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Abstract

We find a relationship between negative momentum and positive risk-neutral
skewness (RNS) in stocks. In economic recessions and high market volatility
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and short those with the lowest RNS has significant positive abnormal returns.
This paper explores the relationship of the RNS anomaly and momentum
crashes and finds that the WML strategy within the highest RNS portfolio
experiences the most severe momentum crashes following market declines and
high volatility periods. These results hold controlling for size and other firm
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1 Introduction

We find that in economic recessions and periods of high market volatility a zero investment

portfolio on risk-neutral skewness (RNS) has greater positive abnormal returns and a higher

market beta. Furthermore, we find a negative relationship between RNS and momentum, so

the zero-cost RNS portfolio is effectively short momentum.

Daniel and Moskowitz (2016) find that momentum strategies can experience infrequent

negative returns that are persistent especially in economic recessions and high market

volatility periods. The market beta of the momentum strategy is lower in periods of high

market stress. We conjecture that the risk neutral skewness anomaly picks up momentum

crashes. We examine the relation of risk neutral skewness anomaly and momentum crashes

by independently sorting our sample by risk neutral skewness and past performance into

terciles, resulting in nine portfolios. We form a momentum strategy in each RNS tercile and

regress the equally- and value-weighted excess returns of these WML portfolios on a set of

time series.

We find that the momentum strategy in the high RNS tercile experiences the most severe

crashes. We control for size and find that for the smallest size tercile momentum strategies

in all RNS terciles experience a similar level of momentum crashes. However, in the median

and large size terciles, the momentum strategies in the highest RNS terciles earn the lowest

returns in recessions and periods of high market volatility. Conversely, the lowest RNS tercile

experiences the least number of momentum crashes.

To generalize this finding to stocks without traded options necessary to compute RNS,

we construct a momentum crash factor using risk neutral skewness data. We find that

a momentum strategy on stocks with the lowest momentum crash factor loadings avoids

momentum crashes, regardless of whether they have traded options.

This study contributes to the asset pricing anomaly literature, and to our understanding

of the pricing of skewness. Stilger, Kostakis, and Poon (2016) have documented that risk-
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neutral skewness positively predicts expected equity returns. They provide evidence that

stocks with the most negative risk neutral skewness are too costly or too risky to sell short

and are thus overpriced, predicting poor future performance. However, they also find that

short sale constraints cannot fully explain the risk neutral skewness anomaly.

Hirshleifer, Hou, and Teoh (2012) examine whether the accrual anomaly can be explained

by rational risk theory or is a misvaluation by investors. They find that it is the accrual

anomaly rather than the accrual factor loading that predicts returns, therefore the rational

risk theory is rejected in favor of behavioral explanation. Hou, Xue, and Zhang (2015)

derive a four-factor model from q-theory to explain the existing 74 anomalies. Stambaugh

and Yuan (2017) extract two mispricing factors from eleven anomalies. Stilger et al. (2016)

find the risk neutral skewness anomaly, and they contribute the positive abnormal returns

to the short sale constraints. We further explore the risk neutral skewness anomaly and find

that it picks up the momentum crashes documented in Daniel and Moskowitz (2016).

The remainder of the paper as follows. In Section II, we show the data and method to

construct the risk neutral skewness measure. Section III we examine the time-varying beta

and option-like payoffs of the zero-investment portfolio traded on risk neutral skewness.

In Section IV we examine that whether the risk neutral skewness anomaly picks up

the momentum crashes documented in Daniel and Moskowitze (2016). We construct a

momentum crash factor using the risk neutral skewness data and examine whether the

momentum strategy using stocks with the lowest momentum crash factor loadings can

alleviate the crashes in Section V. We conclude in Section VI.

2 Data and Variable Construction

In this section, we describe the data and the method used to extract individual stock risk

neutral skewness. Following Bakshi, Kapadia, and Madan (2003), we denote the stock n’s

price on time t by Sn(t) for n= 1,...,N, the interest rate as a constant r, and S(t) > 0
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with probability 1 for all t, the risk-neutral density as q[t, τ ;S]. For simplification, we

use S to represent S(t + τ). For any claim payoff H[S] that is integrable with respect to

risk-neutral density, we use E∗{.} to represent the expectation operator under risk-neutral

density. Hence:

E∗t {H[S]} =

∫ ∞
0

H[S]q[S]dS (1)

As shown in Bakshi and Madan (2000), a continuum of OTM European calls and puts can

span any payoff function with bounded expectation. To calculate risk neutral skewness, we

denote the τ -period return as R(t, τ) ≡ ln[S(t+ τ)]− ln[S(t)]. Then we define the volatility

contract, the cubic contract, and the quartic contracts as having the payoffs:

H[S] =


R(t, τ)2 volatility contract

R(t, τ)3 cubic contract

R(t, τ)4 quartic contract

(2)

The fair value of the respective payoff are denoted as: Vt,τ ≡ E∗t {e−rτR(t, τ)2}, Wt,τ ≡

E∗t {e−rτR(t, τ)3}, and Xt,τ ≡ E∗t {e−rτR(t, τ)4}. Then the τ -period risk neutral skewness

SKEW (t, τ) can be calculated as following:

SKEW (t, τ) ≡ E∗t {(R(t, τ)− E∗t [R(t, τ)])3}
{E∗t {(R(t, τ)− E∗t [R(t, τ)])2}}

3
2

=
e−rτW (t, τ)− 3µ(t, τ)e−rτV (t, τ) + 2µ(t, τ)3

[e−rτV (t, τ)− µ(t, τ)2]
3
2

(3)

where

µ(t, τ) ≡ E∗t ln[
S(t+ τ)

S(t)
]

= erτ − 1− erτ

2
V (t, τ)− erτ

6
W (t, τ)− erτ

24
X(t, τ)

(4)
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V (t, τ) =

∫ ∞
S(t)

2(1− ln[ K
S(t)

])

K2
C(t, τ ;K)dK +

∫ S

0

(t)
2(1 + ln[S(t)

K
])

K2
P (t, τ ;K)dK (5)

W (t, τ) =

∫ ∞
S(t)

6ln[ K
S(t)

]− 3(ln[ K
S(t)

])2

K2
C(t, τ ;K)dK

−
∫ S

0

(t)
6ln[S(t)

K
] + 3(ln[S(t)

K
])2

K2
P (t, τ ;K)dK

(6)

X(t, τ) =

∫ ∞
S(t)

12(ln[ K
S(t)

])2 − 4(ln[ K
S(t)

])3

K2
C(t, τ ;K)dK

+

∫ S

0

(t)
12(ln[S(t)

K
])2 + 4(ln[S(t)

K
])3

K2
P (t, τ ;K)dK

(7)

We use the RNS extracted from OTM standardized options data with 30 days to

expiration from the Volatility Surface file in Ivy DB’s OptionMetrics. The Volatility

Surface file contains the interpolated volatility surface for each security on each day, using

a methodology based on a kernel smoothing algorithm. This file contains information on

standardized options, both calls and puts, with expirations of 30, 60, 91, 122, 152, 182,

273, 365, 547, and 730 calendar days. A standardized option is only included if there exists

enough option price data on that date to accurately interpolate the required values.

We use standardized options with 30 days to expiration for two reasons: first, these are

the most liquid options, and second, they are the least out-of-the-money on average1. We

require that at a given day, a stock has at least two OTM calls and two OTM puts with

the same maturity. We use equal numbers of OTM calls and puts for each stock for each

day. If there are n OTM puts available on day t, we require n OTM call prices. If there

are N > n OTM call prices available on day t, we use the n OTM calls that are the least

out-of-the-money. We keep the set of options with the shortest maturity if there are more

than one maturities available for one stock on a given day.

1See Table AI Panel C
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We extrapolate the 30-day risk-free rate from Treasury bill rates. We interpolate the

implied volatilities of the available options using a piecewise Hermite polynomial separately

for put and call options, following Stilger et al. (2016). We also extrapolate outside the

lowest and highest moneyness using the implied volatility at each boundary and fill in 997

grid points in the moneyness range from 1/3 to 3. We then use the Black-Scholes model to

convert the implied volatilities into the corresponding option prices and then using Simpson’s

rule to calculate the integrals in equation (5) (6) and (7). We obtain data on stock returns

from CRSP, calculating monthly returns from 1996 to 2016 for all individual securities with

common shares outstanding. We also obtain the book value of equity from Compustat.

We merge our RNS data with the data from CRSP and Compustat and our sample finally

contains 592,480 firm-month combinations from January 1996 to April 2016.

In Table I we present the descriptive statistics for risk neutral skewness, as well as other

firm-specific data used in subsequent analysis: market capitalization MV, monthly return

RETt, one-month lagged return RETt−1, cumulative return over the past eleven months

lagged one month RETt−12,t−2, intermediate horizon past performance RETt−12,t−7, recent

past performance RETt−6,t−2, beta βiM , stock trading volume and book-to-market ratio. We

calculate market capitalization by multiplying the close price of the last trading day of this

month and shares outstanding. RETt is the monthly return for time t, and RETt−12,t−2 is

the cumulative return over the period from t− 12 to t− 2, capturing the momentum effect.

Following Novy-Marx (2012), we separate the past performance into two components:

the intermediate horizon past performance RETt−12,t−7 and the recent past performance

RETt−6,t−1. We estimate firm beta βiM by regressing the excess equity returns on the

Fama and French (1993) three-factor model over the past sixty months. We report the

means, medians, and standard deviations as well as 5th and 95th percentiles across securities

during the sample period in Panel A of Table I. The sample consists of 592,480 firm-month

combinations from Jan 1996 through April 2016. The mean risk neutral skewness is -0.198

while the median risk neutral skewness is -0.235. Comparing the mean and median of RETt
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shows that returns under the physical distribution are positively skewed, but the cumulative

returns over the past eleven months under the physical distribution are negatively skewed.

The average βiM in our sample is 1.313, while the median βiM is 1.175. In Panel B of Table I,

we report the time series average of cross section correlation coefficients between the risk

neutral skewness and the firm-specific variables. The lower triangular matrix presents the

Pearson correlation matrix; the upper triangular matrix shows the nonparametric Spearman

correlation matrix.

Table II presents the cross-sectional relationship between risk neutral skewness (RNS)

and expected returns controlling for firm characteristics. Consistent with Stilger, Kostakis

and Poon (2016) results (0.0073 with significance at the 1% level), the risk neutral skewness

RNS has a coefficient of 0.716 with significance at the 1% level in Column (1) of Table II2.

Column (2) of Table II presents Fama MacBeth (1973) regressions of excess returns on

firm characteristics: βiM , log of market capitalization (ln(MV)), log of book-to-market ratio

(ln(BM)), one month lagged return RETt−1, cumulative returns over past eleven months

lagged one month RETt−12,t−2, and log of stock trading volume (ln(VOLUME)). One month

lagged return RETt−1 negatively predicts future return, consistent with the short-term

momentum reversal effect. Cumulative returns over the past eleven months lagged month

positively predict future expected return, consistent with the momentum effect. Coefficients

on other firm characteristics are insignificant. Column (3) of Table II presents the cross-

sectional findings for risk neutral skewness (RNS) controlling for firm characteristics. The

magnitude of coefficient becomes smaller compared with the coefficient in Column (1) from

0.726 decreased to 0.675. However, the risk neutral skewness still positively predicts future

expected return after controlling for the firm characteristics. After adding risk neutral

skewness, the significance level of the coefficient on RETt−12,t−2 becomes higher, shedding

some light on the possible relation between momentum effect and risk neutral skewness

which is worth further investigation. In column (4) and (5) we use RETt−12,t−7 as a proxy of

2We regress excess return × 100 on risk neutral skewness, so our result is comparable to Stilger, Kostakis
and Poon (2016)
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momentum effect, while in column (6) and (7) we use RETt−6,t−2 as a proxy of momentum

effect. We find that the coefficients on RETt−12,t−7 are significant at 5% level with a higher

magnitude, and the coefficients on RETt−6,t−2 are insignificant, consistent with Novy-Marx

(2013).

We next create a portfolio sort and report the quintile portfolios’ characteristics and

excess returns as well as abnormal returns benchmarked by the Carhart (1997) four-factor

model (Carhart α) in Table III. In Panel A we present the result for the five equally-weighted

portfolios sorted by risk-neutral skewness, which demonstrates a positive relation between

risk-neutral skewness and future stock returns over the subsequent month. We also tabulate

the portfolio characteristics, finding that the portfolio with the highest RNS has negative

past performance. The zero-cost high minus low RNS portfolio has significantly positive

monthly abnormal returns relative to the Carhart (1997) four factor model with a magnitude

of 0.94% at the 1% significance level. The equally weighted excess return is also positive and

significant at the 1% level with a magnitude of 0.89%. The excess return and abnormal return

of strategy based on risk neutral skewness benchmarked by Carhart (1997) four-factor model

are 0.61% and 0.55%, respectively, in Stilger et al. (2016). The portfolio with the lowest

RNS has a Carhart alpha -0.39% significant at 1% level while the portfolio with highest

RNS has a Carhart alpha 0.55% significant at 1% level. These results confirm that there

is a statistically significant positive relation between risk neutral skewness and future stock

returns and further confirm that the stocks with the most negative risk neutral skewness are

underperformed in the future, which is consistent with the evidence provided in Stilger et

al. (2016).

Table III Panel B presents analogous results for five value-weighted portfolios sorted on

the risk-neutral skewness. This weighting scheme de-emphasizes the role of small stocks

in portfolio abnormal returns. As before, The zero-cost portfolio has significantly positive

monthly abnormal returns relative to Carhart (1997) four factor model with a magnitude

of 0.70% at the 1% significance level. The value weighted excess return is also positive
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and significant at the 1% level with a magnitude of 0.71%. As we can see, the abnormal

returns are lower compared to those of equally-weighted portfolios. The value weighted

portfolio results presented in Table III Panel B reveal that the portfolio with the highest

RNS generates significant positive abnormal returns, while the portfolio with the lowest

RNS generates significant negative abnormal returns. Our finding contradicts the short sale

constraints theory, which predicts that the profit comes from the short (low RNS) leg of the

zero-cost portfolio rather than the long leg (high RNS). The finding that both legs generate

significant returns suggests that the short sale constraint theory proposed by Stilger et al.

(2016) cannot fully explain the risk neutral skewness anomaly.

To provide evidence that our method extracting RNS is comparable to the method used in

Stilger et al. (2016), we replicate their results. We follow their procedures to filter the traded

option data in OptionMetrics from January 1996 to April 2016. The sample consists of

145,666 firm-month observations from January 1996 to April 2016, and 108,258 firm-month

observations over the sample period from January 1996 to December 2012 used in Stilger

et al. (2016), comparable to their 128,960 firm-month observations. Table AI presents the

summary statistics of the OTM options used in our sample. Panel A reports the descriptive

statistics for the full sample period and Panel B reports the summary statistics for the Stilger

et al. (2016) sample period. The mean and median RNS over the Stilger et al. (2016) sample

period is -0.331 and -0.320 respectively, slightly higher than the mean and median RNS in

Stilger et al. (2014), -0.446 and -0.418 respectively. The mean and median days to expiration

for the OTM options are 85.03 and 80 respectively, which assemble the Stilger et al. (2016):

86.56 and 81 respectively. The mean moneyness of OTM call options and OTM put options

are 0.911 and 1.12 comparing to 0.896 and 1.142 in Stilger et al. (2016). For each stock,

we use 5.06 OTM options to compute RNS, comparing 5.60 OTM options in Stilger et al.

(2016). Open interest and trading volume per OTM option used are also comparable to the

data in Stilger et al. (2016).

Then we sort stocks into quintiles by RNS and report the excess returns as well as
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abnormal returns benchmarked by the Capital Asset Pricing Model (CAPM α), Fama and

French (1993) three-factor model (FF3 α), Fama and French (1993) five factors model(FF5

α), the Carhart (1997) four-factor model (Carhart α) and the Carhart (1997) four factor

model with Pastor and Stambaugh (2003) liquidity factor (Carhart + Liq α). We follow

the standard procedure to form zero-cost portfolios that are long the stocks in the highest

RNS quintile and short the stocks in the lowest quintile. The t-statistics are adjusted using

Newey and West (1987) standard errors with a lag of 6 months to control for autocorrelation

in returns.

Table AII Panel A presents returns of the five equally-weighted portfolios sorted by risk-

neutral skewness and it demonstrates a positive relation between risk-neutral skewness and

future stock returns over the subsequent month consistent with the evidence provided in

Stilger et al. (2016). The zero cost portfolio has significantly positive monthly abnormal

returns relative to all benchmark models ranging from 0.45% at the 5% significance level

relative to the CAPM model to 0.58% significant at the 1% level relative to the Fama and

French (2015) five-factor model. The raw equal-weighted excess return is also positive and

significant at the 1% level with a magnitude of 0.60%. These magnitudes are similar to those

reported in Stilger et al. (2016). The portfolio with lowest RNS generates negative abnormal

returns ranging from -0.41% at the 5% significance level relative to Fama and French (2015)

five factor model to -0.58% significant at 5% level relative to Fama French three factor

model while the portfolio has a Carhart alpha -0.32% significant at 5% level benchmarked

by Carhart four factor model. These results confirm that there is a statistically significant

positive relation between risk neutral skewness and future stock returns and that stocks with

the most negative risk neutral skewness underperform in the future.

However, portfolio weighting makes a significant difference relative to the findings of

Stilger et al. (2016). Table AII Panel B presents analogous results for five value-weighted

portfolios sorted on the risk-neutral skewness. This weighting scheme de-emphasizes the

role of small stocks in portfolio abnormal returns. As before, The zero cost portfolio has
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significantly positive monthly abnormal returns relative to all benchmark models ranging

from 0.65% at the 1% significance level relative to the CAPM Model and the Carhart (1997)

four factor model with the Pastor and Stambaugh (2003) Liquidity factor to 0.70% significant

at the 1% level relative to the Fama and French (2005) five factor model. The raw value

weighted excess return is also positive and significant at the 1% level with a magnitude of

0.74%. As we can see, the abnormal returns are higher compared to those of equally-weighted

portfolios.

Importantly, the finding contradicts the short sale constraint theory proposed by Stilger et

al. (2016). The value weighted results presented in Table AII Panel B show that the portfolio

with highest RNS generates significant positive abnormal returns, while the portfolio with

lowest RNS generates negative, however insignificant, abnormal returns. The short sale

constraints theory predicts that the profit to the zero-cost RNS strategy comes from the

short leg of the strategy containing the negative RNS stocks. However, the evidence in

Table AII Panel B suggests that the RNS anomaly cannot be explained by only considering

the short leg, since value-weighted abnormal returns come from the long leg instead.

We also use 60-, 91-, 122-, 152-, and 182-days standardized options data from the

Volatility Surface file in IvyDB’s OptionMetrics to extract RNS as a robustness check. We

follow the same procedure to extract RNS on the last trading day of each month and use this

RNS measures to construct portfolios. Table AI Panel C presents the summary statistics

of the OTM options used in our sample. We report the mean, median, five percentile, 95

percentile and standard deviation of RNS extracted from volatility surface, and moneyness

of OTM call options and OTM put options used to construct RNS measures over the full

sample period on the left panel and the Stilger et al. (2016) sample period on the right panel.

The mean and median RNS monotonically decrease as the days to expiration increase from

-0.198 and -0.236 for 30 days to expiration to -0.412 and -0.441 for 182 days to expiration

for our full sample. The same pattern is observed in the Stilger et al. (2016) sample. We

also find that the moneyness of OTM call options monotonically decreases as the days to
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expiration increase and the moneyness of OTM put options monotonically increases as the

days to expiration increase, which means the days to expiration increase, the options used

are more out-of-the-money. Therefore, the more negative RNS in Stilger et al. (2016) is

caused by options with longer maturity and lower moneyness.

We follow the standard procedure to form zero-cost portfolios that are long (short) the

stocks in the highest (lowest) quintile of risk-neutral skewness. To control the autocorrelation

in returns, the t-statistics are adjusted using Newey and West (1987) standard errors with

a lag of 6 months. In Table AIII Panel A we present results for the five equally-weighted

portfolios sorted by risk-neutral skewness for each standardized maturity. The zero cost

portfolios have significantly positive monthly abnormal returns relative to Carhart (1997)

four-factor model ranging from 0.41% at the 1% significance level for 182 days to maturity to

0.94% significant at the 1% level for 30 days to expiration. The raw equally weighted excess

return is also positive and significant at the 1% level with a magnitude ranging from 0.46%

for 182 days to maturity to 0.89% for 30 days to maturity. However, we find portfolios with

highest RNS have statistically significant positive abnormal returns and portfolios with most

negative risk neutral skewness have insignificant abnormal returns for maturities greater than

30 days, providing additional evidence against the short sale constraints channel as the cause

of abnormal zero-cost RNS portfolio returns.

Table AIII Panel B presents analogous results for five value-weighted portfolios sorted

on the risk-neutral skewness for each days to expiration. This set of results de-emphasizes

the role of small stocks in portfolio abnormal returns. As before, The zero cost portfolios

have significantly positive monthly abnormal returns relative to Carhart (1997) four-factor

model ranging from 0.61% at the 1% significance level for 182 days to maturity to 0.74%

significant at the 1% level for 152 days to expiration. The raw value weighted excess returns

are also positive and significant at the 1% level with a magnitude ranging from 0.61% for

182 days to maturity to 0.75% for 91 days to maturity. As we can see again, the abnormal

returns are higher comparing to equally-weighted portfolios. The value weighted portfolio
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results presented in Table AIII Panel B confirm that the portfolio with highest RNS generates

significant positive abnormal returns, while the portfolio with lowest RNS generates negative

but insignificant abnormal returns. This finding also contradicts two implications of the

short sale constraints theory. First, abnormal returns should be driven by the short-sale

constrained low RNS stocks in the short leg of the zero-cost portfolio (Stilger et al., 2016).

Second, since smaller stocks are more likely to be short-sale constrained, the value weighted

zero-cost portfolio should underperform the equal-weighted one. Neither of these predictions

obtain in our results in Table AIII.

3 Risk Neutral Skewness and Momentum

3.1 Time-Varying Beta and Option-Like Payoffs in RNS portfolios

Daniel and Moskowitz (2016) show that in economic recessions and periods of high market

volatility the down-market betas of negative momentum stocks are low, but their up-market

betas are very large. Consequently when the market starts to rebound, these negative

momentum stocks experience strong gains resulting in a momentum crash. Since Table III

demonstrates that stocks with high RNS have negative momentum, in this section we

consider whether the positive abnormal return generated by the RNS strategy is related

to the time-varying beta and option-like payoffs of the momentum strategy.

We first illustrate these issues with a set of four monthly time series regressions, the results

of which are presented in Table IV. The dependent variables are equal- and value-weighted

RNS quintile portfolio returns. The independent variables are combinations of

• R̃m,t, the CRSP value-weighted index excess return in month t.

• IB,t−1, a recession indicator that equals one if the cumulative CRSP VW index return

in the past 24 months is negative and zero otherwise.
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• ĨU,t, a contemporaneous up-market indicator variable that is one if the market risk

premium is greater than zero and zero otherwise.3

We present the regression coefficients for equal- and value-weighted portfolio returns in Table

IV Panel A and Panel B, respectively. Panel A Model 1 in Table IV fits an unconditional

market model to the equally-weighted RNS-sorted portfolios as well as a long-short portfolio:

R̃t = α0 + β0R̃m,t + ε̃t

Consistent with Daniel and Moskowitz (2016) the estimated market beta is 0.334 and the

intercept, α0, is both economically large (.70% per month) and statistically significant. The

α0 of the portfolio with the lowest RNS is negative and statistically significant while it is

positive and insignificant for the portfolio with the highest RNS, consistent with Stilger et

al. (2016).

Model 2 fits a conditional CAPM with the bear market indicator, IB, as an instrument:

R̃t = α0 + (β0 + βBIB,t−1)R̃m,t + ε̃t

This specification captures the beta changes in economic recessions. The beta of the strategy

during the recessionary periods is significantly higher with a magnitude of 0.24 and a t

statistics of 2.95.

Model 3 introduces a contemporaneous up-market indicator variable IU,t that equals 1 if

the market risk premium is positive, and equals 0 otherwise:

R̃t = α0 + (β0 + IB,t−1(βB + ĨU,tβB,U))R̃m,t + ε̃t

3We get the market risk premium from the Kenneth French Data Library.
4Daniel and Moskowitz (2016) find the unconditional CAPM beta of the WML strategy is -0.567, while

our RNS strategy effectively buys losers and shorts winners due to the negative relationship between RNS
and momentum, and is thus analogous to an LMW strategy.
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This specification allows us to assess the extent to which the up- and down-market betas

of the RNS portfolios differ. The highly significant ˆβB,U of 0.50 shows that the zero-cost

RNS portfolio does very well when the market rebounds following a recession. During

recessions, the point estimates of the long-short portfolio beta are 0.25 (= β̂0 + β̂B) when the

contemporaneous market return is negative and = β̂0+β̂B+ ˆβB,U= .75 when the market return

is positive. This difference in time-varying betas means that the long-short portfolio behaves

similarly to a call option on the market, losing relatively little value during downturns, but

gaining substantial value during rebounds. For the high RNS quintile, the down-market

beta is 1.40 ( 1.22 + 0.18) while the up-market beta is 1.91 (1.40 + 0.51). In contrast,

the up-market beta increment for the low RNS quintile is not statistically significant. The

net effect is that a long-short portfolio traded on RNS will have significant positive market

exposure to rebounds following bear markets, primarily coming from the long leg (high RNS)

of the zero-cost RNS strategy. This finding provides an alternative explanation for the RNS

anomaly to the short sale constraint theory, which focuses on the short (low RNS) leg of the

strategy.

Panel B presents analogous results using value-weighted portfolio returns as dependent

variables. Model 1 finds a lower but significant beta of .09, and a similar monthly alpha of

.66% for the zero-cost high minus low RNS strategy. Model 2 shows that the beta of the

zero-cost strategy is 0.31 higher in recessionary periods with statistical significance. Model

3 confirms the option-like behavior observed for equal-weighted results in Panel A, with the

zero-cost RNS strategy having a .14 beta during market downturns but a .43 beta during

subsequent rebounds.

3.2 Market Stress and Risk Neutral Skewness Anomaly

Daniel and Moskowitz (2016) show that the expected return of the WML portfolio should be

a decreasing function of the future variance of the market. If risk neutral skewness captures

the momentum crashes, the expected return of the long-short portfolio traded on RNS should
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be an increasing function of the future variance of the market. We test this hypothesis by

regressing the RNS sorted portfolio returns as well as the long-short portfolio return on a

set of five time-series models and report the regression coefficients in Table V.

We estimate the market variance over the coming month as σ2
m,t−1, the variance of the

daily returns of the market over the 126 days prior to time t. Panel A of Table V presents the

regression coefficients of the equal-weighted quintile portfolios. Model 1 and Model 2 regress

the RNS-sorted portfolios as well as a long-short portfolio on the bear market indicator IB,t−1

and the market variance σ2
m,t−1 separately:

R̃t = γ0 + γ0IB,t−1 + ε̃t

and

R̃t = γ0 + γσ2
m,t−1

σ2
m,t−1 + ε̃t

Model 3 fits the model including both variables simultaneously:

R̃t = γ0 + γ0IB,t−1 + γσ2
m,t−1

σ2
m,t−1 + ε̃t

The results are consistent with those from Section 3.1. That is, in periods of high market

stress, as indicated by bear markets and high volatility, future long-short portfolio returns

are high.

Model 4 runs a regression of RNS sorted portfolio returns on the interaction of the bear

market indicator and market variance:

R̃t = γ0 + γintIB,t−1σ
2
m,t−1 + ε̃t

The results show that the performance of the risk neutral skewness strategy is particularly

good during bear markets with high volatility. In summary, the risk neutral skewness strategy
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has a better performance in periods of high market volatility. Since the risk neutral skewness

strategy is long negative momentum stocks (past losers) and short high momentum stocks

(past winners), the high positive returns in the periods of high market stress is the reversal

of the momentum crashes defined by Daniel and Moskowitz (2016).

Panel B presents similar results while the dependent variables are value-weighted portfolio

returns, suggesting our results are robust to firm size effects.

4 Risk Neutral Skewness Anomaly and Momentum Crashes

4.1 Market Risk in the Momentum and RNS Double Sorted

Portfolios

In this section, we explore the performance of momentum strategy across different levels of

risk neutral skewness in recessions and periods of high market volatility. At the end of each

calendar month, we independently sort firms into terciles by RETT−12,T−7
5 and by RNS. In

each RNS tercile, we regress the equal- and value-weighted WML portfolio returns on market

timing models and report the results on the left and right panels, respectively, in TableVI.

Model 1 fits an unconditional CAPM to the WML portfolio return in each RNS tercile:

R̃WML,t = α0 + β0R̃m,t + ε̃t

The WML strategy in highest RNS tercile has relative lower market beta. The differences

of β0 between the WML strategy in high and low RNS tercile for equally- and value-weights

scheme are -0.08 and -0.10, respectively.

In the left panel, Model 2 fits a conditional CAPM with the bear market indicator IB:

R̃WML,t = α0 + (β0 + βBIB,t−1)R̃m,t + ε̃t

5Norv-Marx (2013) shows that the momentum anomaly is mainly driven by this intermediate-horizon
past performance.
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This specification is an attempt to capture market-beta differences in economic recessions.

For the equally-weighted portfolios, the market betas of the WML portfolios are all

economically and statistically significantly lower in the bear markets ranging from -0.70

to -0.64. However, the difference of βB between the WML strategy in high and low RNS

tercile is insignificant. For value-weighted portfolios, the market betas of the WML portfolios

are all economically and statistically significantly lower in the bear markets ranging from

-0.96 to -0.74. And the difference of βB between the WML strategy in high and low RNS

tercile is marginally significant.

Model 3 introduces a contemporaneous up-market indicator variable IU,t:

R̃WML,t = α0 + (β0 + IB,t−1(βB + ĨU,tβB,U))R̃m,t + ε̃t

This specification allows us to assess the extent to which the up- and down-market betas

of the long-short portfolio differ. For the equally-weighted WML strategy in the high RNS

tercile, the ˆβB,U of -0.29 (t-statistic= -1.45) shows that the momentum strategy does badly

when the market rebounds following a bear market, although statistically insignificant. When

in a bear market, the point estimate of the WML portfolio in high RNS tercile beta is -0.49

(= β̂0 + β̂B) when the contemporaneous market return is negative and = β̂0 + β̂B + ˆβB,U=

-0.78 when the market return is positive. It means that the WML portfolio in the high

RNS tercile is effectively short a call option on the market. For the WML portfolio in low

RNS tercile, the down-market beta is -0.50 (= 0.14 + (-0.64)) and the point estimate of the

up-market beta is -0.50 (= -0.50 + (-0.00)). The up-market beta increment for the WML

portfolio in low RNS tercile is insignificantly negative (= -0.00). The difference between the

equally-weighted WML portfolios in the high and low RNS tercile is -0.29 with a t-statistic

of -2.58. For the value-weighted WML strategy in the high RNS tercile, the ˆβB,U of -0.34

(t-statistic= -1.40) shows that the momentum strategy does very badly when the market

rebounds following a bear market again. When in a bear market, the point estimate of the
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WML portfolio in high RNS tercile beta is -0.62 (= β̂0 + β̂B) when the contemporaneous

market return is negative and = β̂0 + β̂B + ˆβB,U= -0.96 when the market return is positive.

It confirms that the WML portfolio in the high RNS tercile is effectively short a call option

on the market. For the WML portfolio in low RNS tercile, the down-market beta is -0.58

(= 0.19 + (-0.77)) and the point estimate of the up-market beta is -0.50 (= -0.58 + 0.08).

The up-market beta increment for the WML portfolio in low RNS tercile is insignificantly

negative (= 0.08) again. The difference between the value weighted WML portfolios in the

high and low RNS tercile is -0.42 with a t-statistic of -2.21. This finding supports that the

momentum crashes concentrate in the stocks with highest RNS tercile.

Since we find that the risk neutral skewness is highly correlated with size, in TableVII,

we independently sort firms by market capitalization, RETT−12,T−7 and RNS into terciles at

the end of each calendar month. In each Size/RNS group, we form a WML portfolio and

regress the equal- and value-weighted WML portfolio returns on the following time-series

model:

R̃WML,t = α0 + (β0 + IB,t−1(βB + ĨU,tβB,U))R̃m,t + ε̃t

We report the regression results on the left and right panels, respectively. We find that the

magnitude of up-market beta decrement for the WML in the high RNS tercile is significantly

larger than in the low RNS tercile for median and high size terciles. For small size tercile,

the difference of βB,U is insignificant or even positive for the value weighted portfolios.

Since Stilger at al (2016) find that the short sale constraints could partially explain

risk neutral skewness anomaly, in TableVIII, we independently sort firms by institutional

ownership (as a proxy of short sale constraints), RETT−12,T−7 and RNS into terciles at the

end of each calendar month. In each Institutional Ownership/RNS group, we form a WML

portfolio and regress the equal- and value-weighted WML portfolio returns on the following
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time-series model:

R̃WML,t = α0 + (β0 + IB,t−1(βB + ĨU,tβB,U))R̃m,t + ε̃t

We report the regression results on the left and right panels, respectively. We find that the

magnitude of up-market beta decrement for the WML in the high RNS tercile is significantly

larger than in the low RNS tercile for low and high institutional ownership terciles for value-

weighted WML returns while the magnitude of up-market beta decrement for the WML in

the high RNS tercile is significantly larger than in the low RNS tercile for median and high

institutional ownership terciles for equally-weighted WML returns. This finding is consistent

with Stilger et al (2016)’s finding that the return of the zero-cost RNS strategy could be

partially explained by the short sale constraints theory.

4.2 Market Volatility and the Momentum and RNS Double Sorted

Portfolios

To further examine that the risk neutral skewness captures the momentum crashes effect,

we regress the equally- and value-weighted WML portfolio returns in each RNS tercile on a

set of five-time series models and report the results on left and right panels, respectively, in

TableIX.

The left panel Table IX presents the regression coefficients of the equally-weighted quintile

portfolios. Model 1 and Model 2 regresses the WML portfolio return in each RNS tercile on

the bear market indicator IB,t−1 and the market variance σ2
m,t−1, separately:

R̃WML,t = γ0 + γ0IB,t−1 + ε̃t

and

R̃WML,t = γ0 + γσ2
m,t−1

σ2
m,t−1 + ε̃t
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The WML strategy in highest RNS tercile experiences the most negative return in the bear

markets and in the periods of high market volatility. The difference of γσ2
m,t−1

between the

WML strategy in high and low RNS tercile is -0.30% with a t-statistic -3.85. In the right

panel, the difference of γσ2
m,t−1

between the value-weighted WML returns in high and low

RNS tercile is -0.28% with a t-statistic -2.08.

Model 3 fits the model including both variables simultaneously:

R̃WML,t = γ0 + γ0IB,t−1 + γσ2
m,t−1

σ2
m,t−1 + ε̃t

The WML portfolio with the highest RNS has the most negative return in bear markets and

in periods of high market volatility. The difference of γσ2
m,t−1

between the WML portfolios

in high and low RNS terciles is -0.31 with a t-statistic -3.34, for the equal weights scheme

and -0.32 with a t-statistic -2.01.

Model 4 runs a regression of WML portfolios returns on the interaction of the bear market

indicator and market variance:

R̃WML,t = γ0 + γintIB,t−1σ
2
m,t−1 + ε̃t

These results show that the performance of the momentum strategy in the high RNS tercile

is particularly bad during bear markets with high volatility. The difference of γint between

the WML portfolios in high and low RNS terciles is -0.32 with a t-statistic -4.33 for the equal

weights scheme and -0.32 with a t-statistic -2.56 for the value weights scheme.

We again independently sort firms by market capitalization, RETT−12,T−7 and RNS into

terciles at the end of each calendar month and form a WML portfolio in each size/RNS

tercile. We then regress the equally- and value-weighted WML portfolio returns on the time

series model:

R̃WML,t = γ0 + γintIB,t−1σ
2
m,t−1 + ε̃t
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We report the regression results on the left and right panels of Table X, Panel A, respectively.

We find that the momentum returns in high RNS tercile are shown to be particularly poor

during bear markets with high market volatility in median size tercile. The coefficient

γint monotonically decreases as the RNS increases in all size terciles for equally-weighted

portfolios. For value-weighted portfolios, the coefficient on the interaction of bear market

indicator and market variance monotonically decreases as the RNS increases in median and

large size terciles.

To investigate whether the finding that the momentum returns in high RNS tercile are

particularly poor during bear markets with high market volatility is robust after controlling

for institutional ownership, we again independently sort firms by institutional ownership,

RETT−12,T−7 and RNS into terciles at the end of each calendar month and form a WML

portfolio in each institutional ownership/RNS tercile. We then again regress the equally-

and value-weighted WML portfolio returns on the time series model:

R̃WML,t = γ0 + γintIB,t−1σ
2
m,t−1 + ε̃t

We report the regression results on the left and right panels of Table X, Panel B, respectively.

We find that the momentum returns in high RNS tercile are shown to be poor during

bear markets with high market volatility in all institutional ownership terciles for equal

weights scheme. The coefficient γint monotonically decreases as the RNS increases in all

institutional ownership terciles for equally-weighted portfolios. For value-weighted portfolios,

the coefficient on the interaction of bear market indicator and market variance monotonically

decreases as the RNS increases in small and large institutional ownership terciles. And the

differences are both significant at 1% level.
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5 Risk Neutral Skewness Factor

We next construct a momentum crash factor (SKEW) to generalize our findings to stocks

that do not have traded options that would allow a direct calculation of RNS. By testing

whether the SKEW factor loading results in inverse momentum behavior similar to the RNS

characteristic, we further our understanding of the RNS anomaly and confirm that it is

not driven by stock optionability. In addition, this enables us to create a momentum crash

predictor that is applicable to all stocks, not just those with traded options.

We construct the SKEW factor as follows: at the end of each calendar month, we

rank stocks with traded options into five portfolios according to their risk neutral skewness

measure (RNS). The risk-neutral skewness factor (SKEW) is the equally-weighted return of

the portfolio that long the portfolio with highest RNS and short the portfolio with lowest

RNS.

To examine whether the momentum crash factor SKEW produces similar portfolio returns

as the RNS characteristic, we plot the momentum crash factor SKEW and the return on the

portfolio that long the stocks with highest momentum crash factor loading and short the

stocks with lowest momentum crash factor loading in Figure 1. In general, the H-L βSKEW

portfolio has a higher volatility. However, these two returns tend to move together. The

correlation between SKEW and the H-L βSKEW portfolio return is 0.55 with a significant

level of 1%6.

To examine whether the momentum strategy using the stocks with lower loadings

6One possible explanation that risk neutral skewness accurately predicts realized skewness, which would
be most positive for stocks about to rebound upward. We test this hypothesis by running a cross-sectional
regression of future realized skewness over a month on the risk neutral skewness, controlling for the realized
skewness, and find the time series average of the coefficients, following Goyal and Saretto (2009). We first
run a cross-sectional regression: FSi,t+1 = αt+β1tRNSi,t+β2,tHSi,t+εi,t+1 where FV is the future realized
volatility over the month t+1, RNS is the risk neutral skewness over the month t, and HV is the realized
volatility over the month t each month, then calculate the time-series average of the regression coefficients.
We also correct the standard error following Newey and West (1987) with a lag 6. The estimation is as
following: FV=0.183 (15.01) +0.059 (10.83) RNS+0.015 (8.53) HV with t-statistics in the parentheses. We
also run the regression: FSi,t+1 = αt + β1tβSKEW,i,t + β2,tHVi,t + εi,t+1 and the result is as following:
FV=0.162 (13.49) +0.035 (11.69) βSKEW+0.029 (11.92) HV. These findings support our hypothesis that
risk neutral skewness and the factor loading on the factor SKEW do predict future realized skewness.
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on SKEW experiences less severe momentum crashes and therefore produces superior

performance, we use a double sort procedure that sorts all the stocks traded on NYSE,

AMEX, and Nasdaq by the factor loading βSKEW and momentum. To estimate the SKEW

factor loading, we run the following rolling window regression:

Exret = α + βMMktrf + βSKEWSKEW

over the past 60 months and βSKEW is the factor loading on the SKEW. We require at lease

24 observations. Each calendar month, we rank stocks in ascending order by their βSKEW

and intermediate horizon past performance. We independently assign the ranked stocks to

one of five βSKEW groups using the all stocks universe breakpoints, and ten RETt−12,t−7

groups using the NYSE breakpoints. Panel A, Panel B and Panel C of Table XI present the

excess returns, Carhart αs and αs benchmarked by the Carhart four factors with Pastor and

Stambaugh (2003) liquidity factor five factor model for the fifty value-weighted portfolios.

The rightmost column presents the excess return, Carhart α and Carhart + Liq α of the

momentum portfolio in each βSKEW quintile. The WML strategy in the lowest βSKEW

quintile has the highest excess return, Carhart α and Carhart + Liq α: 1.63%, 1.38% and

1.52% per month with t-statistics 2.71, 3.49 and 3.49, respectively. The differences of excess

returns, Carhart αs and Carhart + Liq α between the WML portfolio in the highest βSKEW

quintile and the lowest βSKEW are all significant, suggesting that controlling for the SKEW

factor loading results in superior performance of the momentum strategy. We also reports

the WML strategy using all available stocks in each panel labeled as WML[-12,-7] All. We

find that over the sample period of April 1998 to June 2016, the momentum strategy traded

on the intermediate past loser and winner generates an excess return of 0.84% per month

with a t-statistic 1.71. Benchmarked by Carhart four factor model, this strategy generates

an abnormal return of 0.56% with a t-statistic 1.93. We also report the firm characteristics

for the fifty portfolios formed on βSKEW and RETT−12,T−7 in Table AIV. In Panel A, we
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report the mean volume scaled by the number of shares outstanding for each of the fifty

portfolios. From quintile 1 to quintile 5, the volume first decreases then increases. This

finding provides evidence that the WML strategy in βSKEW quintile 1 does not use the most

illiquid stocks. To prove the WML strategy in βSKEW quintile 1 does not use stocks with

high short sale constraints, we report the institutional ownership in Panel B of Table AIV.

Except decile 1 of RETT−12,T−7, quintile 1 of βSKEW has the highest institutional ownership.

This piece of evidence further supports that the WML strategy in βSKEW quintile 1 is a

tradable strategy which does not utilize stocks with high short sale constraints. In Panel

C, we report the mean bid-ask spread scaled by the stock price. Quintile 1 of βSKEW has

the second lowest bid-ask spread, except the first decile of RETT−12,T−7, which has the third

lowest bid-ask spread. This finding further supports that the stocks in βSKEW quintile 1 do

have higher liquidity compared to stocks in other quintiles. We plot the cumulative returns

and cumulative Carhart+Liq αs in Figure 2 over the sample period April 1998 to June

2016. At the end of June 2016, the WML strategy in βSKEW quintile 1 has a cumulative

return of 1694.80% while the WML strategy using all stocks has a cumulative return of

289.15%. At the end of December 20167, the WML strategy in βSKEW quintile 1 has a

cumulative abnormal return of 1700.19% while the WML strategy using all stocks has a

cumulative abnormal return of 262.29%. The new WML strategy that long the stocks in the

top decile of the intermediate past performance and short the stocks in the bottom decile

of the intermediate past performance in the bottom quintile of βSKEW greatly improves the

performance of the Novy-Marx (2013) WML strategy.

We repeat the double sorts in recessions and expansions and report the Carhart four

factors with Pastor and Stambaugh (2003) liquidity factor αs in Table XII Panel A and

Panel B, respectively. We find that the magnitude of the WML abnormal return is larger in

recessions than in expansion: 1.97% per month versus 1.31% for the lowest βSKEW quintile

WML and 1.32% per month versus 0.42% for WML using all stocks.

7We get Pastor and Stambaugh (2016) liquidity factor from Wharton Research Data Services and it’s
only available until December 2015.
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To further improve the performance of the low momentum crash factor loading Novy-

Marx (2013) WML strategy, we employ the risk management method introduced by Barroso

and Santa-Clara (2015). The variance forecast is:

σ̂2
WML,t = 21

125∑
j=0

r2WML,dt−1−j/126 (8)

Then we scale the low momentum crash factor loading WML returns by the forecasted

variance:

rWML[−12,−7]βSKEWQ1∗,t =
σtarget
σ̂t

rWML[−12,−7]βSKEWQ1,t (9)

where rWML[−12,−7]βSKEWQ1,t is the unscaled low momentum crash factor loading Novy-Marx

(2013) WML strategy, rWML[−12,−7]βSKEWQ1∗,t is the risk-managed low momentum crash

factor loading Novy-Marx (2013) WML strategy and σtarget is the target level of variance.

To have an average weight around 1, we choose 18% as the target variance8. Then we

compare our two strategy: 1) low momentum crash factor loading Novy-Marx (2013) WML

strategy WML[-12,-7] βSKEW Q1 from April 1998 to June 2016 and 2) risk managed, low

momentum crash factor loading Novy-Marx (2013) WML strategy WML[-12,-7] βSKEW Q1*

from October 1998 to June 2016 to the Barroso and Santa-Clara (2015) risk-managed WML

strategy WML[-12,-2]*9 and to each other in Table XIII. Comparing to the Barroso and

Santa-Clara (2015) WML strategy, low momentum crash factor loading Novy-Marx (2013)

WML strategy has a much higher average return of 23.64% per year, which is 14.41% higher

than the Barroso and Santa-Clara (2015) WML strategy. Although the WML[-12,-7] βSKEW

Q1 strategy is much more volatile, the Sharpe Ratio of the strategy is one third higher than

the risk-managed WML strategy. The information ratio of WML[-12,-7] βSKEW Q1 compared

to WML[-12,-2]* is 0.21.

8Barroso and Santa-Clara (2015) choose 12% as the target variance. However, over our sample period, if
we pick up 12% target volatility, the weights are mostly below one.

9We thank Barroso and Santa-Clara generously share their data with us. Their time series is available
until December 2011.
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After we scale the strategy by the forecasted variance to manage the risk, the risk

managed, low momentum crash factor loading Novy-Marx (2013) has an even higher Sharpe

Ratio with a value of 1.16, more than double the Sharpe Ratio of WML[-12,-2]*. Compared

with WML[-12,-2]*, the value of the Information Ratio of WML[-12,-7] βSKEW Q1* is a very

high: 0.79.

We also compare our two strategies in Panel C Table XIII and find that after we use the

risk management method introduced in Barroso and Santa-Clara (2015), the Sharpe Ratio is

greatly improved from 0.69 of WML[-12,-7] βSKEW Q1 to 0.96 of WML[-12,-7] βSKEW Q1*.

The risk managed strategy has an Information Ratio of 0.90 compared to the plain one.

We report the raw returns, Carhart αs and Carhart + Liq αs of: 1) the plain WML

strategy WML[-12,-2], 2) the Barroso and Santa-Clara (2015) risk managed WML strategy

WML[-12,-2]*, 3) the Novy-Marx (2013) WML strategy WML[-12,-7], 4) the low momentum

crash factor loading Novy-Marx (2013) WML strategy WML[-12,-7] β Q1 and 5) the risk

managed low momentum crash factor loading Novy-Marx (2013) WML strategy WML[-12,-

7] β Q1* over the sample period through April 1998 to December 201110 in Table AV. As we

can see, the plain WML strategy generates insignificant raw returns. As defined, the Carhart

α and Carhart + Liq α are insignificant. After applying the variance scaled weights, WML[-

12,-2]* has a significant raw return, yet, insignificant abnormal returns. The WML strategy

suggested by Novy-Marx (2013) WML[-12,-7] has an insignificant raw return, 0.89% with a t-

statistic 1.89, while controlling for other risk factors, generates marginal significant abnormal

returns: 0.67% per month Carhart α and 0.65% per month Carhart+Liq α, with t-statistics

2.08 and 2.13, respectively. The low momentum crash factor loading Novy-Marv (2013)

WML strategy has a much larger raw return with a magnitude of 1.97% and a t-statistic

of 3.67. Even controlling for other risk factors, including Carhart momentum factor, this

strategy still has an abnormal return with a magnitude 1.77% per month and a t-statistic

10For the risk managed low momentum crash factor loading Novy-Marx (2013) WML strategy WML[-12,-7]
β Q1*, the sample period is from October 1998 to December 2011
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4.03. Controlling the Pastor and Stambaugh (2003) does not change the magnitude and

significance of the abnormal return. Although the risk managed low momentum crash factor

loading Novy-Marv (2013) WML strategy WML[-12,-7] β Q1* has a relative lower raw return,

compared with the unscaled one, its abnormal returns have higher economic significance. The

t-statistics for Carhart α and Carhart+Liq α are 4.88 and 4.93, respectively. This finding

further supports that in recent two decades, the WML strategy has a hard time to make

profit. However, using our momentum crash factor to exclude stocks with high momentum

crash factor loadings greatly enhances the performance of the WML strategy.

Figure 3 plots the cumulative monthly returns of four strategies: 1) a baseline Winner-

minus-Loser Strategy from Barroso and Santa-Clara (2015) WML[-12,-2], 2) the risk

managed momentum strategy in Barroso and Santa-Clara (2015) WML[-12,-2]*, 3) the Novy-

Marx (2012) momentum strategy constructed by stocks in βSKEW quintile 1 WML[-12,-7]

βSKEW Q1, and 4) the Novy-Marx (2012) momentum strategy constructed by all stocks

over the period WML[-12,-7] All from April, 1998 through December, 2011. By the end of

December 2011, the low momentum crash factor loading Novy-Marx (2013) WML strategy

WML[-12,-7] βSKEW Q1 has a cumulative return of 1325.06%, compared to other WML

strategies with cumulative returns ranging from 41.48% for the baseline WML strategy to

205.58% for the Barroso and Santa-Clara (2013) risk-managed WML strategy. This figure

demonstrates the superior performance of the WML[-12,-7] βSKEW Q1 over the most recent

two decades and the importance to exclude stocks with high momentum crash factor loadings.

Figure 4 compares the risk-managed, low momentum crash factor loading Novy-Marx

(2013) strategy WML[-12,-7] βSKEW Q1* with 1) the risk managed momentum strategy in

Barroso and Santa-Clara (2015) WML[-12,-2]* and 2) the Novy-Marx (2012) momentum

strategy constructed by stocks in βSKEW quintile 1 WML[-12,-7] βSKEW Q1 in Panel A and

Panel B, respectively. Again, the cumulative monthly return of WML[-12,-7] βSKEW Q1* is

1190.64%, far better than WML[-12,-2]* which has a cumulative return 130.71% at the end

of December 2011. The risk managed low momentum crash factor loading Novy-Marx (2013)
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strategy has a milder drop in 2009 recession, with a 215.04% drop compared to 808.83% for

WML[-12,-7] βSKEW Q1, and a higher cumulative return with a value of 1653.80%, compared

with the unscaled one with a cumulative return of 1322.74% at the end of June, 2016. In

summary, choosing the stocks with low momentum crash factor loadings to form the WML

strategy greatly improves the WML strategy. Meanwhile, combining the risk management

method in the Barroso and Santa-Clara (2015) further alleviates the momentum crashes and

produces an even higher profit.

6 Conclusion

We find that stocks with higher risk neutral skewness have lower past performance and

that a zero-cost portfolio formed on high minus low risk neutral skewness generates positive

returns overall, but particularly in post-recession rebounds and during periods of high market

volatility. This behavior is the opposite of the momentum crash phenomenon described in

Daniel and Moskowitz (2016). We find evidence consistent with the risk-neutral skewness

anomaly being inversely related to momentum crashes, providing a potential explanation for

it through the link between the two.

This result helps advance our understanding of the prior explanation for the risk-neutral

skewness anomaly advanced by Stilger, Kostakis, and Poon (2016). The authors document

that a zero-cost strategy on risk-neutral skewness produces abnormal returns. They provide

evidence that this is caused by the overpricing of the stocks with the most negative risk

neutral skewness that are too costly or too risky to sell short. These stocks form the short

leg of the zero-cost strategy, and will underperform in the future due to overpricing. However,

they also find that the short sale constraints cannot fully explain the risk neutral skewness

anomaly, which we confirm in the context of value-weighted zero-cost portfolios that produce

abnormal return from the long (unconstrained), rather than the short (constrained), leg.

We provide evidence that the momentum strategy in the high risk-neutral skewness tercile
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experiences more severe crashes. We generalize our findings to all stocks, regardless of traded

options, by constructing a risk-neutral skewness factor using option data and find that the

momentum strategy constructed by the stocks with the lowest factor loadings earns highest

excess returns and abnormal returns when benchmarked by Carhart (1997) four-factor model.

These results confirm that the risk-neutral skewness anomaly is related to momentum

crashes more strongly than it is to short-sale constraints. The anomaly is robust to equal-

and value-weighting, and as both a factor loading and a characteristic. An equal-weighted

momentum strategy formed on stocks with the lowest risk-neutral skewness factor loading

yields 1.23% per month relative to the Carhart (1997) four-factor model, while a value-

weighted strategy produces a similar 1.02% per month. Risk-neutral skewness factor loadings

allow a simple strategy to avoid momentum crashes in an economically significant way.
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Appendix A

Table AI: Descriptive Statistics. This table presents the descriptive statistics for the OTM call and put
options used to replicate Stilger, Kostakis, and Poon (2016)’s results. Panel A shows the descriptive statistics
for the full sample period: January 1996 to April 2016. Panel B presents the descriptive statistics for the
sample period of Stilger, Kostakis, and Poon (2016): January 1996 to December 2012. Panel C shows
the descriptive statistics using the volatility surface data. Following Stilger, Kostakis, and Poon (2016),
moneyness is defined as the ratio of the underlying stock price to the strike price of the OTM call and put
options, respectively. The open interest and trading volume per OTM option used to compute RNS are in
thousands of contracts. The total trading volume per stock used to extract RNS is in thousands of contracts.

Panel A: Full Sample

Variables Mean Median P5 P95 STD

RNS -0.3160 -0.3050 -0.7437 0.0520 0.2572
Days to expiration for OTM options 80.89 79 16 169 50.03
Moneyness of OTM call options 0.9210 0.9383 0.7893 0.9943 0.0662
Moneyness of OTM put options 1.1058 1.0722 1.0063 1.3125 0.1083
No. of OTM options used per RNS observation 5.25 4 4 10 3.03
Open interest per OTM option used 1183.53 197 7 4717 4926.94
Trading volume per OTM option used 114.02 1 0 388 902.95
Total trading volume per stock 180.30 0 0 436 2150.82

Panel B: 1996-2012

Variables Mean Median P5 P95 STD

RNS -0.3318 -0.3200 -0.7496 0.0264 0.2514
Days to expiration for OTM options 85.03 80 18 170 48.92
Moneyness of OTM call options 0.9110 0.9267 0.7763 0.9929 0.0696
Moneyness of OTM put options 1.1206 1.0867 1.0078 1.3392 0.1163
No. of OTM options used per RNS observation 5.06 4 4 8 2.58
Open interest per OTM option used 1442.74 266 10 5768 5610.57
Trading volume per OTM option used 134.00 2 0 503 1038.86
Total trading volume per stock 183.15 0 0 458 2256.82
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Panel C: Volatility Surface

Full Sample 1996-2012

days Mean Median P5 P95 STD Mean Median P5 P95 STD

RNS

30 -0.1984 -0.2360 -0.8645 0.6071 0.5143 -0.2114 -0.2353 -0.8199 0.4874 0.4545
60 -0.2920 -0.3240 -0.9423 0.4573 0.5178 -0.3059 -0.3257 -0.8938 0.3265 0.4520
91 -0.3652 -0.3922 -0.9755 0.3034 0.4940 -0.3829 -0.4010 -0.9302 0.1818 0.4357
122 -0.3929 -0.4186 -0.9856 0.2571 0.4800 -0.4132 -0.4332 -0.9481 0.1518 0.4251
152 -0.4063 -0.4323 -0.9916 0.2375 0.4790 -0.4285 -0.4506 -0.9635 0.1510 0.4298
182 -0.4118 -0.4412 -0.9992 0.2446 0.4897 -0.4347 -0.4616 -0.9754 0.1706 0.4453

Moneyness of OTM call options

30 0.9369 0.9478 0.8507 0.9872 0.0450 0.9359 0.9458 0.8531 0.9856 0.0429
60 0.9258 0.9361 0.8372 0.9829 0.0490 0.9251 0.9339 0.8428 0.9804 0.0455
91 0.9212 0.9309 0.8313 0.9813 0.0502 0.9206 0.9288 0.8373 0.9784 0.0466
122 0.9170 0.9266 0.8250 0.9803 0.0518 0.9167 0.9247 0.8316 0.9774 0.0481
152 0.9136 0.9231 0.8193 0.9798 0.0535 0.9134 0.9214 0.8259 0.9769 0.0499
182 0.9104 0.9201 0.8131 0.9794 0.0557 0.9102 0.9184 0.8195 0.9766 0.0523

Moneyness of OTM put options

30 1.0519 1.0421 1.0045 1.1347 0.0423 1.0523 1.0432 1.0042 1.1342 0.0420
60 1.0611 1.0509 1.0036 1.1536 0.0488 1.0605 1.0511 1.0025 1.1509 0.0480
91 1.0686 1.0580 1.0043 1.1704 0.0534 1.0679 1.0578 1.0033 1.1685 0.0530
122 1.0750 1.0633 1.0045 1.1839 0.0576 1.0742 1.0630 1.0034 1.1824 0.0574
152 1.0809 1.0681 1.0047 1.1954 0.0614 1.0802 1.0679 1.0037 1.1950 0.0615
182 1.0863 1.0734 1.0050 1.2062 0.0650 1.0859 1.0732 1.0040 1.2071 0.0655
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Table AII: Risk-Neutral Skewness Sorted Portfolios: replication of Stilger, Kostakis, and Poon (2016)’s
results. This table shows the risk-neutral skewness (RNS) sorted portfolio returns. The risk neutral skewness
is computed using traded option data, following Stilger, Kostakis, and Poon (2016). Each calendar month,
we rank stocks in ascending order by their risk-neutral skewness and assign the ranked stocks to one of
five portfolios. Panel A and Panel B present results for equally-weighted and value-weighted portfolios
sorted by risk neutral skewness, respectively. The rightmost column reports the excess return along with
the abnormal returns of a self-financing portfolio that long the highest skewed portfolio and short the lowest
skewed portfolio. We benchmark the performance using the Capital Asset Pricing Model (CAPM α), Fama
and French (1993) 3-factor model (FF3 α), Fama and French (2015) 5 factors model (FF5 α), Carhart (1997)
four factor model (Carhart α) and Carhart (1997) four factor plus Pastor and Stambaugh (2003) liquidity
factor 5-factor model (Carhart + Liq α) over the month following portfolio formation. The t-statistics are
reported in parentheses and adjusted following Newey and West (1987) with a lag of 6 months.

Risk Neutral Skewness (RNS) Quintiles
1 2 3 4 5 5-1

(Low) (High)

Panel A: EW

0.33% 0.60% 0.95% 0.80% 0.92% 0.60%∗∗∗

Excess Return (0.80) (1.40) (2.12) (1.69) (1.90) (2.98)

-0.57% -0.34% -0.02% -0.20% -0.12% 0.45%∗∗

CAPM α (-3.50) (-2.00) (-0.12) (-1.02) (-0.58) (2.33)

-0.58% -0.33% -0.01% -0.19% -0.09% 0.49%∗∗

FF3 α (-4.55) (-2.55) (-0.06) (-1.34) (-0.52) (2.45)

-0.41% -0.17% 0.15% -0.00% 0.16% 0.58%∗∗∗

FF5 α (-3.17) (-1.39) (1.21) (-0.01) (1.02) (2.82)

-0.57% -0.32% 0.03% -0.14% -0.04% 0.53%∗∗

Carhart α (-4.45) (-2.55) (0.19) (-0.99) (-0.24) (2.59)

-0.57% -0.33% 0.03% -0.16% -0.04% 0.53%∗∗

Carhart + Liq α (-4.32) (-2.54) (0.21) (-1.03) (-0.22) (2.51)

Panel B: VW

0.59% 0.76% 1.12% 0.97% 1.33% 0.74%∗∗∗

Excess Return (1.62) (2.12) (2.98) (2.30) (3.33) (3.26)

-0.20% -0.04% 0.30% 0.12% 0.45% 0.65%∗∗∗

CAPM α (-1.90) (-0.34) (2.39) (0.75) (2.28) (2.80)

-0.15% -0.01% 0.34% 0.16% 0.52% 0.67%∗∗∗

FF3 α (-1.57) (-0.11) (2.82) (1.07) (2.58) (2.88)

-0.09% 0.00% 0.40% 0.18% 0.61% 0.70%∗∗∗

FF5 α (-0.85) (0.04) (3.09) (1.04) (2.68) (2.77)

-0.15% -0.03% 0.31% 0.12% 0.51% 0.66%∗∗∗

Carhart α (-1.74) (-0.27) (2.63) (0.87) (2.38) (2.77)

-0.15% -0.03% 0.31% 0.13% 0.51% 0.65%∗∗∗

Carhart + Liq α (-1.65) (-0.26) (2.72) (0.87) (2.27) (2.64)
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Table AIII: Risk-Neutral Skewness Sorted Portfolios: using Volatility Surface data. This table shows the
risk-neutral skewness (RNS) sorted portfolio returns. Each calendar month, we rank stocks in ascending
order by their risk-neutral skewness to five groups. RNS is computed from OptionMetrics Volatility Surface
using different days to expiration: 30 days, 60 days, 91 days, 122 days, 152 days and 182 days. Panel
A and Panel B present results for equally-weighted and value-weighted portfolios sorted by risk neutral
skewness, respectively. The rightmost column reports returns of a self-financing portfolio that long the
highest skewed portfolio and short the lowest skewed portfolio. The table shows excess returns along with
abnormal performance relative to Carhart (1997) momentum factor 4-factors model (Carhart α) over the
month following portfolio formation. The t-statistics are reported in parentheses and adjusted following
Newey and West (1987) with a lag of 6 months.

Panel A: Equally Weighted Portfolio Returns

Risk Neutral Skewness (RNS) Quintiles

1 2 3 4 5 5-1

(Low) (High)

30 days

0.46% 0.69% 0.83% 1.00% 1.35% 0.89%∗∗∗

ExRet (1.31) (1.73) (1.99) (2.25) (2.91) (4.11)

-0.39% -0.21% -0.08% 0.14% 0.55% 0.94%∗∗∗

Carhart α (-4.52) (-2.35) (-0.93) (1.21) (3.34) (4.65)

60 days

0.62% 0.76% 0.82% 0.99% 1.31% 0.69%∗∗∗

ExRet (1.99) (2.30) (2.41) (2.88) (3.80) (5.40)

-0.11% -0.04% -0.02% 0.15% 0.54% 0.66%∗∗∗

Carhart α (-1.05) (-0.32) (-0.12) (1.07) (3.45) (4.83)

91 days

0.73% 0.76% 0.88% 1.11% 1.33% 0.60%∗∗∗

ExRet (2.52) (2.42) (2.81) (3.44) (4.25) (4.88)

0.04% 0.01% 0.11% 0.36% 0.60% 0.56%∗∗∗

Carhart α (0.37) (0.05) (0.78) (2.02) (3.70) (4.13)

122 days

0.71% 0.75% 0.95% 1.19% 1.32% 0.60%∗∗∗

ExRet (2.56) (2.43) (3.04) (3.75) (4.42) (4.74)

0.07% 0.03% 0.22% 0.48% 0.64% 0.56%∗∗∗

Carhart α (0.64) (0.23) (1.36) (2.61) (3.60) (3.92)

152 days

0.72% 0.82% 0.97% 1.20% 1.32% 0.61%∗∗∗

ExRet (2.59) (2.78) (3.39) (3.79) (4.61) (4.20)

0.12% 0.13% 0.26% 0.53% 0.69% 0.57%∗∗∗

Carhart α (0.95) (0.96) (1.83) (2.81) (4.15) (3.89)

182 days

0.74% 0.82% 0.98% 1.14% 1.20% 0.46%∗∗∗

ExRet (2.70) (2.94) (3.22) (3.83) (4.08) (2.84)

0.18% 0.14% 0.30% 0.49% 0.59% 0.41%∗∗∗

Carhart α (1.26) (1.10) (1.93) (2.81) (3.72) (2.72)
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Panel B: Value Weighted Portfolio Returns

Risk Neutral Skewness (RNS) Quintiles

1 2 3 4 5 5-1

(Low) (High)

30 days

0.51% 0.79% 0.98% 0.95% 1.22% 0.71%∗∗∗

ExRet (1.62) (2.44) (2.86) (2.66) (3.46) (3.35)

-0.21% -0.00% 0.21% 0.20% 0.48% 0.70%∗∗∗

Carhart α (-3.42) (-0.05) (2.26) (1.43) (3.84) (4.39)

60 days

0.55% 0.77% 0.90% 1.07% 1.26% 0.71%∗∗∗

ExRet (1.91) (2.65) (2.87) (3.45) (4.33) (3.51)

-0.10% 0.04% 0.15% 0.33% 0.58% 0.69%∗∗∗

Carhart α (-1.12) (0.44) (1.15) (2.22) (3.44) (3.79)

91 days

0.51% 0.76% 0.81% 1.30% 1.26% 0.75%∗∗∗

ExRet (1.92) (2.62) (2.62) (4.16) (4.10) (3.42)

-0.11% 0.07% 0.12% 0.58% 0.57% 0.68%∗∗∗

Carhart α (-0.97) (0.58) (0.76) (2.94) (2.95) (3.36)

122 days

0.57% 0.81% 1.03% 1.35% 1.24% 0.67%∗∗∗

ExRet (2.23) (2.93) (3.47) (4.27) (4.20) (3.06)

0.01% 0.14% 0.37% 0.65% 0.63% 0.62%∗∗∗

Carhart α (0.11) (1.15) (1.92) (3.03) (2.94) (2.72)

152 days

0.57% 0.72% 0.98% 1.36% 1.31% 0.74%∗∗∗

ExRet (2.09) (2.49) (3.46) (3.98) (4.16) (3.33)

-0.00% 0.07% 0.34% 0.74% 0.73% 0.74%∗∗∗

Carhart α (-0.04) (0.45) (2.01) (3.05) (3.38) (3.21)

182 days

0.55% 0.81% 0.88% 1.09% 1.16% 0.61%∗∗∗

ExRet (2.11) (2.82) (2.87) (3.54) (3.78) (2.93)

-0.01% 0.17% 0.25% 0.44% 0.59% 0.61%∗∗∗

Carhart α (-0.09) (1.05) (1.33) (2.42) (2.83) (2.88)
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Table AIV: Descriptive Statistics of Portfolios Formed on βSKEW and RETT−12,T−7. This table reports
mean firm characteristics of portfolios formed on βSKEW and RETT−12,T−7.

Panel A: Mean Volume Scaled by Shares Outstanding

Momentum Quintiles
βSKEW 1 2 3 4 5 6 7 8 9 10

1 24.12% 16.27% 15.33% 13.79% 13.49% 13.44% 14.41% 14.59% 16.39% 23.37%

2 18.33% 13.10% 13.08% 11.86% 12.13% 11.97% 12.37% 12.64% 13.88% 19.36%

3 24.79% 12.62% 10.81% 10.39% 10.43% 10.18% 11.08% 12.09% 13.33% 19.15%

4 28.77% 14.09% 13.65% 12.33% 12.32% 12.42% 12.90% 14.21% 16.37% 21.71%

5 28.22% 18.86% 17.41% 16.98% 19.71% 17.96% 17.11% 18.45% 19.72% 27.90%

Panel B: Mean Institutional Ownership

Momentum Quintiles
βSKEW 1 2 3 4 5 6 7 8 9 10

1 40.94% 47.08% 48.46% 48.57% 49.03% 50.02% 50.68% 51.19% 51.39% 47.10%

2 42.24% 44.15% 43.03% 41.02% 40.05% 41.33% 43.97% 46.58% 48.31% 47.26%

3 41.03% 41.07% 38.71% 36.80% 36.14% 37.10% 39.10% 42.48% 45.90% 44.85%

4 40.03% 42.93% 42.32% 41.59% 40.89% 41.52% 42.70% 44.70% 46.72% 45.27%

5 33.82% 40.84% 41.41% 42.21% 42.46% 43.41% 42.61% 44.16% 44.95% 42.81%

Panel C: Mean Bid Ask Spread Scaled by Price

Momentum Quintiles
βSKEW 1 2 3 4 5 6 7 8 9 10

1 2.70 % 1.81 % 1.45 % 1.30 % 1.24 % 1.15 % 1.07 % 1.10 % 1.06 % 1.26 %

2 2.50 % 1.63 % 1.35 % 1.23 % 1.15 % 1.06 % 1.07 % 1.05 % 1.05 % 1.14 %

3 2.40 % 1.67 % 1.45 % 1.32 % 1.21 % 1.17 % 1.14 % 1.16 % 1.12 % 1.26 %

4 2.53 % 1.89 % 1.67 % 1.54 % 1.44 % 1.38 % 1.34 % 1.31 % 1.25 % 1.33 %

5 3.01 % 2.27 % 2.17 % 2.04 % 1.95 % 1.90 % 1.88 % 1.76 % 1.67 % 1.67 %
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Table AV: Returns on Low Momentum Crash Factor Loading WML Portfolio and Risk Managed, Low
Momentum Crash Factor Loading WML Portfolio. This table presents the excess returns, four factor
(Carhart (1997) four factors) abnormal returns, and five factor (Carhart (1997) four factors with Pastor
and Stambaugh (2005) liquidity factor) abnormal returns of the baseline Winner-minus-Loser Strategy, the
risk managed momentum strategy in Barroso and Santa-Clara (2015), the Novy-Marx (2012) momentum
strategy constructed by all stocks, and the Novy-Marx (2012) momentum strategy constructed by stocks in
βSKEW quintile 1 over the period from April, 1998 through December, 2011, as well as the risk managed
Novy-Marx (2012) momentum strategy constructed by stocks in βSKEW quintile 1 over the period from
October, 1998 through December, 2011.

WML[-12,-2] WML[-12,-2]* WML[-12,-7] WML[-12,-7] WML[-12,-7]
All βSKEW Q1 βSKEW Q1 *

0.81% 0.77% 0.89% 1.97% 1.76%
Excess Return (1.01) (2.29) (1.89) (3.67) (3.54)

0.18% 0.51% 0.67% 1.77% 1.60%
Carhart α (0.69) (1.83) (2.08) (4.03) (4.88)

0.20% 0.50% 0.65% 1.75% 1.59%
Carhart + Liq α (0.75) (1.82) (2.13) (4.19) (4.93)
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Table I: Descriptive Statistics and Correlation. Panel A provides the descriptive statistics of risk neutral
skewness (RNS), as well as of the firm-specific variables used in subsequent analysis. In Panel A, we report the
summary statistics of our full sample. The sample consists of 592,480 firm-month combinations, constituting
monthly observations from Jan 1996 through Apr 2016 from OptionMetrics and CRSP. RNS is risk neutral
skewness calculated from options with 30 days to expiration from OptionMetrics volatility surface of by
BKM(2003). MV is market capitalization, calculated by multiplying the close price of the last trading day
of this month and shares outstanding. RETt is the monthly return for time t, and RETt−1 is the one month
lagged monthly return of month t. RETt−12,t−2 is the cumulative return over the past eleven months, lagged
one month. RETt−12,t−7 is the cumulative return over the lagged twelveth months to the lagged seventh
month. RETt−6,t−2 is the cumulative return over the lagged sixth month to the lagged second month.
βiM is the market beta. We regress excess returns of stocks on market risk premium over past 60 months,
and the coefficient on the market risk premium is the market beta (at least 24 observations). VOLUME
is the stock volume over current month. BM is the book-to-market ratio. Panel B reports the time-series
average of cross-section correlation coefficients between risk neutral skewness and the firm-specific variables.
The lower triangular matrix presents the Pearson correlation matrix; the upper triangular matrix shows the
nonparametric Spearman correlation matrix. Insignificant coefficients are in italics.

Panel A: Sample Descriptive
Variables N P5 P50 P95 Mean STD

RNS 592,480 -0.8640 -0.2352 0.6071 -0.1979 0.5141
lnMV 592,480 11.6988 14.0539 17.0393 14.1604 1.6189
RETt 592,480 -0.2119 0.0064 0.2282 0.0082 0.1476
RETt−1 592,480 -0.2105 0.0066 0.2312 0.0095 0.1511
RETt−12,t−2 592,480 -0.8373 0.0714 0.7280 0.0268 0.4965
RETt−12,t−7 592,480 -0.5908 0.0491 0.5419 0.0234 0.3661
RETt−6,t−2 592,480 -0.5680 0.0332 0.4624 0.0034 0.3343
βiM 592,480 0.2487 1.1753 2.8611 1.3132 0.8513
lnVOLUME 592,480 9.3101 11.4456 13.9695 11.5234 1.4181
BM 592,480 0.1002 0.4610 1.9394 0.9002 2.2429

Panel B: Correlation
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

(1)RNS 1.00 -0.29 0.01 -0.14 -0.13 -0.06 -0.12 0.11 -0.13 0.04
(2)MV -0.10 1.00 0.04 0.10 0.25 0.17 0.19 -0.26 0.65 -0.14
(3)RETt 0.02 0.00 1.00 -0.01 0.03 0.03 0.02 -0.03 0.00 0.01
(4)RETt−1 -0.10 0.01 -0.01 1.00 0.02 0.02 0.00 -0.03 0.02 0.01
(5)RETt−12,t−2 -0.10 0.06 0.02 0.00 1.00 0.72 0.63 -0.08 0.06 0.04
(6)RETt−12,t−7 -0.05 0.04 0.02 0.01 0.75 1.00 0.03 -0.04 0.06 0.01
(7)RETt−6,t−2 -0.10 0.05 0.02 -0.00 0.68 0.03 1.00 -0.06 0.03 0.04
(8)βiM 0.08 -0.10 -0.01 -0.01 -0.08 -0.04 -0.07 1.00 0.08 -0.06
(9)lnVOLUME -0.04 0.52 -0.01 -0.00 -0.00 0.01 -0.01 0.07 1.00 -0.16
(10)BM 0.02 -0.05 0.00 0.00 0.01 0.00 0.01 -0.01 -0.03 1.00
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Table II: Fama-MacBeth Cross-Sectional Regressions. This table presents the firm-level cross sectional
regressions of equity excess returns on risk neutral skewness (RNS) after controlling for beta, size,
book-to-market ratio [log(B/M)], short term reversal (RET−1), momentum and stock trading volume
[log(VOLUME)]. We use three proxies of momentum: RET−12,−2 in column (2) and (3), RET−12,−7 in
column (4) and (5) and RET−6,−2 in column (6) and (7). The coefficients and their Newey-West (1987)
t-statistics are reported (t-statistics in parentheses).

(1) (2) (3) (4) (5) (6) (7)

0.825 * 1.314 0.944 1.079 0.688 0.971 0.591
Intercept (1.89) (1.45) (1.04) (1.16) (0.73) (1.08) (0.65)

0.716 *** 0.675 *** 0.652 *** 0.694 ***
RNS (3.97) (7.41) (7.22) (7.28)

-0.062 -0.057 0.001 0.004 0.008 0.011
βM (-0.35) (-0.32) (0.00) (0.02) (0.04) (0.05)

-0.031 0.012 -0.011 0.035 -0.000 0.043
ln(ME) (-0.30) (0.11) (-0.10) (0.32) (-0.00) (0.43)

-0.003 -0.007 0.011 0.009 0.008 0.004
ln(BM) (-0.04) (-0.10) (0.17) (0.13) (0.11) (0.06)

-1.615 *** -1.410 ** -1.621 *** -1.436 ** -1.631 *** -1.425 **
RETt−1 (-2.63) (-2.32) (-2.61) (-2.34) (-2.65) (-2.34)

0.533 * 0.569 * 0.627 ** 0.644 ** 0.515 0.574
Momentum (1.74) (1.87) (2.30) (2.38) (1.46) (1.62)

-0.023 -0.032 -0.029 -0.040 -0.030 -0.039
ln(VOLUME) (-0.27) (-0.38) (-0.31) (-0.44) (-0.35) (-0.45)
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Table III: Risk-Neutral Skewness Sorted Portfolios. This table shows the characteristics and returns of
risk-neutral skewness (RNS) sorted portfolios. Each calendar month, we rank stocks in ascending order by
their risk-neutral skewness and assign the ranked stocks to one of five groups. Panel A and Panel B present
the characteristics and returns for equally-weighted and value-weighted portfolios sorted by risk neutral
skewness, respectively. The upper panels report the portfolio characteristics. The rightmost two column
presents characteristics of a self-financing portfolio that long the positively skewed portfolio and short the
negatively skewed portfolio and t-statistics. The lower panels report the portfolio returns. The rightmost
column presents returns of a self-financing portfolio that long the positively skewed portfolio and short the
negatively skewed portfolio. The table shows excess returns along with abnormal performance relative to
Carhart (1997) momentum factor 4-factors model (Carhart α) over the month following portfolio formation.
The table also reports the portfolios loadings (βs) on the market risk premium (MKT), size (SMB), value
(HML), and momentum (UMD) factors estimated from the Carhart four-factor model. The t-statistics are
reported in parentheses and adjusted following Newey and West (1987) with a lag of 6 months.

Panel A: Equally Weighted Portfolio

Equally Weighted Portfolio Characteristics
1 2 3 4 5 H-L T

RNS -0.751 -0.386 -0.235 -0.066 0.446 1.197 23.27
lnMe 14.550 14.676 14.358 13.824 13.336 -1.214 -17.00
BM 0.901 0.788 0.808 0.884 0.997 0.096 4.11
RETt−12,t−2 0.067 0.083 0.071 0.006 -0.089 -0.156 -8.12
RETt−12,t−7 0.032 0.051 0.050 0.020 -0.027 -0.059 -6.15
RETt−6,t−2 0.035 0.033 0.021 -0.014 -0.062 -0.098 -7.74
RETt−1 0.028 0.021 0.014 0.001 -0.015 -0.043 -10.15
lnVolume 11.505 11.787 11.688 11.428 11.057 -0.447 -7.49

Equally Weighted Portfolio Returns

1 2 3 4 5 H-L

0.46% 0.69% 0.83% 1.00% 1.35% 0.89%
ExRet (1.31) (1.73) (1.99) (2.25) (2.91) (4.11)

-0.39% -0.21% -0.08% 0.14% 0.55% 0.94%
αFFC (-4.52) (-2.35) (-0.93) (1.21) (3.34) (4.65)

0.98 1.13 1.18 1.16 1.13 0.15
βMKT (40.31) (63.63) (54.32) (45.58) (28.37) (3.33)

0.41 0.52 0.59 0.73 0.64 0.22
βSMB (8.64) (13.24) (16.23) (11.72) (5.77) (2.77)

0.30 0.08 0.01 -0.01 0.14 -0.16
βHML (7.69) (2.03) (0.33) (-0.20) (2.10) (-2.42)

-0.10 -0.11 -0.16 -0.31 -0.44 -0.35
βUMD (-3.54) (-5.04) (-6.24) (-9.15) (-8.42) (-5.19)
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Panel B: Value Weighted Portfolio Returns

Value Weighted Portfolio Characteristics
1 2 3 4 5 H-L T

RNS -0.675 -0.390 -0.240 -0.078 0.413 1.088 23.50
lnMe 17.274 17.259 16.882 16.372 15.583 -1.691 -12.59
BM 0.505 0.480 0.518 0.600 0.808 0.303 6.39
RETt−12,t−2 0.120 0.131 0.132 0.099 0.037 -0.083 -5.27
RETt−12,t−7 0.065 0.076 0.077 0.064 0.028 -0.036 -4.66
RETt−6,t−2 0.056 0.054 0.055 0.035 0.009 -0.047 -4.83
RETt−1 0.022 0.017 0.012 0.005 -0.002 -0.024 -6.22
lnVolume 13.279 13.425 13.280 12.994 12.379 -0.900 -7.38

Value Weighted Portfolio Returns
1 2 3 4 5 H-L

0.51% 0.79% 0.98% 0.95% 1.22% 0.71%
ExRet (1.62) (2.44) (2.86) (2.66) (3.46) (3.35)

-0.21% -0.00% 0.21% 0.20% 0.48% 0.70%
αFFC (-3.42) (-0.05) (2.26) (1.43) (3.84) (4.39)

0.95 1.06 1.07 1.05 0.96 0.01
βMKT (63.01) (55.63) (50.97) (30.49) (34.95) (0.21)

-0.10 -0.04 -0.02 0.06 0.13 0.23
βSMB (-4.86) (-2.20) (-0.64) (1.51) (2.58) (3.86)

0.04 0.01 -0.07 -0.03 0.30 0.25
βHML (1.01) (0.31) (-1.54) (-0.46) (6.05) (3.04)

-0.02 -0.00 -0.02 -0.12 -0.22 -0.20
βUMD (-0.77) (-0.10) (-0.65) (-3.56) (-5.99) (-3.97)
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Table IV: Market Timing Regression of RNS quintile portfolios. This table presents the results of estimating
four specifications of time-series regressions of the RNS quintile portfolio returns and the long-short portfolio
return over the period February 1996 to May 2016. Model 1 fits an unconditional market model to the RNS-
sorted portfolios as well as a long-short portfolio: R̃t = α0 + β0R̃m,t + ε̃t. Model 2 fits a conditional CAPM

with the bear market indicator, IB , as an instrument: R̃t = α0 + (β0 + βBIB,t−1)R̃m,t + ε̃t where IB equals
to 1 if the cumulative CRSP VW index return in the past 24 months is negative and equals to 0 otherwise.
Model 3 introduces a contemporaneous up-market indicator variable IU,t that equals 1 if the market risk

premium is positive, and equals 0 otherwise: R̃t = α0 + (β0 + IB,t−1(βB + ĨU,tβB,U ))R̃m,t + ε̃t. Panel A and
Panel B report equally- and value- weighted portfolio results, respectively.

Panel A: Equally Weighted Portfolio

RNS Quintile

1 2 3 4 5 H-L

Model 1
-0.33% -0.21% -0.12% 0.01% 0.38% 0.70%

α̂0 (-2.71) (-1.58) (-0.80) (0.04) (1.62) (3.76)

1.05 1.25 1.33 1.39 1.37 0.33

β̂0 (39.47) (43.24) (39.79) (31.89) (27.23) (7.95)

Model 2
-0.29% -0.18% -0.10% 0.06% 0.46% 0.76%

α̂0 (-2.44) (-1.36) (-0.62) (0.28) (2.07) (4.08)

0.98 1.19 1.28 1.30 1.21 0.23

β̂0 (29.22) (32.42) (29.91) (23.45) (19.24) (4.42)

0.18 0.14 0.13 0.23 0.42 0.24

β̂B (3.35) (2.44) (1.90) (2.59) (4.23) (2.95)

Model 3
-0.30% -0.28% -0.22% -0.14% 0.17% 0.47%

α̂0 (-2.27) (-1.96) (-1.30) (-0.65) (0.71) (2.37)

0.98 1.20 1.28 1.31 1.22 0.24

β̂0 (29.10) (32.61) (30.10) (23.76) (19.73) (4.77)

0.17 0.06 0.03 0.07 0.18 0.01

β̂B (2.55) (0.81) (0.35) (0.61) (1.43) (0.05)

0.01 0.17 0.21 0.34 0.51 0.50
ˆβB,U (0.09) (1.76) (1.81) (2.28) (3.07) (3.68)
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Panel B: Value Weighted Portfolio

RNS Quintile

1 2 3 4 5 H-L

Model 1
-0.22% -0.01% 0.18% 0.12% 0.44% 0.66%

α̂0 (-3.16) (-0.09) (1.99) (0.97) (2.92) (3.88)

0.94 1.05 1.08 1.11 1.02 0.09

β̂0 (62.07) (81.83) (55.29) (40.33) (31.00) (2.33)

Model 2
-0.20% -0.00% 0.18% 0.15% 0.52% 0.72%

α̂0 (-2.97) (-0.04) (1.97) (1.17) (3.67) (4.39)

0.91 1.05 1.08 1.06 0.87 -0.04

β̂0 (47.26) (63.20) (42.96) (30.26) (22.01) (-0.80)

0.06 0.01 -0.00 0.12 0.38 0.31

β̂B (2.13) (0.52) (-0.10) (2.09) (5.96) (4.24)

Model 3
-0.16% -0.01% 0.12% 0.01% 0.40% 0.56%

α̂0 (-2.09) (-0.14) (1.18) (0.07) (2.61) (3.13)

0.91 1.05 1.08 1.07 0.88 -0.03

β̂0 (47.20) (62.95) (43.10) (30.70) (22.22) (-0.64)

0.10 0.01 -0.05 0.00 0.28 0.17

β̂B (2.66) (0.24) (-1.06) (0.04) (3.46) (1.87)

-0.08 0.01 0.11 0.24 0.21 0.29
ˆβB,U (-1.60) (0.25) (1.57) (2.55) (1.93) (2.34)
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Table V: RNS Sorted Portfolio Returns and Estimated Market Variance. This table presents the results
of estimating five specifications of time-series regressions of the RNS quintile portfolio returns and the
long-short portfolio return over the period February 1996 to May 2016. Model 1 regresses the RNS-sorted
portfolios as well as a long-short portfolio on the bear market indicator IB,t−1 where IB equals to 1 if
the cumulative CRSP VW index return in the past 24 months is negative and equals to 0 otherwise:
R̃t = γ0 + γ0IB,t−1 + ε̃t. Model 2 regresses the RNS-sorted portfolios as well as a long-short portfolio
on the market variance σ2

m,t−1, the variance of the daily returns of the market over the 126 days prior to

time t: R̃t = γ0+γσ2
m,t−1

σ2
m,t−1+ ε̃t. Model 3 fits the model:R̃t = γ0+γ0IB,t−1+γσ2

m,t−1
σ2
m,t−1+ ε̃t. Model 4

runs a regression of RNS sorted portfolio returns on the interaction of the bear market indicator and market
variance: R̃t = γ0 + γintIB,t−1σ

2
m,t−1 + ε̃t. Panel A and Panel B present regression results of the equally-

and value-weighted portfolios, respectively.

Panel A: Equally Weighted Portfolios

RNS Quintile

1 2 3 4 5 H-L

Model 1
0.31% 0.53% 0.62% 0.69% 0.91% 0.60%

γ̂0 (0.83) (1.20) (1.30) (1.34) (1.74) (2.56)

-0.19% -0.12% 0.10% 0.52% 1.14% 1.32%
γ̂B (-0.23) (-0.12) (0.10) (0.48) (1.02) (2.66)

Model 2
0.17% 0.22% 0.22% 0.23% 0.27% 0.10%

γ̂0 (0.40) (0.44) (0.41) (0.40) (0.46) (0.40)

0.07 0.19 0.28 0.38 0.59 0.52
ˆγσ2
m

(0.38) (0.92) (1.25) (1.58) (2.42) (4.90)

Model 3
0.19% 0.25% 0.25% 0.26% 0.29% 0.10%

γ̂0 (0.45) (0.51) (0.47) (0.44) (0.48) (0.37)

-0.47% -0.76% -0.75% -0.50% -0.32% 0.15%
γ̂B (-0.50) (-0.70) (-0.64) (-0.39) (-0.25) (0.26)

0.12 0.28 0.36 0.44 0.63 0.51
ˆγσ2
m

(0.59) (1.14) (1.40) (1.55) (2.19) (4.06)

Model 4
0.23% 0.40% 0.47% 0.57% 0.79% 0.56%

γ̂0 (0.67) (0.97) (1.07) (1.19) (1.62) (2.60)

0.05 0.14 0.22 0.32 0.50 0.46
ˆγint (0.29) (0.73) (1.08) (1.41) (2.22) (4.59)
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Panel B: Value Weighted Portfolios

RNS Quintile

1 2 3 4 5 H-L

Model 1
0.50% 0.76% 0.88% 0.74% 0.96% 0.45%

γ̂0 (1.58) (2.15) (2.38) (1.87) (2.53) (2.39)

-0.85% -0.74% -0.40% 0.08% 0.30% 1.15%
γ̂B (-1.25) (-0.99) (-0.50) (0.10) (0.37) (2.84)

Model 2
0.41% 0.54% 0.54% 0.32% 0.58% 0.17%

γ̂0 (1.12) (1.35) (1.28) (0.73) (1.35) (0.80)

-0.06 0.04 0.17 0.29 0.30 0.36
ˆγσ2
m

(-0.40) (0.21) (0.97) (1.55) (1.67) (4.04)

Model 3
0.45% 0.60% 0.59% 0.36% 0.60% 0.15%

γ̂0 (1.25) (1.48) (1.40) (0.81) (1.40) (0.70)

-0.97% -1.12% -1.08% -0.80% -0.53% 0.43%
γ̂B (-1.22) (-1.28) (-1.17) (-0.82) (-0.57) (0.93)

0.05 0.16 0.29 0.38 0.36 0.31
ˆγσ2
m

(0.29) (0.84) (1.44) (1.75) (1.72) (2.98)

Model 4
0.38% 0.60% 0.70% 0.58% 0.85% 0.48%

γ̂0 (1.26) (1.80) (2.01) (1.57) (2.41) (2.70)

-0.08 -0.01 0.13 0.24 0.23 0.32
ˆγint (-0.59) (-0.04) (0.78) (1.41) (1.41) (3.84)
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Table VI: Market Timing Regression of WML Portfolio Returns. At the end of each calendar month, we
independently sort firms by RETT−12,T−7 and RNS into terciles. In each RNS tercile, we regress the equally-
and value-weighted WML portfolio returns on market timing models and report the results on left and right
panels, respectively. Model 1 fits an unconditional CAPM: R̃WML,t = α0 + β0R̃m,t + ε̃t. Model 2 fits a

conditional CAPM with the bear market indicator IB : R̃WML,t = α0 + (β0 + βBIB,t−1)R̃m,t + ε̃t. Model

3 introduces a contemporaneous up-market indicator variable IU,t: R̃WML,t = α0 + (β0 + IB,t−1(βB +

ĨU,tβB,U ))R̃m,t + ε̃t

EW VW

RNS Tercile RNS Tercile

L M H H-L L M H H-L

Model 1
0.68% 0.61% 0.54% -0.14% 0.64% 0.60% 0.61% -0.03%

α̂0 (2.61) (2.21) (1.88) (-0.95) (2.07) (1.85) (1.75) (-0.12)

-0.11 -0.13 -0.20 -0.08 -0.10 -0.08 -0.20 -0.10

β̂0 (-1.99) (-2.20) (-3.16) (-2.53) (-1.47) (-1.07) (-2.56) (-1.72)

Model 2
0.55% 0.46% 0.39% -0.16% 0.49% 0.44% 0.41% -0.08%

α̂0 (2.22) (1.80) (1.44) (-1.04) (1.66) (1.44) (1.27) (-0.30)

0.14 0.13 0.08 -0.06 0.19 0.22 0.19 -0.01

β̂0 (2.02) (1.86) (1.07) (-1.39) (2.34) (2.52) (2.05) (-0.10)

-0.64 -0.67 -0.70 -0.06 -0.74 -0.74 -0.96 -0.23

β̂B (-5.85) (-5.85) (-5.86) (-0.92) (-5.65) (-5.41) (-6.70) (-1.99)

Model 3
0.55% 0.55% 0.56% 0.01% 0.44% 0.42% 0.61% 0.17%

α̂0 (2.03) (1.97) (1.90) (0.07) (1.37) (1.27) (1.72) (0.60)

0.14 0.13 0.07 -0.07 0.19 0.22 0.18 -0.02

β̂0 (2.02) (1.80) (0.97) (-1.57) (2.36) (2.52) (1.96) (-0.25)

-0.64 -0.60 -0.56 0.08 -0.77 -0.75 -0.80 -0.03

β̂B (-4.54) (-4.05) (-3.67) (0.89) (-4.62) (-4.28) (-4.35) (-0.18)

-0.00 -0.16 -0.29 -0.29 0.08 0.03 -0.34 -0.42
ˆβB,U (-0.01) (-0.80) (-1.45) (-2.58) (0.37) (0.12) (-1.40) (-2.21)
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Table VII: Size/RETT−12,T−7/RNS triple sorted Portfolio Optionality in Bear Market. At the end of each
calendar month, we independently sort firms by Market Capitalization, RETT−12,T−7 and RNS into terciles.
In each Size/RNS group, we regress the equally- and value-weighted WML portfolio returns on the time
series model: R̃WML,t = α0 + (β0 + IB,t−1(βB + ĨU,tβB,U ))R̃m,t + ε̃t and report the regression results on left
and right panels, respectively.

EW VW

RNS Tercile RNS Tercile

L M H H-L L M H H-L

Size Tercile 1
0.71% 0.67% 0.63% -0.08% 0.55% 0.63% 0.44% -0.11%

α̂0 (2.47) (2.23) (2.05) (-0.32) (1.87) (2.02) (1.43) (-0.42)

0.18 0.20 0.14 -0.05 0.26 0.18 0.18 -0.08

β̂0 (2.49) (2.56) (1.74) (-0.70) (3.48) (2.27) (2.32) (-1.14)

-0.25 -0.43 -0.42 -0.17 -0.38 -0.36 -0.54 -0.16

β̂B (-1.67) (-2.76) (-2.60) (-1.22) (-2.44) (-2.19) (-3.35) (-1.11)

-0.35 -0.24 -0.19 0.16 -0.36 -0.19 -0.04 0.33
ˆβB,U (-1.77) (-1.16) (-0.90) (0.90) (-1.78) (-0.86) (-0.18) (1.70)

Size Tercile 2
0.25% 0.45% 0.40% 0.15% 0.23% 0.45% 0.43% 0.21%

α̂0 (0.85) (1.46) (1.27) (0.67) (0.75) (1.43) (1.33) (0.84)

0.13 0.14 0.10 -0.03 0.14 0.15 0.08 -0.06

β̂0 (1.76) (1.73) (1.27) (-0.50) (1.79) (1.82) (0.94) (-0.95)

-0.66 -0.55 -0.67 -0.01 -0.67 -0.59 -0.67 -0.00

β̂B (-4.32) (-3.44) (-4.03) (-0.05) (-4.23) (-3.61) (-3.94) (-0.03)

0.07 -0.35 -0.50 -0.57 0.05 -0.27 -0.49 -0.54
ˆβB,U (0.34) (-1.65) (-2.27) (-3.56) (0.24) (-1.26) (-2.15) (-3.15)

Size Tercile 3
0.56% 0.42% 0.80% 0.24% 0.44% 0.40% 0.80% 0.36%

α̂0 (1.82) (1.25) (2.34) (1.02) (1.33) (1.17) (1.95) (1.01)

0.18 0.18 0.20 0.02 0.19 0.23 0.25 0.06

β̂0 (2.29) (2.09) (2.26) (0.29) (2.18) (2.55) (2.34) (0.66)

-0.74 -0.76 -0.88 -0.14 -0.76 -0.75 -0.92 -0.16

β̂B (-4.62) (-4.26) (-4.91) (-1.11) (-4.36) (-4.16) (-4.30) (-0.88)

0.03 0.04 -0.50 -0.53 0.07 0.04 -0.41 -0.49
ˆβB,U (0.14) (0.16) (-2.09) (-3.23) (0.32) (0.18) (-1.45) (-1.97)
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Table VIII: Institutional Ownership/RETT−12,T−7/RNS triple sorted Portfolio Optionality in Bear Market.
At the end of each calendar month, we independently sort firms by Institutional Ownership, RETT−12,T−7
and RNS into terciles. In each Size/RNS group, we regress the equally- and value-weighted WML portfolio
returns on the time series model: R̃WML,t = α0 + (β0 + IB,t−1(βB + ĨU,tβB,U ))R̃m,t + ε̃t and report the
regression results on left and right panels, respectively.

EW VW

RNS Tercile RNS Tercile

L M H H-L L M H H-L

Inst Own Tercile 1
1.26% 1.48% 0.94% -0.32% 0.82% 1.24% 1.17% 0.35%

α̂0 (3.81) (4.51) (2.72) (-1.30) (1.97) (2.77) (2.39) (0.78)

0.12 0.10 0.12 -0.00 0.12 0.10 0.22 0.10

β̂0 (1.42) (1.19) (1.36) (-0.01) (1.10) (0.91) (1.77) (0.92)

-0.72 -0.62 -0.70 0.02 -0.87 -0.67 -1.16 -0.29

β̂B (-4.21) (-3.68) (-3.93) (0.14) (-4.08) (-2.90) (-4.61) (-1.25)

-0.00 -0.23 -0.08 -0.08 0.26 0.20 -0.32 -0.59
ˆβB,U (-0.01) (-1.01) (-0.35) (-0.47) (0.92) (0.65) (-0.97) (-1.91)

Inst Own Tercile 2
0.13% 0.11% -0.06% -0.19% 0.21% -0.04% 0.19% -0.02%

α̂0 (0.44) (0.34) (-0.18) (-0.75) (0.57) (-0.10) (0.47) (-0.05)

0.15 0.14 0.06 -0.09 0.16 0.24 0.15 -0.01

β̂0 (2.09) (1.78) (0.73) (-1.46) (1.73) (2.64) (1.47) (-0.12)

-0.62 -0.63 -0.48 0.15 -0.61 -0.86 -0.58 0.03

β̂B (-4.18) (-3.89) (-2.77) (1.14) (-3.16) (-4.56) (-2.75) (0.16)

-0.01 -0.14 -0.45 -0.44 -0.12 0.06 -0.36 -0.24
ˆβB,U (-0.05) (-0.64) (-1.98) (-2.61) (-0.48) (0.25) (-1.30) (-0.85)

Inst Own Tercile 3
0.26% 0.09% 0.19% -0.07% 0.17% -0.00% -0.01% -0.18%

α̂0 (0.93) (0.31) (0.63) (-0.30) (0.53) (-0.00) (-0.02) (-0.54)

0.17 0.21 0.07 -0.10 0.34 0.24 0.11 -0.23

β̂0 (2.39) (2.78) (0.90) (-1.70) (4.24) (2.74) (1.19) (-2.82)

-0.63 -0.64 -0.48 0.15 -0.82 -0.79 -0.59 0.23

β̂B (-4.38) (-4.12) (-3.07) (1.23) (-5.05) (-4.46) (-3.24) (1.38)

0.03 -0.03 -0.31 -0.34 0.24 0.12 -0.27 -0.51
ˆβB,U (0.18) (-0.15) (-1.47) (-2.16) (1.12) (0.53) (-1.11) (-2.28)

51



Table IX: WML Portfolio Returns and Estimated Market Variance. At the end of each calendar month,
we independently sort firms by RETT−12,T−7 and RNS into terciles. In each RNS tercile, the equally-
and value-weighted WML portfolio returns are regressed on a set of time series models and reported
on left and right panels, respectively. Model 1 regresses the WML portfolios as well as a long-short
portfolio on the bear market indicator IB,t−1: R̃WML,t = γ0 + γ0IB,t−1 + ε̃t. Model 2 regresses the WML

portfolios on the market variance σ2
m,t−1: R̃WML,t = γ0 + γσ2

m,t−1
σ2
m,t−1 + ε̃t. Model 3 fits the model:

R̃WML,t = γ0 +γ0IB,t−1 +γσ2
m,t−1

σ2
m,t−1 + ε̃t. Model 4 runs the WML portfolio returns on the interaction of

the bear market indicator and market variance: R̃WML,t = γ0 + γintIB,t−1σ
2
m,t−1 + ε̃t. Left and right panels

present regression results of the equally- and value-weighted portfolios, respectively.

EW VW

RNS Tercile RNS Tercile

L M H H-L L M H H-L

Model 1
0.60% 0.59% 0.56% -0.04% 0.54% 0.53% 0.55% 0.01%

γ̂0 (2.03) (1.89) (1.71) (-0.25) (1.53) (1.45) (1.37) (0.04)

0.06% -0.26% -0.61% -0.68% 0.22% 0.12% -0.21% -0.43%
γ̂B (0.10) (-0.39) (-0.88) (-1.86) (0.29) (0.15) (-0.25) (-0.70)

Model 2
0.97% 1.04% 1.24% 0.27% 0.77% 0.86% 1.11% 0.34%

γ̂0 (2.90) (2.97) (3.40) (1.40) (1.94) (2.09) (2.48) (1.05)

-0.23 -0.33 -0.54 -0.30 -0.12 -0.20 -0.40 -0.28
ˆγσ2
m

(-1.68) (-2.30) (-3.56) (-3.85) (-0.74) (-1.19) (-2.17) (-2.08)

Model 3
0.93% 1.00% 1.19% 0.26% 0.74% 0.82% 1.06% 0.33%

γ̂0 (2.76) (2.85) (3.27) (1.38) (1.84) (1.99) (2.36) (0.99)

0.83% 0.71% 0.87% 0.04% 0.69% 0.81% 0.99% 0.31%
γ̂B (1.13) (0.93) (1.09) (0.10) (0.79) (0.90) (1.01) (0.43)

-0.33 -0.42 -0.64 -0.31 -0.20 -0.30 -0.52 -0.32
ˆγσ2
m

(-2.02) (-2.45) (-3.61) (-3.34) (-1.04) (-1.48) (-2.38) (-2.01)

Model 4
0.76% 0.76% 0.80% 0.04% 0.62% 0.68% 0.78% 0.15%

γ̂0 (2.73) (2.62) (2.65) (0.25) (1.90) (1.98) (2.09) (0.56)

-0.19 -0.31 -0.51 -0.32 -0.05 -0.17 -0.37 -0.32
ˆγint (-1.48) (-2.30) (-3.61) (-4.33) (-0.34) (-1.06) (-2.16) (-2.56)
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Table X: Triple Sorted Portfolio Returns and Estimated Market Variance. In Panel A, at the end of
each calendar month, we independently sort firms by Market Capitalization, RETT−12,T−7 and RNS
into terciles. In each Size/RNS group, the equally- and value-weighted WML portfolio returns are
regressed on the interaction of the bear market indicator and the estimated market variance: R̃WML,t =
γ0 + γintIB,t−1σ

2
m,t−1 + ε̃t and reported on left and right panels, respectively. In Panel B, at the end

of each calendar month, we independently sort firms by Institutional Ownership, RETT−12,T−7 and RNS
into terciles. In each Institutional Ownership/RNS group, the equally- and value-weighted WML portfolio
returns are regressed on the interaction of the bear market indicator and the estimated market variance:
R̃WML,t = γ0 + γintIB,t−1σ

2
m,t−1 + ε̃t and reported on left and right panels, respectively.

EW VW

RNS Tercile RNS Tercile

L M H H-L L M H H-L

Panel A: Triple Sorts by Size/RETT−12,T−7/RNS
Size Tercile 1

0.87% 0.96% 0.94% 0.07% 0.80% 0.93% 0.79% -0.01%
γ̂0 (3.11) (3.23) (3.16) (0.28) (2.73) (3.05) (2.60) (-0.04)

-0.36 -0.43 -0.48 -0.12 -0.42 -0.41 -0.37 0.04
ˆγint (-2.71) (-3.12) (-3.43) (-1.05) (-3.07) (-2.88) (-2.65) (0.36)

Size Tercile 2
0.48% 0.56% 0.60% 0.12% 0.45% 0.59% 0.59% 0.14%

γ̂0 (1.61) (1.77) (1.78) (0.52) (1.48) (1.83) (1.70) (0.55)

-0.17 -0.33 -0.58 -0.41 -0.18 -0.30 -0.54 -0.37
ˆγint (-1.23) (-2.22) (-3.72) (-3.90) (-1.22) (-2.03) (-3.34) (-3.21)

Size Tercile 3
0.77% 0.73% 0.94% 0.17% 0.61% 0.66% 0.95% 0.34%

γ̂0 (2.44) (2.10) (2.50) (0.70) (1.79) (1.90) (2.19) (0.97)

-0.14 -0.26 -0.44 -0.29 -0.04 -0.16 -0.34 -0.30
ˆγint (-0.95) (-1.59) (-2.48) (-2.65) (-0.25) (-0.98) (-1.70) (-1.86)

Panel B: Triple Sorts by Institutional Ownership/RETT−12,T−7/RNS
Inst Own Tercile 1

1.43% 1.64% 1.25% -0.18% 0.93% 1.37% 1.34% 0.41%
γ̂0 (4.20) (4.87) (3.57) (-0.76) (2.21) (3.11) (2.58) (0.94)

-0.16 -0.34 -0.41 -0.25 0.12 0.04 -0.35 -0.47
ˆγint (-0.99) (-2.18) (-2.50) (-2.32) (0.63) (0.19) (-1.44) (-2.32)

Inst Own Tercile 2
0.33% 0.35% 0.11% -0.22% 0.41% 0.27% 0.29% -0.12%

γ̂0 (1.14) (1.12) (0.34) (-0.93) (1.08) (0.72) (0.70) (-0.31)

-0.19 -0.35 -0.55 -0.36 -0.25 -0.20 -0.31 -0.06
ˆγint (-1.38) (-2.37) (-3.51) (-3.27) (-1.44) (-1.14) (-1.63) (-0.33)

Inst Own Tercile 3
0.50% 0.35% 0.45% -0.06% 0.54% 0.29% 0.32% -0.22%

γ̂0 (1.78) (1.14) (1.47) (-0.25) (1.68) (0.82) (0.93) (-0.69)

-0.19 -0.22 -0.54 -0.35 -0.08 -0.13 -0.59 -0.50
ˆγint (-1.47) (-1.58) (-3.85) (-3.45) (-0.57) (-0.81) (-3.62) (-3.44)
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Table XI: Portfolio Sorted by Factor Loadings on Risk-Neutral Skewness Factor (βSKEW ) and Momentum
(RETT−12,T−7). At the end of each calendar month, we rank stocks into five portfolios according to their
risk neutral skewness measure (RNS) and construct the risk-neutral skewness factor (SKEW) as the equally-
weighted return of the portfolio that long the portfolio with highest RNS and short the portfolio with lowest
RNS. We run the rolling window regression: Exret = α + βMMktrf + βSKEWSKEW over the past 60
months and βSKEW is the factor loading on the SKEW. Each calendar month, we rank stocks in ascending
order by their βSKEW and intermediate horizon past performance and assign the ranked stocks to one of
five groups, respectively. Panel A, Panel B and Panel C present the excess return, Carhart four-factor α and
Carhart four factors with Pastor and Stambaugh (2005) liquidity factor α for the twenty-five value-weighted
portfolios. The rightmost column presents characteristics of a self-financing portfolio that long the past
winner and short the past loser. The t-statistics are reported in parentheses and adjusted following Newey
and West (1987) with a lag of 6 months.

Panel A: Excess Return
Momentum Decile

1 2 3 4 5 6 7 8 9 10 H-L

βSKEW
-0.33% 0.44% 0.49% 0.52% 0.59% 0.65% 0.48% 1.01% 0.63% 1.30% 1.63%

1 (-0.46) (0.86) (1.20) (1.26) (1.54) (2.08) (1.47) (3.38) (2.07) (2.76) (2.71)

0.70% 0.34% 0.68% 0.51% 0.70% 0.66% 0.67% 0.92% 0.83% 1.16% 0.46%
2 (1.23) (0.64) (1.68) (1.29) (1.98) (2.16) (2.39) (3.49) (2.57) (3.08) (0.84)

0.57% 0.32% 0.61% 0.73% 0.77% 0.51% 0.83% 0.65% 0.96% 0.63% 0.07%
3 (0.95) (0.68) (1.42) (1.91) (2.15) (1.45) (2.72) (2.23) (2.52) (1.16) (0.12)

0.46% 0.44% 0.32% 0.72% 0.49% 0.74% 0.32% 0.57% 0.67% 1.09% 0.63%
4 (0.78) (0.85) (0.66) (1.67) (1.30) (1.72) (0.77) (1.47) (1.41) (1.98) (1.25)

0.59% 0.36% 0.52% 0.57% 0.99% 1.21% 1.57% 1.16% 0.82% 0.83% 0.24%
5 (0.80) (0.59) (0.89) (0.78) (1.46) (1.99) (2.23) (2.06) (1.33) (1.18) (0.49)

0.93% -0.08% 0.04% 0.05% 0.40% 0.56% 1.09% 0.16% 0.19% -0.46% -1.39%
H-L (1.74) (-0.17) (0.07) (0.07) (0.63) (1.11) (1.63) (0.37) (0.40) (-1.02) (-3.12)

WML[-12,-7] 0.16% 0.31% 0.54% 0.52% 0.62% 0.64% 0.62% 0.85% 0.75% 1.00% 0.84%
All (0.28) (0.66) (1.35) (1.43) (2.04) (2.09) (2.20) (3.06) (2.23) (2.07) (1.71)

Panel B: Carhart α
Momentum Decile

1 2 3 4 5 6 7 8 9 10 H-L

βSKEW
-0.85% -0.01% -0.01% 0.08% 0.07% 0.15% -0.07% 0.36% 0.02% 0.54% 1.38%

1 (-2.35) (-0.03) (-0.09) (0.34) (0.27) (0.78) (-0.44) (2.07) (0.09) (2.13) (3.49)

0.24% -0.12% 0.19% -0.00% 0.15% 0.13% 0.08% 0.38% 0.13% 0.30% 0.06%
2 (0.84) (-0.44) (1.14) (-0.01) (0.79) (0.88) (0.57) (2.33) (0.66) (1.41) (0.16)

0.05% -0.19% 0.11% 0.19% 0.21% -0.07% 0.31% 0.07% 0.37% -0.14% -0.19%
3 (0.16) (-0.89) (0.59) (0.86) (0.94) (-0.34) (1.51) (0.46) (1.84) (-0.49) (-0.50)

-0.08% -0.14% -0.17% 0.10% -0.10% 0.17% -0.26% -0.04% 0.01% 0.35% 0.42%
4 (-0.25) (-0.54) (-0.75) (0.40) (-0.33) (0.68) (-1.25) (-0.21) (0.06) (1.23) (1.30)

-0.12% -0.42% -0.09% -0.20% 0.32% 0.64% 0.88% 0.56% 0.05% -0.10% 0.02%
5 (-0.30) (-1.23) (-0.30) (-0.35) (0.60) (1.77) (2.09) (1.52) (0.15) (-0.27) (0.06)

0.73% -0.41% -0.08% -0.28% 0.25% 0.50% 0.95% 0.19% 0.04% -0.63% -1.36%
H-L (1.47) (-0.94) (-0.24) (-0.41) (0.37) (1.04) (1.81) (0.52) (0.09) (-1.47) (-3.20)

WML[-12,-7] -0.36% -0.14% 0.06% 0.01% 0.07% 0.11% 0.06% 0.26% 0.10% 0.20% 0.56%
All (-1.58) (-0.81) (0.45) (0.09) (0.72) (0.95) (0.69) (2.27) (0.79) (1.14) (1.93)
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Panel C: Carhart + Liq α
Momentum Decile

1 2 3 4 5 6 7 8 9 10 H-L

βSKEW
-0.96% -0.08% -0.04% 0.02% 0.06% 0.10% -0.10% 0.34% 0.02% 0.56% 1.52%

1 (-2.74) (-0.30) (-0.23) (0.09) (0.23) (0.55) (-0.66) (2.03) (0.12) (2.19) (4.04)

0.16% -0.13% 0.15% -0.03% 0.15% 0.14% 0.03% 0.42% 0.11% 0.33% 0.17%
2 (0.55) (-0.46) (0.92) (-0.16) (0.75) (0.93) (0.23) (2.61) (0.54) (1.48) (0.46)

-0.01% -0.19% 0.07% 0.14% 0.21% -0.05% 0.32% 0.08% 0.40% -0.09% -0.08%
3 (-0.03) (-0.86) (0.37) (0.63) (0.95) (-0.24) (1.52) (0.53) (1.97) (-0.32) (-0.21)

-0.05% -0.11% -0.16% 0.11% -0.06% 0.18% -0.21% -0.01% 0.06% 0.38% 0.44%
4 (-0.18) (-0.41) (-0.66) (0.40) (-0.19) (0.72) (-0.97) (-0.05) (0.25) (1.33) (1.30)

-0.26% -0.44% -0.09% -0.14% 0.36% 0.70% 0.89% 0.54% 0.13% -0.06% 0.21%
5 (-0.69) (-1.23) (-0.29) (-0.25) (0.64) (1.86) (2.10) (1.46) (0.36) (-0.15) (0.63)

0.70% -0.36% -0.06% -0.16% 0.30% 0.60% 1.00% 0.19% 0.11% -0.62% -1.31%
H-L (1.38) (-0.79) (-0.17) (-0.24) (0.42) (1.22) (1.92) (0.50) (0.25) (-1.38) (-3.01)

WML[-12,-7] -0.45% -0.17% 0.03% -0.02% 0.08% 0.12% 0.05% 0.26% 0.13% 0.24% 0.69%
All (-2.03) (-0.91) (0.26) (-0.16) (0.77) (0.97) (0.59) (2.24) (0.97) (1.40) (2.52)
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Table XII: Portfolio Sorted by Factor Loadings on Risk-Neutral Skewness Factor (βSKEW ) and Momentum
(RETT−12,T−7) In Different Economic Conditions. We define recessions as the periods when the cumulative
CRSP VW index return in the past 24 months is negative and other periods as expansions. At the end of
each calendar month, we rank stocks into five portfolios according to their risk neutral skewness measure
(RNS) and construct the risk-neutral skewness factor (SKEW) as the equally-weighted return of the portfolio
that long the portfolio with highest RNS and short the portfolio with lowest RNS. We run the rolling window
regression: Exret = α+βMMktrf+βSKEWSKEW over the past 60 months and βSKEW is the factor loading
on the SKEW. Each calendar month, we rank stocks in ascending order by their βSKEW and intermediate
horizon past performance and assign the ranked stocks to one of five groups, respectively. Panel A and Panel
B present the Carhart + Liq α for the twenty-five value-weighted portfolios in recessions and expansions,
respectively. The rightmost column presents characteristics of a self-financing portfolio that long the past
winner and short the past loser. The t-statistics are reported in parentheses and adjusted following Newey
and West (1987) with a lag of 6 months.

Panel A: Recessions
Momentum Decile

1 2 3 4 5 6 7 8 9 10 H-L

βSKEW
-1.34% 0.53% -0.48% 0.55% 0.69% 0.76% 0.30% 0.46% -0.15% 0.63% 1.97%

1 (-1.84) (0.98) (-1.16) (1.63) (2.08) (1.81) (0.87) (1.41) (-0.39) (1.28) (2.25)

0.52% -0.47% 0.16% 0.32% -0.01% 0.45% 0.41% 0.82% 0.58% 1.18% 0.66%
2 (1.17) (-0.71) (0.44) (1.27) (-0.01) (1.66) (1.29) (2.29) (1.52) (2.17) (1.03)

0.18% -0.95% -0.05% 0.08% 0.36% 0.91% 0.85% 0.01% 0.85% 0.69% 0.51%
3 (0.34) (-2.50) (-0.15) (0.13) (0.87) (1.74) (1.80) (0.04) (2.35) (1.57) (0.85)

-0.39% -0.72% -0.91% -0.26% 1.18% 0.26% -0.44% 0.50% 0.11% 0.63% 1.03%
4 (-0.76) (-1.47) (-2.34) (-0.59) (1.88) (0.56) (-0.71) (1.10) (0.28) (0.90) (1.15)

-0.20% -0.02% -0.00% -1.53% 0.84% 0.57% 0.50% 0.10% 0.24% -0.41% -0.21%
5 (-0.27) (-0.02) (-0.01) (-2.49) (0.68) (0.91) (0.72) (0.16) (0.44) (-1.06) (-0.22)

1.14% -0.54% 0.48% -2.09% 0.15% -0.20% 0.20% -0.36% 0.40% -1.04% -2.18%
H-L (1.26) (-0.54) (0.66) (-2.76) (0.11) (-0.26) (0.25) (-0.54) (0.62) (-2.42) (-2.32)

WML[-12,-7] -0.59% -0.41% -0.27% 0.16% 0.51% 0.76% 0.33% 0.65% 0.22% 0.73% 1.32%
All (-1.38) (-1.44) (-0.96) (0.66) (2.45) (3.30) (1.70) (3.12) (0.91) (2.19) (2.24)

Panel B: Expansions
Momentum Decile

1 2 3 4 5 6 7 8 9 10 H-L

βSKEW
-0.84% -0.29% 0.12% -0.29% -0.23% -0.26% -0.28% 0.19% -0.01% 0.47% 1.31%

1 (-2.37) (-1.01) (0.62) (-1.09) (-0.76) (-1.31) (-1.66) (0.87) (-0.06) (1.63) (3.16)

-0.18% 0.15% 0.14% -0.24% 0.25% -0.13% -0.10% 0.20% -0.07% -0.01% 0.17%
2 (-0.50) (0.43) (0.74) (-1.06) (1.04) (-1.00) (-0.61) (1.27) (-0.33) (-0.07) (0.35)

-0.04% 0.01% 0.19% 0.10% 0.27% -0.47% 0.03% 0.10% 0.20% -0.32% -0.28%
3 (-0.10) (0.04) (0.98) (0.50) (0.81) (-2.51) (0.15) (0.52) (0.83) (-1.03) (-0.64)

0.24% 0.25% -0.12% 0.12% -0.47% 0.25% 0.03% -0.09% 0.07% 0.33% 0.09%
4 (0.82) (0.84) (-0.43) (0.41) (-1.48) (0.81) (0.18) (-0.34) (0.24) (0.95) (0.28)

0.14% -0.23% 0.05% 0.55% 0.60% 0.95% 1.00% 0.52% 0.18% 0.13% -0.01%
5 (0.27) (-0.60) (0.14) (0.76) (0.98) (2.05) (2.18) (1.11) (0.33) (0.27) (-0.03)

0.98% 0.06% -0.07% 0.84% 0.83% 1.21% 1.28% 0.33% 0.19% -0.34% -1.32%
H-L (1.40) (0.12) (-0.18) (1.08) (1.13) (1.97) (2.19) (0.65) (0.33) (-0.64) (-2.59)

WML[-12,-7] -0.31% 0.04% 0.15% -0.15% 0.04% -0.17% -0.08% 0.12% 0.08% 0.11% 0.42%
All (-1.27) (0.19) (1.07) (-0.99) (0.30) (-1.59) (-0.85) (0.98) (0.60) (0.53) (1.41)
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Table XIII: Low Momentum Crash Factor Loading WML Portfolio Performance. This table presents the
economic performance of the risk managed momentum strategy in Barroso and Santa-Clara (2015), the
Novy-Marx (2012) momentum strategy constructed by stocks in βSKEW quintile 1, and the Novy-Marx
(2012) momentum strategy constructed by all stocks over the available sample periods. The mean, the
standard deviation, the Sharpe ratio, and the information ratio are annualized.

Portfolio Max Min Mean Standard Kurt Skew Sharpe Information Corr
Deviation Ratio Ratio

1998.04 -
2011.12

WML[-12,-2] * 14.45 -13.65 9.23 14.76 1.04 -0.10 0.63 - -
WML[-12,-7] βSKEW Q1 33.49 -30.33 23.64 28.74 3.28 -0.25 0.82 0.21 0.56

1998.10 -
2011.12

WML[-12,-2] * 13.75 -13.65 7.33 14.19 0.92 -0.29 0.52 - -
WML[-12,-7] βSKEW Q1*19.36 -10.77 21.07 18.12 0.36 0.08 1.16 0.79 0.67

1998.10 -
2016.06

WML[-12,-7] βSKEW Q1 33.49 -30.33 18.71 26.96 3.50 -0.16 0.69 - -
WML[-12,-7] βSKEW Q1*19.36 -12.34 17.95 18.66 0.48 0.12 0.96 0.59 0.90

57



Figure 1: Comparison of Momentum Crash Factor SKEW and H-L βSKEW Portfolio Return. Each calendar
month, we rank stocks in ascending order by their loadings on the momentum crash factor SKEW βSKEW
and assign the ranked stocks to one of five groups. Then we find out the equally-weighted returns of the
portfolio that long the stocks with highest βSKEW and short the lowest βSKEW . We plot the momentum
crash factor SKEW (the H-L portfolio traded on risk neutral skewness) and the H-L portfolio returns through
April 1998 to June 2016.
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(a) Cumulative Returns

(b) Cumulative Abnormal Returns

Figure 2: Cumulative Returns and Cumulative Abnormal Returns of the Novy-Marx (2012) Winner minus
Loser Strategies Constructed by Stocks in the First βSKEW Quintile and by All Stocks. Panel A plots
the cumulative monthly returns to two portfolios: (1) the Novy-Marx (2012) winner-minus-loser strategy
constructed by stocks in the first βSKEW quintile, and (2) the Novy-Marx (2012) winner-minus loser strategy
constructed by all stocks available over the period from April, 1998 through June, 2016. Panel B plots the
cumulative monthly abnormal returns benchmarked by five factor model (Carhart (1997) four factors with
Pastor and Stambaugh (2005) liquidity factor) to two portfolios: (1) the Novy-Marx (2012) winner-minus-
loser strategy constructed by stocks in the first βSKEW quintile, and (2) the Novy-Marx (2012) winner-minus
loser strategy constructed by all stocks available over the period from April, 1998 through Dec, 2015.
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Figure 3: Low Momentum Crash Factor Loading WML Portfolio Performance. This figure plots the
cumulative monthly returns to the baseline Winner-minus-Loser Strategy, the risk managed momentum
strategy in Barroso and Santa-Clara (2015), the Novy-Marx (2012) momentum strategy constructed by
stocks in βSKEW quintile 1, and the Novy-Marx (2012) momentum strategy constructed by all stocks over
the period from April, 1998 through December, 2011.
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(a) The risk managed, low momentum crash factor loading WML portfolio
performance and the risk managed momentum strategy in Barroso and Santa-
Clara (2015).

(b) The risk managed, low momentum crash factor loading WML portfolio
performance and the momentum crash factor hedged WML portfolio.

Figure 4: The Risk Managed, Low Momentum Crash Factor Loading WML Portfolio Performance. Panel
A plots the cumulative monthly returns to the risk managed momentum strategy in Barroso and Santa-
Clara (2015) and the risk managed, Novy-Marx (2012) momentum strategy constructed by stocks in βSKEW
quintile 1 over the period from October, 1998 through December, 2011. Panel B plots the cumulative monthly
returns to the Novy-Marx (2012) momentum strategy constructed by stocks in βSKEW quintile 1 and the
risk managed, Novy-Marx (2012) momentum strategy constructed by stocks in βSKEW quintile 1 over the
period from October, 1998 through June, 2016. 61


