-of-measure (B.10), for every individual equity i, the following process N(t)
should be a P -martingale.

N(t) ≡ Sit
Si0

dQ

dP
(t) exp (−rt) (B.14)

where

N(t) = exp
[
(−r + µi + βi1µ1v1,t + βi2µ2v2,t)t

]
ε
(∫ t

0

βi1
√
v1,udz1,u

)
ε
(
−
∫ t

0

ψ1,udz1,u −
∫ t

0

ψ3,udw1,u

)
ε
(∫ t

0

βi2
√
v2,udz2,u

)
ε
(
−
∫ t

0

ψ2,udz2,u −
∫ t

0

ψ4,udw2,u

)
ε
(∫ t

0

√
ξiudz

i
u

)
ε
(
−
∫ t

0

ψi1,udz
i
u −

∫ t

0

ψi2,udw
i
u

)
ε
(
−
∑
j /∈i

∫ t

0

ψj1,udz
j
u −

∑
j /∈i

∫ t

0

ψj2,udw
j
u

)
(B.15)

We decompose N(t) into two orthogonal components N(t) ≡ I(t)L(t) and then make sure
that I(t) and L(t) are a P -martingale.

I(t) = exp
[
(−r + µi + βi1µ1v1,t + βi2µ2v2,t)t

]
ε
(∫ t

0

βi1
√
v1,udz1,u

)
ε
(
−
∫ t

0

ψ1,udz1,u −
∫ t

0

ψ3,udw1,u

)
ε
(∫ t

0

βi2
√
v2,udz2,u

)
ε
(
−
∫ t

0

ψ2,udz2,u −
∫ t

0

ψ4,udw2,u

)
ε
(∫ t

0

√
ξiudz

i
u

)
ε
(
−
∫ t

0

ψi1,udz
i
u −

∫ t

0

ψi2,udw
i
u

)
(B.16)

L(t) =ε
(
−
∑
j /∈i

∫ t

0

ψj1,udz
j
u −

∑
j /∈i

∫ t

0

ψj2,udw
j
u

)
(B.17)

From the definition of a stochastic exponential we know that ε(·) are P -martingales and so
does L(t). Therefore, we only need to make sure that I(t) is also a P -martingale. Using
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the properties of a stochastic exponential ε(·), ε(Xt)ε(Yt) = ε(Xt + Yt) exp(〈X, Y 〉t) and the
correlation structure (B.3) and (B.6) we can rewrite the process of I(t) as follows.

I(t) = exp
[
(−r + µi + βi1µ1v1,t + βi2µ2v2,t)t

]
ε
(∫ t

0

(
βi1
√
v1,u − ψ1,u

)
dz1,u −

∫ t

0

ψ3,udw1,u

)
exp

[
−
∫ t

0

βi1
√
v1,u(ψ1,u + ρ1ψ3,u)du

]
ε
(∫ t

0

(
βi2
√
v2,u − ψ2,u

)
dz2,u −

∫ t

0

ψ4,udw2,u

)
exp

[
−
∫ t

0

βi2
√
v2,u(ψ2,u + ρ2ψ4,u)du

]
ε
(∫ t

0

(√
ξiu − ψi1,u

)
dziu −

∫ t

0

ψi2,udw
i
u

)
exp

[
−
∫ t

0

√
ξiu(ψ

i
1,u + ρiψi2,u)du

]
(B.18)

Thus, given ε(·) are P -martingales, the process I(t) is a P -martingale when the following
restriction holds.

exp
[
(−r + µi + βi1µ1v1,t + βi2µ2v2,t)t

]
exp

[
−
∫ t

0

βi1
√
v1,u(ψ1,u + ρ1ψ3,u)du

]
exp

[
−
∫ t

0

βi2
√
v2,u(ψ2,u + ρ2ψ4,u)du

]
exp

[
−
∫ t

0

√
ξiu(ψ

i
1,u + ρiψi2,u)du

]
= 1

(B.19)

The restriction (B.19) holds if the following conditions for the market index, (B.20), and for
every individual equity i, (B.21), hold.

µ1v1,tt−
√
v1,t(ψ1,t + ρ1ψ3,t)t = 0

µ2v2,tt−
√
v2,t(ψ3,t + ρ2ψ4,t)t = 0

(B.20)

−rt+ µit−
√
ξit(ψ

i
1,t + ρiψi2,t)t = 0 (B.21)

To fully specify the market prices of risk we assume that market price of variance risk factors
are proportional to spot volatility components, following Heston [1993].

(ψ3,t + ρ1ψ1,t) =
v1,t

σ1
√
v1,t

λ1

(ψ4,t + ρ2ψ2,t) =
v2,t

σ2
√
v2,t

λ2

(B.22)

If we assume that the idiosyncratic variance is also a priced risk factor, then its price is also
proportional to the spot idiosyncratic volatility for every individual equity i. Otherwise,
λi = 0.
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(ψi2,t + ρiψi1,t) =
ξit

σi
√
ξit
λi (B.23)

Combining the restrictions in (B.20) and (B.22), we have the following market price of risk
factors.

ψ1,t =
σ1µ1 − ρ1λ1

(1− ρ2
1)

√
v1,t

σ1

ψ2,t =
σ2µ2 − ρ2λ2

(1− ρ2
2)

√
v2,t

σ2

ψ3,t =
λ1 − ρ1σ1µ1

(1− ρ2
1)

√
v1,t

σ1

ψ4,t =
λ2 − ρ2σ2µ2

(1− ρ2
2)

√
v2,t

σ2

(B.24)

Combining the restrictions in (B.21) and (B.23) and given that idiosyncratic variance is not
priced, we have the following results for every individual equity.

ψi1,t =
µi − r√

ξit(1− (ρi)2)

ψi2,t = (−µ
i − r√
ξit

+
ξiλi

σi
)

ρi

1− (ρi)2

(B.25)

Given the market prices of risk factors (B.24) (B.25), we apply the Girsanov’s theorem to
transform physical innovations of the market index dynamics (B.4) and individual equity
dynamics (B.1) to their risk neutral counterparts in (B.5) and (B.2). Note that we assume
idiosyncratic variance is not priced and thus λi = 0.

dz̃it = dzit + ψi1,tdt+ ρiψi2,tdt

dz̃1,t = dz1,t + ψ1,tdt+ ρ1ψ3,tdt

dz̃2,t = dz2,t + ψ2,tdt+ ρ2ψ4,tdt

dw̃1,t = dw1,t + ψ3,tdt+ ρ1ψ1,tdt

dw̃2,t = dw2,t + ψ4,tdt+ ρ2ψ2,tdt

(B.26)

With some algebra we have the following transformations.
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dz̃it = dzit + (µi − r)dt/
√
ξit

dz̃1,t = dz1,t + µ1
√
v1,tdt

dz̃2,t = dz2,t + µ2
√
v2,tdt

dw̃1,t = dw1,t + (λ1/σ1)
√
v1,tdt

dw̃2,t = dw2,t + (λ2/σ2)
√
v2,tdt

(B.27)

Replacing dzit, dw
i
t, dz1,t, dz2,t, dw1,t, dw2,t from (B.27) into the physical dynamics in (B.1)

and (B.4) and knowing that κ̃1 = κ1 + λ1, κ̃2 = κ2 + λ2, θ̃1 = k1θ1
k1+λ1

, θ̃2 = k2θ2
k2+λ2

we obtain
risk neutral return and variance components dynamics.

dSit/S
i
t = µidt+ βi1(µ1v1,tdt+

√
v1,tdz1,t) + βi2(µ2v2,tdt+

√
v2,tdz2,t) +

√
ξitdz

i
t

= µidt+ βi1(µ1v1,tdt+
√
v1,t(dz̃1,t − µ1

√
v1,tdt))

+ βi2(µ2v2,tdt+
√
v2,t(dz̃2,t − µ2

√
v2,tdt)) +

√
ξit(dz̃

i
t − (µi − r)dt/

√
ξit)

= rdt+ βi1
√
v1,tdz̃1,t + βi2

√
v2,tdz̃2,t +

√
ξitdz̃

i
t

(B.28)

dSt/St = (r + µ1v1,t + µ2v2,t)dt+
√
v1,tdz1,t +

√
v2,tdz2,t

= (r + µ1v1,t + µ2v2,t)dt+
√
v1,t(dz̃1,t − µ1

√
v1,tdt) +

√
v2,t(dz̃2,t − µ2

√
v2,tdt)

= rdt+
√
v1,tdz̃1,t +

√
v2,tdz̃2,t

(B.29)

dv1,t = κ1(θ1 − v1,t)dt+ σ1
√
v1,t(dw̃1,t − (λ1/σ1)

√
v1,tdt)

= (κ1θ1 − (κ1 + λ1)v1,t)dt+ σ1
√
v1,tdw̃1,t

= κ̃1(θ̃1 − v1,t)dt+ σ1
√
v1,tdw̃1,t

(B.30)

dv2,t = κ2(θ2 − v2,t)dt+ σ2
√
v2,t(dw̃2,t − (λ2/σ2)

√
v2,tdt)

= (κ2θ2 − (κ2 + λ2)v2,t)dt+ σ2
√
v2,tdw̃2,t

= κ̃2(θ̃2 − v2,t)dt+ σ2
√
v2,tdw̃2,t

(B.31)

C Proof of Proposition 3

Given the Q dynamics of index returns and individual equities returns in (4) and (15),
applying Ito’s lemma on xit, delivers the following expression.

xit+τ − xit = rτ − 1

2

[
βi1

2
v1,t:t+τ + βi2

2
v2,t:t+τ + ξit:t+τ

]
τ

+ βi1

∫ t+τ

t

√
v1,udz̃1,u + βi2

∫ t+τ

t

√
v2,udz̃2,u +

∫ t+τ

t

√
ξitdz̃

i
u

(C.1)
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For the ease of notations we define:

z̃v1,τ ≡
∫ t+τ

t

√
v1,udz̃1,u ,

z̃v2,τ ≡
∫ t+τ

t

√
v2,udz̃2,u ,

z̃ξiτ ≡
∫ t+τ

t

√
ξiudz̃

i
u .

By the definition of risk-neutral conditional characteristic function of log-returns in (17) we
have:37

f̃ i(τ, φ) = EQ
t

[
exp

[
iφ(rτ − 1

2

(
βi1

2
v1,t:t+τ + βi2

2
v2,t:t+τ + ξit:t+τ

)
τ + βi1z̃v1,τ + βi2z̃v2,τ + z̃ξiτ )

]]
.

(C.2)

Define the stochastic exponential ζ(·) as follows.

ζ
( ∫ t

0

w′udWu

)
≡ exp

[ ∫ t

0

w′udWu −
1

2

∫ t

0

w′ud〈W,W ′〉wu
]

(C.3)

Therefore,

ζ
(
iφβi1 z̃v1,τ

)
= exp

[
iφβi1 z̃v1,τ −

1

2
(iφβi1)2〈z̃v1,τ , z̃v1,τ 〉

]
= exp

[
iφβi1 z̃v1,τ +

1

2
φ2βi1

2
v1,t:1+τ

]
.

(C.4)

Similar to (C.4), define ζ
(
iφβi2 z̃v2,τ

)
and ζ

(
iφ z̃ξiτ

)
and then combine these three stochastic

exponential with (C.2) to get the following risk-neutral conditional characteristic function.

f̃ i(τ, φ) = eiφrτEQ
t

[
ζ
(
iφβi1 z̃v1,τ

)
ζ
(
iφβi2 z̃v2,τ

)
ζ
(
iφ z̃ξiτ

)
exp

[
− g1v1,t:t+τ − g2v2,t:t+τ − g3ξ

i
t:t+τ

]]
(C.5)

where, g1 = 1
2
iφβi1

2
(1− iφ), g2 = 1

2
iφβi2

2
(1− iφ), and g3 = 1

2
iφ(1− iφ). Following Carr and

Wu [2004], we define a new change-of-measure from Q-measure to C-measure as follows.38

37For compactness, the dependence of risk-neutral conditional characteristic function to xit, v1,t, v2,t, ξ
i
t,

βi1, and βi2 is suppressed in (C.2).
38As the Radon-Nikodym derivatives in(C.6) is defined based on the stochastic exponential ζ(·), it is

Martingale by definition.
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dC

dQ
(t) ≡ ζ

(
iφβi1 z̃v1,τ

)
ζ
(
iφβi2 z̃v2,τ

)
ζ
(
iφ z̃ξiτ

)
(C.6)

The Radon-Nikodym derivatives of C with respect to Q in (C.6) allows to write (C.5) as

f̃ i(τ, φ) = eiφrτEQ
t

[ dC
dQ

(T )
dC
dQ

(t)
exp

[
− g1v1,t:t+τ − g2v2,t:t+τ − g3ξ

i
t:t+τ

]]
= eiφrτEC

t

[
exp

[
− g1v1,t:t+τ − g2v2,t:t+τ − g3ξ

i
t:t+τ

]]
.

(C.7)

Accordingly, we transform the risk-neutral shocks to index returns volatlities and to the
idiosyncratic returns volatility to their C-measure counterparts by applying the extension of
Grisanov’s theorem within the complex plane.

dw̃1,t = dwC1,t + (iφρ1β
i
1

√
v1,t)dt

dw̃2,t = dwC2,t + (iφρ2β
i
2

√
v2,t)dt

dw̃it = dwi,Ct + (iφρi
√
ξit)dt

(C.8)

As a results, the index volatilities dynamics and idiosyncratic volatility dynamics of individ-
ual equity under the C-measure are

dv1,t = κC1 (θC1 − v1,t)dt+ σ1
√
v1,tdw

C
1,t ,

dv2,t = κC2 (θC2 − v2,t)dt+ σ2
√
v2,tdw

C
2,t ,

dξit = κi,C(θi,C − ξit)dt+ σi
√
ξitdw

i,C
t ,

(C.9)

where,

κC1 = κ̃1 − iφρ1β
i
1σ1 θC1 = κ̃1θ̃1/κ

C
1 ,

κC2 = κ̃2 − iφρ2β
i
2σ2 θC2 = κ̃2θ̃2/κ

C
2 ,

κi,C = κi − iφρiσi θi,C = κiθi/κi,C .

Using the closed-form solution of the moment generating functions of EC
t [exp(−g1v1,t:t+τ )],

and EC
t [exp(−g2v2,t:t+τ )], and EC

t [exp(−g3ξ
i
t:t+τ )], the risk-neutral conditional characteristic

function of log individual equity prices has the following affine form.

f̃ i(v1,t, v2,t, ξ
i
t, τ, φ) = exp

[
iφxit + iφrτ − A1(τ, φ)− A2(τ, φ)−B(τ, φ)

− C1(τ, φ)v1,t − C2(τ, φ)v2,t −D(τ, φ)ξit
]
,

(C.10)
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A1(τ, φ) =
κ̃1θ̃1

σ2
1

[
2 ln

[
1− d1 − κC1

2d1

(1− e−d1τ )
]

+ (d1 − κC1 )τ
]
,

A2(τ, φ) =
κ̃2θ̃2

σ2
2

[
2 ln

[
1− d2 − κC2

2d2

(1− e−d2τ )
]

+ (d2 − κC2 )τ
]
,

B(τ, φ) =
κ̃iθ̃i

σi2

[
2 ln

[
1− di − κi,C

2di
(1− e−diτ )

]
+ (di − κi,C)τ

]
,

C1(τ, φ) =
2g1(1− e−d1τ )

2d1 − (d1 − κC1 )(1− e−d1τ )
,

C2(τ, φ) =
2g2(1− e−d2τ )

2d2 − (d2 − κC2 )(1− e−d2τ )
,

D(τ, φ) =
2gi(1− e−diτ )

2di − (di − κi,C)(1− e−diτ )
,

d1 =
√

(κC1 )2 + 2σ2
1g1 ,

d2 =
√

(κC2 )2 + 2σ2
2g2 ,

di =

√
(κi,C)2 + 2σi2gi ,

g1 =
1

2
iφβi1

2
(1− iφ) ,

g2 =
1

2
iφβi2

2
(1− iφ) ,

gi =
1

2
iφ(1− iφ) .

(C.11)

We determine the price of a European call option on an individual equity with the strike
price K and the time-to-maturity τ by inverting the risk-neutral conditional characteristic
function of log-returns.39

Ci
t(S

i
t , K, τ) = SitP

i
1 −Ke−rτP i

2 , (C.12)

where,

P i
1 =

1

2
+

1

π

1

Site
rτ

∫ ∞
0

<
[e−iφ lnK f̃ i(v1,t, v2,t, ξ

i
t, τ, φ− i)

iφ

]
dφ ,

P i
2 =

1

2
+

1

π

∫ ∞
0

<
[e−iφ lnK f̃ i(v1,t, v2,t, ξ

i
t, τ, φ)

iφ

]
dφ .

(C.13)

39Note that the risk-neutral conditional characteristic function of the logarithm of individual equity
returns, xit+τ − xit = ln(Sit+τ/S

i
t), can be defined with the same expression as (C.10) but without the first

component, iφxit.
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D Appendix D

Proofs of Proposition (4) and Proposition (5) are available upon request.

E Estimation of the Index Model - Discretization and

Particle Filter Methods

To estimate the parameters of two-factor stochastic volatility model of the index we follow
the literature on the estimation of stochastic volatility models, where the main challenge is
the estimation of unobserved latent volatilities. There are several approaches to estimate
stochastic volatility model. Our own approach combines the information from underlying
index and option markets to impose consistency between structural parameters under P
and Q distributions, known as joint estimation. Therefore, we use a likelihood function
that contains a return-based component and an option-based component, as in Santa-Clara
and Yan [2010] and Christoffersen et al. [2013].40 Here we do a joint-estimation by filtering
the two vectors of daily spot variances, {v1,t, v2,t}, and simultaneously estimating a set of
structural parameters of the dynamics of index returns and variances, including the market
price of each variance component, Θ ≡ {κ1, κ2, θ1, θ2, σ1, σ2, ρ1, ρ2, λ1, λ2}. Note that joint
estimation allow us to have reliable prices of variance risk factors, as we can get a consistent
set of structural parameters between the P and Q distributions.

Since the market variances are unobserved state variables, we first extract daily instantaneous
persistent and transient variance components using the Particle Filter (PF) method. This
optimal filtering methodology provides a tool for learning about unobserved shocks and
states from discretely observed prices generated by continuous-time models.41 Although we
generally follow the conventional filtration procedure in the literature, we provide a novel
approach to the challenge of filtering the two separate variance paths. Our proposed solution
is not trivial and to the best of our knowledge is novel and constitutes a methodological
contribution to the option pricing literature.

To define the return-based likelihood function and filter spot variances, we start by discretiz-
ing the returns dynamics (1). Applying Ito’s lemma to equation (1), gives the dynamics of
logarithm of stock prices as follows.

40Consistency can also be imposed through moment-based and simulation-based methods; see Ait-Sahalia
and Kimmel [2007], Eraker [2004], Jones [2003], Chernov and Ghysels [2000], and Pan [2002]. Other ap-
proaches use only option-based data to estimate only the Q distribution; Bakshi et al. [1997], Bates [2000],
Huang and Wu [2004], and Christoffersen et al. [2009].

41For the application of PF in estimating the model parameters see Gordon et al. [1993], Johannes et al.
[2009], Johannes and Polson [2009], Christoffersen et al. [2010], and Boloorforoosh [2014].
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d ln(St) = (µ− 1

2
(v1,t + v2,t))dt+

√
v1,tdz1,t +

√
v2,tdz2,t ,

dv1,t = κ1(θ1 − v1,t)dt+ σ1
√
v1,tdw1,t ,

dv2,t = κ2(θ2 − v2,t)dt+ σ2
√
v2,tdw2,t ,

(E.1)

where, µ ≡ r+ µ1v1,t + µ2v2,t. We discretize (E.1) using the Euler scheme.42 Equation (E.2)
models the relation between observed index prices and unobserved variances at time t+ ∆t
conditional on the time t variances.

ln(St+∆t)− ln(St) = (µ− 1

2
(v1,t + v2,t))∆t+

√
v1,t∆t z1,t+∆t +

√
v2,t∆t z2,t+∆t ,

v1,t+∆t = v1,t + κ1(θ1 − v1,t)∆t+ σ1

√
v1,t∆t w1,t+∆t ,

v2,t+∆t = v2,t + κ2(θ2 − v2,t)∆t+ σ2

√
v2,t∆t w2,t+∆t .

(E.2)

Brownian shocks z1,t+∆t, z2,t+∆t, w1,t+∆t, and w2,t+∆t are normal random variables with
mean zero and variance one. From the first equation in (E.2) we use the observed daily
index log-prices (ln(St), ln(St+∆t)) to first filter the daily return’s shocks (z1,t+∆t, z2,t+∆t)
and then, using the filtered shocks in returns and the last two equation in (E.2), we filter daily
spot variances (v1,t+∆t, v2,t+∆t). Note that we filter filter the summation of return shocks
z1,t+∆t+z2,t+∆t as we cannot separate the daily observed shocks into two components, z1,t+∆t

and z2,t+∆t. Therefore, we rewrite the underlying dynamics as (E.3), given that the return
shocks are uncorrelated and then discretize this dynamics.

d ln(St) = (µ− 1

2
(v1,t + v2,t))dt+

√
v1,t + v2,tdzt ,

dv1,t = κ1(θ1 − v1,t)dt+ σ1
√
v1,tdw1,t ,

dv2,t = κ2(θ2 − v2,t)dt+ σ2
√
v2,tdw2,t ,

(E.3)

with the correlation structure:

〈dw1,t, dz1,t〉 = ρ1dt, −1≤ρ1≤ +1

〈dw2,t, dz2,t〉 = ρ2dt, −1≤ρ2≤ +1

〈dw1,t, dw2,t〉 = 0

ρ2
1 + ρ2

2 ≤ +1

ρ2
1 + ρ2

2 ≤ +1 .

(E.4)

We decompose the variance shocks into orthogonal components as in (E.5) and then discretize
the return dynamics (E.3) using the Euler scheme and shock’s decomposition (E.5).43

42According to Eraker [2004] and Li et al. [2008] the discretization bias of the Euler scheme is negligible
for daily data.

43Note that the quadratic variations of the transformed using the proposed shocks decomposition (E.5)
should remain the same as

√
dt.
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dw1,t = ρ1dzt +
√

1− ρ2
1 dB1,t

dw2,t = ρ2dzt −
ρ1ρ2√
1− ρ2

1

dB1,t +

√
1− ρ2

1 − ρ2
2

1− ρ2
1

dB2,t

〈dB1,t , dB2,t〉 = 0

(E.5)

ln(St+∆t)− ln(St) = (µ− 1

2
(v1,t + v2,t))∆t+

√
(v1,t + v2,t)∆t zt+∆t ,

v1,t+∆t = v1,t + κ1(θ1 − v1,t)∆t+ σ1

√
v1,t∆t w1,t+∆t ,

v2,t+∆t = v1,t + κ2(θ2 − v2,t)∆t+ σ2

√
v2,t∆t w2,t+∆t ,

(E.6)

where, zt+∆t, w1,t+∆t, and w2,t+∆t are all N(0, 1). Now, using daily index log-returns, we
proceed to filter the spot variances from the discretized model in (E.6) given the correlation
structure in (E.5).

We follow Pitt [2002]44 and adopt a particular implementation of the PF, which is referred
to as the sampling-importance-resampling (SIR) PF. This implementation of PF method
allow us to approximate the true density of the persistent variance component (v1,t) and the
transient variance component (v2,t) using two sets of particles that are updated recursively
through equations (E.6). In other words, we recursively simulate next period particles of
each variance component until we have the empirical distributions of each variance factor
over the entire sample. That is, given N particles of {vj1,t}Nj=1, N particles of {vj2,t}Nj=1,
simulated return shocks, and w1,t+∆t and w2,t+∆t we generate the next period particles, N
particles {vj1,t+∆t}Nj=1 and another N particles {vj2,t+∆t}Nj=1 at any time t+ ∆t.

We start by simulating return’s shocks zjt+∆t given the initial value of structural param-

eters Θ0 and current variance particles {vj1,t, v
j
2,t}, on every day t and for every particle

j = 1, 2, ..., N , according to (E.7). Then using (E.8) we simulate volatility shocks wj1,t+∆t

and wj1,t+∆t. Note that εj1,t+∆t and εj2,t+∆t are independent standard normal random vari-
ables.

zjt+∆t =
[

ln(St+∆t/St)− (µ− 1

2
(vj1,t + vj2,t))∆t

]
/
√

(vj1,t + vj2,t)∆t (E.7)

wj1,t+∆t = ρ1z
j
t+∆t +

√
1− ρ2

1 ε
j
1,t+∆t

wj2,t+∆t = ρ2z
j
t+∆t −

ρ1ρ2√
1− ρ2

1

εj1,t+∆t +

√
1− ρ2

1 − ρ2
2

1− ρ2
1

εj2,t+∆t

(E.8)

44See Pitt [2002], Christoffersen et al. [2010], and Boloorforoosh [2014] for a detailed description of the
PF algorithm.
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Then, given the simulated return’s shocks {zjt+∆t}Nj=1 and simulated shocks to the persistent

and transient variance components {wj1,t+∆t}Nj=1 and {wj2,t+∆t}Nj=1, we simulate next period

variance particles {ṽj1,t+∆t} and {ṽj2,t+∆t}, for every day t according to (E.9).

ṽj1,t+∆t = vj1,t + κ1(θ1 − v1,t)∆t+ σ1

√
v1,t∆t w1,t+∆t

ṽj2,t+∆t = vj2,t + κ2(θ2 − v2,t)∆t+ σ2

√
v2,t∆t w2,t+∆t

(E.9)

This is the “Sampling Step,” at the end of which we generate N possible daily values for the
persistent variance component v1,t+∆t and another N possible daily values for the transient
variance component v2,t+∆t over the entire sample. In the next step, “Importance Step,” we
evaluate importance of the sampled daily particles by assigning appropriate weights W̃ j

t+∆t

to the simulated daily particles using a multivariate normal distribution. Intuitively, these
weights, W̃ j

t+∆t, are likelihood that the next day return at t + 2∆t is generated by this set
of particles. Then, the probability of each daily particle can be defined by normalizing the
weights within each day according to (E.12). Note that these weights are the basis of our
likelihood function under the P distribution.

(rt+2∆t|{ṽ1,t+∆t , ṽ2,t+∆t}) ∼ N
[
(µ− 1

2
(ṽ1,t+∆t + ṽ2,t+∆t))∆t , (ṽ1,t+∆t + ṽ2,t+∆t)∆t

]
(E.10)

W̃ j
t+∆t =

1√
2π(ṽj1,t+∆t + ṽj2,t+∆t)∆t

· exp
(
− 1

2

(
ln(St+2∆t

St+∆t
)− (µ− 1

2
(ṽj1,t+∆t + ṽj2,t+∆t))∆t

)2

(ṽj1,t+∆t + ṽj2,t+∆t)∆t

)
(E.11)

W̆ j
t+∆t =

W̃ j
t+∆t∑N

j=1 W̃
j
t+∆t

(E.12)

Note that combining independent shocks z1,t and z2,t in (E.3) imposes a restriction on the
weights of daily variance particles. Therefore, the importance probability is assigned to the
summation of return’s shocks. However, estimation results show that the path of filtered
spot persistent variance component and transient variance component in our two-factor SV
model are not sensitive to this assumption. We investigate the sensitivity of our result to
this weighting assumption by estimating daily spot variances using the two-step iterative
approach, following Huang and Wu [2004]. We do not observe significant difference between
filtered spot variances in two-step iterative approach and those filtered with particle filter
method.

In the last step, “Resampling Step,” we find the empirical distribution of smoothly resampled
daily particles. Following the Pitt [2002] algorithm, we draw smoothed daily particles by
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assigning uniform distributions to the raw daily particles for persistent and transient variance
components. As in the sampling step, we start from the beginning of the sample period
and recursively simulate the next period daily particles using the smoothly resampled daily
particles. The procedure continues until we have the empirical distributions of the persistent
and transient variance components over the entire sample.

Given the appropriate weights (E.12), we define the return-based likelihood function as
follows.

LLR ∝
T∑
t=1

ln
( 1

N

N∑
j=1

W̆ j
t (Θ)

)
(E.13)

Our implementation uses the maximum likelihood importance sampling (MLIS) methodology
to maximize LLR criterion. Note that return-based likelihood function (E.13) is a function of
the structural parameters of the market model under P measure, Θ ≡ {κ1, κ2, θ1, θ2, σ1, σ1, ρ1,
ρ2}. Note also that the filtered daily spot persistent variance component vP1,t and transient
variance component vP2,t can be defined as the average of the smoothly resampled particles.

v̂P1,t =
1

N

N∑
j=1

vj1,t , v̂P2,t =
1

N

N∑
j=1

vj2,t (E.14)

F Risk Neutral Distribution

Risk neutral distribution in (4) can also be extracted by assuming the following standard
stochastic discount factor, without explicit assumptions about the investor’s variance pref-
erences.

dMt

Mt

= −rdt− ψ′tdWt , (F.1)

where ψt ≡ [ψ1,t, ψ2,t, ψ3,t, ψ4,t] is the vector of market price of risk factors and Wt ≡
[z1,t, z2,t, w1,t, w2,t] is the vector of innovations in market index return and variance com-
ponents. Given the SDF in (F.1), the change-of-measure from P to Q distribution has the
following exponential form.

dQ

dP
(t) ≡Mt exp(rt) = exp

[
−
∫ t

0

ψ
′

udWu −
1

2

∫ t

0

ψ
′

ud〈W,W
′〉uψu

]
(F.2)

where 〈W,W ′〉 is the covariance operator.
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We follow the notion of Doléans-Dade exponential (stochastic exponential) and define the
stochastic exponential ε(·) as follow.

ε
(∫ t

0

ϑ
′

udWu

)
≡ exp

[ ∫ t

0

ϑ
′

udWu −
1

2

∫ t

0

ϑ
′

ud〈W,W
′〉uϑu

]
(F.3)

Therefore, the change-of-measure (F.2) can be expressed in term of stochastic exponential
as

dQ

dP
(t) = ε

(∫ t

0

−ψ′

udWu

)
(F.4)

Applying Ito’s lemma, we get the following dynamic for the log stock price process under
physical measure.

log
(St
S0

)
= (r + µ1v1,t + µ2v2,t)t−

1

2
v1,tt+

∫ t

0

√
v1,udz1,u −

1

2
v2,t +

∫ t

0

√
v2,udz2,u (F.5)

Given (F.5) and definition of stochastic exponential (F.3) we have

St
S0

= exp
[
(r + µ1v1,t + µ2v2,t)t

]
ε
(∫ t

0

√
v1,udz1,u

)
ε
(∫ t

0

√
v2,udz2,u

)
(F.6)

To find the market prices of risk we impose the restriction that the product of the price of
any traded asset and the pricing kernel under physical measure is a P -martingale. Given
the change-of-measure (F.2), the following process, N(t), should be a P -martingale.

N(t) ≡ St
S0

dQ

dP
(t) exp (−rt) (F.7)

where

N(t) = exp
[
(µ1v1,t + µ2v2,t)t

]
ε
(∫ t

0

√
v1,udz1,u

)
ε
(
−
∫ t

0

ψ1,udz1,u −
∫ t

0

ψ3,udw1,u

)
ε
(∫ t

0

√
v2,udz2,u

)
ε
(
−
∫ t

0

ψ2,udz2,u −
∫ t

0

ψ4,udw2,u

) (F.8)

Using the properties of a stochastic exponential ε(·), ε(Xt)ε(Yt) = ε(Xt + Yt) exp(〈X, Y 〉t)
we can rewrite the process of N(t) as follows.
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N(t) = exp
[
(µ1v1,t + µ2v2,t)t

]
ε
(∫ t

0

(√
v1,u − ψ1,u

)
dz1,u −

∫ t

0

ψ3,udw1,u

)
exp

[
−
∫ t

0

√
v1,u(ψ1,u + ρ1ψ3,u)du

]
ε
(∫ t

0

(√
v2,u − ψ2,u

)
dz2,u −

∫ t

0

ψ4,udw2,u

)
exp

[
−
∫ t

0

√
v2,u(ψ2,u + ρ2ψ4,u)du

]
(F.9)

From the definition of a stochastic exponential we know that ε(·) are P -martingales. Thus,
the process N(t) is a P -martingale when the following restriction holds.

exp
[
(µ1v1,t + µ2v2,t)t

]
exp

[
−
∫ t

0

√
v1,u(ψ1,u + ρ1ψ3,u)du

]
exp

[
−
∫ t

0

√
v2,u(ψ2,u + ρ2ψ4,u)du

]
= 1

(F.10)

The restriction in (F.10) can be satisfied if

µ1v1,tt−
√
v1,t(ψ1,t + ρ1ψ3,t)t = 0

µ2v2,tt−
√
v2,t(ψ3,t + ρ2ψ4,t)t = 0

(F.11)

To fully specify the market prices of risk we assume that market price of variance risk factors
are proportional to spot volatilites, following Heston [1993].

(ψ3,t + ρ1ψ1,t) =
v1,t

σ1
√
v1,t

λ1

(ψ4,t + ρ2ψ2,t) =
v2,t

σ2
√
v2,t

λ2

(F.12)

Combining the restrictions in (F.11) and (F.12), we have the following market price of risk
factors. Note that these prices are the same as those we find in Proposition (1).

ψ1,t =
σ1µ1 − ρ1λ1

(1− ρ2
1)

√
v1,t

σ1

ψ2,t =
σ2µ2 − ρ2λ2

(1− ρ2
2)

√
v2,t

σ2

ψ3,t =
λ1 − ρ1σ1µ1

(1− ρ2
1)

√
v1,t

σ1

ψ4,t =
λ2 − ρ2σ2µ2

(1− ρ2
2)

√
v2,t

σ2

(F.13)
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Given the market price of risk factors (F.13), we can apply Girsanov’s theorem to find
transform physical innovations in (1) to its risk neutral counterpart in (4).

dz̃1,t = dz1,t + ψ1,tdt+ ρ1ψ3,tdt

dz̃2,t = dz2,t + ψ2,tdt+ ρ2ψ4,tdt

dw̃1,t = dw1,t + ψ3,tdt+ ρ1ψ1,tdt

dw̃2,t = dw2,t + ψ4,tdt+ ρ2ψ2,tdt

(F.14)

With some algebra we have the following transformations.

dz̃1,t = dz1,t + µ1
√
v1,tdt

dz̃2,t = dz2,t + µ2
√
v2,tdt

dw̃1,t = dw1,t + (λ1/σ1)
√
v1,tdt

dw̃2,t = dw2,t + (λ2/σ2)
√
v2,tdt

(F.15)

Replacing dz1,t, dz2,t, dw1,t, dw2,t from (F.15) into the physical dynamics in (1) and knowing
that κ̃1 = κ1 + λ1, κ̃2 = κ2 + λ2, θ̃1 = k1θ1

k1+λ1
, θ̃2 = k2θ2

k2+λ2
we obtain risk neutral return and

variance dynamics.

dSt/St = (r + µ1v1,t + µ2v2,t)dt+
√
v1,tdz1,t +

√
v2,tdz2,t

= (r + µ1v1,t + µ2v2,t)dt+
√
v1,t(dz̃1,t − µ1

√
v1,tdt) +

√
v2,t(dz̃2,t − µ2

√
v2,tdt)

= rdt+
√
v1,tdz̃1,t +

√
v2,tdz̃2,t

(F.16)

dv1,t = κ1(θ1 − v1,t)dt+ σ1
√
v1,t(dw̃1,t − (λ1/σ1)

√
v1,tdt)

= (κ1θ1 − (κ1 + λ1)v1,t)dt+ σ1
√
v1,tdw̃1,t

= κ̃1(θ̃1 − v1,t)dt+ σ1
√
v1,tdw̃1,t

(F.17)

dv2,t = κ2(θ2 − v2,t)dt+ σ2
√
v2,t(dw̃2,t − (λ2/σ2)

√
v2,tdt)

= (κ2θ2 − (κ2 + λ2)v2,t)dt+ σ2
√
v2,tdw̃2,t

= κ̃2(θ̃2 − v2,t)dt+ σ2
√
v2,tdw̃2,t

(F.18)
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Table 1: S&P 500 Index Call Option Data Characteristics by Moneyness and Maturity

Panel A: Number of call option contracts

DTM≤30 30<DTM≤91 91<DTM≤182 DTM>182 All

S/K≤0.92 152 3,371 12,690 8,782 24,995
0.92<S/K≤0.94 642 8,220 17,345 8,342 34,549
0.94<S/K≤0.96 4,033 14,436 18,557 8,096 45,122
0.96<S/K≤0.98 10,761 17,202 17,000 7,167 52,130
S/K>0.98 13,052 16,137 15,628 6,485 51,302
All 28,640 59,366 81,220 38,872 208,098

Panel B: Average price of call option contracts

DTM≤30 30<DTM≤91 91<DTM≤182 DTM>182 All

S/K≤0.92 13.6200 15.5478 23.0998 47.0797 24.8368
0.92<S/K≤0.94 11.7434 16.1440 26.2574 56.2993 27.6110
0.94<S/K≤0.96 9.9935 18.0151 34.2459 69.4400 32.9236
0.96<S/K≤0.98 11.5532 24.4015 44.6126 82.1867 40.6885
S/K>0.98 18.5235 35.5330 57.9296 95.6642 51.9126
All 13.0867 21.9283 37.2290 70.1340 35.5945

Panel C: Average implied volatility of call option contracts

DTM≤30 30<DTM≤91 91<DTM≤182 DTM>182 All

S/K≤0.92 0.4071 0.2299 0.1894 0.1791 0.2514
0.92<S/K≤0.94 0.3163 0.2034 0.1760 0.1831 0.2197
0.94<S/K≤0.96 0.2213 0.1792 0.1770 0.1881 0.1914
0.96<S/K≤0.98 0.1784 0.1741 0.1833 0.1958 0.1829
S/K>0.98 0.1715 0.1829 0.1900 0.2028 0.1868
All 0.2589 0.1939 0.1831 0.1898 0.2064

Panel D: Average delta of call option contracts

DTM≤30 30<DTM≤91 91<DTM≤182 DTM>182 All

S/K≤0.92 0.2316 0.2302 0.2724 0.3726 0.2767
0.92<S/K≤0.94 0.2329 0.2549 0.3121 0.4268 0.3067
0.94<S/K≤0.96 0.2381 0.2984 0.3832 0.4827 0.3506
0.96<S/K≤0.98 0.2996 0.3843 0.4608 0.5319 0.4191
S/K>0.98 0.4422 0.4976 0.5377 0.5771 0.5136
All 0.2889 0.3331 0.3932 0.4782 0.3733

Note to Table: This table reports the summary statistics of out-of-the-money S&P 500 call option
contracts in our sample, from January 1, 1996 to December 31, 2011. The implied volatilities and
the deltas are from the OptionMetrics volatility surface data set. S denotes the price of the S&P
500 index, K is the option strike price, and DTM is the number of calandar days to maturity.
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Table 2: S&P 500 Index Put Option Data Characteristics by Moneyness and Maturity

Panel A: Number of put option contracts

DTM≤30 30<DTM≤91 91<DTM≤182 DTM>182 All

S/K≤1.02 10,776 13,499 13,463 5,904 43,642
1.02<S/K≤1.04 7,163 10,951 12,018 5,008 35,140
1.04<S/K≤1.06 3,699 8,083 10,399 5,317 27,498
1.06<S/K≤1.08 1,248 5,334 8,105 3,908 18,595
S/K>1.08 385 3,173 5,591 3,588 12,737
All 23,271 41,040 49,576 23,725 137,612

Panel B: Average price of put option contracts

DTM≤30 30<DTM≤91 91<DTM≤182 DTM>182 All

S/K≤1.02 18.7121 30.3521 44.9423 63.5550 39.3904
1.02<S/K≤1.04 13.9689 25.4113 40.1731 59.5418 34.7738
1.04<S/K≤1.06 12.7334 21.7862 34.1231 55.3294 30.9930
1.06<S/K≤1.08 14.0224 20.8254 30.5229 44.3883 27.4397
S/K>1.08 16.1005 20.9994 30.9259 43.7921 27.9545
All 15.1075 23.8749 36.1375 53.3213 32.1103

Panel C: Average implied volatility of put option contracts

DTM≤30 30<DTM≤91 91<DTM≤182 DTM>182 All

S/K≤1.02 0.1929 0.1933 0.1992 0.2121 0.1994
1.02<S/K≤1.04 0.2194 0.2134 0.2158 0.2127 0.2153
1.04<S/K≤1.06 0.2646 0.2314 0.2233 0.2313 0.2376
1.06<S/K≤1.08 0.3342 0.2599 0.2367 0.2200 0.2627
S/K>1.08 0.4255 0.2904 0.2583 0.2343 0.3021
All 0.2873 0.2377 0.2266 0.2221 0.2434

Panel D: Average delta of put option contracts

DTM≤30 30<DTM≤91 91<DTM≤182 DTM>182 All

S/K≤1.02 -0.3931 -0.3988 -0.3931 -0.3631 -0.3870
1.02<S/K≤1.04 -0.2860 -0.3221 -0.3403 -0.3334 -0.3204
1.04<S/K≤1.06 -0.2348 -0.2699 -0.2932 -0.3060 -0.2760
1.06<S/K≤1.08 -0.2194 -0.2395 -0.2579 -0.2612 -0.2445
S/K>1.08 -0.2175 -0.2209 -0.2431 -0.2547 -0.2341
All -0.2702 -0.2902 -0.3055 -0.3037 -0.2924

Note to Table: This table reports the summary statistics of out-of-the-money S&P 500 put option
contracts in our sample, from January 1, 1996 to December 31, 2011. The implied volatilities and
delta are from the OptionMetrics volatility surface data set. S denotes the price of the S&P 500
index, K is the option strike price, and DTM is the number of calandar days to maturity.
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Table 3: Data Sample Summary

Company Ticker Call Put
All

Options
Avg

DTM
Avg
IV

S&P 500 Index SPX 208,098 137,612 345,710 141 22.49%

Alcoa AA 134,112 106,732 240,844 130 35.16%
American Express AXP 143,880 109,422 253,302 132 31.62%
Boeing BA 149,949 116,967 266,916 131 30.52%
Caterpillar CAT 145,951 113,189 259,140 130 32.04%
Cisco CSCO 127,223 100,605 227,828 128 36.92%
Chevron CVX 178,737 132,901 311,638 135 24.56%
Dupont DD 162,592 122,417 285,009 135 27.43%
Disney DIS 145,656 114,062 259,718 138 29.84%
General Electric GE 151,825 112,771 264,596 141 27.74%
Home Depot HD 145,260 113,691 258,951 134 30.92%
Hewlett-Packard HPQ 127,524 101,302 228,826 131 35.36%
IBM IBM 164,543 125,043 289,586 135 27.09%
Intel INTC 123,444 98,783 222,227 135 36.09%
Johnson & Johnson JNJ 189,496 137,546 327,042 140 21.83%
JP Morgan JPM 149,895 110,342 260,237 132 31.60%
Coca Cola KO 178,611 131,747 310,358 141 23.03%
McDonald’s MCD 163,946 126,156 290,102 138 26.05%
3M MMM 176,339 131,127 307,466 135 24.82%
Merck MRK 160,622 120,662 281,284 134 27.68%
Microsoft MSFT 138,523 106,266 244,789 140 30.69%
Pfizer PFE 145,288 112,830 258,118 141 28.63%
Procter & Gamble PG 186,969 137,111 324,080 139 22.12%
AT&T T 174,932 123,359 298,291 135 25.85%
United Technologies UTX 166,534 126,111 292,645 134 26.64%
Verizon VZ 167,457 117,498 284,955 138 26.02%
Walmart WMT 165,015 127,833 292,848 138 25.74%
Exxon Mobil XOM 177,667 133,517 311,184 137 24.07%

Average 157,111 118,889 275,999 135 28.52%
Minimum 123,444 98,783 222,227 128 21.83%
Maximum 189,496 137,546 327,042 141 36.92%

Note to Table: his table reports the number of available call and put options for index and for each
firm in our sample. Our sample contains options with moneyness up to 10% and maturity up to
and including 1 year over the period 1996-2011. We rely on the implied volatility surface data set
provided by OptionMetrics. For each firm, we also report the average number of days-to-maturity
(Avg DTM) and the average Black-Scholes implied volatility (Avg IV) of available contracts.
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Table 4: Data Sample Summary - Call Options

Ticker
Avg
Price

Min
Price

Max
Price

Avg
IV

Min.
IV

Max
IV

Avg
Delta

Avg
Vega

Avg
DTM

SPX 35.59 1.876 195.53 20.64% 7.03% 74.98% 0.373 251.02 143

AA 2.256 0.110 14.121 34.20% 16.93% 153.65% 0.442 8.385 130
AXP 3.218 0.375 27.372 30.28% 12.72% 148.17% 0.436 12.612 133
BA 3.022 0.375 14.928 29.57% 16.06% 89.57% 0.429 13.062 131
CAT 3.351 0.376 15.375 30.98% 16.01% 103.28% 0.432 13.882 131
CSCO 2.364 0.093 32.268 35.87% 15.93% 107.08% 0.441 7.251 129
CVX 3.196 0.375 15.509 23.45% 12.79% 94.43% 0.416 16.718 137
DD 2.319 0.375 13.407 26.25% 12.29% 92.26% 0.427 10.961 136
DIS 1.899 0.375 17.498 28.56% 6.95% 95.86% 0.441 8.422 139
GE 2.385 0.375 27.865 26.38% 6.90% 148.93% 0.438 10.855 143
HD 2.215 0.375 15.933 29.72% 14.84% 100.91% 0.435 9.111 136
HPQ 2.869 0.375 46.162 34.47% 15.32% 97.89% 0.445 9.303 132
IBM 4.976 0.361 36.790 25.83% 11.93% 86.82% 0.416 23.901 136
INTC 2.946 0.375 28.764 35.20% 17.34% 90.86% 0.455 9.389 136
JNJ 2.391 0.375 14.911 20.44% 9.66% 70.84% 0.409 14.260 142
JPM 2.759 0.131 19.016 30.02% 11.19% 160.94% 0.431 11.158 133
KO 2.080 0.375 10.651 21.73% 8.27% 69.30% 0.416 11.767 143
MCD 2.008 0.375 13.560 24.80% 11.58% 78.87% 0.429 10.308 139
MMM 3.608 0.375 17.730 23.66% 12.51% 79.62% 0.413 18.890 136
MRK 2.797 0.375 23.758 26.56% 14.29% 85.20% 0.432 12.354 136
MSFT 3.143 0.375 29.554 29.44% 12.22% 87.86% 0.450 11.448 141
PFE 2.175 0.375 22.262 27.57% 14.20% 100.98% 0.441 8.982 143
PG 2.770 0.375 19.779 20.77% 9.28% 64.34% 0.409 16.262 142
T 1.611 0.075 9.373 24.41% 10.04% 82.25% 0.432 7.657 137
UTX 3.247 0.375 22.284 25.34% 13.16% 82.34% 0.417 16.273 135
VZ 2.078 0.375 12.448 24.58% 9.22% 86.98% 0.444 9.779 141
WMT 2.199 0.375 17.836 24.52% 11.16% 67.26% 0.418 11.103 140
XOM 2.688 0.375 15.079 22.92% 12.58% 84.79% 0.414 14.474 139

Avg. 2.688 0.334 20.527 27.32% 12.42% 96.71% 0.430 12.169 137

Note to Table: This table reports the number of available call option contracts for the index and
for each firm in our sample. Our sample contains call options with moneyness up to 10% and matu-
rity up to and including 1 year over the period 1996-2011. We rely on the implied volatility surface
data set provided by OptionMetrics. For each firm, we also report the average number of days-to-
maturity (Avg DTM), the average Black-Scholes implied volatility (Avg IV), the average Black-
Scholes delta (Avg Delta), and the average Black-Scholes vega (Avg Vega) of available contracts.
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Table 5: Data Sample Summary - Put Options

Ticker
Avg
Price

Min
Price

Max
Price

Avg
IV

Min
IV

Max
IV

Avg
Delta

Avg
Vega

Avg
DTM

SPX 32.11 2.640 195.53 24.34% 8.90% 82.74% -0.292 227.67 136

AA 1.908 0.110 14.121 36.13% 17.39% 159.25% -0.342 7.840 129
AXP 2.821 0.375 27.372 32.95% 12.20% 149.37% -0.340 11.851 130
BA 2.604 0.375 14.928 31.47% 17.43% 93.33% -0.339 12.114 130
CAT 2.981 0.376 15.375 33.11% 17.86% 104.41% -0.340 12.959 130
CSCO 2.120 0.093 32.268 37.97% 16.34% 112.08% -0.351 6.862 128
CVX 2.754 0.375 15.509 25.67% 11.68% 98.59% -0.327 15.499 134
DD 1.978 0.375 13.407 28.61% 13.70% 94.19% -0.333 10.133 133
DIS 1.618 0.375 17.498 31.11% 14.31% 99.48% -0.343 7.738 137
GE 2.018 0.375 27.865 29.09% 7.10% 149.59% -0.337 10.048 140
HD 1.946 0.375 15.933 32.12% 14.03% 103.50% -0.343 8.508 133
HPQ 2.368 0.375 46.162 36.25% 16.45% 94.06% -0.350 8.721 129
IBM 4.535 0.361 36.790 28.35% 12.38% 90.96% -0.336 22.422 134
INTC 2.596 0.375 28.764 36.97% 16.35% 92.03% -0.353 9.103 134
JNJ 2.081 0.375 14.911 23.22% 9.61% 77.42% -0.327 13.112 137
JPM 2.471 0.131 19.016 33.19% 11.99% 169.06% -0.337 10.568 131
KO 1.827 0.375 10.651 24.34% 9.52% 67.51% -0.330 10.878 139
MCD 1.727 0.375 13.560 27.30% 12.47% 74.29% -0.336 9.455 136
MMM 3.175 0.375 17.730 25.99% 13.82% 86.39% -0.329 17.609 134
MRK 2.316 0.375 23.758 28.80% 9.07% 88.64% -0.334 11.504 132
MSFT 2.821 0.375 29.554 31.94% 11.20% 94.44% -0.349 11.241 139
PFE 1.864 0.375 22.262 29.68% 13.95% 75.78% -0.343 8.501 140
PG 2.435 0.375 19.779 23.47% 9.58% 74.12% -0.327 15.103 137
T 1.400 0.075 9.373 27.30% 10.25% 86.45% -0.334 7.206 134
UTX 2.904 0.375 22.284 27.94% 13.62% 87.87% -0.333 15.167 133
VZ 1.728 0.375 12.448 27.45% 10.94% 89.81% -0.330 9.118 135
WMT 1.979 0.375 17.836 26.97% 11.44% 72.69% -0.335 10.324 136
XOM 2.309 0.375 15.079 25.22% 12.79% 97.18% -0.329 13.299 136

Avg. 2.344 0.334 20.527 29.73% 12.87% 99.35% -0.337 11.366 134

Note to Table: This table reports the number of available put option contracts for the index and
for each firm in our sample. Our sample contains put options with moneyness up to 10% and matu-
rity up to and including 1 year over the period 1996-2011. We rely on the implied volatility surface
data set provided by OptionMetrics. For each firm, we also report the average number of days-to-
maturity (Avg DTM), the average Black-Scholes implied volatility (Avg IV), the average Black-
Scholes delta (Avg Delta), and the average Black-Scholes vega (Avg Vega) of available contracts.
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Table 6: Market Parameter Estimates

Panel A: Parameter Estimates (Physical) - Joint Estimation

κ1κ1κ1 κ2κ2κ2 θ1θ1θ1 θ2θ2θ2 σ1σ1σ1 σ2σ2σ2 ρ1ρ1ρ1 ρ2ρ2ρ2 λ1λ1λ1 λ2λ2λ2

1.4271 3.5874 0.0026 0.0171 0.0855 0.3496 -0.6918 -0.2173 -1.0798 -1.0355

Panel B: Parameter Estimates (Risk Neutral) - Options-based Estimation

κ̃1κ̃1κ̃1 κ̃2κ̃2κ̃2 θ̃1̃θ1̃θ1 θ̃2̃θ2̃θ2 σ1σ1σ1 σ2σ2σ2 ρ1ρ1ρ1 ρ2ρ2ρ2

0.2267 2.9137 0.0590 0.0100 0.0958 0.5678 -0.9135 -0.4934

Note to Table: This table reports the structural parameter estimates of the S&P 500 Index
for the two-factor stochastic volatility model. The reported results in Panel A are from the
joint estimation using the daily S&P 500 index returns and options data. Structural param-
eters in Panel B are estimated using only options data. In both panels, we use OTM call
and put options with moneyness up to 10% over the period 1996-2011. As in Proposition
(2), κ̃1 = κ1 + λ1, κ̃2 = κ2 + λ2, θ̃1 = k1θ1

k1+λ1
, θ̃2 = k2θ2

k2+λ2
. Therefore, risk neutral parameters

from the joint estimation are κ̃1 = 0.3473, κ̃2 = 2.5520, θ̃1 = 0.0106, θ̃2 = 0.0240.
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Table 7: Individual Equity Parameter Estimates

Company Ticker κ̃̃κ̃κ θ̃̃θ̃θ σσσ ρρρ β1β1β1 β2β2β2

Alcoa AA 0.7253 0.0202 0.1612 -0.87 0.3850 1.3159
American Express AXP 0.7663 0.0128 0.1009 -0.91 0.3430 1.3203
Boeing BA 0.7692 0.0235 0.1757 -0.97 0.4108 1.3046
Caterpillar CAT 0.6354 0.0291 0.1984 -0.84 0.3608 1.3215
Cisco CSCO 0.6804 0.0653 0.3599 -0.81 0.4420 1.2508
Chevron CVX 0.9390 0.0097 0.0913 -0.88 0.5816 1.1538
Dupont DD 0.8702 0.0137 0.1310 -0.92 0.4949 1.2888
Disney DIS 0.6995 0.0247 0.1841 -0.89 0.4462 1.2854
General Electric GE 0.5694 0.0093 0.0670 -0.85 0.4968 1.3111
Home Depot HD 0.6912 0.0340 0.2379 -0.83 0.4278 1.3097
Hewlett-Packard HPQ 0.6159 0.0756 0.3967 -0.64 0.4432 1.2458
IBM IBM 0.7717 0.0186 0.1676 -0.78 0.6798 1.2853
Intel INTC 0.8160 0.0295 0.2123 -0.84 0.4322 1.2652
Johnson & Johnson JNJ 0.6492 0.0238 0.2015 -0.95 0.5574 1.0197
JP Morgan JPM 0.8606 0.0193 0.1836 -0.99 0.4483 1.3466
Coca Cola KO 0.3920 0.0291 0.1895 -0.87 0.6077 1.0897
McDonald’s MCD 0.9305 0.0262 0.2109 -0.97 0.4754 1.1359
3M MMM 1.7078 0.0107 0.1569 -0.86 0.5886 1.1752
Merck MRK 1.2259 0.0105 0.1073 -0.89 0.5018 1.2276
Microsoft MSFT 0.7777 0.0108 0.0710 -0.81 0.4513 1.2739
Pfizer PFE 0.8957 0.0210 0.1724 -0.88 0.5067 1.2166
Procter & Gamble PG 0.5107 0.0470 0.3056 -0.85 0.5782 1.0125
AT&T T 0.6972 0.0098 0.0830 -0.93 0.5116 1.2126
United Technologies UTX 0.9778 0.0271 0.2606 -0.83 0.5221 1.2668
Verizon VZ 0.8423 0.0102 0.0970 0.51 0.4719 1.1838
Walmart WMT 0.6533 0.0314 0.2136 -0.86 0.4695 1.1724
Exxon Mobil XOM 1.0785 0.0148 0.1849 -0.94 0.5925 1.1764

Average 0.8055 0.0244 0.1823 -0.820 0.4899 1.2284
Min 0.3920 0.0093 0.0670 -0.990 0.3430 1.0125
Max 1.7078 0.0756 0.3967 0.512 0.6798 1.3466

Note to Table: This table reports the risk-neutral structural parameter estimates for indi-
vidual equities conditional on the structural parameters of the S&P 500 index and the vec-
tors of filtered spot market variance components. This table also reports the persistent beta
βi1 and the transient beta βi2 for individual equity i. The market parameters and spot vari-
ance components are estimated using OTM call and put options over the period 1996-2011
with moneyness up to 10%. For individual equities, we use OTM call and put options with
moneyness up to 10% over the period 1996-2011, where we drop the first five months.
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Table 8: Distributional Properties of Spot Idiosyncratic Volatility

Company Ticker Mean Std dev Max Median

Alcoa AA 0.1259 0.1387 0.6879 0.0900

American Express AXP 0.1068 0.1489 0.7138 0.0692

Boeing BA 0.0633 0.0442 0.2484 0.0521

Caterpillar CAT 0.0783 0.0628 0.4395 0.0587

Cisco CSCO 0.1497 0.1328 0.8274 0.0987

Chevron CVX 0.0293 0.0267 0.2126 0.0260

Dupont DD 0.0460 0.0476 0.2526 0.0292

Disney DIS 0.0636 0.0515 0.2661 0.0460

General Electric GE 0.0618 0.0938 0.6134 0.0413

Home Depot HD 0.0741 0.0600 0.3230 0.0510

Hewlett-Packard HPQ 0.1250 0.1231 0.4893 0.0903

IBM IBM 0.0439 0.0482 0.2620 0.0260

Intel INTC 0.1206 0.0882 0.6408 0.0927

Johnson & Johnson JNJ 0.0225 0.0257 0.2340 0.0116

JP Morgan JPM 0.1070 0.1325 0.9138 0.0786

Coca Cola KO 0.0268 0.0308 0.1729 0.0133

McDonald’s MCD 0.0389 0.0345 0.1638 0.0277

3M MMM 0.0297 0.0304 0.1645 0.0180

Merck MRK 0.0438 0.0367 0.2189 0.0358

Microsoft MSFT 0.0749 0.0614 0.4605 0.0647

Pfizer PFE 0.0490 0.0425 0.2021 0.0356

Procter & Gamble PG 0.0256 0.0326 0.2411 0.0103

AT&T T 0.0522 0.0532 0.5365 0.0359

United Technologies UTX 0.0399 0.0374 0.2126 0.0258

Verizon VZ 0.0428 0.0438 0.3520 0.0280

Walmart WMT 0.0436 0.0550 0.2870 0.0193

Exxon Mobil XOM 0.0234 0.0210 0.1556 0.0204

Average 0.0633 0.0631 0.3812 0.0443

Minimum 0.0225 0.0210 0.1556 0.0103

Maximum 0.1497 0.1489 0.9138 0.0987

Note to Table: This table reports the mean, median, standard deviation, and maximum of spot
idiosyncratic variance for every firm i conditional on the structural parameters of the S&P 500 in-
dex and filtered spot market variance components. The reported results are based on OTM call
and put index option and individual equity option contracts with moneyness up to 10% over the
period 1996-2011.
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Table 9: Goodness of Fit

Option Based Estimation Joint Estimation

Number
of Obs.

Vega
RMSE

IV
RMSE

IVRMSE/
Avg. IV

Vega
RMSE

IV
RMSE

IVRMSE/
Avg. IV

Panel A: Goodness of Fit - Call Option Contracts

DTM≤30 28,640 1.2956 2.7171

30<DTM≤91 59,366 0.8695 2.5104

91<DTM≤182 81,220 0.6913 2.3505

DTM>182 38,872 0.8943 2.6032

All 208,098 0.8846 0.9132 4.4244 2.5299 2.5637 12.4210

Panel B: Goodness of Fit - Put Option Contracts

DTM≤30 23,271 1.6193 2.8857

30<DTM≤91 41,040 1.0712 2.4509

91<DTM≤182 49,576 0.8342 2.4941

DTM>182 23,725 1.0440 2.5256

All 137,612 1.1064 1.1167 4.5879 2.5877 2.6389 10.8418

Panel C: Goodness of Fit - All Option Contracts

DTM≤30 51,911 1.4497 2.7946

30<DTM≤91 100,406 0.9571 2.4835

91<DTM≤182 130,796 0.7486 2.4180

DTM>182 62,597 0.9538 2.5665

All 345,710 0.9790 0.9992 4.4428 2.5566 2.5939 11.5335

Note to Table: This table reports goodness-of-fit statistics for individual equity options. In-
sample statistics are computed using options over the entire sample, 1996-2011. All numbers are
in percentage points. We compute the Vega-weighted root mean squared error (Vega RMSE)
along with the implied volatility root mean squared error (IVRMSE). We also report the ra-
tio of IVRMSE over the average Black-Scholes implied volatility. We also report out-of-sample
Vega RMSE over the period 2004-2011, given the in-sample parameter estimates, market spot
variance components, and spot idiosyncratic variance over the period 1996-2003.
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Table 10: Subsample Parameter Estimates

κ1κ1κ1 κ2κ2κ2 θ1θ1θ1 θ2θ2θ2 σ1σ1σ1 σ2σ2σ2 ρ1ρ1ρ1 ρ2ρ2ρ2 λ1λ1λ1 λ2λ2λ2

Panel A: Joint Estimation:1996 - 2003

1.2138 3.2780 0.0033 0.0195 0.0855 0.3220 -0.6514 -0.2985 -1.1008 -0.9755

Panel B: Joint Estimation (2003 - 2011)

1.1274 4.2337 0.0069 0.0289 0.0793 0.4675 -0.5102 -0.3086 -1.0684 -1.0351

Panel C: Options-based Estimation (1996-2003)

0.1794 2.6176 0.0437 0.0104 0.0912 0.3732 -0.8891 -0.4434

Panel D: Options-based Estimation (2003-2011)

0.1117 3.4731 0.0623 0.0247 0.0837 0.6692 -0.7550 -0.6497

Note to Table: This table reports the structural parameter estimates of the S&P 500 Index
for the two-factor stochastic volatility model over two subsample period. The first subsam-
ple is from January 1996 to December 2003 and the second one is from January 2004 to
December 2011. The point estimates in Panel A and Panel B are from the joint estimation
using the daily S&P 500 index returns and options data. Entries in Panel C and Panel D
are estimated using only options data. In both panels, we use OTM call and put options
with moneyness up to 10% over the period 1996-2011.
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Table 11: Subsample Goodness of Fit (1996-2003)

Option Based Estimation Joint Estimation

Number
of Obs.

Vega
RMSE

IV
RMSE

IVRMSE/
Avg. IV

Vega
RMSE

IV
RMSE

IVRMSE/
Avg. IV

Panel A: Subsample Goodness of Fit (1996-2003) - Call Option Contracts

DTM≤30 14,267 1.2355 2.9061

30<DTM≤91 30,414 0.8397 2.8784

91<DTM≤182 39,160 0.7194 2.7826

DTM>182 18,237 0.7593 3.0274

All 102,078 0.8514 0.8846 4.5041 2.8787 2.9137 12.8697

Panel B: Subsample Goodness of Fit (1996-2003) - Put Option Contracts

DTM≤30 11,775 1.5167 3.3108

30<DTM≤91 20,282 1.1038 2.9729

91<DTM≤182 24,137 0.8742 2.9596

DTM>182 11,528 1.0111 2.9025

All 67,722 1.1006 1.1067 4.7416 3.0462 3.1389 11.9169

Panel C: Subsample Goodness of Fit (1996-2003) - All Option Contracts

DTM≤30 26,042 1.3698 3.1091

30<DTM≤91 50,696 0.9542 2.9218

91<DTM≤182 63,297 0.7820 2.8691

DTM>182 29,765 0.8655 2.9682

All 169,800 0.9586 0.9792 4.5567 2.9592 3.0055 12.2725

Note to Table: This table reports in-sample goodness-of-fit statistics for our two-factor stochas-
tic volatility model over the entire sample, 1996 through 2011 for various maturities. We also
report in-sample fit for calls and puts separately. All numbers are in percentage points. We
compute the Vega-weighted root mean squared error (Vega RMSE) along with the implied
volatility root mean squared error (IVRMSE). We also report the ration of IVRMSE over the
average implied volatility. To provide a basis for caparison the left panel reports pricing errors
based on the option data and the right panel reports those of joint estimation.
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Table 12: Subsample Goodness of Fit (2004-2011)

Option Based Estimation Joint Estimation

Number
of Obs.

Vega
RMSE

IV
RMSE

IVRMSE/
Avg. IV

Vega
RMSE

IV
RMSE

IVRMSE/
Avg. IV

Panel A: Subsample Goodness of Fit (2004-2011) - Call Option Contracts

DTM≤30 14,373 1.3526 2.5715

30<DTM≤91 28,952 0.8998 2.1570

91<DTM≤182 42,060 0.6640 1.9298

DTM>182 20,635 0.9985 2.0532

All 106,020 0.9155 0.9471 4.1833 2.2014 2.3017 10.1665

Panel B: Subsample Goodness of Fit (2004-2011) - Put Option Contracts

DTM≤30 11,496 1.7181 2.4266

30<DTM≤91 20,758 1.0383 1.9112

91<DTM≤182 25,439 0.7944 1.9656

DTM>182 12,197 1.0741 2.0348

All 69,890 1.1121 1.1437 4.3421 2.0802 2.1294 8.0843

Panel C: Subsample Goodness of Fit (2004-2011) - All Option Contracts

DTM≤30 25,869 1.5259 2.5109

30<DTM≤91 49,710 0.9601 2.0487

91<DTM≤182 67,499 0.7159 1.9459

DTM>182 32,832 1.0273 2.0445

All 175,910 0.9982 1.0297 4.2046 2.1480 2.2348 9.1255

Note to Table: This table reports goodness-of-fit statistics for our two-factor stochastic volatil-
ity model over the subsample from January 2004 through December 2011 for various maturi-
ties. We also report in-sample fit for calls and puts separately. All numbers are in percentage
points. We compute Vega-weighted root mean squared error (Vega RMSE) along with implied
volatility root mean squared error (IVRMSE). We also report the ration of IVRMSE over the
average implied volatility. To provide a basis for caparison the left panel reports pricing errors
based on the option data and the right panel reports those of joint estimation.
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Table 13: Out of Sample Goodness of Fit (2004-2011)

Option Based Estimation Joint Estimation

Number
of Obs.

Vega
RMSE

IV
RMSE

IVRMSE/
Avg. IV

Vega
RMSE

IV
RMSE

IVRMSE/
Avg. IV

Panel A: Out of Sample Goodness of Fit (2004-2011) - Call Option Contracts

DTM≤30 14,373 1.4764 2.7853

30<DTM≤91 28,952 0.9372 2.2801

91<DTM≤182 42,060 0.6902 1.9978

DTM>182 20,635 1.0797 2.1189

All 106,020 0.9753 0.9985 4.4103 2.2201 2.3907 10.5596

Panel B: Out of Sample Goodness of Fit (2004-2011) - Put Option Contracts

DTM≤30 11,496 1.8064 2.5780

30<DTM≤91 20,758 1.1048 1.9984

91<DTM≤182 25,439 0.8359 1.9856

DTM>182 12,197 1.1153 2.1478

All 69,890 1.1708 1.2142 4.6097 2.1259 2.2087 8.3853

Panel C: Out of Sample Goodness of Fit (2004-2011) - All Option Contracts

DTM≤30 25,869 1.6313 2.6952

30<DTM≤91 49,710 1.0105 2.1670

91<DTM≤182 67,499 0.7485 1.9932

DTM>182 32,832 1.0931 2.1297

All 175,910 1.0573 1.0893 4.4480 2.1831 2.3201 9.4737

Note to Table: This table reports out-of-sample goodness-of-fit statistics for our two-factor
stochastic volatility model over the period from January 2004 through December 2011 for var-
ious maturities. We also report out-of-sample fit for calls and puts separately. All numbers are
in percentage points. Out-of-sample daily spot persistent and transient variance components
are filtered with Particle Filter method given the in-sample structural parameter estimates over
the period January 1996 through December 2003. The Vega RMSE along with the IVRMSE
are computed given in-sample structural parameters and filtered variance components. We also
report the ratio of IVRMSE over the average implied volatility. To provide a basis for capari-
son the left panel reports pricing errors based on the option data and the right panel reports
those of joint estimation.
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Table 14: Goodness of Fit - Individual Equities

In-Sample Out-of-Sample

Ticker Vega
RMSE

IV
RMSE

IVRMSE/
Avg. IV

Vega
RMSE

AA 1.84 1.87 5.32 2.24
AXP 1.82 1.79 5.66 2.14
BA 1.41 1.35 4.42 1.97
CAT 1.50 1.47 4.59 1.68
CSCO 2.14 2.12 5.74 2.23
CVX 2.02 1.95 7.94 2.24
DD 1.42 1.41 5.14 1.53
DIS 1.75 1.69 5.66 1.97
GE 1.84 1.86 6.71 1.93
HD 1.58 1.54 4.98 1.72
HPQ 1.53 1.53 4.33 1.87
IBM 1.46 1.42 5.24 1.61
INTC 1.56 1.58 4.38 1.68
JNJ 1.42 1.40 6.41 1.65
JPM 1.85 1.82 5.76 2.08
KO 1.54 1.46 6.34 1.62
MCD 1.34 1.33 5.11 1.59
MMM 1.41 1.39 5.60 1.74
MRK 1.36 1.41 5.09 1.46
MSFT 1.67 1.64 5.34 1.75
PFE 1.49 1.46 5.10 1.73
PG 1.39 1.37 6.19 1.39
T 1.98 1.96 7.58 2.21
UTX 1.48 1.44 5.41 1.54
VZ 1.56 1.55 5.96 1.59
WMT 1.57 1.55 6.02 1.76
XOM 1.66 1.63 6.77 1.82

Average 1.61 1.59 5.66 1.81

Note to Table: This table reports goodness-of-fit statistics for individual equity options. In-sample
results are over the entire sample, 1996 through 2011. All numbers are in percentage points. We
compute the Vega-weighted root mean squared error (Vega RMSE) along with the implied volatil-
ity root mean squared error (IVRMSE). We also report the ratio of IVRMSE over the average
implied volatility. We also report out-of-sample Vega RMSE over the period of 2004 to 2011, given
the in-sample parameter estimates, market variance components, and equity idiosyncratic variance
over the period of 1996 to 2003.
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Figure 1: Market Delta of Equity Call Options
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Note to Figure: This figure plots the sensitivity of the model-implied equity call option prices with respect to
the level of market index for different sets of betas. Panel A shows this sensitivity following the calibration
in in one-factor structure model of Christoffersen et al. [2015] while Panels B and C are the sensitivity in
our two-factor structure model. Panel B, shows market delta when persistent beta is constant and Panel C
is market delta when transient beta is constant.
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Figure 2: Persistent Market Vega of Equity Call Options
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Note to Figure: This figure plots the sensitivity of the model-implied equity call option prices with respect
to the persistent variance component for different sets of betas. Panel A shows this sensitivity following
the calibration in in one-factor structure model while Panels B and C are the sensitivity in our two-factor
structure model. Panel B, shows the persistent market vega when transient beta is constant and Panel C
is the persistent market vega when persistent beta is constant. Note also that for all the graphs the total
unconditional equity variance is fixed, ṽi = (βi1)2θ̃1 + (βi2)2θ̃2 + θi = 0.11.
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Figure 3: Transient Market Vega of Equity Call Options
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Note to Figure: This figure plots the sensitivity of the model-implied equity call option prices with respect
to the transient variance component for different sets of betas. Panel A shows this sensitivity following
the calibration in in one-factor structure model while Panels B and C are the sensitivity in our two-factor
structure model. Panel B, shows the transient market vega when persistent beta is constant and Panel C
is the transient market vega when transient beta is constant. Note also that for all the graphs the total
unconditional equity variance is fixed, ṽi = (βi1)2θ̃1 + (βi2)2θ̃2 + θi = 0.11.
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Figure 4: Persistent and Transient Betas and Implied Volatility Term Structure
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Note to Figure: This figure plots the model-implied volatility for at-the-money equity call options with
respect to the time-to-maturity for different sets of betas. Panel A shows the term-structure effect following
the one-factor structure model and Panel B replicates the same IV structure with our two-factor structure
model. Panels C shows IV term structure when persistent beta βi1 is constant and Panel D shows IV term
structure when transient beta βi2 is constant. Note that for all the graphs the total unconditional equity
variance is fixed, ṽi = (βi1)2θ̃1 + (βi2)2θ̃2 + θi = 0.11. We also fix the total unconditional risk-neutral
market variances to 0.05, with θ̃1 = 0.006 and θ̃2 = 0.044. Therefore, the unconditional idiosyncratic equity
variance for every set of betas can be defined by θi = ṽi − (βi1)2θ̃1 − (βi2)2θ̃2. The spot market variance
components are set equal to v1,t = 0.012 and v2,t = 0.048 and the total spot equity variance is vit = 0.05.
Consequently, we define the spot idiosyncratic variance for different sets of betas as ξit = vit − (βi1)2v1,t −
(βi2)2v2,t. We choose the remaining structural parameters of the market and equity dynamics as follows:
{κ̃1 = 0.18, κ̃2 = 2.8, σ1 = 3.6, σ2 = 0.29, ρ1 = −0.96, ρ2 = −0.83} and {κ̃i = 0.8, σi = 0.2, ρi = 0}. We keep
the risk-free rate at 4% per year and the ratio of spot index price over spot equity price is equal to Sit/St = 0.1.
Note that the Y axis is Implied Volatility.
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Figure 5: Persistent and Transient Betas and Implied Volatility Across Moneyness
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Note to Figure: This figure plots the model-implied volatility for three-month equity call options with respect
to the moneyness (S/K) for different sets of betas. Panel A shows the IV moneyness slope following the one-
factor structure model and Panel B replicates the same IV moneyness slope with our two-factor structure
model. Panels C shows IV moneyness slope when persistent beta βi1 is constant and Panel D shows IV
moneyness slope when transient beta βi2 is constant. Note that for all the graphs the total unconditional
equity variance is fixed at ṽi = (βi1)2θ̃1 + (βi2)2θ̃2 + θi = 0.11. Note also that the Y axis is Implied Volatility.
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Figure 6: Persistent and Transient Variances Risk Premiums and Implied Volatility Smile
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Note to Figure: This figure plots the difference between model-implied volatility for three-month equity call
options with respect to the moneyness (S/K) for different sets of betas. The implied volatility difference
is the difference between IV when λ1 = λ2 = −0.5 and when λ1 = λ2 = 0. Panel A shows the effect of
market variance risk premium on equity option skew (slope of IV curve) following the calibration in one-
factor structure model while Panel B replicates the same effect in our two-factor structure model. Panels
C shows IV difference when persistent beta βi1 is constant and Panel D shows IV difference when transient
beta βi2 is constant. Note that for all the graphs the total unconditional equity variance is fixed, ṽi =
(βi1)2θ̃1 + (βi2)2θ̃2 + θi = 0.11.
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Figure 7: The S&P 500 Index Spot Variance Components Paths
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Note to Figure: We plot time series of risk-neutral spot variances for the S&P 500 index in
the two-factor stochastic volatility model. Panel A shows time series of persistent variance
component and Panel B shows time series of transient variance component. The blue plots
are based on the Particle Filter method using data from both S&P 500 index and option
markets (joint estimation). The red plots are filtered spot variances using data from S&P
500 option market only.
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Figure 8: The S&P 500 Index Total Spot Variance Path Versus VIX
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Note to Figure: We plot time series of risk-neutral total spot variance for the S&P 500
index by combining persistent and transient variance components of the two-factor stochastic
volatility model. The blue plots in Panel A is based on the Particle Filter method using data
from both S&P 500 index and option markets (joint estimation). The blue plot in Panel B
is based on data from S&P 500 option market only. Red plots in both panels are time series
of the VIX option implied volatility index.
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