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Understanding Term Structure of Variance Swap Rates, Market

Return Predictability and Variance Swap Investments When

Volatility can Jump

Abstract: This paper proposes a tractable self-exciting double-jump model for stock return

and its variance processes, extending existing two-factor term structure models of variance

swap rates in the literature to a new three-factor model. We investigate the capability of

this new model in capturing the dynamics of stock return and the information possessed by

the variance swap rates. Importantly, our three factors can significantly predict aggregate

equity returns as opposed to the ones proposed in the traditional two-factor models in the

literature. In stark contrast to the existing literature, our empirical results indicate that

variance swap rates have more powerful predictive ability than variance risk premium for

the market returns. Unlike the popular double-jump model in the literature, our new model

allows us to derive closed-form solutions to the optimal variance swap investment up to

solving a set of ordinary differential equations which greatly facilitates new understanding

of volatility trading. Specifically, we find that the investor always takes a short-long-short

strategy.

JEL Classification: G11

Keywords: Optimal portfolio selection, jump-diffusion models, self-exciting process, vari-

ance swap investments, market return predictability

1 Introduction

In order to exploit variance risk premium and hedge variance risk, the variance swap con-

tracts have become the most actively traded variance-related derivative securities due to

their direct exposure to volatility1 and provided good investment opportunities for market

1As demonstrated by Liu and Pan (2003), an option can provide indirect exposure to volatility since the
option price is also affected by the underlying stock. Our paper also differs from theirs claims in another
important aspect in that they make a seemingly unrealistic assumption of constant jump size to solve the
optimal portfolio choice in a complete market. In contrast, we do not make this assumption and solve the
optimal portfolio choice in semi-closed form in an incomplete market.
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participants2. Importantly, it has been documented that variance risk premium can signif-

icantly predict subsequent stock market returns. And as such, it is vitally important to

model variance swap rate term structures, accurately estimate variance risk premium and

analytically solve the optimal portfolio choice problem involving variance swaps. Primarily

due to the analytical tractability, there is large literature on the variance swap modelling

in continuous-time setting. In particular, by using PCA, Egloff, Leippold and Wu (2010)

find that two stochastic variance risk factors govern the short and long end of the variance

swap term structure variation, respectively. And they show that a two-factor pure-diffusion

model can fit variance swap rates well. Furthermore, they explicitly solve the optimal dy-

namic portfolio choice problem and find that it is generally optimal for an investor to take

a short position in a short-term variance swap and a long position in a long-term variance

swap. In Filipovié, Gourier and Mancini (2015), they show that a bivariate quadratic pure-

diffusion model provides a good fit to variance swap rates. In contrast to Egloff, Leippold

and Wu (2010), they find that an investor optimally takes a short position in a long-term

variance swap to earn the significant negative variance risk premium and a long position in

a short-term variance swap to hedge volatility risk. In fact, Filipovié, Gourier and Mancini

(2015) study the optimal portfolio choice problem involving variance swaps in quadratic

pure-diffusion variance swap models and hence the closed-form solution as in Egloff, Leip-

pold and Wu (2010) is unavailable. In particular, in the pure-diffusion models of both Egloff,

Leippold and Wu (2010) and Filipovié, Gourier and Mancini (2015), only two variance swaps

are incorporated in the portfolio choice problem because any two variance swaps can span

the two sources of risk in two-factor variance swap rate dynamics and thus a third variance

swap is redundant.

2In Egloff, Leippold and Wu (2010), the market price of variance risk (γv) is around -16 as opposed to
the much smaller (in magnitude) market price of return risk (γS) of 2.13. To demonstrate the attractiveness
of the significantly negative variance risk premium, first, they show that the optimal portfolio weights on
the stock index is mainly determined by the market price of return risk (γS) and positive in the absence of
variance swaps. In contrast, in a model where an investor is allowed to trade S&P500 and variance swaps,
they show that an investor takes a short-long strategy in variance swap to gain the negative variance risk
premium while, despite the positive stock risk premium, she takes short positions in S&P500 to hedge the
short position in a variance swap given the instantaneous negative correlation between the stock index and
the variance. Second, as indicated by Table 7 in their paper, the investment strategies involving variance
swaps have a Sharpe ratio of at least 1.20 while the Sharpe ratio of S&P500 is at most 0.5.
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As widely documented strong empirical evidence, for example, Eraker, Johannes and Pol-

son (2003), Chernov, Gallant, Ghysels and Tauchen (2003), Eraker (2004), Broadie, Chernov

and Johannes (2007), Todorov (2009), and Bandi and Reno (2015) among others find strong

evidence for co-jumps in volatility and stock returns, i.e., that a big jump in stock prices is

likely to be associated with a big jump in volatility. These studies also suggest that jumps do

play a key role in explaining the observed risk premium. Aı̈t-Sahalia, Karaman and Mancini

(2015) extend the two-factor model in Egloff, Leippold and Wu (2010) to the widely used

double-jump model (called “SV2F-PJ-VJ” model in their paper) by incorporating jumps

in both stock returns and volatility. Interestingly, like the aforementioned pure-diffusion

models, the double-jump model is still a two-factor model. The reason for this is that in

the double-jump model in Aı̈t-Sahalia, Karaman and Mancini (2015), the intensity of jumps

in variance process is an affine function of variance (e.g., the perfect correlation between

the jump intensity and variance). Recently, Santa-Clara and Yan (2010) provides empirical

evidence that jump intensity and the variance are largely uncorrelated and do not support

the jump intensity model in Aı̈t-Sahalia, Karaman and Mancini (2015).

The aforementioned models are all two-factor models for variance swap rates. Our factor

analysis, however, shows that there are exactly three factors underlying variance swap rates.

Thus, one of the objectives in the present paper is to propose a three-factor model for

the term structure of the variance swap rates. More specifically, we propose a self-exciting

double-jump model which disentangles the linear relation between the jump intensity and

the variance processes. As a result, the jump intensity is a new factor in addition to the two

factors in Egloff, Leippold and Wu (2010) and Aı̈t-Sahalia, Karaman and Mancini (2015).

More importantly, we show the following results. First, the excess expected log market

return is a linear function of three factors in our model while it is a linear function of two

factors in Egloff, Leippold and Wu (2010) and Aı̈t-Sahalia, Karaman and Mancini (2015).

Second, in contrast to their results, a third variance swap is not redundant given any two

variance swaps available for trading.

The above observations bring us to ask the following questions: How much our three-

factor model outperform their two-factor model for predicting market returns? If the link

4



between the jump intensity and variance in Aı̈t-Sahalia, Karaman and Mancini (2015) is

invalid, are two variance swaps still sufficient to span the variance swap market? If not,

what does an optimal strategy involving three variance swaps look like as opposed to the

short-long rule in Egloff, Leippold and Wu (2010)? In the meantime, what is the benefit from

trading a third variance swap? What is the economic cost of ignoring jumps especially in

volatility if an investor mistakenly uses a pure-diffusion model in variance swap investments?

More interestingly, we find that our 3-factor predictive model is equivalent to a predictive

regression model with three variance swaps as predictors while the two-factor predictive

regression model in Egloff, Leippold and Wu (2010) and Aı̈t-Sahalia, Karaman and Mancini

(2015) is the same as the one with two variance swaps. This finding prompts us to ask if

the market return predictability can be further improved by using more variance swaps. We

find that the use of three swap contracts can indeed better predict the stock returns over

a range of investment horizons. To the best of our knowledge, we are the first to use the

variance swap rates to predict market returns.

To summarize, in contrast to the double-jump stochastic volatility model in Aı̈t-Sahalia,

Karaman and Mancini (2015), our model has several attractive features. First, our model

outperforms the two-factor jump-diffusion models (e.g., Egloff, Leippold and Wu (2010), Pan

(2002) and Aı̈t-Sahalia, Karaman and Mancini (2015)) over the out-of-sample period in terms

of pricing variance swaps across all time-to-maturities and predicting stock returns over the

time horizon up to two years. Second, unlike the double-jump stochastic volatility model in

Aı̈t-Sahalia, Karaman and Mancini (2015), given two variance swaps, a third variance swap

is not redundant in the sense that it cannot be replicated by trading these two variance

swaps. And thus, this makes the third variance swap valuable for investment. Furthermore,

any three variance swaps can span the linear space generated by three sources of risks:

short-run variance, long-run variance and jump. Third and more importantly, we obtain a

closed-form solution to the optimal investment in variance swaps, which greatly facilitates

the new understanding of volatility trading in the double-jump stochastic volatility model

especially in comparison with the short-long strategy suggested by Egloff, Leippold and Wu

(2010) and the long-short strategy proposed by Filipovié, Gourier and Mancini (2015) in
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pure-diffusion models. To the best of our knowledge, this paper is the first one that provides

explicit solutions to the dynamic optimal investment in variance swaps in jump-diffusion

models.

To evaluate the economic performance of our three-factor model in comparison with

the proposed two-factor models in Egloff, Leippold and Wu (2010), Pan (2002) and Aı̈t-

Sahalia, Karaman and Mancini (2015), we run the predictability regressions for S&P500

index. In particular, the three factors in our model are used as predictors while the two

factors in the reference models are used as predictors. We document that our three factors

more significantly predict the excess aggregate equity returns than the two factors in the

aforementioned jump-diffusion models, indicated by the adjusted-R2 ranging from 7.0% to

37.7% with the time horizon from 1 month to 2 years in the out-of-sample period. More

interestingly, we find that variance swap rates themselves, rather than the variance risk

premiums advocated widely in the literature, have better predictability on the underlying

stock returns. This finding reminds us to deeply understand the economic role of variance

swap rates in asset pricing and portfolio selection.

Our predictive model is closely related to other recent studies where volatility related

factors are used as predictors for aggregate equity returns. More specifically, Bollerslev,

Tauchen and Zhou (2009) show the strong short-horizon predictive power of the variance

premium for aggregate equity returns. Our three-factor model nests their model as a special

case in the sense that in our parametric framework, the variance risk premium is a linear

function of our three factors. Our model also relates to the one in Adrian and Rosenberg

(2008) who propose a decomposition of volatility of market return into a short-run, quickly

mean reverting component and a long-run, slowly evolving component and demonstrates

the predictability of the two volatility factors for market returns. Our model differs from

theirs in that we have three components especially with the jump component representing

the possibility of rare events or tail risks. In recent literature, it has been documented that

tail risks have powerful predictive ability for market returns. For example, in Bollerslev,

Todorov and Xu (2015), they find that most of the predictability for the aggregate market

portfolio previously ascribed to the variance risk premium stems from the jump tail risk
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component.

To better understand the investment in variance swaps, we solve the optimal variance

swap investment problem in comparison with the existing results in the literature. To be more

specific, our empirical results show that for a trader who wants to chase up the dynamics of

variance swap risk premia, it is always optimal to take a short-long-short strategy, namely,

long positions in the medium-term variance swap contracts and short positions in both

the short-term and the long-term contracts. This well explains the underlying reason why

Egloff, Leippold and Wu (2010) and Filipovié, Gourier and Mancini (2015) have achieved the

apparently opposite optimal trading strategies in variance swaps. First, both strategies are

suboptimal within our model, because they are insufficient to replicate the term structure of

variance swap risk premia throughout the contract combinations, although the term structure

of variance swap rates can be well calibrated in their two-factor variance risk models. As

a result, the empirical analysis in Egloff, Leippold and Wu (2010) shows that an investor’s

optimal trading positions in two variance swap contracts depend not only on the relative

magnitudes of two variance risk premia, but also on the maturity gap between two contracts.

Second, in the optimal trading positions in Egloff, Leippold and Wu (2010), each of the two

variance swap contracts indeed plays a dual role of both exploiting risk premium and hedging.

This suggests that the trade does not make full use of information in the dynamics of variance

swap risk premia. Their optimal trading strategies in variance swaps are rooted in the absence

of a third variance swap contract. In the presence of this extra contract, each contract

then can fully play a single role: either exploring risk premium or hedging. Therefore, our

empirical analysis enhances the understanding of the optimal trading strategies involving

two variance swaps in Egloff, Leippold and Wu (2010) and Filipovié, Gourier and Mancini

(2015).

Furthermore, as the suboptimal trading strategies identified in Egloff, Leippold and Wu

(2010) cannot take full advantage of the information in the term structure of variance swap

risk premia, for example, due to the ignorance of jumps in variance, these strategies may

cause substantial economic costs to the trader who heavily participates in variance swap
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trading.3 This brings us to ask how much the value of economics cost could be by ignoring

jumps in volatility. Surprisingly, we find in all examples tested that if our double-jump

model is the true model, then the strategies obtained from the pure-diffusion model in Egloff,

Leippold and Wu (2010) always violate the jump-induced constraint on jump exposure and

thus lead to a 100 percent wealth equivalent loss by following the suboptimal strategies.

Interestingly, we also find that suboptimal strategies due to inaccurate parameter estimation

can also easily violate the jump-induced constraint on jump exposure and thus result in a

100 percent wealth equivalent loss. By contrast, in their pure-diffusion model, Zhou and

Zhu (2012) show that ignoring parameter uncertainty can only lead to negligible economic

costs. In short, our results along with those in Zhou and Zhu (2012) empirically illustrate

these serious consequences caused by both model and parameter misspecification in variance

swap investments, which further reveals new insights into the complexity of variance swap

trading. Therefore, our study contributes to the literature by enhancing our understanding

of variance swap trading when both stock price and volatility can jump.

The rest of the paper is organized as follows. Section 2, we apply the factor analysis

and the principal component analysis (PCA) to identify the number of common factors

driving the evolution of the variance swap market and select the informative contracts for the

empirical analysis. In Section 3, we propose a new self-exciting process for jump intensity in

a double-jump model, present the estimation of the pricing models is discussed in detail, and

discuss the model performance. In Section 4, we conduct the analysis on the predictability

of stock returns by incorporating the the information extracted from the variance swap

market. In Section 5, we present the framework for investments in the variance swap market

to explicitly solve the dynamic optimal investment problem in variance swaps and conduct a

comprehensive analysis on investments in variance swaps by emphasizing the role of jumps in

both return and volatility. We conclude in Section 6. All proofs are collected in Appendices.

3For example, the economic cost of using a one-factor Heston stochastic volatility model, as demonstrated
in Zhou and Zhu (2012), can be as high as 70%.
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2 Risk Factors and Informational Content in Variance

Swap Market

The data used for the empirical analysis involve the S&P500 index returns and the set

of variance swap contracts spanning from 1 month to 24 months during the period from

November 4, 2008 to September 29, 2017. In order to obtain a comprehensive understanding

of the informative role of variance swap contracts, we collect all the variance swap rates on

the S&P500 index available at Bloomberg. All these contracts expire in 1,2, 3, 4, 5, 6, 9, 12,

18, and 24 months (so 10 time-to-maturities in total).

Given such a complete set of the variance swap contracts on the S&P500 index, two

questions are of interest for both asset pricing and allocation:1) How many risk factors drive

the term structure of variance swap rates in the sample period? 2) Which variance swap

contracts possess most rich information that can be used to predict the dynamics of the

S&P500 index, as implied by Bollerslev, Tauchen and Zhou (2009). The former question is

important for model specification to effectively capture the dynamics of variance swap rates,

while the latter facilitates investors to trade volatility by participating in the variance swap

market.

2.1 Risk Factors in Variance Swap Market

To exploit the number of risk factors that drive the evolution of the variance swap market

in the sample period, we conduct a factor analysis on the set of variance swap rates with

the time-to-maturity from 1 month up to 24 months. Suppose that there are m common

factors (or risk factors) driving the term structure of variance swap rates, we may have the

following relation:

VSτ = µ + Λ× F + e, (1)

where VSτ represents a 10× 1 vector each element of which presents an observed variance

swap rate with the time-to-maturity τ ∈ {1, 2, 3, 4, 5, 6, 9, 12, 18, 24}, µ is a constant of

means, Λ is a constant 10×m of factor loadings, while F presents a m×1 vector of common
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factors, associated with an error term e. The numerical decomposition in Equation (1) on

the sample set of the variance swap rates suggests that the maximum number of the common

factors is less than 3, e.g., m ≤ 3, with the factor loadings on all the VS contracts, reported

in Table 1.4 The log-likelihood ratios in Table 1 show that the setup of three common

Panel A: Factor Loadings for m = 2

Time-to-Maturity τ (months) (Cum.) of Total

1 2 3 4 5 6 9 12 18 24 Covariance (%)

F1 0.858 0.828 0.801 0.774 0.748 0.723 0.669 0.634 0.554 0.511 51.606

F2 0.498 0.557 0.598 0.632 0.663 0.690 0.742 0.772 0.831 0.857 99.610

Panel B: Factor Loadings for m = 3

F1 0.864 0.826 0.796 0.769 0.741 0.716 0.663 0.629 0.551 0.509 51.13

F2 0.498 0.560 0.601 0.635 0.667 0.693 0.745 0.775 0.833 0.859 99.53

F3 -0.038 0.026 0.052 0.061 0.068 0.069 0.060 0.043 0.009 -0.007 99.76

Table 1: Factor Loadings on VS contracts. Equipped with the common factors, e.g., m = 2, 3,

the loadings of these factors on all the 10 VS contracts on the S&P500 index over the period from

November 4, 2008 to September 29, 2017 are reported. All the time-to-maturities are in months.

The log-likelihood ratios are −7.053 and −6.486 for m = 2 and 3, respectively.

factors outperforms the one with two factors. Panel B suggests that the three factors are

sufficient to capture the term structure of variance swap rates over the sample period. In

total, they successfully explain 99.76% of the covariance of these swap rates, while the third

factor makes the marginal contribution of 0.23%.

More specifically, the first factor has more loadings on those short-term VS contracts,

e.g, the 1- and 2-m ones. In contrast, the second one has more loadings on those long-term

VS contracts with the time-to-maturities of 18 and 24 months. Apart from these dominant

factors, the third one need be explained in caution. First, its loadings on each VS contract

are not much smaller, compared with the first two factors. Second, the signs of these loadings

can be positive or negative, unlike those positive ones of the first two factors. Third, the

third factor has relatively high loadings on the medium-term VS contracts (e.g., the 5- and

6-m ones), compared with its loadings on other contracts. In sum, it seems that the role of

4This factor analysis can be done in Matlab 2017a.
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the third one is likely to compensate the loadings of the first two factors in case that they

were over- or under-loaded on VS contracts, which cause the relatively high loadings of the

third factor on those medium-term VS contracts.

Furthermore, the behavior entailed by these three common factors leads to the implica-

tions for the model specification and portfolio choice of variance swaps. On the one hand,

These patterns suggests that in a favored pricing model for variance swaps, three risk fac-

tors are indeed required. Namely, the first two factor are used to capture the dynamics of

variance swap rates in the short- and long-term separately, while the third one is to make

compensations for unexpected changes across all maturities. As the dual of pricing, on the

other hand, the results in Table 1 imply that three VS contracts with the short-, medium-

and long-term maturities are enough to span the whole variance swap market, which may

result in the optimal investment strategies in this market.

2.2 Selection of Informative Variance Swap Contracts

We further investigate the information content of variance swap contracts, which is actually

ignored in the present literature. For example, the variance swap contracts with fixed time

to maturities of 2, 3, 6, 12, and 24 months are used in Egloff, Leippold and Wu (2010), Aı̈t-

Sahalia, Karaman and Mancini (2015), and Filipovié, Gourier and Mancini (2015), while the

contracts with the time to maturities of 1, 3, 6, 12 and 24 months are employed in Li and

Zinna (2017). Since a variance swap contract represents the most direct way of achieving

exposures or hedging against variance risk, and can be replicated by dynamic trading in

the portfolio of the underlying asset and options, it is therefore interesting to identify those

variance swap contracts that contain most valuable information to predict future variance

and according the S&P500 index returns.

For this purpose, we first define the longer k-period index returns as follows:

Rt+k,t =
k∑

j=1

rt+j, (2)

where rt+j represents the daily excess return, namely, the difference between the daily log-
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return of the S&P500 index and the T-bill rate from time t + j − 1 to t + j, and so a “day”

is referred to as the unit time interval here. To form up the monthly return, we employ the

scale of 21 by assuming 21 working days in a calendar month. In this way, we synthesize

the cumulative k-period returns with k = 1, 3, 6, 12, and 24 months. Inspired by Bollerslev,

Tauchen and Zhou (2009), we then employ a novel method by simply regressing the k-period

returns Rt+k,t on the combinations of the variance swap contracts as follows:

Rt+k,t = β0(k) + β1(k)VSt,t+τ + ut+k,t = β̃0(k) + Γ(k)X + ũt+k,t, (3)

where the term VSt,t+τ represents the combination of the variance swap contracts with the

time-to-maturities of τ = 1, 2, 3, 4, 5, 6, 9, 12, 18 and 24 months. To mitigate the impact of

the multi-linearity among the VS contracts (also see Table 1), we further apply the principal

component analysis (PCA) to these contracts so that a set of orthogonal factors, denoted as a

matrix of X, are obtained, and they capture the full variation of the VS rates. Accordingly, Γ

represents the corresponding vector of coefficients for the orthogonal factors X. As a result,

we use the explanatory power or the adjusted R2
k,τ obtained from the regression (3) as the

measure to gauge the information quality of the VS contracts. In particular, we apply the

method proposed by Britten-Jones, Neuberger and Nolte (2011) (similar to Hodrick (1992))

to mitigate the problem of overlapping data embedded in the construction of the returns

Rt+k,t.

To identify the optimal set of VS contracts that possess the richest information in terms

of predictability over various forecasting horizons (k), we narrow down the scope of the

investigation firstly by focusing on those VS contracts with τ = 1, 2, 3, 6, 12 and 24 months

widely studied in the literature and leave the rest for the further examination. Table 2

reports the adjusted-R2s with various combinations of VS contracts. Although it is well-

known that the R2s would increase with the forecasting horizon using overlapping returns,

Panel A clearly shows that the adjusted-R2s steadily increase with more VS contracts in

the set across all forecasting horizons, indicating richer information possessed by these VS

contracts, while there is less information in the remaining four VS contracts (e.g,, τ = 4, 5, 9
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and 18 months), as shown in Panel C. Also, the maximum adjusted-R2s generated by the

combinations of 5 VS contracts out of 6 are very close to those R2s by the full set of 6 VS

contracts. Furthermore, Panel B reports the R2s obtained from the regressions over all the

combinations of 5 VS contracts. Amongst all these combinations, the set of the 1-, 2-, 3-,

6- and 24-month VS contracts may achieve the best predication power overall across all the

horizons, indicating that these five VS contracts possess much richer information compared

with other contracts.5 In order to balance both the loss of information in VS contracts

and the complexity of model calibration, we therefore choose these five VS contracts for the

following empirical analysis.6 7

The bottom panel of Figure 2 plots the dynamics of the 1-, 2-, 3-, 6- and 24-month

VS contracts during the full sample period, while the top and middle panel illustrate the

dynamics of the S&P500 index and its daily log-returns over time, separately. It clearly shows

that the variance swap market is much more volatile than the equity market, indicating more

jumps in the former. Moreover, the summary statistics of these VS contracts are reported

in Table 3. Note that the variance swap rate mean in each maturity category is quoted

in volatility percentage units, presenting an upward term structure of variance swap rates.

Meanwhile, the realized variances across all the time-to-maturities, reported in Panel C, are

estimated as follows:

RVt,t+τ =
252

n

n∑
i=1

(log
Sti

Sti−1

)2,

where n denotes the total daily observations within the time-to-maturity τ . Due to much less

volatility in the S&P500 index during the post-crisis period, the averaged realized variance

is lower than the mean of variance swap rates in each maturity category, and hence presents

a hump term structure across the time-to-maturitiy.

5The results in Panel B also show that the traditional choices of VS contracts, e.g., τ = 2, 3, 6, 12, 24
months or 1, 3, 6, 12, 24 months, simply ignore the information embedded in VS contracts for forecasting in
short term (e.g, k = 1 month).

6Since the gap between the R2s in Panel A and ones in Panel D is mainly caused by the 18-month
contract, we hence investigate its role in terms of forecasting by replacing the 12-month contract with it in
the original 6 VS contracts, e.g., τ = 1, 2, 3, 6, 18, 24 months. If we are restricted to choose five contracts out
of six, the set of the 1-, 2-, 3-, 6- and 24-month VS contracts is still the best choice for our purpose.

7We also check the replication of the 1-, 2-, 3-, 6- and 24-m VS contracts on the remaining VS contracts
through a number of regressions, and find that the extremely high R2s are gained for the 4-, 5-, 9-, 12- and
18-m VS contracts with 99.90%, 99.94%, 99.83%, 99.75% and 99.79%, respectively.
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Panel A: Maximum Adjusted-R2 (%) for Combinations of 6 VS Contracts

Number (]) of Selected Contracts
Forecasting Horizon (k months)

1 3 6 12 24

1 1.10 2.55 19.24 27.47 36.26

2 3.92 9.00 20.60 28.34 37.16

3 10.66 12.16 23.21 29.45 38.55

4 12.47 12.41 23.81 29.77 38.64

5 12.52 12.62 23.82 29.92 38.64

6 12.53 12.72 23.79 30.06 38.75

Panel B: Adjusted-R2 (%) for Combinations of 5 VS Contracts out of 6 in Panel A

Set of 5 VS Contracts
Forecasting Horizon (k months)

1 3 6 12 24

(1, 2, 3, 6, 12) 11.58 12.24 23.22 29.67 38.06

(1, 2, 3, 6, 24) 12.52 12.56 22.28 28.72 38.63

(1, 2, 3, 12, 24) 10.03 9.90 23.78 29.86 38.64

(1, 2, 6, 12, 24) 12.47 9.42 22.48 29.66 38.29

(1, 3, 6, 12, 24) 7.19 12.62 23.82 29.92 38.62

(2, 3, 6, 12, 24) 2.35 10.24 22.22 29.77 38.49

Panel C: Adjusted-R2 (%) for Remaining 4 VS Contracts

Set of Remaining VS Contracts
Forecasting Horizon (k months)

1 3 6 12 24

(4, 5, 9, 18) 2.73 9.26 20.98 28.20 36.01

Panel D: Adjusted-R2 (%) for All 10 VS Contracts

Set of All VS Contracts
Forecasting Horizon (k months)

1 3 6 12 24

(1, 2, 3, 4, 5, 6, 9, 12, 18, 24) 15.37 14.45 24.70 33.97 46.14

Table 2: Maximum Adjusted-R2 for Combinations of VS Contracts. All the 10 VS con-

tracts on the S&P500 index at Bloomberg are collected over the period from November 4, 2008

to September 29, 2017. All the time-to-maturities are in months. Panel A reports the maximum

adjusted-R2s generated by the combinations of 6 VS contracts over various forecasting horizons,

e.g.,τ = 1, 2, 3, 6, 12 and 24 months and k = 1, 3, 6, 12, and 24 months, while Panel B presents the

adjusted-R2s of each of the combinations of 5 VS contracts out of 6. Panel C reports the adjusted-

R2 of the remaining VS contracts with τ = 4, 5, 9 and 18 months. Panel D shows the maximum

adjusted-R2s generated by the set of all the 10 VS contracts (e.g., with τ = 1, 2, 3, 4, 5, 6, 9, 12, 18

and 24 months).All the adjusted-R2s are obtained by applying the approach proposed by Britten-

Jones, Neuberger and Nolte (2012).
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Figure 1: Term Structure of Variance Swap Rates. The dynamics of variance swap
rates with 1-, 2-, 3-, 6- and 24-month time-to-maturity are plotted in volatility percentage units,
e.g.,

√
V St,t+τ × 100 from from November 4, 2008 to September 29, 2017. There are 2,242 daily

observations for each time-to-maturity τ .
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Panel A: Variance Swap Rates

Time to Maturity Mean St. Dev. Skew. Kur. AC(1)

1 19.262 8.931 2.218 9.121 0.978

2 20.427 8.765 2.141 8.538 0.986

3 21.293 8.512 2.025 7.946 0.989

6 22.772 7.701 1.704 6.364 0.992

24 25.771 5.945 1.075 3.998 0.995

Panel B: S&P 500 Index Returns

Log-returns 0.039 0.185 -0.507 10.657 -0.063

Panel C: Realized Variances

1 15.248 9.453 2.388 10.981 0.985

2 15.367 8.337 1.993 7.396 0.991

3 15.538 7.843 1.905 6.824 0.993

6 15.395 6.500 1.651 6.199 0.994

24 15.604 3.591 0.583 2.563 0.996

Table 3: Summary Statistics of Variance Swap Rates. All the variance swap rates are

collected from Bloomberg during the full sample period is from November 4, 2008 to September

29, 2017. The descriptive statistics, including mean, stand deviation (St. Dev.), skewness (Skew.),

kurtosis (Kurt.) and the first-order autocorrelation (AC1), are reported, while the mean of the vari-

ance swap rate (also the realized variance mean) in each maturity category is quoted in percentage,

and time to maturities are quoted in months. Note that the mean and standard deviation of the

log-returns in Panel B are reported in the annualized term. The realized variance is calculated as

RVt,t+τ = 252
n

∑n
i=1(log Sti

Sti−1
)2 where n denotes the total observations within the time-to-maturity

τ and the scale of 21 (e.g., presenting 21 work days in a calendar month) is used to assemble the

realized variance over the time horizon [t, t + τ ] with n = 21× τ for τ = 1, 2, 3, 6 and 24 months.
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3 A Self-Exciting Stochastic Volatility Model for Vari-

ance Swaps

The results in Section 2 motivate us to propose a self-exciting stochastic volatility mode

to capture the dynamics of variance swap rates in the sample period. We first present the

model specification, and formulate the variance swap rates under this model. At the end, we

provide the solutions to the optimal variance swap allocation problem under this self-exciting

stochastic volatility model.

3.1 Model Specification and Properties

For analytic tractability, we adopt the popular double jump model used by Aı̈t-Sahalia,

Karaman and Mancini (2015), apart from the specification for the intensity of the counting

process. That is, we assume that the stock price, volatility and its long-run mean under a

risk-neutral measure Q are given as follows:

dSt

St−
= (r − δ)dt +

√
(1− ρ2)vtdBQ

1t + ρ
√

vtdBQ
2t + (exp(Js,Q

t )− 1)dNt − gQλtdt,

dvt = κQ
v (mt − vt)dt + σv

√
vtdBQ

2t + Jv,Q
t dNt

dmt = κQ
m(θQ

m −mt)dt + σm

√
mtdBQ

3t.

(4)

As in Aı̈t-Sahalia, Karaman and Mancini (2015), we specify the market price of risks for the

Brownian motions by γi (i = s, v, m) in the following way:

Λ>t = [γs

√
(1− ρ2)vt, γv

√
vt, γm

√
mt],
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and then, under the objective probability P , the stock price and variance dynamics can be

represented as follows:

dSt

St−
= µtdt +

√
(1− ρ2)vtdBP

1t + ρ
√

vtdBP
2t + (exp(Js,P

t )− 1)dNt − gP λtdt,

dvt = κP
v (mtκ

Q
v /κP

v − vt)dt + σv

√
vtdBP

2t + Jv,P
t dNt

dmt = κP
m(θP

m −mt)dt + σm

√
mtdBP

3t,

(5)

where µt = r − δ + γs(1 − ρ2)vt + γvρvt + (gP − gQ)λt, κP
v = κQ

v − γvσv, κP
m = κQ

m − γmσm,

and θP
m = θQ

mκQ
m/κP

m, while r is the risk free rate, and δ is the dividend yield, both taken

to be constant for simplicity. The correlation parameter ρ is used to capture the so-called

leverage effect between stock returns and variance changes. The three Brownian motions,

BQ
it , i = 1, 2, 3, are uncorrelated.8

The dynamics of the spot variance of the price, vt, is driven by a two-factor model, while

the speed of mean revision is κP under P (κQ under Q accordingly). The long-term mean

of the variance is governed by the pure-diffusion process mt that has a similar specification

with vt but equipped with a parameter triple of κP
m (κQ

m), θP
m (θQ

m) and σm, respectively. As

a result, the process vt presents the fast mean reverting and volatile pattern and captures

sudden movements in variance with the jump process, while the process mt has no jump and

is less volatile and persistent and characterizes the central tendency of variance.

Meanwhile, the jump size in the stock price, Js,Q, is independent of both Brownian and

jump components, and is assumed to follow a normal distribution with mean µQ
j and variance

σ2
j so that gQ = exp(µQ

j + σ2
j /2)− 1. Similarly, we may have gP = exp(µP

j + σ2
j /2)− 1 under

the objective probability measure P . However, the jump size in the spot variance, Jv,Q,

is positive. It is independent of Brownian motions and the jump component in the stock

price, and follows an exponential distribution with a parameter µQ
v , i.e., EQ[Jv,Q] = µQ

v , and

so is the jump size Jv,P . This specification thus captures sudden upward movement of vt.

Furthermore, the two-factor model studied by Pan (2002) that allows for jumps only in stock

8The variant of the specifications in Model (29) and (30) is widely used in the literature (see Bakshi, Cao
and Chen (1997), Chernov and Ghysels (2000), Bates (2000,2006), Pan (2002), Eraker, Johannes and Polson
(2003), Broadie, Chernov and Johannes (2007), Egloff, Leippold and Wu (2010) and Todorov (2009) and
references therein).
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price can be obtained if both µP
v and µQ

v are set as zero (e.g., µP
v = µQ

v ≡ 0).

We now turn to modeling jump intensity under the measure P and Q, respectively.

Empirical studies suggest that the jump intensity of asset prices is stochastic and clustered

in time (see Bates (2006) and Aı̈t-Sahalia, Cacho-Diaz and Laeven (2015)). We then assume

that the jump intensity λt of the counting process Nt under the measure Q follows a self-

exciting process as follows:

dλt = α(λ∞ − λt)dt + β0J
v,Q
t dNt, (6)

where α, λ∞ and β0 > 0.9 Unlike the the specification of λt in Aı̈t-Sahalia, Karaman and

Mancini (2015) in the form of λt = λ0 + λ1vt, implying that the jump intensity is uniquely

determined by volatility, Equation (31) suggests that a jump in either price or variance may

cause the intensities to jump up, governing by β0 and the jump intensity decays exponentially

back towards a level λ∞ at speed α. It partially disentangles the jump intensity from volatility

in the sense that λt is proportional to vt when vt has large movements driven by the jump

instead of small one caused by the diffusion.

More importantly, our model is especially tractable in that we solve the optimal port-

folio choice problem with variance swaps in closed form10. Although the specification in

Aı̈t-Sahalia, Karaman and Mancini (2015) allows for more jumps to occur during volatile

periods with the intensity bounded by a positive constant (λ0 > 0), it is subject to the

underestimation of volatility in the long run. That is, the mean-reverting nature of volatility

suggests that the long-term expected volatility declines over time, implying that the inten-

sity of jumps is also a decreasing function of time. This in fact imposes an unnecessary

restriction on the dynamics of jump intensity λt.

9Accordingly, its dynamics under the measure P can be represented as dλt = α(λ∞−λt)dt+β0J
v,P
t dNt.

10Our model is also tractable for pricing European options as it is one of affine models developed by Duffie,
Pan and Singleton (2000). More recently, Fulop, Li and Yu (2015) propose a self-exciting asset pricing model
that takes into account co-jumps between prices and volatility and self-exciting jump clustering. They find
that the self-exciting jump intensity has become more important since the onset of the 2008 global financial
crisis and illustrate good model performance for the S&P 500 index option data.
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3.2 Term Structure of Variance Swap Rates

Similar to Equation (9) in Aı̈t-Sahalia, Karaman and Mancini (2015), the variance swap rate

is given by

V St,t+τ = EQ
t

[
1

τ

∫ t+τ

t

vudu +
1

τ

Nt+τ∑
u=Nt

(Js
u)

2

]
= v̄Q

t,t+τ + EQ
t [(Js)2]λ̄Q

t,t+τ ,

where EQ
t [(Js,Q)2] = (µQ

j )2 + σ2
j , and EQ

t [λs] = αλ∞
(α−βQ)

[
1− e−(α−βQ)(s−t)

]
+ λte

−(α−βQ)(s−t),

with βQ = β0E
Q
t [Jv,Q

t ], associated with

λ̄Q
t,t+τ =

1

τ

∫ t+τ

t

EQ
t [λs]ds =

αλ∞
(α− βQ)

[
1− (1− e−(α−βQ)τ )

τ(α− βQ)

]
λt

τ(α− βQ)
(1− e−(α−βQ)τ ).

Likewise, we can also obtain the following results:

EQ
t [ms] = θQ

m

[
1− e−κQ

m(s−t)
]

+ mte
−κQ

m(s−t),

EQ
t [vs] = θQ

m

[
1 +

κQ
m

κQ
v − κQ

m

e−κQ
v (s−t) − κQ

v

κQ
v − κQ

m

e−κQ
m(s−t)

]

+
αµQ

v λ∞
κQ

v (α− βQ)

[
1 +

α− βQ

κQ
v − (α− βQ)

e−κQ
v (s−t) − κQ

v

κQ
v − (α− βQ)

e−(α−βQ)(s−t)

]

+
κQ

v

κQ
v − κQ

m

[
e−κQ

m(s−t) − e−κQ
v (s−t)

]
mt

+
µQ

v

κQ
v − (α− βQ)

[
e−(α−β)(s−t) − e−κQ

v (s−t)
]
λt + vte

−κQ
v (s−t).

Thus, under the risk neutral probability Q, the rate of a variance swap contract with the life

time of τ , staring from time t, can be specified as follows:

V St,t+τ =
1

τ

∫ t+τ

t

EQ
t [vs]ds +

1

τ
EQ

t [(Js)2]

∫ t+τ

t

EQ
t [λs]ds

= φθ(τ)θQ
m + φ0

λ(τ)λ∞ + φv(τ)vt + φm(τ)mt + φλ(τ)λt,

20



where

φθ(τ) = 1 +
κQ

m

κQ
v τ(κQ

v − κQ
m)

[
1− e−κQ

v τ
]
− κQ

v

κQ
mτ(κQ

v − κQ
m)

[
1− e−κQ

mτ
]
,

φ0
λ(τ) =

αµQ
v

κQ
v (α− βQ)

[
1 +

(α− βQ)(1− e−κQ
v τ )

κQ
v τ(κQ

v − (α− βQ))
− κQ

v (1− e−(α−βQ)τ )

(α− βQ)τ(κQ
v − (α− βQ))

]

+
αEQ

t [(Js,Q)2]

(α− βQ)

[
1− 1

τ(α− βQ)
(1− e−(α−βQ)τ )

]
,

φv(τ) =
1

κQ
v τ

(1− e−κQ
v τ ),

φm(τ) =
κQ

v

τ(κQ
v − κQ

m)

[
1− e−κQ

mτ

κQ
m

− 1− e−κQ
v τ

κQ
v

]
,

φλ(τ) =
µQ

v

τ(κQ
v − (α− βQ))

[
1− e−(α−βQ)τ

α− βQ
− 1− e−κQ

v τ

κQ
v

]
+

EQ
t [(Js,Q)2](1− e−(α−βQ)τ )

τ(α− βQ)
.

(7)

Note that for a given τ , the variance swap rate V St,t+τ is a martingale under Q-measure.

Hence, under the objective probability P , V St,t+τ follows the equation below

dV St,t+τ = [φv(τ)σvγ2vt + φm(τ)σmγ3mt − (φv(τ) + β0φλ(τ))µQ
v λt]dt

+ φv(τ)σv

√
vtdBP

2t + φm(τ)σm

√
mtdBP

3t + (φv(τ) + β0φλ(τ))Jv,P
t dNt.

(8)

And as such, the difference of the drift components in (8) under the measure Q and P

characterizes the term structure of risk premia across the time-to-maturity τ in the variance

swap market, in spirit, which is similar to the definition of the variance swap premium in

Aı̈t-Sahalia, Karaman and Mancini (2015).

3.3 MCMC Estimation for Variance Swap Rates

Before analyzing the decision of variance swap investments, we first discuss the choice of the

variance swap contracts possessing rich information for predictability on the stock returns,

and then study the empirical performance of four models, including the model investigated

by Pan (2002) (termed the “JP” model hereafter), the one examined by Egloff, Leippold

and Wu (2010) (or the “ELW” model) and the one studied by Aı̈t-Sahalia, Karaman and
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Mancini (2015) (or the “AKM” model) as well as our model with a self-exciting process for

the jump intensity (or the “HJ” model). After calibrating the models to both the stock

returns and the variance swap rate, we examine their goodness-of-fit performance and the

dynamics of the filtered latent state variables.

To highlight the economic role of jumps in either price or volatility within the framework

of the two-factor pure-diffusion model in Egloff, Leippold and Wu (2010), we calibrate all

the four models to the empirical term structure of variance swap rates reported in Table 3,

and then refer to the ELW model as the benchmark.

The estimation procedure is implemented by the Markov Chain Monte Carlo (MCMC)

method. MCMC estimation is a Bayesian inference technique. Specifically, the MCMC

method obtains the point estimator by sampling from a posterior distribution. Usually, the

difficulty of MCMC comes from deriving a simple and easy posterior distribution. The basic

idea of MCMC is that we assume some prior distribution on the parameter that needs to

be estimated. Then, we find the posterior distribution of the parameter and draw samples

from the posterior distribution. According to Bayesian Theorem, the posterior distribution

summarizes the sample information regarding the parameters and the latent variables:

p(Θ, V, J,G|Y ) ∝ p(Y |Θ, V, J)p(Θ, V, J) (9)

where Θ is the set of model parameters, V is the latent volatility variable, J is the latent

jump variable and Y is the sample data observable in the market. In particular, the latter

three variables are vectors containing the time series of these latent variables. This posterior

then combines the likelihood, p(Y |Θ, V, J) and the prior, p(Θ, V, J).

If we can directly sample for the distribution (9), the estimation procedure will be fairly

easy. However, the posterior in (9) is usually not known in closed form, and so direct

sampling is not feasible. Alternatively, we can sample by constructing a Markov Chain

over the parameters and latent variables whose equilibrium transition density converges to

the desired posterior distribution. The sampling procedure is done by iterations. The best

estimate is the empirical mean of samples simulated. Before taking the mean value, we also
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need to cut off some samples from the beginning as it takes time to reach the stationary

state. This refers to the ‘burn-in’ sample. Appendix C provides the details about the MCMC

implementations of all the four models, including the ELW, JP, AKM and HJ model.11

We conduct the model calibration that matches up the dynamics of the S&P500 index

and the quoted variance swap rates in the market, reported in Table 3 by minimizing the

root mean-squared errors (RMSEs):

RMSE(Θ; i) =

√∑N
j=1(E

P
i [V St,t+τj

|Θ]− EP
Market[V St,t+τj

|Θ])2

N
, (10)

for i ∈ {ELW, JP, AKM, HJ}, and Θ denotes the set of model parameters, and N = 5 indi-

cates the total number of the time-to-maturities of variance swap contracts. Following such

a procedure, we finally obtain all the required parameters, as reported in Table 4. It shows

that the market prices of both the instantaneous variance and the central tendency factor,

γv and γm are negative, despite moderate differences in absolute magnitude. In particular,

the highly negative market price of variance risk (γv) is confirmed by several studies (see

Bakshi and Kapadia (2003), Bondarenko (2004), Carr and Wu (2009) and Todorov (2009)

among others).

The negative market prices make the statistical mean-reverting speeds (κP ) larger and

the statistical long-run means (θP
m) smaller than their risk-neutral counterparts (κQ and θQ

m

respectively) in all the four models. Linking back to Equation (11), the three long-term

means show the order of θQ
m > θP

m > θP
v in each model, while each of them presents a

declining pattern across models duo to the presence of jumps in variance, as suggested in

Table 4. Moreover, since the risk neutral mean of the variance jump size is larger than the

statistical mean in the AKM and HJ model, this indicates a negative jump risk premium in

variance swap rates defined in Equation (8).

We now examine the performance of the four models in capturing the physical dynamics

of the S&P500 index in the sample period. Based on estimated model parameters reported

11For each model, we run 250,000 simulations and use the final 100,000 simulation paths for the purposes
of the parameter estimation and pricing performance analysis.
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Parameters
ELW JP AKM HJ

Estim. S.E. Estim. S.E. Estim. S.E. Estim. S.E.

κP
v 1.997 0.001 2.022 0.005 3.377 0.000 2.793 0.003

σv 0.521 0.000 0.698 0.000 0.648 0.000 0.613 0.000

κP
m 0.348 0.000 0.524 0.000 0.566 0.000 0.451 0.000

σm 0.330 0.000 0.350 0.000 0.329 0.000 0.292 0.000

θP
m 0.054 0.000 0.053 0.000 0.051 0.000 0.053 0.000

ρ -0.794 0.010 -0.806 0.011 -0.772 0.011 -0.775 0.011

γs -0.024 0.943 -0.065 0.954 -0.612 0.950 -0.590 0.944

γv -0.743 0.002 -0.091 0.007 -0.417 0.003 -0.438 0.005

γm -0.629 0.001 -0.347 0.001 -0.547 0.000 -0.454 0.001

λ0 - - 0.064 0.000 0.075 0.000 - -

λ1 - - 9.230 0.007 1.720 0.003 - -

µP
j - - 0.004 0.012 0.001 0.023 -0.013 0.079

µQ
j - - -0.001 0.010 -0.005 0.021 -0.027 0.074

σj - - 0.111 0.000 0.167 0.000 0.208 0.002

µP
v - - - - 0.067 0.022 0.066 0.022

µQ
v - - - - 0.071 0.000 0.243 0.000

α - - - - - - 184.312 71.747

λ∞ - - - - - - 0.059 0.000

β0 - - - - - - 2.214 1.979

σe1 0.008 0.000 0.008 0.000 0.007 0.000 0.008 0.000

σe2 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.000

σe3 0.004 0.000 0.003 0.000 0.003 0.000 0.004 0.000

σe4 0.006 0.000 0.005 0.000 0.004 0.000 0.004 0.000

σe5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 4: Model Parameters. All the parameters are based on the data set reported in Table

3. The variance swap rates with five typical maturities (including 1-, 2-, 3-, 6- and 24-month time

to maturity). All the four models, including ELW, JP, AKM and HJ Model, are calibrated to the

data set composed of both variance swap rates and the S&P500 index log-returns in the sample

period from November 4, 2008 to October 13, 2014.
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in Table 4 and latent volatility/jump variables, we calculate the standardized residuals for

both return, volatility and long-term tendency variables, e.g., εSP
t+1, εv

t+1 and εm
t+1. If a given

model is correctly specified, the distribution of these three residuals should be close to

N(0, 1). Figure 2 plots the kernel density estimators of εSP , εv and εm, separately. It clearly

shows that the incorporation of jump in the state variables can significantly improve the

model performance in capturing the dynamics of the S&P500 index. More importantly,

the distributions of the kernel densities among all the four models suggest that a flexible

specification of jump intensity in the HJ model can facilitate the model calibration, evident

by the relatively small distance towards the standard normal distribution.

In addition to graphical illustrations, we further conduct tests on the performance of the

standard residuals related to the state variables and of pricing VS contracts by using the

Kolmogov-Smirnov (KS hereafter) test and the Bayes Factor. Table 5 reports the statistics

of these tests for all the four models. The KS test results reject the null hypothesis that the

model residuals follow N(0, 1), given the relatively large distance between the empirical cu-

mulative distribution function (CDF) and the theoretical one, reported by the KS statistics,

showing that none of these models can perfectly capture the dynamics of the S&P500 index

and latent variables. But the KS statistics suggest that the calibration performance is im-

proving from the ELW model to the HJ model. This is also confirmed by the Bayes Factors

reported in Panel E. It shows that the JP, AKM and HJ model clearly outperform the ELW

model in capturing the dynamics of the S&P5 index in the sample period from November

4, 2008 to October 13, 2014, demonstrating the importance of incorporating jumps in either

returns or latent variables. The further comparison among the JP, AKM and HJ model

suggests that jumps in variance may make relatively small contributions to the improvement

in model calibration and pricing VS contracts in the sample period, supported by their small

Bayes Factors. On the other hand, the p-values suggest that the 2- and 24-m VS contracts

can be priced precisely in all the four models with the pricing errors following N(0, 1), which

will be further discussed in Section 3.3.

Finally, we examine the filtered latent volatility and jump variables. Figure 3 plots

the dynamics of the state variables, v and m in the four models. Historically speaking,
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Figure 2: Kernel Densities of Standardized Model Residuals. The kernel densities of
standardized residuals of returns (denoted by SP ), variance (V ) and long-term variance (M) in
ELW, JP, AKM and HJ Model. They are estimated using daily S&P500 log-returns and the variance
swap rates between November 4, 2008 to October 13, 2014. There are 1,495 daily observations for
each time-to-maturity.
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Panel A: Performance of ELW Model in Capturing S&P500 Index Returns and Pricing VS Contracts

State Variables Time to Maturity

S&P500 V M 1 2 3 6 24

KS statistics 0.101 0.111 0.199 0.303 0.038 0.325 0.333 0.032

P-values 0.000 0.000 0.000 0.000 0.330 0.000 0.000 0.492

Panel B: Performance of JP Model in Capturing S&P500 Index Returns and Pricing VS Contracts

KS statistics 0.089 0.160 0.197 0.265 0.032 0.258 0.192 .031

P-values 0.000 0.000 0.000 0.000 0.490 0.000 0.000 0.530

Panel C: Performance of AKM Model in Capturing S&P500 Index Returns and Pricing VS Contracts

KS statistics 0.087 0.151 0.174 0.224 0.031 0.188 0.138 0.031

P-values 0.000 0.000 0.000 0.000 0.524 0.000 0.000 0.529

Panel D: Performance of HJ Model in Capturing S&P500 Index Returns and Pricing VS Contracts

KS statistics 0.088 0.137 0.146 0.254 0.032 0.241 0.125 0.030

P-values 0.000 0.000 0.000 0.000 0.498 0.000 0.000 0.549

Panel E: Relative Performance of Four Models in Capturing S&P Index Returns

JP-ELW AKM-ELW HJ-ELW AKM-JP HJ-JP HJ-AKM

Bayes Factor (BF) 131.515 139.154 143.421 5.926 11.906 5.980

Table 5: Kolmogorov-Smirnov (KS) Test and Bayes Factors in ELW, JP, AKM and

HJ Model. The table provides Kolmogorov-Smirnov (KS) tests of the hypotheses that both the

standardized residuals related to the index return, variance and long-term tendency factor of each

of the four models (e.g., the ELW, JP, AKM and HJ model) and pricing errors of the 1-, 2-,3-, 6- and

24-m VS contracts follow N(0, 1). The KS statistics and p-values for model residuals and pricing

errors are reported at the significance level of 5%. The residuals and pricing errors are collected

in the sample period (11/04/2008-10/13/2014). The bayes factors (BF) (see Eraker, Johannes and

Polson (2003) for more details) are calculated in the log-ratio differences, while the second model

is the base. The first model is preferred if the Bayes Factor is larger than 10, e.g., BF > 10.
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the volatility variable tended to be relatively stable, following highly volatile states in the

financial crisis in 2008, and bounded up again in the European debt crisis from 2010 to 2012,

and showed a small spike in 2015 when Chinese financial market experienced a significant

turmoil in the summer. Compared with the JP model, the incorporation of jumps in volatility

in the AKM and HJ model clearly widens the range of volatility states, which may better

capture the dramatic changes in volatile market. In contrast, the long-term tendency variable

m evolved gently over the sample period, and gradually turns down to the relative low level

(with the annual rate of about 5%) in recent years, reflecting the clam sentiments among

investors.

2008-11 2010-10 2012-10 2014-10 2017-09
0

0.2

0.4

0.6

0.8
ELW-V
ELW-M

2008-11 2010-10 2012-10 2014-10 2017-09
0

0.2

0.4

0.6

0.8
JP-V
JP-M

2008-11 2010-10 2012-10 2014-10 2017-09
0

0.2

0.4

0.6

0.8
AKM-V
AKM-M

2008-11 2010-10 2012-10 2014-10 2017-09
0

0.2

0.4

0.6

0.8
HJ-V
AKM-M

Figure 3: Dynamics of Filtered Volatility Variables (v and m) in ELW, JP, AKM
and HJ Model. The dynamics of the filtered volatility variables V and M in ELW, JP, AKM
and HJ Model are reported. The time series of v (m) is plotted by the solid (dashed) line. The
dash-dotted line splits the full sample into the in-the-sample period and the out-of-sample one.
There are 2,242 daily observations in the full sample with 1,495 observations in the-sample period.

Figure 4 further plots the dynamics of the filtered jump variables over the sample period.

First, the paths of the jump intensity λt in the AKM (JP as well) model and HJ model

28



are in sharp contrast due to their distinct specifications. Second, it seems that more jumps

in volatility rather than the S&P500 index are captured, consistent with the dynamics of

the index plotted in Figure 2. More interestingly, the AKM model tends to capture those

positive jumps in the S&P500 index, while the negative jumps in the index are usually

detected in the HJ model. Partially, this difference is rooted in the specification of the jump

intensity. This further suggests that the latter specification for the jump intensity (e.g.,

dλt = α(λ∞ − λt)dt + β0J
v
t dNt in the HJ model) can explain the style facts better in the

empirical literature that market volatility is usually driven by unexpected price drops (see

Li and Zinna (2017)).

In Section 2.1, we have identified the number of the common factor with m = 3 over the

full sample of the VS contracts. Accordingly, their factor scores, the projects of the 10 VS

contracts on these factors can be further worked out from the factor loadings. To investigate

the linkage between the common factors and the risk factors (vt, mt, and λt) specified in the

four models, we further examine the correlations between the estimated factor scores and

state variables, as reported in Table 6. The results show that the estimated risk factors vt and

mt are highly related to the first two common factors in all the models, respectively. In the HJ

model, the role of the third common factor is decomposed into the variance variable v (with

the positive correlation) and the jump intensity variable λt (with the negative correlation).

All these observations suggest that our model specification has its solid root and that the

self-exciting jump intensity process indeed improve the valuation performance for the VS

contracts.

3.4 Model Performance

This section examines the performance of calibration to the term structure of variance swap

rates. First, the risk loadings on the components that make the contributions to the variance

swap rates are analyzed. They present distinct behavior across time-to-maturities, showing

the time-varying role of the state variables (vt,mt, λt) in shaping the term structure of the

variance swap rates. We then estimate the mean term structure of variance swap rates
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Figure 4: Dynamics of Filtered Jump Variables (λ, JS, and JV ) in ELW, JP, AKM
and HJ Model. The dynamics of the filtered jump variables λ, JS and JV in ELW, JP, AKM
and HJ Model are reported. The dash-dotted line splits the full sample into the in-the-sample
period and the out-of-sample one. There are 2,242 daily observations in the full sample with 1,495
observations in the-sample period.
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ELW JP AKM HJ

vt mt λt vt mt λt vt mt λt vt mt λt

F1 Score 0.858 0.120 - 0.871 0.478 - 0.887 0.449 - 0.875 0.471 0.027

F2 Score 0.500 0.989 - 0.478 0.974 - 0.448 0.941 - 0.288 0.954 -0.040

F3 Score - - - - - - - - - 0.334 0.017 -0.227

Table 6: Correlation between Factor Scores and Estimated State Variables in ELW,

JP, AKM and HJ Model. The correlations between the factor scores estimated from the factor

analysis and the time series of state variables from the MCMC procedure are calculated during the

full sample period (11/04/2008-09/29/2017). For the ELW, JP and AKM model, we set m = 2 to

work out the factor scores to reflect two risk factors in the pricing formula for a VS contract, while

m is equal to 3 in the HJ model accordingly.

to verify the performance of model calibration. We further gauge the model stability by

investigating the out-of-sample pricing performance over all the VS contracts. In addition

to the mean term structure of the variance swap rates, we further follow the practice in the

literature to formulate the model-based variance swap premiums (VRPs) which show the

magnitude of VRPs highly depends the time-to-maturity of the contracts during the sample

period.

3.4.1 Mean Term Structure of Variance Swap Rates

We now specify the mean term structure of variance swap rates in all the four models

to investigate the contribution of each component to the determination of the rate. More

specifically, we first obtain the mean term structure of variance swap rates under the objective

probability measure P by taking the unconditional expectation as follows:

EP
ELW [V St,t+τ ] = (1− φELW

v (τ)− φELW
m (τ))θQ

m + φELW
v (τ)θP

v + φELW
m (τ)θP

m,

EP
AKM [V St,t+τ ] = (1 + λ1E

Q
t [(Js,Q)2])(1− φAKM

v (τ)− φAKM
m (τ))θ̃Q

m + EQ
t [(Js,Q)2]λ0

+ (1 + λ1E
Q
t [(Js,Q)2])φAKM

v (τ)θP
v + (1 + λ1E

Q
t [(Js,Q)2])φAKM

m (τ)θP
m̃,

EP
HJ [V St,t+τ ] = (1− φHJ

v (τ)− φHJ
m (τ))θQ

m + φ0
λ(τ)λ∞ + φHJ

v (τ)θP
v + φHJ

m (τ)θP
m

+ φHJ
λ (τ)θP

λ ,

(11)
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where the mean term structure in the ELW model is a weighted average of the statistical mean

of the instantaneous variance rate, θP
v , the statistical mean of the central tendency factor, θP

m

(θP
m̃ instead in the AKM model where θ̃Q

m = (κQ
v θQ

m +µQ
v λ0)/κ̃

Q
v , and m̃ = (κQ

v mt +µQ
v λ0)/κ̃

Q
v

with κ̃Q
v = κQ

v − µQ
v λ1), and and the common risk-neutral (unconditional) long-term mean

for both the variance rate vt and the central tendency mt, θQ
m. In addition to these three

factors, the constant jump intensity λ0 is counted in the AKM model, while both the risk-

neutral long-term mean of the jump intensity, λ∞ and the statistical intensity mean of the

jump factor, θP
λ are taken into account in the HJ model. In particular, if λ0 = λ1 = α =

λ∞ = β0 ≡ 0, the jumps in both models vanish, and both models then converge to the

ELW model (with no jump components). Also, as suggested by Aı̈t-Sahalia, Karaman and

Mancini (2015), the JP model can be regarded as a special case of the AKM model when

both µQ
v and µP

v are set as zero (i.e., µQ
v = µP

v ≡ 0), and the intensity of jumps may employ

the same specification that is a function of variance.

As suggested in Equation (11), the loading coefficients measure the magnitude of the

contemporaneous responses of the variance swap term structure towards unit shocks on risk

components (e.g., variance, central tendency and jump). Panel A of Figure 5 plots the term

structure of all risk responses. In all the four models, the monotonically decreasing function

of risk loading coefficient over time shows that the variance risk factor vt has a transient

and dominant contribution on the mean term structure of variance swap rates at short

maturities, and such influence gradually declines over maturities. In particular, the AKM

model amongst all the models puts the highest weights on the volatility factor in the short

term. This results from the contributions made by jumps to capture price variance driven by

the large estimator λ1, and such contributions are eventually reflected by the jump-adjusted

weights on the volatility factor due to its specification of the jump intensity that is a function

of variance. Accordingly, the similar pattern of the factor loading on vt can be observed in

the JP model.

In contrast, the impact of the central tendency factor mt is mainly governed by φm which

is persistent and substantial over time in order to construct an upward-sloping mean term

structure. The increasing coefficients of mt in the ELW and JP model, associated with their

32



0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Time to Maturity (Year)

Ri
sk

 F
ac

to
r L

oa
di

ng
s i

n 
EL

W
 M

od
el

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

Time to Maturity (Year)

Ri
sk

 F
ac

to
r L

oa
di

ng
s i

n 
JP

 M
od

el

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Time to Maturity (Year)

Ri
sk

 F
ac

to
r L

oa
di

ng
s i

n 
AK

M 
Mo

de
l

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Time to Maturity (Year)

Ri
sk

 F
ac

to
r L

oa
di

ng
s f

or
 H

J M
od

el

Panel A: Factor Loadings of Risk Components

φ
v

φ
m

φ
v

φ
v

φ
v

φ
m

φθQ φλ
0

φ
m

φθQ

φθQ
φλ

0

φ
v

φ
m

φλ ∞
φθQ

φλ

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
21

22

23

24

25

26

27

28

Time to Maturity (Year)

Va
ria

nc
e S

wa
p R

ate
s 

Panel B: Mean Term Structure of Variance Swap Rates

 

 
ELW
JP
AKM
HJ

Figure 5: Risk Loadings and Mean Term Structure of Variance Swap Rates. In
Panel A, the contemporaneous responses of the variance swap term structure to unit shocks on the
instantaneous variance rate vt (denoted by the solid line), the central tendency factor mt (e.g., φλ

denoted by the dashed line) and the jump risk factor λt (denoted by the solid line with “+” in
HJ Model) are plotted, while the loading on the long-term mean of the central tendency (θQ) is
represented by the dotted line with “x”. The responses of other risk factors are denoted accordingly
(e.g., φλ0 in JP and AKM Model and φλ∞ in HJ Model), but φλ∞ collapses to the horizontal axis
due to their small values. In Panel B, the mean term structure of variance swap rates produced
by ELW,JP, AKM and HJ Model is denoted by the dashed line, the dotted line, the solid line
and the solid line with “x”, respectively, while the empirical means of the VS rates with the five
time-to-maturities reported in Table 3 are represented by “◦”, while the other five VS contracts
are represented by “¤” (e.g., τ = 4, 5, 9, 12 and 18 months). The in-the-sample period is from
November 4, 2008 to October 13, 2014.
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relatively large magnitudes, show that this factor’s influence intensifies progressively with the

increasing maturity since inception, especially in the presence of jumps in price. Furthermore,

if jumps in variance are allowed in both the AKM and HJ model, the coefficients of mt

increase steadily till the medium term and then turn down gradually afterwards, suggesting

the declining contemporaneous contributions towards the term structure of variance swap

rates. Moreover, the weight of the risk-neutral long-term mean θQ (a constant) monotonically

grows as the maturity of variance swap increases in all models as an additional adjustment,

which is helpful to mitigate the derivation of variance rates in the long term.

It is distinguishable in both the AKM and HJ model about the manner that the jump

risk factor (λt) contributes to the responses of the variance swap term structure. Compared

to the ELW model, the specification of the jump intensity in the AKM model suggests that

the contribution of λt is decomposed into two components: the weight function φλ0 and the

weight adjustments on other factors (e.g., vt, mt and θQ) that result in the substantial upward

shifts in the coefficients of vt, mt and θQ. On the other hand, the self-exciting specification

of the jump intensity in the HJ model suggests that the contribution of the jump component

is characterized only by two factors: λ∞ with the weight function φλ∞ and λt with φλ,

independent of those risk factors associated with diffusion components. Nevertheless, the

values of these two weight functions are relatively small due to the nature of jumps estimated

in the present paper.

Based on those response functions of the risk factors discussed above, we estimate the

mean term structure of variance swap rates with a set of time-to-maturities from one month

up to two years. As reported in Panel B of Figure 5, the variance swap rates with maturity

up to two years range from 21% to 28% in terms of volatility percentage units. This upward-

sloping term structure is certainly consistent with the negative market prices (γv and γm) in

Table 4. As shown in Table 7, it seems that apart from the ELW model, the rest three models

are calibrated to the empirical term structure of variance swap rates quite well during the

in-the-sample period, and that both the AKM and HJ model achieve the very close RMSE

of about 0.60 volatility units. Among all these models, in particular, the HJ model well

captures the dynamics of the variance swap rate means across all the time-to maturities in
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the 6-year sample period from November 4, 2008 to October 13, 2014. This indicates that

jumps in price or variance or both do play a crucial role in pricing variance swaps, and then

reminds the importance of the jump risk (λt) as the third pricing factor, apart from the

variance factor (vt) and the central tendency factor (mt) in the variance swap market, as

suggested in Section 2.1.

3.4.2 Out-of-Sample Pricing Performance

We further gauge the stability of all the four models by investigating their out-of-sample

performance of pricing the VS contracts. The out-of-sample period is from October 13, 2014

to September 29, 2017. This sample contains about 3 years of data, 748 daily observations

for both the S&P500 index returns and the variance swap rates.

To corroborate the estimators obtained from the MCMC approach, we first analyze the

variance swap pricing errors for the four models obtained in both the in-the-sample and

out-of-sample analysis. Table 7 summarizes the pricing errors in both the in-the-sample and

out-of-sample periods, which are defined as model-based minus actual variance swap rates,

both in volatility terms.

First, the in-the-sample pricing errors of variance swaps suggest that the diffusion-jump

models (e.g., the JP, AKM and HJ model) perform much better than the diffusion model (the

ELW model) across all the time-to-maturities with τ = 1, 2, 3, 6, and 24 months, while the

2- and 24-m VS contracts can be priced with much smaller errors.12 Second, when the rich

information in the S&P500 index is captured by the jump component, apart from a diffusion

one, this greatly reduces pricing errors from 0.760 volatility units to 0.641, equivalently, a

15.78% decrease in pricing errors. Moreover, the introduction of jumps in volatility clearly

can further enhance the pricing performance, evident by the decrease in the overall RMSE

from 0.641 in the JP mdoel to 0.605 in the AKM model (namely, a 5.62% decrease in pricing

errors) and 0.609 in the HJ model (e.g., 4.99%). As a result, jump in both the index and

volatility can improve the pricing performance by over 20% in total. Third, the over-all

12As shown in Panel B of Figure 5, the price errors for the 4-, 5-, 9-, 12, and 18-m VS contracts during
the in-the-sample period are also very small.
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performance of the HJ model is competitive with the AKM model, implying that the self-

exciting specification for the jump intensity is a good alternative for the one of the linear

function of the volatility (e.g., λt = λ0 + λ1vt).
13 Interestingly, the AKM model apparently

has the better pricing performance in those short-term contracts (e.g., the 1-,2- and 3-m VS

contracts), while those medium- and long-term contracts (e.g., the 6- and 24-m ones) can be

priced with relatively smaller errors.

The out-of-sample pricing performance in Panel B of Table 7 confirms the stability of

these models. Clearly, the incorporation of jumps in both the index and volatility (e.g.,

the AKM and HJ model) can improve the performance of model calibration to the quoted

variance swap rates in terms of root mean square error (RMSE) and bias. Also, the 2-

and 24-m VS contracts can be priced with high precision, consistent with their performance

in the sample period. Meanwhile, the AKM and HJ model perform similarly to the one

presented in Panel A, e.g., the very close overall RMSEs in both models and the relative

better performance of those short-term contracts in the AKM model, compared with the

improvement of pricing errors of the medium- and long-term contracts in the HJ model.

Furthermore, Panel C of Table 7 reports the pricing errors of the 4-, 5-, 9-, 12- and 18-m

VS contracts which are not used for model calibration in the sampler period. Surprisedly,

the overall performance of the four models is substantially improved across all the time-to-

maturities, with the overall RMSE of 0.22 volatility units, compared with the performance

in the 1-, 2-, 3-, 6- and 24-m VS contracts, with the overall RMSE ranging from 0.611 units

in the ELW model to 0.494 units in the HJ model. This then indicates the less information

in these contracts, consistent with our analysis in Section 3.1. These results then confirm

that the 1-, 2-, 3-, 6- and 24-m VS contracts indeed possess the richest information in the

variance swap market underlying the S&P500 index. Equipped with these observations,

we further investigate the power of these VS contracts towards return predictability in the

out-of-sample period.

13Note that the self-exciting specification for the jump intensity proposed in this article has another
advantage, compared with the linear specification. That’s, this specification may provide an analytical
solution to the dynamic asset allocation problem in the variance swap market, while the latter one does not.
This further motivates us to investigate the role of jump in variance swap investments.
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Panel A: In-the-Sample Pricing Errors of Variance Swaps

τ 1 2 3 6 12 Overall

ELW
RMSE 1.228 0.207 0.635 0.965 0.027 0.760

Bias 0.599 0.013 -0.344 -0.555 0.000 -

JP
RMSE 1.100 0.198 0.540 0.715 0.029 0.641

Bias 0.372 0.003 -0.192 -0.132 0.000 -

AKM
RMSE 1.047 0.079 0.498 0.690 0.029 0.605

Bias 0.140 -0.001 -0.057 0.155 0.000 -

HJ
RMSE 1.067 0.050 0.517 0.669 0.017 0.609

Bias 0.273 0.000 -0.139 -0.024 0.000 -

Panel B: Out-of-Sample Pricing Errors of Variance Swaps

τ 1 2 3 6 12 Overall

ELW
RMSE 0.930 0.081 0.483 0.873 0.049 0.611

Bias 0.653 0.009 -0.385 -0.753 0.002 -

JP
RMSE 0.870 0.064 0.439 0.753 0.039 0.552

Bias 0.576 0.002 -0.338 -0.615 0.000 -

AKM
RMSE 0.795 0.041 0.388 0.666 0.028 0.496

Bias 0.485 0.002 -0.283 -0.504 .001 -

HJ
RMSE 0.801 0.031 0.392 0.649 0.025 0.494

Bias 0.500 0.001 -0.290 -0.506 0.000 -

τ 4 5 9 12 18 Overall

ELW
RMSE 0.186 0.060 0.205 0.118 0.495 0.262

Bias 0.106 -0.012 -0.086 0.005 0.316 -

JP
RMSE 0.178 0.030 0.187 0.131 0.433 0.233

Bias 0.111 -0.005 -0.070 0.015 0.281 -

AKM
RMSE 0.165 0.029 0.171 0.157 0.406 0.222

Bias 0.075 -0.003 -0.042 0.014 .211 -

HJ
RMSE 0.168 0.021 0.164 0.163 0.400 0.220

Bias 0.079 -0.001 -0.041 0.016 0.207 -

Table 7: Pricing Errors of Variance Swap Rates in ELW, JP, AKM and HJ Model. The

pricing errors is defined as the model-based minus observed variance swap rates, both in volatility

percentage units, e.g., (
√

V SModel
t,t+τ −

√
V SMarket

t,t+τ )×100. Both the mean (Bias) and RMSE of pricing

errors for variance swap rates under all the four models both in the sample period (11/04/2008-

10/13/2014) and out of sample period (10/14/2014-09/29/2017).
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Finally, we conduct the Diebold-Mariano(DM) test (Diebold and Mariano (1995)) which

is indeed a t-statistic test to the pricing errors for all the four models. Table 8 reports the

statistics for both the in-the-sample and out-of-sample pricing errors. The results show that

in bother period, the AKM and HJ model outperform other two models, while they achieve

the very close pricing performance for the 1-, 3- and 6-m VS contracts. For the the 4-, 5-,

9- and 12-m VS contracts, none of these model can persistently outperform the other across

all the time-to-maturities, partially rooted in the relatively small RMSEs in all the models,

while the HJ model outperforms the others for the 18-m VS contract.

3.4.3 Term Structure of Variance Risk Premiums (VRPs)

After examining the calibration of the mean term structure of the variance swap rates and

the out-of-sample pricing performance, we further investigate the dynamics of the variance

risk premiums (VRPs) which reflect how much investors are willing to pay against variance

risk. Following Aı̈t-Sahalia, Karaman and Mancini (2015), the annualized time-t variance

risk premium (VRP) is defined as the difference between the objective and risk-neutral

quadratic variations at time t as follows:

V RP (t, τ) = EP
t [QVt,t+τ ]− EQ

t [QVt,t+τ ]

= EP
t

[
1

τ

∫ t+τ

t

vudu +
1

τ

Nt+τ∑
u=Nt

(Js
u)

2

]
− EQ

t

[
1

τ

∫ t+τ

t

vudu +
1

τ

Nt+τ∑
u=Nt

(Js
u)

2

]
.

(12)

It represents the expected payoff for a long position in a VS contract over the period from

t to t + τ . Also, this measure provides rich information of aggregate risk aversion amongst

investors toward economic uncertainty (Bollerslev, Tauchen and Zhou (2009)). The definition

of the VRP in Equation (12) implies the contribution of the jump component in the current

setup can be formulated as

V RPJ(t, τ) = EP
t

[
1

τ

Nt+τ∑
u=Nt

(Js
u)

2

]
− EQ

t

[
1

τ

Nt+τ∑
u=Nt

(Js
u)

2

]
.

The upper panel in Figure 6 plots the term structure of the VRPs over time. Over the
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Panel A: DM Test for In-the-Sample Pricing Errors of Variance Swaps

τ ELW-JP ELW-AKM ELW-HJ JP-AKM JP-HJ AKM-HJ

1 3.446 2.658 3.287 1.364 1.379 -0.864

2 6.617 9.387 9.205 8.885 8.763 7.839

3 4.143 3.653 4.322 2.202 1.938 -1.380

6 3.215 2.437 3.275 0.426 1.781 0.518

24 -11.092 -11.107 9.819 10.274 10.422 10.313

Panel B: DM Test for Out-of-Sample Pricing Errors of Variance Swaps

1 2.870 3.352 5.357 3.819 9.421 -0.389

2 8.267 9.008 9.167 9.738 9.790 9.860

3 2.863 3.362 5.321 3.946 12.328 -0.319

6 2.692 2.712 4.570 2.664 6.537 0.449

24 16.389 16.369 16.464 15.869 16.152 15.622

4 3.256 4.741 3.755 4.369 3.546 -1.702

5 19.899 19.055 18.819 6.026 12.320 14.325

9 2.734 2.569 3.014 2.217 2.906 2.580

12 -2.104 -4.557 -5.141 -6.126 -6.404 -2.017

18 2.603 2.561 3.075 2.048 3.443 0.859

Table 8: Diebold-Mariano(DM) Test for Pricing Errors of Variance Swap Rates in

ELW, JP, AKM and HJ Model. The DM test conducts a one-sided t-statistic test for the time

series of the squared pricing errors, e.g., {e2
t }T

t=1, where the pricing error is defined in Table 7. The

test statistics measure whether the first model in each pair has significantly smaller squared pricing

errors than the second model, as indicated by the positive sign and the negative one otherwise.

The critical value at the 5% level for the one-sided test (e.g., the left- or right-tailed one) is ±1.76.

The full sample splits into two periods: the in-the-sample one (11/04/2008-10/13/2014) and the

out-of-sample one (10/14/2014-09/29/2017).
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full sample period, the VRPs are negative across to the time-to-maturities, and start to

converge when the market regains the recovery from the 2008 financial crisis and the 2010-

2102 European debt crisis. In particular, dynamics of the 1-m VRPs suggest that as the

response to the Lehman Brothers’ bankruptcy on September 15, 2008, the 1-m VRPs present

the highest level in absolute magnitude in the early sample period, increase moderately

during the European crisis, and then stay at the low level in the rest sample period, showing

that the short-term economic uncertainty among investors has been substantially mitigated

especially in the recent years. In contrast, the long-term (24-m) VRPs are much larger than

the others in absolute magnitude in all the models, showing that investors are willing to pay

more premiums to hedge unexpected increases in variance in the long run. More specifically,

investors have started to pay less (about 1% on average) when facing tranquil markets (e.g.,

since 2012 after the European debt crisis), compared with the more premiums paid in the

volatile market due to the “search-for-yield” effect, for example, ranging from 1% to 5% in

the ELW model during the financial crisis in 2008. It seems that the JP model delivers the

relatively small VRPs across all maturities, while the VRPs produced by the AKM and HJ

model exhibit very similar behavior. In sum, these plots complement the empirical results

reported in Aı̈t-Sahalia, Karaman and Mancini (2015) after the final crisis in 2008.

Similarly, the term structure of the jump VRPs implied in the JP, AKM and HJ model are

plotted in the low panel in Figure 6. Compared with the VRPs reported in the upper panel,

the jump VRPs are much smaller in each time-to-maturity category. Since the jump intensity

depends on the variance state variable in both the JP and AKM model, e.g., λt = λ0 + λ1vt,

the jump VRPs behave similarly to those VRPs in the upper panel. On the other hand, the

behavior of the jump VRPs in the HJ model are quite different from those in the JP and

AKM model, mainly because of its distinct specification of the jump intensity. Meanwhile,

the HJ model produces much larger premiums in absolute magnitude, on average, ranging

from 0.045% for τ = 1 month to 0.345% for τ = 24 months, compared with the corresponding

premium of 0.003% and 0.047% in the AKM model. These gaps in the jump VRPs suggest

that the value of jump risk in the JP and AKM model might be underestimated, which may

further result in a substantial loss in investors’ economic benefits, as discussed in Section 5.
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Figure 6: Term Structure of Variance Risk Premiums (VRPs). In the top panel,
the term structures of variance swap premiums produced by ELW,JP, AKM and HJ Model across
the 1-, 2-, 3-, 6- and 24-m time-to-maturities are denoted by the solid line, the dotted line, the
dashed line, the dash-dotted line and the solid line with “+”, respectively, while the term structure
of the jump risk premiums in these models are plotted similarly. The sample period ranges from
November 4, 2008 to September 27, 2017.
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4 Predictability of Stock Returns

To understand the nature of these pricing models better, we now further exploit the pre-

dictability of stock returns using the information extracted from the out-of-sample VS con-

tracts under these models. The underlying logic is rooted in the observation that since the

variance swap rate can be formulated with both model parameters and state variables in each

model, this then builds up a direct channel between the variance swap rates and the state

variables in a model-based setup. On the one hand, a number of recent empirical studies

document that the information embedded in the VS contracts (for example, the variance risk

premium (VRP)) has the power to predict stock returns in short horizons (e.g, Bollerslev,

Tauchen and Zhou (2009) and Li and Zinna (2017) among others). This consensus in the em-

pirical literature is also supported by the analysis in Section 3.1. On the other hand, Adrian

and Rosenberg (2008) evidence that both the long- and short-run components of market

volatility are significantly priced towards the attribution of stock returns. As a result, by

virtue of this channel, we can measure the efficiency of a pricing model that extracts the

information from the VS contracts in terms of by its predictability of stock returns, apart

from the performance of pricing VS contracts.

Following the definition of the k-period return Rt+k,t in Equation (2), we consider the

regressions of the S&P500 index returns on the state variables and on the VRPs estimated

from the VS contracts as follows:

Rt+k,t = b0(k) + bv(k)vt + bmmt + bλ(k)λt1Mi=HJ + εt(k),

Rt+k,t = c0(k) + cv(k)V RPτ (t) + εt(k)

(13)

where the state variables vt, mt and λt are estimated by calibrating the models to the VS

contracts in the out-of-sample period, and 1(·) is equal to one if the HJ model is considered

and zero for the ELW, JP and AKM model, while V RPτ indicates the estimated VRPs from

the VS contracts in the model. In both regressions, we use the adjusted R2 to measure the

prediction performance in each model.
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We further define an out-of-sample R2 measure as follows:

R2
OS,Mi−Mj

= 1−
∑Mi

t,k (Rt+k,t − R̂t+k,t)
2

∑Mj

t,k (Rt+k,t − R̂t+k,t)2
, (14)

where R̂t+k,t indicates the predicated cumulated returns under Model M. In each model,

we estimate R̂t+k,t as follows:

• We choose a set of the VS contracts during the out-of-sample period, and run the

minimization at time t:

min
vt>0,mt>0,lt>0

Σn(V Sn,t − β0 − βvvt − βmt − βλ1Mi=HJλt)
2,

where the coefficients β0, βv, βm, βλ can be backed up from the pricing formula for the

variance swap rates in each model, and n indicates the number of selected contracts.

• We then use the estimated state variables v̂, m̂ and λ̂ to run the first regression in

Equation (13) to collect the coefficient estimators, b̂0, b̂v, b̂m and b̂λ for each horizon k.

• The estimated cumulated return R̂t+k,t is then given by

R̂t+k,t = b̂0(k) + b̂v(k)v̂t + b̂mm̂t + b̂λ(k)λ̂t1Mi=HJ .

For a comprehensive comparison, we finally conduct a regression of the k-period return Rt+k,t

on all the 10 VS contracts, and follow the PCA analysis used in Section 2.2 to extract the

full information embedded in the sample.

Table 9 reports the regression statistics to measure the return predictability of the state

variables estimated from the out-of-sample VS contracts with the time-to-maturities of τ =

1, 2, 3, 6, and 24 months.14 The resulted adjusted-R2 suggests that the estimated volatility

and jump variables do have the power to predict the S&P500 index returns in all the models,

14We check the correlations of the latent variables used in the regressions, and find that in all the models,
the correlation coefficients among the state variables (v, m, λ) and λ ≡ 0 in the ELW model are lower than
0.50 in absolute magnitude with all the forecasting horizons.
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Panel A: Regressions on State Variables with Calibration of V St,t+τ(τ=1,2,3,6,24)

Model R2
Forecasting Horizon (k months)

1 3 6 12 24

ELW Adj-R2 0.073 0.144 0.163 0.387 0.384

JP Adj-R2 0.073 0.142 0.164 0.387 0.383

AKM Adj-R2 0.073 0.140 0.165 0.378 0.380

HJ Adj-R2 0.071 0.147 0.169 0.415 0.433

JP-ELW R2
OS 0.000 -0.002 0.001 0.000 -0.002

AKM-ELW R2
OS 0.000 -0.004 0.002 -0.014 -0.007

HJ-ELW R2
OS 0.000 0.005 0.009 0.049 0.084

HJ-JP R2
OS 0.000 0.007 0.008 0.048 0.085

HJ-AKM R2
OS 0.000 0.009 0.007 0.062 0.090

Panel B: Regression on State Variables with Calibration of All VS Contracts

ELW Adj-R2 0.074 0.146 0.189 0.435 0.383

JP Adj-R2 0.073 0.144 0.191 0.435 0.382

AKM Adj-R2 0.073 0.142 0.191 0.423 0.379

HJ Adj-R2 0.072 0.146 0.200 0.480 0.416

JP-ELW R2
OS 0.000 -0.002 0.002 0.000 -0.002

AKM-ELW R2
OS 0.000 -0.005 0.003 -0.021 -0.005

HJ-ELW R2
OS 0.000 0.002 0.015 0.081 0.058

HJ-JP R2
OS 0.000 0.004 0.012 0.081 0.059

HJ-AKM R2
OS 0.000 0.007 0.012 0.100 0.063

Panel C: Regression on VRPs with Calibration of V St,t+τ(τ=1,2,3,6,24)

V RPELW
1m Adj-R2 0.071 0.140 0.070 0.112 0.392

V RPELW
2m Adj-R2 0.071 0.137 0.075 0.124 0.389

V RPELW
3m Adj-R2 0.071 0.134 0.081 0.134 0.387

V RPELW
6m Adj-R2 0.069 0.121 0.099 0.175 0.376

V RPELW
24m Adj-R2 0.033 0.031 0.157 0.3791 0.087

Table 9: Out-of-Sample Return Predictability in ELW, JP, AKM and HJ Model.

The stock return predictability of the state variables is examined in the out-of-sample period

(10/14/2014-09/29/2017) with the 1-, 2-, 3-, 6-, 24-m VS contracts (in Panel A) and all the ten

VS contracts with τ = 1, 2, 3, 4, 5, 6, 9, 12, 18, 24 (in Panel B), while Panel C reports the regression

statistics on VRPs estimated in Section 5.2 under ELW Model.
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Panel A: Regressions on All VS Contracts using PCA

PCA Factors R2
Forecasting Horizon (k months)

1 3 6 12 24

2 Adj-R2 0.073 0.140 0.186 0.411 0.379

3 Adj-R2 0.072 0.181 0.185 0.427 0.385

4 Adj-R2 0.082 0.188 0.276 0.565 0.397

5 Adj-R2 0.140 0.219 0.359 0.565 0.458

6 Adj-R2 0.172 0.218 0.408 0.565 0.489

7 Adj-R2 0.192 0.226 0.411 0.568 0.572

Panel B: Akaike information criterion (AIC)

2 - -7.053 -6.385 -5.846 -5.493 -6.216

3 - -7.051 -6.424 -5.845 -5.527 -6.217

4 - -7.091 -6.465 -6.048 -5.683 -6.218

5 - -7.088 -6.462 -6.055 -5.724 -6.366

6 - -7.180 -6.536 -6.181 -5.783 -6.392

7 - -7.209 -6.534 -6.202 -5.780 -6.634

Panel C: Bayesian information criterion (BIC)

2 - -7.034 -6.365 -5.824 -5.467 -6.173

3 - -7.025 -6.397 -5.816 -5.493 -6.160

4 - -7.059 -6.432 -6.012 -5.641 -6.146

5 - -7.050 -6.422 -6.013 -5.673 -6.280

6 - -7.136 -6.490 -6.131 -5.723 -6.291

7 - -7.158 -6.481 -6.145 -5.712 -6.519

Table 10: Regression Statistics of the Out-of-Sample Return Predictability on All VS

Contracts. In Panel A, the stock return predictability of all the VS contracts is examined in the

out-of-sample period (10/14/2014-09/29/2017) by applying the PCA decomposition with 7 PCA

factors (< 10). In Panel B and C, the AICs and BICs obtained from the regressions are reported.
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while R2
OSs suggest that the HJ model can capture more information from the VS contracts

to have better predication on the underlying stock return in the long run. Moreover, it seems

that the incorporation of jumps in volatility, associated with a flexible specification of jump

intensity, may improve the predictability of the index returns in terms of adjusted-R2s, but

its magnitude is partially impacted by less jumps in the out-of-sample period, as shown in

Figure 4. More interestingly, Panel C in Table 9 shows that the VRPs with various time-to-

maturities have the close performance in predicting stock return over all the horizons, which

somehow devalues the importance of the VRPs in stock return predictability widely studied

in the literature.15

Finally, the PCA analysis on the regression of Rt+k,t on all the VS contracts shows that

only about 7 VS contracts of 10 are sufficient to achieve the much high prediction power in

the future stock returns, as implied by the marginal changes in both the AICs and BICS. As

a result, we do not report the regression statistics with more factors. In sum, Table 9 and

10 suggest that using the variance swap rates (equivalently, the state variable v, m and λ),

rather than the VRPs, can achieve better predictability of the underlying stock returns.

5 Empirical Analysis of Variance Swap Investments

The preceding analysis suggests that the JP, AKM and HJ model can be calibrated to the

empirical mean term structure of variance swap rates quite well. This indicates that these

two models can serve as good alternatives for the AKM model in terms of valuing variance

swap rate contracts. However, it is unclear how jumps in variance may affect investor’s

decisions on variance swap investment. Since the AKM model seems hard to provide an

analytical solution to the problem of variance swap allocation, we mainly consider the other

three models (namely, the ELW, JP and HJ model). Specifically, we analyze the optimal

allocations to variance swap contracts, study the role of jumps in variance swap portfolios,

and quantify the cost of economic welfare in investing variance swaps in the presence of both

model and parameter mis-specification.

15We also check the prediction performance of the VRPs obtained in the JP, AKM and HJ model, and
have the very similar results observed in the ELW model.

46



5.1 Optimal Variance Swap Allocation: Theoretical Results

We first solve the optimal portfolio choice problem with variance swaps before stepping into

an empirical analysis. Specifically, to better understand a risk-averse investor’s behavior in

variance investments in a stochastic environment, particularly in comparison with the short-

long strategy in the pure-diffusion model of Egloff, Leippold and Wu (2010), we consider a

model where this investor can trade three variance swaps and a money market account.16

As in Egloff, Leippold and Wu (2010) and Jin and Zhang (2012), we assume that at time t

the investor initiates three new variance swap contracts with the delivery prices equal to the

prevailing variance swap rates K1 = V St,t+τ1 , K2 = V St,t+τ2 and K3 = V St,t+τ3 . Thus her

wealth Wt can be written as

Wt = WM
t + W1t(V St,t+τ1 −K1) + W2t(V St,t+τ2 −K2) + W3t(V St,t+τ3 −K3),

where WM
t denotes the amount of money invested in the money market account, and W1t, W2t

and W3t denote the dollar notional amount invested in the three variance swaps, respectively.

16It is worth mentioning that incorporating the stock will introduce two more sources of risk: the diffusion
BP

1t and the jump Nt with jump size Js,P
t . In essence, the jump in stock price and the jump in volatility are

considered as two different jumps although they occur simultaneously because the two jumps have different
random jump sizes. As a result, in order to deliver closed-form solution to the optimal portfolio choice
problem when the investor can invest in the stock, we need to incorporate a new asset in addition to the
stock. The price of the new asset is driven by the diffusion BP

1t. For this, we can extend the stock price
model in Section 2.3 of Liu (2007) by incorporating jump in the stock price. Specifically, the stock price is

dSt

St−
= (rt + γvρvt + γsrt)dt + σr

√
rtdBP

1t + ρ
√

vtdBP
2t + (exp(Js,P

t )− 1)dNt − gP λtdt,

where rt is the short rate. And then the investor is allowed to trade a zero-coupon bond, the
stock and three variance swaps. In this model, the variance swap rate includes a new term Rt =
EQ

[
exp

(
− ∫ T

t
rsds

) ∫ T

t
rsds

]
. The dynamics of the expectation can be explicitly derived by using the

methods in Duffie, Pan and Singleton (2000) for an affine short rate process. In particular, by adopting the
Vasicek model for the short rate rt, we can solve the optimal portfolio choice problem in the ODE-based
closed form. If rt is modeled by the CIR process, then, unlike the previous case, the optimal portfolio choice
problem can be solved by combining the simulation-based method in Jin and Zhang (2012) and the ODE-
based approach in the present paper. A noteworthy feature of the new model is that we can study how the
interest rate affect the variance swap rate due to the presence of the new term Rt and the investor’s demands
for the stock, the bond and variance swap. Allowing the investor to access both stock and bond in addition
to variance swap will certainly enrich the analysis. We leave this extension as future research. Also, we will
show that a third variance swap is redundant in the model of Aı̈t-Sahalia, Karaman and Mancini (2015).
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As a result, we can write the wealth dynamics as

dWt

Wt

= rtdt + w1tdV St,t+τ1 + w2tdV St,t+τ2 + w3tdV St,t+τ3 (15)

where w1t, w2t and w2t denote the fractions of wealth in the three variance swaps, respectively.

Plugging the equations for variance swaps into Equation (15), we can recast the wealth

dynamics as

dWt

Wt

= rtdt + w1t[φv(τ1)σvγvvt + φm(τ1)σmγmmt − (φv(τ1) + β0φλ(τ1))µ
Q
v λt]dt

+w2t[φv(τ2)σvγvvt + φm(τ2)σmγmmt − (φv(τ2) + β0φλ(τ2))µ
Q
v λt]dt

+w3t[φv(τ3)σvγvvt + φm(τ3)σmγmmt − (φv(τ3) + β0φλ(τ3))µ
Q
v λt]dt

+w1t[φv(τ1)σv

√
vtdBP

2t + φm(τ1)σm

√
mtdBP

3t + (φv(τ1) + β0φλ(τ1))J
v,P
t dNt]

+w2t[φv(τ2)σv

√
vtdBP

2t + φm(τ2)σm

√
mtdBP

3t + (φv(τ2) + β0φλ(τ2))J
v,P
t dNt]

+w3t[φv(τ3)σv

√
vtdBP

2t + φm(τ3)σm

√
mtdBP

3t + (φv(τ3) + β0φλ(τ3))J
v,P
t dNt].

The next result gives the indirect value function.

Proposition 1 Under the above assumptions, we have the following result:

J(t,Wt, Xt) =
W 1−γ

t

1− γ
[f(t,Xt)]

γ =
W 1−γ

1− γ

[
eA(t)+B1(t)vt+B2(t)mt+B3(t)λt

]γ
(16)

where the functions A(t), B(t) = (B1(t), B2(t))
> and B3(t) satisfy the following equations:

dA

dt
+ κP

mθP
mB2 + αλ∞B3 +

1− γ

γ
r = 0,

dB1

dt
−

(
κP

v −
1− γ

γ
σvγv

)
B1 +

1

2
σ2

vB
2
1 +

1− γ

2γ2
γ2

v = 0,

dB2

dt
+ κQ

v B1 −
(

κP
m −

1− γ

γ
σmγm

)
B2 +

1

2
σ2

mB2
2 +

1− γ

2γ2
γ2

m = 0,

dB3

dt
− αB3 +

γ − 1

γ
π̃∗q1E

Q[Jv,Q] +
1

γ
EP

[(
π̃∗q1J

v,P + 1
)1−γ

eγ(B1+B3β0)Jv,P − 1
]

= 0,

with A(T ) = B1(T ) = B2(T ) = B3(T ) = 0 and π̃∗q1 given in Proposition 4 below.

Proof. See Appendix A.
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It is interesting to note that the indirect value function J(t,Wt, Xt) is independent of

the maturities τ1, τ2 and τ3 of the three variance swaps because the functions A(t), B(t) =

(B1(t), B2(t))
> and B3(t) do not depend on the three maturities. This can be seen from

the above ordinary differential equations satisfied by the four functions. In other words,

for a CRRA investor, as long as there are three different variance swaps for trading, the

maturities of variance swaps are irrelevant for her investment performance measured by the

indirect value function, J(·). This conclusion also holds true in Egloff, Leippold and Wu

(2010) as shown in their Proposition 3. In essence, any two variance swaps with different

maturities can span two diffusions in the two-factor pure-diffusion model of Egloff, Leippold

and Wu (2010) while, as indicated by the nonsingular matrix Σ below, any three variance

swaps with different maturities can span three sources of risk in the variance swap market.

In contrast, the optimal portfolio weights depend on the maturities of three variance swaps

shown below. To this purpose, from the equation (8), we let

Σ =




φv(τ1)σv
√

vt φm(τ1)σm
√

mt φv(τ1) + β0φλ(τ1)

φv(τ2)σv
√

vt φm(τ2)σm
√

mt φv(τ2) + β0φλ(τ2)

φv(τ3)σv
√

vt φm(τ3)σm
√

mt φv(τ3) + β0φλ(τ3)




(17)

In general, the above matrix is nonsingular and thus a third variance swap is not redundant

in our model since we disconnect the jump intensity from the variance. In the model of

Aı̈t-Sahalia, Karaman and Mancini (2015), according to their equations (8) and (9), the

corresponding matrix can be represented as

Σ1 =




φv(τ1)σv
√

vt φm(τ1)σm
√

mt λ1[(µ
Q
j )2 + σ2

j ]φv(τ1)

φv(τ2)σv
√

vt φm(τ2)σm
√

mt λ1[(µ
Q
j )2 + σ2

j ]φv(τ2)

φv(τ3)σv
√

vt φm(τ3)σm
√

mt λ1[(µ
Q
j )2 + σ2

j ]φv(τ3)




Clearly, the the matrix Σ1 is singular because its first and third columns are proportional

and this, in turn, implies that the third variance swap is redundant. Thus, variance swaps

cannot provide independent exposures to two diffusions and one jump, making it difficult to
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obtain analytic solution to optimal portfolio choice problem involving variance swap. The

next result presents the optimal solution for w1t, w2t and w3t in our model.

Proposition 2 The optimal portfolio weight w∗ = (w∗
1t, w

∗
2t, w

∗
3t) is given by

w∗ =
(
π̃∗b1, π̃

∗
b2, π̃

∗
q1

)
Σ−1 (18)

where

π̃∗b1 =
γv
√

vt

γ
+ σv

√
vtB1(t), π̃

∗
b2 =

γm
√

mt

γ
+ σm

√
mtB2(t),

and π̃∗q1 solves the following optimization problem:

sup
π̃q1∈[0,∞)

−π̃q1E
Q[Jv,Q] +

1

1− γ
EP

[(
1 + π̃q1J

v,P
)1−γ

eγ(B1+B3β0)Jv,P − 1
]
. (19)

Furthermore, if γv < 0, γm < 0, EQ[Jv,Q] > EP [Jv,P ], B1(t) < 0, B2(t) < 0 and B3(t) < 0,

then

π̃∗b1 < 0, π̃∗b2 < 0, π̃∗q1 = 0. (20)

Proof. See Appendix A.

Our calibration exercise shows that conditions of results (20) hold true. Intuitively, the

first two results in (20) say that the investor has negative diffusion exposures to profit from

the negative market prices of risk γv and γm. Interestingly, the third result in (20) suggests

that the investor takes zero instead of a negative jump exposure despite the negative market

prices of risk λt(E
P [Jv,P ]− EQ[Jv,Q]). The two reasons account for this result. On the one

hand, the investor is prohibited from having a negative jump exposure by the no-bankruptcy

constraint: π̃q1 ∈ [0,∞). On the other hand, a positive jump exposure means losing the

negative jump risk premium. As a result, the investor optimally takes zero jump exposure.

We now apply these theoretical results to the sample of the variance swap contracts.
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5.2 Optimal Variance Swap Allocations: A Short-Long-Short Strat-

egy

Unlike the stream of literature that attempts to rationalize the magnitude of the risk premium

based on various economic issues, we instead study how a trader allocates her wealth to

variance swap contracts in order to benefit from the risk premium dynamics and further

investigate the impact of jumps in variance on her asset allocations. We now assume that

the trader allocates the initial wealth Wt at time t between the money market and the

variance swap market. The trader has access to the money market account to balance

out the investments by earning a risk-free interest rate. The variance swap contracts are

initialized with zero costs and so they have zero initial values.

As aforementioned before, our closed-form solution presents a new way for understanding

the short-long strategy studied in Egloff, Leippold and Wu (2010). For this, by turning off

jumps in variance, we have their two-factor variance risk structure so that the variance swap

rates across all maturities are determined by two sources of variations. Accordingly, the

trader just need choose any two variance swap contracts with distinct time to maturities

(say 0 < τ1 < τ2 < ∞ without loss of generality), which could sufficiently span all the

sources of risks in the variance swap market. When the investor only invests in the money

market and variance swap contracts, the optimal portfolio weight of her wealth invested in

these two contracts, w∗ = (w∗
1t, w

∗
2t) is equal to w∗ = (π̃∗b1, π̃

∗
b2)Σ

−1, as given in Equation (18)

with π̃∗q1 ≡ 0 (and B3 ≡ 0 in Proposition 1 as well), while the 2 × 2 matrix Σ is given as

follows:

Σ =




φv(τ1)σv
√

vt φm(τ1)σm
√

mt

φv(τ2)σv
√

vt φm(τ2)σm
√

mt




and φv and φm are given in Equation (7), which is equivalent to the formulas in Egloff,

Leippold and Wu (2010)(see Equation (43) and (44) in page 1298). It is clear that these

results are valid in both the ELW and JP model but with distinct parameter sets reported

in Table 4. Note that for the JP model, the exposures of the two contracts to the sources of

risk, φv and φm in the matrix Σ are obtained by setting µQ
v = µP

v = 0 in the AKM model.
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Inspecting the optimal investment decisions in the variance swap contracts under the

two-factor variance risk specification (e.g., the ELW and JP model)17, Egloff, Leippold and

Wu (2010) suggest that the optimal allocations in the two variance swap contracts at short

investment horizons depend not only on the market prices of both the variance risk (γv) and

the central tendency risk (γm), but also on the exposures of the two contracts towards the risk

factors, φv and φm. This can be seen clearly from the portfolio weights w∗ = (π̃∗b1, π̃
∗
b2)Σ

−1.

More specifically, investment in the short-term contract is more sensitive to the market

price of the variance risk, while investment in the long-term contract depends more on the

market price of the central tendency risk, owing to the distinct patterns of risk loadings of

these two factors over time. To see this, considering the example where τ1 = 2 months and

τ2 = 2 years and the ELW model’s parameters are given in Table 1, the sensitive matrix Σ−1

is given by

Σ−1 =




13.1570 −4.7567

−5.9110 36.9530


 .

And thus,

w∗ = (13.1570π̃∗b1 − 5.9110π̃∗b2,−4.7567π̃∗b1 + 36.9530π̃∗b2).

In this case, the investor uses short-term and long-term variance swaps to exploit the

risk premia γv = −1.229 through π̃∗b1 and γm = −0.704 through π̃∗b2, separately, as indicated

by the positive numbers 13.1570 and 36.9530. In the meantime, the investor takes positive

exposure to the second Brownian motion in the short-term contract (−5.9110) to offset the

negative exposure of the long-term contract to the second Brownian motion. For the same

reason, the investor takes positive exposure to the first Brownian motion in the long-term

contract (−4.7567) to offset the negative exposure of the short-term contract to the first

Brownian motion. In fact, negative market prices of the two risk factors result in short

17Note that the investor’s optimal investment problem in the presence of jumps in stock price (e.g., the
JP model) can be solved in the ELW model. We have examined the impact of jumps in stock price on
variance swap investments, and found that the differences in the holdings of either the short-term contracts
or the long-term contracts are less than seven in absolute magnitude value. In this sense, jumps in price
do not cause substantial impact on the allocations decisions to variance swap contracts, as the variance
market is still completed and can be spanned by the combinations of any two contracts, apart from the
minor differences in magnitude.
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positions −0.5271 and −0.9634 in both contracts. In contrast to the short-long strategy

in Egloff, Leippold and Wu (2010), this example implies that the investor is still able to

hedge via the special structure18 of Σ−1 without taking a short position in one variance

swap and a long position in the other. In other words, each variance swap play dual roles:

exploiting risk premium and hedging. Moreover, the positions in two variance swap contracts

depend on the relative magnitude of the market prices of the two sources of risk, γv and γm

when their maturity gap tends to be relatively moderate, which affects the structure of Σ−1.

This dependence partially supports the institution that the two variance swap contracts are

insufficient to chase the dynamics of variance swap risk premia, although they can complete

the market in the assumed two-factor model. Then the optimal allocations could involve

short positions in short-term contracts, but long positions in long-term contracts, if the

variance price term γv is sufficiently larger than the central tendency price term γm in

absolute value, as demonstrated in Figure 7.19

We now turn to our model. Jumps in variance make the variance swap market incomplete.

The dynamics of variance swap rates are now driven by a three-factor variance risk structure,

and hence another variance swap contract is required to span all the sources of variations.

Figure 8 plots the allocations to variance swap contracts in the presence of jumps in variance

for a 2-month investment horizon. Due to the small estimators for jump sizes in variance in

both the measure P and Q, as reported in Table 4, these values cause a linearity problem to

the 3 × 3 matrix, Σ in Equation (18). This makes its inverse matrix large and in turn the

holdings of each contract are very large, as shown in Figure 8.

More importantly, in stark contrast to the portfolio weights in the two-factor model,

Figure 8 suggests that the sign of optimal position on each variance swap is irrelevant to

the relative magnitudes of the market prices of the two sources of risk, γv and γm. More

specifically, in the presence of jumps in variance, it is always optimal to take long positions in

medium-term variance swap contracts and short positions in both short-term and long-term

18We find this structure does not change by varying the parameters.
19When the market prices of the risk factors vary, unlike the way in Egloff, Leippold and Wu (2010), we

adjust all the estimators under the measure P by fixing the estimators in the measure Q in order to reflect
their impact on the intertemporal hedging demand.
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Figure 7: Optimal Investments in Variance Swap Contracts in ELW Model. The
optimal investments in variance swap contracts (as the fractions of total wealth in notional) in ELW
Model (with γ = 5) is plotted as a function of the market price of the variance risk (γv) and the
market price of the central tendency factor (γm).Panel A shows the optimal investments in 2-month
and 2-year variance swap contracts, while Panel B shows the investment in 6-month and 1-year
contracts. The surface on the top in each panel denotes the holdings of the long-term contract with
time-to-maturity τ2, while the surface on the below shows the holdings of the short-term contract
with time-to-maturity τ1. The investment horizon is set as two months (e.g., T = 2 months).

contracts, that is, a “short-long-short” strategy. Also, the trader should sell even more long-

term contracts than short-term ones. For a better understanding, we rewrite the portfolio

weights w∗ = (π̃∗b1, π̃
∗
b2, π̃

∗
q1)Σ

−1 in the example where τ1 = 2 months, τ2 = 1 year and τ3 = 2

years, the matrix Σ−1 for the parameters in Table 2 is given by

Σ−1 =




77.4910 −359.3994 346.9892

13.8305 −114.1198 197.7839

−1.9143 12.2678 −12.1893




. (21)

And thus, we have the holdings of each contract as follows:

w∗
1 = 77.4910π̃∗b1 + 13.8305π̃∗b2 − 1.9143π̃∗q1 = −6.6042,

w∗
2 = −359.3994π̃∗b1 − 114.1198π̃∗b2 + 12.2678π̃∗q1 = 31.4253,

w∗
3 = 346.9892π̃∗b1 + 197.7839π̃∗b2 − 12.1893π̃∗q1 = −30.9234.

(22)
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Figure 8: Optimal Investments in Variance Swap Contracts in HJ Model. The
optimal investments in variance swap contracts (as the fractions of total wealth in notional) in HJ
Model (with γ = 5 and T = 2 months) are plotted as a function of the market price of the variance
risk (γv) and the market price of the central tendency factor (γm). When the maturities of the
first two contracts, including the 2-month and 2-year variance swap contract in Panel A and the
6-month and 1-year contract in Panel B, C and D, are specified, the four panels show the optimal
investments in three contracts by positioning the third one with the different time to maturity.
In each panel, the surface on the top denotes the holdings of the medium-term contract, and the
surface on the below shows the holdings of the long-term contract, while the surface in the middle
presents the holdings of the short-term contract.
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Unlike the case in Egloff, Leippold and Wu (2010) discussed above, adding a third vari-

ance swap disentangles the dual roles played by each of two variance swaps in their two-factor

model in that each of three variance swaps in our double-jump model plays a single role: ei-

ther gaining risk premium or hedging. Specifically, the shortest-term swap is used to exploit

the risk premia γv through π̃∗b1 and γm through π̃∗b2, respectively, as indicated by their positive

loadings of π̃∗b1 and π̃∗b2: 77.4910 and 13.8305. For the same reason, the longest-term variance

swap is used to gain the risk premia too. In the meantime, the investor uses the medium-

term variance swap for hedging due to its negative coefficients of π̃∗b1 and π̃∗b2: -359.3994 and

-114.1198. Moreover, in our experiments, we find that the functions B1(t), B2(t) and B3(t)

are all negative and π̃∗q1 = 0, implying, by Proposition 4, that π̃∗b1 < 0 and π̃∗b2 < 0. That

is, the investor has negative exposures to the diffusion risks to gain significant variance risk

premia. As a result, given their positive coefficients of π̃∗b1 and π̃∗b2, w∗
1 and w∗

3 are always

negative regardless of the relative magnitudes of the market prices of the two sources of

risk, γv and γm. Similarly, w∗
2 is always positive. In short, the investor uses two variance

swaps to exploit the significant volatility risk premium and one swap to hedge the large posi-

tions in the other two swaps. Intuitively, the reason for choosing the medium-term variance

swap as a hedging asset is that this swap lies in the middle in terms of maturity and thus

is simultaneously closest to each of other two variance swaps, implying the simultaneously

highest correlations with each of other two variance swaps, making this variance swap the

most effective asset for hedging relative to the other two swaps.

In addition, we can make further observations from the above optimal portfolio weights.

First, for each variance swap, the sensitivity to jump is much smaller in magnitude compared

with the sensitivities to the two diffusion risks, indicated by those relatively small holdings

of π̃∗q1. The reason for this is that the value of φλ is very small due to small jump size in

variance. Second, for each variance swap, the sensitivity to the variance exposure via π̃∗b1

(the first row of Σ−1) is much larger than those to other two exposures (the second and third

rows of Σ−1) in magnitude. Third, the sensitivities to all the risk factors in the long-term

contracts through the optimal weights w∗
2 and w∗

3 given by Equation (22) (the second and

third columns of Σ−1) are much larger than those in the short-term one (the first column of
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Σ−1) in magnitude. This is also consistent with an empirical finding in Aı̈t-Sahalia, Karaman

and Mancini (2015) and Filipovié, Gourier and Mancini (2015) that long term variance swaps

carry more (cumulative) volatility risk premiums than short-term contracts. Finally, given

the term structure of variance swap risk premia in Panel B of Figure 6, the trader may

gain from the unexpected high frequency jumps in variance (governed by β0 = 2.214) such

that the premiums for medium-term contracts are paid out by the compensations from short

positions in both short-term and long-term contracts.
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Figure 9: Sensitivity of Optimal Investments in Variance Swap Contracts to Jump
Risk in HJ Model. The optimal investment in variance swap contracts (as the fractions of total
wealth in notional) in HJ Model (with γ = 5 and T = 2 months) is plotted as a function of the
market price of the variance risk (γv), the market price of the central tendency factor (γm) and the
market price of the jump risk (γj). Three contracts are traded, including the 2-month, 1-year and
2-year variance swap contract (denoted by τ1, τ2 and τ3 respectively). In each panel, the surface
on the top denotes the holdings of the tim-to-maturity-τ2 contract (the medium-term contract),
and the surface on the below shows the holdings of the long-term contract with time-to-maturity
τ3, while the surface in the middle presents the holdings of the short-term contract with time-to-
maturity τ1.

To examine the empirical properties of the portfolio strategies discussed above, we con-

duct robustness tests below. Due to the small market price compensated for jump risk, as

reported in Table 4, we then adjust µQ
v by fixing µP

v in order to reflect the sensitivity of

optimal investments in variance swap contracts towards jump risk, i.e., µQ
v = µP

v − γj where
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γj is chosen to ensure the positivity of the long-term jump intensity λt, e.g., µQ
v ≤ α/β0.

Similar to the results in Figure 8, Figure 9 suggests that it is still optimal to take long

positions in medium-term contracts, and short positions in both short-term contracts and

long-term contracts. Interestingly, the optimal investments are insensitive to small changes

in the market price of jump risk when it is relatively high, and then turns to be very sensitive

when the market price of jump risk increases up to 0.4%. In particular, when jump risk in

variance is compensated by a low market price, the relatively flat surfaces of the holdings in

each contract suggest that jump risk has minor impact on the allocation to variance swap

contracts, and the trader’s investment decision is mainly affected by variance risk and central

tendency risk. However, jump risk plays a substantial role in investment decision when its

mark price turns to be high. In order to maximize her expected utility in the investment

horizon T = 2 months, for example, the trader exploits opportunities by rapidly increas-

ing holdings (in magnitude) of both medium- and long-term contracts while only slightly

increasing the position (in magnitude) in the short-term contract, as demonstrated in Fig-

ure 9. This further suggests that long-term contracts are more profitable than short-term

contracts.

5.3 Optimal Hedging Demands

In this section, we further empirically examine the roles of the three variance swaps in hedg-

ing the two state variables vt and mt. Proposition 2 shows that the optimal allocation to the

variance swap contracts consists of a myopic component that is the optimal portfolio with

a constant opportunity set, and an intertemporal hedging demand that a trader may ask

for to reduce the impact of shocks to the indirect utility of wealth when facing stochastic

opportunities. As a result, the portfolio rule w∗ = (w∗
1t, w

∗
2t, w

∗
3t) is the sum of the myopic

demand and the intertemporal hedging demand. In this context, the stochastic variance

risk (including the central tendency risk) represents those stochastic investment opportuni-

ties, which induces an intertemporal hedging demand when we invest in the variance swap

contracts alone.
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In the literature, the hedging demand for volatility is not significant in a realistic portfolio

problem within a stochastic variance environment excluding variance swap, as discussed by

Buraschi, Porchia and Trojani (2010). It is necessary to investigate whether this empirical

observation still holds in variance swap investments as the contracts provide direct exposure

to volatility risk. And moreover, it is interesting to examine the role of each variance swap

in hedging both the transitory volatility risk v and the persistent central tendency risk m.

For this reason, we set
∑−1 = (σ̃i,j)3×3 for each variance swap j (j = 1, 2, 3) based on

Proposition 2, and obtain the following demands on this contract at time t:

Total myopic demand:M =
1

γ
(σ̃1,jγv

√
vt + σ̃2,jγm

√
mt);

Hedging demand for vt:Hv = σ̃1,jσv

√
vtB1(t);

Hedging demand for mt:Hm = σ̃2,jσm

√
mtB2(t).

(23)

We now can work out the hedging ratios for both the volatility risk v and the central

tendency risk m, reported as the percentages of the myopic portfolio in Table 11 separately.

From the results in Table 11, we make the following observations. First, these ratios clearly

show that the intertemporal hedging demands, for example, for the volatility risk and cen-

tral tendency risk, are indeed significant in the context of variance swap investments. In

particular, when the trader tends to be more risk averse, indicated by the increasing degree

of risk aversion from γ = 2 to γ = 40, the hedging demands for volatility vary from 0.040

to 0.088 within the investment horizon of T = 20 years, while the changes in the hedging

demands for the central tendency risk can be more substantial, ranging from 0.005 to 0.228.

The large hedging demand for the central tendency relative to the one for volatility risk is

primarily because the state variable mt is more strongly persistent than the state variable

vt as suggested by κP
m = 0.491 and κP

v = 5.340 in Table 4.

Second, the total hedging demands, as a percentage of the myopic portfolio (e.g., (Hv +

Hm)/M), are highly significant as opposed to the empirical results in Buraschi, Porchia

and Trojani (2010) in magnitude. For example, given the availability of the variance swap

contracts in Table 11, the total hedging demands generated by a trader with γ = 5 and
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2-year variance swap can be as high as 24% for the investment horizon of T = 10 years.

Moreover, the total hedging demands are even more sensitive to the degree of relative risk

aversion (γ), e.g., approaching to 31% for γ = 40. In contrast, the empirical results in Table

II of Buraschi, Porchia and Trojani (2010) show that the largest volatility hedging demand

is around 13% (15%) for γ = 6 (γ = 41) and the investment horizon of T = 10 years. This

is caused by the persistent central tendency variable mt in the present model.20

Third, for the same reason as above, the hedging demands for the central tendency risk

exhibit strong horizon effects. Specifically, considering the 2-year variance swap with γ = 5,

the hedging ratio is 0.017 for the investment horizon of T = 6 months while the hedging

ratio is 0.112 for the investment horizon of T = 5 years. In contrast, it is evident that the

hedging demands for the volatility risk show much weaker horizon effects.

Fourth and more interestingly, the hedging demands also show maturity effects. More

specifically, the shortest-term variance swap is mainly used to hedge the variance risk (vt)

while the medium-term and the longest-term variance swaps are mainly used to hedge the

central tendency risk mt. For example, given the relative risk aversion coefficient γ = 5 and

the investment horizon T = 5 years, the hedging ratio of the shortest-term variance swap for

volatility equals 0.073 as opposed to the hedging ratio of 0.051 for the central tendency. In

the meantime, we can observe from Panel I of Table 11 that the variance hedging ratio of the

shortest-term variance swap is larger than those of other two variance swaps. In contrast,

the hedging ratio of the longest-term variance swap for volatility is 0.070 in comparison

with a much higher hedging ratio of 0.157 for the central tendency. And furthermore, Panel

II of Table 11 indicates that the central tendency hedging ratios of the medium-term and

the longest-term variance swaps are much larger than the one of the shortest-term variance

swap. The reason for the above results is that, as can be seen from Figure 1, φv is much

larger than φm for short maturities while φm is much larger than φv for long maturities, and

thus short-term variance swaps are more sensitive to vt than to mt while long-term variance

swaps are more sensitive to mt than to vt.

20We also re-exam the sensitivities of the results in Table 11 by varying the parameter estimators in Table
4 and find these results are robust regarding the changes in parameters.
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Panel I: Hedging Demands for Volatility (Hv/M)

RRA
Investment Horizon (T) (Year) Myopic Portfolio

0.5 1 5 10 20 (M)

2

0.040 0.043 0.043 0.043 0.043 -15.862

0.039 0.042 0.042 0.042 0.042 75.431

0.038 0.041 0.041 0.041 0.041 -74.193

5

0.066 0.073 0.073 0.073 0.073 -6.345

0.064 0.071 0.071 0.071 0.071 30.172

0.063 0.069 0.070 0.070 0.070 -29.677

40

0.083 0.091 0.092 0.092 0.092 -0.793

0.081 0.089 0.090 0.090 0.090 3.772

0.079 0.087 0.088 0.088 0.088 -3.710

Panel II: Hedging Demands for Central Tendency (Hm/M)

2

0.005 0.010 0.030 0.032 0.033 -15.862

0.010 0.023 0.065 0.071 0.072 75.431

0.014 0.032 0.091 0.099 0.100 -74.193

5

0.008 0.018 0.051 0.057 0.057 -6.345

0.017 0.039 0.112 0.124 0.125 30.172

0.023 0.054 0.157 0.173 0.175 -29.677

40

0.009 0.022 0.066 0.074 0.075 -0.793

0.021 0.048 0.145 0.162 0.164 3.772

0.029 0.067 0.202 0.226 0.228 -3.710

Table 11: Hedging Ratios for Volatility (v) and Central Tendency (m). The hedging ratios

for volatility v and central tendency m are calculated using the hedging demands in Equation (23)

with various risk aversions of the trader: the less risk aversion (γ = 2), the moderate risk aversion

(γ = 5) and the extreme risk aversion (γ = 40). The variance swap contracts with typical time-

to-maturities are used, including a set of the 2-month, 1-year and 2-year variance swap contracts.

Each entry of the array in both panels consists of three components: the first of which is the hedging

ratio for the 2-month contract (τ1), the second one for the 1-year contract (τ2) and the third one

for the 2-year contract (τ3), respectively.
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5.4 Economic Welfare in Variance Swap Investments

Previously, we analyze the optimal allocations to the variance swap contracts when the vari-

ance market is driven by the 2- or 3- factor structural models, respectively. As demonstrated

before, the two contracts suggested by a two-factor model are insufficient to span the vari-

ance swap market and consequently the trading strategies may sub-optimally utilize the

information in the term structure of variance risk premia, for example, shown in Figure 6.

Hence it is interesting to further investigate the economic costs for the trader who invests

heavily in this market if the dynamics of the variance swap is mis-specified by the two-factor

model (e.g., the ELW model or the JP model), while the HJ model is assumed to be the true

specification for its dynamics. In particular, the investor follows the strategy w = (n1t, n2t)
>

given by Equation (43) and (44) in Egloff, Leippold and Wu (2010).

We follow the literature to evaluate the economic costs by a certainty equivalent loss

(CE) defined by: The utility cost, CE, of following the suboptimal strategy w = (n1t, n2t)
>

satisfies the equation below:

J(t,Wt(1− CE), Xt) = J (1)(t,Wt, Xt),

where J(t,Wt, Xt) is the indirect value of the portfolio choice problem in the HJ model given

by Proposition 4 with three traded variance swaps and J (1)(t,Wt, Xt) is the value function

provided in Proposition 5 below corresponding to the the suboptimal strategy w = (n1t, n2t)
>

in HJ model with two traded variance swaps. Intuitively, CE is the percentage of initial

wealth an investor is willing to pay to switch from the suboptimal strategy w to the optimal

strategy w∗. The following result presents the calculation of CE.

Proposition 3 Under the above assumptions, we have the following result:

J (1)(t,Wt, Xt) =
W 1−γ

t

1− γ
[f(t,Xt)]

γ =
W 1−γ

1− γ

[
eA(1)(t)+B

(1)
1 (t)vt+B

(1)
2 (t)mt+B

(1)
3 (t)λt

]γ

(24)

where the functions A(1)(t), B(1)(t) = (B
(1)
1 (t), B

(1)
2 (t))> and B

(1)
3 (t) satisfy the following
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equations:

dA(1)

dt
+ κP

mθP
mB

(1)
2 + αλ∞B

(1)
3 +

1− γ

γ
r = 0,

dB
(1)
1

dt
− [κP

v − (1− γ)ψvσ
2
v ]B

(1)
1 +

1

2
γσ2

v

(
B

(1)
1

)2

+
1− γ

γ
σvγvψv +

γ − 1

2
ψ2

vσ
2
v = 0,

dB
(1)
2

dt
+ κQ

v B
(1)
1 − [κP

m − (1− γ)ψmσ2
m]B

(1)
2 +

1

2
γσ2

m

(
B

(1)
2

)2

+
1− γ

γ
σmγmψm

+
γ − 1

2
ψ2

mσ2
m = 0,

dB
(1)
3

dt
− αB

(1)
3 +

γ − 1

γ
π̃q1µ

Q
v +

1

γ
EP

[(
π̃q1J

v,P + 1
)1−γ

eγ(B
(1)
1 +B

(1)
3 β0)Jv,P − 1

]
= 0,

with A(1)(T ) = B
(1)
1 (T ) = B

(1)
2 (T ) = B

(1)
3 (T ) = 0. Here ψv = n1tφv(τ1) + n2tφv(τ2) and

ψm = n1tφm(τ1) + n2tφm(τ2). π̃q1 is the jump exposure generated by the suboptimal strategy

w = (n1t, n2t)
> and represented by

π̃q1 = n1t(φv(τ1) + β0φλ(τ1)) + n2t(φv(τ2) + β0φλ(τ2)).

The utility cost, CE, of following the suboptimal strategy w = (n1t, n2t)
> satisfies the equation

below:

J(t,Wt(1− CE), Xt) = J (1)(t,Wt, Xt),

and thus

CE = 1−
[
eA(1)(t)−A(t)+(B

(1)
1 (t)−B1(t))vt+(B

(1)
2 (t)−B2(t))mt+(B

(1)
3 (t)−B3(t))λt

] γ
1−γ

Proof. See Appendix B.

Unlike the indirect value function J(t,Wt, Xt), the above result suggests that the value

function J (1)(t,Wt, Xt) depends on the maturities of the two variance swaps through the

functions A(1)(t), B
(1)
1 (t), B

(1)
2 (t) and B

(1)
3 (t). The utility cost, CE, thus depends on the two

maturities. Also, Proposition 3 suggests that the jump risk exposure π̃q1 play a crucial role
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in determining the magnitude of CE. It is then necessary to evaluate π̃q1 before numerically

assessing the utility cost of following a suboptimal strategy w.

As well-understood in the literature of portfolio choice problem in jump-diffusion model,

see, e.g., Proposition 1 of Liu, Longstaff and Pan (2003), the investor must restrict her jump

exposure π̃q1 to guarantee that her wealth remains positive when jump occurs. In particular,

π̃q1 satisfies: π̃q1 ≥ 0 since the support of the variance jump size JP
v is [0,∞). As a result,

before presenting the empirical results for CE given by Proposition 3, it is interesting to

examine whether or not the restriction on πq1 is violated by the suboptimal strategy w. The

reason for this is that, as mentioned in Egloff, Leippold and Wu (2010), an investor often

takes an extreme short position in a variance swap due to significantly negative variance

risk premium in variance swap rate, and thus this is very likely to lead to violation of the

restriction. Table 12 shows that all the jump exposures π̃q1s caused by the ELW model are

negative across the various investment horizons, suggesting that the trader is subject to the

substantial jump risk exposure by ignoring jumps in volatility.21 This table then confirms our

concern, that is, the restriction is overwhelmingly violated by the the suboptimal strategy

w, implying a 100 percent loss.

Also, it is very interesting to see whether trading stocks in addition to variance swap

portfolios can mitigate the risk of bankruptcy in the two cases of stock being tradable i)

in the ELW model and further ii) in the HJ model. Intuitively, the investor in the former

case, according to Egloff, Leippold and Wu (2010), could take short positions in stock in

order to hedge variance swaps given the market price of variance risk being more negative.

The investor hence holds more extreme positions in variance swaps, compared with those

portfolios without stock, suggesting that the values of π̃q1 turn to be more negative. In

the latter case, the investor would take another risk exposure to jumps in stock prices and

21We also examine π̃q1 in the case of n1t × n2t < 0 and find that the values of π̃q1 are negative due to the
dominance of γv. Moreover, the jump exposures caused by the JP model are still negative with the larger
absolute magnitude, and thus they are not reported. Meanwhile, we exam the jump exposure π̃q1 of both
the ELW and JP model if the AKM model is assumed to be the true model, and find that all the jump
exposures are negative but with the relatively smaller absolute values, implying the underestimation of the
unhedged jump risk. It is expected that this situation will become much more severe when the expected
jump size µP

v is much bigger than 0.001 estimated in Aı̈t-Sahalia, Karaman and Mancini (2015) and used
here.
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RRA Maturity Pair (Year)
Investment Horizon (T) (Year)

0.5 1 5 10 20 30

γ = 5
(τ1 = 2/12, τ2 = 2) -1.32 -1.35 -1.47 -1.54 -1.60 -1.61

(τ1 = 6/12, τ2 = 1) -1.50 -1.53 -1.69 -1.79 -1.86 -1.88

γ = 40
(τ1 = 2/12, τ2 = 2) -0.17 -0.17 -0.19 -0.21 -0.22 -0.22

(τ1 = 6/12, τ2 = 1) -0.19 -0.19 -0.22 -0.24 -0.26 -0.26

Table 12: Jump Exposure π̃q1 in ELW Model with Different Risk Aversions (γs). The

jump exposures π̃q1 caused by ELW Model due to model mis-specification are presented with the

two risk aversions: the moderate one (γ = 5) and the extreme one (γ = 40), given HJ Model being

the true model. The typical maturity pairs of the variance swap contracts are used, as in Figure 7,

including the pair with a long maturity gap (i.e., τ1 = 2/12, τ2 = 2) and the one with a moderate

gap (i.e., τ1 = 6/12, τ2 = 1).

the investor must take positive positions in stock to avoid bankruptcy. This indicates that

the short positions in the ELW model violates this non-bankruptcy condition. Therefore,

trading stocks in variance swap portfolios in both cases makes the situation even worse. This

indeed suggests that under this circumstance the investor is certainly subject to the risk of

bankruptcy.

As observed in our tests in Table 4, π̃q1s generated by suboptimal strategies in the ELW

model fall in the range of (−2, 0) for γ = 5 and of (−1, 0) for γ = 40. Thus, to further

evaluate the utility costs in the case where the suboptimal strategy w is feasible in the HJ

model, we intentionally and conservatively change the support [0,∞) of the variance jump

size JP
v into [0, k] (k > 0) with k = 0.5 here. This means that the variance can jump

at most k × 100 percent, and then the restriction on π̃∗q1 in the optimization problem in

Proposition 2 becomes π̃∗q1 > −1/k in order to work out the finite values of CE in (0, 1).22

In the meantime, this change does not affect the variance swap rate due to the negligible

probability P (JP
v > k). The investor, however, still incurs significant costs as reported in

Table 5.

22The current restriction π̃∗q1 ≥ 0 easily results in the bankruptcy of the investor in her trading positions,
e.g., CE → 1. This assumption is also supported by the dynamics of the CBOE Volatility Index (or VIX)
over the past twenty-five years at http://www.cboe.com/delayedquote/advchart.aspx?ticker=VIX from 1990
to 2015. Its historical close quotes reached the highest level of 80.96% on November 20, 2008, which suggests
a value of k = 0.81 in our setup.
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Panel I: Utility Costs (CEs) by ELW Model and JP Model for γ = 5

Model Maturity Pair (Year)
Investment Horizon (T) (Year)

0.5 1 5 10 20 30

ELW
(τ1 = 2/12, τ2 = 2) 0.0065 0.0129 0.0593 0.1123 0.2101 0.2967

(τ1 = 6/12, τ2 = 1) 0.0056 0.0111 0.0510 0.0973 0.1852 0.2639

JP
(τ1 = 2/12, τ2 = 2) 0.0043 0.0086 0.0423 0.0862 0.1665 0.2355

(τ1 = 6/12, τ2 = 1) 0.0036 0.0072 0.0370 0.0816 0.1647 0.2333

Panel II: Utility Costs (CEs) by ELW Model and JP Model for γ = 40

ELW
(τ1 = 2/12, τ2 = 2) 0.0054 0.0104 0.0476 0.0922 0.1764 0.2532

(τ1 = 6/12, τ2 = 1) 0.0053 0.0101 0.0466 0.0906 0.1753 0.2531

JP
(τ1 = 2/12, τ2 = 2) 0.0041 0.0078 0.0356 0.0724 0.1464 0.2124

(τ1 = 6/12, τ2 = 1) 0.0022 0.0042 0.0197 0.0455 0.1144 0.1929

Table 13: Utility Costs by Model Mis-specification. The utility costs caused by ELW and

JP Model due to model mis-specification are presented, given HJ Model being the true model,

associated with two risk aversions of the trader: the moderate risk aversion (γ = 5) and the

extreme risk aversion (γ = 40). The typical time-to-maturity pairs of the variance swap contracts

are used, as in Figure 7, including the pair with a long maturity gap (i.e., τ1 = 2/12, τ2 = 2) and

the one with a moderate gap (i.e., τ1 = 6/12, τ2 = 1).

Rooted in the results in Table 12, Table 13 report the utility costs of switching from a

suboptimal strategy w generated in the ELW or JP model to the optimal strategy w∗ gen-

erated in the HJ model. Under a two-factor variance structure, two variance swap contracts

would be sufficient to span the market. As shown in Figure 7, two typical combinations of

contracts, one with the 2-month and 2-year contracts (τ1 = 2/12 and τ2 = 2) and the other

with the 6-month and 1-year contracts (τ1 = 6/12 and τ2 = 1), are used to quantify the

utility (economic) costs that the trader has to bear due to model mis-specification. The first

panel in Table 13 reports the utility costs for the trader with γ = 5 in the various investment

horizons (T ) by assuming the rolling-over of specific variance swap contracts. Specifically,

the utility costs in two portfolios are very close and steadily increasing with the growth of T ,

suggesting that the utility costs in the ELW and JP model are less dependent on the matu-

rity gap, but more sensitive to the length of investment horizon (T ). Compared with the JP

model, the ignorance of jumps in both price and variance can make the ELW model produce
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relatively higher economic costs when the investment horizon increases from 6 months to

30 years, implying that incorporating jumps into stock price is of the first-order importance

for variance swap investments. The reason for this is that the JP model is much closer to

the HJ model in terms of fitting variance swap rate as observed in Panel B of Figure 5.

Nevertheless, the utility costs in the JP model are still significant despite the small expected

volatility jump size. This further underscores the importance of taking into account jumps

in variance.

The second panel in Table 13 further reports the utility costs for the trader with γ = 40.

Similar to the case of γ = 5, the utility costs of the contract combinations in both models

are still increasing significantly with the length of the investment horizon (T). Also, the

magnitudes of utility costs shift down overwhelmingly across all investment horizons when

the degree of risk aversion turns to be much higher from γ = 5 to γ = 40. In particular, the

utility cost of each contract combination in the JP model is persistently reduced for each

investment horizon (T), compared with those costs reported in the first panel. Similar to the

first pannel, this seems to suggest that for the extremely risk-averse trader, the incorporation

of jumps into price returns has large impact on utility costs in the context of asset allocation

to variance swap contracts, compared with those produced by the ELW model with the

moderate risk aversion (e.g., γ = 5). This is caused partially because the extremely high risk

aversion (γ = 40) enforces the trader to make much smaller investments in variance swaps

and thus the impact of variance jump components in model mis-specification is mitigated to

certain extent but remains significant.

Table 13 has demonstrated the impact of jumps in prices on utility costs caused by model

mis-specification. It is interesting to further investigate the impact of jumps on variance on

economic costs, given the small estimators of µP
v and µQ

v in Table 4 that capture jump size

in variance under the measure P and Q. Table 14 reports the utility costs caused by the

ELW model with a range of jump sizes in variance for a portfolio of the 2-month and 2-

year variance swap contracts (i.e., τ1 = 2/12, τ2 = 2).23 It clearly shows that apart from

23Since the jump size Jv,P follows an exponential distribution, we then adjust the value of Jv,P to ensure its
mean equal to µP

v under a truncated exponential distribution, namely, E[Jv,P µP
v /m0] = µP

v for Jv,P ∈ [0, 1],
by scaling up a constant µP

v /m0 with m0 = µP
v − exp(−1/µP

v )(1 + µP
v ). We also exam the utility costs
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T (Year)
Jump Size in Variance (µP

v )

0.001 0.015 0.055 0.095 0.135 0.175

0.5 0.0065 0.0067 0.0085 0.0115 0.0164 0.0229

1 0.0129 0.0142 0.0174 0.0233 0.0331 0.0468

5 0.0593 0.0756 0.0896 0.1157 0.1635 0.2387

10 0.1123 0.1484 0.1741 0.2212 0.3080 0.4406

20 0.2101 0.2772 0.3206 0.3965 0.5280 0.7022

30 0.2967 0.3859 0.4404 0.5317 0.6771 0.8403

Table 14: Utility Costs with Different Jump Sizes in Variance. The utility costs that a

trader with γ = 5 may suffer in ELW Model due to model mis-specification are reported with a

range of jump size in variance by fixing µQ
v − µP

v = 0.001. The typical time-to-maturity pair of the

variance swap contracts is used, including the 2-month and 2-year variance swap contracts (i.e.,

τ1 = 2/12, τ2 = 2). Note that for each pair of (µP
v , µQ

v ), HJ Model is re-calibrated to the empirical

mean term structure of variance swap rates reported in Table 3, which results in the RMSEs with

mean 2.31% and standard deviation 0.15%.

the investment horizon (T ), jumps in variance do have substantial impact on utility costs

when the dynamics of variance is improperly specified. That is, large jumps in variance can

result in high utility costs, which again emphasizes the importance of incorporating jumps

in variance in the context of variance swap investments.

We further investigate the sensitivity of utility costs towards parameter mis-specification

in the HJ model. Suppose that one parameter in Table 4 is mis-specified. We then use

Proposition 1 and 2 to obtain the optimal portfolio wight w = (n1t, n2t, n3t). Then, the

corresponding CE is still calculated by Proposition 3 with the following modifications:

ψv = n1tφv(τ1) + n2tφv(τ2) + n3tφv(τ3),

ψm = n1tφm(τ1) + n2tφm(τ2) + n3tφm(τ3),

π̃q1 =
3∑

i=1

nit(φv(τi) + β0φλ(τi)).

(25)

In the literature, the CE caused by parameter mis-specification is much smaller than one

caused by the ELW and JP model for a portfolio of the 6-month and 1-year variance swap contracts (i.e.,
τ1 = 6/12, τ2 = 1), and obtain the consistent results with those reported in Table 13 and 14.
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caused by model mis-specification (see, for example, Table 5 and Table 6 in Zhou and Zhu

(2012) in a pure-diffusion model). But in variance swap investments, it may be different

because π̃q1 can be easily become negative for incorrect parameters, as implied by the pre-

ceding analysis primarily due to the investor’s extreme positions in variance swaps.24 Table

15 confirms our concern. In this table, we take 5.34 as the true value of κP
v . It clearly shows

that the trader may be easily bankrupt when the parameter κP
v is underestimated, and may

suffer utility costs when κP
v is overestimated. Intuitively, when κP

v is underestimated by a

standard deviation of 0.4, for example, κP
v = 4.94, the state variable vt is more persistent

in the wrong model with κP
v = 4.94 than in the true model with κP

v = 5.34. Then the

investor over hedges the risk stemming from vt in the wrong model than she would do in the

true model.25 In other words, the investor takes more extreme positions in the wrong model

than in the true model, leading to bankruptcy in the true model. Conversely, when κP
v is

overestimated, the investor takes less extreme positions in the wrong model than in the true

model. As a result, this make the suboptimal strategy less likely to go bankrupt in the true

model. In the meantime, the utility costs tend to be large when the investment horizon T

increases from T = 6 months to T = 20 years. Recall in the previous section that the hedging

ratios for volatility are significant in the context of variance swap investments. These results

then suggest that the proper estimation strategy of parameters (e.g., κP
v ) that capture the

dynamics of variance, may significantly mitigate the impact of parameter mis-specification

so that the trader may suffer less utility costs when entering into the volatility market.

6 Conclusion

In the present paper, we propose a tractable three-factor model to extend the existing two-

factor term structure models for variance swap rates. The empirical results document that

this new model outperforms the two-factor jump-diffusion models widely studied in the

24We mainly report the utility costs by mis-specifying κP
v , given both its relative large magnitude and

the importance of measuring the mean-reversion speed for the instantaneous variance rate, after varying
the estimators of the parameters reported in Table 4. To conduct the analysis, we restrict π̃∗q1 ≥ 0 in the
optimization problem in Proposition 2.

25We test this by varying the value κP
v from 4.14 to 6.54, including the true estimator of 5.34, and find

the value of B1(t) increaases monotonically from −0.1093 to −0.0664.
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RRA T 4.14 4.54 4.94 5.34 5.74 6.14 6.54

γ = 2

0.5 - - - 0 0.0017 0.0031 0.0041

1.0 - - - 0 0.0035 0.0061 0.0081

5.0 - - - 0 0.0179 0.0309 0.0404

10.0 - - - 0 0.0341 0.0591 0.0771

20.0 - - - 0 0.0643 0.1113 0.1445

γ = 5

0.5 - - - 0 0.0007 0.0013 0.0017

1.0 - - - 0 0.0015 0.0026 0.0035

5.0 - - - 0 0.0090 0.0149 0.0192

10.0 - - - 0 0.0167 0.0281 0.0364

20.0 - - - 0 0.0299 0.0516 0.0674

γ = 40

0.5 - - - 0 0.0001 0.0002 0.0002

1.0 - - - 0 0.0002 0.0003 0.0005

5.0 - - - 0 0.0014 0.0022 0.0028

10.0 - - - 0 0.0025 0.0041 0.0053

20.0 - - - 0 0.0043 0.0073 0.0096

Table 15: Utility Costs by Mis-specifying κP
v in HJ Model. The utility costs by mis-

specifying κP
v in HJ Model are calculated using the notation in Equation (25) with various risk

aversions of the trader: the less risk aversion (γ = 2), the moderate risk aversion (γ = 5) and the

extreme risk aversion (γ = 40). The variance swap contracts with typical time-to-maturities are

used, including a set of the 2-month (τ1), 1-year (τ2) and 2-year (τ3) variance swap contracts. The

bold number in the top row is the true estimator for κP
v reported in Table 4. The symbol of “-”

denotes the bankruptcy of the trader’s trading position due to the negative value of π̃q1.
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literature over the out-of-sample period in terms of pricing variance swaps across all time-to-

maturities and predicting stock returns with various time horizons ranging from one month

to two years. And more importantly, we find that variance swap rates have even more

predictive power for predicting market returns.

We further explicitly solve the optimal investment problem in variance swaps, and find

that both jumps in stock price and variance are important for variance swap investments,

which leads to a “short-long-short” trading strategy. This further enhances the understand-

ing of the optimal trading strategies in the variance swap market in the literature. Also,

the trader may suffer from substantial economic losses caused by both model and parameter

mis-specification.
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Appendix A-C

A Proof of Proposition 1 and Proposition 2

For an investor with the CRRA utility, we apply Proposition 1 and 2 in Hong and Jin (2018) for

the proofs by setting η = 0. The state variables in our model are vt, mt and λt. Note that in this

case

b− r13 =




φv(τ1)σvγvvt + φm(τ1)σmγmmt − (φv(τ1) + β0φλ(τ1))µ
Q
v λt

φv(τ2)σvγvvt + φm(τ2)σmγmmt − (φv(τ2) + β0φλ(τ2))µ
Q
v λt

φv(τ3)σvγvvt + φm(τ3)σmγmmt − (φv(τ3) + β0φλ(τ3))µ
Q
v λt




= Σ




γv
√

vt

γm
√

mt

−µQ
v λt




,

where Σ is given by (17) in Section 2.2. Hence

θ =




θb
1

θb
2

θq
1




= Σ−1(b− r13 + ΣqE
P [Jv,P

t ]λt) =




γv
√

vt

γm
√

mt

−(EQ[Jv,P
t ]− EP [Jv,P

t ])λt




.

By noticing that the state variable λt is a pure-jump process, applying Proposition 1 of Hong and

Jin (2018) gives the following indirect value function:

J(t,Wt, Xt) =
W 1−γ

t

1− γ
[f(t,Xt)]γ =

W 1−γ

1− γ

[
eA(t)+B1(t)vt+B2(t)mt+B3(t)λt

]γ
(26)

where the functions A(t), B(t) = (B1(t), B2(t))> and B3(t) satisfy the following equations:

dA

dt
+

(
k +

1− γ

γ
g0

)>
B> +

1
2
B[h0 + (1− γ)l0]B>

+
1− γ

2γ2
H0 +

1− γ

γ
δ0 = 0,

dB

dt
+

(
−K +

1− γ

γ
g1

)>
B> +

1
2
B[h1 + (1− γ)l1]B>

+
1− γ

2γ2
H1 +

1− γ

γ
δ1 = 0

dB3

dt
− αB3 + (γ − 1)π̃∗q1E

Q[Jv,Q] + EP
[(

π̃∗q1J
v,P + 1

)1−γ
eγ(B1+B3β0)Jv,P − 1

]
= 0,
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Furthermore, by noticing that

σx(Xt) =




σv
√

vt 0

0 σm
√

mt


 ,

we can get the following parameters: k = (0, κP
mθP

m)>, h111 = (σ2
v , 0), h112 = h121 = (0, 0),

h122 = (0, σ2
m), δ0 = r, δ1 = 0, H0 = 0, H1 = (γ2

v , γ2
m), g0 = 0, l0 = 0, l1 = 0.

K =




κP
v −κQ

v

0 κP
m


 , g1 =




σvγv 0

0 σmγm


 ,

Proposition 1 and Proposition 2 except (20) will follow from results in Proposition 1 and Proposition

2 of Hong and Jin (2018). We now turn to the proof of (20) in Proposition 2. From the conditions

of (20), it is easy to see that π̃∗b1 < 0 and π̃∗b2 < 0. To prove that π̃∗q1 = 0, we let

f(π̃q1) = −π̃q1E
Q[Jv,Q] +

1
1− γ

EP
[(

1 + π̃q1J
v,P

)1−γ
eγ(B1+B3β0)Jv,P − 1

]
.

Then, we have

df(π̃q1)
dπ̃q1

= −EQ[Jv,Q] + EP
[(

1 + π̃q1J
v,P

)−γ
Jv,P eγ(B1+B3β0)Jv,P

]
.

Furthermore, by noticing that π̃q1 ≥ 0, B1(t) < 0 and B3(t) < 0, we obtain

EP
[(

1 + π̃q1J
v,P

)−γ
Jv,P eγ(B1+B3β0)Jv,P

]
≤ EP

[
Jv,P

]
,

implying that df(π̃q1)
dπ̃q1

< 0 since EQ[Jv,Q] > EP [Jv,P ]. Consequently, π̃∗q1 = 0. ¥

B Proof of Proposition 3

We assume that the model ”SV2F-PJ-VJ” in Aı̈t-Sahalia, Karaman and Mancini (2015) is the true

model and then evaluate the utility costs of suboptimal strategies based on the models ”SV2F”

and ”SV2F-PJ”, respectively. The indirect value function J of the true model ”SV2F-PJ-VJ” is

given in Proposition 3. We now first derive the indirect utility corresponding to the model ”SV2F”.
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Suppose that the two variance swaps have maturities of τ1 and τ2. Let n1t and n2t denote the

optimal portfolio strategy in the model ”SV2F” which are given by (43) and (44) in Proposition

4 of Egloff, Leippold and Wu (2010). Consider the corresponding strategy w = (n1t, n2t)> in the

the model ”SV2F-PJ-VJ” and let J (1) denote its indirect utility. Then J (1) satisfies the the partial

differential equation below

J
(1)
t + LJ (1) = 0,

where LJ (1) is the infinitesimal generator of J (1). Thus, we have

0 = J
(1)
t +

1
2
W 2w>Σ(1)

b (Σ(1)
b )>wJ

(1)
WW + W (w>(b− r12) + r)J (1)

W

+ (bx)>J
(1)
X + α(λ∞ − λt)J

(1)
λ + Ww>Σ(1)

b σx>J
(1)
WX +

1
2
Tr(σxσx>J

(1)

XX>)

+ λtE
P

[
J (1)(W

(
π̃q1J

v,P + 1
)
, vt + Jv,P ,mt, λt + β0J

v,P )− J (1)(W, vt,mt, λt)
]
, (27)

where Xt = (vt,mt)>,

π̃q1 = n1t(φv(τ1) + β0φλ(τ1)) + n2t(φv(τ2) + β0φλ(τ2)),

Σ(1)
b =




φv(τ1)σv
√

vt φm(τ1)σm
√

mt

φv(τ2)σv
√

vt φm(τ2)σm
√

mt




b− r12 =




φv(τ1)σvγvvt + φm(τ1)σmγmmt − (φv(τ1) + β0φλ(τ1))µ
Q
v λt

φv(τ2)σvγvvt + φm(τ2)σmγmmt − (φv(τ2) + β0φλ(τ2))µ
Q
v λt


 .

Note that according to the formulas (43) and (44) in Egloff, Leippold and Wu (2010)the jump

exposure π̃q1 is deterministic. We guess the following indirect utility function:

J (1)(t,Wt, Xt) =
W 1−γ

t

1− γ
[f (1)(t,Xt)]γ =

W 1−γ

1− γ

[
eA(1)(t)+B

(1)
1 (t)vt+B

(1)
2 (t)mt+B

(1)
3 (t)λt

]γ

(28)

By using the same method as in the proof of Proposition 1, substituting the above function J (1)

into the equation (27) gives the ODEs for the functions A(1)(t), B(1)(t) = (B(1)
1 (t), B(1)

2 (t))> and

B
(1)
3 (t) in Proposition 3. Furthermore, the utility cost, CE, of following the suboptimal strategy
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w = (n1t, n2t)> is obtained by applying the formulas of J(t,Wt(1 − CE), Xt) and J (1)(t,Wt, Xt).

¥

C MCMC Estimation for Variance Swap Rates

C.1 Model Discretization

we assume that the stock price, volatility and its long-run mean under a risk-neutral measure Q

are given as follows:

dSt

St−
= (r − δ)dt +

√
vtdBQ

1t + (exp(Js,Q
t )− 1)dNt − gQλtdt,

dvt = κQ
v (mt − vt)dt + σv

√
vtdBQ

2t + Jv,Q
t dNt

dmt = κQ
m(θQ

m −mt)dt + σm
√

mtdBQ
3t,

(29)

where corr(dBQ
1t, dBQ

2t) = ρdt and gQ = eµQ
j +σ2

j /2 − 1. We specify the market price of risks for the

Brownian motions by γi (i = s, v, m) in the following way:

Λ>t = [γs

√
(1− ρ2)vt, γv

√
vt, γm

√
mt],

and then, under the objective probability P , the stock price and variance dynamics can be repre-

sented as follows:

dSt

St−
= µtdt +

√
vtdBP

1t + (exp(Js,P
t )− 1)dNt − gP λtdt,

dvt = κP
v (

κQ
v

κP
v

mt − vt)dt + σv
√

vtdBP
2t + Jv,P

t dNt

dmt = κP
m(θP

m −mt)dt + σm
√

mtdBP
3t,

(30)

where µt = rf − δ + γs(1 − ρ2)vt + γvρvt + (gP − gQ)λt, κP
v = κQ

v − γvσv, κP
m = κQ

m − γmσm,

gP = eµP
j +σ2

j /2 − 1 and θP
m = θQ

mκQ
m/κP

m, while rf is the risk free rate, and δ is the dividend yield,

both taken to be constant for simplicity, and corr(dBP
1t, dBP

2t) = ρdt. The correlation parameter ρ

is used to capture the so-called leverage effect between stock returns and variance changes. The

two Brownian motions, BQ
3t, B

P
3t, are uncorrelated with other Brownian motions.

We then assume that the jump intensity λt of the counting process Nt under the measure Q
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follows a self-exciting process as follows:

dλt = α(λ∞ − λt)dt + β0J
v,Q
t dNt, (31)

where α, λ∞ and β0 > 0. Accordingly, its dynamics under the measure P can be represented as

dλt = α(λ∞ − λt)dt + β0J
v,P
t dNt. (32)

Now let Yt = ln(St) be the natural log of the stock price, St at time t > 0. Applying an Euler

discretization to the stock price in (30) equally with a time interval 4:

Yt+1 − Yt = (r + γs(1− ρ2)vt + γvρvt − (eµQ
j +

σ2
j
2 − 1)λt − 1

2
vt)4+

√
vt4BP

1,t + Js,P
t+14Nt;

vt+1 − vt = [κP
v (mt − vt) + mtγvσv]4+ σv

√
vt4BP

2,t + Jv,P
t+14Nt;

mt+1 −mt = κP
m(θP

m −mt)4+ σm
√

mt4BP
3,t;

λt − λt−1 = α(λ∞ − λt−1)4+ β0J
v,P
t 4Nt−1,

(33)

where r = rf − δ and 4BP
i,t = BP

i,t+1 − BP
i,t (i = 1, 2, 3), and so 4BP

i,t ∼ N(0,4), and 4Nt =

Nt+1 −Nt and the latent occurrence of jumps in both price and volatility on day are expressed as

4Nt ∼ Bernoulli(λt,4), (34)

suggesting prob(4Nt = 1) = λt4. In particular, the discretized jump intensity, λt, is conditionally

deterministic and thus possesses a structure that is analogous to the structure prescribed by a

GARCH model for latent volatility, with the lagged jump occurrences playing a similar role to the

lagged (squared) returns in a GARCH model. Without a jump in either price or volatility, λt will

revert back to its long run, or steady-state value λ0. Assuming stationarity of the (discretized)

jump intensity process, it is known that its long-term run under the time interval of 4 is given by

λ0 =
α

α− β0µP
v

λ∞, (35)
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which implies that 0 < β0 max(µP
v , µP

Q) < α and β0 > 0 and λ∞ > 0.26

We further assume that variance swap rates are collected with measurement errors. Let n

denote the number of contract maturities. We may obtain n observation equations:

V St,τi = V SM
t,τi

(vt,mt, λt;Θ) + εt,τi , (36)

where V St,τi,i∈{1,2,··· ,n} presents the time-t market quote of a variance swap rate with time-to-

maturity τ , and V SM
t,τi

(vt,mt, λt;Θ) is the theoretical rate for this variance swap contract, condi-

tional on the latten variables vt,mt, λt and the model parameters Θ. The observation errors, εt,τi ,

are assumed to follow a normal distribution with zero mean and a variance of σε,i, independent of

the state process and across time, e.g.,27

εt,τ = (εt,τ1 , · · · , εt,τn) ∼ N(0,σ2
ε In), (37)

where σε = (σε,1, · · · , σε,n) and In is an n × n identity matrix. As a result, the joint likelihood of

the observation errors is represented by an n-dimensional normal density function, while the pricing

error is defined as the model-based VS rate minus VS rate in volatility percentage units in terms

of the root mean-squared errors (RMSEs):

RMSE(Θ; i) =

√∑T
t=1(

√
EQ[V St,τi |Θ]× 100−√

V St,τi × 100])2

T
, (38)

In sum, we have observations (Yt, V St,τ )T
t=0; latent variables including variances (vt)T

t=0, the

central-tendency (mt)T
t=0, jump times (Nt)T

t=1, price/volatility jump sizes (Js, Jv)T
t=1, the jump

intensity (λt)T
t=1; and parameters:

Θ = {(κP
v , σv, ρ, µP

v , κP
m, θP

m, σm, µP
j , σj), (µ

Q
j , µQ

v ), (γs, γv, γm), (α, λ∞, β0), (ρε, σε)} (39)

26Alternatively, it can be derived from the final equation in (33):

λ0 = E[λt] = E[λt−1] =
1
4E[4Nt−1]

which implies αλ∞ − (α− β0µ
P
v )λ0 = 0.

27Aı̈t-Sahalia, Karaman and Mancini (2015) document that the correlations of the observation errors in
variance swap prices are close to zero across maturities.
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where the first group of parameters is unique to the physical measure P , the second one is unique

to the risk-neutral measure Q, the third one represents the market prices of return, volatility and

the central tendency, the fourth one reports all parameters involving the jump intensity process,

and the final one presents variance swap pricing errors.

C.2 Prior Distributions of Model Parameters

To simplify notation, we denote the price returns as Y = {Yt}T
t=0, the variance swap rates as

VS = {V St,τ}T
t=0, the volatility variables as V = {vt}T

t=0, the central tendency as M = {mt}T
t=0,

the price/volatility jump times/sizes as Js = {Nt, J
s}T

t=1 and Jv = {Nt, J
v}T

t=1 (so J = {Js,Jv})
and N = {Nt}T

t=1, the jump intensity as λ = {λt}T
t=1.

Given the assumed dynamics of variance swap rates, we have

P (VS|Y,V,M,J,Θ) =
T−1∏

t=0

exp(−1
2ε

′
t+1,τΣ

−1εt+1,τ )

(2π)
n
2 |Σ| 12

(40)

where Σ = σ2
ε In and εt+1,τ = V St+1,τ − V SM

t+1,τ . Also, the full-information likelihood of the price

returns is a product of bivariate normals as follows:

P (Y|V,M,J,Θ) =
T−1∏

t=0

exp(− (εy
t+1)2−2ρεy

t+1εv
t+1+(εv

t+1)2

2(1−ρ2)
)

2πσvvt4
√

1− ρ2
, (41)

where

εy
t+1 = (Yt+1 − Yt − (r + γs(1− ρ2)vt + γvρvt − (eµQ

j +
σ2

j
2 − 1)λt − 1

2
vt)4− Js,P

t+14Nt)/
√

vt4

and

εv
t+1 = (vt+1 − vt − κP

v (mt − vt)4−mtγvσv4− Jv,P
t+14Nt)/(σv

√
vt4).

We then consider the priors for parameters of all four models. To simplify the simulation

procedure, we use standard conjugate priors as follows:

• Priors for All Models. We consider the following priors distributions:

– Parameters under P: κP
v ∼ N(0, 1)1κP

v >0, σv ∼ 1
σv

, κP
m ∼ N(0, 1)1κP

m>0, θP
m ∼

N(0, 1)1θP
m>0, σm ∼ 1

σm
, ρ ∼ Uniform(0,1), and σε ∼ 1

σε
;
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– Parameters under Q: γs ∼ N(0, 1), γv ∼ N(0, 1), γm ∼ N(0, 1).

• Specific Priors for Jumps in AKM, JP and HJ Model. We further consider the

following specific priors distributions:

– Parameters under P: µP
j ∼ N(0, 1), σj ∼ 1

σj
, µP

v ∼ 1
µP

v
;

– Parameters under Q: µQ
j ∼ N(0, 1), µQ

v ∼ N(0, 1)1
µQ

v >0
.

Moreover, the prior for jump intensity (λt) in AKM and JP Model is specified as follows:

– Parameters for λ: λ0 ∼ N(0, 5)1λ0>0 and λ1 ∼ N(0, 5)1λ1>0,

while it is given in HJ Model as follows:

– Parameters for λ: α ∼ Uniform(0, 1/4), β0 ∼ N(0, 5)1β0>0 and λ∞ ∼ N(0, 5)1λ∞>0.

C.3 Posterior Distributions of Model Parameters and Variables

This section discusses the posterior distributions of model parameters and latent variables for all the

four models. Compared with the case of stock prices only, the posterior likelihood in the presence

of volatility derivatives prices has additional component of the likelihood of variance swap pricing

errors. In particular, those parameters that appear in the variance swap pricing formula usually

do not have known posterior distributions. We follow the method proposed by Damine, Wakefield

and Walker (1999) (hereafter DWW) and adopted in Yu, Li and Wells (2011)) to update them.

Otherwise, we may follow the standard way to draw samples from the posterior distributions.

More specifically, we consider the posterior distributions of model parameters and state variables

in ELW AKM, JP and HJ Model. By setting Js = Jv = 0 and λ = 0, we then conduct the MCMC

estimation in ELW model, while JP Model can be estimated by setting Jv = 0.

C.3.1 MCMC Methods for Diffusion Components

We first derive the posteriors for all the relevant parameters.

• Posterior for κP
v . Conditional on the prior κP

v ∼ N(0, 1), the posterior of κP
v can be

expressed as follows:

p(κP
v |Y,VS,V,M,J,Θ) ∝ p(VS|V,M,J,Θ)× p(Y|V,M,J,Θ)× p(κP

v ), (42)
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where

p(VS|Y,V,M,J,Θ) =
T−1∏

t=0

exp(−1
2ε

′
t+1,τΣ

−1εt+1,τ )

(2π)
n
2 |Σ| 12

p(Y|V,M,J,Θ)× p(κP
v ) ∝

T−1∏

t=0

e
− 1

2(1−ρ2)
(

C2
t+1

vt4 − 2ρCt+1(Dt+1−κP
v (mt−vt)4)

vtσv4 +
(Dt+1−κP

v (mt−vt)4)2

σ2
vvt4

)

2πσvvt4
√

1− ρ2
× e−

(κP
v )2

2 1κP
v >0√

2π

∝ N(
S

W
,

1
W

)1κP
v >0,

(43)

with Σ = σ2
ε In and so we have

p(κP
v |Y,VS,V,M,J,Θ) ∝

T−1∏

t=0

exp(−1
2ε

′
t+1,τΣ

−1εt+1,τ )

(2π)
n
2 |Σ| 12︸ ︷︷ ︸

`(κP
v )

×N(
S

W
,

1
W

)1κP
v >0, (44)

where

Ct+1 = Yt+1 − Yt − (r + γs(1− ρ2)vt + γvρvt − (eµQ
j +

σ2
j
2 − 1)λt − 1

2
vt)4− Js,P

t+14Nt;

Dt+1 = vt+1 − vt −mtγvσv4− Jv,P
t+14Nt;

S =
1

σv(1− ρ2)

T−1∑

t=0

(mt − vt)
vt

(
Dt+1

σv
− ρCt+1)

W = 1 +
4

σ2
v(1− ρ2)

T−1∑

t=0

(mt − vt)2

vt
;

(45)

Conditional on the g-th sample κP,g
v , we follow the DWW method to draw a sample for κP,g+1

v

as follows:

1. Draw κP,∗
v from N( S

W , 1
W )1κP

v >0;

2. Draw an auxiliary variable u from Uniform(0, `(κP,g
v ));

3. Accept κP,g+1
v = κP,∗

v if `(κP,∗
v ) > u, and otherwise set κP,g+1

v = κP,g
v .

• Posterior for σv. Conditional on the prior σv ∼ 1/σv, the posterior of σv can be expressed

as follows:

p(σv|Y,VS,V,M,J,Θ) ∝ p(VS|V,M,J,Θ)× p(Y|V,M,J,Θ)× p(σv), (46)
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where

p(Y|V,M,J,Θ)× p(σv) ∝
T−1∏

t=0

e
− 1

2(1−ρ2)
(C2

t+1−2ρCt+1(
Dt+1

σv
−mtγv

√4√
vt

)+(
Dt+1

σv
−mtγv

√4√
vt

)2)

2πσvvt4
√

1− ρ2
× 1

σv

∝ (
1
σ2

v

)
T
2

+ 1
2 × exp(−

∑T−1
t=0 D2

t+1

2(1− ρ2)
1
σ2

v

+
ρ

∑T−1
t=0 Ct+1Dt+1 + γv

√4∑T−1
t=0

Dt+1mt√
vt

1− ρ2

1
σv

),

(47)

where

Ct+1 =
Yt+1 − Yt − (r + γs(1− ρ2)vt + γvρvt − (eµQ

j +
σ2

j
2 − 1)λt − 1

2vt)4− Js,P
t+44Nt√

vt4
;

Dt+1 =
vt+1 − vt − κP

v (mt − vt)4− Jv,P
t+44Nt√

vt4
.

(48)

Define

`(σv) ,
T−1∏

t=0

exp(−1
2ε

′
t+1,τΣ

−1εt+1,τ )

(2π)
n
2 |Σ| 12

× exp(
ρ

∑T−1
t=0 Ct+1Dt+1 + γv

√4∑T−1
t=0

Dt+1mt√
vt

1− ρ2

1
σv

).

We then have

p(σv|Y,VS,V,M,J,Θ) ∝ `(σv)× (
1
σ2

v

)
T
2

+ 1
2 × exp(−

∑T−1
t=0 D2

t+1

2(1− ρ2)
1
σ2

v

) = `(σv)× f(
1
σ2

v

),

where f(x) ∼ Gamma(x; a, b) with

a =
T

2
+

3
2
;

b = (
∑T

t=0 D2
t+1

2(1− ρ2)
)−1;

(49)

Given the sample of σg
v , the sample of σg+1

v is drawn as follows:

1. Draw σ∗v from Gamma( 1
σ2

v
; a, b);

2. Draw an auxiliary variable u from Uniform(0, `(σg
v));

3. Accept σg+1
v = σ∗v if `(σ∗v) > u, and otherwise set σg+1

v = σg
v .

• Posterior for ρ. Conditional on the prior ρ ∼ Uniform(0, 1), the posterior of ρ can be
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expressed as follows:

p(ρ|Y,V,M,J,Θ) ∝ p(Y|V,M,J,Θ)× p(ρ),

∝
T−1∏

t=0

e
− 1

2(1−ρ2)
(
(Ct+1−ρ(γv−γsρ)vt4)2

vt4 −2ρ
(Ct+1−ρ(γv−γsρ)vt4)Dt+1

σvvt4 +
D2

t+1

σ2
vvt4

)

2πσvvt4
√

1− ρ2
× 1

∝ (1− ρ2)−
T−1

2 exp(− 1
2(1− ρ2)

T−1∑

t=0

1
vt4(C2

t+1 +
D2

t+1

σ2
v

))

× exp(−ρ2(γv − γsρ)
2(1− ρ2)

[(γv − γsρ)
T−1∑

t=0

vt4+ 2
T−1∑

t=0

Dt+1

σv
])

× exp(
ρ

(1− ρ2)
[(γv − γsρ)

T−1∑

t=0

Ct+1 +
T−1∑

t=0

Ct+1Dt+1

σvvt4 ])

, `(ρ)

(50)

where

Ct+1 = Yt+1 − Yt − (r + γsvt − (eµQ
j +

σ2
j
2 − 1)λt − 1

2
vt)4− Js,P

t+44Nt;

Dt+1 = vt+1 − vt − κP
v (mt − vt)4−mtγvσv4− Jv,P

t+44Nt.

We then follow the approach used in Yu, Li and Wells (2011) to draw the sample for ρ. Given

the sample of ρg, the sample of ρg+1
v is drawn as follows:

1. Draw 1
2 log(1+ρ∗

1−ρ∗ ) from N(1
2 log(1+ρr

1−ρr
), 1

T−3) to generate a sample ρ∗, where ρr = Corr(C,D),

with C = {Ct+1}T−1
t=0 ,D = {Dt+1}T−1

t=0 , and define z(ρr) = 1
2 log(1+ρr

1−ρr
) which is the for-

mula of Fisher’s Z transformation28;

2. Accept ρg+1 = ρ∗ with probability α(ρg, ρ∗), where

α(ρg, ρ∗) = min(
`(ρ∗)
`(ρg)

×
exp(− (z(ρg)−z(ρr))2

2
T−3

)

exp(− (z(ρ∗)−z(ρr))2
2

T−3

)
, 1) (51)

Yu, Li and Wells (2011) suggest that this approach converges more quickly than the one

without the transformation by removing the negative skewness of the sampling distribution

for Pearson’s correlation ρ.

28The Fisher transformation implies that z(ρ) is approximately normally distributed with mean 1
2 log( 1+ρ

1−ρ )
and variance 1

T−3 , where T indicates the observation number.
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• Posterior for κP
m. Conditional on the prior κP

m ∼ N(0, 1)1κP
m>0, the posterior of κP

m can be

expressed as follows:

p(κP
m|VS,V,M,J,Θ) ∝ p(VS|V,M,J,Θ)× p(M|V,J,Θ)× p(κP

v ), (52)

where

p(VS|Y,V,M,J,Θ) ∝
T−1∏

t=0

exp(−1
2ε

′
t+1,τΣ

−1εt+1,τ )

(2π)
n
2 |Σ| 12

, `(κP
m)

p(M|V,J,Θ)× p(κP
m) ∝

T−1∏

t=0

1√
2πmt4σm

exp(−(Et+1 − κP
m(θP

m −mt)4))2

2σ2
mmt4 )× e−

(κP
m)2

2 1κP
m>0√

2π

∝ N(
S

W
,

1
W

)1κP
m>0,

(53)

where

Et+1 = mt+1 −mt;

S =
1

σ2
m

T−1∑

t=0

(θP
m −mt)Et+1

mt

W = 1 +
4
σ2

m

T−1∑

t=0

(θP
m −mt)2

mt
;

(54)

and so the posterior for κP
m is given by

p(κP
m|VS,V,M,J,Θ) ∝ `(κP

m)×N(
S

W
,

1
W

)1κP
m>0. (55)

We follow the DWW method to draw sample for κP,g+1
m as follows, conditional on the g-th

sample κP,g
m :

1. Draw κP,∗
m from N( S

W , 1
W )1κP

m>0;

2. Draw an auxiliary variable u from Uniform(0, `(κP,g
m ));

3. Accept κP,g+1
m = κP,∗

m if `(κP,∗
m ) > u, and otherwise set κP,g+1

m = κP,g
m .

• Posterior for θP
m. Conditional on the prior θP

m ∼ N(0, 1)1θP
m>0, the posterior of θP

m can be
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expressed as follows:

p(θP
m|VS,V,M,J,Θ) ∝ p(VS|V,M,J,Θ)× p(M|V,J,Θ)× p(κP

v ), (56)

where

p(VS|Y,V,M,J,Θ) ∝
T−1∏

t=0

exp(−1
2ε

′
t+1,τΣ

−1εt+1,τ )

(2π)
n
2 |Σ| 12

, `(θP
m)

p(M|V,J,Θ)× p(θP
m) ∝

T−1∏

t=0

1√
2πmt4σm

exp(−(Et+1 − κP
mθP

m4)2

2σ2
mmt4 )× e−

(θP
m)2

2 1θP
m>0√

2π

∝ N(
S

W
,

1
W

)1θP
m>0,

(57)

where

Et+1 = mt+1 − (1− κP
m4)mt;

S =
κP

m

σ2
m

T−1∑

t=0

Et+1

mt

W = 1 +
(κP

m)24
σ2

m

T−1∑

t=0

1
mt

;

(58)

and so the posterior for θP
m is given by

p(θP
m|VS,V,M,J,Θ) ∝ `(θP

m)×N(
S

W
,

1
W

)1θP
m>0. (59)

We follow the DWW method to draw sample for θP,g+1
m as follows, conditional on the g-th

sample θP,g
m :

1. Draw θP,∗
m from N( S

W , 1
W )1θP

m>0;

2. Draw an auxiliary variable u from Uniform(0, `(θP,g
m ));

3. Accept θP,g+1
m = θP,∗

m if `(θP,∗
m ) > u, and otherwise set θP,g+1

m = θP,g
m .

• Posterior for σm. Conditional on the prior σm ∼ 1/σm, the posterior of σm can be expressed
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as follows:

p(σm|VS,V,M,J,Θ) ∝ p(VS|V,M,J,Θ)× p(M|V,J,Θ)× p(σm), (60)

where

p(VS|Y,V,M,J,Θ) =
T−1∏

t=0

exp(−1
2ε

′
t+1,τΣ

−1εt+1,τ )

(2π)
n
2 |Σ| 12

, `(σm)

p(M|V,J,Θ)× p(σm) ∝
T−1∏

t=0

1√
2πmt4σm

exp(− (Et+1)2

2σ2
mmt4)× 1

σm

∝ (
1

σ2
m

)
T
2

+ 1
2 exp(− 1

24
T−1∑

t=0

E2
t+1

mt
× 1

σ2
m

),

(61)

where

Et+1 = mt+1 −mt − κP
m(θP

m −mt)4.

We then have

p(σm|VS,V,MJ, ,Θ) ∝ `(σm)× (
1

σ2
m

)
T
2

+ 1
2 exp(− 1

24
T−1∑

t=0

E2
t+1

mt
× 1

σ2
m

) = `(σm)× f(
1

σ2
m

),

where f(x) ∼ Gamma(x; a, b) with

a =
T

2
+

3
2
;

b = (
1

24
T−1∑

t=0

E2
t+1

mt
)−1;

We now follow the DWW method to draw the sample for σm. Given the sample of σg
m, the

sample of σg+1
m is drawn as follows:

1. Draw 1/(σ∗m)2 from Gamma( 1
σ2

m
; a, b) to generate a sample σ∗m;

2. Draw an auxiliary variable u from Uniform(0, `(σg
m));

3. Accept σg+1
m = σ∗m if `(σ∗m) > u, and otherwise set σg+1

m = σg
m.

• Posterior for γs. Conditional on the prior γs ∼ N(0, 1), the posterior of γs can be expressed
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as follows:

p(γs|Y,V,M,J,Θ) ∝ p(Y|V,M,J,Θ)× p(γs), (62)

where

p(Y|V,M,J,Θ)× p(γs) ∝

T−1∏

t=0

e
− 1

2(1−ρ2)
(
(Ct+1−(1−ρ2)vt4γs)2

vt4 − 2ρ(Ct+1−(1−ρ2)vt4γs)Dt+1
vtσv4 +

D2
t+1

σ2
vvt4

)

2πσvvt4
√

1− ρ2
× e−

γ2
s
2

∝
T−1∏

t=0

e−
1
2
[(1−ρ2)vt4γ2

s−2(Ct+1− ρ
σv

Dt+1)γs] × e−
γ2
s
2

∝ N(
S

W
,

1
W

),

(63)

where

Ct+1 = Yt+1 − Yt − (r + γvρvt − 1
2
vt − (eµQ

j +σ2
j /2 − 1)λt)4− Js,P

t+14Nt;

Dt+1 = vt+1 − vt − κP
v (mt − vt)4−mtγvσv4− Jv,P

t+14Nt;

S =
T−1∑

t=0

(Ct+1 − ρ

σv
Dt+1)

W = 1 + (1− ρ2)4
T−1∑

t=0

vt;

(64)

• Posterior for γv. Conditional on the prior γv ∼ N(0, 1), the posterior of γv can be expressed

as follows:

p(γv|Y,VS,V,M,J,Θ) ∝ p(VS|Y,V,M,J,Θ)× p(Y|V,M,J,Θ)× p(γv), (65)
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where

p(VS|Y,V,M,J,Θ)
T−1∏

t=0

exp(−1
2ε

′
t+1,τΣ

−1εt+1,τ )

(2π)
n
2 |Σ| 12

, `(γv)

p(Y|V,M,J,Θ)× p(γv) ∝

T−1∏

t=0

e
− 1

2(1−ρ2)
(
(Ct+1−ρvt4γv)2

vt4 − 2ρ(Ct+1−ρvt4γv)(Dt+1−mtγvσv4)

vtσv4 +
(Dt+1−mtγvσv4)2

σ2
vvt4

)

2πσvvt4
√

1− ρ2
× e−

γ2
v
2

∝
T−1∏

t=0

e
− 1

2(1−ρ2)
[(ρ24(vt−2mt)+

m2
t4
vt

)γ2
v−2(ρCt+1(1−mt

vt
)−Dt+1

σv
(ρ2−mt

vt
))γv ] × e−

γ2
v
2

e
− 1

2
[(

ρ24∑T−1
t=0 (vt−2mt)+4

∑T−1
t=0

m2
t

vt
1−ρ2 +1)γ2

v−2(
ρ

∑T−1
t=0 Ct+1(1−mt

vt
)

1−ρ2 −
∑T−1

t=0 Dt+1(ρ2−mt
vt

)

(1−ρ2)σv
)γv ]+···

∝ N(
S

W
,

1
W

),

(66)

where

Ct+1 = Yt+1 − Yt − (r + γs(1− ρ2)vt − 1
2
vt − (eµQ

j +σ2
j /2 − 1)λt)4− Js,P

t+44Nt;

Dt+1 = vt+1 − vt − κP
v (mt − vt)4− Jv,P

t+44Nt;

S =
1

1− ρ2
(ρ

T−1∑

t=0

Ct+1(1− mt

vt
)− 1

σv

T−1∑

t=0

Dt+1(ρ2 − mt

vt
));

W = 1 +
ρ24∑T−1

t=0 (vt − 2mt) +4∑T−1
t=0

m2
t

vt

1− ρ2
,

(67)

and so the posterior for γv is given by

p(γv|Y,VS,V,M,J,Θ) ∝ `(γv)×N(
S

W
,

1
W

). (68)

Conditional on the sample γg
v , the sample of γg+1

v is drawn by applying the DWW method:

1. Draw a sample γ∗v from N( S
W , 1

W );

2. Draw an auxiliary variable u from Uniform(0, `(γg
v ));

3. Accept γg+1
v = γ∗v if `(γ∗v) > u, and otherwise set γg+1

v = γg
v .

• Posterior for γm. Conditional on the prior γm ∼ N(0, 1), the posterior of γm can be
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expressed as follows:

p(γm|Y,VS,V,M,J,Θ) ∝ p(VS|Y,V,M,J,Θ)× p(γm)

∝
T−1∏

t=0

exp(−1
2ε

′
t+1,τΣ

−1εt+1,τ )

(2π)
n
2 |Σ| 12

× exp(−γ2
m

2
) , `(γm).

(69)

Conditional on the sample γg
m, the sample of γg+1

m is drawn by applying the DWW method:

1. Draw a sample γ∗m from N(γg
m, 1);

2. Draw an auxiliary variable u from Uniform(0, 1);

3. Accept γg+1
m = γ∗m if min( `(γ∗m)

`(γg
m)

, 1) > u, and otherwise set γg+1
m = γg

m.

• Posterior for σε. Conditional on the prior σε = (σε,1, · · · , σε,n) with σε,i ∼ 1/σε,i, the

posterior of σε can be expressed as follows:

p(σε|VS,V,M,J,Θ) ∝ p(VS|V,M,J,Θ)× p(M|V,J,Θ)× p(σε)

T−1∏

t=0

exp(−1
2ε

′
t+1,τΣ

−1εt+1,τ )

(2π)
n
2 |Σ| 12

×
n∏

i=1

1
σε,i

∝
n∏

i=1

{
T−1∏

t=0

(
1

σ2
ε,i

)
1
2 exp(−1

2
ε2t+1,τi

)× 1
σ2

ε,i

)× (
1

σ2
ε,i

)
1
2 }

∝
n∏

i=1

(
1

σ2
ε,i

)
T
2

+ 1
2 exp(−1

2
(
T−1∑

t=0

ε2t+1,τi
)× 1

σ2
ε,i

)

∝
n∏

i=1

Gamma(
1

σ2
ε,i

; a, bi),

(70)

where Σ = σ2
ε × In, and

a =
T

2
+

3
2
,

bi =
1

1
2

∑T−1
t=0 ε2t+1,τi

.

Then the sample of σg+1
m is drawn from Gamma( 1

σ2
ε,i

; a, bi) for i = 1, · · · , n.
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C.3.2 MCMC Methods for Jump Components

• Posterior for µP
j and µQ

j . Conditional on the prior µP
j ∼ N(m,M2), the posterior of µP

j

can be expressed as follows:

p(µP
j |Js) ∝ p(Js|µP

j )× p(µP
j )

∝
T−1∏

t=0

1√
2πσj

exp(−(Js,P
t+1 − µP

j )2

2σ2
j

)× exp(−(µP
j −m)2

2M2
)

∝ exp(−1
2
[(

T

σ2
j

+
1

M2
)(µP

j )2 − 2(
m

M2
+

∑T−1
t=0 Js,P

t+1

σ2
j

)µP
j ])

∝ N(
S

W
,

1
W

),

(71)

where W = T
σ2

j
+ 1

M2 and S = m
M2 +

∑T−1
t=0 Js,P

t+1

σ2
j

. Then the sample of µP
j can be drawn directly.

Similarly, the posterior for µQ
j is given as follows:

p(µQ
j |Y,VS,V,M,J,Θ) ∝ p(VS|V,M,J,Θ× p(µQ

j |Y,V,M,J)× p(µQ
j ) (72)

where 29

p(VS|V,M,J,Θ ∝
T−1∏

t=0

exp(−1
2ε

′
t+1,τΣ

−1εt+1,τ )

(2π)
n
2 |Σ| 12

, `(µQ
j )

p(µQ
j |Y,V,M,J)× p(µQ

j )

∝
T−1∏

t=0

e
− 1

2(1−ρ2)
(
(Ct+1+µ

Q
j

λt4)2

vt4 −2ρ
(Ct+1+µ

Q
j

λt4)Dt+1

σvvt4 +
D2

t+1

σ2
vvt4

)

2πσvvt4
√

1− ρ2
× e−

(µ
Q
j
−m)2

2M2

∝ e
− 1

2(1−ρ2)
(4∑T−1

t=0
λ2

t
vt

(µQ
j )2)−2

∑T−1
t=0

λt
vt

(
ρDt+1

σv
−Ct+1)µQ

j )+··· × e−
(µ

Q
j
−m)2

2M2

∝ N(
S

W
,

1
W

),

(73)

29To sample µQ
j , we follow the Taylor expansion of ex for (eµQ

j +
σ2

j
2 − 1).
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where

Ct+1 = Yt+1 − Yt − (r + γs(1− ρ2)vt + γvρvt − 1
2
vt −

σ2
j

2
λt)4− Js,P

t+44Nt;

Dt+1 = vt+1 − vt − κP
v (mt − vt)4−mtγvσv4− Jv,P

t+44Nt;

S =
1

1− ρ2

T−1∑

t=0

λt

vt
(
ρDt+1

σv
− Ct+1) +

m

M2

W =
1

M2
+

4
1− ρ2

T−1∑

t=0

λ2
t

vt
.

Conditional on the sample µQ,g
j , the sample of µQ,g+1

j is drawn by applying the Metropolis-

Hastings algorithm:

1. Draw a sample µQ,∗
j from N( S

W , 1
W );

2. Draw an auxiliary variable u from Uniform(0, `(µQ,g
j ));

3. Accept µQ,g+1
j = µQ,∗

j if `(µQ,∗
j ) > u, and otherwise set µQ,g+1

j = µQ,g
j .

• Posterior for σj . Conditional on the prior σ2
j ∼ IG(m,M), the posterior of σ2

j can be

expressed as follows:

p(σj |VS,V,MJ, ,Θ) ∝ p(VS|V,M,J,Θ)× p(σj |Y,V,MJ,Θ)× p(Js|σj)× p(σj)

where 30

p(VS|Y,V,M,J,Θ) ∝
T−1∏

t=0

exp(−1
2ε

′
t+1,τΣ

−1εt+1,τ )

(2π)
n
2 |Σ| 12

p(σ2
j |Y,V,M,J,Θ) ∝

T−1∏

t=0

e
− 1

2(1−ρ2)
(
(Ct+1+σ2

j λt4/2)2

vt4 −2ρ
(Ct+1+σ2

j λt4/2)Dt+1

σvvt4 +
D2

t+1

σ2
vvt4

)

2πσvvt4
√

1− ρ2

∝ e
− (σ2

j /2)24
2(1−ρ2)

∑T−1
t=0

λ2
t

vt
+

σ2
j /2

1−ρ2

∑T−1
t=0

λt
vt

(
ρDt+1

σv
−Ct+1)

p(Js|σ2
j )× p(σj) ∝

T−1∏

t=0

1√
2πσj

exp(−(Js,P
t+1 − µP

j )2

2σ2
j

)× Mm(σ2
j )
−m−1e

−M

σ2
j

Γ(m)

∝ (
1
σ2

j

)
T
2

+m+1 exp(−(M +
1
2

T−1∑

t=0

(Js,P
t+1 − µP

j )2)
1
σ2

j

),

(74)

30To sample σj , we follow the same way used in sampling µQ
j .
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where

Ct+1 = Yt+1 − Yt − (r + γs(1− ρ2)vt + γvρvt − 1
2
vt − µQ

j λt)4− Js,P
t+44Nt;

Dt+1 = vt+1 − vt − κP
v (mt − vt)4−mtγvσv4− Jv,P

t+44Nt.

Now we define

`(σ2
j ) , p(VS|Y,V,M,J,Θ)× p(σ2

j |Y,V,M,J,Θ). (75)

We then have

p(σ2
j |VS,V,MJ, ,Θ) ∝ `(σ2

j )× f(
1
σ2

j

),

where f(x) ∼ Gamma(x; a, b) with

a =
T

2
+ m;

b =
1

M + 1
2

∑T−1
t=0 (Js,P

t+1 − µP
j )2

;
(76)

We now follow the DWW method to draw the sample for σj . Given the sample of σg
j , the

sample of σg+1
j is drawn as follows:

1. Draw 1/(σ∗j )
2 from Gamma( 1

σ2
j
; a, b) to generate a sample σ∗j ;

2. Draw an auxiliary variable u from Uniform(0, `(σg
j ));

3. Accept σg+1
j = σ∗j if `(σ∗j ) > u, and otherwise set σg+1

j = σg
j .

• Posterior for µP
v and µQ

v . Conditional on the prior µP
v ∼ IG(m,M), the posterior of µP

v

can be expressed as follows:

p(µP
v |Jv) ∝ p(Jv|µP

v )× p(µP
v )

∝
T−1∏

t=0

1
µP

v

exp(−Jv,P
t+1

µP
v

)× Mm(µP
v )−m−1e

− M

µP
v

Γ(m)

∝ (
1

µP
v

)T+m+1 exp(− 1
µP

v

(M +
T−1∑

t=0

Jv,P
t+1))

= Gamma(
1

µP
v

; a, b)

(77)

where a = T+m and b = 1

M+
∑T−1

t=0 Jv,P
t+1

. Then the sample of µP
v is drawn from Gamma( 1

µP
v

; a, b).
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Similarly, the posterior for µQ
v is given as follows:

p(µQ
v |Y,VS,V,M,J,Θ) ∝ p(VS|V,M,J,Θ)× p(µQ

v )

∝
T−1∏

t=0

exp(−1
2ε

′
t+1,τΣ

−1εt+1,τ )

(2π)
n
2 |Σ| 12

× e−
(µ

Q
v )2

2 1
µQ

v >0
, `(µQ

v ).
(78)

Then, the sample of µQ,g+1
v is drawn by applying the Metropolis-Hastings algorithm with a

proposal density of the Gamma distribution.

We now present the posteriors for the parameters that characterize the process of the jump

density (λt) in AKM, JP and HJ Model. Given the priors for λi (i = 0, 1), λi ∼ N(m,M)1λi>0:

p(λi|V S,Θ) ∝
T−1∏

t=0

exp(−1
2ε

′
t+1,τΣ

−1εt+1,τ )

(2π)
n
2 |Σ| 12

× e−
(λi−m)2

2 1λi>0√
2πM2

, (79)

with m = 0 and M = 5. We use a normal distribution centered at the previous draw with

constant variance M to generate a sample for λi, and then follow the DWW procedure to

update the sampling through the Metropolis-Hasting algorithm. For HJ Model, the sampling

of λ∞ and β0 can be done similarly, while the posterior for α is given by:

p(α|V S,Θ) ∝
T−1∏

t=0

exp(−1
2ε

′
t+1,τΣ

−1εt+1,τ )

(2π)
n
2 |Σ| 12

× p(α), (80)

where α ∼ U(β0µ
Q
v , 1/4), and the sampling of α is drawn from its posterior through the

Metropolis-Hasting algorithm.

C.3.3 Updating State Variables

We now derive the posteriors of those state variables, including N,J,V,M.

• Posterior for 4Nt. For the jump times, the conditional posterior is Bernoulli, since 4Nt

can only take two values between 0 and 1 in each time interval. Accordingly, the Bernoulli
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probability is given by

p(4Nt = 1|Θ,Y,V,M,J)

∝ p(Yt+1, vt+1|Θ,V,M,J,4Nt = 1)× p(4Nt = 1|Θ)

∝ (λt)
e
− 1

2(1−ρ2)
(C2

t+1−2ρCt+1Dt+1+D2
t+1)

2πσvvt4
√

1− ρ2

where

Ct+1 =
Yt+1 − Yt − (r + γs(1− ρ2)vt + γvρvt − (eµQ

j +
σ2

j
2 − 1)λt − 1

2vt)4− Js,P
t+1√

vt4
;

Dt+1 =
vt+1 − vt − κP

v (mt − vt)4−mtγvσv4− Jv,P
t+1

σv
√

vt4
;

Then p(4Nt = 0|Θ,Y,V,M,J) is given by a Bernoulli probability as follows.

p(4Nt = 0|Θ,Y,V,M,J)

∝ p(Yt+1, vt+1|Θ,V,M,J, Nt+1 = 0)× p(4Nt = 0|Θ)

∝ (1− λt)
e
− 1

2(1−ρ2)
(C̃2

t+1−2ρC̃t+1D̃t+1+D̃2
t+1)

2πσvvt4
√

1− ρ2

where

C̃t+1 =
Yt+1 − Yt − (r + γs(1− ρ2)vt + γvρvt − (eµQ

j +
σ2

j
2 − 1)λt − 1

2vt)4√
vt4

;

D̃t+1 =
vt+1 − vt − κP

v (mt − vt)4−mtγvσv4
σv
√

vt4
;

In sum, we may have the posterior distribution for Nt+1 as follows:31

4Nt ∼ Bernoulli(
α1

α1 + α2
), (81)

31To generate a random variable x that follows a Bernoulli(p) distribution, we follow the procedure:1)
Generate u from a uniform distribution between 0 and 1; 2) Get x = 1u≤p where 1(·) is an indicator function.
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where

α1 = λt × e
− 1

2(1−ρ2)
(C2

t+1−2ρCt+1Dt+1+D2
t+1)

,

α2 = (1− λt)× e
− 1

2(1−ρ2)
(C̃2

t+1−2ρC̃t+1D̃t+1+D̃2
t+1)

.

• Posteriors for Js,P and Jv,P . Conditional on the prior Js,P ∼ N(µP
j , σj), the posterior of

Js,P
t+1 can be expressed as follows:

p(Js,P
t+1|Y,V,M,J,N,Θ) ∝ p(Y,V|Js,P

t+1, J
v,P
t+1 ,4Nt = 1,M,N,Θ)× p(Js,P

t+1),

∝ e
− 1

2(1−ρ2)
(
(Ct+1−J

s,P
t+14Nt)

2

vt4 − 2ρ(Ct+1−J
s,P
t+14Nt)(Dt+1−J

v,P
t+14Nt)

vtσv4 +
(Dt+1−J

v,P
t+14Nt)

2

σ2
vvt4

)

2πσvvt4
√

1− ρ2
× e

− (J
s,P
t+1−µP

j )2

2σ2
j

∝ N(
St+1

Wt+1
,

1
Wt+1

),

(82)

where

Ct+1 = Yt+1 − Yt − (r + γs(1− ρ2)vt + γvρvt − (eµQ
j +

σ2
j
2 − 1)λt − 1

2
vt)4;

Dt+1 = vt+1 − vt − κP
v (mt − vt)4−mtγvσv4;

S1,t+1 =
4Nt

(1− ρ2)vt4(Ct+1 − ρ

σv
Dt+1) +

µP
j

σ2
j

+
ρ(4Nt)2

(1− ρ2)σvvt4Jv,P
t+1 ;

W1,t+1 =
(4Nt)2

(1− ρ2)vt4 +
1
σ2

j

;

(83)

We now turn to derive the posterior for Jv,P . In order to derive its posterior, we first obtain

the joint posterior as follows:

p(Js,P
t+1, J

v,P
t+1 |Y,V,M,N,Θ) ∝ p(Js,P

t+1, J
v,P
t+1 |4Nt = 1,Y,V,M,Θ)

∝ e
− 1

2(1−ρ2)
(
(Ct+1−J

s,P
t+14Nt)

2

vt4 − 2ρ(Ct+1−J
s,P
t+14Nt)(Dt+1−J

v,P
t+14Nt)

vtσv4 +
(Dt+1−J

v,P
t+14Nt)

2

σ2
vvt4

)

2πσvvt4
√

1− ρ2

× e
− (J

s,P
t+1−µP

j )2

2σ2
j × 1

µP
v

e
−J

v,P
t+1

µP
v 1Jv,P >0

∝ e−
W1,t+1(J

s,P
t+1)2−2At+1J

s,P
t+1+Gt+1(J

v,P
t+1)2−2Ft+1J

v,P
t+1−2Bt+1J

s,P
t+1J

v,P
t+1

2

(84)

98



where

At+1 =
4Nt

(1− ρ2)vt4(Ct+1 − ρ

σv
Dt+1) +

µP
j

σ2
j

;

Bt+1 =
ρ(4Nt)2

(1− ρ2)σvvt4 ;

Gt+1 =
(4Nt)2

(1− ρ2)σ2
vvt4 ;

Ft+1 =
4Nt

(1− ρ2)σvvt4(
Dt+1

σv
− ρCt+1)− 1

µP
v

.

(85)

Conditional on the prior Jv,P ∼ 1
µP

v
e
−Jv,P

µP
v , the posterior of Jv,P

t+1 can be expressed as follows:

p(Jv,P
t+1 |Y,V,M,J,Θ) ∝ p(Js,P

t+1, J
v,P
t+1 |Y,V,M,N,Θ)

p(Js,P
t+1|Y,V,M,J,N,Θ)

∝ e−
Wt+1(J

s,P
t+1)2−2At+1J

s,P
t+1+Gt+1(J

v,P
t+1)2−2Ft+1J

v,P
t+1−2

ρ(4Nt)
2

(1−ρ2)σvvt4
J

s,P
t+1J

v,P
t+1

2

e−
W1,t+1(J

s,P
t+1−S1,t+1/W1,t+1)2

2

∝ e
− 1

2
[Gt+1(Jv,P

t+1 )2−2Ft+1Jv,P
t+1−

(At+1+Bt+1J
v,P
t+1)2

W1,t+1
]

∝ N(
S2,t+1

W2,t+1
,

1
W2,t+1

)1Jv,P >0,

(86)

where

S2,t+1 =
4Nt

(1− ρ2)σvvt4(
Dt+1

σv
− ρCt+1)− 1

µP
v

+
At+1Bt+1

W1,t+1
;

W2,t+1 =
(4Nt)2

(1− ρ2)σ2
vvt4 − B2

t+1

W1,t+1
;

(87)

• Posterior for vt+1. Given the information of variance swap rates, the conditional posterior
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for vt+1 (0 < t + 1 < T ) is given by

p(vt+1|Θ,Y,VS,J,M)

∝ p(V St+2|vt+2,mt+2, λt+2, J
v,P
t+2 ,4Nt+1,Θ)

× p(Yt+2, vt+2|Θ, vt+1,mt+1, J
s,P
t+2, J

v,P
t+2 ,4Nt+1)

× p(Yt+1, vt+1|Θ, vt,mt, J
s,P
t+1, J

v,P
t+1 ,4Nt)

∝ exp(−1
2ε

′
t+2,τΣ

−1εt+2,τ )

(2π)
n
2 |Σ| 12

× 1
vt+1

exp{− [(Ct+2)2 − 2ρCt+2Dt+2 + (Dt+2)2]
2(1− ρ2)

} × exp{− [−2ρCt+1Dt+1 + (Dt+1)2]
2(1− ρ2)

},

where

Ct+1 =
Yt+1 − Yt − (r + γs(1− ρ2)vt + γvρvt − (eµQ

j +
σ2

j
2 − 1)λt − 1

2vt)4− Js,P
t+14Nt√

vt4
,

Dt+1 =
vt+1 − vt − κP

v (mt − vt)4−mtγvσv4− Jv,P
t+14Nt

σv
√

vt4
.

In particular, the above posterior only has the second exponential part for t+1 = T because vT

depends only on vT−1, while the posterior of v0 depends on both v0 and the first exponential

part.

• Posterior for mt+1. Given the information of variance swap rates and V, the conditional

posterior for mt+1 (0 < t + 1 < T ) is given by

p(mt+1|Θ,Y,V,VS,J)

∝ p(V St+2|vt+2,mt+2, λt+2, J
v,P
t+2 ,4Nt+1,Θ)

× p(Yt+2, vt+2|Θ, vt+1,mt+1, J
s,P
t+2, J

v,P
t+2 ,4Nt+1)× p(mt+2|Θ,mt+1)× p(mt+1|Θ,mt)

where

p(V St+2|vt+2,mt+2, λt+2, J
v,P
t+2 ,4Nt+1,Θ) ∝ exp(−1

2ε
′
t+2,τΣ

−1εt+2,τ )

(2π)
n
2 |Σ| 12

, `(mt+1)
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and

p(Yt+2, vt+2|Θ, vt+1,mt+1, J
s,P
t+2, J

v,P
t+2 ,4Nt+1)× p(mt+2|Θ,mt+1)× p(mt+1|Θ,mt)

∝ e
− 1

2(1−ρ2)
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Q
v 4mt+1)
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Q
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σ2
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)

2πσvvt+14
√
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× e
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2σ2
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σm

√
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× e
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2σ2
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√

mt4
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∝ e
−
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Q
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vvt+1
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κ
Q
v Dt+2

σ2
vvt+1

−ρ
κ

Q
v Ct+2

σvvt+1
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E2

t+2
2

√
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× e
−m2
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m(θP

m−mt)4))mt+1

σ2
mmt4 1mt+1>0

∝ e
−

[
(κ

Q
v )24

σ2
vvt+1

m2
t+1−2

κ
Q
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σvvt+1
(

Dt+2
σv −ρCt+2)mt+1]
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√
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where

Ct+1 = Yt+1 − Yt − (r + γs(1− ρ2)vt + γvρvt − (eµQ
j +

σ2
j
2 − 1)λt − 1

2
vt)4− Js,P

t+14Nt,

Dt+1 = vt+1 − (1− κP
v 4)vt − Jv,P

t+14Nt,

Et+1 =
mt+1 − (1− κP

m4)mt − κP
mθP

m4
σm
√

mt4
κQ

v = κP
v + γvσv.

We then can follow a Metropolis-Hastings algorithm to draw the sample for mt+1.
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