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Abstract 
 

In empirical asset pricing, it is standard to sort assets into portfolios based on a 
characteristic, and then compare the top (e.g., decile) portfolio's risk-adjusted return 
with that of the bottom portfolio. We show that such an analysis assumes the random 
effects assumption to hold. Therefore, results from portfolio sorts are valid if and only 
if firm-specific effects are uncorrelated with the characteristic underlying the portfolio 
sort. We propose a novel, regression-based approach to analyzing asset returns. 
Relying on standard econometrics, our technique handles multiple dimensions and 
continuous firm characteristics. Moreover, it nests all variants of sorting assets into 
portfolios as a special case, provides a means for testing the random effects 
assumption, and allows for the inclusion of firm-fixed effects in the analysis. Our 
empirical results demonstrate that the random effects assumption underlying portfolio 
sorts is often violated, and that certain characteristics-based factors that are well-
known from empirical asset pricing studies do not withstand tests accounting for firm 
fixed effects. 
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1. Introduction 

A standard research methodology in empirical asset pricing studies sorts assets into, say, decile 

portfolios based on a certain firm characteristic and then compares the (risk-adjusted) performance of 

the top-decile portfolio with that of the bottom-decile portfolio. If the "alphas" of the top and bottom 

portfolios differ statistically significantly, this is considered evidence that the characteristic underlying 

the portfolio sort offers abnormal returns. This type of an analysis, to which we henceforth refer to as 

the "portfolio sorts approach", relies on the fact that a well-diversified portfolio only bears systematic 

risk, which is non-diversifiable and priced, but no unsystematic (or "firm-specific") risk, which is 

diversifiable and thus not priced. As a consequence, the portfolio sorts approach rests on the assumption 

that sorted portfolios are well-diversified, and that firm-specific effects (if present) do not have any 

meaningful impact on asset pricing tests. In this paper, we challenge this assumption. Our analysis raises 

severe doubts on whether the results from portfolio sorts in typical asset pricing applications are 

generally unaffected from firm-specific (fixed) effects.1  

We start with the casual consideration that an empirical asset pricing test should ideally be based 

on an assumption-free null hypothesis that holds true irrespective of whether a certain economic theory 

applies or not. Specifically, while there may be good economic reasons to believe that firm-specific risks 

are irrelevant for well-diversified portfolios, an empirical asset pricing test should not categorically rule 

out that firm-specific effects might matter for portfolio returns in the case of specific sample data. Yet, 

this is exactly what the portfolio sorts approach does. By comparing the "alpha" across portfolios, the 

portfolio sorts approach effectively analyzes whether there are "portfolio effects", i.e., whether there are 

statistically significant differences across the portfolios' (risk-adjusted) long-term return. However, 

conventional portfolio sorts do not allow for the inclusion of firm-specific effects. As a consequence, 

the portfolio sorts approach effectively rules out the possibility that firm-specific effects might matter 

at all. This is problematic since alternative firm characteristics, which form the basis of conventional 

portfolio sorts, are often highly correlated with each other. Hence, it is well possible that two apparently 

unrelated firm characteristics produce top and bottom (e.g., decile or quintile) portfolios with 

remarkably similar portfolio constituents. Moreover, a certain firm characteristic X, which has no return 

predictability, may accidentally "pack" a few stocks with particularly good (poor) performance into the 

                                                      
1 The portfolio sorts approach was introduced by Jaffe (1974) and Mandelker (1974). Recent examples of empirical 
asset pricing studies using the portfolio sorts approach are Baker, Bradley, and Wurgler (2011), Novy-Marx 
(2013), Frazzini and Pedersen (2014), Ball, Gerakos, Linnainmaa, and Nikolaev (2015), Fama and French (2015), 
Gerakos and Linnainmaa (2017), and Bali, Brown, and Tang (2017). The portfolio sorts approach is also widely 
used in other areas of empirical finance, such as for example in household finance research (e.g., Barber and 
Odean, 2000, 2001; Ivkovic, Sialm, and Weisbenner, 2008; Seasholes and Zhu, 2010; Korniotis and Kumar, 2013), 
in research on insider trading (e.g., Jeng, Metrick, and Zeckhauser, 2003), and in studies analyzing the performance 
of mutual funds and hedge funds (e.g., Kacperczyk, Sialm, and Zheng, 2008; Fung, Hsieh, Naik, and Ramadorai, 
2008). 
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top (bottom) portfolio. In this case, the top portfolio may outperform the bottom portfolio by a large 

margin, while the performance differential between the two portfolios effectively is due to a few "firm-

specific effects". In fact, a major problem of the portfolio sorts approach is its (implicit) assumption that 

the full outperformance (or underperformance) of a portfolio is attributable to the underlying sorting 

variables. By contrast, firm-specific effects account for the circumstance that, say, Google's or Apple’s 

outstanding performance is unlikely to be fully attributable to single firm characteristic X, but rather 

might be the result of a successful combination of both observable as well as unobservable firm 

characteristics. As a result, by only controlling for portfolio effects but not for firm-specific effects, the 

portfolio sorts approach is at risk of producing imprecise asset pricing tests and, hence, of having low 

power in detecting true return anomalies. 

To investigate to what extent firm-specific effects matter for empirical asset pricing tests, we 

propose a novel, regression-based methodology for analyzing asset returns. Our approach relies on 

estimating a firm-level panel regression with Driscoll and Kraay (1998) standard errors that are robust 

to general forms of cross-sectional as well as temporal dependence.2 The model specification is such 

that the individual firms’ monthly excess returns (over the risk-free rate) are regressed on a set of market 

factors (e.g., the three Fama-French factors), a series of firm characteristics (e.g., gross profitability, 

volatility, etc.), and all interaction terms between the market factors and the firm characteristics. By 

relying on standard econometrics, our technique easily handles multiple dimensions and continuous 

firm, fund, or investor characteristics. Furthermore, it nests all variants of the portfolio sorts approach 

as a special case. In fact, we prove theoretically and confirm empirically that the proposed regression 

approach can be specified such that it exactly reproduces the results of single and multiple portfolio 

sorts. Hence, the proposed method shares all the statistical properties and the straightforward economic 

interpretation of the portfolio sorts approach. Put differently, our method constitutes a linear regression-

based extension to conventional portfolio sorts. We therefore refer to our methodology as the 

“Generalized Portfolio Sorts” approach, or, in short, the “GPS-model”. 

Our formal econometric analysis shows that the portfolio sorts approach relies on the random 

effects assumption to hold.3 This directly follows from the fact that in order to replicate the results from 

portfolio sorts, our GPS-model needs to be estimated with pooled OLS. Since the pooled OLS estimator 

depends on the random effects assumption, statistical inference on portfolio sorts is therefore only valid, 

                                                      
2 For ease of exposition, but without loss of generality, the paper simply refers to "firms". However, note that our 
regression-based method applies to any type of subject such as individual firms, portfolios of common stocks, 
mutual or hedge funds, private or institutional investors, countries or districts, etc. Furthermore, our technique can 
also be used for evaluating the long-term performance of, say, firms, funds, and investors. 
3 It is important to note that asset pricing tests based on the Fama and MacBeth (1973) procedure also depend on 
the random effects assumption to hold. As such, Vogelsang (2012) points out that the Fama-MacBeth estimator is 
biased if firm-specific fixed effects are correlated with the explanatory variables. 
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if firm-specific effects are uncorrelated with the characteristic(s) underlying the sorted portfolios. 

Utilizing our GPS-model, we develop a Hausman (1978) type "portfolio sorts specification test" to 

analyze whether the results from portfolio sorts are likely to be affected by unobserved heterogeneity 

across firms. Our empirical evidence shows that the random effects assumption (implicitly) underlying 

the portfolio sorts approach indeed is often unlikely to hold. As a result, asset pricing tests that ignore 

firm fixed effects are at risk of producing severely biased statistical results (i.e., biased estimates of the 

"alpha" and the factor exposures) due to an omitted variables bias inherent in the analysis. We also show 

formally that firm characteristics which successfully predict the cross-section of stock returns, while 

being unable to predict the time-series of returns, are particularly prone to suffering from an omitted 

variables bias. Thus, a firm characteristic that predicts the cross-section of stock returns well should not 

be considered a good predictor for asset returns unless it is also successful in predicting the time-series 

of asset returns. This finding supports Cochrane's (2011, p. 1062) claim that "time-series forecasting 

regressions, cross-sectional regressions, and portfolio mean returns are really the same thing". 

Providing a means to distinguish between valid factors (which are robust to violations of the 

random effects assumption) and invalid factors (which are vulnerable to an omitted variables bias), our 

"portfolio sorts specification test" contributes to the literature addressing the factor-zoo-issue raised by 

Cochrane (2011). Specifically, the portfolio sorts specification test proposed in this paper is 

complementary to the result of Harvey, Liu, and Zhu (2016). They argue that a new factor needs to clear 

a significant hurdle (such as having a t-statistic greater than 3.0) in order to be considered a significant 

determinant for the cross-section of stock returns. Given that the coefficient estimates from portfolio 

sorts are biased if the random effects assumption is violated, our results imply that requiring a larger t-

statistic alone is an insufficient criterion for identifying significant factors. To make a good predictor 

for asset returns, a factor should also be robust to violations of the random effects assumption.4 

Our method also addresses another major shortcoming of the portfolio sorts approach: portfolio 

sorts are generally limited to the analysis of a small number of firm characteristics. Cochrane (2011, p. 

1061), for instance, argues that while it is customary to “sort assets into portfolios based on a 

characteristic […] we cannot do this with 27 variables”. Exacerbating this "multidimensional 

challenge", the portfolio sorts approach also renders it difficult to assess the functional relationship 

across multiple portfolios. Researchers applying the portfolio sorts approach therefore often focus on a 

comparison of the top and bottom group portfolios for simplicity (Patton and Timmermann, 2010). This, 

                                                      
4 Other recent research that addresses the factor-zoo-issue includes Bryzgalova (2016), Harvey and Liu (2017), 
Kozak, Nagel, and Shrihari (2017), and Pukthuanthong, Roll, and Subrahmanyam (2017). Related to this, Harvey 
(2017) points out that empirical finance research puts too much reliance on p-values, and that researchers are 
incentivized to engage in "p-hacking" in order to get their research published. Hou, Xue, and Zhang (2017) and 
Chordia, Goyal, and Saretto (2017) analyze "p-hacking" empirically. Their results imply that p-hacking is a serious 
issue, and that financial markets are more efficient than commonly assumed. 
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however, involves a loss of potentially valuable information on the relationship between the sorting 

characteristic and the outcome variable, usually risk-adjusted performance. Being capable to handle 

multivariate and continuous firm characteristics, the GPS-model easily overcomes this shortcoming of 

the portfolio sorts approach. Moreover, since the GPS-model allows for reproducing the results from 

multiple portfolio sorts by estimating a single firm-level regression, a standard Wald test can be applied 

for testing whether the “alphas” of a series of sorted portfolios are jointly equal to zero. Such a Wald 

test constitutes an easy-to-implement, yet econometrically robust, alternative to the popular “GRS-test” 

of Gibbons, Ross, and Shanken (1989). 

The GPS-model proposed in this paper shares two important properties with the widely applied 

Fama and MacBeth (1973) procedure. Both methods allow for the inclusion of multivariate and 

continuous firm characteristics in the analysis, and both methods allow for statistical inference that is 

robust to cross-sectional dependence.5 The GPS-model, however, has an important advantage over the 

Fama-MacBeth approach: it can be estimated with the fixed effects (or "within") estimator, ensuring 

consistent statistical results even if the random effects assumption is violated. By contrast, the Fama-

MacBeth estimator is inconsistent if firm-specific fixed effects are present and correlated with the 

regressors (Vogelsang, 2012). After all, due to a degrees-of-freedom issue it is impossible to estimate a 

cross-sectional regression with a full set of ܰ firm fixed effects. By estimating a series of T 

(independent) cross-sectional regressions, the Fama-MacBeth procedure therefore does not allow to test 

for, or account for, firm fixed effects in the analysis.6   

In the empirical part of the paper, we illustrate the importance of accounting for firm fixed effects 

in empirical asset pricing tests. To this end, we study the return predictability of four firm characteristics 

that are widely used in recent asset pricing studies. The first characteristic we consider is gross profit 

scaled by the book value of total assets (henceforth referred to as "gross profitability"). Novy-Marx 

(2013) shows that gross profitability is a better predictor for the cross-section of average stock returns 

than alternative measures that are based on bottom line net income, cash flows, or dividends. 

Challenging the findings of Novy-Marx (2013), Ball, Gerakos, Linnainmaa, and Nikolaev (2015) 

propose an alternative profitability measure, operating profitability, defined as gross profit minus 

selling, general, and administrative expenses (excluding R&D expenditures) deflated by the book value 

of total assets. They find operating profitability to predict the cross-section of average stock returns even 

                                                      
5 Note that while Driscoll-Kraay standard errors have been shown to be robust to both cross-sectional as well as 
temporal dependence (Driscoll and Kraay, 1998; Hoechle, 2007), Fama-MacBeth standard errors are only robust 
to cross-sectional dependence but do not seem to correct for temporal dependence. See Petersen (2009) and Gow, 
Ormazabal, and Taylor (2010) for details on the statistical properties of Fama-MacBeth standard errors. 
6 Another concern of the Fama-MacBeth procedure is the errors-in-variables (EIV) bias resulting from the 
estimation error in the first pass, i.e., the estimation of the factor loadings. Jegadeesh, Noh, Pukthuanthong, Roll, 
and Wang (2017) propose an instrumental variables estimator to mitigate the EIV problem.    
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better than gross profitability. Hence, operating profitability is the second characteristic considered in 

our empirical analysis. The other two factors we consider are the stocks’ 52-week rolling beta and 52-

week rolling volatility. Ang, Hodrick, Xing, Zhang (2006, 2009) and Baker, Bradley, and Wurgler 

(2011), among others, show that stocks with high volatility deliver low risk-adjusted returns. Baker, 

Bradley, and Wurgler (2011) and Frazzini and Pedersen (2014) show that high-beta stocks deliver low 

risk-adjusted returns. 

When estimating our GPS-model with (weighted) pooled OLS, we find very similar results as those 

reported in prior research. Specifically, we find both gross profitability and operating profitability to be 

significantly positively related to the Fama-French three-factor model alpha. Moreover, and consistent 

with Baker, Bradley, and Wurgler (2011), Frazzini and Pedersen (2014), and others, we find alpha to 

decrease with both volatility and beta. When taking advantage of the GPS-model's capability to analyze 

which firm characteristics stand a multivariate test, we find that only operating profitability and the stock 

beta statistically significantly predict stock returns, while the coefficient estimates on gross profitability 

and volatility turn statistically insignificant. The finding that operating profitability statistically 

dominates gross profitability is consistent with Ball, Gerakos, Linnainmaa, and Nikolaev (2015). We 

next employ our GPS-model to perform a Hausman (1978) type specification test. The null hypothesis 

of the test assumes that the random effects assumption holds. With the single exception of gross 

profitability, such a "GPS-model specification test" rejects the null hypothesis of the random effects 

assumption at the 5% level or better for each individual characteristics-based factor as well as for 

combinations of factors. This implies that the coefficient estimates from estimating the GPS-model with 

pooled OLS are likely biased for all characteristics but gross profitability. Since the GPS-model 

estimated with (weighted) pooled OLS is able to exactly reproduce the results from all variants of 

portfolio sorts, this is bad news for the reliability of the statistical results (i.e., the "alpha" as well as the 

factor exposure estimates) from conventional portfolio sorts. 

In fact, when estimating our GPS-model with the fixed effects (or "within") estimator, that accounts 

for firm fixed effects, we obtain entirely different results. First, we find that operating profitability is no 

longer a statistically significant predictor of (risk-adjusted) stock returns. In contrast, and consistent with 

the result from the Hausman (1978) type specification test, gross profitability remains a significant 

predictor for stock returns even when firm fixed effects are accounted for. Thus, gross profitability turns 

out to be a more robust predictor for stock returns than operating profitability. This result contradicts 

the findings in Ball, Gerakos, Linnainmaa, and Nikolaev (2015), but supports the argument of Novy-

Marx (2013) that gross profit is a good predictor of stock returns since it is a cleaner measure of a firm's 

economic profitability than, say, bottom line net income. A similar result emerges when comparing the 

return predictability of volatility with that of the stock beta. While the stock beta turns out to be a 

remarkably robust predictor for (risk-adjusted) stock returns, volatility loses its predictive power for the 
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Fama-French three-factor model alpha when firm fixed effects are included in the analysis. As a result, 

only the low-beta part of the low-risk anomaly withstands tests that include firm fixed effects. 

In summary, our empirical analysis demonstrates that firm fixed effects may – even in case of 

apparently well-diversified portfolios – exert significant impact on the results of empirical asset pricing 

tests. While we focus on the portfolio sorts approach, the relevance to account for firm fixed effects is 

not limited to this specific methodology but applies to empirical asset pricing studies more generally. In 

fact, as discussed above, the Fama and MacBeth (1973) procedure very much like the portfolio sorts 

approach also yields biased statistical results when firm fixed effects are present and correlated with the 

explanatory variables (Vogelsang 2012).7 The GPS-model proposed in this research addresses this issue. 

Relying on a simple, firm-level regression framework, our methodology allows to test and account for 

firm fixed effects in the analysis. When the GPS-model is estimated with the fixed effects estimator, it 

ensures valid statistical inference in empirical asset pricing tests, even if the random effects assumption 

is violated. The GPS-model therefore offers an important advantage compared to both the portfolio sorts 

approach and the Fama and MacBeth (1973) procedure, which to date represent two major workhorse 

methodologies in empirical asset pricing research. 

The remainder of the paper is organized as follows. Section 2 describes the general model setup, 

economic interpretation, and statistical properties of our regression-based approach to analyzing asset 

returns. It also introduces a framework for analyzing the cross-sectional versus time-series predictability 

of asset returns and for testing the validity of the random effects assumption. Section 3 empirically 

validates the theoretical results from Section 2 and demonstrates the importance of accounting for firm 

fixed effects in empirical asset pricing tests. Section 4 concludes. 

 

2. A regression-based approach to analyzing asset returns 

In this section, we start by describing the general model setup, economic interpretation, and the statistical 

properties of our regression-based approach to analyzing asset returns. We then demonstrate the 

methodology's flexibility in handling multiple dimensions and continuous firm, fund, or investor 

characteristics. Next, we develop a framework for analyzing the cross-sectional versus time-series 

predictability of asset returns and show that such an analysis is closely related to Hausman's (1978) 

specification test. Specifically, we show that a firm characteristic that predicts the cross-section of stock 

                                                      
7 Our paper also contributes to the literature that critically reflects on applications of research methodologies, such 
as the portfolio sorts approach or the Fama and MacBeth (1973) procedure, in empirical asset pricing tests. Ferson, 
Sarkissian, und Simin (1999), for instance, criticize the common practice to treat spreads in characteristics-based 
portfolio returns as if they were risk factors. Related to this, also see Lewellen, Nagel, and Shanken (2010) and Lo 
and MacKinlay (1990). 
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returns well only qualifies as a good predictor for asset returns if it also has predictive power for the 

time-series of returns. 

 

2.1 Model setup 

We propose to analyze the cross-section of stock returns using the following firm-level regression 

model, and to draw statistical inference based on Driscoll and Kraay (1998) standard errors that are 

robust to heteroskedasticity and general forms of cross-sectional and temporal dependence: 

௜௧ݎ ൌ ሺࢠ௜௧	⨂	࢞௧ሻ	ࣂ ൅ ܿ௜ ൅ ݅)              ௜௧ߥ ൌ 1,… ݐ    ,ܰ, ൌ 1, … , ܶ) (1) 

The dependent variable ݎ௜௧ is the period ݐ (excess) return of firm ݅. Vector ࢠ௜௧ ൌ ሾ1			ݖଶ,௜௧  ெ,௜௧ሿݖ		…		

comprises a constant and a set of firm characteristics ݖ௠,௜௧ (݉ ൌ 2,…  which may vary across both (ܯ,

firms and time. Vector ࢞௧ ൌ ሾ1				ݔଵ௧  ௄௧ሿ consists of a constant and a series of market-level factorݔ		…		

variables ݔ௞,௧ (݇ ൌ 1,… ,  which only vary over time but not across firms. Popular examples of (ܭ

variables in vector ࢞௧ are the market excess return, the Fama and French (1993) size and value factors, 

or the Carhart (1997) momentum factor. With ⨂ denoting the Kronecker product, regression (1) 

comprises three types of explanatory variables: individual firm characteristics, market-level factor 

variables, and all interactions between firm characteristics and factor variables. Fully interacted 

regression model (1) thus consists of ܯ ൈ ሺܭ ൅ 1ሻ explanatory variables whose regression coefficients 

are stored in coefficient vector ࣂ. Finally, ܿ௜  is an unobserved firm-specific effect with ܧሺܿ௜ሻ ൌ 0, and 

 .௜௧ is the regression disturbance that is assumed to be strictly exogenous (i.eߥ

,ܿ௜	|	௜௧ݒሾܧ ሺࢠ௜ଵ	⨂	࢞ଵሻ, … , ሺࢠ௜்	⨂	்࢞ሻሿ ൌ 0 for all ݅ and ݐ). 

If there is no unobserved heterogeneity across firms (i.e., if ܿ௜ ൌ 0 for all firms) or if the firm-

specific effects ܿ௜ are uncorrelated with the regressors (i.e., ܧሾܿ௜|ሺࢠ௜௧	⨂	࢞௧ሻሿ ൌ 0), then regression 

model (1) can be estimated consistently with (weighted) pooled OLS estimation.8 As we detail in section 

2.2 below, regression (1) – with firm-specific effects ܿ௜  excluded – can be specified such that it exactly 

reproduces the results from all sorts of conventional portfolio sorts. We therefore refer to regression (1) 

as the “Generalized Portfolio Sorts” approach or, in short, the GPS-model.  

Unfortunately, the random effects assumption ܧሾܿ௜|ሺࢠ௜௧	⨂	࢞௧ሻሿ ൌ 0 cannot be generally justified. 

If unobserved heterogeneity across firms is present, it is often more convincing to allow the firm-specific 

effects to be correlated with the explanatory variables. In the case of ܧሾܿ௜|ሺࢠ௜௧	⨂	࢞௧ሻሿ ് 0, however, the 

                                                      
8 Note that the pooled OLS estimator is consistent under both the constant coefficients model as well as under the 
random effects (RE) model. However, under the RE model pooled OLS is inefficient compared to the FGLS 
random effects estimator. For details, see Cameron and Trivedi (2005, chapter 21). 
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pooled OLS estimator suffers from an omitted variables bias and pooled OLS estimation of regression 

(1) produces inconsistent results.  

The fixed effects (FE) model relaxes the random effects (RE) assumption underlying the pooled 

OLS estimator. Here, the firm-specific effects (ܿ௜) are treated as unobservable random variables which 

may or may not be correlated with the regressors ሺࢠ௜௧	⨂	࢞௧ሻ. Therefore, the fixed effects (or within) 

estimator provides a means for consistently estimating GPS-model (1) even if the "firm-fixed effects" 

(ܿ௜) are correlated with the explanatory variables. Hence, if non-zero correlation between the firm-

specific effects and the explanatory variables cannot be ruled out, GPS-model (1) should be estimated 

with the fixed effects estimator rather than with pooled OLS. In section 2.3 below, we discuss a Hausman 

(1978) type specification test for analyzing whether the RE assumption is likely to hold for a given 

specification of GPS-model (1).  

 

2.2 GPS-model vs. portfolio sorts 

Popularized by Fama and French's (1993, 1996) influential research, the portfolio sorts methodology 

became a major workhorse in empirical finance. The method offers an intuitive economic interpretation 

and ensures robust statistical inference even in the presence of cross-sectional and temporal dependence 

(Lyon, Barber, and Tsai, 1999). In this section, we demonstrate that GPS-model (1) is able to reproduce 

the results of all variants of conventional portfolio sorts. The GPS-model proposed in this research 

therefore has a sound theoretical and statistical foundation and the coefficient estimates of regression 

(1) offer a straightforward economic interpretation. 

 

2.2.1 Formal exposition of the portfolio sorts approach 

The portfolio sorts methodology involves two steps. In the first step, for each period ݐ the portfolio 

(excess) return ݎ௣௧ is computed for a group of firms ݅ as follows: 

௣௧ݎ ൌ ∑ ௜௧ݎ௜௧ݓ
ே೟
௜ୀଵ   (2) 

݅) ݅ portfolio weight of firm ݐ ௜௧ denotes the beginning of periodݓ ൌ 1,… , ௧ܰሻ, and ݎ௜௧ refers to the firm's 

stock (excess) return in period ݐ. The second step of the portfolio sorts approach then evaluates the (risk-

adjusted) performance of portfolio ݌ by aid of a linear ܭ-factor time-series regression with ݎ௣௧ from (2) 

as the dependent variable: 

௣௧ݎ ൌ ଴ߚ ൅ .	ଵ௧൅ݔଵߚ . . ൅ߚ௄ݔ௄௧ ൅  ௧ (3)ߝ
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In most applications, variables ݔ௞௧ (݇ ൌ 1,… ,  ,are specified such that (3) represents a Jensen (1968) (ܭ

Fama and French (1993, 2015), or Carhart (1997) type factor model. To evaluate whether the risk-

adjusted performance of portfolio ݌ is abnormally high or low, the coefficient estimate for the intercept 

term (ߚመ଴), which is often referred to as the "alpha", and its statistical significance are considered. 

 

2.2.2 Evaluating the performance of a single portfolio with the GPS-model 

By estimating firm-level GPS-model (1) with pooled OLS, we can reproduce the results of time-series 

regression (3). To this end, we specify ࢠ௜௧ ൌ ሾ	1	ሿ and ࢞௧ ൌ ሾ	1			ݔଵ௧		. .  ௄௧ሿ to obtain the followingݔ			.

regression model:9 

௜௧ݎ ൌ ሺࢠ௜௧	⨂	࢞௧ሻ	ࣂ ൅ ௜௧ߥ ൌ ሺሾ	1	ሿ	⨂	ሾ	1			ݔଵ௧ ࣂሿሻ	௄௧ݔ			…		 ൅ 	௜௧ߥ

ൌ ଴ߠ	 ൅	ߠଵ	ݔଵ௧ ൅	…	൅	ߠ௄	ݔ௄௧ ൅  ௜௧ߥ
(4) 

For ease of mathematical tractability, but without loss of generality, we limit our formal analysis to the 

case of a balanced panel with N firms, T time periods, and portfolio weights ݓ௜௧ ൌ 1/ܰ (i.e., all firms 

are equally weighted).10 Under these assumptions, the following result holds true: 

Proposition 1 (Single Portfolio) 

 Part A – Coefficient estimates. Estimating linear regression (4) with pooled OLS yields identical 

coefficient estimates as estimating time-series regression (3) with OLS, i.e., ߠ෠௞ ≡ ݇	∀)  መ௞ߚ ൌ

0, 1, … ,  .(ܭ

 Part B – Standard errors. For a given lag length H, Driscoll and Kraay (1998) standard errors for 

coefficient estimates ߠ෠௞ in pooled OLS regression (4) are identical to Newey and West (1987) 

standard errors for coefficient estimates ߚመ௞ in time-series regression (3), i.e., SE(ߠ෠௞ሻ ≡ SEሺߚመ௞ሻ   

(∀	݇ ൌ 0, 1, … ,  .(ܭ

Proof: See Appendix A.1. 

Part A of Proposition 1 is an application of a well-known property from portfolio theory which says 

that the portfolio beta is equal to the weighted sum of individual asset betas. Part B of Proposition 1 is 

intuitive since the Driscoll and Kraay (1998, p. 552) “covariance matrix estimator is precisely the 

                                                      
9 For consistency with the portfolio sorts approach, throughout Section 2.2, we assume ܿ௜ ൌ 0 (for all ݅) and omit 
the firm-specific effects ܿ௜ from the analysis. This allows us to estimate GPS-model (1) with (weighted) pooled 
OLS. 
10 In our empirical analysis, we also consider unbalanced panels (i.e., time-varying cross-sections) and value 
weighted portfolios. In Section 3, we demonstrate that our theoretical results also hold in this more general setup. 
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standard Newey and West (1987) heteroskedasticity and serial correlation consistent covariance matrix 

estimator, applied to the sequence of cross-sectional averages” of the moment conditions.  

 

2.2.3 Using the GPS-model to obtain portfolio sorts 

When applying the portfolio sorts approach, the analysis usually is not restricted to a single group of 

firms as discussed in Section 2.2.2 above. Rather, firms are sorted into a series of five, ten, or more 

portfolios with predefined properties. In many cases, the portfolios are constructed on the basis of a 

single firm characteristic such as, for example, the book-to-market ratio. Occasionally, researchers also 

form double (or higher dimensional) sorts where portfolios are constructed based on multiple firm 

characteristics such as the book-to-market ratio and firm size. For each portfolio, the researcher then 

independently evaluates the risk-adjusted performance by aid of a Jensen (1968), Fama and French 

(1993, 2015), or Carhart (1997) type time-series regression as described in Section 2.2.1 above. 

Formally, in this more general setup, the first step of the portfolio sorts approach groups the firms 

into characteristics-based portfolios ݌ for which the average month ݐ excess return, ݎ௣௧, is equal to 

௣௧ݎ ൌ ∑ ௜௧ݓ
ሺ௣ሻݖ௜௧

ሺ௣ሻݎ௜௧
ே೟
௜ୀଵ   (5) 

As before, ݎ௜௧ denotes the period ݐ excess return of firm ݅, and ݓ௜௧
ሺ௣ሻ is the firm's beginning-of-period ݐ 

weight in portfolio ݌ (with ݌ ൌ 1,… , ௜௧ݖ  .(ܲ
ሺ௣ሻ is a dummy variable which is equal to one if firm ݅  belongs 

to portfolio ݌, and zero otherwise. For each portfolio ݌, the weights sum up to ∑ ௜௧ݓ
ሺ௣ሻݖ௜௧

ሺ௣ሻே೟
௜ୀଵ ൌ 1, and 

the period ݐ cross-section comprises ௧ܰ ൌ ∑ ∑ ௜௧ݖ
ሺ௣ሻே೟

௜ୀଵ
௉
௣ୀଵ  firms. 

The second step of the portfolio sorts approach then evaluates the (risk-adjusted) performance ߚ௣,଴ 

of portfolio ݌ by aid of a linear ܭ-factor time-series regression with ݎ௣௧ from (5) as the dependent 

variable: 

௣௧ݎ ൌ ௣,଴ߚ ൅ .	ଵ௧൅ݔ௣,ଵߚ . . ൅ߚ௣,௄ݔ௄௧ ൅  ௣௧ (6)ߝ

If the coefficient estimate for ߚ௣,଴ is positive (negative) and statistically significantly different from 

zero, then portfolio ݌ has a positive (negative) "alpha" and generates, on average, an abnormally good 

(poor) return.  

With GPS-model (1) it is possible to reproduce the results from time-series regression (6) for each 

and every portfolio ݌ (with ݌ ൌ 1,… , ܲ) by estimating a single firm-level regression with pooled OLS. 

As before, we specify ࢞௧ ൌ ሾ	1				ݔଵ௧		. .  ௜௧, we recognize that the analysisࢠ ሿ. When forming vector	௄௧ݔ			.
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needs to include a full set of ܲ portfolio dummies ݖ௜௧
ሺ௣ሻ. To avoid the dummy variables trap, we omit the 

constant from vector ࢠ௜௧ and, hence, set ࢠ௜௧	 ൌ ሾ	ݖ௜௧
ሺଵሻ			ݖ௜௧

ሺଶሻ		. . ௜௧ݖ			.
ሺ௉ሻሿ to obtain  

௜௧ݎ ൌ ቀቂ	ݖ௜௧
ሺଵሻ			ݖ௜௧

ሺଶሻ ௜௧ݖ			…		
ሺ௉ሻቃ ⊗ ሾ	1			ݔଵ௧ ሿቁ	௄௧ݔ			…		 ࣂ ൅  ௜௧ߥ

ൌ	 ௜௧ݖ	ଵ,଴ߠ		
ሺଵሻ 					൅ ௜௧ݖଵ௧ݔ	ଵ,ଵߠ	

ሺଵሻ 							൅ 							…							൅ ௜௧ݖ௄௧ݔ	ଵ,௄ߠ		
ሺଵሻ	

൅				ߠଶ,଴	ݖ௜௧
ሺଶሻ 					൅ ௜௧ݖଵ௧ݔ	ଶ,ଵߠ	

ሺଶሻ 							൅ 							…							൅ ௜௧ݖ௄௧ݔ	ଶ,௄ߠ		
ሺଶሻ			

൅			…	

൅				ߠ௉,଴	ݖ௜௧
ሺ௉ሻ 					൅ ௜௧ݖଵ௧ݔ	௉,ଵߠ	

ሺ௉ሻ 							൅ 							…							൅ ௜௧ݖ௄௧ݔ	௉,௄ߠ		
ሺ௉ሻ			൅					ߥ௜௧ 

(7) 

Under the assumptions of Proposition 1, and provided that portfolios ݌ ൌ 1,… , ܲ are constant over time 

(i.e., ݖ௜௧
ሺ௣ሻ ൌ ௜ݖ

ሺ௣ሻ for all ݐ), the following result holds true:11 

Proposition 2 (Portfolio sorts) 

 Part A – Coefficient estimates. For each portfolio ݌, pooled OLS coefficient estimates for ߠ௣,௞ in 

GPS-model (7) coincide with OLS coefficient estimates for ߚ௣,௞ from time-series regression (6), i.e., 

෠௣,௞ߠ ≡ ݇	∀ )   መ௣,௞ߚ ൌ 0, 1, … , ݌  and  ܭ ൌ 1,… , ܲ). 

 Part B – Standard errors. For a given lag length H, Driscoll and Kraay (1998) standard errors for 

coefficient estimates ߠ෠௣,௞ in GPS-model (7) coincide with Newey and West (1987) standard errors 

of portfolio ݌'s coefficient estimates ߚመ௣,௞ from time-series regression (6), i.e., SE(ߠ෠௣,௞ሻ ≡ SEሺߚመ௣,௞ሻ   

( ∀	݇ ൌ 0, 1, … , ݌  and  ܭ ൌ 1,… , ܲ). 

Proof: See Appendix A.2. 

 

According to Proposition 2, the coefficient estimates of GPS-model (7) have a straightforward 

economic interpretation: coefficient estimate ߠ෠௣,଴ (݌ ൌ 1,… , ܲ) measures the risk-adjusted performance 

(or "alpha") of portfolio ݌. Coefficient estimate ߠ෠௣,௞ (with ݇ ൌ 1,… ,  s’݌ represents portfolio (ܭ

exposure versus factor ݇. Note that GPS-model (7) reproduces the results of a set of ܲ  independent time-

series regressions (6) by aid of a single linear regression on the firm level. As a result, a standard Wald 

test can be applied to test whether the risk-adjusted performance of the ܲ portfolios is jointly equal to 

zero: 

                                                      
11 For Proposition 2 to hold in the general case of an unbalanced panel with time-varying portfolios, GPS-model 
(7) needs to be estimated with weighted pooled OLS. Details on the weighting scheme reproducing the results of 
portfolio sorts with value-weighted portfolios are provided in Section 3.1.  
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H0:	ߠଵ,଴ ൌ ଶ,଴ߠ ൌ	. . . ൌ ௉,଴ߠ ൌ 0									vs.       H1: 	ߠ௣,଴ ് 0		for at least one	݌	in	1, … , ܲ (8) 

The multiple hypothesis test in (8) offers an alternative to the widely applied Gibbons, Ross, and 

Shanken (1989) or “GRS” test, a finite-sample F-test commonly used to test the joint significance of the 

“alphas” across a set of (e.g., decile) portfolios. Estimating GPS-model (7) with Driscoll and Kraay 

(1998) standard errors ensures that the Wald test in (8) allows for valid statistical inference if the error 

terms (ߥ௜௧) of the regression are heteroskedastic, autocorrelated, and cross-sectionally dependent. 

 

2.2.4 Performance differences between two portfolios 

The portfolio sorts approach is widely used to test whether the risk-adjusted performance (or, "alpha") 

of the top group portfolio differs statistically significantly from that of the bottom group portfolio. When 

investigating whether, say, firms with top-quintile book-to-market ratios (so-called "value stocks") 

outperform firms with bottom-quintile book-to-market ratios (so-called "growth stocks"), the first step 

of the analysis involves computing average month ݐ excess returns for both the top and bottom group 

portfolios as follows: 

௣,௧ݎ ൌ ∑ ௜௧ݓ
ሺ௣ሻݖ௜௧

ሺ௣ሻݎ௜௧
ே೟
௜ୀଵ   (9) 

As before, ݎ௜௧ is firm ݅'s period ݐ excess return and ݖ௜௧
ሺ௣ሻ is a dummy variable with value one if firm ݅ 

belongs to group ݌ (with ݌ ൌ ݄݄݅݃, -and zero otherwise.12 For both portfolios the beginning-of ,(ݓ݋݈

period ݐ portfolio weights ݓ௜௧
ሺ௣ሻ sum up to ∑ ௜௧ݓ

ሺ௣ሻݖ௜௧
ሺ௣ሻே೟

௜ୀଵ ൌ 1, and the cross-section considered in the 

analysis comprises a total of ௧ܰ
∗ ൌ ∑ ௜௧ݖ

ሺ௟௢௪ሻ ൅ ∑ ௜௧ݖ
ሺ௛௜௚௛ሻே೟

௜ୀଵ
ே೟
௜ୀଵ  firms. The period ݐ return difference 

between the two portfolios is thus equal to 

Δݎ௣,௧ ൌ ௛௜௚௛,௧ݎ െ  ௟௢௪,௧  (10)ݎ

The second step of the portfolio sorts approach then evaluates the risk-adjusted performance of zero 

investment portfolio (10) based on a ܭ-factor time-series regression as follows: 

Δݎ௣,௧ ൌ ୼଴ߚ ൅ .	ଵ௧൅ݔ୼ଵߚ . . ൅ߚ୼௄ݔ௄௧ ൅  ୼௧ (11)ߝ

If the coefficient estimate for ߚ୼଴ is positive (negative) and significantly different from zero, then 

portfolio "݄݄݅݃" is considered to outperform (underperform) portfolio "݈ݓ݋".  

                                                      
12 For simplicity but without loss of generality, we label the portfolios as “high” and “low” here. However, 
subscript ݌ could also refer to “IPO firms” and “mature firms”, “firms with a female CEO” and “firms with a male 
CEO”, or any other set of two portfolios that are meant to be compared, respectively. 
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With GPS-model (1), again estimated with pooled OLS, it is possible to reproduce the results of 

time-series regression (11). For this purpose, we set  ࢠ௜௧	 ൌ ሾ	1			ݖ௜௧
ሺ௛௜௚௛ሻሿ and ࢞௧ ൌ ሾ	1			ݔଵ௧			. .  ሿ to	௄௧ݔ			.

obtain the following firm-level regression model: 

௜௧ݎ ൌ ሺࢠ௜௧	⨂	࢞௧ሻ	ࣂ ൅ 	௜௧ߥ

ൌ 	 	௟௢௪,଴ߠ 										൅ .							൅										ଵ௧ݔ	௟௢௪,ଵߠ	 . .							൅		ߠ௟௢௪,௄	ݔ௄௧	

൅		ߠ୼଴	ݖ௜௧
ሺ௛௜௚௛ሻ 	൅ ௜௧ݖଵ௧ݔ	୼ଵߠ	

ሺ௛௜௚௛ሻ		൅							. . .							൅		ߠ୼௄	ݔ௄௧ݖ௜௧
ሺ௛௜௚௛ሻ 		൅  ௜௧ߥ			

(12) 

Under the assumptions of Proposition 1, and provided that portfolios "݄݄݅݃"  and "݈ݓ݋" are constant 

over time, the following result holds true:13 

Proposition 3 (Performance difference between two groups) 

Part A – Coefficient estimates.  

- Pooled OLS coefficient estimates for ߠ୼୩ in GPS-model (12) are identical to OLS coefficient 

estimates for ߚ୼௞ in time-series regression (11), i.e., ߠ෠୼௞ ≡ ݇	∀) መ୼௞ߚ ൌ 0, 1, … ,  .ሻܭ

- Pooled OLS coefficient estimates for ߠ௟௢௪,௞ in GPS-model (12) are identical to OLS coefficient 

estimates for ߚ௟௢௪,௞ in time-series regression (6) for portfolio p="low", i.e., ߠ෠௟௢௪,௞ ≡ ݇	∀) መ௟௢௪,௞ߚ ൌ

0, 1, … ,  .(ܭ

Part B – Standard errors.  

- For a given lag length H, Driscoll and Kraay (1998) standard errors for coefficient estimates ߠ෠୼௞ 

in GPS-model (12) are identical to Newey and West (1987) standard errors for coefficient estimates 

݇	∀ ) መ୼௞ሻߚSEሺ	≡	෠௱௞ሻߠሺܧܵ ,.መ୼௞ of time-series regression (11), i.eߚ ൌ 0, 1, … ,    .(ܭ

- For a given lag length H, Driscoll and Kraay (1998) standard errors for coefficient estimates ߠ෠௟௢௪,௞ 

in GPS-model (12) are identical to Newey and West (1987) standard errors for coefficient estimates 

෠௟௢௪,௞ሻߠ)መ௟௢௪,௞ of time-series regression (6) for portfolio p="low", i.e., SEߚ ≡ SEሺߚመ௟௢௪,௞ሻ  (∀	݇ ൌ

0, 1, … ,  .(ܭ

Proof: See Appendix A.3. 

Proposition 3 shows how to specify the GPS-model when analyzing the relative performance of 

two portfolios. This result can be further generalized to the comparison of a certain base portfolio's (e.g., 

portfolio ݌ ൌ 1) performance with the performance of each other (e.g., quintile or decile) portfolio. 

                                                      
13 For Proposition 3 to hold in the general case of an unbalanced panel with time-varying portfolios, regression 
(12) has to be estimated with weighted pooled OLS. See Section 3.3 for details. 
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Assuming that portfolio ݌ ൌ 1 is the base portfolio, we set ࢠ௜௧	 ൌ ሾ	1				ݖ௜௧
ሺଶሻ		. . ௜௧ݖ			.

ሺ௉ሻሿ and ࢞௧ ൌ

ሾ	1			ݔଵ௧		. .  :ሿ to obtain the following firm-level regression	௄௧ݔ			.

௜௧ݎ ൌ ሺࢠ௜௧	⨂	࢞௧ሻ	ࣂ ൅ 	௜௧ߥ

ൌ 	 	ଵ,଴ߠ 																										൅ ଵ௧ݔ	ଵ,ଵߠ	 																								൅ 					…					൅ 	௄௧ݔ	ଵ,௄ߠ		

൅		ߠ୼ሺଶ→ଵሻ,଴	ݖ௜௧
ሺ௛௜௚௛ሻ 		൅ ௜௧ݖଵ௧ݔ	୼ሺଶ→ଵሻ,ଵߠ

ሺ௛௜௚௛ሻ 		൅ 					…					൅ ௜௧ݖ௄௧ݔ	୼ሺଶ→ଵሻ,୏ߠ		
ሺ௛௜௚௛ሻ		

൅			…	

൅				ߠ୼ሺ௉→ଵሻ,଴	ݖ௜௧
ሺ௉ሻ 					൅ ௜௧ݖଵ௧ݔ	୼ሺ௉→ଵሻ,ଵߠ	

ሺ௉ሻ 						൅ 					…						൅ ௜௧ݖ௄௧ݔ	୼ሺ௉→ଵሻ,௄ߠ		
ሺ௉ሻ			൅					ߥ௜௧	 

(13) 

A direct consequence of Propositions 2 and 3 is as follows: 

Corollary 1 (Relative performance versus a base portfolio) 

- The pooled OLS coefficient estimate for ߠ୼ሺ௣→ଵሻ,௞ in GPS-model (13) coincides with the OLS 

coefficient estimate for ߚ୼௞ in time-series regression (11) where portfolio ݌ (with ݌ ൌ 2,… , ܲ) is 

compared with portfolio 1, i.e., ߠ෠୼ሺ௣→ଵሻ,௞ ≡ ݇	∀) መ୼௞ߚ ൌ 0, 1, … ,  .ሻܭ

- For a given lag length H, the Driscoll and Kraay (1998) standard error for coefficient estimate 

 ෠୼ሺ௣→ଵሻ,௞ in GPS-model (13) coincides with the Newey and West (1987) standard error forߠ

coefficient estimate ߚመ୼௞ of time-series regression (11) where portfolio ݌ (with ݌ ൌ 2,… , ܲ) is 

compared with portfolio 1, i.e., ܵܧሺߠ෠୼ሺ௣→ଵሻ,௞ሻ	≡	SEሺߚመ୼௞ሻ ( ∀	݇ ൌ 0, 1, … ,  .(ܭ

 ∎ 

 

2.3 Applications of the GPS-model beyond the scope of traditional portfolio sorts 

Conventional portfolio sorts have a series of drawbacks. First, they are generally limited to the analysis 

of a small number of firm characteristics (Cochrane, 2011). With the portfolio sorts approach it is 

therefore challenging to perform robustness checks or to test for competing hypotheses. Second, it is 

difficult to assess the functional relationship across multiple portfolios. Researchers applying the 

portfolio sorts approach therefore often focus on a comparison of the top and bottom group portfolios 

for simplicity (Patton and Timmermann, 2010). Third, the results in Section 2.2 show that the portfolio 

sorts approach crucially depends on the random effects (RE) assumption to hold. This directly follows 

from the fact that GPS-model (1) needs to be estimated with pooled OLS (which is only consistent under 

the RE assumption) to replicate the results from portfolio sorts. Therefore, statistical results from 

portfolio sorts are biased when firm-specific effects are present and correlated with the explanatory 

variables.  
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The GPS-model proposed in this research has no such limitations and, hence, facilitates the analysis 

of research questions that are beyond the scope of conventional portfolio sorts. We now consider a series 

of such applications. Our analysis starts by discussing how to interpret the results from GPS-models that 

include multivariate and continuous firm characteristics. Next, we apply GPS-model (1) to study the 

cross-section versus time-series predictability of stock returns, thereby demonstrating that such an 

analysis is closely related to performing a Hausman (1978) type specification test. Finally, we discuss 

consistent estimation of GPS-models in the presence of firm-specific effects, and we derive a statistical 

test for analyzing whether the results from portfolio sorts are valid.  

 

2.3.1 Multivariate and continuous firm characteristics 

GPS-model (1) can be specified such that vector ࢠ௜௧ contains multivariate binary or continuous firm 

characteristics. As a result, the GPS-model offers a natural solution to the “multidimensional challenge” 

of conventional portfolio sorts (Cochrane, 2011), and it provides a simple framework for analyzing 

formal tests of competing hypothesis as well as for implementing robustness checks.  

Notwithstanding this flexibility, the GPS-model retains a clear-cut economic interpretation even if 

multiple firm characteristics are included in the analysis. To demonstrate this, we consider the case of a 

CAPM factor structure and two firm characteristics.14 Denoting the period ݐ market return in excess of 

the risk-free return by ݎ௠௧, we specify ࢞௧ ൌ ሾ	1				ݎ௠௧ሿ and ࢠ௜௧	 ൌ  ൧. Absent firm-specific	ଶ,௜௧ݖ			ଵ,௜௧ݖ				1	ൣ

effects, we thus obtain the following GPS-model: 

௜௧ݎ ൌ ሺࢠ௜௧	⨂	࢞௧ሻ	ࣂ ൅ ௜௧ߥ ൌ ൫ൣ	1					ݖଵ,௜௧					ݖଶ,௜௧	൧ ⊗ ሾ	1					ݎ௠௧	ሿ൯	ࣂ൅ߥ௜௧	

ൌ ൫ߠఈ,଴ 	൅ ଵ,௜௧ݖఈ,ଵߠ	 	൅	ߠఈ,ଶݖଶ,௜௧൯ 		൅ 			 ൫ߠఉ,଴ ൅	ߠఉ,ଵݖଵ,௜௧ 	൅ ଶ,௜௧൯ݖఉ,ଶߠ	 ൈ ௠௧ݎ 	൅ 	௜௧ߥ

ൌ ௜௧ߙ 	൅ ௜௧ߚ	 ൈ	ݎ௠௧	൅		ߥ௜௧ 

(14) 

where ߙ௜௧ ൌ ఈ,଴ߠ	 ൅ ଵ,௜௧ݖఈ,ଵߠ 	൅ ௜௧ߚ ଶ,௜௧ andݖఈ,ଶߠ ൌ ఉ,଴ߠ ൅ ଵ,௜௧ݖఉ,ଵߠ 	൅  ଶ,௜௧. The last two rows inݖఉ,ଶߠ

(14) show that the GPS-model linearly decomposes the risk-adjusted performance (ߙ௜௧) and the factor 

exposure (ߚ௜௧) with respect to the firm characteristics in ࢠ௜௧. The Jensen alpha (ߙ௜௧) and beta (ߚ௜௧ሻ in 

GPS-model (14) therefore represent conditional measures. A simple example can illustrate this. Assume 

that an estimation of regression (14) yields the following result: 

 

                                                      
14 Note that the specification of vectors ࢞௧ and ࢠ௜௧	can easily be extended to comprise multiple factor variables or 
firm characteristics without changing the logic of how to interpret the results from estimating a GPS-model. 
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௜௧ݎ ൌ ො௜௧ߙ 	൅ መ௜௧ߚ	 ൈ ௠௧ݎ	 ൅ 	௜௧ߥ

ൌ ሺ0.2 ൅ ଵݖ0.5 െ ଶሻݖ0.8 	൅ 	ሺ0.8 െ ଵݖ0.3 ൅ ଶሻݖ0.1 ൈ ௠௧ݎ ൅  ௜௧ߥ

In this particular case, the Jensen alpha loads positively on firm characteristic ݖଵ and negatively on ݖଶ 

such that the higher the value of ݖଵ and the lower the value of ݖଶ the higher is ߙො௜௧. The (conditional) 

Jensen alpha for company A with ݖଵ ൌ 1 and ݖଶ ൌ 0.5 is equal to ߙො஺ ൌ 	0.2 ൅ 0.5 ൈ 1 െ 0.8 ൈ 0.5 ൌ

0.3. The alpha for firm B, with ݖଵ ൌ െ0.2 and ݖଶ ൌ 0.5, is ߙො஻ ൌ 	0.2 ൅ 0.5 ൈ ሺെ0.2ሻ െ 0.8 ൈ 0.5 ൌ

െ0.3. The (conditional) beta for firm ݅ is derived analogously.  

When firm-specific effects are available and correlated with the firm characteristics in vector ࢠ௜௧, 

then (weighted) pooled OLS estimation produces biased, invalid statistical results. In this case, GPS-

model (14) needs to be estimated with firm fixed effects (i.e. with the fixed effects estimator) to allow 

for valid statistical inference. This, however, does not affect the interpretation of the GPS-model results. 

To see this, note that the analysis in GPS-model (14) focuses on slope coefficients ߠఈ,ଵ and ߠఈ,ଶ which 

measure by how much the Jensen alpha changes if firm characteristics ݖଵ,௜௧ and ݖଶ,௜௧ change by one unit. 

By contrast, the coefficient estimate for ߠఈ,଴ depends on the sample means of ݖଵ,௜௧ and ݖଶ,௜௧ and, hence, 

is of minor interest. When regression (14) is estimated with firm fixed effects, the intercept term cannot 

be identified and "drops out" of the regression as part of the within-transformation. However, the slope 

coefficients, which matter for the analysis, are consistently estimated. Therefore, interpretation of GPS-

model coefficients remains the same, irrespective of whether the model is estimated with or without 

firm fixed effects. 

 

2.3.2 Time-series versus cross-section predictability 

In empirical asset pricing, an important question concerns the time-series versus cross-sectional 

predictability of asset returns (Cochrane, 2011). We now apply GPS-model (1) to formally test how well 

firm characteristic ݖ௜௧ predicts the time-series of asset returns as compared to the cross-section of returns. 

For this purpose, we start by decomposing firm characteristic ݖ௜௧ as 

௜௧ݖ ൌ ௜̅ݖ ൅  ௜௧ (15)ݖ̃

where ݖ௜̅ ൌ ௜ܶ
ିଵ ∑ ௜௧ݖ

்೔
௧ୀଵ  refers to firm ݅’s time-series average of characteristic ݖ௜௧, and ̃ݖ௜௧ ൌ ௜௧ݖ െ  ௜̅ݖ

quantifies by how much the firm's period ݐ value of ݖ௜௧ deviates from ݖ௜̅. Econometrically speaking, ̃ݖ௜௧ 

represents the within-transformed (or time-series demeaned) version of ݖ௜௧. Based on (15), we therefore 

set vector ࢠ௜௧ to ࢠ௜௧ ൌ ሾ1					ݖ௜̅  ௧, we account for the fact that in the࢞ ௜௧ሿ. When specifying vectorݖ̃					
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application at hand we focus on analyzing asset returns (rather than risk-adjusted performance) and, 

hence, set ࢞௧ ൌ ሾ1ሿ. Assuming ܿ௜ ൌ 0 for all ݅, we obtain the following GPS-model: 

௜௧ݎ ൌ ሺࢠ௜௧	⨂	࢞௧ሻ	ࣂ ൅ ௜௧ߥ ൌ ሺሾ1					ݖ௜̅					̃ݖ௜௧ሿ ⊗ ሾ1ሿሻ	ࣂ ൅ ௜௧ߥ ൌ ଴ߠ	 ൅ ௜̅ݖ஻ߠ ൅ ௜௧ݖௐ̃ߠ ൅  ௜௧ (16)ݒ

Note that in regression (16), ߠ஻ measures pure cross-sectional return predictability of firm characteristic 

 ௐ quantifies the characteristic's time-series return predictability. In fact, GPS-model (16)ߠ ௜௧ whereasݖ

is structured as Neuhaus and Kalbfleisch's (1998) variant of Mundlak's (1978) approach. Pooled OLS 

estimation of regression (16) thus yields the between estimate for coefficient ߠ஻ and the within (or fixed 

effects) estimate for coefficient ߠ෠ௐ.15 GPS-model (16) thus constitutes a "hybrid" model that combines 

the between (BE) estimator with the fixed effects (FE) estimator in a single regression (Allison, 2009). 

For our purposes, this setup is useful as it allows us to formally test whether the time-series predictability 

  .(෠஻ߠ) ௜௧ equals the cross-sectional predictabilityݖ of firm characteristic (෠ௐߠ)

Testing for ߠ෠஻ ൌ  ෠ௐ is important for at least two reasons. First, referring to the managed-portfolioߠ

theorem, Cochrane (2011, p. 1062) argues that "time-series forecasting regressions, cross-sectional 

regressions, and portfolio mean returns are really the same thing. […] An instrument ݖ௧ in a time-series 

test 0 ൌ ሾሺ݉௧ାଵܴ௧ାଵܧ
௘ ሻݖ௧ሿ corresponds to a managed-portfolio return ܴ௧ାଵ

௘  ௧ in an unconditional testݖ

0 ൌ ሾ݉௧ାଵሺܴ௧ାଵܧ
௘ ෠஻ߠ ௧ሻሿ." As a result, testing forݖ ൌ  ෠ௐ is of economic relevance. Second, the test isߠ

important from an econometric point of view. If the hypothesis of ߠ෠஻ ൌ  ෠ௐ is rejected, then theߠ

difference between the within estimate (ߠ෠ௐ) and the between estimate (ߠ෠஻) is statistically significant 

such that the random effects (RE) assumption cannot be assumed to hold. GPS-model (16) therefore 

provides an alternative to Hausman's (1978) specification test. With ߠ෠஻ ്  ௜௧ is likely toݖ ෠ௐ, variableߠ

be correlated with other firm characteristics not included in the regression. As a result, rejection of 

hypothesis ߠ෠஻ ൌ ௜௧ݎ ෠ௐ implies that pooled OLS estimation of GPS-modelߠ ൌ ሺሾ1			ݖ௜௧ሿ ⊗ ሾ1ሿሻ	ࣂ ൅

௜௧ߥ ൌ ଴ߠ	 ൅ ௜௧ݖଵߠ ൅  ௜௧ suffers from an omitted variables bias and, hence, produces biased coefficientݒ

estimates for ߠ଴ and ߠଵ. Analyzing return predictability of firm characteristic ݖ௜௧ in this case needs to 

account for firm fixed effects in order to ensure valid statistical inference. Put differently, a firm 

characteristic that predicts the cross-section of returns well should only be considered a good predictor 

for expected returns if it also successfully predicts the time-series of asset returns. We therefore conclude 

that asset pricing tests should focus on time-series return predictability, which can consistently be 

                                                      
15 Note that in the case of a balanced panel, pooled OLS estimation of regression (16) yields identical results as 
estimation with the (efficient) FGLS random effects estimator. If the panel is unbalanced, however, then estimation 
results from pooled OLS for ߠ෠஻ differ slightly from those of the FGLS random effects estimator. The reason is that 
the between estimator forming part of the FGLS random effects estimator weights each firm ݅ equally, 
independently of the number of observations in the sample. By contrast, in pooled OLS the weight of firm ݅ 
depends on the length of its time-series. 
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estimated with the within-estimator, rather than on cross-sectional return predictability, which is at risk 

of suffering from an omitted variables bias. 

 

2.3.3 GPS-model specification test for the presence of fixed effects 

Building on our analysis from Section 2.3.2, we now derive a Hausman (1978) type specification test, 

which allows us to investigate whether the random effects (RE) assumption for any given specification 

of a GPS-model holds. Our testing procedure starts with GPS-model (1): 

௜௧ݎ ൌ ሺࢠ௜௧	⨂	࢞௧ሻ	ࣂ ൅ ܿ௜ ൅ ௜௧ߥ ൌ ൫ሾ1			ݖଶ,௜௧ ଵ௧ݔ				⨂ሾ1	ெ,௜௧ሿݖ		…		 ࣂ	௄௧ሿ൯ݔ		…		 ൅ ܿ௜ ൅  ௜௧ߥ

Relying on Mundlak's (1978) correlated RE assumption we model firm-specific effect ܿ௜ as 

ܿ௜ ൌ ൭	෍ ௠̅,௜௧ݖ	௠,଴ߦ

ெ

௠ୀଶ

		൅ 		 ෍ ෍ߦ௠,௞	ݍത௜
ሺ௠,௞ሻ

௄

௞ୀଵ

ெ

௠ୀଶ

൱ ൅ ௜ݑ ≡ ࣈ࢏ഥࢗ ൅  ௜ (17)ݑ

where ݑ௜ is a mean zero firm-specific effect that is assumed to be uncorrelated with explanatory variables 

ሺࢠ௜௧	⨂	࢞௧ሻ. 	ݖ௠̅,௜௧ refers to firm ݅'s time-series average of characteristic ݖ௠,௜௧, and ݍത௜
ሺ௠,௞ሻ ൌ

௜ܶ
ିଵ ∑ ሺݖ௠,௜௧ݔ௞௧ሻ

்೔
௧ୀଵ  represents the firm's time-series average of the interaction term between firm 

characteristic ݖ௠,௜௧ and factor variable ݔ௞௧. For ease of notation, we collect all the time-series averages 

in row vector ࢗഥ࢏ and store the ߦ௠,௞ coefficients in column vector 16.ࣈ 

Replacing firm-specific effect ܿ௜  in GPS-model (1) by the expression in (17) we obtain the 

following regression model: 

௜௧ݎ ൌ ሺࢠ௜௧	⨂	࢞௧ሻ	ࣂ ൅ ࣈ࢏ഥࢗ ൅ ௜ݑ ൅  ௜௧ (18)ߥ

GPS-model (18) is structured as a correlated RE model (Mundlak, 1978). It is therefore well-known that 

estimating (18) with pooled OLS will yield the fixed effects (or "within") coefficient estimates for vector 

 quantify by how much the between estimator ࣈ Likewise, pooled OLS coefficient estimates for vector .ࣂ

differs from the fixed effects estimator. Following Wooldridge (2010, p. 332), we can therefore test for   

H0:				ࣈ ൌ 0									vs.       H1: 	ࣈ ് 0	 (19) 

                                                      
16 Note that we assume that all characteristics ݖ௠,௜௧ vary both across firms as well as over time. If ݖ௠,௜௧ is time-
constant, then GPS-model (1) can only be estimated with (weighted) pooled OLS and, hence, needs to rely on the 
RE assumption. This is a direct consequence of the fact, that the within estimator is unable to estimate the 
regression coefficients of time-invariant variables since time-invariant variables are absorbed by the firm-specific 
effect. For details, see Cameron and Trivedi (2005, Chapter 21). 
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to obtain a regression-based variant of Hausman's (1978) specification test for GPS-model (1). To ensure 

robust statistical inference on our GPS-model specification test, we estimate regression (18) with 

Driscoll and Kraay (1998) standard errors that are robust to cross-sectional dependence, autocorrelation, 

and heteroskedasticity. If the null hypothesis of ࣈ ൌ 0 cannot be rejected, the random effects (RE) 

assumption is considered to hold. In this case, estimating GPS-model (1) with (weighted) pooled OLS 

allows for valid statistical inference. However, if the Wald test in (19) rejects the null hypothesis of ࣈ ൌ

0, then estimating the GPS-model with (weighted) pooled OLS is likely to produce inconsistent results. 

In the case of  ࣈ෠ ് 0, GPS-model (1) should therefore be estimated with the fixed effects estimator to 

ensure valid statistical inference. 

 

2.3.4 Testing the validity of conventional portfolio sorts 

The results from Section 2.2 demonstrate that GPS-model (1) estimated with pooled OLS nests all 

variants of conventional portfolio sorts as a special case. With the pooled OLS estimator only being 

consistent under the random effects (RE) assumption, this therefore implies that the portfolio sorts 

approach also depends on the RE assumption to hold. Put differently, the results from conventional 

portfolio sorts are biased if firm-specific effects are present and correlated with the characteristic 

underlying the portfolio sort.  

We now utilize our results from Section 2.3.3 to form a Hausman (1978) type test for analyzing if 

the results from conventional portfolio sorts are statistically valid. For this purpose, we rely on GPS-

model (13) where the performance of a certain base portfolio is compared with the performance of each 

other portfolio in the sort. Correspondingly, we specify ࢞௧ ൌ ሾ	1			ݔଵ௧		. . ௜௧ࢠ ሿ and	௄௧ݔ			. ൌ

ሾ	1				ݖ௜௧
ሺଶሻ		. . ௜௧ݖ			.

ሺ௉ሻሿ. Modelling the firm-specific effects as in (17) and storing the variables containing 

the firm-specific time-series averages in vector ࢗഥ࢏, we estimate regression (18) with (weighted) pooled 

OLS and perform the Wald test in (19). If the null hypothesis of ࣈ ൌ 0 cannot be rejected, the random 

effects (RE) assumption underlying the sorted portfolios is likely to hold and, hence, the statistical 

results from the portfolio sorts approach can be considered valid. However, if null hypothesis ࣈ ൌ 0 is 

rejected, the portfolio sorts approach is likely to suffer from an omitted variables bias and, hence, is at 

risk of producing biased statistical results. In this case, estimation of a GPS-model with firm fixed effects 

should be preferred to performing a portfolio sorts analysis. 

Note that the "portfolio sorts specification test" proposed here provides a means to address the 

factor-zoo-issue raised by Cochrane (2011). As such, our specification test allows to distinguish between 

valid factors (where the RE assumption underlying the sorted portfolios is likely to hold) and invalid 
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factors (which are vulnerable to an omitted variables bias). Extrapolating from our empirical results in 

Section 3, we consider it likely that many results from prior research applying the portfolio sorts 

approach rest on a weak statistical foundation. 

 

3. Empirical Analysis using the GPS-model 

Novy-Marx (2013) shows that gross profit scaled by the book value of total assets (henceforth referred 

to as "gross profitability") is a better predictor for the cross-section of average stock returns than 

alternative measures that are based on bottom line net income, cash flows, or dividends. He argues that 

the good performance of gross profitability in predicting the cross-section of average stock returns is 

mainly due to its numerator, gross profit, being a cleaner measure of economic profitability than, say, 

net income. Ball, Gerakos, Linnainmaa, and Nikolaev (2015), henceforth abbreviated as BGLN, 

challenge the findings of Novy-Marx (2013). Their critique centers on the observation that Novy-Marx 

(2013) deflates net income by the book value of equity while deflating gross profit by the book value of 

total assets. BGLN demonstrate that the predictive power of net income and gross profit is comparable 

if the same deflator is used. Furthermore, they suggest an alternative profitability measure, operating 

profitability, which more closely relates current expenses to current revenues. Defining operating 

profitability as gross profit minus selling, general, and administrative expenses (excluding R&D 

expenditures) deflated by the book value of total assets, BGLN find this profitability measure to predict 

the cross-section of average stock returns even better than gross profitability. 

Which characteristic is a better predictor for asset returns, gross profitability or operating 

profitability? – We contribute to this debate by utilizing variants of GPS-model (1). After an empirical 

validation of Propositions 1 to 3, we perform a Hausman (1978) type specification test for analyzing 

whether the results from the portfolio sorts approach allow for valid statistical inference. Next, we 

demonstrate the flexibility of GPS-model (1) in handling multivariate and continuous firm 

characteristics as well as in analyzing the characteristics' time-series versus cross-sectional 

predictability. Finally, we conduct a horse race to examine which characteristics withstand a multivariate 

test and are robust to the inclusion of firm fixed effects. Our empirical analysis relies on the CRSP-

Compustat merged database and spans the sample period from July 1963 through December 2016. We 

prepare the sample data as described in BGLN. 

 

3.1 The performance of a single portfolio 

To validate Proposition 1 empirically, we start with the portfolio sorts approach. Each year at the end of 

June, we sort the stocks into quintiles based on NYSE breakpoints and hold the portfolios for the 
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subsequent year. For each portfolio ݌) ݌ ൌ 1,… ,5), we then compute monthly value-weighted portfolio 

excess returns (ݎ௣௧) as 

௣௧ݎ ൌ ∑ ௜௧ݓ
ሺ௣ሻ	ܱܣ௜௧

ሺ௣ሻ	ݎ௜௧
ே೟
௜ୀଵ   (20) 

where ݓ௜௧
ሺ௣ሻ refers to the beginning-of-month ݐ portfolio weight of stock ݅ in quintile portfolio ݎ ,݌௜௧ 

denotes stock ݅'s month ݐ excess return, ܱܣ௜௧
ሺ௣ሻ is a dummy variable with value one if stock ݅ in month ݐ 

belongs to operating profitability portfolio ݌, and ௧ܰ refers to the overall month ݐ number of stocks in 

the sample.  

Using ݎ௣௧ from (20) as the dependent variable, we then estimate the Fama and French (1993) three-

factor model as follows: 

௣௧ݎ ൌ ߙ ൅ ௧ܨܴܯܴ	ோெோிߚ 	൅		ߚௌெ஻	ܵܤܯ௧ 	൅	ߚுெ௅	ܮܯܪ௧ 	൅  ௧ (21)ߝ

where ܴܨܴܯ௧ is the market excess return, ܵܤܯ௧ denotes the return of a zero-investment size portfolio, 

and ܮܯܪ௧ refers to the return of a zero-investment book-to-market portfolio. 

According to Proposition 1, the results from estimating time-series regression (21) for portfolio ݌ 

can be reproduced by aid of GPS-model (1) being specified as follows: 

௜௧ݎ ൌ ఈߠ 	൅	ߠோெோி	ܴܨܴܯ௧ 		൅ ௧ܤܯܵ	ௌெ஻ߠ		 		൅ ௧ܮܯܪ	ுெ௅ߠ		 	൅  ௜௧ (22)ߥ	

Due to the focus on a single portfolio ݌, GPS-model (22) only considers the subset of observations for 

which ܱܣ௜௧
ሺ௣ሻ ൌ 1 (i.e., observations on stocks that are included in operating profitability portfolio ݌). 

To reproduce the results of time-series regression (21) with GPS-model (22), we need to account for 

two important aspects. First, the portfolio sorts approach typically considers value-weighted rather than 

equal weighted portfolios. Second, the CRSP-Compustat database constitutes an unbalanced panel with 

time-varying cross-sections. Therefore, GPS-model (22) needs to be estimated with weighted pooled 

OLS, where observation weights are fixed such that they match the (implicit) weighting scheme 

underlying portfolio ݌'s value-weighted return from expression (20). Consequently, we set the weight 

of observation ݅ݐ equal to the beginning-of-month ݐ value weight of stock ݅ in operating profitability 

portfolio ݌:  

௜௧ݓ ൌ
௜௧ܣܱ

ሺ௣ሻܧܯ௜௧

∑ ቀܱܣ௜௧
ሺ௣ሻܧܯ௜௧ቁ

ே೟
௜ୀଵ

 (23) 

where ܧܯ௜௧ refers to stock ݅'s beginning-of-month ݐ market value of equity. 
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The results for the top-quintile portfolio sorted on operating profitability are reported in Table 1. 

The first row (“Portfolio sorts approach”) reports the results from estimating portfolio-level time-series 

regression (21) with OLS. Statistical inference is based on Newey and West (1987) standard errors with 

a lag-length of three months. In line with BGLN, the top quintile portfolio has a statistically significantly 

positive Fama and French (1993) alpha of +0.225% per month, or +2.7% per year. In the second row, 

labelled as “GPS-model (weighted pooled OLS)”, we report the results from estimating GPS-model (22) 

with weighted pooled OLS, where observation weights are set equal to the stocks' beginning-of-month 

t value-weights. Statistical inference relies on Driscoll and Kraay (1998) standard errors with a lag-

length of three months. The results from estimating GPS-model (22) are identical with those from 

estimating time-series regression (21) reported in the first row.17 This empirically validates our 

Proposition 1 from Section 2.2.2. 

The third row, labelled as “GPS-model (standard pooled OLS)”, estimates GPS-model (22) with 

standard pooled OLS, where all stocks are equally weighted such that microcaps receive the same weight 

as large caps. As a consequence, the SMB factor loading in this case is large (+0.79) and statistically 

significant. Moreover, the change in weights also affects the risk-adjusted performance (or alpha) which 

increases to +0.313% per month (or +3.75% per year). This confirms Fama and French's (2008) concern 

that the abundance of small- and microcap stocks can be influential for the results when observations on 

micro- and megacap stocks are equally-weighted. 

 

3.2 Analyzing portfolio sorts with the GPS-model 

According to Proposition 2, GPS-model (1) can be specified such that it reproduces the results of 

multiple sorted portfolios with a single regression on the firm-level. To validate Proposition 2 

empirically, we apply the portfolio sorts procedure from Section 3.1 to each of the five quintile portfolios 

sorted on operating profitability. The results are reported in Panel A of Table 2. In line with BGLN, the 

alpha of the sorted portfolios monotonically increases with operating profitability. While the low 

profitability (݌ ൌ 1) portfolio has a significantly negative alpha of -0.318% per month, the top-quintile 

݌) ൌ 5) portfolio shows a significantly positive alpha of +0.225% per month. 

To reproduce the results of the portfolio sorts analysis with the GPS-model, we estimate regression 

(7) with weighted pooled OLS, where the weight of observation ݅ ݅ is set equal to stock ݐ 's period ݐ value-

weight in the operating profitability portfolio it belongs to. Panel B of Table 2 reports the results in a 

                                                      
17 Note that the number of observations included in the estimation differs across models. The time-series regression 
of the portfolio sorts approach comprises 642 monthly observations whereas the weighted pooled OLS estimation 
of the firm-level GPS-model includes 412,443 firm-month observations. 
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two-dimensional matrix. The portfolio dummy variables in vector ࢠ௜௧ ൌ ቂ	ܱܣ௜௧
ሺଵሻ					ܱܣ௜௧

ሺଶሻ ௜௧ܣܱ			⋯			
ሺହሻቃ 

define the columns whereas the factor variables in vector ࢞௧ ൌ ሾ	1			ܴܨܴܯ௧			ܵܤܯ௧			ܮܯܪ௧ሿ identify the 

rows. All elements in the results matrix thus represent the coefficient estimates (and t-statistics) of the 

interaction term between firm-characteristic ܱܣ௜௧
ሺ௣ሻ and factor variable (or constant) ݔ௞௧. A comparison 

of the results in Panels A and B of Table 2 shows that both the coefficient estimates and t-statistics 

(based on Driscoll-Kraay standard errors) of the GPS-model coincide with those from applying the 

portfolio sorts approach (independently) to the five quintile portfolios sorted on operating profitability. 

This empirically confirms the theoretical result stated in Proposition 2 from Section 2.2.3. 

The GPS-model can also be specified such that it reproduces the results from "two-way portfolio 

sorts" by aid of a single regression on the firm-level. To illustrate this, we partially reproduce the analysis 

of Table 8 in BGLN. Relying on NYSE breakpoints, we sort the stocks into quintiles based on operating 

profitability and market capitalization.18 As before, we form the portfolios by the end of each June and 

then hold them for the subsequent year. Panel A of Table 3 reports the results for the two-way sorted 

portfolios. For brevity, we only display the coefficient estimates (and t-values) of the alpha from 

estimating time-series regression (21) for each of the 25 two-way sorted portfolios. Despite a slightly 

different sample period, the coefficient estimates and t-values match closely with those in BGLN. 

Next, we turn to GPS-model (1) and show how to replicate the results of all the two-way sorted 

portfolios by estimating a single regression on the firm-level. To this end, we specify ࢠ௜௧ as follows:  

௜௧ࢠ ൌ ൤ቂܱܣ௜௧
ሺଵሻ		 … ௜௧ܣܱ	

ሺହሻቃ 	⨂ ቂܧܯ௜௧
ሺଵሻ	 … ௜௧ܧܯ			

ሺହሻቃ 	൨   

Here, ܱܣ௜௧
ሺ௣ሻ (݌ ൌ 1,… , 5) refers to a dummy variable with value one if stock ݅ in month ݐ belongs to 

operating profitability portfolio ݌, and ܧܯ௜௧
ሺ௤ሻ (ݍ ൌ 1,… , 5) is a dummy variable with value one if stock 

݅ in month ݐ belongs to market capitalization quintile ݍ. As before, vector ࢞௧ includes a constant and the 

three Fama-French factors and, hence, is specified as ࢞௧ ൌ ሾ	1				ܴܨܴܯ௧				ܵܤܯ௧				ܮܯܪ௧ሿ. To reproduce 

the results of the portfolio sorts approach, we estimate the GPS-model with weighted pooled OLS, where 

observations weights are fixed such that they match the value-weights of the stocks in the two-way 

sorted portfolios. 

Panel B of Table 3 reports the results for the regression coefficients decomposing the alpha, i.e., 

for the coefficient estimates (and t-statistics) of the variables in vector ࢠ௜௧.
19 The results are reported in 

                                                      
18 Following BGLN, the sorts are carried out independently of each other. BGLN use the two-way portfolio sorts 
to investigate whether the predictive power of operating profitability for the cross-section of average returns is a 
market-wide phenomenon or if it is confined to certain size groups. 
19 Note that the characteristics in vector ࢠ௜௧ in fact represent the interaction terms of the variables in ࢠ௜௧ with the 
constant in ࢞௧.  
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a two-dimensional matrix with the operating profitability quintile dummies, ܱܣ௜௧
ሺ௣ሻ, identifying the rows 

and the market capitalization quintile dummies, ܧܯ௜௧
ሺ௤ሻ, defining the columns. Element (p, q) in the result 

matrix thus represents the coefficient estimate (and t-statistic) of the interaction term between operating 

profitability quintile dummy p and market cap quintile dummy q. When comparing the results from 

estimating the GPS-model (Panel B) with the results from the two-way sorted portfolios (Panel A), it is 

evident that they perfectly match. This provides further empirical evidence for Proposition 2. 

 

3.3 Top versus bottom portfolio performance 

To validate Proposition 3 empirically, we start by applying the portfolio sorts approach for evaluating 

the performance difference between the top (݌ ൌ 5) and bottom (݌ ൌ 1) quintile portfolios of stocks 

sorted on operating profitability. To this end, we first compute the month ݐ excess returns (ݎ௣௧) for the 

top and bottom quintile portfolios as outlined in expression (20) above. We then evaluate the 

performance difference between the two portfolios by estimating portfolio-level time-series regression 

(21) with Δݎ௣௧ ൌ ହ,௧ݎ െ -ଵ,௧ as the dependent variable. Panel A of Table 4 reports the results. On a riskݎ

adjusted basis, the portfolio of stocks with high operating profitability outperforms the low profitability 

portfolio by a significant +0.54% per month (or +6.48% per year). Despite a slightly different sample 

period, the coefficient estimates and t-values are very similar to those reported in Table 7 of BGLN. 

To replicate the results from the portfolio sorts approach with a regression on the individual firm-

level, we estimate GPS-model (12) with weighted pooled OLS. In this analysis, we only consider 

observations on stocks with top (݌ ൌ 5) or bottom (݌ ൌ 1) quintile operating profitability and set 

observation weights equal to the stocks' value-weights in their operating profitability portfolio. Panel B 

of Table 4 displays the results in a two-dimensional matrix. The elements of firm characteristics’ vector 

௜௧ࢠ ൌ ቂ	1			ܱܣ௜௧
ሺହሻቃ define the columns while the factor variables in ࢞௧ ൌ ሾ	1				ܴܨܴܯ௧			ܵܤܯ௧			ܮܯܪ௧	ሿ 

identify the rows. All elements in the results matrix thus represent the coefficient estimates (and t-

statistics based on Driscoll-Kraay standard errors) for the interactions between the elements in vector 

 ௧. The results from estimating GPS-model (12) with weighted pooled OLS࢞ ௜௧ and those in vectorࢠ

(Panel B) coincide with the results of the portfolio sorts approach in Panel A. This empirically confirms 

Proposition 3.  

 

3.4 Using the GPS-model to test the validity of conventional portfolio sorts 

GPS-model (1), estimated with (weighted) pooled OLS, is capable to reproduce the results from 

conventional portfolio sorts. This, however, implies that the results from conventional portfolio sorts 
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are valid if and only if the random effects assumption holds. We now investigate whether firm-specific 

effects (if present) indeed are uncorrelated with the characteristic(s) underlying the portfolio formation. 

To examine whether the results from conventional portfolio sorts are valid, we rely on the portfolio sorts 

specification test developed in Section 2.3.4.  

We begin by analyzing whether portfolio sorts on operating profitability are in accordance with the 

random effects assumption. To this end, we specify GPS-model (1) with ࢠ௜௧ ൌ ሾ	1				ܱܣ௜௧
ሺଶሻ		. . ௜௧ܣܱ			.

ሺହሻ	ሿ 

and ࢞௧ ൌ ሾ	1				ܴܨܴܯ௧				ܵܤܯ௧				ܮܯܪ௧ሿ. We then add to the regression the firm-specific time-series 

averages (which we store in vector ࢗഥ࢏) of all variables in ሺࢠ௜௧	⨂	࢞௧ሻ which vary across both firms and 

time. The resulting regression model ݎ௜௧ ൌ ሺࢠ௜௧	⨂	࢞௧ሻ	ࣂ ൅ ࣈ࢏ഥࢗ ൅  ௜௧ constitutes our first specification ofߝ

regression (18), which forms the basis of our portfolio sorts specification test. Panel A of Table 5 reports 

the results from estimating the respective regression with pooled OLS, where observation weights are 

set equal to the beginning-of-month ݐ value-weights of the stocks in the quintile portfolios sorted on 

operating profitability. The results are displayed in matrix form. The first block of results, labelled as 

"Coefficient estimates on explanatory variables ࢠ௜௧	⨂	࢞௧", contains the estimation results for vector ࣂ. 

With the portfolio dummies from ࢠ௜௧ defining the columns and the factor variables in ࢞௧ defining the 

rows, element (݌, ݇) in the results matrix represents the coefficient estimates (and t-statistics) for the 

interaction term between firm characteristic (or constant) ݖ௣,௜௧ and factor variable (or constant) ݔ௞௧. 

Hence, the results in the first column are for the bottom-quintile profitability portfolio while the 

remaining columns show by how much the results of profitability quintile portfolio ݌) ݌ ൌ 2, 3, 4, 5) 

differ from those of the bottom-quintile portfolio. As explained in Section 2.3, the coefficient estimates 

for ࣂ represent fixed effects (FE) estimates that allow for valid statistical inference even if firm-specific 

effects are correlated with the variables in ࢠ௜௧	⨂	࢞௧. The results in row "1 (Intercept)" show that when 

controlling for firm fixed effects, the Fama-French three-factor model alpha of the top-quintile portfolio 

sorted on operating profitability is no longer statistically significantly different from that of the bottom-

quintile profitability portfolio. The difference between the two portfolios' alpha now amounts to only 

+0.018% per month, which stands in stark contrast to the highly significant +0.542% per month alpha-

difference obtained in a conventional portfolio sorts analysis which ignores firm fixed effects (see Table 

4). 

The second block of Panel A in Table 5, labelled as "Coefficient estimates on time-series averages", 

contains the estimation results for vector ࣈ. The structure of the estimation results in this block is similar 

to that for ࣂ discussed before. The coefficient estimates for the elements in ࣈ quantify by how much the 

between (BE) estimator differs from the fixed effects (FE) estimator. The results show that the difference 

between BE and FE coefficient estimates is particularly pronounced for the coefficient estimates 

quantifying the difference of quintile portfolio ݌'s alpha (݌ ൌ 2,3,4,5) versus the bottom-quintile 



26 
 

portfolio. For instance, the BE estimate for the alpha-difference between the top- and bottom-quintile 

portfolios deviates by a significant +1.099% per month from the respective FE estimate. As a 

consequence, the judgment about whether operating profitability is a good predictor of asset returns 

critically hinges on the random effects (RE) assumption to hold. To test for the validity of the RE 

assumption, we perform the Wald test in (19). This "portfolio sorts specification test" has an F-statistic 

of 4.612 and rejects the null hypothesis of ࣈ ൌ 0 at all conventional levels of statistical significance. For 

portfolio sorts on operating profitability the random effects assumption can therefore not be considered 

to hold, invalidating the results from conventional portfolio sorts. 

Panel B of Table 5 reproduces the analysis from Panel A for portfolio sorts on gross profitability, 

defined as gross profit divided by total assets (Novy-Marx, 2013). We specify ࢠ௜௧ ൌ

ሾ	1				ܣܩ௜௧
ሺଶሻ		. . ௜௧ܣܩ			.

ሺହሻ	ሿ, where ܣܩ௜௧
ሺ௣ሻ represents a dummy variable with value one if stock ݅ in month ݐ 

belongs to quintile portfolio ݌ sorted on gross profitability. The results are quite different from those on 

operating profitability. Specifically, the coefficient estimate measuring by how much the alpha of the 

top-quintile portfolio differs from that of the bottom-quintile portfolio of +0.42% per month is positive 

and statistically significant. Furthermore, the differences between BE and FE coefficient estimates (i.e., 

the coefficient estimates for ࣈ) are less pronounced than in Panel A when sorting on operating 

profitability. Correspondingly, the "portfolio sorts specification test" no longer rejects the null 

hypothesis of ࣈ ൌ 0. The respective Wald test has an F-statistic of 1.194 which corresponds to a p-value 

of 0.267. We therefore conclude that the statistical results from portfolio sorts on gross profitability are 

reliable. All else equal, stocks with high gross profitability outperform stocks with low gross 

profitability. 

 

3.5 Time-series versus cross-sectional predictability 

Building on the analysis in Section 3.4 above, we now perform a complementary test of the random 

effects assumption. To this end, we analyze the cross-sectional versus time-series predictability of stock 

returns for a number of firm characteristics that have been shown to successfully predict asset returns. 

Following the procedure outlined in Section 2.3.2, we decompose firm characteristic ݖ௜௧ according to 

equation (15) and specify ࢞௧ ൌ ሾ1ሿ to obtain GPS-model (16), i.e., 

௜௧ݎ ൌ ଴ߠ ൅ ௜̅ݖ஻ߠ ൅ ௜௧ݖௐ̃ߠ ൅   ௜௧ݒ

where ݖ௜̅ refers to firm ݅’s time-series average of characteristic ݖ௜௧, and ̃ݖ௜௧ represents the within-

transformed version of the variable.  

Panel A of Table 6 reports the results from estimating the above regression with weighted pooled 

OLS, where observation weights are set equal to the firms' month ݐ value weights. In the first column, 
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we consider the book-to-market ratio (derived by end of June, based on prior year-end book and market 

values) as variable ݖ௜௧. The book-to-market ratio is a good predictor for the time-series of asset returns 

(highly significant coefficient estimate of +0.31) but has insignificant predictability for the cross-section 

of stock returns. As a result, a Wald test on the equivalence of cross-sectional and time-series return 

predictability rejects the null hypothesis of ߠ෠஻ ൌ  ෠ௐ (and, correspondingly, the random effectsߠ

assumption) on the 5% confidence level. Nevertheless, the book-to-market ratio is a reliable predictor 

for stock returns since the time-series predictability ߠ෠ௐ coincides with the fixed effects estimate which 

allows for valid statistical inference also if the RE assumption is violated. Column (2) considers firm 

size, measured as the natural logarithm of a firm's market equity by end of (previous) June, as variable 

෠ௐߠ) ௜௧. Size has a highly significant time-series return predictabilityݖ ൌ െ0.40) but insignificant cross-

sectional return predictability. As with the book-to-market ratio, the Wald test rejects the null hypothesis 

of ߠ෠஻ ൌ  ෠ௐ. Nevertheless, because of its time-series predictability, size can also be considered a reliableߠ

predictor for stock returns.  

Column (3) focuses on operating profitability. This characteristic has significant cross-sectional 

return predictability (ߠ෠஻ ൌ ൅1.58) but insignificant time-series predictability (ߠ෠ௐ ൌ െ0.79). The Wald 

test on equivalence of cross-sectional and time-series return predictability rejects the null hypothesis of 

෠஻ߠ ൌ  ෠ௐ, and hence the random effects assumption, on the 1% level. Consistent with the finding fromߠ

Section 3.4, the return predictability of operating profitability is therefore likely to suffer from an 

omitted variables bias. Column (4) considers gross profitability as variable ݖ௜௧. Similar to operating 

profitability, gross profitability also has better cross-sectional predictability (ߠ෠஻ ൌ ൅0.47 with a t-

statistic of 2.02) than time-series predictability (ߠ෠ௐ ൌ ൅0.18). However, the Wald test on ߠ෠஻ ൌ  ෠ௐ inߠ

this case cannot reject the null hypothesis of cross-sectional and time-series return predictability being 

equivalent. Consequently, and in line with the result from Section 3.4, gross profitability can be 

considered a reliable predictor for stock returns. The last two columns of Panel A in Table 6 use the 52-

week rolling volatility (column 5) and stock beta (column 6) as variable ݖ௜௧. The coefficient estimates 

for these characteristics are all negative but statistically insignificant. 

In Panel B of Table 6 we repeat the analysis from Panel A. However, this time we specify vector 

௧࢞	 ௧ as࢞	 ൌ ሾ1			ܴܨܴܯ௧ሿ to obtain the following GPS-model: 

௜௧ݎ ൌ ଴ߙ ൅ ௜̅ݖ஻ߙ ൅ ௜௧ݖௐ̃ߙ ൅ ௧ܨܴܯܴ	଴ߚ ൅ ௧ܨܴܯሺܴ	஻ߚ ൈ ௜̅ሻݖ ൅ ௧ܨܴܯሺܴ	ௐߚ ൈ ௜௧ሻݖ̃ ൅  ௜௧ (24)ݒ

For brevity, Panel B of Table 6 only reports estimation results from decomposing the CAPM-alpha (i.e., 

for regression coefficients ߙ଴, ߙ஻, and ߙௐ). The results are qualitatively similar to those from Panel A. 

The book-to-market ratio and firm size have significant time-series but limited cross-sectional 

predictability of the CAPM-alpha. By contrast, operating profitability and gross profitability have better 
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cross-sectional return predictability than time-series predictability. Equivalence of ߙො஻ and ߙොௐ is rejected 

for operating profitability but accepted for gross profitability. Finally, and in line with the literature on 

the low-risk anomaly, we find low-risk stocks to outperform high-risk stocks on a risk-adjusted basis. 

The stock beta offers significant time-series predictability for the CAPM-alpha while volatility has better 

predictability for the cross-section of CAPM-alphas. In the latter case, the test on equivalence of ߙො஻ and 

ො஻ߙ ොௐ rejects the null-hypothesis ofߙ ൌ  ොௐ on the 5% level. Hence, beta turns out to be a more reliableߙ

predictor of stock returns. 

 

3.6 Do firm fixed effects matter for the prediction of stock returns? 

We now demonstrate that the GPS-model provides a versatile framework for investigating the 

predictability of stock returns as well as for analyzing the role of firm fixed effects. To determine which 

profitability and volatility measures offer successful return predictability, we estimate (subsets of) the 

following GPS-model: 

௜௧ݎ ൌ ሺࢠ௜௧	⨂	࢞௧ሻ	ࣂ ൅ ݁௜௧	

ൌ ሺሾ1				ܱܣ௜௧				ܣܩ௜௧				ܸ݈ܽ݋௜௧					ܽݐ݁ܤ௜௧ሿ ⊗ ሾ	1				ܴܨܴܯ௧				ܵܤܯ௧			ܮܯܪ௧ሿሻ	ࣂ ൅ ݁௜௧ 
(25) 

where ܱܣ௜௧ is operating profitability, ܣܩ௜௧ measures gross profitability, ܸ  ௜௧ is the standard deviation݈ܽ݋

of 52 weekly stock returns ending on the last Friday prior to the end of month ݐ, and ܽݐ݁ܤ௜௧ is the 

CAPM-beta of weekly stock returns estimated over the 52 weeks ending on the last Friday prior to the 

end of month ݐ. The variables in vector ࢞௧ ൌ ሾ	1			ܴܨܴܯ௧			ܵܤܯ௧			ܮܯܪ௧ሿ represent a constant and the 

three Fama and French (1993) factors.  

Panel A of Table 7 presents the results from estimating GPS-model (25) with weighted pooled 

OLS, where observation weights are set equal to the firms' month ݐ value weights. For brevity, only the 

estimates for the regression coefficients decomposing the Fama-French three-factor model alpha (as a 

measure of the risk-adjusted performance) are reported.20 In column (1), we estimate regression (25) 

with ࢠ௜௧	 ൌ ሾ1		ܱܣ௜௧ሿ. Consistent with the results in Section 3.5, the alpha increases with operating 

profitability. The coefficient estimate is positive (+1.743) and highly statistically significant. A 

qualitatively similar result is obtained when estimating GPS-model (25) with ࢠ௜௧ ൌ ሾ1		ܣܩ௜௧ሿ (column 

2). By contrast, the alpha decreases with volatility (column 3) and the stock beta (column 4). In sum, 

these univariate results are perfectly in line with the findings from previous research. Columns (5) and 

(6) take advantage of the GPS-model's capability to handle multivariate firm characteristics. When 

                                                      
20 Note that conditional on firm ݅ 's characteristics in period ݐ, the Fama-French three-factor model alpha is obtained 
as ߙො௜௧ ൌ ෠଴ߠ	 ൅ ෠ଵߠ ൈ ܣܱܲ ௜ܶ௧ ൅ ෠ଶߠ ൈ ܣܲܩ ௜ܶ௧ ൅ ෠ଷߠ ൈ ௜௧݈ܽ݋ܸ ൅ ෠ସߠ ൈ  .௜௧. For details, see Section 2.3.1ܽݐ݁ܤ
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estimating GPS-model (25) with ࢠ௜௧ ൌ ሾ1				ܱܣ௜௧				ܣܩ௜௧				ܸ݈ܽ݋௜௧					ܽݐ݁ܤ௜௧ሿ, we find that only operating 

profitability (coefficient estimate: +1.105) and the stock beta (coefficient estimate: -0.303) statistically 

significantly predict stock returns while the coefficient estimates on gross profitability and volatility are 

insignificant. 

The analysis in Panel A of Table 7 depends on the assumption that firm-specific effects (if present) 

are uncorrelated with the explanatory variables in ࢠ௜௧	⨂	࢞௧, i.e., that the random effects (RE) assumption 

holds. We now employ our GPS-model specification test developed in Section 2.3.3 to investigate for 

which regression specifications in Panel A the random effects assumption may be considered to hold. 

For this purpose, we extend regression (25) with the firm-level time-series averages of all variables that 

vary cross-sectionally and over time. We then employ a Wald test to examine whether the coefficient 

estimates for the time-series average variables are jointly equal to zero. If this null hypothesis cannot be 

rejected, the RE assumption can be assumed to hold and GPS-model (25) can be estimated with 

(weighted) pooled OLS. The results from the GPS-model specification test are reported in Panel B of 

Table 7. With the exception of the GPS-model specification in column (2), where vector ࢠ௜௧ is specified 

as ࢠ௜௧ ൌ ሾ1		ܣܩ௜௧ሿ, the GPS-model specification test rejects the RE assumption for all specifications in 

Panel A on the 5% confidence level or better. As a result, the statistical results from estimating GPS-

model (25) with pooled OLS are likely to be invalid. 

In Panel C of Table 7, we reproduce the analysis from Panel A, but this time we estimate the GPS-

models with the fixed effects (or "within") estimator allowing firm-specific effects to be correlated with 

the explanatory variables in ሺࢠ௜௧	⨂	࢞௧ሻ. For some of the specifications, we observe considerable 

differences between the results in Panel C and those in Panel A. Specifically, in column (1), we find that 

operating profitability no longer statistically significantly predicts (risk-adjusted) stock returns when 

firm fixed effects are accounted for. Furthermore, in the multivariate analysis of column (6) which 

specifies vector ࢠ௜௧ as ࢠ௜௧ ൌ ሾ1				ܱܣ௜௧				ܣܩ௜௧				ܸ݈ܽ݋௜௧					ܽݐ݁ܤ௜௧ሿ, the coefficient estimate of operating 

profitability changes sign and assumes a significantly negative value of -1.583. This result on operating 

profitability stands in contrast to the findings for gross profitability, whose coefficient estimate remains 

positive and statistically significant even when estimating regression (25) with firm fixed effects. These 

findings suggest that gross profitability is a more robust predictor for stock returns than operating 

profitability. When comparing the return predictability of volatility with that of the stock beta, we find 

the stock beta to be a remarkably robust predictor for (risk-adjusted) stock returns. Irrespective of the 

regression specification in Panel C of Table 7, the coefficient estimate for the stock beta is around -0.40, 

and statistically significant at the 1% level. In contrast, when accounting for firm fixed effects, volatility 

no longer has predictive power for the Fama-French three-factor model alpha. We therefore conclude 

that the 52-week rolling stock beta is a more robust predictor for stock returns than 52-week rolling 
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volatility. More generally, we conclude that firm fixed effects can have a major impact on the results 

from empirical asset pricing tests. 

 

4. Conclusion 

In this paper, we propose a novel, regression-based methodology for analyzing asset returns. Our "GPS-

model" relies on estimating a linear panel regression on the individual firm level, and to draw statistical 

inference based on Driscoll and Kraay (1998) standard errors that are robust to heteroskedasticity as 

well as cross-sectional and temporal dependence. Our technique easily handles continuous and 

multivariate firm characteristics, and it allows for the inclusion of firm fixed effects. Using formal 

econometric analysis, we show that our approach nests all variants of the widely-applied portfolio sorts 

approach, and we prove that statistical results from the portfolio sorts approach are valid if and only if 

the random effects (RE) assumption holds. This is a direct consequence of the fact, that to exactly 

reproduce the results from portfolio sorts, our GPS-model needs to be estimated with pooled OLS (which 

is known to depend on the RE assumption). Using our methodology, we also develop a Hausman (1978) 

type specification test that allows us to analyze whether the results from portfolio sorts are likely to be 

affected by unobserved heterogeneity across firms.  

In the empirical part of the paper, we examine the relevance of accounting for firm fixed effects in 

the analysis. We do so by considering four characteristics that are well-known to predict asset returns. 

Our empirical results reveal that two out of the four tested characteristics-based factors do not withstand 

tests accounting for firm fixed effects. We therefore conclude that the random effects assumption 

(implicitly) underlying the portfolio sorts approach indeed is often unlikely to hold. By ignoring firm 

fixed effects in the analysis, the portfolio sorts approach is therefore at risk of producing severely biased 

statistical results due to an omitted variables bias. However, it is important to note that firm fixed effects 

are unlikely to exclusively affect the results of asset pricing tests based on the portfolio sorts approach. 

The Fama and MacBeth (1973) procedure, another major methodological workhorse in empirical 

finance, is also known to be vulnerable to violations in the random effects assumption (Vogelsang 2012). 

As a consequence, the relevance to account for firm fixed effects in empirical asset pricing tests applies 

to empirical asset pricing studies more generally. The analysis in this paper therefore raises severe doubt 

on whether the results from asset pricing tests based on, say, the portfolio sorts approach or the Fama-

MacBeth procedure, are generally unaffected by firm-specific effects, as is (implicitly) presumed in the 

literature. The GPS-model proposed in this paper addresses and resolves this issue. Relying on a simple, 

yet econometrically robust framework, the GPS-model can easily be estimated with the fixed effects (or 

"within") estimator, thereby ensuring valid statistical inference even in case of the random effects 

assumption being violated. 
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Table 1: Single portfolio analysis 
 

        Operating profitability: Top-quintile portfolio 

  
Average 
Return 

 Three-factor model  Three-factor model statistics 

       a bRMRF bSMB bHML   R-squared N Obs. N Stocks. 
            

(1) Portfolio sorts approach 0.574***  0.225*** 0.950*** -0.075*** -0.316***  0.949 642    
(3.10)  (4.92) (73.78) (-4.44) (-18.60) 

    

  
      

    

(2) GPS-model (weighted pooled OLS) 0.574***  0.225*** 0.950*** -0.075*** -0.316***  0.261 412,443 6,831 
  (3.10)  (4.92) (73.78) (-4.44) (-18.60) 

    

  
      

    

(3) GPS-model (standard pooled OLS) 1.070***  0.313*** 1.037*** 0.790*** -0.028  0.150 412,443 6,831 
  (3.92)  (4.73) (50.53) (13.08) (-0.63) 

    

                        
 
This table reports the average return as well as the 3-factor model alpha along with RMRF (market), SMB (small minus big), and HML (high minus low) 
factor loadings for portfolios sorted by operating profitability, defined as gross profit minus selling, general, and administrative expenses (excluding 
research and development expenditures) deflated by the book value of total assets. The portfolio sort is based on NYSE breakpoints at the end of each June 
and the portfolio is held for the subsequent year. The sample period goes from July 1963 through December 2016. All results are for the quintile 5 (high) 
portfolio comprising the stocks with top quintile operating profitability. Row (1) reports the results from a conventional portfolio sort where the portfolio's 
excess return is regressed on the three Fama and French (1993) factors. Rows (2) and (3) present the results from estimating GPS-model (22). In Row (2), 
the regression is estimated with weighted pooled OLS, where observation weights are set equal to the beginning-of-time t value-weights of the stocks. In 
Row (3), the regression is estimated with standard pooled OLS, where all observations are equally weighted. t-statistics from testing for significance against 
a value of zero are presented in parentheses. Statistical inference for the portfolio sorts approach in Row (1) is based on Newey and West (1987) standard 
errors with a lag-length of three. The GPS-models in Rows (2) and (3) are estimated with Driscoll and Kraay (1998) standard errors with a lag-length of 
three. ***, **, and * indicate significance at the 1, 5, and 10 percent levels (two-tailed).  
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Table 2: Analysis of quintile portfolios sorted on operating profitability    

Panel A: Conventional portfolio sorts 

 Quintile Portfolio 

  1 (low) 2 3 4 5 (high) 
      

ܽ -0.318*** -0.116* 0.038 0.046 0.225*** 

 
(-4.26) (-1.86) (0.73) (0.88) (4.92) 

      

bRMRF 1.092*** 0.957*** 0.943*** 1.009*** 0.950*** 

 
(48.10) (48.78) (58.71) (63.60) (73.78) 

      

bSMB 0.212*** 0.061 -0.054* -0.048* -0.075*** 

 
(7.65) (1.37) (-1.73) (-1.66) (-4.44) 

      

bHML 0.175*** 0.256*** 0.135*** 0.047 -0.316*** 

 
(4.24) (5.80) (5.27) (1.61) (-18.60) 

            

R-squared 0.897 0.891 0.916 0.933 0.949 
N Obs. 642 642 642 642 642 

Panel B: GPS-model 

Vector ࢠ௧    ܱܣ௜௧
ሺଵሻ  ܱܣ௜௧

ሺଶሻ  ܱܣ௜௧
ሺଷሻ  ܱܣ௜௧

ሺସሻ  ܱܣ௜௧
ሺହሻ  

Vector ࢞௧   
      

1 (Intercept) -0.318*** -0.116* 0.036 0.046 0.225*** 
(-4.26) (-1.86) (0.73) (0.88) (4.92) 

      

 ***௧ 1.092*** 0.957*** 0.943*** 1.009*** 0.950ܨܴܯܴ

 
(48.10) (48.78) (58.71) (63.60) (73.78) 

      

 ***௧ 0.212*** 0.061 -0.054* -0.048* -0.075ܤܯܵ

 
(7.65) (1.37) (-1.73) (-1.66) (-4.44) 

      

 ***௧ 0.175*** 0.256*** 0.135*** 0.047 -0.316ܮܯܪ

 
(4.24) (5.80) (5.27) (1.61) (-18.60) 

            

R-squared 0.230     
N Obs. 1,969,221     

N Stocks 16,244         

This table reports value-weighted 3-factor model alphas along with RMRF (market excess return), SMB (small 
minus big), and HML (high minus low) factor loadings for portfolios sorted by operating profitability, defined as 
gross profit minus selling, general, and administrative expenses (excluding research and development 
expenditures) deflated by the book value of total assets. Panel A reports the results from conventional portfolio 
sorts where a portfolio's excess return is regressed on the three Fama and French (1993) factors. Panel B presents 
the results from estimating a single GPS-model with weighted pooled OLS, where observation weights are set 
equal to the beginning-of-time t value-weights of the stocks. Coefficient estimates and t-statistics (in parentheses) 
in Panel B (GPS-model) are for the interaction of the (market-level) variables and a constant contained in vector 

௜௧ܣܱ ௧ (displayed on the vertical axis) and the quintile dummy variables࢞
ሺ௤ሻ	(ݍ ൌ 1,… ,5) for operating profitability 

in vector ࢠ௜௧ (displayed on the horizontal axis). The quintile portfolios (Panel A) and dummy variables (Panel B) 
are formed based on NYSE breakpoints at the end of each June and then remain unchanged throughout the 
subsequent year. The sample period goes from July 1963 through December 2016. Statistical inference on the 
portfolio sorts (Panel A) is based on Newey and West (1987) standard errors with a lag-length of three. The GPS-
model in Panel B is estimated with Driscoll and Kraay (1998) standard errors with a lag-length of three. ***, **, 
and * indicate significance at the 1, 5, and 10 percent levels (two-tailed). 
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Table 3: Two-way portfolio sorts on operating profitability and market capitalization 

Panel A: Conventional portfolio sorts 

Operating 
profitability 

Market capitalization 

Q1  Q2  Q3  Q4  Q5  
      

Q1 -0.40*** -0.38*** -0.30*** -0.26**  -0.25**  
 (-3.76)  (-4.10)  (-3.26)  (-2.57)  (-2.43)  

      
Q2 -0.04  -0.05  -0.06  -0.05  -0.14*  
 (-0.60)  (-0.69)  (-0.66)  (-0.67)  (-1.84)  
      
Q3 0.08  0.08  -0.01  -0.02  0.06  
 (1.20)  (1.09)  (-0.15)  (-0.21)  (1.08)  
      
Q4 0.10*  -0.01  0.10  0.09  0.04  
 (1.70)  (-0.04)  (1.39)  (1.21)  (0.70)  
      
Q5 0.31*** 0.25*** 0.18***  0.28*** 0.23*** 
 (3.72)  (3.50)  (2.59)  (3.43)  (4.28)  

      

Panel B: GPS-model   

Operating 
profitability 

Market capitalization 

௜௧ܧܯ
ሺଵሻ ௜௧ܧܯ

ሺଶሻ ௜௧ܧܯ
ሺଷሻ	 ௜௧ܧܯ

ሺସሻ ௜௧ܧܯ
ሺହሻ

     

௜௧ܣܱ
ሺଵሻ  -0.40*** -0.38*** -0.30*** -0.26**  -0.25**   

(-3.76)  (-4.10)  (-3.26)  (-2.57)  (-2.43)  
     

௜௧ܣܱ
ሺଶሻ  -0.04  -0.05  -0.06  -0.05  -0.14*  

 (-0.60)  (-0.69)  (-0.66)  (-0.67)  (-1.84)  
     

௜௧ܣܱ
ሺଷሻ 0.08  0.08  -0.01  -0.02  0.06  

 (1.20)  (1.09)  (-0.15)  (-0.21)  (1.08)  
     

௜௧ܣܱ
ሺସሻ 0.10*  -0.01  0.10  0.09  0.04  

 (1.70)  (-0.04)  (1.39)  (1.21)  (0.70)  
     

௜௧ܣܱ
ሺହሻ 0.31*** 0.25*** 0.18***  0.28*** 0.23*** 

 (3.72)  (3.50)  (2.59)  (3.43)  (4.28)  

R-squared 0.207      

N Obs. 1,969,221        
N Stocks 16,244     

 
This table reports value-weighted three-factor model alphas and t-statistics (in parentheses) for portfolios sorted 
by market capitalization and operating profitability, defined as gross profit minus selling, general, and 
administrative expenses (excluding research and development expenditures) deflated by the book value of total 
assets. Panel A reports the results from conventional portfolio sorts where a portfolio's excess return is regressed 
on the Fama and French (1993) market (RMRF), size (SMB), and value (HML) factors. Panel B presents the 
results from estimating a single GPS-model with weighted pooled OLS, where observation weights are set equal 
to the beginning-of-time t value-weights of the stocks. Coefficient estimates and t-statistics (in parentheses) for 
the GPS-model are for the product of the market capitalization quintile dummy variables and quintile dummy 
variables for operating profitability. The dummy variables (Panel B) and two-way sorted portfolios (Panel A) are 
formed based on NYSE breakpoints at the end of each June and remain unchanged throughout the subsequent 
year. The market capitalization and operating profitability sorts are independent of each other. The sample period 
is from July 1963 through December 2016. Statistical inference for the portfolio sorts approach (Panel A) is based 
on Newey and West (1987) standard errors with a lag-length of three. The GPS-model in Panel B is estimated with 
Driscoll and Kraay (1998) standard errors with a lag-length of three. ***, **, and * indicate significance at the 1, 
5, and 10 percent levels (two-tailed).  
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Table 4: Comparison of high vs. low quintile portfolios sorted on operating profitability 

Panel A: Conventional portfolio sorts   Panel B: GPS-model 

  Q1 (low) Q5 - Q1   Vector  ࢠ௜௧     1 ܱܣ௜௧
ሺହሻ 

        
 a -0.318*** 0.542***  

   


  V
ec

to
r 

࢞ 
௧ 

1 (Intercept) -0.318*** 0.542*** 
 (-4.26) (5.48)   (-4.26) (5.48) 
       

bRMRF 1.092*** -0.143***  ܴܨܴܯ௧ 1.092*** -0.143*** 
 (48.10) (-4.99)   (48.10) (-4.99) 
       

bSMB 0.212*** -0.287***  ܵܤܯ௧ 0.212*** -0.287*** 
 (7.65) (-8.19)   (7.65) (-8.19) 
       

bHML 0.175*** -0.491***  ܮܯܪ௧ 0.175*** -0.491*** 
 (4.24) (-10.35)   (4.24) (-10.35) 

             

  

R-squared 0.897 0.335  R-squared 0.224 

N Obs. 642 642  N Obs. 1,025,809 

        N Stocks 14,705   

This table reports value-weighted 3-factor model alphas along with RMRF (market excess return), SMB (small minus big), and HML (high 
minus low) factor loadings for portfolios sorted on operating profitability, defined as gross profit minus selling, general, and administrative 
expenses (excluding research and development expenditures) deflated by the book value of total assets. Panel A reports the results from 
conventional portfolio sorts where the bottom quintile portfolio's excess return (first column) or the return difference between the top quintile 
and the bottom quintile profitability portfolio (second column) is regressed on the three Fama and French (1993) factors. Statistical inference 
for the conventional portfolio sorts approach is based on Newey and West (1987) standard errors with a lag-length of three. Panel B reproduces 
the results from the conventional portfolio sorts by aid of GPS-model (12). The GPS-model is estimated with weighted pooled OLS, where 
observation weights are set equal to the beginning-of-time t value-weights of the stocks in the bottom-quintile portfolio and the top-quintile 
profitability portfolio, respectively. Coefficient estimates and t-statistics (in parentheses) for the GPS-model in Panel B are for the product of 
the market-level factor variables (plus a constant) contained in vector ࢞௧ (displayed on the vertical axis) and vector ࢠ௜௧ containing a constant 
and dummy variable ܱܣ௜௧

ሺହሻ which is one for stocks with top-quintile profitability (based on NYSE breakpoints at the end of each June). The 
GPS-model only includes firms which belong to the top- or bottom-quintile groups of firms sorted on operating profitability. Statistical 
inference on the (extended) GPS-models is based on Driscoll and Kraay (1998) standard errors with a lag-length of three. The sample period 
is from July 1963 through December 2016. ***, **, and * indicate significance at the 1, 5, and 10 percent levels (two-tailed). 
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Table 5: Portfolio sorts specification test 

Panel A: Operating profitability                   

  
Coefficient estimates on explanatory variables ࢠ௜௧	⨂	࢞௧ 

(coefficient vector ࣂ) 
  

Coefficient estimates on time-series averages 
(coefficient vector ࣈ) 

௜௧ܣܱ 1  
ሺଶሻ ܱܣ௜௧

ሺଷሻ ܱܣ௜௧
ሺସሻ ܱܣ௜௧

ሺହሻ   ܱܣ௜௧
ሺଶሻ ܱܣ௜௧

ሺଷሻ ܱܣ௜௧
ሺସሻ ܱܣ௜௧

ሺହሻ 
           

1 (Intercept) -0.715*** 0.034 0.055 -0.073 0.018  0.983*** 0.712** 1.041*** 1.099*** 
                     (-4.79) (0.33) (0.53) (-0.59) (0.13) 

 
(2.98) (2.41) (3.68) (3.42) 

           
RMRF                 1.092*** -0.135*** -0.149*** -0.083*** -0.143***  -0.210 -0.138 -0.183 -0.122 
                     (47.89) (-4.31) (-5.12) (-2.71) (-4.97) 

 
(-1.16) (-0.83) (-0.78) (-0.43) 

           
SMB                  0.213*** -0.153*** -0.269*** -0.262*** -0.288***  0.407** 0.511** 0.393 0.285 
                     (7.66) (-2.90) (-6.35) (-6.20) (-8.18) 

 
(2.09) (2.00) (1.46) (0.90) 

           
HML                  0.175*** 0.083 -0.037 -0.128** -0.491***  -0.693*** -0.581** -0.016 -0.244 
                     (4.23) (1.21) (-0.69) (-2.08) (-10.39) 

 
(-2.80) (-2.04) (-0.05) (-0.72) 

                     

R-squared 0.228 Portfolio sorts specification test: F(16, 641) 4.612 
N Obs. 1,969,221 

       
p-value 0.000 

Panel B: Gross profitability                   

  
Coefficient estimates on explanatory variables ࢠ௜௧	⨂	࢞௧ 

(coefficient vector ࣂ) 
  

Coefficient estimates on time-series averages 
(coefficient vector ࣈ) 

௜௧ܣܩ 1  
ሺଶሻ ܣܩ௜௧

ሺଷሻ ܣܩ௜௧
ሺସሻ ܣܩ௜௧

ሺହሻ   ܣܩ௜௧
ሺଶሻ ܣܩ௜௧

ሺଷሻ ܣܩ௜௧
ሺସሻ ܣܩ௜௧

ሺହሻ 
           
1 (Intercept) -0.265*** -0.074 0.078 0.130 0.420**  0.325 0.075 0.332 0.277 
                     (-2.96) (-0.69) (0.61) (0.82) (2.56) 

 
(1.37) (0.34) (0.97) (0.82) 

           
RMRF                 0.940*** 0.077*** 0.062** 0.074*** -0.029  0.092 0.064 -0.140 -0.070 
                     (51.13) (2.85) (2.28) (2.76) (-0.91) 

 
(0.46) (0.36) (-0.56) (-0.24) 

           
SMB                  0.007 -0.069 0.029 -0.013 -0.050  0.517** 0.772*** 0.534** 0.282 
                     (0.26) (-1.37) (0.69) (-0.29) (-1.13) 

 
(2.49) (3.05) (2.29) (0.95) 

           
HML                  0.197*** -0.020 -0.148*** -0.431*** -0.487***  -0.556** -0.141 -0.295 -0.449 
                     (5.87) (-0.35) (-3.37) (-9.94) (-8.71) 

 
(-2.02) (-0.46) (-0.80) (-1.17) 

                      

R-squared 0.236    Portfolio sorts specification test: F(16, 641) 1.194 
N Obs. 1,969,221 

       
p-value 0.267 
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Table 5 – continued 

This table reports the results from estimating regression ݎ௜௧ ൌ ሺࢠ௜௧	⨂	࢞௧ሻ	ࣂ ൅ ࣈ࢏ഥࢗ ൅  ௜௧. Panel A contains the results for portfolio sorts on operating profitability, defined as grossߝ
profit minus selling, general, and administrative expenses (excluding research and development expenditures) deflated by the book value of total assets. Vector ࢠ௜௧	is specified 

as ࢠ௜௧ ൌ ሾ	1				ܱܣ௜௧
ሺଶሻ		. . ௜௧ܣܱ			.

ሺହሻ	ሿ, where ܱܣ௜௧
ሺ௣ሻ ሺ݌ ൌ 2,… ,5ሻ is a dummy variable with value one if firm ݅ belongs to operating profitability quintile portfolio ݌. Panel B presents 

the results for portfolio sorts on gross profitability, defined as gross profit deflated by the book value of total assets. Here, vector ࢠ௜௧	is specified as ࢠ௜௧ ൌ ሾ	1				ܣܩ௜௧
ሺଶሻ		. . ௜௧ܣܩ			.

ሺହሻ	ሿ 

where ܣܩ௜௧
ሺ௣ሻ ሺ݌ ൌ 2,… ,5ሻ is a dummy variable with value one if firm ݅ belongs to gross profitability quintile portfolio ݌. In both panels, vector ࢞௧ is set to ࢞௧ ൌ

ሾ	1					ܴܨܴܯ௧					ܵܤܯ௧				ܮܯܪ௧	ሿ with RMRF (market excess return), SMB (small minus big), and HML (high minus low) representing monthly Fama and French (1993) factor 
returns. Vector ࢗഥ࢏ comprises the firm-specific time-series averages from all variables in ሺࢠ௜௧	⨂	࢞௧ሻ that vary across both firms and time. Estimation results for coefficient vectors 
 ௧ (displayed on the࢞ are reported in matrix form. Each coefficient estimate and t-statistic (in parentheses) is for the product of the market-level factor variable in vector ࣈ and ࣂ
vertical axis) and the portfolio dummy variable (or constant) in vector ࢠ௜௧ (left panel), or for the time-series average of the interaction between the factor variable in ࢞௧ and the 
portfolio dummy variable in ࢠ௜௧ (right panel). The regressions are estimated with weighted pooled OLS, where observation weights are set equal to the beginning-of-time t value-
weights of the stocks in the quintile portfolios sorted on operating profitability (Panel A) and gross profitability (Panel B), respectively. The portfolio sorts specification test 
displayed in the lower right part of each Panel is a Wald-test on ܪ଴:	ࣈ ൌ 0. Statistical inference is based on Driscoll and Kraay (1998) standard errors with a lag-length of three 
months. The sample period is from July 1963 through December 2016. ***, **, and * indicate significance at the 1, 5, and 10 percent levels (two-tailed). 

 

 



41 
 

Table 6: Time-series versus cross-section predictability of stock returns 

Panel A: Cross-section vs. time-series predictability of excess returns 
 (1) (2) (3) (4) (5) (6) 
Firm characteristic B/M log(ME) OP/AT GP/AT Volatility Beta 

       
Constant 0.48** 3.52*** 0.37 0.27 0.98 0.82** 
 (2.09) (2.72) (1.38) (1.03) (1.40) (2.03) 

       
TS predictability: ̃ݖ௜௧ 0.31*** -0.40*** -0.79 0.18 -4.06 -0.26 
 (2.64) (-3.56) (-1.04) (0.38) (-0.33) (-1.37) 

       
XS predictability: ݖ௜̅ -0.24 0.06 1.58*** 0.47** -7.25 -0.03 
 (-1.26) (1.44) (3.05) (2.02) (-0.76) (-0.09) 

              
R-squared [%] 0.056 0.246 0.026 0.012 0.017 0.013 
N Obs. 2,110,774 2,300,195 2,115,518 2,115,518 2,289,867 2,275,370 
N Stocks 17,222 19,122 17,008 17,008 19,109 19,124 
Wald test ߠ෠஻ ൌ  ෠ௐ (p-value) 0.018 0.000 0.004 0.528 0.767 0.444ߠ

                    

Panel B: Cross-section vs. time-series predictability of the CAPM-alpha 
 (1) (2) (3) (4) (5) (5) 
Firm characteristic B/M log(ME) OP/AT GP/AT Volatility Beta 

       
Constant -0.05 2.72*** -0.26 -0.27* 0.58** 0.91** 
 (-0.64) (6.49) (-1.57) (-1.75) (2.18) (3.15) 

       
TS predictability: ̃ݖ௜௧ 0.20*** -0.38*** -0.30 0.27 -1.17 -0.58*** 
 (2.96) (-9.32) (-0.62) (0.98) (-0.48) (-3.95) 

       
XS predictability: ݖ௜̅ -0.092 0.07*** 1.62*** 0.47** -11.87** -0.33 

(-0.76) (2.80) (3.13) (1.98) (-2.19) (-1.49) 
       

R-squared [%] 23.31 23.46 23.26 23.26 25.66 27.59 
N Obs. 2,110,774 2,300,195 2,115,518 2,115,518 2,289,867 2,275,370 
N Stocks 17,222 19,122 17,008 17,008 19,109 19,124 
Wald test ߠ෠஻ ൌ  ෠ௐ (p-value) 0.038 0.000 0.002 0.539 0.040 0.305ߠ

 
This table reports the coefficient estimates and t-statistics (in parentheses) from GPS-models ݎ௜௧ ൌ ሺݐ݅ࢠ	 ⊗ ࣂ	௧ሻ࢞ ൅
௜௧ࢠ ௜௧ being specified asࢠ ௜௧ with vectorߥ ൌ 	 ሾ1					ݖത݅					ݖ෤݅ݐሿ. For variable ݖ௜௧, the time-series average ݖ௜̅ of firm ݅ is 
computed as ݖ௜̅ ൌ ൫∑ ௜௧ݖ௜௧ݓ

்೔
௧ୀଵ ൯/ሺ∑ ௜௧ݓ

்೔
௧ୀଵ ሻ, where ݓ௜௧ represents the beginning of month ݐ value weight. The 

within-transformed version of variable ݖ௜௧ is then obtained as ̃ݖ௜௧ ൌ ௜௧ݖ െ  ௜௧ variesݖ ௜̅. The definition of variableݖ
across the columns: Column (1) uses the book-to-market ratio as variable ݖ௜௧. The book-to-market ratio is derived 
by end of June in each year based on prior year-end book and market values and held constant throughout the 
subsequent year. Column (2) considers firm size as variable ݖ௜௧. Firm size is measured by the natural logarithm of 
a firm's market equity by end of June in each year. Column (3) uses operating profitability (defined as gross profit 
minus selling, general, and administrative expenses (excluding research and development expenditures) deflated by 
the book value of total assets). Column (4) considers gross profit deflated by the book value of total assets. Column 
(5) uses the standard deviation of weekly returns measured over rolling 52 weeks ending on the last Friday prior to 
the end of month ݐ as variable ݖ௜௧. Column (6) relies on the firms' stock beta as variable ݖ௜௧. The stock betas are 
estimated by aid of firm-level market model regressions of 52 weekly stock returns (ending on the last Friday prior 
to the end of month ݐ) on the respective returns of the CRSP-value weighted stock index. The GPS-models in Panel 
A specify vector ࢞௧ as ࢞௧ ൌ ሾ1ሿ and, hence, analyze the time-series vs. cross-sectional predictability of (excess) 
stock returns. In Panel B, vector ࢞௧ is specified as ࢞௧ ൌ ሾ	1				ܴܨܴܯ௧	ሿ such that the time-series vs. cross-sectional 
predictability of the CAPM alpha is evaluated. The table only displays the results for the coefficient estimates in 
vector ࢠ௜௧. Results for the market (RMRF), SMB (small minus big), and HML (high minus low) factor exposure 
decompositions are not shown in Panel B of the table. The sample period is from July 1963 through December 
2016. All GPS-models are estimated with weighted pooled OLS, where observation weights are set equal to the 
beginning-of-time t value-weights of the stocks. t-statistics test for significance against a value of zero. Statistical 
inference is based on Driscoll and Kraay (1998) standard errors with a lag-length of three. ***, **, and * indicate 
significance at the 1, 5, and 10 percent levels (two-tailed). 
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Table 7: Continuous and multivariate firm characteristics 

  (1) (2) (3) (4) (5) (6) 
       

Panel A: GPS-models estimated with weighted pooled OLS 
       

Constant -0.317*** -0.248*** 0.275** 0.343*** 0.0960 -0.00826  
(-4.22) (-3.46) (2.54) (3.02) (0.80) (-0.06) 

       

Operating Profitability 1.743***     1.105*** 

 
(4.97) 

    
(2.61) 

       

Gross Profitability  0.778***   0.719*** 0.338 

 

 
(4.47) 

  
(4.14) (1.58) 

       

Volatility   -5.423*   -0.142 

 

  
(-1.94) 

  
(-0.05) 

       

Beta    -0.290** -0.315*** -0.303** 

 

   
(-2.57) (-2.75) (-2.52) 

              
R-squared 0.236 0.235 0.264 0.281 0.286 0.295 

N Obs. 2,115,518 2,115,518 2,289,867 2,275,370 2,073,983 2,059,734 

N Stocks 17,008 17,008 19,109 19,124 16,949 16,908 
       

Panel B: GPS-model specification test 

F(4, 641) 4.429*** 2.110* 3.486*** 2.400** 2.957*** 5.466*** 
p-value of specification test 0.002 0.078 0.008 0.049 0.003 0.000 

       

Panel C: GPS-models including firm fixed effects (weighted FE estimation) 
       

Constant -0.0826 -0.335*** 0.0440 0.422*** 0.0927 -0.0626  
(-0.82) (-3.32) (0.33) (3.05) (0.58) (-0.37) 

       

Operating profitability 0.614     -1.583***  
(1.31) 

    
(-2.63) 

       

Gross profitability  1.003***   0.913*** 1.744***   
(3.99) 

  
(3.75) (5.40) 

       

52w rolling Vola   0.269   4.672    
(0.08) 

  
(1.60) 

       

52w rolling Beta    -0.370*** -0.385*** -0.420***     
(-2.67) (-2.72) (-2.95) 

              
within R-squared 0.237 0.236 0.265 0.282 0.287 0.296 
N Obs. 2,115,518 2,115,518 2,289,867 2,275,370 2,073,983 2,059,734 
N Stocks 17,008 17,008 19,109 19,124 16,949 16,908 
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Table 7 – continued 

This table reports the coefficient estimates and t-statistics (in parentheses) from GPS-models with multivariate and 
continuous firm characteristics in vector ࢠ௜௧. The GPS-model is specified as 

௜௧ݎ ൌ ሺݐ݅ࢠ	⨂	ݐ࢞ሻ	ࣂ ൅ ݐ݅ߥ ൌ ሺሾ1				ܱܣ௜௧				ܣܩ௜௧				ܸ݈ܽ݋௜௧			ܽݐ݁ܤ௜௧ሿ ⊗ ሾ	1				ܴܨܴܯ௧				ܵܤܯ௧			ܮܯܪ௧ሿሻ	ࣂ ൅  ௜௧ߥ

 ௜௧ is operating profitability (defined as gross profit minus selling, general, and administrative expenses (excludingܣܱ
research and development expenditures) deflated by the book value of total assets). ܣܩ௜௧  is gross profit deflated by 
the book value of total assets. ܱܣ௜௧ and ܣܩ௜௧ are formed at the end of each June and then remain unchanged 
throughout the subsequent year. ܸ݈ܽ݋௜௧ refers to the standard deviation of weekly returns measured over rolling 52 
weeks ending on the last Friday (or, in case of a bank holiday, the subsequent trading day) prior to the end of month 
 ௜௧ is the CAPM-beta of weekly returns measured over rolling 52 weeks ending on the last Fridayܽݐ݁ܤ ,Likewise .ݐ
(or, in case of a bank holiday, the subsequent trading day) prior to the end of month ݐ. The table only displays the 
results for coefficient estimates (of subsets) of the variables in vector ࢠ௜௧. The Fama-French three-factor model alpha 
(as a measure of the risk-adjusted performance) conditional on firm ݅ 's characteristics in period ݐ is obtained as ߙො௜௧ ൌ
෠଴ߠ	 ൅ ෠ଵߠ ൈ ܣܱܲ ௜ܶ௧ ൅ ෠ଶߠ ൈ ܣܲܩ ௜ܶ௧ ൅ ෠ଷߠ ൈ ௜௧݈ܽ݋ܸ ൅ ෠ସߠ ൈ  ௜௧ firmࢠ ௜௧. The results for the interactions of vectorܽݐ݁ܤ
characteristics with the market (ܴܨܴܯ௧), ܵܤܯ௧  (small minus big), and ܮܯܪ௧ (high minus low) factors are not 
shown in the table. The sample period is from July 1963 through December 2016. The GPS-models in Panel A are 
estimated with weighted pooled OLS, where observation weights are set equal to the beginning-of-time t value-
weights of the stocks. Panel B displays the results from the GPS-model specification test discussed in Section 2.3.3. 
To this end, the GPS-models from Panel A are extended with a series of control variables. These control variables 
are the firm-level time averages for all variables that vary over both the cross-section and time. The GPS-model 
specification test then tests by aid of a standard Wald test whether the coefficient estimates for the control variables 
are jointly equal to zero. Panel C reports the results from estimating the GPS-models from Panel A with the fixed 
effects (FE) estimator, where observation weights are set equal to the beginning-of-time t value-weights of the 
stocks. t-statistics test for significance against a value of zero. Statistical inference is based on Driscoll and Kraay 
(1998) standard errors with a lag-length of three. ***, **, and * indicate significance at the 1, 5, and 10 percent 
levels (two-tailed). 
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5. Appendix A: Proof of Propositions 1 to 3 

In this appendix, we first set the ground by rewriting both the GPS-model and the portfolio sorts 

approach in matrix notation. We then perform a series of basic transformations that apply to all three 

propositions stated in Section 2. Finally, we proof Propositions 1 to 3 mathematically. For ease of 

mathematical tractability and as outlined in Section 2, we thereby restrict our formal analysis to the case 

of a balanced panel (ܰ firms with ܶ regularly spaced observations), time-constant firm characteristics 

(i.e., ࢠ௜௧ ≡ ௜௧ݓ ,.௜), and equally weighted portfolios (i.eࢠ ൌ 1/ܰ). Under these simplifying assumptions, 

the GPS-model can reproduce the results of the portfolio sorts approach by aid of standard pooled OLS 

where all observations are equally weighted. 

 

A.1  Matrix notation and proof of Proposition 1 

A.1.1  Coefficient estimates and standard errors for the GPS-model 

Applying matrix notation, we can write the GPS-model in (1) as21  

ۏ
ێ
ێ
ێ
ێ
ۍ
ଵଵݎ
ଵଶݎ
⋮
ଵ்ݎ
ଶଵݎ
⋮
ےே்ݎ

ۑ
ۑ
ۑ
ۑ
ې

ൌ ቌ቎

	ଵࢠ
	ଶࢠ
⋮
	ேࢠ

቏⨂ ൥
ଵ࢞	
⋮
்࢞	

൩ቍ ࣂ	 ൅

ۏ
ێ
ێ
ێ
ێ
ۍ
ଵଵߥ
ଵଶߥ
⋮
ଵ்ߥ
ଶଵߥ
⋮
ےே்ߥ

ۑ
ۑ
ۑ
ۑ
ې

 (A1) 

or, more briefly: 

ሻࡾሺܿ݁ݒ ൌ ቎

	ଵࢽ
	ଶࢽ
⋮
	ேࢽ

቏ ൌ ሺࢄ⨂ࢆሻ	ࣂ ൅  (A2) ࣇ

where ܿ݁ݒሺࡾሻ represents a (ܰܶ ൈ 1)-vector of the firms' period ݐ (excess) returns,  ࢠ௜  is a ሺ1 ൈ -ሻܯ

vector of firm characteristics (which are assumed to remain constant over time), ࢞௧ ൌ ሾ1		ݔଵ௧  ௄௧ሿݔ		⋯		

refers to a ሺ1 ൈ ሺܭ ൅ 1ሻሻ-vector of market-level variables (which apart from the constant change over 

time but do not vary in the cross-section), and ሺࢄ⨂ࢆሻ denotes the Kronecker product of (ܰ ൈܯ)-

dimensional matrix ࢆ ൌ ଵࢠൣ
ᇱ
	 … ேࢠ

ᇱ ൧′ with (ܶ ൈ ሺܭ ൅ 1ሻ)-dimensional matrix ࢄ ൌ ሾ࢞ଵ
ᇱ … ்࢞

ᇱ ሿ′. 

Estimating regression model (A2) with pooled OLS, and applying the calculus rules for the Kronecker 

product, yields the following coefficient estimates for ࣂ: 

෡ࣂ ൌ ൫ሺࢄ⨂ࢆሻ′ሺࢄ⨂ࢆሻ൯
ିଵ
ሺࢄ⨂ࢆሻᇱܿ݁ݒሺࡾሻ	

ൌ ሺࢆᇱࢄ⨂ࢆᇱࢄሻିଵሺࢆᇱ⨂ࢄᇱሻܿ݁ݒሺࡾሻ	

ൌ ሺሺࢆᇱࢆሻିଵࢆᇱ⨂ሺࢄᇱࢄሻିଵࢄᇱሻܿ݁ݒሺࡾሻ (A3) 

                                                      
21 Throughout Appendix A, we assume ܿ௜ ൌ 0 (for all ݅) and omit the firm-specific effects ܿ௜ from the analysis. 
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Next, we use the following Lemma from linear algebra (e.g., see Sydsaeter, Strom, and Berck, 2000, p. 

146): 

Lemma 1. For any three matrices ࡭ ∈ Թ௥,௥, ࡮ ∈ Թ௥,௦, and ࡯ ∈ Թ௦,௦ it holds true that ܿ݁ݒሺ࡯࡮࡭ሻ ൌ

ሺ࡭⨂′࡯ሻܿ݁ݒሺ࡮ሻ. 

Applying Lemma 1 to expression (A3) above yields 

෩ࣂ ൌ ሺࢄᇱࢄሻିଵࢄᇱࢆࡾሺࢆᇱࢆሻିଵ (A4) 

Here, ࣂ෩ refers to the (ሺܭ ൅ 1ሻ ൈ  ෠௞,௠ for the interactionߠ dimensional matrix of coefficient estimates-(ܯ

of firm characteristic ݉ (with ݉ ൌ 1,… ݇ ௜ and market-level factor variable ݇ (withࢠ from vector (ܯ, ൌ

0,… ,  .௧࢞	 in vector (ܭ

We now turn to the Driscoll and Kraay (1998) covariance matrix estimator for the pooled OLS 

regression model in (A1). For ܪ lags, it has the following structure: 

෡൯ࣂ෩൫ࢂ ൌ 	 ൫ሺࢄ⨂ࢆሻ′ሺࢄ⨂ࢆሻ൯
ିଵ
ሻ൯ࢄ⨂ࢆሻ′ሺࢄ⨂ࢆ൫ሺࢀ෨ࡿ

ିଵ
	

ൌ ሺሺࢆᇱࢆሻିଵ⨂ሺࢄᇱࢄሻିଵሻ	ࡿ෨ࢀ	ሺሺࢆᇱࢆሻିଵ⨂ሺࢄᇱࢄሻିଵሻ (A5) 

with  ࡿ෨ࢀ ൌ ષ෡଴ ൅	∑ ௝߱,ு	൫ષ෡௝ ൅ ષ෡௝
ᇱ൯ு

௝ୀଵ  , ષ෡௝ ൌ ∑ ෡൯ࣂఛ൫ࢎ
்
ఛୀ௝ାଵ ఛି௝ࢎ

ᇱ ൫ࣂ෡൯ ,    

and ࢎఛ൫ࣂ෡൯ ൌ ሺ࢞⨂ࢆఛሻᇱ	ࣇො	   

 

The modified Bartlett weights ௝߱,ு ൌ 1 െ ݆/ሺܪ ൅ 1ሻ ensure positive semi-definiteness of ࡿ෨ࢀ and 

smooth the sample autocovariance function such that higher order lags receive less weight. 

 

A.1.2  Coefficient estimates and standard errors for the portfolio sorts approach 

The portfolio sorts approach comprises two steps. The first step involves computing the month ݐ average 

return for portfolio ݌ as outlined in Equation (5). In our case of a balanced panel, time-constant firm 

characteristics, and equally weighted portfolios (i.e., ݓ௜௧ ൌ ௣ܰ
ିଵ ൌ ቀ∑ ௜ݖ

ሺ௣ሻே
௜ୀଵ ቁ

ିଵ
), we can rewrite 

Equation (5) as follows: 

௣௧ݎ ൌ
ଵ

ே೛
∑ ௜ݖ

ሺ௣ሻݎ௜௧ ൌ ௧࢘
ᇱࢊ௣൫ࢊ௣ᇱ ௣൯ࢊ

ିଵே
௜ୀଵ   (A6) 

with  ࢘௧
ᇱ ൌ ሾݎଵ௧				ݎଶ௧ ௣ᇱࢊ  ே௧ሿ  andݎ				…		 ൌ ቂݖଵ

ሺ௣ሻ				ݖଶ
ሺ௣ሻ ேݖ				…		

ሺ௣ሻቃ. 

Here, ݖ௜
ሺ௣ሻ is a dummy variable with value one if firm ݅ belongs to portfolio ݌, and zero otherwise. In 

the second step of the procedure, ݎ௣௧ from (A6) is regressed on a constant and the ܭ factor variables as 

outlined in Equation (6). This yields OLS coefficient estimates as follows:  
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෡௣ࢼ ൌ ሺࢄᇱࢄሻିଵࢄᇱ ൥
	௣ଵݎ
⋮
	௣்ݎ

൩ ൌ ሺࢄᇱࢄሻିଵࢄᇱ ൦
ଵ࢘
ᇱ ௣ᇱࢊ௣൫ࢊ ௣൯ࢊ

ିଵ

⋮
்࢘
ᇱ ௣ᇱࢊ௣൫ࢊ ௣൯ࢊ

ିଵ
൪	

ൌ ሺࢄᇱࢄሻିଵࢄᇱ ൥
ଵ࢘
ᇱ

⋮
்࢘
ᇱ
൩ ௣ᇱࢊ௣൫ࢊ ௣൯ࢊ

ିଵ
ൌ ሺࢄᇱࢄሻିଵࢄᇱሾࢽଵ			ࢽଶ ௣ᇱࢊ௣൫ࢊேሿࢽ				…			 ௣൯ࢊ

ିଵ
	

ൌ ሺࢄᇱࢄሻିଵࢄᇱࢊࡾ௣൫ࢊ௣ᇱ ௣൯ࢊ
ିଵ

 (A7) 

The formula for computing the Newey and West (1987) covariance matrix with lag length ܪ for the 

regression model in Equation (6) has the following structure:  

෡௣൯ࢼ෡൫ࢂ  ൌ ሺࢄᇱࢄሻିଵࡿ෡ࢀሺࢄᇱࢄሻିଵ  

with  ࡿ෡ࢀ ൌ ∑ ௣̂௧ߝ
ଶ்

௧ୀଵ ௧࢞
ᇱ࢞௧ ൅ ∑ ௝߱,ு 	∑ ቀߝ௣̂ఛߝ௣̂ఛି௝൫࢞ఛᇱ ఛି௝࢞ ൅ ఛି௝࢞

ᇱ ఛ൯ቁ࢞
்
ఛୀ௝ାଵ

ு
௝ୀଵ  (A8) 

Restricting the sample to two portfolios (or, groups of firms), arbitrarily denoted as ݌ ൌ “݄݄݅݃” and ݌ ൌ

 return difference as ݐ we can use matrix notation to rewrite Equation (10) computing the month ,”ݓ݋݈“

follows: 

Δݎ௣,௧ ൌ ௛௜௚௛,௧ݎ െ ௟௢௪,௧ݎ ൌ ௧࢘
ᇱࢆሺࢆᇱࢆሻିଵࢋଶ ൌ ௣,௧൧ݎΔ				௟௢௪,௧ݎൣ ቂ01ቃ  (A9) 

where matrix ࢆ is specified as  ࢆ ൌ ሾଓ ܰ) ௛௜௚௛ሿ and ଓ is aࢊ ൈ 1)-dimensional vector of ones. When 

regressing Δݎ௣,௧ from (A9) on a constant and the ܭ factor variables according to Equation (11), one 

obtains the following OLS coefficient estimates: 

෡୼ࢼ ൌ ሺࢄᇱࢄሻିଵࢄᇱ ቎
Δݎ௣,ଵ
⋮

Δݎ௣,்
቏ ൌ ሺࢄᇱࢄሻିଵࢄᇱࢆࡾሺࢆᇱࢆሻିଵࢋଶ  (A10) 

The Newey and West (1987) covariance matrix estimator for the coefficient estimates in (A10) has the 

same structure as the one displayed in Equation (A8), with ߝ୼̂௧ replacing ߝ௧̂ in the formula. 

 

A.1.3  Proof of Proposition 1 

Proposition 1 states that the GPS-model can reproduce the results of the portfolio sorts approach for the 

case of a single portfolio if vector ࢠ௜ ≡ 	௜ࢠ ௜௧ is specified asࢠ ൌ ሾ	1	ሿ. In this case, matrix ࢆ in Equation 

(A2) is given as ࢆ ൌ ଓ. As a result, the coefficient estimates of the GPS-model in this case are 

෩ࣂ ൌ ሺࢄᇱࢄሻିଵࢄᇱࡾଓሺଓᇱଓሻିଵ (A11) 

When there is only a single subject group, then ݖ௜
ሺ௣ሻ for all firms ݅ is equal to 1, i.e., ࢊ௣ ൌ ଓ. 

Consequently, the coefficient estimates for the portfolio sorts approach in Equation (A7) are equal to 
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෡ࢼ ൌ ሺࢄᇱࢄሻିଵࢄᇱࡾଓሺଓᇱଓሻିଵ (A12) 

As stated in Part A of Proposition 1, we thus have ࣂ෩ ≡  ∎ .෡. This completes the first part of the proofࢼ

We next turn to the standard errors for the coefficient estimates. With ݎ௣௧ ൌ ܰିଵ ∑ ௜௧ݎ
ே
௜ୀଵ  and ࣂ෩ ൌ  ,෡ࢼ

the (estimated) residual ߝ௧̂ in Equation (3) is equal to 

௧̂ߝ ൌ ܰିଵ ∑ ො௜௧ݒ
ே
௜ୀଵ ≡ ܰିଵ

௧ܸ  (A13) 

where ݒො௜௧ is the (estimated) residual from pooled OLS regression (4). Replacing ߝ௧̂ in (A8) by the 

corresponding term from (A13) yields 

ܰଶ	ࡿ෡ࢀ ൌ ∑ ௧ܸ
ଶ்

௧ୀଵ ௧࢞
ᇱ࢞௧ ൅ ∑ ௝߱,ு 	∑ ቀ ఛܸ ఛܸି௝൫࢞ఛᇱ ఛି௝࢞ ൅ ఛି௝࢞

ᇱ ఛ൯ቁ࢞
்
ఛୀ௝ାଵ

ு
௝ୀଵ   (A14) 

In case of the GPS-model, we plug in ࢆ ൌ ଓ in Equation (A5). This gives 

෡൯ࣂ෩൫ࢂ ൌ ሺሺଓᇱଓሻିଵ⨂ሺࢄᇱࢄሻିଵሻ	ࡿ෨ࢀ	ሺሺଓᇱଓሻିଵ⨂ሺࢄᇱࢄሻିଵሻ ൌ ሺࢄᇱࢄሻିଵ
ࢀ෨ࡿ
ܰଶ ሺࢄ

ᇱࢄሻିଵ (A15) 

Comparing ࢂ෩൫ࣂ෡൯ in (A15) with ࢂ෡൫ࢼ෡൯ from (A8) in case of a single subject group, we hence have to 

show that ܰିଶࡿ෨ࢀ ൌ  :෡൯ in (A5), we obtainࣂఛ൫ࢎ  Rewriting .ࢀ෡ࡿ

෡൯ࣂఛ൫ࢎ ൌ ሺଓ⨂࢞ఛሻᇱ	ࣇො ൌ ሾ࢞ఛᇱ ⋯ ఛᇱ࢞ ሿࣇො ൌ

ۏ
ێ
ێ
ۍ
∑ ො௜ఛݒ
ே
௜ୀଵ

ଵఛݔ ∑ ො௜ఛݒ
ே
௜ୀଵ
⋮

௄ఛݔ ∑ ො௜ఛݒ
ே
௜ୀଵ ے

ۑ
ۑ
ې
ൌ ఛᇱ࢞ ఛܸ  (A16) 

From (A16) it follows for ષ෡௝ in (A5) that ષ෡௝ ൌ ∑ ෡൯ࣂఛ൫ࢎ
்
ఛୀ௝ାଵ ఛି௝ࢎ

ᇱ ൫ࣂ෡൯ ൌ ∑ ఛܸ ఛܸି௝࢞ఛᇱ ఛି௝࢞
்
ఛୀ௝ାଵ , and 

consequently 

ࢀ෨ࡿ ൌ ∑ ௧ܸ
ଶ࢞௧

ᇱ࢞௧
்
௧ୀଵ ൅ ∑ ௝߱,ு 	∑ ቀ ఛܸ ఛܸି௝൫࢞ఛᇱ ఛି௝࢞ ൅ ఛି௝࢞

ᇱ ఛ൯ቁ࢞
்
ఛୀ௝ାଵ

ு
௝ୀଵ ≡ ܰଶ	ࡿ෡ࢀ   (A17) 

This completes the proof. ∎ 

 

A.2  Proof of Proposition 2 

Proposition 2 states that the GPS-model can reproduce the results of the portfolio sorts approach for 

multiple sorted portfolios by estimating a single pooled OLS regression on the individual firm level. To 

this end, we specify vector ࢠ௜ as ࢠ௜	 ൌ ሾ	ݖ௜
ሺଵሻ			ݖ௜

ሺଶሻ		. . ௜ݖ			.
ሺ௉ሻሿ. Using the definition of ࢊ௣ in (A6), ሺܰ ൈ

ܲሻ-matrix ࢆ in equation (A2) is given as follows:  
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ࢆ ൌ ൥
	ଵࢠ
⋮
	ேࢠ

൩ ൌ ൦
ଵݖ
ሺଵሻ ⋯ ଵݖ

ሺ௉ሻ

⋮ ⋮
ேݖ
ሺଵሻ ⋯ ேݖ

ሺ௉ሻ
൪ ൌ ሾࢊଵ ⋯  ௉ሿ   (A18)ࢊ

The coefficient estimates for the GPS-model are derived in (A4). Specifying matrix ࢆ according to 

(A18) thus results in a (ሺܭ ൅ 1ሻ ൈ ܲ)-dimensional matrix of coefficient estimates ࣂ෩. The ݌-th column 

of results matrix  ࣂ෩ can be obtained as follows: 

෩௣ࣂ ൌ ௣ࢋ෩ࣂ ൌ ሺࢄᇱࢄሻିଵࢄᇱࢆࡾሺࢆᇱࢆሻିଵࢋ௣ (A19) 

where ࢋ௣ is a ܲ-dimensional vector of zeroes with a one on position ݌. Proposition 2 claims that ࣂ෩௣ ≡

 coefficient estimates from estimating the second-step time-series ݌ ෡௣ refers to the portfolioࢼ ෡௣ whereࢼ

regression of the portfolio sorts approach. The respective coefficient estimates have been derived in 

Equation (A7). We thus have to proof that ࣂ෩௣ ≡ ෡௣ࢼ ൌ ሺࢄᇱࢄሻିଵࢄᇱࢊࡾ௣൫ࢊ௣ᇱ ௣൯ࢊ
ିଵ

 or, equivalently, that 

௣ࢋሻିଵࢆᇱࢆሺࢆ ≡ ௣ᇱࢊ௣൫ࢊ ௣൯ࢊ
ିଵ

 (A20) 

To show that (A20) indeed is an identity, we first note that ࢊ௣ ൌ  Multiplying both sides in (A20) .࢖ࢋࢆ

with ࢖ࢊᇱ  from the left yields 

௣ᇱࢊ ௣ࢋሻିଵࢆᇱࢆሺࢆ ൌ ௣ᇱࢋ ௣ࢋሻିଵࢆᇱࢆሺࢆᇱࢆ ൌ 1	

≡ ௣ᇱࢊ ௣ᇱࢊ௣൫ࢊ ௣൯ࢊ
ିଵ

ൌ 1 
(A21) 

This shows that ࣂ෩௣ ≡  ∎ .෡௣ and, hence, completes the first part of the proof of Proposition 2ࢼ

Next, we turn to the standard errors for the coefficient estimates. With ݎ௣௧ ൌ ௣ܰ
ିଵ ∑ ௜ݖ

௣ݎ௜௧
ே
௜ୀଵ  and ࣂ෩௣ ൌ

 ௣̂௧ for the portfolio sorts approach in equation (6) is equal toߝ ෡௣, the (estimated) residualࢼ

௣̂௧ߝ ൌ ௣ܰ
ିଵ ∑ ௜ݖ

ሺ௣ሻݒො௜௧
ே
௜ୀଵ ≡ ௣ܰ

ିଵ
௣ܸ௧  (A22) 

where ݒො௜௧ is the (estimated) residual from pooled OLS regression (7). Replacing ߝ௣̂௧ in (A8) by the 

corresponding term from (A22) yields 

௣ܰ
ଶ	ࡿ෡ࢀ ൌ ∑ ௣ܸ௧

ଶ்
௧ୀଵ ௧࢞

ᇱ࢞௧ ൅ ∑ ௝߱,ு 	∑ ቀ ௣ܸఛ ௣ܸ,ఛି௝൫࢞ఛᇱ ఛି௝࢞ ൅ ఛି௝࢞
ᇱ ఛ൯ቁ࢞

்
ఛୀ௝ାଵ

ு
௝ୀଵ ≡ ࢀ෡ࡿ

ሺ௣ሻ  (A23) 

As a consequence, we finally obtain the Newey and West (1987) standard errors in case of the portfolio 

sorts approach as follows: 

෡௣൯ࢼ෡൫ࢂ ൌ ௣ܰ
ିଶሺࢄᇱࢄሻିଵࡿ෡ࢀ

ሺ௣ሻሺࢄᇱࢄሻିଵ  (A24) 

We now consider the GPS-model with matrix ࢆ being defined according to Equation (A18). The 

൫ܲ ൈ ሺܭ ൅ 1ሻ൯-dimensional column vector ࢎఛ൫ࣂ෡൯ from (A5) in this case is equal to 



49 
 

෡൯ࣂఛ൫ࢎ ൌ ሺ࢞⨂′ࢆఛᇱ ሻ	ࣇො ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ ∑ ௜ݖ

ሺଵሻݒො௜ఛ
ே
௜ୀଵ

ଵఛݔ ∑ ௜ݖ
ሺଵሻݒො௜ఛ

ே
௜ୀଵ
⋮

௄ఛݔ ∑ ௜ݖ
ሺଵሻݒො௜ఛ

ே
௜ୀଵ

∑ ௜ݖ
ሺଶሻݒො௜ఛ

ே
௜ୀଵ

ଵఛݔ ∑ ௜ݖ
ሺଶሻݒො௜ఛ

ே
௜ୀଵ
⋮

௄ఛݔ ∑ ௜ݖ
ሺ௉ሻݒො௜ఛ

ே
௜ୀଵ ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ ଵܸఛ
ଵఛݔ ଵܸఛ
⋮

௄ఛݔ ଵܸఛ

ଶܸఛ
ଵఛݔ ଶܸఛ
⋮

௄ఛݔ ௉ܸఛے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ൌ ሺࡵ௉⨂࢞ఛᇱ ሻ ൥
ଵܸఛ
⋮
௉ܸఛ

൩ ≡ ሺࡵ௉⨂࢞ఛᇱ ሻࢂఛ  (A25) 

where ࡵ௉ is the ܲ-dimensional identity matrix. With (A25) it follows for ષ෡௝ in Equation (A5) that  

ષ෡௝ ൌ ∑ ሺࡵ௉⨂࢞ఛᇱ ሻࢂఛࢂఛି௝
ᇱ ൫ࡵ௉⨂࢞ఛି௝൯

்
ఛୀ௝ାଵ ൌ ∑ ൫ࢂఛࢂఛି௝

ᇱ ൯⨂൫࢞ఛᇱ ఛି௝൯࢞
்
ఛୀ௝ାଵ   (A26) 

As a result, matrix ࡿ෨ࢀ in (A5) can be written as follows: 

ࢀ෨ࡿ ൌ 		෍ሺࢂ௧ࢂ௧
ᇱ ሻ⨂ሺ࢞௧

ᇱ࢞௧ሻ
்

௧ୀଵ

൅	෍ ௝߱,ு ෍ ቀ൫ࢂఛࢂఛି௝
ᇱ ൯⨂൫࢞ఛᇱ ఛି௝൯࢞ ൅ ൫ࢂఛି௝ࢂఛᇱ ൯⨂൫࢞ఛି௝

ᇱ ఛ൯ቁ࢞

்

ఛୀ௝ାଵ

ு

௝ୀଵ

 

(A27) 

We next define ࡿ෨ࢀ
ሺ௣,௤ሻ as follows 

ࢀ෨ࡿ
ሺ௣,௤ሻ ≡ 		෍ ௣ܸ௧ ௤ܸ௧ሺ࢞௧

ᇱ࢞௧ሻ
்

௧ୀଵ

൅	෍ ௝߱,ு ෍ ቀ ௣ܸఛ ௤ܸ,ఛି௝൫࢞ఛᇱ ఛି௝൯࢞ ൅ ௣ܸ,ఛି௝ ௤ܸఛ൫࢞ఛି௝
ᇱ ఛ൯ቁ࢞

்

ఛୀ௝ାଵ

ு

௝ୀଵ

 (A28) 

where ௣ܸ௧ is a scalar as in (A22) above. Consequently, matrix ࡿ෨ࢀ is equal to  

ࢀ෨ࡿ ൌ 		 ቎
ࢀ෨ࡿ
ሺଵ,ଵሻ ⋯ ࢀ෨ࡿ

ሺଵ,௉ሻ

⋮ ⋱ ⋮
ࢀ෨ࡿ
ሺ௉,ଵሻ ⋯ ࢀ෨ࡿ

ሺ௉,௉ሻ
቏ (A29) 

Moreover, with matrix ࢆ being defined according to (A18), ࢆᇱࢆ now is a ሺܲ ൈ ܲሻ-dimensional diagonal 

matrix with element ሺ݌,  structured ࢀ෨ࡿ ሻ equal to ௣ܰ and all off-diagonal elements equal to zero. With݌

according to Expression (A29), we can thus rewrite ࢂ෩൫ࣂ෡൯ in (A5) as follows: 

෡൯ࣂ෩൫ࢂ ൌ 	 ቎
ଵܰ
ିଶሺࢄᇱࢄሻି૚ࡿ෨ࢀ

ሺଵ,ଵሻሺࢄᇱࢄሻି૚ ⋯ ଵܰ
ିଵ

௉ܰ
ିଵሺࢄᇱࢄሻି૚ࡿ෨ࢀ

ሺଵ,௉ሻሺࢄᇱࢄሻି૚

⋮ ⋱ ⋮

ଵܰ
ିଵ

௉ܰ
ିଵሺࢄᇱࢄሻି૚ࡿ෨ࢀ

ሺ௉,ଵሻሺࢄᇱࢄሻି૚ ⋯ ௉ܰ
ିଶሺࢄᇱࢄሻି૚ࡿ෨ࢀ

ሺ௉,௉ሻሺࢄᇱࢄሻି૚
቏ (A30) 

The second part of Proposition 2 claims that SE(ߠ෠௣,௞ሻ ൌ SEሺߚመ௣,௞ሻ for ݇ ൌ 0, 1, … , ݌ and ܭ ൌ 1,… , ܲ. 

To proof that this holds true, it is sufficient to show that ܰ ௣
ିଶሺࢄᇱࢄሻି૚ࡿ෨ࢀ

ሺ௣,௣ሻሺࢄᇱࢄሻି૚ in Expression (A30) 

is identical to ࢂ෡൫ࢼ෡௣൯ in Equation (A24) for every ݌ ൌ 1,… , ܲ.  This in turn is equivalent to 

demonstrating that ࡿ෡ࢀ
ሺ௣ሻ from (A23) coincides with ࡿ෨ࢀ

ሺ௣,௣ሻ in (A28). By comparing the two expressions 

we see that this holds true, which completes the proof. ∎ 
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A.3  Proof of Proposition 3 

Proposition 3 states that the GPS-model can reproduce the results of the portfolio sorts approach for the 

case of performance differences between two portfolios. In order to compare the performance of firms 

in group “high” with that of firms belonging to group “low”, we have to specify vector ࢠ௜  as ࢠ௜	 ൌ

ሾ	1			ݖ௜
ሺ௛௜௚௛ሻሿ such that the ሺܰ ൈ 2ሻ-dimensional matrix ࢆ comprising the characteristics of all ܰ firms 

is equal to ࢆ ൌ ሾଓ  in Expression (A9) which is used ࢆ ௛௜௚௛ሿ. This matches the definition of matrixࢊ

for deriving the results of performance differences in case of the portfolio sorts approach. Estimating 

the GPS-model in (A2) with pooled OLS yields the coefficient estimates, structured as a (ሺܭ ൅ 1ሻ ൈ 2)-

dimensional matrix, in Equation (A4). 

The second column of ࣂ෩ in (A4) contains the coefficient estimates for the interaction terms between 

dummy variable ݖ௜
ሺ௛௜௚௛ሻ and the factor variables in vector ࢞௧. In Equation (12), those coefficient 

estimates are named ߠ෠୼௞. To extract the coefficient estimates for ߠ෠୼௞ from ࣂ෩, we post-multiply 

Expression (A4) with ࢋଶ. The resulting term coincides with the one in Equation (A10) for the portfolio 

sorts approach. This shows that ߚመΔ௞ ≡ ݇	∀) ෠Δ௞ߠ ൌ 0, 1, … ,   .ሻܭ

The first column of ࣂ෩ in (A4) comprises the coefficient estimates for subject group “low”. In Equation 

(12), the respective coefficient estimates are labeled as ߠ෠௟௢௪,௞	(with ݇ ൌ 0, 1, … ,  The coefficient .(ܭ

estimates for ߠ௟௢௪,௞	 are retrieved by post-multiplying (A4) with ࢋଵ. In case of the portfolio sorts 

approach, we obtain the coefficient estimates for the “low” portfolio (ߚመ௟௢௪,௞) by repeating the analysis 

of (A9) and (A10) with ࢋଵ replacing ࢋଶ. The resulting expressions for the portfolio sorts approach and 

the GPS-model again coincide. This demonstrates ߚመ௟௢௪,௞ ≡ θ෠௟௢௪,௞ (∀	݇ ൌ 0, 1, … ,  ,ሻ and, henceܭ

completes the first part of the proof. ∎ 

For the second part of the proof, we note that due to ݎ௛௜௚௛,௧ ൌ ௟௢௪,௧ݎ ൅ Δݎ௣,௧ the following corollary 

holds true: 

Corollary 2.        ߚመ௛௜௚௛,௞ ൌ መ௟௢௪,௞ߚ ൅ መΔ௞ߚ ൌ θ෠௟௢௪,௞ ൅ ݇ ෠Δ௞   for allߠ ൌ 0, 1, … ,  (A31) .ܭ

Based on Corollary 2 and Proposition 2, and because of ݎ௣௧ ൌ ௣ܰ
ିଵ ∑ ௜ݖ

ሺ௣ሻݎ௜௧
ே
௜ୀଵ  (for ݌ = “low”, “high”), 

residual ߝ୼̂௧ in the second-step time-series regression (11) of the portfolio sorts approach is equal to 

୼̂௧ߝ ൌ ௛ܰ௜௚௛
ିଵ ∑ ௜ݖ

ሺ௛௜௚௛ሻݒො௜௧
ே
௜ୀଵ െ ௟ܰ௢௪

ିଵ ∑ ௜ݖ
ሺ௟௢௪ሻݒො௜௧

ே
௜ୀଵ ≡ ௛ܰ௜௚௛

ିଵ
௛ܸ௜௚௛,௧ െ ௟ܰ௢௪

ିଵ
௟ܸ௢௪,௧  (A32) 

where ݒො௜௧ is the (estimated) residual from pooled OLS regression (7). Replacing ߝ୼̂௧ in the Newey and 

West (1987) covariance matrix estimator (A8) for the coefficient estimates in (A10) by the respective 

expression in (A32) yields 
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ࢀ෡ࡿ	 ൌ෍ቆ
௛ܸ௜௚௛,௧

௛ܰ௜௚௛
െ ௟ܸ௢௪,௧

௟ܰ௢௪
ቇ
ଶ்

௧ୀଵ

௧࢞
ᇱ࢞௧	

൅෍ ௝߱,ு 	 ෍ ൭ቆ
௛ܸ௜௚௛,ఛ

௛ܰ௜௚௛
െ ௟ܸ௢௪,ఛ

௟ܰ௢௪
ቇ ቆ

௛ܸ௜௚௛,ఛି௝

௛ܰ௜௚௛
െ

௟ܸ௢௪,ఛି௝

௟ܰ௢௪
ቇ ൫࢞ఛᇱ ఛି௝࢞ ൅ ఛି௝࢞

ᇱ ఛ൯൱࢞

்

ఛୀ௝ାଵ

ு

௝ୀଵ

 

(A33) 

We now turn to the GPS-model with matrix ࢆ being defined as ࢆ ൌ ሾଓ ௛௜௚௛ሿ. The ൫2ࢊ ൈ ሺܭ ൅ 1ሻ൯-

dimensional column vector ࢎఛ൫ࣂ෡൯ from (A5) in this case is equal to 

෡൯ࣂఛ൫ࢎ ൌ ሺ࢞⨂′ࢆఛᇱ ሻ	ࣇො ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ

∑ ො௜ఛݒ
ே
௜ୀଵ

ଵఛݔ ∑ ො௜ఛݒ
ே
௜ୀଵ
⋮

௄ఛݔ ∑ ො௜ఛݒ
ே
௜ୀଵ

∑ ௜ݖ
ሺ௛௜௚௛ሻݒො௜ఛ

ே
௜ୀଵ

ଵఛݔ ∑ ௜ݖ
ሺ௛௜௚௛ሻݒො௜ఛ

ே
௜ୀଵ

⋮
௄ఛݔ ∑ ௜ݖ

ሺ௛௜௚௛ሻݒො௜ఛ
ே
௜ୀଵ ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ൌ ൤
ఛᇱ࢞ ఛᇱ࢞

ఛᇱ࢞ ૙′
൨ ൤ ௛ܸ௜௚௛,ఛ

௟ܸ௢௪,ఛ
൨ ≡ ൤

ఛᇱ࢞ ఛᇱ࢞

ఛᇱ࢞ ૙′
൨  ఛ  (A34)ࢂ

From (A34) and ௛ܸ௜௚௛,ఛ ൅ ௟ܸ௢௪,ఛ ≡ ఛܸ it follows for ષ෡௝ in Equation (A5) that  

ષ෡௝ ൌ ෍ ቈ ఛܸ ఛܸି௝࢞ఛᇱ ఛି௝࢞ ఛܸ ௛ܸ௜௚௛,ఛି௝࢞ఛᇱ ఛି௝࢞
௛ܸ௜௚௛,ఛ ఛܸି௝࢞ఛᇱ ఛି௝࢞ ௛ܸ௜௚௛,ఛ ௛ܸ௜௚௛,ఛି௝࢞ఛᇱ ఛି௝࢞

቉

்

ఛୀ௝ାଵ

 (A35) 

As a result, matrix ࡿ෨ࢀ in (A5) can be written in block form as follows: 

ࢀ෨ࡿ ൌ ൥
ࢀ෨ࡿ
ሺ૚,૚ሻ ࢀ෨ࡿ

ሺ૚,૛ሻ

ࢀ෨ࡿ
ሺ૛,૚ሻ ࢀ෨ࡿ

ሺ૛,૛ሻ൩  
(A36) 

where 

ࢀ෨ࡿ
ሺ૚,૚ሻ ൌ ∑ ௧ܸ

ଶሺ࢞௧
ᇱ࢞௧ሻ

்
௧ୀଵ ൅	∑ ௝߱,ு ∑ ቀ ఛܸ ఛܸି௝൫࢞ఛᇱ ఛି௝࢞ ൅ ఛି௝࢞

ᇱ ఛ൯ቁ࢞
்
ఛୀ௝ାଵ

ு
௝ୀଵ   

ࢀ෨ࡿ
ሺ૚,૛ሻ ൌ ∑ ௧ܸ ௛ܸ௜௚௛,௧ሺ࢞௧

ᇱ࢞௧ሻ
்
௧ୀଵ ൅	∑ ௝߱,ு ∑ ൫ ఛܸ ௛ܸ௜௚௛,ఛି௝࢞ఛᇱ ఛି௝࢞ ൅ ௛ܸ௜௚௛,ఛ ఛܸି௝࢞ఛି௝

ᇱ ఛ൯࢞
்
ఛୀ௝ାଵ

ு
௝ୀଵ   

ࢀ෨ࡿ
ሺ૛,૚ሻ ൌ ∑ ௧ܸ ௛ܸ௜௚௛,௧ሺ࢞௧

ᇱ࢞௧ሻ
்
௧ୀଵ ൅	∑ ௝߱,ு ∑ ൫ ௛ܸ௜௚௛,ఛ ఛܸି௝࢞ఛᇱ ఛି௝࢞ ൅ ఛܸ ௛ܸ௜௚௛,ఛି௝࢞ఛି௝

ᇱ ఛ൯࢞
்
ఛୀ௝ାଵ

ு
௝ୀଵ   

ࢀ෨ࡿ
ሺ૛,૛ሻ ൌ ∑ ௛ܸ௜௚௛,௧

ଶ ሺ࢞௧
ᇱ࢞௧ሻ

்
௧ୀଵ ൅	∑ ௝߱,ு ∑ ቀ ௛ܸ௜௚௛,ఛ ௛ܸ௜௚௛,ఛି௝൫࢞ఛᇱ ఛି௝࢞ ൅ ఛି௝࢞

ᇱ ఛ൯ቁ࢞
்
ఛୀ௝ାଵ

ு
௝ୀଵ   

 

Next, we rewrite matrix ሺࢆᇱࢆሻିଵ⨂ሺࢄᇱࢄሻିଵ in (A5) as  

ሺࢆᇱࢆሻିଵ⨂ሺࢄᇱࢄሻିଵ ൌ 	 ቈ ௟ܰ௢௪
ିଵ ሺࢄᇱࢄሻିଵ െ ௟ܰ௢௪

ିଵ ሺࢄᇱࢄሻିଵ

െ ௟ܰ௢௪
ିଵ ሺࢄᇱࢄሻିଵ ൫ ௟ܰ௢௪

ିଵ ൅ ௛ܰ௜௚௛
ିଵ ൯ሺࢄᇱࢄሻିଵ

቉ (A37) 

and insert (A37) into the Driscoll and Kraay (1998) covariance matrix estimator of (A5) to obtain 

෡൯ࣂ෩൫ࢂ ൌ ሺሺࢆᇱࢆሻିଵ⨂ሺࢄᇱࢄሻିଵሻ	ࡿ෨ࢀ	ሺሺࢆᇱࢆሻିଵ⨂ሺࢄᇱࢄሻିଵሻ ൌ ൤ࢂ
෩ሺଵ,ଵሻ ෩ሺଵ,ଶሻࢂ

෩ሺଶ,ଵሻࢂ ෩ሺଶ,ଶሻࢂ
൨	 (A38) 
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where  

෩ሺଵ,ଵሻࢂ ൌ ௟ܰ௢௪
ିଶ ሺࢄᇱࢄሻିଵ ቀࡿ෨ࢀ

ሺ૚,૚ሻ െ ࢀ෨ࡿ
ሺ૚,૛ሻ െ ࢀ෨ࡿ

ሺ૛,૚ሻ ൅ ࢀ෨ࡿ
ሺ૛,૛ሻቁ ሺࢄᇱࢄሻିଵ  

෩ሺଵ,ଶሻࢂ ൌ ௟ܰ௢௪
ିଵ

௛ܰ௜௚௛
ିଵ ሺࢄᇱࢄሻିଵ ቀࡿ෨ࢀ

ሺ૚,૛ሻ െ ࢀ෨ࡿ
ሺ૛,૛ሻቁ ሺࢄᇱࢄሻିଵ െ   ෩ሺଵ,ଵሻࢂ

෩ሺଶ,ଵሻࢂ ൌ ௟ܰ௢௪
ିଵ

௛ܰ௜௚௛
ିଵ ሺࢄᇱࢄሻିଵ ቀࡿ෨ࢀ

ሺ૛,૚ሻ െ ࢀ෨ࡿ
ሺ૛,૛ሻቁ ሺࢄᇱࢄሻିଵ െ   ෩ሺଵ,ଵሻࢂ

෩ሺଶ,ଶሻࢂ ൌ ௛ܰ௜௚௛
ିଶ ሺࢄᇱࢄሻିଵࡿ෨ࢀ

ሺ૛,૛ሻሺࢄᇱࢄሻିଵ െ ෩ሺଵ,ଵሻࢂ െ ෩ሺଵ,ଶሻࢂ െ   ෩ሺଶ,ଵሻࢂ

 

According to the second part of Proposition 3, we have to show that ࢂ෩ሺଶ,ଶሻ in (A38) coincides with the 

Newey-West covariance matrix estimator in (A10) with 	ࡿ෡ࢀ specified according to (A33). Therefore, we 

simplify the “sandwich” expressions in (A38) as follows 

ࢀ෨ࡿ
ሺ૚,૚ሻ െ ࢀ෨ࡿ

ሺ૚,૛ሻ െ ࢀ෨ࡿ
ሺ૛,૚ሻ ൅ ࢀ෨ࡿ

ሺ૛,૛ሻ ൌ ∑ ௟ܸ௢௪,௧
ଶ ሺ࢞௧ᇱ࢞௧ሻ்

௧ୀଵ ൅	∑ ௝߱,ு ∑ ቀ ௟ܸ௢௪,ఛ ௟ܸ௢௪,ఛି௝൫࢞ఛᇱ ఛି௝࢞ ൅ ఛି௝࢞
ᇱ ఛ൯ቁ࢞

்
ఛୀ௝ାଵ

ு
௝ୀଵ   

ࢀ෨ࡿ
ሺ૚,૛ሻ െ ࢀ෨ࡿ

ሺ૛,૛ሻ ൌ ∑ ௟ܸ௢௪,௧ ௛ܸ௜௚௛,௧ሺ࢞௧ᇱ࢞௧ሻ்
௧ୀଵ ൅	∑ ௝߱,ு ∑ ቀ൫ ௟ܸ௢௪,ఛ ௛ܸ௜௚௛,ఛି௝൯࢞ఛᇱ ఛି௝࢞ ൅ ൫ ௟ܸ௢௪,ఛି௝ ௛ܸ௜௚௛,ఛ൯࢞ఛି௝

ᇱ ఛቁ࢞
்
ఛୀ௝ାଵ

ு
௝ୀଵ   

ࢀ෨ࡿ
ሺ૛,૚ሻ െ ࢀ෨ࡿ

ሺ૛,૛ሻ ൌ ∑ ௛ܸ௜௚௛,௧ ௟ܸ௢௪,௧ሺ࢞௧ᇱ࢞௧ሻ்
௧ୀଵ ൅	∑ ௝߱,ு ∑ ቀ൫ ௛ܸ௜௚௛,ఛ ௟ܸ௢௪,ఛି௝൯࢞ఛᇱ ఛି௝࢞ ൅ ൫ ௛ܸ௜௚௛,ఛି௝ ௟ܸ௢௪,ఛ൯࢞ఛି௝

ᇱ ఛቁ࢞
்
ఛୀ௝ାଵ

ு
௝ୀଵ   

and insert the resulting expressions into ࢂ෩ሺଶ,ଶሻ from (A38). This finally yields 

෩ሺଶ,ଶሻࢂ ൌ ሺࢄᇱࢄሻିଵ	ࡽ෩ࢀ
௱	ሺࢄᇱࢄሻିଵ	  

with 

ࢀ෩ࡽ
௱ ൌ 	෍ቆ

௛ܸ௜௚௛,௧

௛ܰ௜௚௛
െ ௟ܸ௢௪,௧

௟ܰ௢௪
ቇ
ଶ்

௧ୀଵ

௧࢞
ᇱ࢞௧	

൅෍ ௝߱,ு 	 ෍ ൭ቆ
௛ܸ௜௚௛,ఛ

௛ܰ௜௚௛
െ ௟ܸ௢௪,ఛ

௟ܰ௢௪
ቇቆ

௛ܸ௜௚௛,ఛି௝

௛ܰ௜௚௛
െ ௟ܸ௢௪,ఛି௝

௟ܰ௢௪
ቇ ൫࢞ఛᇱ ఛି௝࢞ ൅ ఛି௝࢞

ᇱ ఛ൯൱࢞

்

ఛୀ௝ାଵ

ு

௝ୀଵ

 

(A39) 

Since ࡽ෩ࢀ
௱ in (A39) and 	ࡿ෡ࢀ in (A33) coincide, this shows that SEሺߠ෠Δ௞ሻ ൌ SEሺߚመΔ௞ሻ for all 	݇ ൌ 0, 1, … ,   .ܭ

The last part of Proposition (3) claims that ࢂ෩ሺଵ,ଵሻ in (A38) coincides with the Newey-West covariance 

matrix estimator for the second-step time-series regression of the portfolio sorts approach applied to 

portfolio “low”. The respective Newey-West covariance estimator has been derived in Expression (A24) 

above with ݌ = “low”. By replacing ࡿ෨ࢀ
ሺ૚,૚ሻ െ ࢀ෨ࡿ

ሺ૚,૛ሻ െ ࢀ෨ࡿ
ሺ૛,૚ሻ ൅ ࢀ෨ࡿ

ሺ૛,૛ሻ with the corresponding term derived 

above, we finally obtain the following expression for ࢂ෩ሺଵ,ଵሻ: 

෩ሺଵ,ଵሻࢂ ൌ ሺࢄᇱࢄሻିଵ	ࡽ෩ࢀ
௛௜௚௛	ሺࢄᇱࢄሻିଵ	 (A40) 

with 

ࢀ෩ࡽ
௛௜௚௛ ൌ 	∑ ௟ܰ௢௪

ିଶ
௟ܸ௢௪,௧
ଶ்

௧ୀଵ ௧࢞
ᇱ࢞௧ ൅ ∑ ௝߱,ு 	∑ ቀ ௟ܰ௢௪

ିଶ
௟ܸ௢௪,ఛ ௟ܸ௢௪,ఛି௝൫࢞ఛᇱ ఛି௝࢞ ൅ ఛି௝࢞

ᇱ ఛ൯ቁ࢞
்
ఛୀ௝ାଵ

ு
௝ୀଵ   

Since ࡽ෩ࢀ
௛௜௚௛ in (A40) and 	ࡿ෡ࢀ for portfolio ݌ = “low” in (A23) are identical, this demonstrates that 

SE(ߠ෠୪୭୵,௞ሻ ൌ SEሺߚመ୪୭୵,௞ሻ for all 	݇ ൌ 0, 1, … ,  ∎ .This completes the proof of Proposition 3 .ܭ




