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On the Use of Intercepts as Performance Measures 

 

Abstract 

 

 Intercepts have long been used as measures of abnormal performance in finance.  Jensen’s 

alpha made its debut in 1968, but more recently researchers have used intercepts from the 

Fama-French Three-Factor model and others as ex post performance measures.  A positive 

intercept is taken as evidence that the stock (or portfolio) exceeded expectations, and 

conversely for a negative intercept. 

 We find that even conditional on the premise that the model used is valid, the intercept’s 

ability to detect abnormal performance is critically dependent on accurately estimating the 

slope(s).  Unfortunately, the same unsystematic perturbation to stock returns that causes 

abnormal performance typically distorts this estimate of the slope, in which case the intercept 

can become misleading, in some cases so misleading that it will move in the direction opposite 

that of the perturbation.  This paper quantifies the distortion in the intercept due to errors in 

estimating the slope(s).  It also identifies necessary and sufficient conditions for the intercept to 

be so misleading as to move in the direction opposite that of the shock, estimates the 

frequency of these conditions, and provides hypothetical and actual examples.  Finally, while 

buy-and-hold abnormal returns remain a promising alternative that are unaffected by this 

issue, for any who prefer to continue using intercepts we offer an alternative approach that 

alleviates the problem of distorted slopes. 
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On the Use of Intercepts as Performance Measures 

 

 Consider the following conversation between a student and his professor:  

 

Student: I don’t understand why I got a B+ in the course and my roommate got an A-.  

We scored exactly the same on every assignment except the first one, and I scored a 90 

while he scored only an 80. 

Professor: You earned a lower grade because you received a better score on the first 

assignment.  Had you also scored an 80, you would have received an A- as well.  Had you 

scored worse—70 or less—you would have received an A. 

 

 This case will soon be heard by the department chair or associate dean, and it is difficult to 

imagine the assigned grade of B+ will be upheld.  It is axiomatic that better performance on any 

single component of total performance should, ceteris paribus, be associated with a better 

assessment of total performance.  Nevertheless, we find that a common measure of stock or 

portfolio performance in finance—the intercept from any model that regresses asset returns on 

other factors, such as the Fama-French Three-Factor model—often fails this simple 

requirement. 

 Jensen's alpha began a long history of using intercepts as measures of excess performance.  

The Capital Asset Pricing Model (CAPM) asserts 𝐸[𝑅𝑠] =  𝑅𝑓 +  𝛽[𝐸(𝑅𝑚) −  𝑅𝑓], which Jensen 

[1968] expresses as [𝑅̃𝑠,𝑡 − 𝑅𝑓,𝑡] =  𝛽[𝑅̃𝑚,𝑡 − 𝑅𝑓,𝑡] +  𝜀𝑠.𝑡.  If [𝑅̃𝑚,𝑡 − 𝑅𝑓,𝑡] is taken as an 

independent variable and [𝑅̃𝑠,𝑡 − 𝑅𝑓,𝑡] as a dependent variable, then estimating parameters of 

a linear regression [𝑅̃𝑠,𝑡 − 𝑅𝑓,𝑡] =  𝛼̂ +  𝛽̂[𝑅̃𝑚,𝑡 − 𝑅𝑓,𝑡] + 𝑒𝑠.𝑡 should produce an intercept 𝛼̂ 

equal to zero if the stock has exactly met CAPM expectations.  Positive values of 𝛼̂ suggest the 

stock has done better than expected; negative values indicate it has underperformed.  

Intercepts in subsequent models such as the Fama-French Three-Factor model have been used 

with similar inferences drawn from the sign of the intercept.1 

 Unfortunately, for these intercepts to work properly, it is important to have a good estimate 

of the slope(s), and the same unsystematic events that lead to abnormal performance will also 

distort our slope estimates.  For ease of exposition, we begin with an analysis of Jensen’s alpha.  

After developing intuition regarding the problem (and a solution for anyone who chooses to 

continue using intercepts), we proceed to extend the analysis to intercepts of the Fama-French 

model and find the problem is more frequent in that context than it is for Jensen’s alpha.  

Indeed the problem (and solution) can be extended to virtually any other multifactor model as 

well.  We emphasize that we are not in any way suggesting such models are flawed or 

                                                           
1 Cremers et al [2012] find the Fama-French model produces significantly non-zero intercepts for common 
benchmark indices for reasons related to the weighting of the factor components.  The problem we identify here is 
distinct from the one they analyze. 
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inappropriate.  Instead, we focus on a much narrower issue, namely, that the use of such 

models’ intercepts as performance measures is problematic. 

 For a simple example in the context of Jensen’s alpha, consider only two pairs of 

observations of a stock’s and the market’s returns in excess of the riskless rate and suppose the 

stock’s true (unobservable) 𝛽 is one.  Suppose also that for the first observation, the market’s 

return in excess of the riskless rate is RPm,1 = 1%, and for the second observation it is RPm,2 = 

3%.  Finally, suppose that for each of the observations of stock return, the net effect of all 

unsystematic events is 0, so that RPs,1 = 1% and RPs,2 = 3% as well.  With only two observations, 

the regression line passes exactly through both points, and so based on these observations our 

estimate of 𝛽 is one, and Jensen’s alpha is zero.  The stock has performed exactly as expected. 

 Now suppose instead that for the second observation, the net effect of the unsystematic 

influences on share price was -1%, so that the actual observed value of RPs,2 is 2%.  The 

estimate 𝛽̂ falls to 0.5, but Jensen’s 𝛼̂ rises to 0.5%.  Although the net effect of the 

unsystematic events was to cause this stock to perform worse, the resulting estimation error in 

𝛽̂ has caused it to have a positive Jensen’s 𝛼̂, which should indicate superior performance.  

Similarly, if for the second observation the net effect of unsystematic effects on the stock were 

+1%, the estimate 𝛽̂ would rise to 1.5, and Jensen’s 𝛼̂ would fall to -.5%. 

 Note that this odd effect of a shock causing a movement in 𝛼̂ that is directly opposite the 

direction of the shock occurs only if it is the observation farther from zero2 that experiences the 

shock.  In our simple example, if the first observation’s dependent variable experiences a shock 

of ±1%, Jensen’s 𝛼̂ moves in the same direction (albeit by an exaggerated amount).  As we 

demonstrate in Appendix A, because the regression line pivots around the point (𝑅𝑃̅̅ ̅̅
𝑚, 𝑅𝑃̅̅ ̅̅

𝑠), 

only if the mean value of 𝑅𝑃̅̅ ̅̅
𝑚 is between the 𝑅𝑃𝑚,𝑖 experiencing the perturbation and the 

origin can Jensen’s 𝛼̂ move in the direction opposite that of the shock, but all errors in 

estimating 𝛽 have implications for the estimate 𝛼̂.  

 We also show in Appendix A that our example with only two observations is not as limiting 

as it might seem.  The same paradoxical change in Jensen’s 𝛼̂ also occurs in larger samples, as 

such shocks alter 𝛽̂ by tilting the the regression line in the direction of the shock.3  Specifically, 

in Appendix A we find that for an unsystematic perturbation c to the stock return of the ith 

observation, the change in 𝛼̂ expressed as a function of c and i is  

 

                                                           
2 I.e., if both values of the independent variable were negative, it would now be the more negative one that would 
cause the aberrant result. 
3 There is not a problem when the shock is spread evenly over each observation, but such a case seems 
inconsistent with market efficiency.  In any event, there are an infinite number of ways to spread abnormal 
performance across multiple observations; this paper focuses solely on the case in which the shock affects only 
one observation (or a small number of observations).  This approach is consistent with the literature suggesting 
stock returns are a mixture of normal distributions, e.g., Kon [1984] and Harris [1986], and that they are 
characterized by skewness and kurtosis, e.g., Fama (1965), Fama et al (1969), and Brown and Warner (1980). 
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 ∆𝛼̂ =  𝑎̂(𝑐, 𝑖) - 𝑎̂(0, 𝑖) = 
𝑐

𝑛
−  

𝑐

𝑛
 
(𝑅𝑃𝑚,𝑖 – 𝑅𝑃̅̅ ̅̅ 𝑚)

𝜎̂𝑅𝑃𝑚
2 ∙ 𝑅𝑃̅̅ ̅̅

𝑚. [1] 

 

 The first term on the right side reflects the change in 𝛼̂ that is due to the increase in the 

mean stock return; the second term is the indirect effect on 𝛼̂ due to the change in the 

estimate of 𝛽̂ that c causes.  We note that if the perturbation occurs when the market risk 

premium is exactly at its mean, 𝑅𝑃̅̅ ̅̅
𝑚, then the second term is zero and the change in 𝛼̂ is just 

the average change in the stock’s risk premium, 
𝑐

𝑛
.  Moreover, the average value of the second 

term is zero for the sample, so the average unconditional distortion is zero.  However, in any 

specific case, the farther away the market risk premium is from its mean when the perturbation 

c occurs, the more 𝛼̂ is affected.  If we factor 
𝑐

𝑛
 from the right side of [1], we get 

 

  𝑎̂(𝑐, 𝑖) - 𝑎̂(0, 𝑖) = 
𝑐

𝑛
[1 − 

(𝑅𝑃𝑚,𝑖 – 𝑅𝑃̅̅ ̅̅ 𝑚)

𝜎̂𝑅𝑃𝑚
2 ∙ 𝑅𝑃̅̅ ̅̅

𝑚]. [2] 

 

 The term in brackets represents one plus the proportion of distortion that occurs because 

the perturbation c affects 𝑎̂ directly and also indirectly through its effect on the estimate of the 

slope.  It is when the magnitude of the second term in brackets is larger that we get greater 

distortion, which causes Jensen’s 𝛼̂ to misrepresent the shock.  We define the entire expression 

in brackets to be the sensitivity factor for month i, or SFi.  One perhaps surprising characteristic 

of [2] is that, except for the perturbation c itself, the change in 𝑎̂ is completely independent of 

stock returns.  Thus we can estimate the frequency of the problem by focusing exclusively on 

market returns, specifically the distribution of the sensitivity factor SFi.  As suggested by the 

example in the introduction, there is no guarantee that the sensitivity factor will even be 

positive, which implies that a positive shock c can lead to a decrease in 𝑎̂.  Finally, neither 

sample size nor the magnitude of c affects the sensitivity factor; thus if the sensitivity factor is 

negative, neither a sufficiently small shock nor a sufficiently large sample will keep c and the 

change in 𝑎̂ from having opposite signs, although both smaller c or larger n will cause the 

distortion to be smaller. 

 This potential distortion in Jensen’s alpha is reminiscent of Blume’s (1975) observation that 

while the expected value of 𝛽̂ conditional on 𝛽 is 𝛽, the expectation of 𝛽 conditioned on 𝛽̂ is 

not generally 𝛽̂.4  Blume’s tests, however, found that this distortion generally didn’t affect the 

final results very much.  We find the opposite is true for Jensen’s alpha.  When the sample 

contains an observation that produces a negative sensitivity factor, the resulting estimates of 

                                                           
4 An example explaining why (discussed on p. 788 of Blume) is that the population mean of 𝛽 is presumably 

unimodal with a mean of one, so that if estimation error is symmetric around zero and also unimodal, when 𝛽̂ 

exceeds one, there are more values of 𝛽 <  𝛽̂ that would produce that 𝛽̂ than there are values of 𝛽 >  𝛽̂ that 

would do so.  Thus, when 𝛽̂ > 1, E(𝛽|𝛽̂) < 𝛽̂, and similarly, E(𝛽|𝛽̂) > 𝛽̂ when 𝛽̂ < 1. 
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Jensen’s alpha (and, for that matter, of beta) are significantly distorted for any firms happening 

to have unusually high or low performance that month.  The estimate of Jensen’s alpha given a 

shock that happens to occur in a month with a negative sensitivity factor is unconditionally 

unbiased, but is biased up for firms with negative shocks and biased down for firms with 

positive shocks.   

 This distortion is also similar to a violation of first-order stochastic dominance because 

values of two stocks’ returns may be identical to each other for all but one observation, and yet 

in the presence of a negative sensitivity factor we would conclude that the stock with the 

higher return that month underperformed the stock with the lower return.  We take it as self-

evident that if actual performance is positively related to each component of performance, 

then any metric that ceteris paribus alleges a stock performed better when a component 

performed worse has a serious problem. 

 

II. Frequency of Negative Sensitivity Factors for Jensen’s Alpha 

 

 We first focus on the frequency of negative sensitivity factors; after all, if it is a once in a 

century event, it might be dismissed as only an academic curiosity with little practical 

significance.  On the other hand, it merits greater attention from academics and practitioners if 

it is a fairly frequent occurrence. 

 For the 720-month interval from February, 1955 to January, 2015 we collected monthly 3-

month T-Bill rates from the St. Louis Federal Reserve website and S&P 500 index values from 

the CRSP database.  We then used these series to estimate periodic monthly market risk 

premia, and alternately partitioned the 720-month dataset into 24 non-overlapping 30-month 

and 20 non-overlapping 36-month subsets.  For convenience, within each subset of data we 

order the data from smallest to largest risk premium on the market.  Because [2] is monotonic 

in 𝑅𝑃𝑚,𝑖 within each subset, SF1 is the minimum value for the factor and SFn the maximum. 

Within each subset, we found SF1, SFn, and the standard deviation of SFi. 

 Panels A and B of Table 1 report the results for these two partitions of the data.  Recall that 

for any given window the mean value of the sensitivity factor must be 1.0, but that individual 

values of the sensitivity factor will be more distant from 1.0 when the observation under 

consideration has a value more distant from the sample mean.  For the 30-month windows, the 

average standard deviation of the samples’ sensitivity factors was about .212, suggesting that 

the change in Jensen’s 𝑎̂ associated with a shock c would be accurately measured within a 

factor of 1 ± .212 about 68% of the time.  The 36-month windows of Panel B produce a similar 

result, with an average standard deviation of the sensitivity factor of about .199.  These suggest 

that, on average, Jensen’s 𝑎̂ does a reasonably good job of measuring unsystematic shocks.  

Indeed, we found that the sensitivity factor was in the interval [.5, 1.5] just over 93% of the 

time. 
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 However, the range of standard deviations of the sensitivity factors suggests that while the 

average standard deviations are in the ballpark of 20%, there is still significant dispersion 

among the different partitions.  The 30-month windows, for example, have a minimum 

standard deviation of .003 and a maximum of .693.  The 36-month windows have a similarly 

large range, from a minimum of .007 to a maximum of .461.  It is when these standard 

deviations are large that we encounter significant problems.  For example, the 30-month 

window with the standard deviation of .693 was 2/1/1995—7/1/1997, and the most extreme 

months in that window were June, 1996 (with a sensitivity factor of 2.627) and June, 1997 (with 

a sensitivity factor of -.255).  Consider any stock during the 2/1/1995—7/1/1997 window.  If 

that stock experienced an unsystematic perturbation of, say, +30% during June, 1996, the 

sensitivity factor indicates that instead of an increase in Jensen’s 𝑎̂ of 
30%

30
 = 1%/month, we 

would actually measure it to be 2.627%/month.  Even more bizarrely, if a +30% shock occurred 

during June, 1997, instead of showing a 1% increase in Jensen’s  𝑎̂, estimating the regression 

parameters would give us a decrease of -.255%/month.  The reason in both cases is that the 

shock of 30% changed our estimate 𝛽̂ so that it completely dwarfed the shock’s effect on 𝑎̂. 

 It is fairly easy to see the main source of the dispersion in standard deviations of the 

sensitivity factor across the different windows by taking closer looks at equation [2] and at 

Table 1.  Equation [2] shows the second term of the sensitivity factor to be 
(𝑅𝑃𝑚,𝑖 – 𝑅𝑃̅̅ ̅̅ 𝑚)

𝜎̂𝑅𝑃𝑚
2 ∙ 𝑅𝑃̅̅ ̅̅

𝑚.  

Because 𝑅𝑃̅̅ ̅̅
𝑚 is a factor of this term, this term’s standard deviation will be proportional to it, 

and windows where the mean market risk premium happens to be relatively close to zero will 

have low standard deviations and Jensen’s 𝑎̂ will have little estimation error.  Similarly, when 

the mean market risk premium has a relatively large absolute value, Jensen’s 𝑎̂ will have 

significantly larger error.  This is corroborated by both Panels of Table 1.  In Panel A, the largest 

standard deviation of sensitivity factors is 2/1/1995—7/1/1997, which is also the one with the 

highest absolute value of average market risk premium (1.996%/month).  Similarly, the window 

with the lowest standard deviation of sensitivity factors (.00342) is 2/1/1960—7/1/1962, and it 

is also the window featuring the lowest absolute value of market risk premium, 0.013%.  The 

correlation between the absolute value of the average market risk premium and the standard 

deviation of the sensitivity factors is quite large at 0.889.  Similar results are obtained for the 

36-month windows. 

 It is also true that 
1

𝜎̂𝑅𝑃𝑚
2  is a factor of the second term of the sensitivity factor, but it varies 

much less than 𝑅𝑃̅̅ ̅̅
𝑚.  For this reason, although the correlation between 

1

𝜎̂𝑅𝑃𝑚
2  and the standard 

deviation of sensitivity factors is positive (.199), it is not anywhere near as large as the .889 

correlation between 𝑅𝑃̅̅ ̅̅
𝑚 and the standard deviation of sensitivity factors for 30-month 

windows. 
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 Overall, with 720 months divided into 24 time periods of 30 months each, we found three 

months in two distinct time periods that had a negative sensitivity factor (October, 1962; 

November, 1996; and June, 1997).  Depending on whether we count months or windows, our 

best estimate of the probability that a 30-month window will contain a month with a negative 

sensitivity factor is between 8.33% and 12.5%.  Similarly, we found two months (March, 2003 

and September, 2008) with negative sensitivity factors when we considered 36-month 

windows, so that our best estimate of the probability that a 36-month window will contain a 

month with a negative sensitivity factor is about 10.0%.  We note that the 30-month windows 

and the 36-month windows had no common months with negative sensitivity factors.  Thus we 

cannot simply identify the problem months in isolation; whether or not a month has a negative 

sensitivity factor depends on the window of which it is a part. 

 

III. Simulations Showing the Effect of Negative Sensitivity Factors 

 

 To get an idea of the potential effects of the problem and explore potential solutions, we 

begin this section with a simulation, and then proceed in the next section to an empirical 

examination with actual data during a timeframe containing a negative sensitivity factor.  The 

reason for proceeding in this order is that only with a simulation can we control the underlying 

parameters to be certain that our results are attributable to a negative sensitivity factor rather 

than actual excess performance.  

 The simulations are conducted in the following way.  First, we simulate 29 normally 

distributed monthly market risk premia with mean of 1.5% and a standard deviation 5%.  Next, 

for each of these 29 market risk premia, a stock risk premium was simulated as the market 

return plus a normally distributed noise term with mean zero and standard deviation 5%.  Thus, 

for these 29 observations, the population 𝛼 is zero and the population 𝛽 is one.  

 Next, a 30th monthly market risk premium is generated to ensure the sensitivity factor is 

negative (provided the sample’s average market risk premium is positive).  Specifically, the 30th 

market risk premium is chosen to be 

   𝑅𝑃̅̅ ̅̅
𝑚 +  

𝜎̂𝑅𝑃𝑚
2

𝑅𝑃̅̅ ̅̅ 𝑚
 + 3%.  [3] 

 

 This condition makes it extremely likely that, provided 𝑅𝑃̅̅ ̅̅
𝑚 > 0, then the sensitivity factor in 

Eq. [2] will be negative.  Then to actually examine the results of Eq. [2], the stock’s residual was 

simulated to be three standard deviations, or 15%, above or below (probability = 0.5 each) the 

market risk premium for the 30th observation.5  For this set of 30 observations, because 29 

                                                           
5 This may seem excessive, but even if the residuals are normally distributed, this should occur about a quarter of a 
percent of the time.  However, Fama (1965), for example, finds in his Table 1 (p. 47) that DJIA stock returns are 
more than three standard deviations from their mean over four times as often as that, and hints that for smaller 
stocks the deviations from a normal are likely more pronounced than that. 
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stock returns are chosen with an average residual of zero and the 30th stock return has a 

residual of ±15% (with equal likelihoods of being positive or negative), the unconditional 

expectation of the 30th month’s residual return is also zero, and so 𝛽̂ is unbiased and the 

expected average Jensen’s alpha is zero.  However, conditioned on whether the stock’s residual 

in the 30th month is positive or negative, the average excess return for all thirty months is either 

-0.5% or +0.5%. 

 This process was repeated 2277 more times, and then partitioned into subsamples with 

negative (N = 1193) and positive (N = 1185) residuals.  While the problems with negative 

sensitivity factors occur whether the average market risk premium is positive or negative, in the 

latter case the last term of the 30th market risk premium in expression [3] would need to be  

-3%.  For simplicity and without loss of generality, we trimmed the partitions by market risk 

premium to 1000 in each of the negative and positive 30th month residual subsamples to avoid 

negative (and unusually large positive) market excess returns. 

 Table 2 reports the entire sample’s (N = 2000) results (1) of regressions using only the first 

29 observations, (2) of using all 30 observations as is conventionally done, and finally (3) of 

using only the first 29 observations to estimate 𝛽̂, and then using this estimate of 𝛽̂ to estimate 

𝛼̂ using all 30 observations.  The purpose of this last (and seemingly unusual) procedure is to 

keep the 30th observation from distorting 𝛽̂, and yet to consider the 30th observation’s effect on 

abnormal performance.  After all, by construction, that expected abnormal performance for all 

30 observations is either +50 or -50 basis points, and so the 30th observation has the potential 

to distort 𝛽̂ and consequently 𝛼̂.  This procedure is in the spirit of trimming or Winsorizing, 

except that those two techniques are often applied indiscriminately, whereas here we make an 

adjustment only for months with a negative sensitivity factor, which a priori we know will 

distort Jensen’s alpha.  For Table 2 we should expect the unconditional effect of the last 

observation’s perturbation to be zero, i.e., E[𝛽̂] = 1 and E[𝛼̂] = 0. 

 The first three columns of Table 2 describe the average market risk premium, average 

maximum market risk premium, and average sensitivity factor for all 2000 simulations.  By 

construction, the last month’s average sensitivity factor of -0.0814 is negative so that the shock 

in the 30th month will result in a larger (smaller) estimate 𝛽̂ and a smaller (larger) estimate of 

Jensen’s alpha when the last month’s residual is positive (negative).  The next two columns 

show the average estimates for the first 29 observations in each sample.  Because these were 

based on simulations with population parameters 𝛽 = 1 and 𝛼 = 0, it is no surprise that we do 

not reject either of the null hypotheses pertaining to these two. 

 The next two columns show the results when the 30th market risk premium produces a 

negative sensitivity factor and the actual stock risk premium for the 30th observation is ±3 

standard deviations (or ±15%) from the market risk premium.  In this table, we see no 

unconditional effect on our estimates 𝛽̂ or 𝛼̂ because the distortions are offsetting.  Similarly, in 

the last column, we find estimating 𝛽̂ from only the first 29 observations, but then applying it to 
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all 30 observations also produces virtually the same results for 𝛼̂.  As expected, neither the 

unconditional value of the average 𝛽̂ nor that of 𝛼̂ is significantly different from the population 

means of one and zero. 

 Things are quite different, however, when we partition the sample by the sign of the 30th 

month’s residual and look at conditional values of 𝛽̂ and 𝛼̂.  In Table 3 we examine the results 

conditioned on the last month’s residual = -3 = -15%.  Because this shock is applied only to the 

last month’s stock return, 𝛽̂ and 𝛼̂ for the first 29 observations should be close to the 

population values, and indeed they are at 0.994 and 0.0050%.  However, the next two columns 

show the results for all 30 observations are quite different.  As shown by Eq. [2], the 30th 

observation’s negative shock will likely to bias 𝛽̂ downwards and Jensen’s alpha upwards, 

despite the negative shock.  Indeed, the average 𝛽̂ falls to 0.7516, allowing us to reject the 

(true) null that 𝛽 = 1 with a t-value of -57.7691.   In addition, Jensen’s alpha rises to 0.0817%, 

with a t-value of 2.6703, this despite the fact that the simulated average excess monthly return 

for the stock is a negative 50 basis points. 

 Perhaps not surprisingly, of the three estimates of Jensen’s alpha [(1) with 𝛽̂ and 𝛼̂ both 

based on the first 29 observations, or (2) both based on all 30 observations, or with (3) 𝛽̂ based 

on the first 29 observations, then 𝛼̂ based on this estimate of 𝛽̂ applied to all 30 observations], 

the third choice provides the estimate of Jensen’s alpha closest to the population value of  

-0.5%.6  This method produces a negative estimate of Jensen’s alpha, -0.4943%, with a t-value 

of -15.676, in sharp contrast to the standard method, which would produce a set of Jensen’s 

alphas that has the wrong sign with a significant t-value of 2.6703 

 Finally, in Table 4 we examine the results when the 30th stock return’s residual is +3 = 15%.  

The results are analogous to those of Table 3.  When only the first 29 observations are 

considered, average 𝛽̂ is once again insignificantly different from one (1.0014, with a t-value of 

0.2299), and similarly average 𝛼̂ is insignificantly different from zero (0.0052%, t = 0.1686).  

When all 30 observations are considered and the parameters estimated the standard way, the 

30th month’s positive stock residual causes average 𝛽̂ to rise to 1.2498, making it significantly 

greater than 1 (t = 57.7975).  Similarly, average 𝛼̂ falls to -0.0724%, making it significantly less 

than zero (t = -2.3503).  Only in the last column (𝛽̂ estimated from the first 29 observations, 

average 𝛼̂ measured from this 𝛽̂ applied to all 30 observations) do we find an estimate of 

average 𝛼̂ that at 0.5042% is close to the known parameter value of 0.5%, which is significantly 

different from zero and which, unlike the standard method’s Jensen’s alpha, has the right sign (t 

= 16.0396). 

 In the next section, we apply this last technique to a sample with a negative sensitivity 

factor and actual market prices, and compare it with the standard method.  

                                                           
6 We also tried several variations of weighted least squares to estimate 𝛽̂ and 𝛼̂ for the full set of 30 observations, 
but none were effective in detecting the average monthly abnormal performance of 50 basis points. 
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IV. An Examination of Jensen’s Alpha for stocks during an interval that contains a negative 

sensitivity factor 

  

 The most perverse case and the one on which we focus our attention is when 
(𝑅𝑃𝑚,𝑖 – 𝑅𝑃̅̅ ̅̅ 𝑚)

𝜎̂𝑅𝑃𝑚
2 ∙ 𝑅𝑃̅̅ ̅̅

𝑚 > 1, as this will produce a negative sensitivity factor so that the effect of a 

positive (negative) perturbation c in month i is to make Jensen’s alpha smaller (larger).  To see 

the practical extent of this problem, we first observe that this term for June, 1997 in the 30-

month window [January, 1995; June, 1997] is 1.2547.  Because this exceeds 1, the sensitivity 

factor is negative and so the effect of an abnormal shock on any stock in June, 1997 will move 

Jensen’s  in the opposite direction, i.e., a positive shock will decrease Jensen’s alphaand a 

negative shock will increase it.  To see the effects of this, we began with the 125 best 

performing stocks and the 125 worst performing stocks during June, 1997.  After deleting firms 

that did not have observations for all 30 months between January, 1995 and June, 78 firms with 

the smallest returns and 93 firms with the largest returns remained.7  Ceteris paribus, the idea 

behind Jensen’s alpha as traditionally calculated would lead us to expect the best (worst) 

performing stocks in June, 1997 to have, on average, better (worse) performance during the 

entire window, but the analysis presented so far suggests this month’s abnormal performance 

will have the opposite effect on the estimate of Jensen’s alpha.   

 We converted these raw returns to excess returns for each month by subtracting the 

periodic monthly T-Bill rate, obtained from the Federal Reserve Bank of St. Louis website.  First 

we estimated 𝛽̂ and 𝛼̂ for the set of the worst 78 June, 1997 performers, using only the first 29 

observations and not those of June, 1997.  We found an average 𝛽̂ of 0.6360 and an average 𝛼̂ 

of -0.424%.  We might expect that when we expand this set to include June, 1997, the month in 

which poor performance is the criterion for inclusion in the sample, we would find a lower 

Jensen’s alpha if it is accurately measuring performance.  As per the previous discussion, we 

found the opposite: the average Jensen’s alpha rose from -0.424% to only -0.075%, or only 

about seven and a half basis points below zero.  The reason for this is the poor performance in 

June, 1997 also flattened the regression lines, decreasing the average 𝛽̂ from 0.6360 to -0.2257, 

and consequently increasing Jensen’s alpha. 

 Because the aberrant 𝛼̂ in the set with all 30 observations is due to the effect of the 30th 

observation on 𝛽̂ (decreasing it from 0.6360 to -0.2257), we also estimated  𝛽̂ using only the 

first 29 observations, but then applied this estimate to the set of all 30 observations to estimate 

Jensen’s alpha.  Not surprisingly (because the stocks were selected based on their low returns 

during June, 1997), this gave us a substantially smaller value for Jensen’s alpha, specifically  

                                                           
7 We note that this is slightly different than the results of the previous section, which simulated shocks and 
combined them with the CAPM prediction.  Here we are taking the most extreme observations, which might 
conceivably not be a shock at all, depending on the stock’s true (unknown) beta. 
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-1.721%, and the only one of the three estimates that was significantly different from zero (t =  

-1.967).  These and other statistics are summarized in Panel A of Table 5. 

 Finally, we replicated this procedure for the 93 stocks with the largest raw returns in June, 

1997.  Here if Jensen’s alpha (as traditionally calculated) is accurately conveying abnormal 

performance, we should expect the estimate based on all thirty observations to be positive 

because exceptional performance in the 30th month was why each stock was selected.  When 

we used only the first 29 observations, we found an average 𝛽̂ of 1.390 and an average 𝛼̂ of  

-1.630%.  When we expanded this set to include June, 1997, instead of increasing to reflect 

every stock’s exceptional performance during that month, average Jensen’s alpha decreased to 

-2.185%.  The reason for the decrease in 𝛼̂ is that the June, 1997 outlier return made the 

regression lines steeper (average 𝛽̂ rose from 1.390 to 2.761), and this made 𝛼̂ smaller.  When 

we once again estimated 𝛽̂ using the set of only 29 observations, but then applied this estimate 

of 𝛽̂ to the entire set of 30 observations, average Jensen’s alpha rose to 0.5516%.  Thus the 

estimate of Jensen’s alpha using all 30 observations (-2.185% per month) increased by 

2.737%/month to 0.5516%/month when we follow the outlined procedure.  These and other 

results are summarized in Panel B of Table 5. 

 

V. Extension to the Fama-French Model 

 

 The previous analysis of Jensen’s alpha can be extended to other models as well.  In 

Appendix B we derive the expression for the sensitivity factor in the Fama-French Three-Factor 

model, and find it to be similar to equation [2], specifically,  

 

  𝑎̂(𝑐, 𝑖) - 𝑎̂(0, 𝑖) = 
𝑐

𝑛
[1 − 𝑛(∆𝛽𝑅𝑃𝑚

∙ 𝑅𝑃̅̅ ̅̅
𝑚 − ∆𝛽𝑆𝑀𝐵 ∙ 𝑅̅𝑆𝑀𝐵 − ∆𝛽𝐻𝑀𝐿 ∙ 𝑅̅𝐻𝑀𝐿)]. [4] 

 

A priori, it is unclear whether we would expect negative sensitivity factors to become more 

frequent or less frequent when we add two factors to get the Fama-French Model.  On the one 

hand, the presence of three variables might suggest there are two extra chances for a factor 

return to have a value sufficiently extreme as to cause a change in the sensitivity factor to be 

similarly extreme.  On the other hand, perhaps the additional two variables might create a 

damping (or diversifying) effect so that even one extreme factor return is insufficient, in which 

case we might expect a lower frequency of negative sensitivity factors.  In addition, negative 

sensitivity factors are related to the distance between the sample mean and zero, so RHML 

(overall mean = 0.399%) and RSMB (overall mean = 0.211%) are less likely to cause negative 

sensitivity factors than is RM - RF (overall mean = 0.654%). Nevertheless, the frequency of 

negative sensitivity factors is primarily an empirical question, and in fact we find them to be 

more common for the Fama-French model than for Jensen’s alpha.  Specifically, we find that for 

the Fama-French model, 0.9259% of months have a negative sensitivity factor, and eight out of 
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our 36 thirty-month windows (or 22.22%) contain at least one such month.  In comparison, the 

same numbers for Jensen’s alpha were a little less than half as frequent: three of 720 months, 

or only 0.4167%, and two of 24 windows, or 8.33%. 

 For an example in a relatively recent window, we consider the period from January, 1, 1992 

to June 30, 1994.  This window features a month with a negative sensitivity factor, specifically,  

-0.1637 in December, 1992.  We considered returns on Apple stock during this same period.  As 

it was, Apple’s actual return that month was -0.42%, and using the FF model, its intercept 

during the entire 30-month window was 0.87%.  Suppose that Apple had earned a return that 

was 30.00% higher that month, increasing that month’s return from -0.42% to +29.58%.  This 

causes the average monthly return during the 30-month window to rise by 1.00%, and yet 

because the shock came in a month with a negative sensitivity factor, the intercept doesn’t 

increase, but instead falls by 0.64% to 0.23%.  Note that although the sensitivity factor given by 

equation [4] is a function of all three independent variables, the problem here doesn’t seem to 

be that December, 1992’s value of Rm – Rf (0.93%) is much higher than its sample mean (0.38%), 

but rather that December’s values of RSMB (2.05%) and especially RHML (5.89%) are much higher 

than their sample mean values of 0.02% and 1.29%.  Using only the twenty-nine observations 

with positive sensitivity factors to estimate betas for all three factors, and then applying these 

betas to the entire set of thirty observations produces a much more reasonable intercept of 

2.61%.  

 

VI. Conclusions 

 

 Ceteris paribus, we would ordinarily expect an unsystematic shock to share price to cause 

the intercept to move in the same direction as the shock.  After all, this is the basis for 

interpreting an intercept as a reasonable measure of excess performance.  We find, however, 

that factor returns sufficiently extreme as to cause the intercept to move in the direction 

opposite that of the shock are not uncommon.  Whether an observation does or doesn’t have 

this property is independent of the stock’s shock, and instead depends primarily on the 

characteristics of the factor return relative to its sample mean.  For each month’s observations, 

we define a “sensitivity factor” that quantifies the effect of unsystematic perturbations on their 

respective values for 𝛽̂ and, consequently, on 𝛼̂, and find that while most sensitivity factors are 

positive, negative ones will cause this aberrant relationship between the stock’s shock and the 

intercept.  This aberrant effect is in turn due to the fact that a positive shock on a day when the 

factor return is much higher than its average (and its average is much greater than zero) will tilt 

the slope estimate upwards (and the intercept estimate downwards), and similarly for negative 

shocks or when the market return is much smaller than average. 

 We derive expressions that will tell us when the factor returns are sufficiently extreme as to 

have this property, and find that while it is not the norm, it did occur in 8.33% of 30-month 
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windows and in 10% of 36-month windows between 1955 and 2015 for Jensen’s alpha, and in 

22.22% of the 30-month windows between 1927 and 2016 for the Fama-French Three-Factor 

Model.  Moreover, we conduct simulations to estimate the effect of a single unsystematic 

shock in a month with a negative sensitivity factor and indeed find that an average Jensen’s 

alpha that is insignificantly different from zero absent a shock becomes significantly negative 

when a positive shock is introduced (and conversely, significantly positive in the presence of a 

negative shock).  This calls into question the widespread use of intercepts as performance 

measures.  At a minimum, researchers should check for negative sensitivity factors and 

consider deleting those observations when estimating the slopes (but then including them 

when estimating the intercept); simulations suggest this method works well.  Other than that, 

the only plausible alternative appears to be to measure performance without relying on an 

intercept from a factor model.  The Buy-and-Hold-Abnormal-Return (BHAR) approach used by 

Ikenberry et al (1995), Lyon et al (1999), Mitchell and Stafford (2000), and others is such an 

alternative. 
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Appendix A—Derivation of Sensitivity Factor for Jensen’s Alpha 

 

 The Capital Asset Pricing Model concludes that E(Rs) = Rf + [E(Rm) – Rf], or equivalently that 

E(Rs) - Rf = [E(Rm) – Rf].  If we define RP to be the risk premium8 (the amount by which the 

asset’s returns exceed the riskless rate), this becomes  

 

  RPs = [RPm]. [A1] 

 

Given a set of data {(RPm,i, RPs,i)}𝑖=1
𝑛 , we can estimate the parameters 𝛼̂ and 𝛽̂ in 

 

  𝑅𝑃𝑠,𝑖 =  𝛼̂ + 𝛽̂𝑅𝑃𝑚,𝑖. [A2] 

 

Given equation [A1], we would expect the intercept 𝛼̂ to be zero when we estimate parameters 

of the regression.  𝛼̂ is Jensen’s alpha; when positive, it suggests that the stock did better than 

the CAPM predicted, and conversely when it is negative.  The problem is that deviations from 

the line RPs = [RPm] affect not only the estimate 𝛼̂, but also the estimate of slope, 𝛽̂.  Under 

certain conditions an unsystematic shock to stock returns can cause a change in 𝛽̂ that 

overwhelms any effect on 𝛼̂.  In other words, a single negative (positive) shock can make a 

stock seem to perform better (worse) than if the shock didn’t occur.  This appendix analyzes the 

conditions under which this can happen. 

 

 If we define 𝜎̂𝑅𝑃𝑚

2 to be the maximum-likelihood estimator sample variance of the market 

risk premia (i.e., unadjusted for degrees of freedom), then the ordinary least squares estimate 

𝛽̂ is 

 

  𝛽̂  =  
∑(𝑅𝑃𝑠,𝑖−𝑅𝑃̅̅ ̅̅ 𝑠)(𝑅𝑃𝑚,𝑖−𝑅𝑃̅̅ ̅̅ 𝑚)

∑(𝑅𝑃𝑚,𝑖−𝑅𝑃̅̅ ̅̅ 𝑚)2  = 
∑(𝑅𝑃𝑠,𝑖𝑅𝑃𝑚,𝑖)−𝑛𝑅𝑃̅̅ ̅̅ 𝑠𝑅𝑃̅̅ ̅̅ 𝑚

𝑛𝜎̂𝑅𝑃𝑚
2 .  [A3] 

 

Because a regression line passes through the sample means, the estimate of 𝛼̂ is 

 

  𝛼̂ =  𝑅𝑃̅̅ ̅̅
𝑠 − 𝛽̂ ∙ 𝑅𝑃̅̅ ̅̅

𝑚. [A4] 

 

 Next we examine a shock c to the ith observation of RPs,i, and express the new parameters 

𝑎̂(𝑐, 𝑖) and 𝛽̂(𝑐, 𝑖) as functions of c and i.   

                                                           
8 Following Jensen, we use the term "risk premium" to refer to either the expected risk premium, E(R) - Rf, which 
must be positive provided beta is positive, or the observed risk premium, R - Rf, which can be negative, and indeed 
in a sufficiently large sample must occasionally be negative to satisfy the no-arbitrage condition.  Because Jensen's 
alpha is a test of observed outcomes, all our references to "risk premium" refer to the observed risk premium." 
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 Consider the second expression for 𝛽̂ in [A3].  After the shock, the only summand in the first 

term of the numerator that will change is the ith term, which will change from 𝑅𝑃𝑠,𝑖𝑅𝑃𝑚,𝑖 to 

(𝑅𝑃𝑠,𝑖 + 𝑐)𝑅𝑃𝑚,𝑖.  The new average risk premium on the stock will be the old risk premium, 

𝑅𝑃̅̅ ̅̅
𝑠, plus 

𝑐

𝑛
.  Thus the net change in the numerator will be 𝑐(𝑅𝑃𝑚,𝑛 – 𝑅𝑃̅̅ ̅̅

𝑚).  The denominator 

will be the same in both cases, so we have  

 

  𝛽̂(𝑐, 𝑖) = 𝛽̂(0, 𝑖) + 
𝑐(𝑅𝑃𝑚,𝑖 – 𝑅𝑃̅̅ ̅̅ 𝑚)

𝑛𝜎̂𝑅𝑃𝑚
2 . [A5] 

 Whether the perturbation causes the slope to increase or decrease depends on the 

numerator of the second term on the right-hand side of [A5].  If c and 𝑅𝑃𝑚,𝑖 – 𝑅𝑃̅̅ ̅̅
𝑚 have the 

same sign, then the slope will be steeper; if they have different signs, then the slope will be 

shallower.   

 

 We next consider 𝑎̂(𝑐, 𝑖).  As shown earlier,  

  𝑎̂(0, 𝑖) = 𝑅𝑃̅̅ ̅̅
𝑠 − 𝛽̂(0, 𝑖) ∙ 𝑅𝑃̅̅ ̅̅

𝑚.   [A6] 

 

Because the shock c causes the average risk premium on the stock to change by 
𝑐

𝑛
, we have  

  𝑎̂(𝑐, 𝑖) =[ 𝑅𝑃̅̅ ̅̅
𝑠 +  

𝑐

𝑛
] − 𝛽̂(𝑐, 𝑖) ∙ 𝑅𝑃̅̅ ̅̅

𝑚.   [A7] 

 

Making use of [A5] and taking the difference between [A7] and [A6] gives us 

 

 𝑎̂(𝑐, 𝑖) - 𝑎̂(0, 𝑖) = 
𝑐

𝑛
 − 

𝑐(𝑅𝑃𝑚,𝑖 – 𝑅𝑃̅̅ ̅̅ 𝑚)

𝑛𝜎̂𝑅𝑃𝑚
2 ∙ 𝑅𝑃̅̅ ̅̅

𝑚, or [A8] 

 

 𝑎̂(𝑐, 𝑖) - 𝑎̂(0, 𝑖) = 
𝑐

𝑛
[1 − 

(𝑅𝑃𝑚,𝑖 – 𝑅𝑃̅̅ ̅̅ 𝑚)

𝜎̂𝑅𝑃𝑚
2 ∙ 𝑅𝑃̅̅ ̅̅

𝑚]. [A9] 

 

The first term of the right-hand side of [A8], 
𝑐

𝑛
, reflects the actual average change in 

performance due to the shock c.  The second term, − 
𝑐(𝑅𝑃𝑚,𝑖 – 𝑅𝑃̅̅ ̅̅ 𝑚)

𝑛𝜎̂𝑅𝑃𝑚
2 ∙ 𝑅𝑃̅̅ ̅̅

𝑚, is a distortion due to 

the fact that the estimate of  changes.  Because  𝑎̂(𝑐, 𝑖) - 𝑎̂(0, 𝑖) will have the same sign as c if 

and only if the term in brackets on the right hand side, 1 − 
(𝑅𝑃𝑚,𝑖 – 𝑅𝑃̅̅ ̅̅ 𝑚)

𝜎̂𝑅𝑃𝑚
2 ∙ 𝑅𝑃̅̅ ̅̅

𝑚, is positive, the 

most extreme distortions will occur if this term is negative, as then a positive (negative) shock c 

will produce a decrease (increase) in Jensen’s 𝑎̂.   

  



 

15 
 

Appendix B—Derivation of Sensitivity Factor for Fama-French Intercepts 

 

 In a multifactor model 𝑌 =  𝛼̂ +  𝛽̂1𝑋1 +   𝛽̂2𝑋2 +   𝛽̂3𝑋3 +  𝜀, OLS estimates are found by 

solving the three simultaneous equations 

 

𝑚11𝛽̂1 + 𝑚12𝛽̂2 + 𝑚13𝛽̂3 =  𝑚𝑌1, 

 

𝑚12𝛽̂1 + 𝑚22𝛽̂2 + 𝑚23𝛽̂3 =  𝑚𝑌2, 

 

and 𝑚13𝛽̂1 + 𝑚23𝛽̂2 + 𝑚33𝛽̂3 =  𝑚𝑌3, 

 

where 

 

𝑚𝑖𝑗 =  ∑(𝑋𝑖,𝑘 −  𝑋̅𝑖)(𝑋𝑗,𝑘 −  𝑋̅𝑗)

𝑛

𝑘=1

 

 

and 

 

𝑚𝑌𝑗 =  ∑(𝑌 𝑘 −  𝑌̅)(𝑋𝑗,𝑘 −  𝑋̅𝑗)

𝑛

𝑘=1

 

 

 

for i, j = 1, 2, 3, and n the number of observations in the sample.  An application of Cramer’s 

Rule gives the expression for 𝛽̂1, for example, to be 

 

𝛽̂1 =  

|

𝑚𝑌1 𝑚21 𝑚31

𝑚𝑌2 𝑚22 𝑚32

𝑚𝑌3 𝑚23 𝑚33

|

|

𝑚11 𝑚21 𝑚31

𝑚12 𝑚22 𝑚32

𝑚13 𝑚23 𝑚33

|

 

 

The expressions 𝛽̂2 and 𝛽̂3 are analogous.  As always,  𝛼̂ =  𝑌̅ − 𝛽̂1𝑋̅1 +  𝛽̂2𝑋̅2 +  𝛽̂3𝑋̅3 

 

As in Appendix A, suppose there is a shock to Yn so that it is increased by c, the new 𝛽̂1 will 

equal 
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𝛽̂1(𝑐) =  

|

𝑚𝑌1 + 𝑐(𝑋1,𝑛 − 𝑋̅1) 𝑚21 𝑚31

𝑚𝑌2 + 𝑐(𝑋2,𝑛 − 𝑋̅2) 𝑚22 𝑚32

𝑚𝑌3 + 𝑐(𝑋3,𝑛 − 𝑋̅3) 𝑚23 𝑚33

|

|

𝑚11 𝑚21 𝑚31

𝑚12 𝑚22 𝑚32

𝑚13 𝑚23 𝑚33

|

 

 

Thus the change in 𝛽̂1 due to the shock c will be ∆𝛽̂1 =  𝛽̂1(c) − 𝛽̂1 = 

 

|

𝑐(𝑋1,𝑛 − 𝑋̅1) 𝑚21 𝑚31

𝑐(𝑋2,𝑛 − 𝑋̅2) 𝑚22 𝑚32

𝑐(𝑋3,𝑛 − 𝑋̅3) 𝑚23 𝑚33

|

|

𝑚11 𝑚21 𝑚31

𝑚12 𝑚22 𝑚32

𝑚13 𝑚23 𝑚33

|

 

 

With similar expressions for ∆𝛽̂2 and ∆𝛽̂3.  Because the new average value of Y will be the old 

average value plus 
𝑐

𝑛
 and because the expression is linear in the shock c, the change in 𝛼̂ =  

 𝑎̂(𝑐, 𝑖) - 𝑎̂(0, 𝑖) = 
𝑐

𝑛
[1 − 𝑛(∆𝛽𝑅𝑃𝑚

∙ 𝑅𝑃̅̅ ̅̅
𝑚 − ∆𝛽𝑆𝑀𝐵 ∙ 𝑅̅𝑆𝑀𝐵 − ∆𝛽𝐻𝑀𝐿 ∙ 𝑅̅𝐻𝑀𝐿)]. 
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Table 1—Distribution of Sensitivity Factor SFi for Jensen’s Alpha 

Panel A: 30-month intervals 

 

SUBSET DATE RANGE 
[BEGINNING DATE, 
ENDING DATE] 

 
𝑹𝑷𝑴
̅̅ ̅̅ ̅̅  

 
𝝈̂𝑹𝑴 

 
RPM,1 
(MIN) 

 
RPM,30 
(MAX) 

 
SF1 

(MIN) 

 
SF30 

(MAX) 

STANDARD 
DEVIATION 

OF SFI 

[2/1/1955, 7/1/1957] 0.007672 0.038488 -0.06791 0.081125 0.606464 1.404955 0.206203 
[8/1/1957, 1/1/1960] 0.003247 0.034627 -0.0751 0.049695 0.869889 1.21946 0.096998 
[2/1/1960, 7/1/1962] 0.00013 0.039331 -0.08823 0.061281 0.994686 1.007678 0.003418 
[8/1/1962, 1/1/1965] 0.011334 0.028173 -0.05052 0.099207 -0.29798 1.913698 0.416152 
[2/1/1965, 7/1/1967] -0.00043 0.034095 -0.08188 0.074219 0.968754 1.028639 0.01308 
[8/1/1967, 1/1/1970] -0.00778 0.037772 -0.08306 0.076021 0.575564 1.47246 0.212963 
[2/1/1970, 7/1/1972] 0.004562 0.041124 -0.09584 0.082813 0.781633 1.280187 0.114762 
[8/1/1972, 1/1/1975] -0.01517 0.058839 -0.12618 0.156964 0.496909 1.780014 0.266632 
[2/1/1975, 7/1/1977] 0.004766 0.039664 -0.07273 0.114206 0.657025 1.242864 0.124304 
[8/1/1977, 1/1/1980] -0.00128 0.040663 -0.09818 0.080175 0.922657 1.065007 0.032454 
[2/1/1980, 7/1/1982] -0.01177 0.044628 -0.1145 0.090944 0.3719 1.627994 0.272854 
[8/1/1982, 1/1/1985] 0.010839 0.042486 -0.06756 0.108711 0.392027 1.486989 0.26392 
[2/1/1985, 7/1/1987] 0.014841 0.043778 -0.08978 0.127217 0.099793 1.838088 0.350694 
[8/1/1987, 1/1/1990] -0.00315 0.057572 -0.22281 0.081804 0.783864 1.083593 0.056648 
[2/1/1990, 7/1/1992] 0.004592 0.043467 -0.10052 0.108188 0.739535 1.264283 0.109285 
[8/1/1992, 1/1/1995] 0.000723 0.023366 -0.04866 0.033882 0.954579 1.067648 0.032006 
[2/1/1995, 7/1/1997] 0.019958 0.029805 -0.05003 0.073946 -0.25472 2.62661 0.692701 
[8/1/1997, 1/1/2000] 0.009978 0.050242 -0.14989 0.076953 0.726135 1.653704 0.205442 
[2/1/2000, 7/1/2002] -0.01608 0.050671 -0.09638 0.091978 0.479757 1.700053 0.328274 
[8/1/2002, 1/1/2005] 0.008399 0.040158 -0.11139 0.085115 0.586672 1.645396 0.21636 
[2/1/2005, 7/1/2007] 0.00369 0.021066 -0.036 0.039232 0.694294 1.341363 0.181191 
[8/1/2007, 1/1/2010] -0.00919 0.06193 -0.17 0.093783 0.601527 1.255146 0.153453 
[2/1/2010, 7/1/2012] 0.009386 0.047458 -0.08211 0.107706 0.576123 1.394454 0.2046 
[8/1/2012, 1/1/2015] 0.012618 0.02437 -0.03562 0.050361 0.170457 2.060321 0.535631 
        
COLUMN MAXIMUM 0.019958 0.06193 -0.03562 0.156964 0.994686 2.62661 0.692701 
COLUMN MINIMUM -0.01608 0.021066 -0.22281 0.033882 -0.29798 1.007678 0.003418 
COLUMN AVERAGE 0.002579 0.040574 -0.09229 0.08523 0.562398 1.477525 0.212084 

 

 This table displays parameters of 30-month non-overlapping windows starting in February, 1955 and 

ending in January, 2015.  The first four columns report the mean, standard deviation, maximum, and 

minimum of market risk premia within the windows.  The next three columns display the minimum, 

maximum, and standard deviation of sensitivity factors (SF) within the window.  As discussed in the text, 

any unsystematic shock that occurs during a month with a negative sensitivity factor will cause Jensen’s 

alpha to move in the direction opposite that of the shock.  
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Panel B: 36-month intervals 

 

SUBSET DATE RANGE 
[BEGINNING DATE, 

ENDING DATE] 

 
𝑹𝑷𝑴
̅̅ ̅̅ ̅̅  

 
𝝈̂𝑹𝑴 

 
RPM,1 
(MIN) 

 
RPM,30 
(MAX) 

 
SF1 

(MIN) 

 
SF36 

(MAX) 

STANDARD 
DEVIATION 

OF SFI 

[2/1/1955, 1/1/1958] 0.00226 0.03088 -0.06791 0.08113 0.88802 1.09963 0.05741 
[2/1/1958, 1/1/1961] 0.00921 0.039365 -0.07510 0.06128 0.48286 1.83720 0.30666 
[2/1/1961, 1/1/1964] 0.00458 0.02858 -0.08823 0.09921 0.71241 1.28206 0.11963 
[2/1/1964, 1/1/1967] 0.00020 0.037923 -0.08188 0.07422 0.98180 1.02018 0.00703 
[2/1/1967, 1/1/1970] -0.00442 0.038537 -0.08306 0.07602 0.75117 1.25457 0.12001 
[2/1/1970, 1/1/1973] 0.00534 0.062018 -0.09584 0.08281 0.71324 1.37455 0.14265 
[2/1/1973, 1/1/1976] -0.00778 0.034928 -0.12618 0.15696 0.75363 1.34279 0.12904 
[2/1/1976, 1/1/1979] -0.00460 0.044248 -0.09818 0.08017 0.63701 1.32884 0.13548 
[2/1/1979, 1/1/1982] -0.00382 0.043465 -0.11450 0.09094 0.77778 1.19026 0.08884 
[2/1/1982, 1/1/1985] 0.00415 0.060016 -0.07183 0.10871 0.76351 1.17187 0.09831 
[2/1/1985, 1/1/1988] 0.00657 0.040706 -0.22281 0.12722 0.77373 1.43018 0.11256 
[2/1/1988, 1/1/1991] 0.00273 0.030423 -0.10052 0.08554 0.85961 1.17505 0.06901 
[2/1/1991, 1/1/1994] 0.00662 0.028811 -0.05254 0.10819 0.25231 1.43558 0.22397 
[2/1/1994, 1/1/1997] 0.00997 0.04928 -0.05003 0.06918 0.26832 1.74146 0.35602 
[2/1/1997, 1/1/2000] 0.01322 0.053857 -0.14989 0.07695 0.64314 1.91332 0.27594 
[2/1/2000, 1/1/2003] -0.01497 0.025764 -0.11139 0.09198 0.48822 1.56763 0.28585 
[2/1/2003, 1/1/2006] 0.00996 0.044922 -0.03540 0.08010 -0.08256 1.70005 0.39763 
[2/1/2006, 1/1/2009] -0.01384 0.052535 -0.17000 0.04648 -0.10125 1.42533 0.31678 
[2/1/2009, 1/1/2012] 0.01420 0.026802 -0.11018 0.10771 0.50521 1.65814 0.27799 
[2/1/2012, 1/1/2015] 0.01200 0.03088 -0.06273 0.05036 0.34082 2.28407 0.46055 

        
COLUMN MAXIMUM 0.0142 0.062018 -0.0354 0.15696 0.9818 2.28407 0.46055 
COLUMN MINIMUM -0.01497 0.025764 -0.22281 0.04648 -0.10125 1.02018 0.00703 
COLUMN AVERAGE 0.002579 0.040675 -0.09841 0.087758 0.570449 1.461638 0.199068 

 

This table displays parameters of 36-month non-overlapping windows starting in February, 1955 and 

ending in January, 2015.  The first four columns report the mean, standard deviation, maximum, and 

minimum of market risk premia within the windows (all expressed in decimals, not percent).  The next 

three columns display the minimum, maximum, and standard deviation of sensitivity factors (SF) within 

the window.  As discussed in the text, any unsystematic shock that occurs during a month with a 

negative sensitivity factor will cause Jensen’s alpha to move in the direction opposite that of the shock. 

  



 
 

Table 2—Simulation Results 

Full Sample with 2000 Firms (1000 with Stock Residual = -3 = -15% in Last Month and Stock Residual = 3 = 15% in Last Month) 

 

  
Average 
Market 

Risk 
Premium 

 
Average 

Maximum 
Market 

Risk 
Premium 

 
Average 

Sensitivity 
Factor for 

Last 
Observation 

 

Average 𝛽̂  
first 29 

observations 

 
Average 𝛼̂ 

first 29 
observations 

 

Average 𝛽̂  
all 30 

observations 

 
Average 𝛼̂ 

all 30 
observations 

 
Average 𝛼̂ when only 

the first 29 observations 

are used to estimate 𝛽̂, 
but then all 30 used to 

estimate 𝛼̂ 
 

 
Grand 
mean 

 
2.388% 

 

 
24.553% 

 

 
-0.0814 

 
1.0004 

 
0.0051% 

 
1.0007 

 
0.0046% 

 
0.0054% 

Standard 
deviation 
of mean 
across 
1000 

simulations 

 
 

0.461% 

 
 

20.388% 

 
 

0.4475 

 
 

0.1940% 

 
 

0.9713% 

 
 

0.2839% 

 
 

0.9737% 

 
 

1.1124% 

 
t-stat 
[H0] 

 

    
0.0889 

 [H0:  = 1] 

 
0.2346 

 [H0:  = 0] 

 
0.1136 

[H0:  = 1] 

 
0.2129 

[H0:  = 0] 

 
0.2183 

 [H0:  = 0] 

 

Simulations with all 2000 observations, 1000 with last residual =-3 and 1000 with last residual =3.  The first three columns provide descriptive 

statistics for the simulations.  The next two columns describe estimates of 𝛽̂ and 𝛼̂ from using only the first 29 observations, and the two 

columns after that do the same when the 30th month is included.  In no column is 𝛽̂ significantly different from one nor 𝛼̂ from zero, suggesting 

that the estimates are unconditionally unbiased.  However, as Tables 3 and 4 will show, they are conditionally biased. 
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Table 3—Simulation Results 

Subsample with Stock Residual = -3 = -15% in Last Month 

 

  
Average 
Market 

Risk 
Premium 

 
Average 

Maximum 
Market 

Risk 
Premium 

 
Average 

Sensitivity 
Factor 

 

Average 𝛽̂  
first 29 

observations  

 
Average 𝛼̂ 

first 29 
observations 

 

Average 𝛽̂  
all 30 

observations  

 
Average 𝛼̂ 

all 30 
observations 

 
Average 𝛼̂ when only 

the first 29 observations 

are used to estimate 𝛽̂, 
but then all 30 used to 

estimate 𝛼̂ 
 

 
Grand 
mean 

 
2.386% 

 
9.751% 

 
-0.0780 

 
0.9994 

 
.0050% 

 
0.7516 

 
0.0817% 

 
-0.4943% 

Standard 
deviation 
of mean 
across 
1000 

simulations 

 
 

0.453% 

 
 

13.965% 

 
 

0.4526 

 
 

0.1949 

 
 

0.9695% 

 
 

0.1359 

 
 

0.9669% 

 
 

0.9946% 

 
t-stat 
[H0] 

 

    
-0.1026 

 [H0:  = 1] 

 
0.1632 

 [H0:  = 0] 

 
 -57.7691 

[H0:  = 1] 

 
2.6703 

[H0:  = 0] 

 
-15.676 

 [H0:  = 0] 

 

The first three columns provide descriptive statistics for the simulations.  The next two columns describe estimates of 𝛽̂ and 𝛼̂ from using only 

the first 29 observations, and the two columns after that do the same when the 30th (extremely negative performance) month is included.  

Because the 30th observation decreases the slope, it increases the intercept to find a significant positive reaction when the 30th (exceptional 

negative performance month) is included.  The last column provides statistics when 𝛽̂ is estimated using only the first 29 observations, while 𝛼̂ is 

estimated by applying the 29-observation estimate 𝛽̂ to all thirty observations.  The penultimate column makes clear that Jensen’s alpha does 

not work well if a stock has exceptional performance in a month with a negative sensitivity factor, while the suggested adjustment in the last 

column does work well (by construction, expected average abnormal return = -15%/30 = -0.5%). 
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Table 4— Simulation Results 

Subsample with Stock Residual = +3 = 15% in Last Month 

 

  
Average 
Market 

Risk 
Premium 

 
Average 

Maximum 
Market 

Risk 
Premium 

 
Average 

Sensitivity 
Factor 

 

Average 𝛽̂  
first 29 

observations  

 
Average 𝛼̂ 

first 29 
observations 

 

Average 𝛽̂  
all 30 

observations  

 
Average 𝛼̂ 

all 30 
observations 

 
Average 𝛼̂ when only 

the first 29 observations 

are used to estimate 𝛽̂, 
but then all 30 used to 

estimate 𝛼̂ 
 

 
Grand 
mean 

 

 
2.389% 

 
39.295% 

 
-0.0849 

 
1.0014 

 
0.0052% 

 
1.2498 

 
-0.0724% 

 
0.5042% 

Standard 
deviation 
of mean 
across 
1000 

simulations 

 
 

0.469% 

 
 

14.124% 

 
 

0.4421 

 
 

0.1931 

 
 

0.9726% 

 
 

0.1366 

 
 

0.9738% 

 
 

0.9935% 

 
t-stat 
[H0] 

 

    
0.2299 

 [H0:  = 1] 

 
0.1686 

 [H0:  = 0] 

 
57.7975 

[H0:  = 1] 

 
-2.3503 

[H0:  = 0] 

 
16.0396 

 [H0:  = 0] 

 

The first three columns provide descriptive statistics for the simulations.  The next two columns describe estimates of 𝛽̂ and 𝛼̂ from using only 

the first 29 observations, and the two columns after that do the same when the 30th (extremely positive performance) month is included.  

Because the 30th observation increases the slope, it decreases the intercept to find a significant negative reaction when the 30th (exceptional 

positive performance month) is included.  The last column provides statistics when 𝛽̂ is estimated using only the first 29 observations, while 𝛼̂ is 

estimated by applying the 29-observation estimate 𝛽̂ to all thirty observations.  The penultimate column makes clear that Jensen’s alpha does 

not work well if a stock has exceptional performance in a month with a negative sensitivity factor, while the suggested adjustment in the last 

column does work well (by construction, expected average abnormal return = 15%/30 = 0.5%). 
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Table 5—Examination of Stocks with the Smallest and Largest Returns During June, 1997, a Month with a Negative Sensitivity Factor 

 

Panel A: 78 Stocks with the Lowest Returns 

 

  
Median 

 
Mean 

T-statistic 

(H0:  = 1 or H0:  = 0, as 
appropriate) 

𝛽̂ only 29 observations 0.4361 0.6360 -1.270 

𝛼̂ only 29 observations -0.264% -0.424% -0.483 

    

𝛽̂ all 30 observations -0.3450 -0.2257 -4.777 

𝛼̂ all 30 observations -0.125% -.075% -0.087 

    

𝛼̂ all 30 observations when  

𝛽̂ using only 29 observations 

-2.322% -1.721% -1.967 

 

Panel B: 93 Stocks with the Largest Returns 

 

  
Median 

 
Mean 

T-statistic 

(H0:  = 1 or H0:  = 0, as 
appropriate) 

𝛽̂ only 29 observations 1.359 1.390 2.2883 

𝛼̂ only 29 observations -2.307% -1.630% -3.0272 

    

𝛽̂ all 30 observations 2.601 2.761 8.2150 

𝛼̂ all 30 observations -2.809 -2.185% -3.9310 

    

𝛼̂ all 30 observations when  

𝛽̂ using only 29 observations 

0.102% 0.552% 1.0343 

 

In a fashion similar to the simulations, the worst (best) performers appear to have performed better (worse) when the month of their extreme 

performance is included.  The suggested adjustment to Jensen’s alpha does not suffer this problem.



 
 

Table 6—Distribution of Sensitivity Factor SFi for the Fama-French Model 

30-month intervals 

 

SUBSET DATE RANGE 
[BEGINNING DATE,  
ENDING DATE] 

 

𝑹𝑴 − 𝑹𝑭
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

 

𝑺𝑴𝑩̅̅ ̅̅ ̅̅ ̅ 

 

𝑯𝑴𝑳̅̅ ̅̅ ̅̅ ̅ 

 
MIN SFI 

 

 
MAX SFI 

 

[1/1/1927, 6/30/1929] 0.023287 -0.00622 -0.00337 -0.10269 1.61838 
[7/1/1929, 12/31/1931] -0.03723 -0.00431 -0.00444 0.180059 1.619833 
[1/1/1932, 6/30/1934] 0.019707 0.018733 0.017913 0.107722 1.488343 
[7/1/1934, 12/31/1936] 0.027813 0.012393 0.01049 0.074815 2.475646 
[1/1/1937, 6/30/1939] -0.00446 -0.00371 -0.00934 0.022362 1.726773 
[7/1/1939, 12/31/1941] -0.00149 0.006253 0.009593 0.296228 4.463833 
[1/1/1942, 6/30/1944] 0.01769 0.010167 0.01433 0.10809 9.300841 
[7/1/1944, 12/31/1946] 0.012347 0.007617 0.00565 0.32839 5.839063 
[1/1/1947, 6/30/1949] 0.00234 -0.00588 0.003907 0.262817 1.571122 
[7/1/1949, 12/31/1951] 0.02042 -0.0001 0.00614 -0.06247 2.111119 
[1/1/1952, 6/30/1954] 0.011127 -0.00284 0.000363 0.394562 1.911453 
[7/1/1954, 12/31/1956] 0.013933 -0.00128 0.0054 -0.3995 1.746838 
[1/1/1957, 6/30/1959] 0.01244 0.00243 0.00154 0.417782 1.96373 
[7/1/1959, 12/31/1961] 0.005673 0.00038 0.000277 0.526314 1.332521 
[1/1/1962, 6/30/1964] 0.006227 -0.00563 0.009507 0.275094 2.292669 
[7/1/1964, 12/31/1966] 0.002307 0.01035 0.001847 0.340451 2.017358 
[1/1/1967, 6/30/1969] 0.001857 0.011263 0.003743 0.032917 1.719114 
[7/1/1969, 12/31/1971] 0.00348 0.000623 1.33E-05 0.874278 1.152201 
[1/1/1972, 6/30/1974] -0.01377 -0.01176 0.012157 0.030659 2.23991 
[7/1/1974, 12/31/1976] 0.010603 0.006397 0.009823 -0.06603 2.828564 
[1/1/1977, 6/30/1979] 0.00251 0.01479 0.003657 0.216626 2.698129 
[7/1/1979, 12/31/1981] 0.001427 0.005767 -0.0011 0.470518 1.556957 
[1/1/1982, 6/30/1984] 0.00442 0.00462 0.01084 -0.35425 1.806594 
[7/1/1984, 12/31/1986] 0.017873 -0.00424 0.004243 0.007336 3.527036 
[1/1/1987, 6/30/1989] 0.006113 -0.00202 0.003513 0.222677 1.681859 
[7/1/1989, 12/31/1991] 0.00408 -0.0002 -0.00687 0.326189 1.916983 
[1/1/1992, 6/30/1994] 0.00375 0.000203 0.012903 -0.16373 1.694864 
[7/1/1994, 12/31/1996] 0.015367 -0.00303 -0.00014 0.050813 2.050985 
[1/1/1997, 6/30/1999] 0.014737 -0.00715 0.00039 0.344328 1.866878 
[7/1/1999, 12/31/2001] -0.0062 0.010087 0.01096 -0.00072 1.750597 
[1/1/2002, 6/30/2004] 0.00168 0.008 0.00511 0.357655 2.058335 
[7/1/2004, 12/31/2006] 0.008563 0.001783 0.007073 -0.03813 1.852731 
[1/1/2007, 6/30/2009] -0.00997 0.00201 -0.00628 0.39678 1.460182 
[7/1/2009, 12/31/2011] 0.012587 0.00364 -0.00285 0.335633 1.58255 
[1/1/2012, 6/30/2014] 0.015237 -0.00173 0.004483 0.405374 2.260659 
[7/1/2014, 12/31/2016] 0.00774 0.00114 0.000933 0.470761 1.451022 

COLUMN MINIMUM -0.03723 -0.01176 -0.00934 -0.3995 1.152201 
COLUMN AVERAGE 0.006506 0.002182 0.003956 0.185826 2.295435 
COLUMN MAXIMUM 0.027813 0.018733 0.017913 0.874278 9.300841 
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This table displays parameters of 30-month non-overlapping windows starting January 1, 1927 and 

ending in December 31, 2016.  The first three columns report the mean values of Rm – Rf, SMB, and HML 

(all expressed as decimals, not percents) within the 30-month window.  The next two columns display 

the minimum and maximum sensitivity factors (SF) within the window.  As discussed in the text, any 

unsystematic shock that occurs during a month with a negative sensitivity factor will cause the intercept 

to move in the direction opposite that of the shock. 


