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Abstract

We evaluate linear stochastic discount factor models using an ex-post portfolio met-

ric: the realized out-of-sample Sharpe ratio of mean-variance portfolios backed by alter-

native linear factor models. Using a sample of monthly US portfolio returns spanning

the period 1968-2016, we �nd evidence that multifactor linear models have better em-

pirical properties than the CAPM, not only when the cross-section of expected returns

is evaluated in-sample, but also when they are used to inform one-month ahead port-

folio selection. When we compare portfolios associated to multifactor models with

mean-variance decisions implied by the single-factor CAPM, we document statistically

signi�cant di¤erences in Sharpe ratios of up to 10 percent. Linear multifactor models

that provide the best in-sample �t also yield the highest realized Sharpe ratios.
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1 Introduction

Linear factor asset pricing models are well established in �nance. The CAPM model of

Sharpe (1964) and Litner (1965), the three-factor model of Fama and French (F-F, 1993),

and the four-factor model of Carhart (1997) are now extensively used by researchers and

practitioners to compute the cost of capital and risk-adjusted returns. Previous empirical

evidence evaluating the ability of linear factor models to �t the cross-section of asset returns

has generally favored multi-factor models over the single-factor CAPM. Carhart�s four-factor

model, for example, has been particularly successful in accounting for most of the anomalies

challenging the e¢ cient market hypothesis (see Schwert, 2003). However, in this literature,

models are usually evaluated by comparing measures of in-sample, statistical goodness-of-

�t, such as the R2 of cross-sectional regressions of mean excess returns on a set of factor

mimicking returns, or by in-sample pricing accuracy statistics.1 Much less is known about

the actual out-of-sample (henceforth, OOS) relative performance of alternative linear asset

pricing models, both in a statistical sense (e.g., their OOS predictive R2s) and especially

in an economic perspective, i.e., whether or not commonly used linear pricing models may

better support �nancial decisions by investors when compared to standard benchmarks, that

often lack of any asset pricing foundations. To �ll this gap, our paper evaluates and compares

linear factor models in a OOS economic perspective. In particular, we study the OOS realized

performance of mean-variance e¢ cient portfolios, when the test assets are the predicted excess

returns generated by a range of linear factor models.

The main contribution of our work consists in investigating the (di¤erential) power of alter-

native linear stochastic discount factor (SDF)-based models to yield economic value over and

beyond improving the in- and out-of-sample statistical performance at explaining the cross-

section of asset returns. Equivalently, we do not only care for statistical �t (albeit of a OOS

type), but also for portfolio performance. We attack this issue by adopting a fairly simple

1See, for example, Kan et al. (2013) for a recent application.
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and yet commonly used mean-variance (henceforth, MV) portfolio perspective. In a way,

this represents a further contribution of our study because, even though in theory it is well

understood that linear pricing models are intrinsically connected to MV e¢ cient portfolios

(see the discussion in Cochrane, 2004), it is customary for applied portfolio choice papers to

ignore asset pricing models in the estimation of optimal weights.2 On the contrary, it has

become normal to assume a functional form for the joint, multivariate distribution of returns,

to use some historical samples to estimate the parameters of interest, and to then proceed to

compute weights, often assessing ex-post their realized performance. In the absence of solid

grounding in asset pricing theory (and unless speci�c constraints have been imposed, as in

Brandt, 1999), such MV asset allocations may even end up being grounded into empirical

models that admit arbitrage opportunities, which may be thought of as unrealistic in most

applications.

In our paper, we build instead MV portfolios that are exclusively grounded in asset pricing

theory for which the SDF has a linear speci�cation. Moreover, we use a natural link between

the SDF and MV-e¢ cient portfolios �rst discussed by Chamberlain and Rothschild (1983),

to construct an alternative evaluation metric to be used in the empirical asset pricing litera-

ture. Our intuition is that di¤erent views about the sources of risk must a¤ect the portfolio

allocation of MV investors and therefore imposing such views may have economically rele-

vant e¤ects that we exploit to study the OOS realized performance of a set of linear factor

models. Moreover, we also investigate whether a superior in-sample �t at the cross-sectional

level is associated with a superior OOS realized performance. It is important to emphasize

that as far as we know, neither questions admit a trivial answer. In general, it is perfectly

plausible (even though unwelcome) that models performing well in-sample may show a poor

2See Brandt (2010) for a description of the plug-in method and the references therein. Of course, at face
value only our benchmark, the CAPM, is (under some assumptions) the equilibrium asset pricing model
derived from MV e¢ cient portfolio choice; to the contrary, the other multi-factor models investiaged in the
paper are not necessarily consistent with static mean-variance optimizing behavior at the investor-level, in
spite of the connections between all linear SDF models and MV e¢ ciency studied since Chamberlain and
Rothschild (1983) and recently emphasized by Cochrane (2009).
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performance OOS, or the other way around.

In practice, our empirical strategy consists of two steps. In the �rst step, we estimate linear

factor models using the SDF/GMM method described by Cochrane (2009). There are two

reasons to prefer the SDF/GMM method over the more standard beta method. First, the

SDF representation is more general, and we want to keep our model as general as possible.

Second, Jagannathan and Wang (2002) show that the SDF form is comparable to the beta

form in terms of the e¢ ciency in the estimation of risk premia and in terms of the power of the

speci�cation tests. More recently, Lozano and Rubio (2011) show that multifactor models

estimated using the SDF method, in particular, the �rst stage GMM estimator, produce

lower pricing errors than the beta method does. Because we are interested in using as

reliable measures of in-sample goodness of �t as possible, this property of the SDF method is

particularly appealing to us. In the second step, we estimate MV e¢ cient portfolios using the

predicted excess returns from the linear factor models. Theoretically, we use the connection

between the SDF and the MV frontier established by Hansen and Richard (1987): we estimate

the structure of the MV e¢ cient portfolio using the concept of mean-representing portfolio

introduced by Chamberlain and Rothschild (1983);3 as shown by Peñaranda and Sentana

(2011, 2012), the MV frontier can then be consistently estimated by GMM using a set of

moment conditions implied by the de�nition of the mean-representing portfolio. Finally, we

compare the OOS performance of the resulting MV e¢ cient portfolios associated to linear

factor models using the bootstrap proposed by Ledoit and Wolf (1998) to perform tests of

the signi�cance of di¤erences in Sharpe ratios.

We conduct our empirical tests using a monthly sample of US equity portfolio returns span-

ning the period 1968-2016. The portfolios are both industry-sorted portfolios and the classical

Fama and French�s (henceforth, F-F) size- and value-sorted portfolios. The key results of

3We impose short sale constraints on portfolio weights estimation throughout. Jagannathan and Ma (2003)
argue that a trade-o¤ exists between speci�cation error and estimation error when short sales constraint are
imposed.
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the paper are summarized in Figure 1, where we plot the in-sample root mean squared er-

ror (RMSE) against the OOS Sharpe ratio of a number of linear factor models.4 Each dot

represents a particular test asset/model pair and the number written nearby indicates the

number of factors in the model. The �gure implies two di¤erences between its horizontal

vs. vertical coordinates. On the vertical axis, we report one in-sample, statistical measure

of �t, the RMSE. The vertical axis is deemed to represent the standard criterion used in

the literature, where the pricing performance of alternative models is assessed on the basis

of their quantitative cross-sectional �t. On the horizontal axis, we plot instead the values

for one OOS economic index of performance, i.e., the realized Sharpe ratios of the portfolios

constructed on the basis of the forecasts derived from alternative factor models.5 If both our

conjectures held, then we would expect that the dots should cluster by model along some

imaginary minus 45-degree upward sloping line, possibly o¤ering one clear winner, located in

the rightmost lower portion of the plot, where the highest OOS Sharpe ratios are found along

with the lowest RMSE. As a matter of fact, two results emerge from Figure 1. First, the

estimated negative slope of the linear �t in the plot reveals that the best performing models

in-sample are, at the same time, the best OOS performing models according to our portfolio

metric. Second, multifactor models (numbered 3, 4 and 5) outperform the CAPM. The cloud

of points of multifactor models is located in the lower right corner, whilst the cloud of points

generated by the CAPM is located in the upper left region in the plot. This result is well

known from an in-sample perspective but new in a OOS portfolio perspective.

In more detail, we �nd that the best performing models in-sample (i.e., commanding the

highest GLS R2s and/or the lowest RMSEs) are also those that yield the highest realized

one-month ahead Sharpe ratios. Multifactor models consistently achieve higher OOS Sharpe

ratios than the CAPM does. The estimated di¤erence in Sharpe ratios may reach values

4As explained in Section 2, in this paper, models will be distinguishable according to the numbers of
factors included, the type of GMM estimator used, and the normalization of the SDF considered.

5Of course, collapsing two dimensiones of performance in one Cartesian plot has its limitations, even
though it o¤ers the advantage of immediacy.
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as high as 10 per cent and are often statistically signi�cant. These results are valid for

alternative asset menus, one- and two-step GMM estimators, and centered and uncentered

versions of the SDF. Moreover, we study the ability of the 4-factor model that includes

the liquidity risk factor of Pastor and Stambaugh (2003) at explaining the cross-section of

expected returns and yielding useful MV portfolio prescriptions: even though the liquidity

factor model is outperformed by Carhart�s model in-sample, it is also able to outperform the

other models, in terms of OOS Sharpe ratios.

Our paper contributes to two strands of literature. First, we bring new evidence to the lit-

erature evaluating the empirical performance of linear factor models, see Jagannathan and

Wang (2002), Shanken and Zhou (2007), Lewellen et al. (2010), and Lozano and Rubio

(2011), Kan et al. (2013), among others. This literature has developed a pure in-sample

econometric approach to the assessment of the performance of alternative linear factor mod-

els. We aim to contribute to this literature by also documenting the empirical, realized OOS

performance of the same models when they are used to support portfolio decisions. Sec-

ond, we contribute to a less-developed literature that studies how asset pricing models can

provide useful insights in portfolio choice problem (see for example Brandt, 1999; Pastor

and Stambaugh, 2000; MacKinlay and Pastor, 2000; Pastor, 2000; Chevrier and McCulloch,

2008; Connor and Korajczyk, 2010).6 In this perspective, we aim at proposing a simple and

6Pastor and Stambaugh (2000) and Pastor (2000) have used risk-based and characteristic-based asset
pricing models to center the prior beliefs of a Bayesian investor solving a MV problem. Because we adopt
a frequentist GMM approach, our paper is mute on the role played by priors on the models, although we
follow the spirit of Pastor (2000). Also adopting a Bayesian framework, Chevrier and McCulloch (2008)
have studied how economically motivated priors may help building portfolios that outperform the equally-
weighted portfolio (1=N). They use linear factor models as one of their sets of economically-grounded priors.
Although our goals are di¤erent, we also uncover evidence that standard asset pricing models may push
realized performance over the hurdle represented by the equal weighting benchmark. Mackinlay and Pastor
(2000) study the implications of assuming that asset returns have an exact factor structure on the estimation
of the expected returns of MV portfolios. They conclude that in a model with one unobserved factor, the
covariance matrix of returns collapses to the identity matrix, and the associated MV portfolio outperforms
many benchmarks in terms of OOS returns. Behr et al. (2012) study how industry momentum can be use
to improved the performance of minimum variance portfolios with a parametric portfolio policy. Among
several benchmark models, they study the performance of minimum variance portfolios estimated with a
covariance matrix associated to linear factor models (CAPM, F-F 3-factor model, and Carhart�s model).
These portfolios� the ones linked to linear factor models� yield higher Sharpe ratios than most of the other
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yet robust methodology that combines the estimation of linear factor models using the SDF

method and the estimation of MV e¢ cient portfolios using a consistent GMM estimator. In

fact, we show that the portfolios implied by multifactor models may often yield risk-adjusted

returns that outperform the simple 1=N strategy of De Miguel et al. (2009), indicating that

these models may potentially become a worthy tool in the hands of investors.

The paper is organized as follows. In Section 2, we describe our methodology. The �rst

subsection is devoted to GMM estimation of linear pricing models; in the second subsection,

we introduce the concept of mean-representing portfolio and we describe the GMM estimator

to compute the portfolio weights; in the third subsection, we explain how to test for di¤erences

in Sharpe ratios using a block bootstrap. In Section 3, we describe our data. Estimation

results and key �ndings are reported and discussed in Section 4. Section 5 concludes.

2 Methodology

In order to estimate MV e¢ cient portfolios backed by alternative linear factor asset pricing

models, we proceed in two stages. In the �rst stage, we estimate by GMM linear asset

pricing models written in their SDF form, following Cochrane (2009); in the second stage,

we use again GMM to compute MV e¢ cient portfolios following Peñaranda and Sentana

(2011, 2012). Resulting portfolio performances are then compared using bootstrapped tests

of di¤erences in Sharpe ratios �rst proposed by Ledoit and Wolf (2008).

portfolios under analysis. Kirby and Ostdiek (2012) employ the F-F 3-factor and Carhart�s models to estimate
conditional expected returns. More recently, Tu and Zhou (2011) have shown that among the theoretical-
motivated portfolios that they analyse, Mackinlay and Pastor�s model is the only one exhibiting a solid
performance in terms of Sharpe ratios and certainty equivalent.
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2.1 GMM, SDF-based estimation of linear asset pricing models

For the case of excess returns, the fundamental pricing equation is

0 = Et [mt+1rt+1] ; (1)

where 0 is an N � 1 vector of zeros, Et[�] is the expectation operator conditional on the

information up to time t, mt+1 is the stochastic discount factor valid between t and t + 1,

and rt+1 is the N � 1 vector of excess returns in period t+ 1. This expression indicates that

the conditional expected excess returns of any asset, after being discounted to the present

time by the stochastic discount factor mt+1, are zero. The stochastic discount factor, mt+1;

represents the realization of any random variable satisfying (1) between t and t + 1. As

customary, a few additional assumptions need to be imposed in order for mt+1 be uniquely

de�ned and positive.7

In particular, in this paper we assume that mt+1 is characterized by the following linear

functional form:

mt+1 = a� b0ft+1; (2)

where b is a K � 1 vector of parameters to be estimated and ft+1 are the realizations of K

risk factors at time t + 1. As it has been noted in previous empirical work (see Burnside,

2007), additional assumptions on the constant term a are required to identify the parameters

of interest, b. The intuition of the lack of identi�cation is as follows. Suppose that bm is

the estimated SDF. Therefore, from equation (1), it holds that E[bmr] = 0. Now, for any

constant c, the SDF em = cbm also satis�es (1), i.e. E [emr] = 0. From this example, it

is clear that an in�nite number of SDFs exist to satisfy (1) simultaneously. This problem

is solved by normalizing the value of the constant a in (2). As pointed out by Cochrane

7As far as uniqueness is concerned, the assumption of complete markets is necessary. As for positiviness,
both the abssence of arbitrage and the law of one price are required. See Chapter 4 in Cochrane (2009) for
further details.
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(2009), the choice of this normalization only depends on convenience. The �rst and simplest

normalization consists of imposing a = 1. In this case, we say that the SDF is uncentered.

The second normalization is a = 1 + b0E(f), which corresponds to the centered SDF case.8

After imposing a normalization on a, the set of parameters b is estimated by GMM using

the pricing errors from (1) as ingredients to selected moment conditions, which we describe

in the next section.

2.2 Mean-representing portfolio and its estimation by GMM

In this section, we introduce the concept of mean-representing portfolio and how we can use

it to estimate a unique (up to an scalar) MV e¢ cient portfolio for each linear factor model.

Applying Riesz�s representation theorem, Chamberlain and Rothschild (1983) have proven

the existence of a unique portfolio (called the mean-representing portfolio, p0) in the set of

all possible portfolios formed for a particular vector of returns of a set of test assets, whose

weights are proportional to the weights of the MV e¢ cient portfolio. As a consequence, these

two portfolios have the same Sharpe ratio. We use this property to estimate the Sharpe ratio

of the MV e¢ cient portfolio that we use to compare economically alternative linear asset

pricing models.

2.2.1 Mean-representing portfolio

Consider a set of N risky assets and one risk-free asset. De�ne r = (r1; :::; rN)0 to be the set

of returns in excess of the risk-free rate for the N risky assets. The payo¤s are de�ned over

an underlying probability space 
. The �rst uncentered moment is E(r); and the second

uncentered moment, that we assume to be �nite, is given by E(rr0). Let p = w0r be the

payo¤ of a portfolio with �xed weights w = (w1; :::; wN)0. The set of all possible portfolios

8The properties of SDF-based asset pricing models under both normalizations have been studied by
Burnside (2007) and Lozano and Rubio (2011).
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built starting from the excess returns in r is denoted by P . More formally, P is the linear

span of r. The mean value of any portfolio p 2 P is given by E(p) = w0E(r); and its cost by

C(p) = w0C(r). For the case of excess returns, the cost of the payo¤s is zero, C(r) = 0, and

as a consequence, the cost of the portfolio p is also zero.9

In addition, the set P is a linear subspace of L2(P ), which is the collection of all random vari-

ables with �nite variance, de�ned on the underlying probability space of P. It is well known

that the set L2(P ) is a Hilbert space under the mean-square inner product: (p; q) � E(pq)

for any p; q 2 P; with the associated norm kpk =
p
E(p2): Since E(�) is a continuous function

in L2(P ); Chamberlain and Rothschild (1983), invoking Riesz�s representation theorem, to

prove that there is a unique portfolio in P , p0; representing the mean value of any portfolio

in P . Thus, the (uncentered) mean-representing portfolio p0 is such that

E(p) = E(p0p) 8p 2 P . (3)

Under this topology, the mean representing portfolio is de�ned as:

p0 = E(r0)E(rr0)�1r = �0r: (4)

From this expression, we observe that the weights of the mean representing portfolio are

given by the vector �0 � E(r0)E(rr0)�1. A useful property of this construction methodology

is that there exist a one-to-one mapping between p0 and any portfolio on the MV e¢ cient

frontier, rMV , as described by

rMV = �
1

E(p0)
p0 (5)

V
�
rMV (�)

�
=

�
1� E(p0)
E(p0)

�
�2; (6)

9In a more general setup, when C(r) 6= 0; it is anyway possible to de�ne a costly representing portfolio
that in addition to the mean representing portfolio, characterizes the e¢ cient mean-variance frontier.
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where � 2 R is the expected return and V
�
rMV (�)

�
is the variance of the optimal MV

portfolio.10 In this framework, the Sharpe ratio of all portfolios on the MV frontier is the

same for all values of �; and equal to the Sharpe ratio of p0.11

From (5), note that the weights of the MV portfolio, rMV , are simply proportional to the

weights of the unique mean-representing portfolio, p0. Hence, after estimating the weights

of p0, it is straightforward to estimate the weights of rMV ; and then to compute the ex-post

realized Sharpe ratio of any MV portfolio.

2.2.2 Portfolio estimation by GMM

The portfolio weights, �0, are estimated using GMM. In particular, Peñaranda and Sentana

(2011, 2012), propose to use the following system of N + 1 moment conditions to estimate

the weights of the mean-representing portfolio:

E

264 rr0�0 � r
r�0 � �0

375 = 0(N+1�1): (7)

Here, the �rst N moment equations comes directly from the de�nition in (3), valid for each

of N test assets in the investment menu. The last moment condition identi�es the expected

return of the mean representing portfolio, �0: Peñaranda and Sentana (2011) show, that

under some regularity conditions, the GMM estimates of the coe¢ cients, � = (�0; �0); are

consistent.

Peñaranda and Sentana (2011) propose to incorporate linear factor models in estimation of

10Taking expectations in (5), we have E(rMV ) = �. The expression of the variance in (6) uses the fact
that E(p0) = E

�
p0p0

�
in (3).

11If rMV = ap0, where a is a constant de�ned as �=E(p0), then

SR(rMV ) =
aE(p0)p
a2V (p0)

=
E(p0)

�(p0)
= SR(p0) for any � 2 R:
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the MV frontier, expanding (7) to the additional moment conditions, E [(1� bf)r] = 0; and

estimating the model in one step. We use instead a two-step approach in which, in a �rst

stage, linear factor models are estimated and �tted excess returns are obtained, and then, in

the second step, the e¢ cient MV portfolio is estimated by GMM using (7).12 We opted in

favor of using this two-step approach considering the fact that in preliminary experiments,

the estimated weights turned out to be more stable under this approach than adopting a

one-step method. We consider this advantage to be prevalent over the increase in estimation

error implied by our two-step set up.

2.3 Portfolio performance evaluation

We evaluate the ex-post realized performance of the portfolios computed in the manners de-

scribed in the previous section, by testing whether there are statistically signi�cant di¤erences

between their OOS, realized Sharpe ratios. In particular, we perform pairwise tests for all

possible combination of models. We use the robust bootstrapped test of di¤erences in Sharpe

ratios proposed by Ledoit and Wolf (2008).13 This test uses the circular-block bootstrap of

Politis and Romano (1992) to build a two-sided con�dence interval for the null hypothesis

H0 : � = 0; where � � SR1 � SR2 is the di¤erence in Sharpe ratios between any two

portfolios. This test is suitable for our exercise as it explicitly accommodates non-normality

and time dependence in excess returns data through resampling.

Additionally, to increase the accuracy of our performance analysis, a small sample bias cor-

rection is applied to the estimated Sharpe ratios before testing. In particular, Opdyke (2007)

12For the case of excess returns (r), we have that the pricing equation under the SDF form is given by
E(rt+1mt+1) = 0 where mt is the stochastic discount factor. For linear asset pricing models, under a proper
normalization, we can assume that mt = 1 � b0ft. Thus, we have E[rt+1(1 � b0ft)] = 0. In this context,
pricing errors are de�ned as � = E(rt+1)� b0E(rtb0ft+1). The second term in this expression are the �tted
returns. After estimating b, and considering di¤erent factors in the model (ft), we can estimate them. A
similar approach is followed by Jagannathan and Wuang (2002).
13This test has been used in portfolio applications by De Miguel et al. (2009 , 2014), among others.
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proves that, in the case of small samples, the expected value of the estimated Sharpe ratio is

E
�cSR� = SR

241 + 1
4

�
�̂4
�̂4
� 1
�

T

35 ; (8)

where �̂4=�̂
4 is simply the sample kurtosis of excess returns. Regardless of the assumption

made on the distribution of portfolio returns, this result is valid asymptotically.

We report a measure of portfolio turnover to quantify the amount of trading required to

implement each of the evaluated portfolios. Higher turnover implies higher transaction costs,

therefore, the �nal portfolio pro�tability is reduced. As is De Miguel et al. (2009), portfolio

turnover is de�ned as the average sum of the trades across the N assets in the portfolio as

follows:

Turnover =
1

T � 1

TX
t=1

NX
i=1

����b�K; i;t+1 � b�K; i;t+���� ;
where b�k; j;t+1 is the optimal portfolio weight in asset i at time t+1 for model K, and b�K; j;t+
is the portfolio weight before rebalancing at t + 1. Note that b�K; j;t+ is di¤erent than the
optimal portfolio weight at time t, b�k; j;t; in most of the cases because of changes in the prices
of the assets in the portfolio.

Finally, note that reported OOS Sharpe ratios are built using portfolio returns net of trans-

action costs. Following De Miguel et al. (2009), we incorporate proportional transaction

costs by computing portfolio net returns as:

Rp;t+1 =

NX
i=1

b� i;tRi;t+1 � c
NX
i=1

���b�i;t � b�i;t�1+���
where c is the proportional transaction cost of each trade in the process of rebalancing the

portfolio. We assume c equals 50 basis points.
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3 Data

Our data consist of monthly, value-weighted, US portfolio excess returns (over the risk-free

rate), from January 1968 to December 2016. 14 The data is collected from alternative

sources. Fama and French factors and the Momentum factor are retrieved from Kenneth

French�s online data library. Pastor and Stambaugh (2003)�s liquidity factor comes from

Lubos Pastor�s website. Finally, the data of the 4-factor model of Hou, Xue and Zhang

(2015) was kindly provided by Professor Hou. The set of test assets considered in our main

results are 10 and 17 industry portfolios, plus the 25 double-sorted size and book-to-market

portfolios.15 We consider a 49 industry portfolio and a 25 double-sorted size and momentum

portfolio in additional exercises. All the test asset returns are collected fromKenneth French�s

library as well.

The set of factors considered in the analysis includes the excess return on the market portfolio

over the risk-free rate as proxied by 1-month T-bill returns (MKT), the size portfolio (SMB-

small minus big), the value portfolio (HML - high minus low), the momentum portfolio

(MOM), the liquidity factor (LIQ) of Pastor and Stambaugh (2003), and the pro�tability

portfolio (RMW - robust minus weak) and the investment portfolio (CMA - conservative

minus aggressive) incorporated in Fama and French (2015). Hou, Xue and Zhang (2015)

also propose to consider a pro�tability factor and an investment factor that we use when

required. The �rst four factors have been extensively used in the empirical �nance literature.

Therefore, we refer the reader to Fama and French (1993) and Carhart (1997) for details of

how they are built. The liquidity factor corresponds to the value-weighted return on the 10-1

portfolio from a sort on historical liquidity betas.16 The pro�tability and investment factors

14The sample period is de�ned by the availability of data of the whole set of tested models and test assets.
Both, the liquidity factor of Pastor and Stambaugh (2003) and the factors in Hou, Xue and Zhang (2015)
are available from 1968:01 onwards.
15Abhakrom et al. (2013) also use 25 size & value portfolios and 10 industries portfolios to evaluate the

value added by Fama-French factors to the C-CAPM.
16In Pastor and Stambaugh (2003), the liquidity factor was built sorting the portfolios on predicted betas

instead of historical liquidity betas. However, the use the last series as it is the one available in Lubos Pastor�s
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introduced by Fama and French (2015) are double-sorted portfolios on size and operating

pro�tability17 and size and investment, measured as the change in total assets, respectively.

Hou, Xue and Zhang (2015) uses ROE as pro�tability measure and the change in total assets

as investment measure as well. Our �nal sample (1968:01-2016:12) contains 588 months.

In summary, we study six linear factor models: the CAPM (K = 1), the three-factor model

(K = 3) of Fama and French (1993), the four-factor model (K = 4M) of Carhart (1997),

the four-factor liquidity model (K = 4L) of Pastor and Stambaugh (2003), the four-factor

model (K = 4H) of Hou, Xue and Zhang (2015), and �nally, the �ve-factor model (K = 5)

of Fama and French (2015).

4 Empirical Results

In this Section, we describe and analyze our empirical results.

4.1 Empirical Setup

Our empirical strategy relies on a 5-year moving rolling window set up.18 Our �rst assessment

window starts in January 1968 and ends in December 1972. For this window, we estimate

the set of linear asset pricing models under examination and the associated MV e¢ cient

portfolios. Then, using the excess returns actually observed in January 1973, we compute

the realized ex-post portfolio return on the basis of the weights computed as of the end of

December 1972. Next, we move the estimation window one period forward, covering now

webpage.
17Operating pro�tability is measured as revenues minus cost of goods sold, minus selling, general, and

administrative expenses, minus interest expense all divided by book equity.
18De Miguel et al. (2009) use a similar rolling window framework in applied analysis of realized portfolio

performances. We have performed robustness checks and repeated our tests for alternative window lengths in
the rolling estimation setup �nding essentially unchanged results that remain available from Author(s) upon
request.
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the sample February 1968 - January 1972. We re-estimate the models, the implied MV

portfolio weights, and compute realized ex-post portfolio return realized during February

1973. We repeat this process for the 528 windows that can be built from our data. The time

series of realized ex-post portfolio returns frpwg
528
w=1 is used to compute the OOS Sharpe ratio

as �(rpw)=�(r
p
w). Finally, we apply the small-sample bias correction using (8) and compare

the portfolio performances generated by alternative SDFs using the test of Sharpe ratios

di¤erences by Ledoit and Wolf (2008).

We use �ve sets of test assets: 10 industries,17 industries, and the 25 size-value portfolios

for our main results, and 25 size-momentum and 49 industries for additional results. Thus,

we report and comment �ve di¤erent sets of results (tables), one for each asset menu. Each

table contains four panels proving results for �rst and second stage GMM estimators, and

uncentered and centered SDF models. Following Jagannathan and Ma (2003), we impose

short-sale constraints in the estimation of our portfolios as a way to increase the robustness

of MV portfolios and protect them against excessive variation induced by sampling error

a­ icting the sample moments that represent their ingredients.19

In each panel, we report in-sample measures of �t (GLS R2, the p-value of the J-Test, and the

root mean squared error), the OOS Sharpe ratio accounting for transaction costs, a measure

of portfolio turnover, and �nally, the p-value of the test of di¤erences in Sharpe ratios for pairs

of models. The GLS R2 is the Generalized Least Squared cross-sectional R2 of linear factor

models. Lewellen et al. (2010) suggest reporting this measure, instead of the standard OLS

R2 for example, to evaluate alternative asset pricing models. The higher the GLS R2, the

better the in-sample �t of the models, which in this particular case can be interpreted as the

maximum Sharpe ratio obtainable from the set of test assets. The J-test(p-val) statistic is the

p-value of the chi-squared J-test of overidentifying restrictions in GMM estimation. The null

19In robustness checks we have studied the role of imposing short sales constraint on the portfolio opti-
mization problem. We �nd that short sale constraints help to increase the out-of-sample Sharpe ratio of the
portfolios by reducing sampling variability and estimation error in the portfolio problem. Detailed results
are available from Author(s) upon request.
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hypothesis of the test is that the moment conditions included in GMM estimation are valid.

We also report the in-sample root mean square error (RMSE)20. As a measure of performance

of the portfolios, we discuss the ex-post realized OOS Sharpe ratio (OOS-SRTC), which is

commonly used by academics and practitioners alike for performance evaluation purposes

(e.g., see De Miguel et al., 2009). The subscript TC refers to the fact portfolio returns are

adjusted by transaction costs. Following De Miguel et al. (2009), we assume proportional

transaction costs of 50 basis points for each trade during portfolio rebalancing. We also

report a portfolio turnover measure de�ned as the average sum of the trades across the assets

in the portfolio.

The p-values of the test of di¤erence in Sharpe ratios are reported in a triangular matrix in

the last columns of each panel. The �rst column reports the p-values comparing the CAPM

with the other models, the second column reports the p-values comparing the FF3 factor

model with the other models, etc. The null hypothesis of the test is H0 : SR1 � SR2 = 0;

and the alternative hypothesis is H1 : SR1 � SR2 6= 0 for any two portfolios. Finally, at the

bottom of each table, we report OOS-SR for three benchmark models: the equally-weighted

portfolio (1=N), the mean-variance tangency portfolio (MV) and the global minimum variance

portfolio (MinV). The last two models are computed using historical returns.21

4.2 Main results

In Table 1, we report estimates for the case of 10 industry portfolios. Looking at the in-

sample performance measures in the �rst panel, we observe that, in general, multifactor

models outperform the CAPM, as the 4-factor Liquidity model is the model producing the

20Similar results are obtained using the Mean Absolute Error (MAE). We do not report those results to
save space.
21The weights of the mean-variance tangency portfolio are given by wT = b��1b�=({0b��1b�) and the weights

of the global minimum variance portfolio are given by wGMV P = b��1{=({0b��1b�), where b� is the sample
(N � N) covariance matrix of excess returns, b� is the N -vector of sample mean excess returns and { is a
N -vector of ones.
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best �t. For instance, the CAPM implies a GLS R2 of 0.14 to be contrasted with 0.58 for

both the 4-factor Liquidity model and the 4-factor Momentum model , and 0.57 for the

5-factor model. This result is consistent with the bulk of the asset pricing literature. The

results concerning the OOS performance measures are however more intriguing. In the case

of the 10 industry portfolios, we observe a similar pattern as for the in-sample performance

measures: multifactor models outperform the CAPM by producing higher realized OOS

Sharpe ratios. In the �rst panel, the estimated OOS-SR are 0.030, 0.127, 0.156, 0.158,

0.132 and 0.116 for the CAPM, the FF3 model, the Carhart model, the liquidity model,

the HXZ model and the 5-factor model respectively. The estimated di¤erences between the

CAPM and the Sharpe ratios of the multifactor models are about 12 percent and are strongly

statistically signi�cant. The di¤erence between the 3-factor and the 4-factor models does not

appear to be statistically signi�cant, though. The 5-factor model is dominated in terms of

OOS-SR by both the 4-factor liquidity model and the 4-factor momentum model. When the

performance of the models is compared with the benchmark portfolios, we observe that most

of the multifactor models produces an OOS-SR higher than the 1=N portfolio (0.115) , the

historical tangency MV portfolios (0.097) and the minimum variance portfolio (0.13). This

evidence supports the idea that in some cases, formally incorporating linear factor models

for the SDF in the asset allocation problem� hence enforcing from the start the absence of

arbitrage opportunities� produces a better performance than traditional portfolio models.

Across the remaining three panels in Table 1, we �nd results similar to the ones found in the

�rst panel. Hence we conclude that our results are robust to the use of �rst and second stage

GMM estimators and uncentered and centered SDF normalizations.

In Table 2, we report estimates for the case of the 17 industry portfolios. These results are

qualitatively the same as those obtained in the case of 10 industry portfolios. We note again

that multifactor models outperform the CAPM, both in sample and OOS. For example, in

the �rst panel, the GLS R2 are 0.07, 0.27, 0.36, 0.32, 0.32 and 0.34 for the CAPM, the FF3
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model, the 4-factor momentum model, the 4-factor liquidity model, and the 5-factor model,

respectively. The OOS-SR are 0.033, 0.131, 0.125, 0.105, 0.130 and 0.108, respectively.

Again, the di¤erences between multifactor models and the CAPM are positive (around 9

percent) and signi�cant in most of the cases. As before, we do not �nd statistical signi�cant

di¤erences between the multifactor models at standard con�dence levels. When we examine

the remaining three panels, we �nd similar results. However, it is worth mentioning that in

the case of the uncentered SDF applied to two-stage estimators in panel three, we �nd some

signi�cant di¤erences between multifactor models: the 4-factor liquidity model outperforms

both the 4-factor momentum model and the 5-factor FF model. The latter also produces

a higher OOS-SR than the 4-factor model of Hou, Xue and Zhang (2015). Therefore how

�nely the CRSP universe stock return data are disaggregated in terms of industries does not

seem to a¤ect the superior ability of relatively rich linear SDF recommended in the asset

pricing literature to yield portfolio weights that outperform either the CAPM or classical

benchmarks that have shaker rooting in no-arbitrage pricing models.

In Table 3, we report estimates for the case of the 25 size- and value- (double) sorted port-

folios. The results become slightly weaker in terms of the OOS-SR point estimates and

signi�cance across models. However, the pattern remains qualitatively the same in the sense

that multifactor models outperform the CAPM both in-sample and OOS. For example, in

the �rst panel, the GLS R2 are now only 0.04, 0.12, 0.16, 0.16, 0.16 and 0.21, whereas the

OOS-SR are 0.005, 0.103, 0.127, 0.094, 0.127 and 0.137 for the CAMP, FF3 model, 4-factor

models, and the 5-factor model of Fama and French (2015). Just to mention them at least

once, the RMSEs are 0.41, 0.22, 0.19, 0.20, 0.18, and 0.16 and they clearly decline as one

increases the number of factors K to include also SMB, HML, momentum, RMW and CMA

as additional factors in the SDF.

When we use the level of turnover to evaluate how costly the implementation of the portfolios

is for di¤erent factor models, we �nd a similar pattern than the one given by the OOS-SR
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across test assets: the level of turnover for the CAPM is considerable higher than the one

of multifactor models. This implies that not only the multifactor models outperform the

CAPM by delivering higher risk-adjusted out-of-sample returns, but also by involving much

less trades triggered by portfolio rebalancing. Less clear is the comparison among multifactor

models where turnover estimates are of similar magnitude. Overall, it seems that the higher

is the number of factors in the model, the lower is the portfolio turnover. In comparison with

Benchmarks models, for this set of test assets, we �nd that only in one case, the 5-factor

model in the second panel, the performance of the portfolio backed by a linear factor model

is superior to the 1=N portfolio (0:149 vs 0:142).

4.3 Additional results for alternative test assets

When studying the relationship between the in-sample and the out-of-sample performance

of the portfolios backed by the models, one concern is whether the analyzed linear factor

models are good asset pricing models in the �rst place or not. In other words, whether

the CAPM and the multifactor models are able to reasonable explain the cross-section of

stock returns. In this regard, the results presented so far show that the vast majority of

the analyzed models are valid in �tting the cross-section of stock returns, when the 10 and

17 industries portfolios and the 25 size-book-to-market portfolios are used as test assets.

According to the GMM´s J-test of overidentifying restrictions, most of the models are valid

at the 5 percent of signi�cance. In this sense, the reported out-of-sample results so far are

conditional to using a valid model, at least under this metric.

What happen if the considered linear asset pricing model is not valid then? Would they still

be able to produce portfolios exploiting potential di¤erences among models? To address this

concern, we estimate the models considering two additional test assets: 49 industries portfo-

lios and 25 double-sorted size and momentum portfolios. We select these two additional test

assets because it is well known that standard linear factor asset pricing models show limited
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ability to �t large dimensional (industry) portfolios and portfolios capturing momentum.22

In Table 4, we report our estimates considering as test asset 49 industries portfolios, and

in Table 5, we report our estimates considering as test assets 25 size-mometum portfolios.

Consistent with prior literature studying the in-sample �t of linear asset pricing model, we

�nd that the considered models show a poor �t as compared with the previous results. For

the case of 49 industries portfolios, the J-Test�s null hypothesis of valid moment conditions

is rejected in all the cases; whereas for the case of 25 double-sorted size and momentum

portfolios only the 4-factor liquidity model and the 5-factor model are marginally valid as

the null hypothesis is not rejected at the 5 percent of signi�cance. When we look at the

OOS-SR performance of the models, the documented di¤erences between the CAPM and

multifactor models are reduced signi�cantly or they disappear. Thus, this evidence seems to

be consistent with the idea that the use of linear factor asset pricing models to build portfolios

delivering signi�cant risk-adjusted returns is conditional to the ability of the model to �t the

cross-section of returns reasonably well in a �rst stage.

5 Conclusions

This paper evaluates linear stochastic discount factor models based on the out-of-sample

realized performance of MV e¢ cient portfolios backed by the models. In particular, we test

whether the well-documented superior ability of multifactor models to �t the cross-section of

expected returns in sample over the CAPM survives the test of well-crafted OOS tests based

on a commonly employed portfolio metric. Moreover, we test whether there is any connection

or even correlation between the in-sample statistical performance of the SDF linear factor

models and their OOS portfolio performance. Our methodology consists of two steps. In

the �rst stage, the linear factor models are estimated under their SDF representation by

22We thank a referee for suggesting this analysis.
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GMM, as described by Cochrane (2009). In the second step, we use the predicted excess

returns from the estimated models to compute MV e¢ cient portfolios using the concept

of mean-representing portfolio introduced by Chamberlain and Rothschild (1983). As it is

shown by Peñaranda and Sentana (2011, 2012), the mean-representing portfolio delivers a

set of moments that allow us to consistently estimate by GMM a (no arbitrage) MV frontier.

Finally, we compute realized OOS Sharpe ratios based on the recursive portfolio weights

obtained from each model.

Using several samples of test assets consisting of monthly US portfolio equity returns span-

ning the period 1968-2016, we provide evidence that multifactor linear models have better

empirical properties than the CAPM, not only when the cross-section of expected returns is

evaluated in-sample, but also when a portfolio metric is used OOS. Besides, we document

that there is an empirical link between the in-sample statistical performance and the OOS

performance of linear factor SDF models: the models exhibiting the best in-sample perfor-

mance are also the models with the best OOS one. This result is consistent with the idea

that asset pricing models provide useful information to an investor solving a MV problem

and that the standard in-sample �t recorded in the literature contains reliable information

on the underlying DGP driving the SDF. We also report that multifactor models outperform

the CAPM yielding monthly OOS Sharpe ratios that are higher by as much as 10 per cent.

These results are robust to extending the exercise to alternative asset menus, to adopting

�rst- vs. two-step GMM estimators, and to centered and uncentered SDF speci�cations.

We left for future research to explore the economic forces driving the documented connection

between the in-sample and the OOS performance of linear factor models. In this regard,

Morana (2014) provides an interesting insight by showing that the SMB, HML, MOM and

LIQ factors re�ect compensation for macroeconomic and �nancial risk. Thus, the link be-

tween factors and macroeconomic conditions may potentially account for the documented

correlation between in-sample and OOS performance measures. Additionally, our key result

21



may be considered natural when the subspace of returns spanned by the multi-factor models

generates more e¢ cient mean-variance portfolios than the returns on the market alone, which

is the subspace generated by the CAPM, and this fact gets in principle stronger, the larger

the number of factors driving the dynamics of cross section of returns not spanned by the

market portfolio, that multi-factor models correctly capture. When in the paper we have ex-

panded the size of the test asset menus, the evidence has failed to reveal that as the number

of factors grow, the OOS performances of richer SDF models improves. It is not clear why

this may occur, even though one cannot rule out that the samples may still be too short to

reveal the true data generating process governing the SDF and/or that the true but unknown

SDF governing the cross section of US equity returns may be of a nonlinear type, for instance

as in Dittmar, 2002). Therefore it would be interesting to explicitly map our results, say a

notion of a �ratio�between in-sample RMSE and OOS Sharpe ratios improvements vs. the

CAPM to formal spanning tests, along the lines of Peñaranda and Sentana (2012).
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Figure 1: Scatter plot of RMSE vs. out-of-sample Sharpe ratios.
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of factors included in that model.
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Table 1: In-Sample Asset Pricing Model Evaluation and Out-of-Sample Portfolio
Performance

(Test Assets: 10 Industries)

First Stage Estimators
Uncentered SDF (a = 1)

K R2 GLS J-Test RMSE OOS SRTC Turnover SR Di¤.Test (p-value)
1 0.14 0.38 0.36 0.026 7.63
3 0.38 0.49 0.23 0.127 0.67 0.17
4M 0.58 0.66 0.16 0.156 0.50 0.03** 0.18
4L 0.58 0.57 0.18 0.158 0.49 0.03** 0.15 0.99
4H 0.53 0.64 0.17 0.132 0.54 0.08* 0.63 0.25 0.22
5 0.57 0.56 0.17 0.116 0.62 0.29 0.46 0.02** 0.06* 0.20

Centered SDF (a = 1� �0E(f))
K R2 GLS J-Test RMSE OOS SRTC Turnover SR Di¤.Test (p-value)
1 0.14 0.38 0.37 0.019 13.57
3 0.38 0.49 0.24 0.131 0.70 0.00***
4M 0.58 0.65 0.18 0.140 0.52 0.00*** 0.60
4L 0.58 0.58 0.18 0.158 0.53 0.01*** 0.43 0.60
4H 0.54 0.62 0.19 0.118 0.57 0.00*** 0.86 0.71 0.39
5 0.57 0.57 0.17 0.110 0.64 0.00*** 0.58 0.32 0.17 0.32

Second Stage Estimators
Uncentered SDF (a = 1)

K R2 GLS J-Test RMSE OOS SRTC Turnover SR Di¤.Test (p-value)
1 0.14 0.35 0.43 0.046 4.88
3 0.38 0.50 0.34 0.141 0.69 0.23
4M 0.58 0.67 0.27 0.148 0.62 0.11 0.77
4L 0.58 0.57 0.29 0.162 0.50 0.10* 0.59 0.70
4H 0.54 0.64 0.27 0.111 0.57 0.55 0.33 0.13 0.21
5 0.57 0.56 0.28 0.071 0.75 0.73 0.15 0.15 0.15 0.63

Centered SDF (a = 1� �0E(f))
K R2 GLS J-Test RMSE OOS SRTC Turnover SR Di¤.Test (p-value)
1 0.14 0.38 0.42 -0.012 6.04
3 0.38 0.49 0.34 0.135 0.77 0.00***
4M 0.58 0.65 0.29 0.153 0.63 0.00*** 0.61
4L 0.58 0.58 0.29 0.174 0.53 0.01*** 0.43 0.65
4H 0.54 0.52 0.30 0.133 0.67 0.00*** 0.84 0.72 0.41
5 0.57 0.57 0.29 0.115 0.61 0.01*** 0.57 0.32 0.17 0.31

Benchmarks
1/N MV MinV

OOS SR 0.136 0.109 0.136

The table reports In-sample measures of goodness of �t for a set of linear asset pricing models and Out-
of-Sample portfolio performance backed by the same set of models. The models consider are the CAPM
(K = 1); the 3-factor (K = 3) model of Fama-French (1993); the 4-factor (K = 4M) model of Carhart
(1997), the 4-factor (K = 4L) model of Pastor and Stambaugh (2003), the 4-factor (K = 4H) model of
Hou, Xue and Zhang (2015) and the �ve-factor (K = 5) model of Fama and French (2015). The in-sample
measures reported are the R2 of the estimated linear factor model by Generalized Least Squares under its
beta representation (see Lewellen et al., 2010), the p-value of the GMM�s overidenti�cation test (J-test),
and the root mean squared error (RMSE). The out-of-sample portfolio performace measures are the Sharpe
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Ratio, taking into account transaction costs, and portfolio turnover. Finally, we report a matrix containig
pairwise p-values for the test of di¤erence in Sharpe ratios of Ledoit and Wolf (2008). * signi�cant at 90%,
** signi�cant at 95% and *** signi�cant at 99%. 1/N is the equally weighted portfolio, MV is the historical
mean-variance tangent portfolio and MinV is the historical global minimum variance portfolio. The OOS-SR
of the benchmark models are also computed within a rolling window setup for comparability purposes. First
and second stage estimators refer to weighted matrix used in the GMM estimation. Uncentered and centered
SDF di¤er in the normalization imposes on the constant term in the linear SDF model.
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Table 2: In-Sample Asset Pricing Model Evaluation and Out-of-Sample Portfolio
Performance

(Test Assets: 17 Industries)

First Stage Estimators
Uncentered SDF (a = 1)

K R2 GLS J-Test RMSE OOS SRTC Turnover SR Di¤.Test (p-value)
1 0.07 0.33 0.44 0.033 6.82
3 0.22 0.38 0.32 0.131 0.73 0.05**
4M 0.36 0.52 0.23 0.125 0.68 0.03** 0.59
4L 0.32 0.44 0.27 0.105 0.66 0.23 0.40 0.29
4H 0.32 0.55 0.23 0.130 0.56 0.06* 0.99 0.59 0.43
5 0.34 0.52 0.23 0.108 0.52 0.21 0.40 0.25 0.95 0.38

Centered SDF (a = 1� �0E(f))
K R2 GLS J-Test RMSE OOS SRTC Turnover SR Di¤.Test (p-value)
1 0.07 0.32 0.45 0.022 3.66
3 0.22 0.37 0.32 0.126 0.76 0.28
4M 0.36 0.51 0.25 0.115 0.68 0.33 0.69
4L 0.32 0.44 0.27 0.109 0.62 0.06* 0.19 0.36
4H 0.32 0.50 0.26 0.114 0.60 0.02** 0.14 0.20 0.81
5 0.34 0.49 0.24 0.102 0.59 0.05** 0.21 0.35 0.92 0.66

Second Stage Estimators
Uncentered SDF (a = 1)

K R2 GLS J-Test RMSE OOS SRTC Turnover SR Di¤.Test (p-value)
1 0.07 0.33 0.67 0.049 1.99
3 0.22 0.38 0.57 0.159 0.52 0.08*
4M 0.36 0.52 0.46 0.120 0.59 0.20 0.30
4L 0.32 0.44 0.49 0.170 0.52 0.03** 0.68 0.09*
4H 0.32 0.55 0.46 0.056 0.81 0.57 0.39 0.32 0.09*
5 0.34 0.52 0.47 0.130 0.44 0.26 0.39 0.98 0.05** 0.41

Centered SDF (a = 1� �0E(f))
K R2 GLS J-Test RMSE OOS SRTC Turnover SR Di¤.Test (p-value)
1 0.07 0.32 0.53 0.028 18.31
3 0.22 0.37 0.51 0.036 0.89 0.28
4M 0.36 0.51 0.44 0.106 0.66 0.34 0.67
4L 0.32 0.44 0.45 0.144 0.59 0.07* 0.18 0.36
4H 0.32 0.50 0.48 0.157 0.70 0.04** 0.15 0.17 0.78
5 0.34 0.49 0.43 0.139 0.55 0.07* 0.22 0.38 0.90 0.66

Benchmarks
1/N MV MinV

OOS SR 0.142 0.122 0.141

See notes in table 1.
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Table 3: In-Sample Asset Pricing Model Evaluation and Out-of-Sample Portfolio
Performance

(Test Assets: 25 Size / Boolk-to-Market)

First Stage Estimators
Uncentered SDF (a = 1)

K R2 GLS J-Test RMSE OOS SRTC Turnover SR Di¤.Test (p-value)
1 0.04 0.01 0.41 0.005 8.12
3 0.12 0.06 0.22 0.103 0.66 0.10*
4M 0.16 0.10 0.19 0.127 0.53 0.11 0.91
4L 0.16 0.07 0.20 0.094 0.46 0.19 0.25 0.29
4H 0.16 0.06 0.18 0.127 0.44 0.09* 0.97 0.94 0.25
5 0.21 0.07 0.16 0.137 0.41 0.08* 0.77 0.68 0.16 0.55

Centered SDF (a = 1� �0E(f))
K R2 GLS J-Test RMSE OOS SRTC Turnover SR Di¤.Test (p-value)
1 0.04 0.01 0.42 0.033 4.36
3 0.12 0.05 0.23 0.097 0.62 0.24
4M 0.16 0.07 0.21 0.096 0.53 0.14 0.45
4L 0.16 0.06 0.22 0.070 0.55 0.22 0.68 0.74
4H 0.16 0.06 0.22 0.120 0.56 0.27 0.93 0.57 0.73
5 0.21 0.08 0.18 0.149 0.44 0.18 0.33 0.88 0.68 0.44

Second Stage Estimators
Uncentered SDF (a = 1)

K R2 GLS J-Test RMSE OOS SRTC Turnover SR Di¤.Test (p-value)
1 0.04 0.01 1.31 0.056 1.34
3 0.12 0.06 1.05 0.059 0.29 0.74
4M 0.16 0.10 0.85 0.093 0.41 0.26 0.20
4L 0.16 0.07 0.95 0.043 0.44 0.81 0.62 0.18
4H 0.16 0.06 0.68 0.135 0.59 0.06* 0.01*** 0.16 0.11
5 0.21 0.07 0.75 0.069 0.43 0.32 0.10* 0.73 0.30 0.09*

Centered SDF (a = 1� �0E(f))
K R2 GLS J-Test RMSE OOS SRTC Turnover SR Di¤.Test (p-value)
1 0.04 0.01 1.18 -0.003 1.69
3 0.12 0.05 0.93 0.042 0.39 0.27
4M 0.16 0.07 0.91 0.056 0.60 0.14 0.43
4L 0.16 0.06 0.82 0.049 0.62 0.22 0.71 0.70
4H 0.16 0.06 0.78 0.041 0.62 0.26 0.95 0.54 0.67
5 0.21 0.08 0.79 0.062 0.65 0.17 0.33 0.88 0.64 0.43

Benchmarks
1/N MV MinV

OOS SR 0.142 0.122 0.142

See notes in table 1.
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Table 4: In-Sample Asset Pricing Model Evaluation and Out-of-Sample Portfolio
Performance

(Test Assets: 49 Industries)

First Stage Estimators
Uncentered SDF (a = 1)

K R2 GLS J-Test RMSE OOS SRTC Turnover SR Di¤.Test (p-value)
1 0.01 0.00 0.63 -0.004 2.73
3 0.03 0.00 0.49 0.011 1.19 0.60
4M 0.06 0.00 0.41 0.065 0.68 0.20 0.34
4L 0.05 0.00 0.46 0.104 0.74 0.15 0.30 0.54
4H 0.05 0.00 0.41 0.050 0.77 0.40 0.55 0.37 0.13
5 0.06 0.00 0.41 0.067 0.61 0.27 0.39 0.59 0.26 0.45

Centered SDF (a = 1� �0E(f))
K R2 GLS J-Test RMSE OOS SRTC Turnover SR Di¤.Test (p-value)
1 0.01 0.00 0.64 -0.011 2.55
3 0.03 0.00 0.49 0.112 0.97 0.04**
4M 0.05 0.00 0.45 0.053 0.75 0.26 0.06
4L 0.05 0.00 0.46 0.103 0.73 0.46 0.11 0.55
4H 0.05 0.00 0.46 0.029 1.10 0.23 0.40 0.78 0.50
5 0.06 0.00 0.43 0.072 0.66 0.17 0.43 0.63 0.36 0.83

Second Stage Estimators
Uncentered SDF (a = 1)

K R2 GLS J-Test RMSE OOS SRTC Turnover SR Di¤.Test (p-value)
1 0.01 0.00 3.31 0.021 2.27
3 0.03 0.00 1.94 0.055 0.54 0.54
4M 0.06 0.00 1.64 0.043 0.57 0.90 0.43
4L 0.05 0.00 1.87 0.092 0.42 0.26 0.32 0.14
4H 0.05 0.00 1.37 0.037 0.64 0.86 0.65 0.93 0.27
5 0.06 0.00 1.58 0.053 0.58 0.46 0.90 0.42 0.33 0.58

Centered SDF (a = 1� �0E(f))
K R2 GLS J-Test RMSE OOS SRTC Turnover SR Di¤.Test (p-value)
1 0.01 0.00 3.04 0.090 2.32
3 0.03 0.00 1.66 0.022 0.84 0.04**
4M 0.06 0.00 1.55 0.066 0.83 0.23 0.05**
4L 0.05 0.00 1.51 0.085 0.74 0.45 0.12 0.61
4H 0.05 0.00 1.53 0.057 0.85 0.24 0.37 0.75 0.51
5 0.06 0.00 1.40 0.048 1.15 0.17 0.41 0.61 0.36 0.88

Benchmarks
1/N MV MinV

OOS SR 0.126 0.106 0.124

See notes in Table 1.
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Table 5: In-Sample Asset Pricing Model Evaluation and Out-of-Sample Portfolio
Performance

(Test Assets: 25 Size/Momentum)

First Stage Estimators
Uncentered SDF (a = 1)

K R2 GLS J-Test RMSE OOS SRTC Turnover SR Di¤.Test (p-value)
1 0.03 0.00 0.49 0.112 0.85
3 0.11 0.01 0.32 0.121 0.62 0.47
4M 0.15 0.03 0.24 0.126 0.42 0.48 0.97
4L 0.14 0.07 0.29 0.066 0.57 0.78 0.14 0.17
4H 0.13 0.03 0.23 0.128 0.40 0.42 0.95 0.87 0.17
5 0.19 0.15 0.20 0.104 0.44 0.63 0.37 0.39 0.25 0.27

Centered SDF (a = 1� �0E(f))
K R2 GLS J-Test RMSE OOS SRTC Turnover SR Di¤.Test (p-value)
1 0.03 0.00 0.50 0.109 0.85
3 0.11 0.01 0.33 0.134 0.65 0.87
4M 0.15 0.02 0.26 0.118 0.38 0.36 0.04**
4L 0.13 0.07 0.30 0.072 0.60 0.75 0.80 0.04**
4H 0.13 0.02 0.27 0.099 0.52 0.60 0.27 0.58 0.19
5 0.19 0.08 0.25 0.064 0.49 0.94 0.92 0.44 0.84 0.62

Second Stage Estimators
Uncentered SDF (a = 1)

K R2 GLS J-Test RMSE OOS SRTC Turnover SR Di¤.Test (p-value)
1 0.03 0.00 1.69 0.016 4.33
3 0.11 0.01 1.12 0.060 0.44 0.72
4M 0.15 0.03 0.98 0.062 0.54 0.58 0.80
4L 0.14 0.07 0.99 0.049 0.57 0.83 0.67 0.63
4H 0.13 0.03 0.85 0.068 0.49 0.25 0.23 0.35 0.21
5 0.19 0.15 0.77 0.062 0.56 0.66 0.81 0.89 0.55 0.34

Centered SDF (a = 1� �0E(f))
K R2 GLS J-Test RMSE OOS SRTC Turnover SR Di¤.Test (p-value)
1 0.03 0.00 1.47 0.036 1.70
3 0.11 0.01 1.01 0.075 0.55 0.85
4M 0.15 0.02 1.04 0.047 0.77 0.37 0.04**
4L 0.13 0.07 0.84 0.079 0.85 0.75 0.79 0.05**
4H 0.13 0.02 1.04 0.056 0.72 0.62 0.27 0.57 0.23
5 0.19 0.08 0.85 0.069 0.69 0.93 0.92 0.41 0.85 0.63

Benchmarks
1/N MV MinV

OOS SR 0.129 0.104 0.128

See notes in Table 1.
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