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Abstract

I examine the role of heterogeneous investment horizons for the wealth distribution among agents

with nonseparable recursive preferences, and the resulting equilibrium asset prices. The novelty of

this study is introducing a new type of heterogeneity in terms of different investment horizons in a

class of models with recursive preferences that can match asset pricing data much closer. I construct

a model with short-term and long-term investors, and find that over time long-term investors, who

take larger amount of information for their utility optimization outcrowd myopic investors in terms

of wealth share. In the presence of long-run risk, however, short-term agents, who are less averse to

persistent shocks to consumption growth rate may dominate over the long-term agents, driving the

equity premium below the empirically observed one and posing a challenge for long-run risk models.
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1. Introduction

In their seminal paper Bansal and Yaron (2004) demonstrate that long-run risks represented by the

persistence in the growth prospects help explain many features of asset market data regarded as puzzles.

Investors with different horizons, however, may be concerned about transitory and long-run risks to a

different extent (Bansal, Dittmar, and Kiku, 2009). From high and medium frequency traders such as

hedge funds and mutual funds to longer horizon traders such as pension funds, investors’ preferences

and objectives can be influenced by the liquidity constraints they face and their investment horizon.

Therefore, recognizing the existence and interaction of investors with heterogeneous horizons and the

variation of their sensitivity to long-run risks is important for analyzing their market participation.

The difference in risk pricing and saving behavior related to the extent that short-term and long-term

investors care about long-run risks can affect wealth distribution and stock prices. In the absence of

long-run risk differences in the horizon can also influence the wealth distribution between agents. The

choice between a myopic and a dynamic long-term investment strategy (where the investor considers

a larger set of information in the latter) can lead to uneven wealth accumulation, even if each agent

chooses her own individual optimal strategy. This paper focuses on understanding the economics behind

the wealth distribution between agents with recursive preferences and different investment horizons in

an economy with and without long-run risks and its effect on equilibrium asset prices.

The novelty of this study is exploring a new line of heterogeneity in terms of different investment

horizons in a class of asset pricing models featuring recursive preferences that have shown potential

in resolving asset pricing puzzles. Even though accounting for heterogeneity is plausible and can lead

to interesting interactions among agents, these models typically analyze a representative agent. The

reason, as emphasized by Collin-Dufresne, Johannes, and Lochstoer (2015), is the complexity in solving

such models and so far there are only a few studies incorporating agents of different types (Borovicka,

2016; Collin-Dufresne, Johannes, and Lochstoer, 2017; Garleanu and Panageas, 2015; Pohl, Schmedders,

and Wilms, 2016, among others). These papers have mainly focused on studying investors who differ in

their beliefs and preferences. However, the effect of investor horizon heterogeneity in such models has

not been investigated yet.

To study these effects I construct models with two agents who have a short and a long investor

horizon when there are either iid consumption growth rate shocks or long-run risks as in the setting of

Bansal and Yaron (2004). Since the consumption sharing rule depends on the value functions that I try

to solve for, I employ the numerical method of Collin-Dufresne, Johannes, and Lochstoer (2015) using

backwards recursion in order to find a solution in the general model. I also study some special cases

with closed-form solutions which allow us to draw implications about the wealth distributions between

agents with different horizons. I find that long-term investors accumulate larger wealth shares over

time compared to myopic short-term agents. Even though each agent chooses her optimal strategy, the

investor with long-term strategy that incorporates more information in her decisions rapidly outcrowds
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the myopic agent who only cares about the close future when she selects her optimal portfolio. I show

that the behavior of the myopic agent resembles the one of an impatient agent or an agent who has

a distinct preference for early resolution of uncertainty. In contrast, in the presence of long-run risks,

the myopic agent may sell insurance against these persistent risks to the long-term agent who is more

concerned about them. Since the short-term agent would bear a larger part of the risk in the economy,

she would accumulate a higher premium and wealth share. As the consumption share of the myopic

agent who is not as concerned about the long-run risk increases, the importance of long-run risk in the

economy drops, leading to a decrease in the equity premium and a challenge to the long-run risk models.

Allowing for nonseparable recursive preferences when studying the relation between heterogeneity of

investment horizons and asset prices is important since it provides the opportunity to explore this link

in a setting that matches the stylized facts from asset pricing data much more accurately. First, under

recursive preferences, risk aversion can be separated from the elasticity of intertemporal substitution.

Heterogeneous investment horizons and liquidity objectives can entail different degrees of distaste for

intertemporal fluctuations, independent from the risk aversion levels of investors. This can lead to

interesting implications for risk premia. Second, under recursive preferences long-run risks that are

characterized as persistent shocks to the growth rate can be included as a state variable. The long-run

risk model proposed by Bansal and Yaron (2004) can justify many of the features of asset pricing data.

In the model news regarding the expected growth rates affect the volatility of the price-dividend ratio

and positively covary with the marginal rates of substitution of investors, leading to higher risk premia.

The higher the persistence of the shocks, the larger the risk premia become. Taking into account

the corresponding sensitivity of agents with different investment horizons to long-run risks can lead to

interesting dynamics in their risk sharing behavior and wealth distribution that can affect asset prices

in the short and the long run.

Previous studies that have addressed the importance of investment horizon have shown that this

characteristic matters once the economic setup becomes more realistic. Merton (1969) shows that under

the assumption of no transaction costs and no changing investment opportunity sets portfolio allocation

of investors is independent of their horizon. However, focusing on more realistic settings including

market illiquidity and hedge demands brings evidence that short-term and long-term decisions can be

substantially different. On the one hand, capital liquidity is important for portfolio choices of investors

with different horizons since their investment goals vary with respect to their liquidity objectives. For

instance, Beber, Driessen, and Tuijp (2012) show that the heterogeneity of investor horizons determines

the liquidity premium of assets and the way liquidity affects asset prices. On the other hand, Merton

(1971) finds that state variables that account for investors’ intertemporal hedging demands can influence

their decisions at different horizons. Accounting for recursive preferences and the degree of sensitivity of

investors with heterogeneous investment horizons to long-run risks in a model that justifies asset pricing

data features much closer can shed more light on the distribution of wealth and the way it affects risk

premia.
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The rest of the paper is organized as follows. Section 2 presents the model setup and the economy in

which I study the relation between investment horizon heterogeneity, market participation of investors,

and asset prices. Section 3 presents the analytical results of the paper. Section 4 outlines the numerical

method used to find the optimal wealth allocation between the agents. Section 5 focuses on the role of

heterogenous investment horizons in the presence of long-run risk and section 6 concludes the paper.

2. The model

2.1 Setup and economy

In this section I describe a model with two agents i = {A,B} who have different investment horizons

and can also differ in terms of their preferences. Long-term investors are denoted by i = A and are

assumed to have an investor horizon of τA = 30 years, while short-term investors are myopic, denoted

by i = B, have a horizon of τB = 2 years (see Figure 1). The investors of each type enter the market and

invest for a period of 30 years and after 30 years they exit the market. While the long-term investors

have long-run goals and optimize over a period of 30 years, short-term investors are myopic, with an

investment horizon of 2 years, and thus optimize over a period of 2 years. After these 2 years they

optimize for another 2 and continue in the same way until they exit the market. There is no uncertainty

about the length of the investment horizon of each agent and no hedging demands related to such an

uncertainty are needed. The calibration of the model parameters is monthly. The lengths of horizons of

the two types of investors are varied from 30 years (360 months) to 100 years (1200 months), and 500

years (6000 months) in order to study the long-term wealth distribution effects of investment horizon

in the economy.

At every point in time there is one agent of each type and both agents that are currently investing

entered the market at the same time. These assumptions imply a two-agent representation in the

economy and minimize the number of state variables in terms of the relative consumption share of each

investor. The method extends conceptually to N agents, but this would scale the problem in N and

would require using N − 1 endogenous state variables to describe the wealth distribution among the

agents. Since this makes the problem more computationally intensive, I consider the case with only two

types of agents.
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Figure 1: Model timeline
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Aggregate consumption is given by Ct, while individual consumption of investors A and B at time

t is denoted by CA,t and CB,t. The market clearing condition is:

CA,t + CB,t = Ct. (1)

I first consider an economy where the only shock to consumption growth rate is an iid shock εt:

gt+1 = ln

(
Ct+1

Ct

)
= µ+ σεt+1 (2)

Both investors have Epstein-Zin preferences suggested by Koopmans (1960), Kreps-Porteus (1978),

Epstein and Zin (1989), and Weil (1989), and given by:

Vi,t = Vi,t(Ci,t, Vi,t+1) =
[
(1− βi)Cρii,t + βiEt(V

αi
i,t+1)

ρi
αi

] 1
ρi , (3)

where Et(V
αi
i,t+1)

1
αi is the certainty equivalent of all future consumptions.

Since the investment horizon τi of each type of agents is finite, I assume that she consumes her

terminal wealth before exiting the market. Thus, the terminal value function at time T = 30 takes the

following form:

Ui,T = (1− βi)Ci,T . (4)

For the rest of the periods before time T the long-term investor optimizes dynamically, taking into

account all future expected utilities until her exit (as in equation (3)). The short-term agent realizes

she will invest and consume until the terminal date T and therefore weighs and discounts the expected

future value functions proportionally to the remaining time until the terminal period. However, she is
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myopic and only takes into account the current and following periods’ information for her optimization.

Thus, while the short-term investor’s value functions at time T and T − 1 take the same form as the

ones of he long-term investor, for all the periods from t = T − 2 until t = 0, the value function of the

myopic investor is given by:

VB,T−t =
[
(1− βB)CρBB,T−t + (βB + ...+ βtB)ET−t (UαB (CB,T−t+1))

ρB
αB

] 1
ρB , (5)

where U(CB,t) = (1 − βB)CB,t is the utility of agent B from consumption at time t. Thus, at the end

of each of her 2-year investment horizons the myopic agent of type i = B transfers her wealth to the

next period during the time they are in the market, but does not optimize dynamically for more than

a period ahead, taking less information into account for her optimization than agent A.

Initially, I consider the case when investors do not differ in terms of their preference parameters in

order to study the pure effect of investment horizon in the model. Afterwards, I allow the preference

parameters to differ across agents of type A and B and denote the time discount factor as βi, ρi =

1− 1/ψi, where ψi is the elasticity of intertemporal substitution (EIS), and αi = 1− γi, where γi is the

risk aversion level. I assume a concave form of the utility functions of both types of agents and thus

the risk aversion γi and EIS ψi parameters are assumed to take only positive values. Hence, ρi ≤ 1 and

αi ≤ 1. The time discount factor βi ranges between 0 and 1.

2.2 Pareto problem

The two-agent Pareto problem can be represented as the optimization of a social planner who maximizes

the weighted sum of utilities of the investors of both types at time t = 0 subject to the market clearing

condition:

max
{CA,t,CB,t}Tt=0

wtVA,0 + (1− wt)VB,0 (6)

s.t. CA,t + CB,t = Ct for all states and time.

Even though the individual utility functions are recursive, the social planner utility is not recursive.

However, as shown by Lucas and Stokey (1984), Kan (1995), and Backus, Routledge, and Zin (2009)

a recursive formulation exists. Applying Theorem 3 from Lucas and Stockey (1984) it follows that the

Pareto optimal allocation is given by the following Bellman equation:

J(Ct, VB,t) = max
{CA,t,VB,t+1}

[
(1− βA)CρAA,t + βAEt[J(Ct+1, VB,t+1)

αA ]
ρA
αA

] 1
ρA (7)

s.t. VB,t(CB,t, VB,t+1) ≥ VB,t

CA,t + CB,t = Ct,
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where VB,t is the so-called promised utility to agent B at time t and J(Ct, VB,t) = VA,t. Since there is

monotonicity in preferences, the utility-promise constraint is binding and hence, the constraint can be

replaced by VB,t(CB,t, VB,t+1) = VB,t.

The problem of choosing a feasible allocation between the two agents can be viewed as a problem

of maximizing the utility of agent A at time t over her own consumption CA,t and the promised utility

to agent B at time t+ 1, VB,t+1, that is the aggregate utility over the remaining horizon that agent A

promises to agent B. Agent A can increase her consumption at time t up to the point where the utility

of agent B at time t does not fall below the promised utility VB,t. Thus, agent A can either choose

to have higher consumption CA,t at time t and lower utility VA,t+1 at time t + 1 by promising higher

utility to agent B at time t+ 1, or alternatively agent A can choose to have lower consumption CA,t at

time t and higher utility VA,t+1 at time t+ 1 by promising lower utility VB,t+1 to agent B at time t+ 1.

The promised utility VB,t+1 that was chosen at time t will serve as a constraint for the minimum utility

agent B will receive at time t+ 1, and so on until the terminal date T . In the optimization problem (7),

Ct is an exogenous and VB,t is an endogenous state variable.

I solve a normalized version of the model with all variables divided by aggregate consumption. I

denote vi,t = Vi,t/Ct and ci,t = Ci,t/Ct and hence, the value functions can be written as:

vi,t =

[
(1− βi)cρii,t + βiEt

[
vαii,t+1(Ct+1/Ct)

αi
] ρi
αi

] 1
ρi

, (8)

where the market clearing condition is cA,t+cB,t = 1. As shown in Epstein and Zin (1989) the stochastic

discount factor for agent i would be:

Et[M
i
t+1R

j
t+1] = 1 for all times t and states ωt+j

M i
t+1 = βi

(
ci,t+1

ci,t

)ρi−1(Ct+1

Ct

)αi−1( vi,t+1

Et
[
vαii,t+1(Ct+1/Ct)αi

] 1
αi

)αi−ρi
. (9)

Under the assumption of frictionless complete markets the equilibrium requirement (presented here

in a normalized form) for solving the maximization problem is given by the first-order condition - the

marginal intertemporal rates of substitution of the two agents must be equal for each state and over

each time period (Collin-Dufresne, Johannes, and Lochstoer, 2015):

βA

(
cA,t+1

cA,t

)ρA−1(Ct+1

Ct

)αA−1( vA,t+1

Et
[
vαAA,t+1(Ct+1/Ct)αA

] 1
αA

)αA−ρA
=

= βB

(
cB,t+1

cB,t

)ρB−1(Ct+1

Ct

)αB−1( vB,t+1

Et
[
vαBB,t+1(Ct+1/Ct)αB

] 1
αB

)αB−ρB
. (10)

Given a Pareto-optimal allocation, we can find the equilibrium prices and hence, all competitive
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equilibria can be determined. However, we can only estimate the initial endowments given an equilibrium

condition, but we cannot find the equilibrium given the initial endowments. The reason is that the

current period value functions depend on the future value functions and consumption allocations that

are unknown. The initial endowments of the two agents are implicitly determined by the utility VB that

agent A promises to agent B.

Since the consumption sharing rule depends on the value functions that I try to solve for, the general

model does not have a closed-form solution, so I employ the numerical method of Collin-Dufresne,

Johannes, and Lochstoer (2015) using backwards recursion in order to find a solution.

3. Analytical results

Even though the general model does not have a closed-form solution, in this section I show some special

cases with analytical solutions and their implications for the wealth distribution between agents with

different investment horizons.

3.1 Equilibrium wealth distribution with heterogeneous investment horizons

I first consider the special case when there are only iid shocks to consumption growth rate and the risk

aversion levels of the two agents are equal (αA = αB). In order to focus on the effect of investment

horizon for wealth distribution I assume that the short-term agent, denoted by i = B has the shortest

possible horizon using monthly calibration of τB = 1 month and CRRA utility preferences. The long-

term investor, denoted by i = A, has a horizon of τA = 30 years. I also consider alternative lengths

of the long-term investor horizon of 100 years and 500 years in order to study the long-term effects

of horizon on wealth distribution (see Figure 2). I show that in this case the shocks to consumption

growth rate εt do not influence the consumption sharing in the economy and we can find an analytical

solution for the share of each agent that has implications for the effect of investment horizon on risk

sharing.
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Figure 2: Model timeline: Case 2
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When the short-term investor has CRRA utility, her risk aversion and elasticity of intertemporal

substitution parameters become equal (αB = ρB). Thus, we can write the equilibrium condition in

frictionless complete markets as follows:

βA

(
cA,t+1

cA,t

)ρA−1(Ct+1

Ct

)αA−1( vA,t+1

Et
[
vαAA,t+1(Ct+1/Ct)αA

] 1
αA

)αA−ρA
= βB

(
cB,t+1

cB,t

)ρB−1(Ct+1

Ct

)αB−1
(11)

⇔βA
(
cA,t+1

cA,t

)ρA−1(
eµ+σεt+1

)αA−1( vA,t+1

Et
[
vαAA,t+1(Ct+1/Ct)αA

] 1
αA

)αA−ρA
=

=βB

(
cB,t+1

cB,t

)ρB−1(
eµ+σεt+1

)αB−1
. (12)

Since the risk aversion levels of the two agents are equal, it follows that

(
Ct+1

Ct

)αA−1
=

(
Ct+1

Ct

)αB−1
.

Thus we can solve analytically for the consumption share of the long-term agent (cA) using the following

equilibrium condition, and the consumption share of the short-term investor will then be cB = 1− cA:

βA

(
cA,t+1

cA,t

)ρA−1( vA,t+1

Et
[
vαAA,t+1(Ct+1/Ct)αA

] 1
αA

)αA−ρA
= βB

(
cB,t+1

cB,t

)ρB−1
. (13)

We can see that the consumption allocation does not depend on the random shocks εt and it is a

deterministic function of time. Hence, the consumption share of agent cA,t is only a function of her

past consumption share cA,t−1: cA,t = cA,t(cA,t−1). The value function of the agent with Epstein-Zin

9



preferences is predictable at time t and we prove by recursion that it takes the form jt+1 = Et[jt+1].

This leads to the following theorem (see the proof in Appendix B):

Theorem 1. Suppose agent A has Epstein-Zin preferences, agent B has CRRA preferences and both

agents have equal risk aversion and time discounting parameters. Then, the consumption sharing between

them is a deterministic function of time, that is, the consumption share does not depend on any of the

past shocks to consumption growth rate. The value functions are also deterministic. In particular, the

following condition holds:

(
cA,t+1
cA,t

)ρA−1

(
1−cA,t+1
1−cA,t

)α−1 = eµ+
1
2
ασ2

, where eµ+
1
2
ασ2

is constant. In case µ > −1
2ασ

2,

the consumption share of the investor with Epstein-Zin preferences increases over time, and lim
t→∞

cA,t = 1

such that she outcrowds the CRRA agent. In case µ < −1
2ασ

2, the consumption share of the investor

with Epstein-Zin preferences decreases over time.

Merton (1969) and Samuelson (1969) show that under CRRA preferences myopia, or behaving as if

each period were the last one before retirement, is optimal. Since the solution of the pareto problem

gives the optimal consumption allocation between agents based on each agent’s optimal strategy, the

CRRA investor will be myopic. Thus, solving the special case with one CRRA and one Epstein-Zin

agent sheds light on the equilibrium wealth distribution between a myopic short-term investor and a

long-term investor who optimizes her utility dynamically. Using the monthly calibration of Bansal and

Yaron (2004), where µ = 0.0015 and σ = 0.0078, (or alternative reasonable parameters), we can show

that the first case µ > −1
2ασ

2 is normally satisfied and observed in the data. Hence, the investor

with Epstein-Zin preferences who has a longer horizon dominates over the myopic CRRA investors and

accumulates a larger wealth share over time. The wealth distribution between myopic and non-myopic

agents who have equal risk aversion and time discounting preferences is not clear ex ante, but the results

confirm the intuition that the dynamic optimization that takes into account a larger set of information

for more periods ahead leads to a larger wealth accumulation.

To see how fast the long-term agent accumulates wealth and whether she grows large enough wealth

share to dominate over the short-term agent over time, I explore the evolution of consumption shares

of the two agents for the investment horizons of 30, 100, and 500 years (360, 1200, and 6000 months)

ahead, when the long-term agent’s initial consumption share is cA = 0.0001. Figure 3 shows the results

in the case when one agent has CRRA preferences, while the second one has Epstein-Zin preferences

and both agents have the same risk aversion and time discounting parameters (αA = αB = −9 and

βA = βB = 0.998). We observe that after 30 years the long-term investor accumulates a share of

about 3% of the total aggregate consumption and the short-term agent holds 97%. Over time, however,

the share of the long-term investor increases rapidly compared to the one of the short-term agent.

In particular, only after 100 years, the long-term investor accumulates over half of the wealth in the

economy (54.98%) and after 500 years she holds 99.81%. Thus, the consumption share of the long-term

agent who takes into account more information for her utility optimization converges to 1 in the future
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and she outcrowds the short-term myopic agent.

Figure 3 also shows the evolution of the consumption path when the two agents have different time

preference parameters. The long-term agent is more patient and has βA = 0.999, while the short-term

agent is less patient with βB = 0.995. We observe that the long-term agent who is additionally more

patient accumulates wealth faster compared to a long-term investor who is as patient as the short-term

agent. Thus, the effect of horizon and the fact that the long-term investor outcrowds the myopic investor

is even more pronounced when the long-term agent is also more patient than the short-term one.

Figure 3: Long-term investor’s consumption share evolution

The figure plots the average of 10000 simulated paths of consumption share of the long-term agent (A) with
Epstein-Zin preferences when the short-term agent (B) has myopic CRRA preferences. The initial endowment of
agent (A) is set to cA,0 = 0.0001 and the consumption share is estimated for the next 6000 months (500 years). The
solid line represents the case when the two agents have the same time discounting parameters (βA = βB = 0.998)
and the dashed line to the case when the long-term agent is more patient (βA = 0.999 and βB = 0.995).

In order to test whether the investment behavior and consumption path of the myopic agent resemble

the one of an impatient agent or an agent who prefers early resolution of uncertainty less, I proceed

the following way. I estimate the evolution of consumption paths when both investors in the economy

have Epstein-Zin utility, but differ in terms of their time discounting and elasticity of intertemporal

substitution parameters. I start with the case when agents have different time discounting parameters

(βA = 0.999 and βB = 0.995) and plot the consumption share of the more patient one (solid line, Figure

4). We can see that the more patient agent accumulates larger wealth over time compared to the less

patient one. Intuitively, the patient agent prefers to postpone her consumption for the future, and as

a result she consumes less today, more tomorrow, and her share becomes larger over time. Starting
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with a consumption share of cA = 0.0001, the patient agent accumulates 0.0086% of total wealth in 30

years, 5.67% after 100 years, and 83.55% after 500 years. Thus, even though her consumption share

grows over time, it does so slower compared to the case when the patient agent has as well a long-term

investment horizon and the less patient agent is myopic. We can find, however, that increasing the

difference between time discounting parameters of the two agents, such that βB < 0.995 leads to a

wealth accumulation of the patient agent as fast as the one of the long-term agent. Hence, a myopic

investment strategy can be equivalent to the strategy of an impatient agent who prefers to consume

more today and accumulate less wealth in the future.

Figure 4: Consumption share evolution with different preference parameters

The figure plots the average of 10000 simulated paths of consumption share of two Epstein-Zin agents: one who
is more patient (solid line, βA = 0.999, βB = 0.995) and one who has lower preference for early resolution of
uncertainty (dashed line, ρA = 0.5, ρB = −4), while the rest of the parameters are equal. The initial endowment
of the agents is set to cA,0 = 0.0001 and the consumption share is estimated for the next 6000 months (500 years).

I also consider the case when both agents have Epstein-Zin preferences, but different elasticity

of intertemporal substitution parameters to see whether the investment behavior of a myopic agent

resembles the one of an agent who prefers early resolution of uncertainty less (ρA = 0.5 and ρB = −4).

In Figure 4 (dashed line) I plot the consumption path of the agent who has lower preference for early

resolution of uncertainty. Starting with cA = 0.0001 the investor accumulates 1.9% in 30 years, 15.72%

in 100 years, and 93.29% in 500 years. Thus the investment behavior of a myopic agent is close to the

one of an agent who prefers early resolution of uncertainty. In particular, if αB = ρB the consumption

path of the two agents are identical.
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3.2 Equilibrium wealth distribution with CRRA utility

It is useful to revisit the problem of determining the wealth distribution between agents with CRRA

utility, which can be solved analytically. Appendix B presents the proofs of Propositions 1 - 3 that show

the consumption share evolutions when both agents have the same preference parameters, when they

have different time discounting parameters and different risk aversion parameters.

When both agents have the same preference parameters the consumption shares of the two remain

constant over time and are equal to their initial endowments (Proposition 1).

If the two investors have different time discounting (β) parameters, I show that the more patient

investor accumulates larger consumption share over time compared to the less patient agent (Proposition

2). This result is intuitive since the more patient agent prefers to postpone her consumption to the

future and thus she grows a larger wealth share. Figure 5 plots the evolution of the consumption share

of the more patient agent, which increases over time, but much slower compared to the case when both

agents have Epstein-Zin preferences. For instance, the more patient agent with initial consumption share

of 0.01% accumulates 0.2% of total aggregate consumption in 500 years, while her share increases from

0.01% to over 82% in 500 years when the agents have Epstein-Zin preferences and the same investment

horizons, and to 99% when the patient investor has longer-term horizon than the impatient one.

In Proposition 3 I show that when the two investors have different risk aversion levels, the more

risk loving investor increases her share over time from 0.01% to 1.3% in 500 years in case εt+1 > −µ/σ
(the case generally observed in the data). Intuitively the risk loving agent invests more in the risky

asset and since the expected return on the risky asset is higher than the one on the risk-free asset, the

risk loving agent accumulates a larger consumption share. In other words, the more risk loving agent

would bear larger proportion of the total risk in the economy and sell insurance to the more risk averse

agent, for which she requires a higher compensation and thus grows a larger wealth share over time.

Since both investors have CRRA preferences and are myopic and consider only 1 period ahead for their

optimization, these cases do not have direct implications for the role of investment horizon.
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Figure 5: Consumption share evolution with CRRA utility and different preferences

The figure plots the average of 10000 simulated paths of consumption share of two CRRA agents: one who is more
patient (solid line, βA = 0.999, βB = 0.995) and one who is more risk loving (dashed line, αA = −4, αB = −9),
while the rest of the parameters are equal. The initial endowment of the agents is set to cA,0 = 0.0001 and the
consumption share is estimated for the next 6000 months (500 years).

4. Numerical Method

The special cases described in the previous section have closed-form solutions, but the general risk shar-

ing problem with agents with recursive preferences does not since the consumption shares depend on the

value functions we need to solve for. Therefore, I solve the optimization problem (7) numerically using

backward recursion, starting from time t = T (Section 4.1) and subsequently iterating (Section 4.2).

4.1 Time t = T

At Time t = T , the economy ends and the optimization problem (7) in normalized form becomes

j∗(vB,T ) = max
cA,T

[
(1− βA)cρAA,T

] 1
ρA (14)

s.t.
[
(1− βB)cρBB,T

] 1
ρB = vB,T ,

cA,T + cB,T = 1.
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Thus, the value functions at time t = T are given analytically as functions of the relative consumption

of agent A:

vA,T = (1− βA)
1
ρA cA,T (15)

vB,T = (1− βB)
1
ρB (1− cA,T ). (16)

We will use these functions when we are solving for the optimal cA,T at time t = T − 1.

4.2 Recursion at time t

In this step, it is convenient to use cA,t as the endogenous state variable and xt and σt as the exogenous

state variables. Thus, we can write the value function of agent i at time t as a function of the state

variables at time t: vi,t = vi,t(xt, σt, cA,t, εt+1). Since we are solving the problem backwards, we may

assume that it is already solved at time t+ 1 and we are given the value functions:

j∗A,t+1 =
J∗A,t+1

Ct+1
= j∗A,t+1(xt+1, σt+1, cA,t+1, εt+2), (17)

v∗B,t+1 =
V ∗B,t+1

Ct+1
= v∗B,t+1(xt+1, σt+1, cA,t+1, εt+2). (18)

In the numerical implementation, the functions will not be known for any possible value of the state

variables they depend on, cA,t+1, xt+1, and σt+1. That is, they will only be known at a number of

(bivariate) grid points. Intermediate values have to be calculated by interpolation.

The problem to solve now reads as follows. Note that I make the dependence of the social planner’s

value function jt on the state of the economy xt and σt and the consumption share of agent A, cA,t,

explicit; the dependence on xt and σt enters through the conditional expectation Et. I also replace

Ct+1/Ct = eµ+xt+σtεt+1 that follows from equation (33):

j∗t (vB,t|xt, σt, cA,t) = max
{cA,t,vB,t+1}

[
(1− βA)cρAA,t + βAEt

[
j∗t+1(vB,t+1|xt+1, σt+1, cA,t+1)

αAe(µ+xt+σtεt+1)αA
] ρA
αA

] 1
ρA

s.t. vB,t =

[
(1− βB)cρBB,t + βBEt

[
(vB,t+1 (xt+1, σt+1, cA,t+1))

αB
(
e(µ+xt+σtεt+1)αB

)] ρB
αB

] 1
ρB

cA,t + cB,t = 1. (19)

As mentioned before, we actually solve numerically the induced first-order conditions:
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βA

(
cA,t+1

cA,t

)ρA−1(
eµ+xt+σtεt+1

)αA−1( jt+1(vB,t+1|xt+1, σt+1, cA,t+1)

Et[(jt+1(vB,t+1|xt+1, σt+1, cA,t+1))αAe(µ+xt+σtεt+1)αA ]
1
αA

)αA−ρA
−

βB

(
1− cA,t+1

1− cA,t

)ρB−1(
eµ+xt+σtεt+1

)αB−1( vB,t+1

Et[(vB,t+1 (xt+1, σt+1, cA,t+1))αBe(µ+xt+σtεt+1)αB ]
1
αB

)αB−ρB
= 0

(20)

vB,t =
[
(1− βB)cρBB,t + βBEt[v

αB
B,t+1(e

(µ+xt+σtεt+1)αB )]
ρB
αB

] 1
ρB (21)

cA,t + cB,t = 1. (22)

Instead of solving the problem for the decision variables cA,t, cB,t, and vB,t+1 implied by the system

of equations (19), it is convenient to use a grid for cA,t, in addition to the grids for the exogenous

state variables xt, and σt, and determine the optimal cA,t+1, and the utilities jt+1 and vB,t+1 for all

combinations of the grid points. In order to do this we first define:

kt =
Et[(vB,t+1 (xt+1, σt+1, cA,t+1(kt)))

αB e(µ+xt+σtεt+1)αB ]
ρB−αB
αB

Et[(jt+1(vB,t+1|xt+1, σt+1, cA,t+1(kt)))αAe(µ+xt+σtεt+1)αA ]
ρA−αA
αA

(23)

Rewriting equation (20) and substituting kt in it we get:

cρA−1A,t+1

(1− cA,t+1)
ρB−1

(jt+1(vB,t+1|xt+1, σt+1, cA,t+1))
αA−ρA

vαB−ρBB,t+1

= kt
βB
βA

cρA−1A,t

(1− cA,t)
ρB−1

(
eµ+xt+σtεt+1

)αB−αA
(24)

It is evident that the evolution of the consumption share from time t to t+1 depends on kt. As Collin-

Dufresne, Johannes, and Lochstoer (2015) show, kt uniquely determines cA,t+1 since cA,t+1 ∈ (0, 1) is

decreasing in kt (when αi− 1 < 0, which is the case we consider). However, from equation (23) we only

know kt as a function of cA,t+1. Thus, we can solve equations (23) and (24) jointly for kt as a fixed point

problem. Once we know the solution for kt we can find the corresponding cA,t+1 for each combination

of the grid points of the endogenous and exogenous state variables.

It is important to point out that cA,t+1 and vB,t+1 will depend on the exogenous evolution of Ct+1

and thus on the shock to consumption growth rate εt+1. Therefore, I choose 5 different grid points for

εt+1, and for each combination of state variables I solve equations (23) and (24) for each of the values

of this shock.

As already mentioned, due to the backwards recursion method I use in order to solve the problem

numerically, the optimal j∗t+1 and v∗B,t+1 will be known from the previous recursion on a grid of different

possible values of the state variables cA,t+1, xt+1, and σt+1. Since xt+1, and σt+1 depend on the shocks

et+1 and ωt+1 I choose 5 different grid points for each of these shocks. Thus, at time t I interpolate
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both v∗A,t+1 and v∗B,t+1 for the values of the optimal c∗A,t+1 that I solve for and the values of xt+1 and

σt+1, as functions of the grids that I use for the state variables xt and σt and the shocks et+1 and ωt+1:

xt+1 = ρxxt + ϕeσtet+1 (25)

σ2t+1 = max [σ2 + ρσ(σ2t − σ2) + σωωt+1, υ] (26)

The grids for the exogenous, xt, σ
2
t , and endogenous cA,t state variables are chosen as follows. I use

6 grids for both xt and σ2t and spline interpolation between the grid points which range in the intervals:

σ2 =
[
υ, σ2 + 4σω/

√
1− ρ2σ

]
(27)

x =

[
− 2ϕe

√(
σ2 + 4σω/

√
1− ρ2σ

)
/(1− ρ2x), 2ϕe

√(
σ2 + 4σω/

√
1− ρ2σ

)
/(1− ρ2x)

]
. (28)

I use 25 grid points for the endogenous state variable cA:

cA = [0.0001, 0.9999]. (29)

The shocks ε, e, and ω are approximated using Gaussian quadrature. The terminal time T is set far

in the future at 500 years. I use the model parameters estimated by Bansal and Yaron (2004) and set

µ = µd = 0.0015, ρx = 0.979, ϕe = 0.044, σ = 0.0078, ρσ = 0.987, σω = 2.3e−6, φx = 3, and ϕd = 4.5.

I assume that the risk aversion level is γi = 10 and thus the risk aversion parameter equals αi = −9.

The elasticity of intertemporal substitution is set to ψi = 1.5 and the EIS parameter is ρi = 1/3. The

time discount factor is set to βi = 0.998. I also allow the preference parameters of the two investors to

differ and provide sensitivity analysis in order to understand the role of the agents’ preferences for the

relation between investment horizon and risk premia.

At the end of time t the problem is solved and we know the optimal c∗A,t+1 and the utilities j∗t and

v∗B,t on a grid for the state variables vB,t, xt, and σt, and the shock εt+1:

j∗A,t =
J∗A,t
Ct

= j∗A,t(cA,t, xt, σt, εt+1), (30)

v∗B,t =
V ∗B,t
Ct

= v∗B,t(cA,t, xt, σt, εt+1). (31)

For the following recursion at time t − 1 we interpolate their values corresponding to the grids of

the state variables cA,t−1, xt−1, and σt−1, and the shock εt and we solve the problem for the decision

variable cA,t.
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4.3 Time t = 0

At time 0 the equilibrium condition can be written as follows:

βA

(
cA,1
cA,0

)ρA−1(
eµ+x0+σ0ε1

)αA−1( j1(vB,1|x1, σ1, c1)

E1[j1(vB,1|x1, σ1, c1)αAe(µ+x0+σ0ε1)αA ]
1
αA

)αA−ρA
=

= βB

(
1− cA,1
1− cA,0

)ρB−1(
eµ+x0+σ0ε1

)αB−1( vB,1

E0[(vB,1 (ε1, vB,0|x0, σ0, c0))αBe(µ+x0+σ0ε1)αB ]
1
αB

)αB−ρB
(32)

In this period I solve for the optimal c∗A,1 (and c∗B,1 = 1− c∗A,1) and I determine the optimal utilities

j∗A,0 and v∗B,0 of the two agents on a grid of the state variables x0, σ0, and cA,0. Due to the backwards

recursion we assume that we know the optimal value functions at time t + 1, j∗A,1 and v∗B,1, and thus,

the initial utilities of the two agents will depend on the promised utility by agent A to agent B, vB,1.

It is important to note that we can determine these initial utilities and the initial endowments of the

two agents, cA,0 and cB,0, given the equilirbia for all the periods ahead until the terminal date T , but

we cannot find the possible equilibria knowing only the initial endowments.

The estimations using the described numerical method will show the consumption distribution of

the two agents over time and will determine the optimal investment strategies of the two agents. An-

alyzing the conditions under which one of the two agents is allocated a larger consumption share and

dominates the economy will shed light on the market interaction between the investors and their hedge

demands. The risk premia they require and the fraction of the market they dominate can have important

implications for the resulting risk premia in the market.

5. Heterogeneous investment horizons and long-run risk

In this section I consider a Bansal and Yaron (2004) economy where the dynamics of the log-dividend

gd,t+1 and log-consumption gt+1 growth rates contain a persistent and predictable component xt and

are determined as follows:

gt+1 = ln
(Ct+1

Ct

)
= µ+ xt + σtεt+1 (33)

xt+1 = ρxxt + ϕeσtet+1

σ2t+1 = max [σ2 + ρσ(σ2t − σ2) + σωωt+1, υ]

gd,t+1 = µd + φxxt + ϕdσtut+1.

The shocks εt+1, et+1, ωt+1, and ut+1 are iid, mutually independent and standard normally distributed.

The parameters ϕd > 1 and φx > 1 allow for calibration of the dividend volatility and its correlation

with consumption. As in Abel (1999) φx represents the leverage ratio on expected consumption growth.
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The equation for dividend growth will not be of importance to the analysis in this paper. The time-

varying economic uncertainty in consumption growth rate is given by σt+1 and it is required to have a

minimum value of υ = e−8 as in Collin-Dufresne, Johannes, and Lochstoer (2015). Thus, the economy

is Markovian and the distribution of aggregate consumption Ct+1 conditionally on the information at

time t depends on a vector of exogenously simulated state variables Xt = [xt σ
2
t ]
′. The two competitive

agents with different investment horizons agree on the aggregate endowment process.

The solution of the model will show the consumption distribution between the agents over time and

will determine their optimal investment strategies. Analyzing the conditions under which one of the

two types of agents is allocated a larger consumption share and dominates the economy will shed light

on the market interaction between the investors and the resulting risk premia on the market. As a more

realistic model with long-run risk that takes into account the differences in investment horizons, this

model also has implications about the equity term structure at different horizons.

There are two alternative channels that could affect the wealth distribution between agents – risk

premium and saving. Under the risk premium channel short-term agents who are less averse to long-run

risks are expected to sell insurance to long-term investors. Thus, compared to long horizon investors,

short-term investors will invest more in the risky assets than in the risk-free asset. As a result, they

will benefit more from the higher risk premia of these assets and will accumulate larger wealth. Since

short-term investors care less about long-run risks (that help in resolving the equity premium puzzle),

the importance of these shocks for pricing assets drops and hence, the model generated risk premium

decreases. On the other hand, however, long-term agents who care about long-run risk more may choose

a higher saving rate and accumulate more wealth, driving risk premia up. Thus, determining which

channel prevails will have important implications about wealth distribution and equilibrium asset prices.

6. Conclusion

This paper studies the role of heterogeneous investment horizons for the risk sharing and consumption

allocation among agents with nonseparable recursive preferences, and the equilibrium asset prices. Thus,

I focus on a novel heterogeneity in models with recursive preference and its effect on wealth distribution

and asset prices. Constructing models with short-term and long-term agents that feature iid shocks

to consumption growth rate, I find analytically that the long-term agents outcrowd short-term myopic

agents in terms of wealth share. The investment behavior of the myopic agent resembles that of an

impatient agent or one that prefers early resolution of uncertainty. In the presence of long-run risk,

however, short-term agents may dominate, which would lead to a drop in the share of investors who are

concerned about and price long-run risk. As long-run risk becomes less important for pricing assets,

the equilibrium risk premium would drop.
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A Pareto Problem and Equilibrium Derivation

The two-agent Pareto problem can be represented as the optimization of a social planner who maximizes

the weighted sum of utilities of the investors of both types at time t = 0 subject to the market clearing

condition:

max
{CA,t,CB,t}Tt=0

w0VA,0 + (1− w0)VB,0 (34)

s.t. CA,t + CB,t = Ct for all states and time.

Even though the individual utility functions are recursive, the social planner utility is not recursive.

However, as shown by Lucas and Stokey (1984), Kan (1995), and Backus, Routledge, and Zin (2009)

a recursive formulation exists. Applying Theorem 3 from Lucas and Stockey (1984) it follows that the

Pareto optimal allocation is given by the following Bellman equation:

J(Ct, VB,t) = max
{CA,t,VB,t+1}

[
(1− βA)CρAA,t + βAEt[J(Ct+1, VB,t+1)

αA ]
ρA
αA

] 1
ρA (35)

s.t. VB,t(CB,t, VB,t+1) ≥ VB,t (36)

CA,t + CB,t = Ct, (37)

where VB,t is the so-called promised utility to agent B at time t. The resulting value function for agent

A is then given by VA,t = J(Ct, VB,t). Since there is monotonicity in preferences, the utility-promise

constraint is binding and hence, constraint (36) can be replaced by VB,t(CB,t, VB,t+1) = VB,t.

The problem of choosing a feasible allocation between the two agents can be viewed as a problem

of maximizing the utility of agent A at time t over her own consumption CA,t and the promised utility

to agent B at time t + 1, VB,t+1, that is the aggregate utility over the remaining horizon that agent

A promises to agent B. Agent A can increase her consumption at time t up to the point where the

utility of agent B at time t does not fall below the promised utility at time t, VB,t. Thus, agent A

can either choose to have higher consumption CA,t at time t and lower utility VA,t+1 at time t + 1 by

promising higher utility VB,t+1 to agent B at time t + 1, or alternatively agent A can choose to have

lower consumption CA,t at time t and higher utility VA,t+1 at time t+1 by promising lower utility VB,t+1

to agent B at time t+1. The promised utility VB,t+1 that was chosen at time t will serve as a constraint

for the minimum utility agent B will receive at time t+ 1, and so on until the terminal date T . In the

optimization problem (35), Ct is an exogenous and VB,t is an endogenous state variable.

Given a Pareto-optimal allocation, we can find the equilibrium prices and hence, all competitive

equilibria can be determined. However, we can only estimate the initial endowments given an equilib-

rium condition, but we cannot find the equilibrium given the initial endowments (Lucas and Stokey,

1984). The reason is that the current period value functions depend on the future value functions and
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consumption allocations that are unknown. The initial endowments of the two agents are implicitly

determined by the utility VB that agent A promises to agent B.

To derive the equilibrium condition we formulate and maximize the Lagrangian on the constraints

in equation (35):

L = max
{CA,t,VB,t+1,λt}

[
(1− βA)CρAA,t + βAEt[J(Ct+1, VB,t+1)

αA ]
ρA
αA

] 1
ρA

+ λt

([
(1− βB)CρBB,t + βBEt[V

αB
B,t+1]

ρB
αB

] 1
ρB − VB,t

)
(38)

where λt is the Lagrange multiplier. Now, given the state variables Ct and VB,t, we find the decision

variables CA,t and VB,t+1 such that the first-order conditions are satisfied:

∂L
∂CA,t

=
1

ρA
J(Ct, VB,t)

1−ρAρA(1− βA)CρA−1A,t − λt
1

ρB
V 1−ρB
B,t ρB(1− βB)CρB−1B,t = 0 (39)

∂L
∂VB,t+1

=
1

ρA
J(Ct, VB,t)

1−ρAβA
ρA
αA

(
Et[J(Ct+1, VB,t+1)

αA ]
1
αA

)ρA−αA
αAJ(Ct+1, VB,t+1)

αA−1
( ∂Jt+1

∂VB,t+1

)
(40)

+ λt
1

ρB
V 1−ρB
B,t βB

ρB
αB

(
Et[V

αB
B,t+1]

1
αB

)ρB−αB
αBV

αB−1
B,t+1 = 0

∂L
∂λt

=
[
(1− βB)CρBB,t + βBEt[V

αB
B,t+1]

ρB
αB

] 1
ρB − VB,t, (41)

where ∂Jt+1

∂VB,t+1
= −λt+1, as the function Jt+1 depends on the promised utility to agent B, VB,t+1 only

through constraint (36). Thus, changing VB,t+1 by a certain amount leads to a decrease in Jt+1 that

equals that amount times λt+1.

From equation (39) we get:

λt =
J(Ct, VB,t)

1−ρA(1− βA)CρA−1A,t

V 1−ρB
B,t (1− βB)CρB−1B,t

at time t (42)

λt+1 =
J(Ct+1, VB,t+1)

1−ρA(1− βA)CρA−1A,t+1

V 1−ρB
B,t+1 (1− βB)CρB−1B,t+1

at time t+1. (43)
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Then we simplify equation (40) and substitute equations (42) and (43) in it:

J(Ct, VB,t)
1−ρAβA

(
Et[J(Ct+1, VB,t+1)

αA ]
1
αA

)ρA−αA
J(Ct+1, VB,t+1)

αA−1(−λt+1)+

+ λtV
1−ρB
B,t βB

(
Et[V

αB
B,t+1]

1
αB

)ρB−αB
V αB−1
B,t+1 = 0

J(Ct, VB,t)
1−ρAβA

(
Et[J(Ct+1, VB,t+1)

αA ]
1
αA

)ρA−αA
J(Ct+1, VB,t+1)

αA−1
J(Ct+1, VB,t+1)

1−ρA(1− βA)CρA−1A,t+1

V 1−ρB
B,t+1 (1− βB)CρB−1B,t+1

=

=
J(Ct, VB,t)

1−ρA(1− βA)CρA−1A,t

V 1−ρB
B,t (1− βB)CρB−1B,t

V 1−ρB
B,t βB

(
Et[V

αB
B,t+1]

1
αB

)ρB−αB
V αB−1
B,t+1

⇔ βA

(
CA,t+1

CA,t

)ρA−1( J(Ct+1, VB,t+1)

Et[J(Ct+1, VB,t+1)αA ]1/αA

)αA−ρA
= βB

(
CB,t+1

CB,t

)ρB−1( VB,t+1

Et[V
αB
B,t+1]

1/αB

)αB−ρB
(44)

Equation (44) gives the equilibrium condition. I solve a normalized version of the model with

all variables divided by aggregate consumption. I denote the value functions as vi,t = Vi,t/Ct and

consumption shares as ci,t = Ci,t/Ct. Hence, the equilibrium condition can be written as:

βA

(
cA,t+1Ct+1

cA,tCt

)ρA−1( j(vB,t+1)Ct+1

Et[j(vB,t+1)αAC
αA
t+1]

1/αA

)αA−ρA
= βB

(
cB,t+1Ct+1

cB,tCt

)ρB−1( vB,t+1Ct+1

Et[v
αB
B,t+1C

αB
t+1]

1/αB

)αB−ρB
(45)

⇔ βA

(
cA,t+1Ct+1

cA,tCt

)ρA−1( j(vB,t+1)Ct+1

Et[j(vB,t+1)αAC
αA
t+1]

1/αA

)αA−ρACαA−ρAt

CαA−ρAt

=

= βB

(
cB,t+1Ct+1

cB,tCt

)ρB−1( vB,t+1Ct+1

Et[v
αB
B,t+1C

αB
t+1]

1/αB

)αB−ρB CαB−ρBt

CαB−ρBt

(46)

⇔ βA

(
cA,t+1

cA,t

)ρA−1(Ct+1

Ct

)ρA−1(Ct+1

Ct

)αA−ρA( j(vB,t+1)

Et[j(vB,t+1)αA(Ct+1/Ct)αA ]1/αA

)αA−ρA
=

= βB

(
cB,t+1

cB,t

)ρB−1(Ct+1

Ct

)ρB−1(Ct+1

Ct

)αB−ρB( vB,t+1

Et[v
αB
B,t+1(Ct+1/Ct)αB ]1/αB

)αB−ρB
(47)

⇔ βA

(
cA,t+1

cA,t

)ρA−1(Ct+1

Ct

)αA−1( j(vB,t+1)

Et[j(vB,t+1)αA(Ct+1/Ct)αA ]1/αA

)αA−ρA
=

= βB

(
cB,t+1

cB,t

)ρB−1(Ct+1

Ct

)αB−1( vB,t+1

Et[v
αB
B,t+1(Ct+1/Ct)αB ]1/αB

)αB−ρB
(48)
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B Proofs of analytical results

Theorem 1. Suppose agent A has Epstein-Zin preferences, agent B has CRRA preferences and both

agents have equal risk aversion and time discounting parameters. Then, the consumption sharing between

them is a deterministic function of time, that is, the consumption share does not depend on any of the

past shocks to consumption growth rate. The value functions are also deterministic. In particular, the

following condition holds:

(
cA,t+1
cA,t

)ρA−1

(
1−cA,t+1
1−cA,t

)α−1 = eµ+
1
2
ασ2

, where eµ+
1
2
ασ2

is constant. In case µ > −1
2ασ

2,

the consumption share of the investor with Epstein-Zin preferences increases over time, and lim
t→∞

cA,t = 1

such that she outcrowds the CRRA agent. In case µ < −1
2ασ

2, the consumption share of the investor

with Epstein-Zin preferences decreases over time.

Proof.

βA

(
cA,t+1

cA,t

)ρA−1(
eµ+σεt+1

)αA−1( jt+1(vB,t+1|σ, cA,t+1)

Et[(jt+1(vB,t+1|σ, cA,t+1))αAe(µ+σεt+1)αA ]
1
αA

)αA−ρA
=

βB

(
1− cA,t+1

1− cA,t

)ρB−1(
eµ+σεt+1

)αB−1
Since αA = αB, the consumption sharing does not depend on the shock to consumption growth rate

εt+1, i.e. the consumption share of agent A, cA,t is a function of the past consumption share cA,t−1:

cA,t = cA,t(cA,t−1) only. Using backwards induction we show that cA,t = Et−1[cA,t] and jt = Et−1[jt] at

any time t.

At time T jT =
(

(1− βA)cρAA,T

) 1
ρA . Hence, since cA,T = ET−1[cA,T ], the value function of the agent

with Epstein-Zin preferences is deterministic and jT = ET−1[jT ].

At time T − 1, we assume that cA,T−1 and jT−1 are deterministic, and hence cA,T−1 = ET−2[cA,T−1]

and jT−1 = ET−2[jT−1]. Thus, the equilibrium condition at time T − 2 takes the following form:

βA

(
cA,T−1
cA,T−2

)ρA−1(
eµ+σεT−1

)αA−1( jT−1(vB,T−1|σ, cA,T−1)

ET−2[(jT−1(vB,T−1|σ, cA,T−1))αAe(µ+σεT−1)αA ]
1
αA

)αA−ρA
=

βB

(
1− cA,T−1
1− cA,T−2

)ρB−1(
eµ+σεT−1

)αB−1
⇒ βA

(
cA,T−1
cA,T−2

)ρA−1( jT−1(vB,T−1|σ, cA,T−1)

jT−1(vB,T−1|σ, cA,T−1)ET−2[e(µ+σεT−1)αA ]
1
αA

)αA−ρA
= βB

(
1− cA,T−1
1− cA,T−2

)ρB−1
(49)

Then, we can conclude that cA,T−2 is deterministic and cA,T−2 = ET−3[cA,T−2], as it does not

depend on any random shocks. To check whether jT−2 is deterministic we substitute cA,T−2 and jT−1
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in ET−3[jT−2]:

ET−3[jT−2] = ET−3

[(
βAc

ρA
A,T−2 + (1− βA)ET−2[j

αA
T−1]

ρA
αA

) 1
ρA

]
=

=
(
βAc

ρA
A,T−2 + (1− βA)ET−2[j

αA
T−1]

ρA
αA

) 1
ρA = jT−2. (50)

Thus, if we assume that cA,T−1 and jT−1 are deterministic, it follows that cA,T−2 and jT−2 are also

deterministic. Therefore, by backwards induction we can conclude that cA,t and jt are deterministic at

any time t and we get that:(
cA,t+1

cA,t

)ρA−1( jt+1(vB,t+1|σ, cA,t)
(jt+1(vB,t+1|σ, cA,t+1))Et[e(µ+σεt+1)α]

1
α

)α−ρA
=

(
1− cA,t+1

1− cA,t

)ρB−1

⇒

(
cA,t+1

cA,t

)ρA−1
(

1−cA,t+1

1−cA,t

)α−1 = Et[e
(µ+σεt+1)α]

α−ρA
α = [eαµ+

1
2
α2σ2

]
α−ρA
α = [eµ+

1
2
ασ2

]α−ρA .

Hence, the ratio of the changes in consumption shares of the two agents stays constant over time.

Case 1: eµ+
1
2
ασ2

> 1⇒ µ+ 1
2ασ

2 > 0⇒ µ > −1
2ασ

2

Since eµ+
1
2
ασ2

> 1 and α− ρA < 0⇒ [eµ+
1
2
ασ2

]α−ρA < 1⇒
cA,t+1

cA,t

ρA−1
<

1− cA,t+1

1− cA,t

α−1

We have ρA − 1 < 0, α− 1 < 0, and α− 1 < ρA − 1⇒
cA,t+1

cA,t
>

1− cA,t+1

1− cA,t
cA,t+1 − cA,tcA,t+1 > cA,t − cA,tcA,t+1

⇒ cA,t+1 > cA,t and cB,t+1 < cB,t

Case 2: eµ+
1
2
ασ2

< 1⇒ µ+ 1
2ασ

2 < 0⇒ µ < −1
2ασ

2

Since eµ+
1
2
ασ2

< 1 and α− ρA < 0⇒ [eµ+
1
2
ασ2

]α−ρA > 1⇒
cA,t+1

cA,t

ρA−1
>

1− cA,t+1

1− cA,t

α−1

We have ρA − 1 < 0, α− 1 < 0, and α− 1 < ρA − 1⇒
cA,t+1

cA,t
<

1− cA,t+1

1− cA,t
cA,t+1 − cA,tcA,t+1 < cA,t − cA,tcA,t+1

⇒ cA,t+1 < cA,t and cB,t+1 > cB,t
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Thus, if µ > −1
2ασ

2 and αA = αB, the consumption sharing is deterministic and the investor

with Epstein-Zin preferences accumulates larger share than the agent with CRRA preferences. If µ <

−1
2ασ

2, the investor with CRRA preferences accumulates larger consumption share than the longer-

term Epstein-Zin agent. Since Case 1 is the one which is satisfied using reasonable parameters (and

using the calibration of Bansal and Yaron (2004)) and since CRRA preferences imply a shorter (myopic)

investment horizon than Epstein-Zin preferences, a longer-term horizon investor will accumulate larger

consumption share over time than a myopic investor.

Proposition 1. If two agents have CRRA preferences and equal risk aversion and time discounting

parameters, their consumption shares remain constant over time and the wealth distribution in the

economy is determined by the initial endowments.

Proof.

βA

(
cA,t+1

cA,t

)αA−1
(eµ+σεt+1)αA−1 = βB

(
cB,t+1

cB,t

)αB−1
(eµ+σεt+1)αB−1

β

(
cA,t+1

cA,t

)α−1
= β

(
1− cA,t+1

1− cA,t

)α−1
cA,t+1 − cA,tcA,t+1 = cA,t − cA,tcA,t+1

⇒ cA,t = cA,t+1

Proposition 2. If two agents have CRRA preferences and equal risk aversion parameters but different

time discounting parameters, the consumption share of the more patient agent (B) increases over time,

such that she dominates over the less patient agent (A).
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Proof.

βA

(
cA,t+1

cA,t

)αA−1
(eµ+σεt+1)αA−1 = βB

(
cB,t+1

cB,t

)αB−1
(eµ+σεt+1)αB−1, βA < βB(

cB,t+1

cB,t

)α−1
(
cA,t+1

cA,t

)α−1 =
βA
βB

(
1−cA,t+1

1−cA,t

)
(
cA,t+1

cA,t

) =

(
βA
βB

) 1
α−1

> 1

1− cA,t+1

1− cA,t
>
cA,t+1

cA,t

cA,t − cA,tcA,t+1 > cA,t+1 − cA,tcA,t+1

⇒ cA,t+1 < cA,t

Thus, if βA < βB, then cA,t+1 < cA,t and cB,t+1 > cB,t, i.e. the consumption share of the more patient

agent increases over time. In particular, we can show that the change in consumption share of the more

patient investor is βA
βB

1
α−1 times larger than the decrease in consumption share of the more impatient

agent.

(
1− cA,t+1

1− cA,t

)
=

(
βA
βB

) 1
α−1
(
cA,t+1

cA,t

)

Proposition 3. Suppose two agents have CRRA preferences and equal time discounting parameters

but different risk aversion parameters. In case the realized shock in the economy is εt+1 > −µ/σ, the

consumption share of the less risk averse agent (B) increases over time, such that she dominates over the

more risk averse agent (A). In case the realization falls below the bound εt+1 < −µ/σ, the consumption

share of the less risk averse agent decreases over time.

Proof.

βA

(
cA,t+1

cA,t

)αA−1
(eµ+σεt+1)αA−1 = βB

(
1− cB,t+1

cB,t

)αB−1
(eµ+σεt+1)αB−1, αA < αB(

cA,t+1

cA,t

)αA−1
(

1−cA,t+1

1−cA,t

)αB−1 = (eµ+σεt+1)αB−αA
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Case 1: eµ+σεt+1 > 1⇒ µ+ σεt+1 > 0⇒ εt+1 > −µ/σ

⇒
cA,t+1

cA,t

αA−1
>

1− cA,t+1

1− cA,t

αB−1

Since αA − 1 < 0, αB − 1 < 0, and αA − 1 < αB − 1 we need

cA,t+1

cA,t
<

1− cA,t+1

1− cA,t
cA,t+1 − cA,tcA,t+1 < cA,t − cA,tcA,t+1

⇒ cA,t+1 < cA,t and cB,t+1 > cB,t

Case 2: eµ+σεt+1 < 1⇒ µ+ σεt+1 < 0⇒ εt+1 < −µ/σ

⇒
cA,t+1

cA,t

αA−1
<

1− cA,t+1

1− cA,t

αB−1

Since αA − 1 < 0, αB − 1 < 0, and αA − 1 < αB − 1 we need

cA,t+1

cA,t
>

1− cA,t+1

1− cA,t
cA,t+1 − cA,tcA,t+1 > cA,t − cA,tcA,t+1

⇒ cA,t+1 > cA,t and cB,t+1 < cB,t

Thus, in case εt+1 > −µ/σ and αA < αB and γA > γB, then cB,t+1 > cB,t i.e. the consumption

share of the less risk averse agent increases over time. If εt+1 < −µ/σ, i.e. εt+1 is a negative shock

with a very negative realization, then the less risk averse agent incurs large losses and her consumption

share decreases over time.
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