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Abstract

The mix of instruments used to finance a sovereign is a key determinant of debt
sustainability through its effect on funding costs and risks. We extend standard
debt sustainability analysis to incorporate debt-financing decisions in the presence
of macroeconomic, financial, and fiscal risks. We optimize the maturity of debt
instruments to trade off borrowing costs with refinancing risk. Risk is quantified
with a coherent measure of tail risk of financing needs, conditional Flow-at-Risk. A
constraint on the pace of reduction of debt stocks is also imposed, and we model the
effect of debt stocks on the yield curve through endogenous risk and term premia.

On a simulated economy, we show that the cost-risk and flow-stock trade-offs
embedded in issuance decisions are key determinants of the evolution of debt dy-
namics and are economically significant. Comparing three alternative optimizing
strategies and some simple fixed-issuance rules, we also draw lessons on when and
why optimizing matters the most. This depends on the risk tolerance level, the
size, cost, and maturity of legacy debt, and the sensitivity of interest rates to debt.

Our model quantifies thresholds for the minimum level of refinancing risks and
the maximum pace of debt reduction that a sovereign could reach given its economic
fundamentals. Going beyond those thresholds is only feasible through adjustments
of gross financing needs, and an extension of the baseline model identifies the hot
spots for these adjustments, computing their minimum size and optimal timing.
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1 Introduction

In the aftermath of the 2008 global financial crisis, sovereign debt increased sharply in
most advanced economies. Figure 1 makes the point quite clearly. Average public debt,
as a percentage of gross domestic product, increased by one third from trough to peak,
with almost all countries experiencing a significant increase. In the euro area, public
debt rose to about 84% in 2010, which decisively contributed to a sovereign debt crisis
in the region, with five countries (Greece, Ireland, Portugal, Spain, Cyprus) requiring
external financial assistance. These episodes, and the fact that public debt levels have
barely declined (if not increased) since then, have prompted a renewed interest in debt
sustainability analysis (DSA) and have led to intense policy discussions concerning, for
instance, the most appropriate variable (e.g., debt stock level or annual gross financing
needs) and the appropriate thresholds to assess debt sustainability. Amid this debate, it
has become clear that standard DSA models, widely used by international institutions
like the International Monetary Fund and the European Stability Mechanism need to be
strengthened to serve as an early warning tool and to inform about the efforts required
to improve the sustainability of public accounts in troubled economies.

In this paper, we extend standard DSA models to incorporate optimal debt-financing
decisions for an economy facing uncertain economic growth, interest rates, and fiscal
balance. This framework is well equipped to address questions like: How do issuance
strategies trade off interest costs and refinancing risks? Through which channels do they
influence debt flow and stock dynamics? How do these interactions depend on the stock
of legacy debt, risk tolerance, or the sensitivity of interest rates to debt? How and when
should gross financing needs be adjusted to render sustainable debt dynamics?

The model determines the maturity of debt-financing instruments to minimize ex-
pected debt interest costs subject to constraints on both gross financing needs and debt
dynamics. Our constraint on gross financing needs limits the potential refinancing risks
that could arise from spikes in funding requirements, while the constraint on debt dy-
namics sets the minimum (maximum) pace at which the debt-to-GDP ratio may decrease
(increase) over time. Importantly, following the risk management literature, we specify
both constraints in terms of the conditional Value-at-Risk (CVaR) measure, which fo-
cuses on the expected values of the distribution tails. This approach, engrained in the
day-to-day risk management of financial institutions, is particularly appropriate for debt
sustainability analysis given the multiple sources of uncertainty at play. In the model,
we represent this uncertainty by a discrete time- and state-space scenario tree, and use
stochastic programming on this tree to optimize the debt financing strategies. Moreover,
we address the fact that a sovereign’s debt sustainability outlook influences its market
risk premium and the slope of its yield curve. To capture this link, the risk and term
premia in our model change endogenously with the sovereign’s debt level, which in turn
affect issuance decisions and, consequently, the debt level, creating a feedback loop.

The main innovations of the model is the optimization of debt financing decisions
with endogenous interest rates, the simultaneous treatment of debt stock and flow, the
introduction of a risk measure in the analysis, and the identification of hot spots where
gross financing needs may have to be adjusted to meet policy targets. Our model looks at
multiple aspects of sustainability and does so for short, medium, and long-term horizons.

Testing the model on a simulated economy, we learn that there are two marked trade-
offs in choosing the optimal issuance strategy: those between costs and risks, and between
flow and stock dynamics. In particular, reducing refinancing risks tends to foster long-
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Figure 1 – Debt growth of OECD countries. (Data: OECD, General government debt
indicator doi 10.1787/a0528cc2-en, accessed Dec. 16, 2017.)

term issuances and lead to smoother debt flow dynamics. Long-term financing, however, is
more expensive than short-term, and weighs on debt stock dynamics via higher effective
interest rates. An important contribution of our paper, especially relevant for policy
work, is to quantify these trade-offs. We find that they are economically significant
and have a material (non-linear) impact on the relevant variables for debt sustainability
analysis. For instance, moving from the risk minimization to cost minimization, in a
calibrated economy, implies a 40% reduction in interest payments with an increase of
refinancing risks by 10% of GDP. The difference on debt dynamics is, on average, 9% of
GDP reduction in stock and 8% increase in gross financing needs.

We compare debt flow and stock dynamics for optimal strategies with different degrees
of flexibility and for some simple rules with fixed debt issuance in one (or more) maturities.
Naturally, optimal strategies outperform simple rules, and the more flexibility the better.

4



More importantly, we find that the benefits of optimizing are economically meaningful
(both in terms of costs and risks), and that they are relatively larger when risk tolerance
is lower, the stock of legacy debt is larger or its maturity shorter, and funding costs are
more sensitive to debt dynamics. Model performance is consistent with results from the
economics literature on taxation and deficit smoothing, and “gambling for redemption”
(Conesa and Kehoe, 2015) of highly indebted countries.

Another important contribution of our model is that it may quantify the minimum
level of refinancing risks and the maximum pace of debt reduction that a sovereign could
reach (following optimal issuances strategies) given its economic fundamentals. These
thresholds could provide a benchmark for assessing debt sustainability, and knowing
them would advise feasible policy targets. In an extension of the model, we evaluate how
a sovereign can go beyond those thresholds through adjustments of gross financing needs,
using either domestic (e.g., fiscal effort, privatization) or external (e.g., official sector
support, debt restructuring) resources. In particular, we identify the hot spots where gross
financing needs may be excessive, and compute the minimum size and optimal timing
of the adjustments so that policy goals are met. Our results suggest that the sooner
these additional adjustments are implemented the better, and we are able to measure the
economic cost of delays. This feature of the model is consistent with the findings from
the stylized model of Blanchard et al. (1990) that “delaying adjustment substantially
affects the size of the needed policy action”, and it may be helpful in designing future
official-sector financial assistance programmes

The remainder of the paper is organised as follows. Section 2 reviews the three strands
of the literature related to our paper. The basic layout of the model is described in
Section 3, and the model is developed in Section 4. Section 5 discusses the calibration used
in our simulations, and Section 6 presents the model’s main qualitative and quantitative
findings on the interaction between debt-financing decisions and debt sustainability. In
Section 7, we extend our baseline model to identify hot spots and calculate the minimum
adjustments that improve a sovereign’s debt sustainability outlook beyond that implied
by its assumed fundamentals. Finally, Section 8 identifies areas for further work. One
appendix presents some alternative risk measures that we also explored and that deserve
further study.

2 Relation to existing literature

Our paper draws from three strands of literature. First, the economics literature pro-
vides several stylized models and empirical investigations of salient features of sovereign
debt financing and debt sustainability. Second, the asset and liability management lit-
erature addresses the perennial problem of trading off risks and rewards, and provides
the risk measure. Third, management science and operations research provide stochastic
programming models for planning under uncertainty. Our overarching contribution is to
integrate many of the innovations that were developed, in isolation, in these strands of
the literature into a comprehensive optimization framework that addresses debt sustain-
ability from a risk management perspective, and it is sufficiently granular and flexible to
provide meaningful qualitative and quantitative insights for policy makers.
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Economics of sovereign debt

The literature on what determines sustainable debt levels is extensive. D’Erasmo et al.
(2016) summarize the various generations of models, including Blanchard et al. (1990)
debt sustainability indicators and Bohn (1995) on fiscal rules. Our paper adds to re-
cent contributions which model an active fiscal policy maker. Rather than allowing for
endogenous default1, we focus on the debt management side of policy decisions.2

A number of recent contributions to this literature focus, as we do, on the role of the
maturity structure and place the trade-off between borrowing costs and refinancing risks
at a center stage.3 Cole and Kehoe (2000); Conesa and Kehoe (2014) find that sovereigns
faced with a self-fulling refinancing crisis should lengthen debt maturity, whereas countries
that are in a recession gamble for redemption by shortening the debt maturity (Conesa
and Kehoe, 2015). Barro (2003) argues that a tax-smoothing objective leads to contingent
and long-term debt financing strategies, and Angeletos (2002) argues that governments
can issue long-term debt to invest in short-term reserves in order to insulate public debt
from interest rate risk and smooth refinancing needs. In Niepelt (2008), the presence of
sovereign risk leads towards shorter maturities when debt issuance is high and or output
is low. Similarly, Arellano and Ramanarayanan (2012); Broner et al. (2013) show that
when interest rates rise, maturity shortens. Relatedly, Aguiar et al. (2016) show that,
in a debt crisis, it is optimal to switch to short-term financing which provides better
incentives to repay.

It is noteworthy that the recommendations for an appropriate debt maturity differ
among these papers. This does not reveal any fundamental disagreements in the liter-
ature, but is, instead, a natural outcome of models seeking strategic recommendations
under different stylized assumptions. Also, some of these assumptions may not be suitable
for practical applications. For instance, Arellano and Ramanarayanan (2012); Hatchondo
and Martinez (2009) assume debt financing using consol bonds (perpetuities) that pay an
infinite stream of coupons which decreases at a constant rate, and Chatterjee and Eyigun-
gor (2012) analyze long-term debt contracts that mature probabilistically. We add to this
literature a normative model using a richer and more realistic set of instruments, that
incorporates in a common framework multiple considerations addressed independently
in previous studies. The model generates dynamic financing strategies, tailored to the
problem at hand, and with sufficient granularity that permits a broad range of maturities
not restricted to the dichotomous choice between short-term treasuries and consols.

Recent empirical contributions focus on the role of debt-related cashflows for debt
sustainability and market access. Dias et al. (2014) show that identical debt stocks can
have very different cashflows, Weder di Mauro and Schumaker (2015) show that different
amortization schedules and varying interest rates make a given stock of debt mean very
different things for the Greek debt flow, Irwin (2015) looks for the right definition of
public debt to be used for assessing sustainability, Gabriele et al. (2017) show that to

1See Aguiar et al. (2016); Arellano and Ramanarayanan (2012); Bai et al. (2015); Chatterjee and
Eyigungor (2012); Conesa and Kehoe (2014); Hatchondo et al. (2016); Hatchondo and Martinez (2009);
Mihalache (2017).

2By excluding endogenous default from our analysis, we are able to model a rich environment for
debt financing decisions, including a broad range of maturities, which significantly enriches the trade-off
between financing costs and refinancing risks.

3Other aspects of recent sovereign debt literature include sustainability in Monetary Unions (Aguiar
et al., 2014), the role of inflation (Aguiar et al., 2013, 2016), and the role of structural reforms accom-
panying official sector borrowing (Muller et al., 2015).

6



understand borrowing costs we must jointly consider debt stock and refinancing needs.
Bassanetti et al. (2016) show that changes of debt stock are an important driver of a
country’s borrowing costs. Our paper supplements this literature by modeling the tension
between stock and flow within the framework of DSA, using a debt accumulation equation,
in which excessive refinancing needs and non-decreasing debt level are penalized (IMF,
2013; Weder di Mauro and Schumaker, 2015). We also show how debt-financing strategies
influence stock-flow dynamics, and how all of them are affected by the feedback loop
between debt stocks and interest rates.4 On the latter, Broner et al. (2013); Engen and
Hubbard (2004); Paesani et al. (2006) shed light on how the yield curve of government
securities responds to a country’s fiscal position. Qiang and Phillippon (2005) show
that debt financing rates are determined by a risk-free rate, a risk premium for the
idiosyncratic risk of the sovereign, and term premia for debt of different maturities. These
premia depend on both debt stock (Paesani et al., 2006) and refinancing requirements
(Bassanetti et al., 2016; Gabriele et al., 2017). We use this literature to calibrate a
functional response of interest rates to debt dynamics, and integrate it into our model.

Risk and asset/liability management

Asset and liability management of financial institutions hinges on trade-offs between risks
and expected rewards under uncertainty (Mulvey and Ziemba, 1998; Zenios and Ziemba,
2007). Regulated industries, such as insurance and banking, developed standards on how
to measure and limit risks in Basel III and Solvency II, respectively. There is a trade-off
between risks and rewards, and, dating back to the pioneering work of Markowitz (1952)
on portfolio selection, these trade-offs are quantified through efficient frontiers. Trade-
offs in the context of sovereign debt management have been recognised by Missale (1997,
2000), where he relates the policy implications of tax or deficit smoothing to a trade-off
between minimization of the expected cost of debt servicing and of budgetary risk, and
concludes that the optimal smoothing approach follows from a specification giving all the
weight to risk minimization. Bolder (2003) developed a simulation framework to study
the trade-offs associated with different financing strategies, and Velandia (2018) describes
an asset and liability framework for sovereigns. In the context of debt sustainability
analysis, the quantification of uncertainty has only recently received systematic attention
by international organizations and academia (Celasun et al., 2006; Consiglio and Zenios,
2016; Guzman and Lombardi, 2018). Our contribution to this literature is in the use
of discrete scenario trees with risk and term premia to reflect the endogeneity of debt
(re)financing rates, and the introduction of a risk measure with the associated parametric
optimization model to trace the trade-off.

Risk measures in univariate DSA were used by Barnhill and Kopits (2003), who model
the probability of a negative net worth position for the government and obtain Value-at-
Risk (VaR) for the balance sheet of the consolidated public sector. In our work we adapt
the conditional Value-at-Risk (CVaR) which is used in Basel III. CVaR is a tail measure
and this is important in the context of DSA, since un-sustainability are rare extreme
events giving rise to fat tails, and we argued elsewhere (Consiglio and Zenios, 2015) that
the “devil is in the tails”. This risk measure is theoretically grounded in the properties
of coherence (Artzner et al., 1999). For a discussion of VaR and CVaR see, e.g., (Jorion,
2006; Zenios, 2007, pp. 58–63). In a seminal contribution Rockafellar and Uryasev (2000,

4(Bohn, 1990, p. 1218) recognizes that “if debt management affected interest rates, the qualitative
nature of the government’s optimization problem would change significantly”.
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2002) showed that CVaR can be minimized using linear programming, and we use this
key property for a tractable formulation of the model.

Planning under uncertainty

We adopt the discrete time-space, discrete state-space modeling framework of multi-
period stochastic programming. Stochastic programming dates back to Dantzig (1963)
and received renewed attention in the 1980s with the development of solution algorithms
(Birge and Louveaux, 2011; Kall and Wallace, 1993), and advances in parallel computer
architectures (Censor and Zenios, 1997; Hiller and Eckstein, 1993) that facilitated the so-
lution of large-scale problems. Applications in finance have proliferated since the 1990s.5

Stochastic programming models were developed for the Turkish Ministry of Finance
(Balibek and Köksalan, 2010) and for the Italian Treasury (Consiglio and Staino, 2012).
These earlier works deal with the short-term problem of public debt management to opti-
mize the cost of debt issuance. Consiglio and Zenios (2016) used the CVaR risk measure
in a sovereign debt stock model to carry out sensitivity analysis for debt sustainability.
These works do not consider debt flow dynamics, or economic and fiscal shocks, but only
an exogenous stochastic yield curve. These are the precursors to our model.

3 Layout of the model

3.1 The economic problem

We consider a sovereign that at period t is endowed with output Yt, runs a primary
balance PBt, and owes a stock of debt Dt−1. The sovereign’s gross financing needs are
given by the flow dynamics

GFNt = it−1Dt−1 + At − PBt, (1)

where it−1 is the effective nominal interest rate on debt at t−1, and At is the amortization
schedule corresponding to the amount of Dt−1 that matures at t.6

To finance its needs the sovereign choses from J debt financing instruments of different
maturities.7 At t the sovereign makes debt financing decisions to issue Xt(j) nominal
amount of instrument j. The debt financing equation satisfies

J∑
j=1

Xt(j) = GFNt. (2)

5They include models for dynamic asset allocation (Hibiki, 2006; Mulvey and Vladimirou, 1992),
personal financial planning (Berger and Mulvey, 1998; Consiglio et al., 2007; Dempster and Medova,
2011), defined-benefits and defined-contributions pension plans (Hilli et al., 2007; Mulvey et al., 2008;
Ziemba, 2016), insurance with or without minimum guarantees (Carinõ and Ziemba, 1998; Consiglio et al.,
2006; Mulvey et al., 2000), mortgage portfolio management (Zenios et al., 1998), corporate bonds (Jobst
et al., 2006), and for asset and liability management of large institutions (Mulvey and Ziemba, 1998;
Zenios and Ziemba, 2007). Stochastic programming also found applications in pricing derivative securities
in incomplete markets (King, 2002; King et al., 2005), including the pricing of sovereign contingent debt
(Consiglio and Zenios, 2018).

6Eqn. (1) does not include one off items and stock-flow adjustments, but these can be easily added.
7The model allows instruments that are not differentiated only by maturity. They can be denominated

in foreign currencies or be contingent debt such as GDP-linked bonds or sovereign CoCos.
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The interest on issued debt is determined by the market risk-free rate plus premia
idiosyncratic to the sovereign and the chosen maturities. We assume endogenous pre-
mia, as a nonlinear function of debt-to-GDP ratio, dt = Dt

Yt
and of the maturity of the

issued instrument (Engen and Hubbard, 2004; Paesani et al., 2006). The interest rate for
instrument j issued at t is given by

rt(j) = rft + ρ(dt, j). (3)

ρ(d, j) is a function that captures both the risk premium as a monotonically increas-
ing function of debt ratio, and term premia for different maturities; see section 5.3 for
calibration.

The effective interest rate depends on the issued debt. The vector of issuance of debt
of all types j at each time t, denoted by X, determines the interest rate, and i

.
= i(X).

The effective interest rate paid by the sovereign is given by8

it =
it−1(Dt−1 − At) +

∑J
j=1 rt(j)Xt(j)

Dt

. (4)

In this paper we model the optimal choice of the debt financing variables X. These
variables consequently determine the dynamics of debt, but the debt level determines risk
and term premia which, in turn, influence the maturities to be issued. This endogeneity
creates a feedback loop X → D → r → X that links stock and flow not only through
quantities but also through prices. This feedback from debt stocks into interest rates,
which may give raise to virtuous and/or vicious circles, is an important feature of our
model which critically influence an issuer’s debt-financing decisions.

3.2 Modelling uncertainty

We model uncertainty using a discrete multi-period scenario tree, see Figure 2. Time
steps are indexed by t = 0, 1, 2, . . . T , where 0 is here-and-now, and T is the risk horizon.
Data are indexed on the tree by a set of states Nt, with each n ∈ Nt representing a
possible state of the economy at time t. N denotes all possible states during the risk
horizon. The number of states at t is Nt, and the total number of states is N . Not
all states at t can be reached from every state at t − 1, and P(n) denotes the set of
states on the unique path from the root state 0 up to n. Each path that leads to a
terminal state n ∈ NT is a scenario. The unique ancestor of n is denoted by a(n), with
a(0) = 0. We also need a function τ(n) to identify the time period of state n on a path,
i.e., τ(n) = t, τ(a(n)) = t − 1, τ(a(a(n))) = t − 2 and so on. For any state n at t, all
information at states m on the path P(n) is known since τ(m) < t.

Exogenous and endogenous variables of the problem are indexed by states n that
belong to set Nt. The values of all exogenous variables are known for each state, whereas
endogenous variables are determined by the optimization model and take state-dependent
values. The conditional probabilities of states n ∈ Nt are denoted by πnt , and pn denote
unconditional probabilities of states n ∈ N except the root. Scenario probabilities are
the unconditional probabilities of states n ∈ NT .

8For simplicity, this recursive expression assumes that the effective interest rate for Dt−1 and At is
the same. In practice, this does not need to be the case, and this is fully accounted in all simulation
exercises in the paper.

9



Tt = τ(n)t− 1210

a(n)

P(n) n

NT

scenario

NtNt−1N2N1N0

Figure 2 – A scenario tree.

The discrete multi-period and multi-state tree setup allows us to model the term struc-
ture of debt with issues of different maturities, and the clustering of maturities around
specific dates with the associated refinancing risk due to excessive spikes of financing
needs, using a level of granularity that is not restricted to the dichotomous choice be-
tween short-term treasuries and consols. On the tree we specify debt financing decisions
that can be both time- and state-dependent and represent the stochastic dynamics of both
debt stock and flow. This allows us to define risk measures of the (temporal) distribu-
tions of stock and flow dynamics. We then formulate a model to optimize debt financing
strategies to trade off cost with risk and look at the risk of violating some sustainability
conditions, such as debt flow exceeding some empirically observed market thresholds or
increasing debt stock. At each node of the tree we also compute a calibrated non-linear
function of the risk and term premia, thereby endogeneizing interest rates.

4 The optimization model

We pose the economic problem of the sovereign as an optimization model on the scenario
tree. Specifically, we discuss the objective function, define the debt financing decision
variables, and set the constraints for a baseline model where the sovereign faces uncertain
exogenous economic output and primary balance, and uncertain refinancing rates that
are endogenous.

The baseline model captures the most important considerations influencing the deci-
sions of a sovereign issuer. In particular, the trade-off between short-term and long-term
costs, and the assessment of future refinancing risks arising from shocks in the economy
and in capital markets. The model is sufficiently flexible to accommodate market-specific
considerations, such as smooth or boundary conditions on the issuance strategy across
maturities arising from past issuances.

We introduce constraints on debt flows and stocks. Debt flows give a vulnerability
signal at any risk horizon, whereas debt stock dynamics reflect long-term solvency, and

10



these variables are linked through endogenous interest rates. We set the constraint on debt
flows in terms of a risk measure that quantifies the tail risks in the stochastic distribution
of this variable. As for debt stocks, we require that they follow a non-increasing path
to limit insolvency risks. Naturally, relaxing the constraint on one variable improves the
optimal value for the other variable.

4.1 Objective function

We consider a sovereign issuer that tries to minimize the expected interest payments on
its debt, subject to a constraint on the level of refinancing risks incurred. We measure
gross financing needs, like debt stock, as a proportion of a country’s economic output to
account for output uncertainty, and denote this random variable by gfn. Using Ψ(·) to
denote the risk measure, the optimization problem is expressed as:

MinimizeX
∑
n∈N

pnNIPn
t (5)

s.t.

Ψ(gfn) ≤ ω. (6)

The objective function minimizes the expected net interest payments (NIP) faced by the
sovereign, which is the single most relevant variable for the treasury. (Recall that sum-
mation over n ∈ N is equivalent to summation over n ∈ Nt, for all t = 0, 1, 2, . . . T , so
the summation in the objective function is well defined.) Interest payments consist of
interest service payments on legacy debt Int , plus service payments on debt created en-
dogenously by the financing decisions on the path leading to n. To trace service payments
on endogenously created debt requires some ingenuity to exploit the tree structure. Let
CFnt (j,m) denote the nominal amount of interest payments due at state n of period t
per unit Xm

τ(m)(j) issued at state m of period τ(m) on the path P(n). This variable can
be computed exogenously from scenarios of the term structure of interest rates and the
terms of the instrument; if the yield curve depends on debt stock (eqn. 3), this variable
becomes endogenous. The net interest payments are then given by

NIPn
t = Int +

∑
m∈P(n)

J∑
j=1

Xm
τ(m)(j)CFnt (j,m). (7)

Net interest payments minus interest on legacy debt is what the sovereign controls through
debt financing decisions. NIP/D is the effective interest rate of debt (cf. eqn. 4).

The constraint in the optimization problem above sets limits on the acceptable risk
level (ω) on gross financing needs. This can be interpreted as the sovereign’s tolerance
towards potential refinancing risks. The random variable gfn takes values indexed by the
state n ∈ Nt at time t,

gfnnt =
GFNn

t

Y n
t

, (8)

where Y n
t is the state-dependent economic output. We denote by gfn the random variable

over all states N , and by gfnt over states Nt at t.
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4.2 Decision variables

The debt financing decisions on the tree are denoted by Xn
t (j) and the debt financing

equation (2), for all states n ∈ Nt, and times periods t = 0, 1, 2, . . . T , becomes

J∑
j=1

Xn
t (j) = GFNn

t . (9)

We can denote debt financing decisions using proportional weights wnt (j) for instrument
j in state n at time t, and write the debt financing equation as

J∑
j=1

wnt (j) = 1, (10)

wnt (j) =
Xn
t (j)

GFNn
t

. (11)

We now envisage three possible levels of granularity in the Treasury’s optimal decision.
In the simplest case, the Treasury would be restricted to set weights w(j) which are time-
and state invariant. In this set up, the Treasury would search for the best weights across
financing instruments considering that these will be constant for all periods and all states.
We call this a fixed-mixed strategy, and it results in simple rules for debt financing.

In the second case the Treasury specifies state-invariant but time-dependent weights
wt(j). In other words, debt is financed using weight allocations in the available instru-
ments that adapt with time but are fixed for all the states at each period. We call this
an adaptive fixed-mix strategy.

Finally, in the most flexible case, the Treasury specifies both time- and state-dependent
optimal weights wnt (j). This allows the issuer to implement a decision, wait to observe
the state at the next time period, implement the optimal decision for that state, and wait
again. We call this a dynamic strategy. It has more degrees of freedom than the previous
two strategies, and this allows the Treasury to achieve better results. Our investiga-
tions later on show that optimal solutions improve significantly when going from simple
rules, to adaptive fixed-mix, and to dynamic strategies. Nonetheless, the richer dynamic
strategy also poses some practical problems that favour the use of adaptive fixed-mix
strategies. Most importantly, real-life evidence shows that, while Treasuries enjoy some
flexibility in setting their issuance strategies, in practice they face many demand and sup-
ply constraints that prevent them from implementing fully dynamic strategies. Indeed,
most Treasuries tend to pre-commit to annual issuance plans some months before the
start of the year. Not only that, but they also try to avoid any material change in those
plans over the course of the year, mostly for reputational reasons.

Therefore, we consider adaptive fixed-mix as the appropriate strategy for sovereign
debt financing, and this is our baseline model. Financing with simple rules is typical of
standard DSA and we use it as benchmark in some experiments. Dynamic strategies are
the theoretical best and we use them to get a lower bound on cost and risks.

Remark 1. In the dynamic model, decisions are made at t = 0 based on all available in-
formation at the root state of the scenario tree, including conditional expectations about
future uncertain information. As new information arrives at subsequent time periods,
the model makes recourse decisions. The decision Xn

t (j) is adapted to state n from the
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information at the ancestor state a(n). The tree structure precludes decisions from being
adapted to states that have not yet been observed, satisfying the non-anticipativity prop-
erty of stochastic programming. Adaptation and non-anticipativity imply that stochastic
programming prescribes implementable policies, without clairvoyance.

Remark 2. In linear scenario structures, i.e., scenario fans instead of scenario trees
(Celasun et al., 2006), all information is revealed at t = 1. A dynamic strategy would
adapt to information that is assumed to be known after t = 1, but in practice it will not
be so. Multi-period stochastic programs on linear scenario structures are endowed with
clairvoyance, while a model with adaptive fixed-mix and simple rules is not. Adaptive
fixed-mix models and simple rules are the only ones possible on linear scenario structures.

Remark 3. The optimization model for adaptive fixed-mix and for simple rules is
non-linearly constrained. Special purpose algorithms to solve large-scale applications are
available (Maranas et al., 1997). We take advantage of the special structure of the model
to obtain a starting solutions using linear programming and the non-linearly constrained
problem is then solved with relative efficiency.

4.3 Constraints

Risk measure and the debt flow constraint

We use the coherent risk measure conditional Value-at-Risk.9 In particular, we consider
the expected value of the tail of the distribution of gfn for confidence level α. This is the
aggregate conditional Value-at-Risk of debt flow (CFaR) over the tree, to be distinguished
from the risk measure of the debt flow at each time period. Under this approach the risk
function in eqn. (6) is defined as

Ψ(gfn)
.
= E (gfn | gfn ≥ gfn�) , (12)

where gfn� is the right α-percentile of the aggregate gross financing needs, i.e., it is the
lowest value gfn� such that the probability of the gross financing needs less or equal to
gfn� is greater or equal to α. gfn� is the Value-at-Risk of aggregate debt flow, and we use
gfn�� to denote aggregate CFaR. These definitions are illustrated in Figure 3.

Following Krokhmal et al. (2002); Rockafellar and Uryasev (2000, 2002), we compute
aggregate CFaR on the tree using the following linear system, for all states n ∈ N ,

gfn�� = gfn� +
1

1− α
∑
n∈N

pnzn (13)

zn ≥ gfnnt − gfn� (14)

zn ≥ 0, (15)

and the risk constraint becomes
gfn�� ≤ ω. (16)

ω is the sovereign’s tolerance towards potential refinancing risks captured by the tail of
gross financing needs. Since n ∈ N is equivalent to n ∈ Nt, for all t = 0, 1, 2, . . . T , it
follows that eqn. (14) with time indexed gfnnt but time independent zn, is well defined.

9In Appendix A we discuss alternative risk measures: worst-case for stress testing, and risk-neutral.
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Gross financing needs (gfn)

Probability mass (1−α)[ ]

Figure 3 – Distribution of aggregate gross financing needs (gfn), illustrating Flow-at-
Risk (gfn�) and conditional Flow-at-Risk (gfn��) at confidence level α.

Remark 4. Bounding the aggregate CFaR by a threshold does not guarantee that
CFaR will be below the threshold at each time period. It may exceed the threshold at
some time t′ at the α confidence level of the distribution gfnt′ . t

′ will be a hot spot for
debt flow. In the empirical work we consistently found that the aggregated formulation
also limits the dis-aggregated risk. However, if some country faces a spike of legacy debt,
that could originate a hot spot and the dis-aggregated measure may exceed the threshold.
If the threshold is exceeded at some hot spot(s) we can impose CVaR constraints at the
hot spot to shape risk. This requires computing the conditional Flow-at-Risk (CFaR) for
gross financing needs at each t, defined by

Ψ(gfnt)
.
= E (gfnt | gfnt ≥ gfn�t ) , (17)

where gfnt is the random variable of gross financing needs at t, gfn�t is the right α-
percentile, or Flow-at-Risk, and CFaR is denoted by gfn��t . The disaggregated risk mea-
sure can also be formulated based on the work of Rockafellar and Uryasev (2002) to shape
the risk profile at each time period, or, at select hot spots, as used by Jobst et al. (2006)
for credit portfolios.

Debt stock constraint

We add a debt stock constraint to model (5)–(6),

∂d

∂t
≤ δ. (18)

If δ = 0, the debt stock constraint implies that the debt-to-GDP ratio should be non-
increasing over time. In contrast, a negative δ imposes a minimum annual debt reduction
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pace. Finally, debt could increase over time up to an annual bound if δ was positive. For
highly indebted countries, debt stock should be decreasing and δ is set to some negative
value specifying the desirable pace of decrease, whereas debt increases may be allowed
for low debt countries by using positive parameter. We compute changes of d on the tree
by

∆n
t = dnt − da(n)t−1 . (19)

∆n
t is a random variable and to impose the debt stock constraint we need again a risk

measure. We can bound the worst-case, or the risk-neutral, or the coherent risk measure
of stock changes. We chose a coherent risk formulation consistent with the aggregate
risk measure for flow, so that debt stock is non-increasing at the α confidence level.10

Following again Krokhmal et al. (2002); Rockafellar and Uryasev (2000, 2002) we model
(18) on the tree, using the linear system for all states n ∈ N ,

∆n
t = dnt − da(n)t−1 (20)

∆�� = ∆� +
1

1− α
∑
n∈N

pnyn (21)

yn ≥ ∆n
t −∆� (22)

yn ≥ 0 (23)

∆�� ≤ δ. (24)

∆� is the Value-at-Risk of debt stock changes, and ∆�� is the conditional Value-at-
Risk.With this formulation, the changes are bounded by δ at the α confidence level.

We note the risk interpretation of the debt stock constraint. By changing δ para-
metrically together with ω we can trace a three-dimensional efficient frontier trading-off
refinancing and debt stock risks with cost. Our baseline model optimizes the trade-off
between gross financing needs and costs, and treats debt stock with a (probabilistic)
constraint.11

Smoothing of issued maturities

The baseline model specified so far does not impose any constraint on the issuance strat-
egy in terms of its smoothness over time or its starting/ending points. Nonetheless, in
some cases, introducing these constraints improves the stability of model results and the
real-life practical implementability of the optimal strategies. On the demand side, there
is a need for stability in the debt instruments issued by a sovereign so that there is always
a complete term structure of sovereign debt. From the supply side, there are advantages
from taxation and deficit smoothing. We set these constraints below.

If Mj denotes the maturity of the jth instrument, the weighted average maturity of
issued debt at t under an adaptive fixed-mix strategy is given by

WAMIt =
J∑
j=1

wt(j)Mj. (25)

10Worst-case and risk-neutral formulations are in Appendix A.
11We also considered some alternative specifications for the objective function and the constraints. For

instance, we experimented with a model that optimizes the trade-off between expected debt stock level
with tail risk of debt stock dynamics, and treats gross financing needs with a (probabilistic) constraint.
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The restriction
|WAMIt −WAMIt−1 |≤ λ, (26)

where λ is a user specified parameter, limits changes of the average maturity relative to
that issued at the previous period.12

Boundary conditions

We can also specify boundary conditions. For instance, we may want to impose that the
sovereign starts with a WAMI close to the weighted average maturity of the legacy debt
k0, and finishes at the risk horizon with a specific target kT ,

WAMI0 = k0, WAMIT = kT . (28)

Smoothing and boundary conditions can be applied to adaptive fixed-mix and dynamic
strategies. Fixed-mix strategies are by definition smooth, and imposing a boundary
condition trivially specifies the solution.

4.4 Closing the model

Debt dynamics accounting identities

To complete the model we give the accounting identities for debt dynamics, for all states
n ∈ Nt, at each time period t = 0, 1, 2, . . . T . Again, some ingenuity is needed to exploit
the tree structure, and we use an indicator function 1

n(j,m) to keep track of maturing
endogenously created debt,

1
n(j,m) =

{
1, if instrument j issued at state m matures at state n,
0, otherwise.

(29)

12The absolute value function is not continuously differentiable but in the context of our model we can
stay in the realm of continuous optimization by introducing variables v+t and v−t to denote, respectively,
increase and decrease of weighted average maturity at t

v+t ≥WAMIt −WAMIt−1, and v−t ≥WAMIt−1 −WAMIt. (27)

Constraining these variables to be non-negative, we get only one of the two to be non-zero, and its value
will be the absolute value of average maturity changes, which we then bound by λ, i.e., 0 ≤ v+t , v−t ≤ λ.
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The flow dynamics (cf. eqn. 1) are written as

GFNn
t = Int + An

t︸ ︷︷ ︸
Legacy service

payments

− PBn
t︸︷︷︸

Primary
balance

(30a)

+
∑

m∈P(n)

J∑
j=1

Xm
τ(m)(j)CFnt (j,m)︸ ︷︷ ︸

Interest payment
of debt financing decisions

(30b)

+
∑

m∈P(n)

J∑
j=1

Xm
τ(m)(j)1

n(j,m)︸ ︷︷ ︸
Principal amortization

of debt financing decisions

. (30c)

Comparing with (1) we have Int as the part of it−1Dt−1 due to legacy debt and (30b) due
to endogenously created debt, by our financing decisions. Similarly, An

t is the part of At

due to legacy debt and (30c) due to financing decisions.
The debt stock dynamics are given by the recursive equation

Dt = (1 + it−1)Dt−1 − PBt. (31)

They can also be expressed in terms of flows, and on the scenario tree we have

Dn
t = D

a(n)
t−1 + GFNn

t −
∑

m∈P(n)

J∑
j=1

Xm
τ(m)(j)1

n(j,m)− An
t . (32)

Substituting (30) into (32) we link debt financing decisions to the effective interest rate
on debt, which was the point of departure for our model,

Dn
t = D

a(n)
t−1 + Int − PBn

t +
∑

m∈P(n)

J∑
j=1

Xm
τ(m)(j)CFnt (j,m). (33)

Comparing this with (31) we get the effective cost of debt it at state n as

int =
Int +

∑
m∈P(n)

∑J
j=1X

m
τ(m)(j)CFnt (j,m)

Dn
t

. (34)

The numerator is the net interest payment optimised in the objective function (5).

Baseline model specification

The complete baseline model consists of the objective function and decision variable
definitions eqns. (5)–(11), flow risk constraints (13)–(16), stock risk constraints (20)–
(24), smoothing constraints (25)–(26), boundary conditions (28), flow dynamics (30),
and stock dynamics (33). We add non-negativity constraints wt(j) ≥ 0 for all t and j to
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avoid short sales.
This is the adaptive fixed-mix model formulation. To optimize dynamic strategies re-

place the time-dependent and state-invariant variables wt(j) by time- and state-dependent
wnt (j). For fixed-mix strategies replace the variables by time- and state-invariant w(j).

The baseline model is flexible to allow for constraints that are justified either by eco-
nomic theory or by practical considerations. It can be extended to model foreign currency
debt (Bohn, 1990), upper and lower bounds on instruments of different maturities (Per-
old, 1984), inter-temporal smoothing of gross financing needs, or political or normative
“principles-based constraints” (Guzman and Stiglitz, 2016).

5 Model calibration

We calibrate the model on a hypothetical but realistic economy, based on eurozone crisis
countries. In the baseline specification, this economy exhibits a 3.5% long-term nomi-
nal growth and a 1% primary surplus. Our baseline assumptions imply sustainable debt
dynamics in the long run, but we also tested exhaustively non-sustainable cases —by keep-
ing all other country characteristics fixed and changing the long term expected growth to
3%— as we conducted systematic sensitivity checks and controlled experiments on all the
relevant variables and parameters of the model. The model is calibrated for the forty-year
period 2019–2059, to extend past 2049 when all legacy debt matures (Section 5.2).The
available instruments are 3-year (short-term), 5-year (medium-term) and 10-year (long-
term) bonds. We use optimizer BARON from (GAMS Development Corporation, 2016)
to fit the trees and CONOPT (Drud, 1985) to solve the model.

5.1 Scenario tree

There have been significant advances in the calibration of scenario trees to match mar-
ket observed moments for multiple risk factors. Notably, Høyland and Wallace (2001);
Klaassen (2002) developed calibration methods for use in stochastic programming mod-
els. Consiglio et al. (2016a) developed an arbitrage-free calibration procedure for both
risk-neutral and objective probabilities to match an arbitrary number of moments, which
is well suited for fitting trees to risk-free rates, GDP growth, and primary balance.

We calibrate the tree by adding to the long-term expected values, time-dependent ran-
dom shocks. The tree is calibrated by matching the standard deviations and correlations
of Figure 4(a), which mostly reflect European historical patterns. For tractability —the
number of nodes in a tree grows exponentially with time— we calibrate a tree structure
for five years for a total of 256 scenarios, with each scenario extended past the fifth year
until the risk horizon using cyclical dynamics with normally distributed random shocks.
Fig. 4(b)-(d) show the three calibrated trees of our baseline economy.
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Growth Primary balance Risk-free rates

Growth 1.00 0.25 -0.20
Primary balance 0.25 1.00 -0.03
Risk-free rates -0.20 -0.03 1.00

Long-term mean 3.5 1.0 3.25
St. Dev 0.75 0.15 0.85

(a) Data to calibrate the scenario tree
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(b) Scenarios of risk-free rates
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(c) GDP growth scenarios
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(d) Primary balance scenarios

Figure 4 – Data to calibrate the baseline economy and the scenarios.
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5.2 Legacy debt

In the baseline calibration, we assume that legacy debt amortizes over the period 2019-
2044 according to the pattern of Figure 5. In our sensitivity analysis, we also explore
alternative profiles with shorter horizons.13
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Figure 5 – Legacy debt service profile for the baseline economy.

5.3 Yield curve

Taking into account state dependence, eqn. (3) reads:

rnt (j) = rnft + ρ(dnt , j). (35)

Figure 4 already provides the risk-free rates on the scenario tree. Now we assume that
the risk and term premia in our simulated economy behave such that

ρ(dnt , j) = aj + (1 + bj)ρ̂(dnt ). (36)

where aj and bj are maturity-specific constants, and ρ̂(d) is a non-linear function that
captures the endogeneity of interest rates to debt stock,

ρ̂(d)
.
= ρ̂

[
dmax − d

1 + exp (dmax − d)
− dmin − d

1 + exp (dmin − d)

]
. (37)

Together, eqns. (36) and (37) generate yield curves that shift and twist with changes of
the debt ratio. For instance, if βj = 0 for all maturities, changes in debt levels only cause
parallel shifts in the yield curve but its shape remains unchanged and fully determined

13We also tested the model with redemptions evenly distributed over time or clustered around various
specific time periods.

20



Figure 6 – Risk premium as a smooth approximation of a piece-wise function at dmin =
60 and dmax = 160.

by the aj’s. In contrast, when bj is higher (lower) for long-term than short-term debt, an
increase in debt also causes a steepening (flattening) of the curve.

The function in eqn.(37) is a smooth nonlinear approximation of the simpler, but non-
continuously differentiable, piece-wise step function, Figure 6. The piece-wise function
considers that a sovereign’s risk premium is zero for debt ratios below 60%, and grows
linearly with slope 3.25 for higher debt values, up to a peak of 325 basis points when the
debt ratio is greater or equal than 160%. The implicit assumption in this function is that
the sovereign is cut off the market for debt ratios above 160%, in which case its funding
costs are stabilized by official sector support.

Table 1 reports the values of the parameters in eqns. (36)–(37) for the baseline calibra-
tion of the model. They are based on the yield curve dynamics observed in the European
periphery during the last euro area debt crisis.

6 Model at work

We now test the model on our calibrated economy to answer three questions. First, what
are the trade-offs embedded in choosing the optimal issuance strategy. Second, what is the
economic relevance of these trade-offs. And third, why, how and when optimizing matters.
We base our conclusions on the findings from adaptive fixed-mix strategies to answer the
first two questions. Results for fixed-mix and dynamic strategies do not provide any
different qualitative conclusions for these questions, but, quantitatively, there is a larger
scope in trade-offs with dynamic strategies and more narrow scope with the fixed-mix
rules. To illustrate these differences and answer the third question, we compare the most
relevant variables in the model under the three alternative optimizing strategies and some
simple issuance rules. Also, we do not always impose the stock risk constraints (20)–(24)

21



(a) Equation (36)

Coefficient Bond maturity (years)
j = 3 j = 5 j = 10

aj -35bp 0 +72bp
bj -0.13 0 +0.13

(a) Equation (37)

Coefficient Value
ρ̂ 3.25

dmin 60
dmax 160

Table 1: Parameters for the calibration of endogenous yield curves.

in order to better understand non-sustainable debt dynamics. In all the exercises, the
confidence level for CVaR is set at α = 0.05. In the results we also consider an upper
threshold of ω in the range 15% to 20% GDP, which is the empirically observed market
capacity to refinance a sovereign’s debt. Larger values are of course possible, but the
resulting financing strategies may not be implementable in practice.

We report various statistics of the solution as they vary with increasing risk tolerance
ω, and also look at the trajectories of gfn and d, the WAMI of issued debt and its effective
cost. For stochastic quantities we occassionally provide fan charts with the median and
selected percentiles.

6.1 Trade-offs embedded in choosing optimal issuance strategy

The trade-off between cost of debt financing and refinancing risk has significant im-
plications for the choice of an optimal issuance strategy, and the associated stock and
flow dynamics. When going from the extreme case of cost minimization to minimizing
refinancing risk we obtain more diversified financing strategies with less volatile gross
financing needs that impose smoother demands on the tax base. However, stock declines
more slowly. We quantify these trade-offs by varying ω from the lowest possible value
for which the model has a feasible solution, to high values such that the risk constraint
eqn. (6) is not binding. Results are summarized in Figures 7 and 8.

Remark 1. Risk management comes with a cost. Figure 7(a) shows the model’s
“efficient frontier” when issuance is designed to minimize expected interest payments on
new debt subject to constraints on the tails of the stochastic distribution of gfn. From
the figure, it is clear that reduced refinancing risk (i.e., lower ω) implies higher expected
interest payments under an upward-sloping yield curve. This is so because more risk
averse sovereigns will optimally choose issuance strategies that resort more often to long-
term financing instruments which are more expensive. This is evident from the same
figure, which shows the mean WAMI on the tree under the optimal issuance strategy for
different values of ω. Figure 7(b) delivers the same message by comparing the evolution
of WAMI over time for three different values of ω. The shift from long-term to short-
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term issuance as risk tolerance increases is consistent with the findings of Cole and Kehoe
(2000); Conesa and Kehoe (2014). This shift creates even higher risks when a country is
in trouble, leading Conesa and Kehoe (2015) to call it gambling for redemption, and our
model results are consistent with their argument as risk tolerance increases.
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(a) Expected net interest payments and weighted average maturity at
issuance, averaged over the tree.
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Figure 7 – The cost of risk management.
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Remark 2. Trading off debt flow and stock dynamics. Besides the cost-risk trade-
off described above, which could have been intuitively inferred from the mathematical
formulation of our optimization problem, our simulations point at an additional trade-off.
Namely, there is a conflict between improving the dynamics of gross financing needs and
those of debt stocks. This is illustrated in Figure 8(a), which shows the average debt
stock and the average gross financing needs over the tree under the optimal issuance
strategy for different values of the risk tolerance parameter. Figures 8(b)–(c) convey
the same message exploiting, for two different values of ω, all the temporal dimension
and stochasticity of our model. The channel through which this trade-off operates relies,
again, on the maturity and cost of the different financing instruments. As discussed
above, it is possible to improve gross financing needs dynamics by issuing longer-dated
bonds. But these are more expensive than short-term bonds, which increases the effective
interest rate of debt and, subsequently, deteriorates debt dynamics.

The fact that gross financing needs are smoother when risk tolerance is lower (Fig-
ure 8(b)) could intuitively imply smoother sovereign demands on the tax base. This result
mirrors the conclusion of Missale (1997) that “the optimal taxation approach follows from
a specification of [the] trade-off which gives all the weight to risk minimization”.
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(b) Dynamics for gross financing needs (%
of GDP).
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Figure 8 – Trading off flow and stock dynamics for different levels of risk tolerance.
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6.2 The economic relevance of trade-offs

Besides incorporating trade-offs that are relevant for choosing an issuance strategy, one
important value added of our model is that it can quantify their magnitude. Reducing
refinancing risks is always desirable, but when can this be too costly? How much should a
Treasury increase the weighted average maturity of its issuances to reduce tail refinancing
risks by 1%? Is the relationship between these variables linear? Addressing these matters
without a rich and realistic quantitative tool may generate misleading policy advice. The
model provides some insights into these issues.

Remark 3. The cost-risk and flow-stock trade-offs embedded in issuance
decisions are key determinants of the evolution of debt dynamics and are
economically significant. Conceptual trade-offs are only pertinent for policy makers
as long as they have material quantitative effects. Table 2 shows that this is the case for
our realistic calibrated economy. In particular, we find that reducing risk tolerance from
a relatively high level (ω = 26% of GDP) to the lowest attainable level (ω = 15.5% of
GDP) implies about 5 years increase in the weighted average maturity of issuances and
an increase in debt’s effective interest rates of 0.8 percentage points (pp) on average over
the tree. Consistent with these effects, gross financing needs drop by about 8pp while
debt deteriorates by 9pp.

ω WAMI Effective rate GFN Debt
(in years) (in %) (in % of GDP) (in % of GDP)

min=15.5 8.2 3.4 9.2 73.9
16 5.0 2.9 12.2 68.6
17 4.4 2.8 13.5 67.7
19 3.9 2.8 14.8 66.9
22 3.3 2.7 16.9 65.4
24 3.2 2.6 17.4 64.8
26 3.1 2.6 17.6 64.6

Table 2: The effect of risk tolerance on weighted average maturity (averaged over the
tree) at issuance, effective interest rate on debt, gross financing needs, and debt ratio.

Naturally, the magnitude of these impacts depends on the specific calibration of the
economy. As a reference, Figure 9 shows that the sensitivity of WAMI to risk tolerance
increases with the initial stock of debt. The same applies to net interest payments and
the effective interest rate on debt (not shown).

Changing risk tolerance also has large distributional implications. Figures 10(a)-(b)
show how the distribution of gross financing needs and debt stocks shift as risk tolerance
drops from a relatively high level to the lowest attainable level. Figure 10(c) complements
these results by showing the change of the standard deviation of these variables over the
tree. Again, risk management has a significant quantitative impact.

Remark 4. Risk management comes with some limits and non-linearities.
In the paragraphs above we talked about the “lowest” risk tolerance level. This is the
lowest value of ω for which the model has a feasible solution. This threshold, which
depends on the precise calibration of the economy, is already informative by itself as it
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provides a clear benchmark for assessing debt sustainability. In particular, knowing this
minimum (unavoidable) level of exposure to tail refinancing risks can preclude the quest
for untenable policy targets.

Our quantitative analysis also unveils some marked non-linearities in the risk man-
agement of issuance strategies. Intuitively, when risk tolerance is very high (i.e., high ω),
the CVaR constraint on gross financing needs is barely binding (if at all). In those cases,
a given reduction in ω will have relatively small effects on issuance, cost, flow and stock
dynamics, which will be mostly driven by cost minimization. In contrast, when the initial
value of ω is already small, the same reduction in tail risks will imply larger distortions in
the relevant variables of the problem. These non-linear effects are particularly evident for
WAMI and debt stocks (Table 2). In our simulation, reducing risk tolerance from 26% to
19% of GDP increases effective rates marginally (0.2pp) and requires a maturity exten-
sion of 0.8 years. However, reducing risk tolerance from 17% to the lowest possible15.5%
has a marginal impact on costs and maturities three and five times larger, respectively.

6.3 The relevance of optimizing

In this section we compare the performance of different optimizing strategies (fixed-mixed,
adaptive fixed-mixed, and dynamic) and various rules-of-thumb. Of course, we know
from optimization theory that results will always be better, for our optimality criterion,
with the more flexible dynamic issuance strategies. The economic significance of this
outcome depends on the calibrated economy, so in this section we seek to understand
how optimizing matters and when it becomes more important.

Remark 5. Cost savings from (flexible) optimization increase as risk toler-
ance declines. Figure 11 shows the cost-risk trade-off in our simulated economy for
our three optimizing strategies and for three simple issuance rules: issuing always long-
term (i.e., using 0-0-100 weights for the 3y-5y-10y funding instruments), issuing always
short-term (i.e., 100-0-0) and a benchmark issuing always in all tenors with a weighted
average maturity of about 5 years (i.e., 40-40-20). As expected, for each level of risk
tolerance, dynamic strategies are always the “cheapest”, and non-extreme simple rules,
such as the benchmark 40-40-20, underperform the optimal ones (except by serendipitous
coincidence). The relative performance of extreme simple rules is also intuitive. When
risk tolerance is very high and the sovereign only cares about cost minimization, it always
issues at the shortest available tenor and the optimal issuance strategy coincides with the
100-0-0 rule. We also found that when the service profile of legacy debt is smoothly
decreasing and risk tolerance is very low, issuing always at the longest available matu-
rity (i.e., the 0-0-100 rule) is the most efficient fixed-mix strategy to limit refinancing
risks. Except in these special marginal cases, Figure 11 shows that cost savings from op-
timization are economically meaningful and that the relative benefits of the more flexible
optimization approaches increase non-linearly as risk tolerance declines.

Remark 6. Optimizing renders less volatile financing needs but weighs on
debt stock dynamics. Remarks 1 and 2 above already discussed the cost-risk and
flow-stock trade-offs arising from an optimal issuance model with adaptive fixed-mixed
strategies. We now illustrate how other optimal strategies and simple rules handle the
same trade-offs. For expositional purposes, we compare the behaviour of the 40-40-20
benchmark rule which serendipitously is the optimal fixed-mix strategy for the calibrated
economy, with unconstrained adaptive fixed-mix strategies without boundary conditions.
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Dynamic strategies dominate adaptive fixed-mix which dominates fixed-mix and several simple

rules. Differences are bigger with decreasing risk tolerance and the trade-offs are economically

significant. Serendipitously, the benchmark policy lies on the efficient frontier of the fixed-mix

strategies at an intermediate risk preference.

From Figure 11 we note that there are many ways to make a Pareto move from the
point 40-40-20 on the frontier of the fixed-mix strategies, to the frontier of the adaptive
fixed-mix strategy. We consider a move to the left, reducing ω from 18.18% to 14.74% of
GDP. Figure 12(a) shows that the more flexible strategy has a lower volatility in gross
financing needs, but debt stock declines at a somewhat slower pace, Figure 12(b).14

Large spikes in gross financing needs may derail debt dynamics, for instance, because
temporary liquidity problems may weigh on long-term solvency. Optimal issuance strate-
gies are able to smooth out some of these spikes and this makes them especially suitable
for sovereigns with debt sustainability concerns. For instance, from Figure 12(a) we ob-
serve that the optimal strategy keeps financing needs below the 15% threshold after 2022
with high probability, and has smooth payments. The average needs from the benchmark
rule violate the threshold six times during the first decade, and there is a 0.05 probability
of more violations until 2049 when all legacy debt expires.

Of course, debt-financing decisions may not restore (by themselves) the sustainability
of explosive debt dynamics. But in marginal cases, optimizing certainly renders significant
improvements, and we address the issue of restoring sustainability with adjustments of
gross financing needs in Section 7.

Remark 7. Optimizing helps relatively more when the stock of legacy debt
is larger and its maturity shorter. Ceteris paribus, more legacy debt means worse

14Alternatively, we could move down, and this would reduce expected NIP by about 0.5% of GDP and
the effective cost of debt by 40bp, but will not improve refinancing risks.
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Figure 12 – Debt dynamics with the optimal adaptive fixed-mix strategy and the bench-
mark rule.

initial conditions, and this implies both higher average gross financing needs over the
relevant horizon (i.e., higher refinancing risks), and higher funding costs due to interest
rate endogeneity. Consistent with this intuition, Figure 13(a) shows that the efficient
frontier for adaptive fixed-mix strategies shifts to the right when the stock of legacy debt
increases. The same is true when the maturity of this debt shortens (Figure 13(b)) as,
ceteris paribus, this means higher refinancing pressures for the sovereign as legacy debt
amortizes on a shorter horizon.
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More importantly, the benefits from using more flexible optimal strategies are rela-
tively larger in the presence of worse initial conditions. Table 3 reports the lowest expected
interest costs that can be achieved with fixed-mix and adaptive fixed-mix strategies for
an arbitrary risk tolerance (ω = 20) and different initial conditions of legacy debt and
its maturity. The outperformance (in terms of lower interest costs) of the more flexi-
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ble strategies is more evident in the worst scenarios. The same is true when comparing
adaptive fixed-mix strategies and the 40-40-20 rule for the same level of risk tolerance,
ω∗.

Baseline High debt Short maturity

ω = 20
Adaptive fixed-mix (AFM) 3.22 5.79 3.86
Fixed-mix (FM) 3.57 8.17 5.21
Difference AFM-FM -0.34 -2.38 -1.51

ω∗ 18.19 22.82 22.74
Adaptive fixed-mix 3.41 5.09 3.16
Benchmark 40-40-20 4.12 6.15 4.20
Difference AFM-benchmark -0.71 -1.06 -1.05

Table 3: Expected net interest payments, averaged over the tree, for different issuance
strategies and calibrated economies.
ω∗ is the risk tolerance of the optimal adaptive fixed-mix strategies when set equal to the level

of risk of the benchmark rule in each of the calibrated economies, to make for a fair comparison.

Remark 8. The feedback from debt stock into interest rates affects risk
management. As discussed above, our model’s cost-risk trade-off works through the
maturity of the funding instruments issued to meet ongoing gross financing needs. Ceteris
paribus, higher risk aversion (to refinancing risks) means more reliance on long-term
instruments, lower gross financing needs, but higher debt (Remarks 1 and 2).

Against this background, an increase in ρ̂, the parameter that drives the sensitivity
of funding costs to the stock of debt in eqn. (37), reduces the incentives to lengthen
the maturity of the issuances. This implication is irrelevant of whether debt dynamics
are fundamentally increasing or decreasing. Endogenous rates open the room for both
vicious and virtuous debt-cost cycles. They always create an incentive to shorten the ma-
turity of the issuances, either to accelerate the virtuous cycle or to mitigate the negative
implications of vicious cycles.

As in Remark 7, higher sensitivity of interest rates to the debt level (i.e., stronger
interest rate endogeneity) can be viewed as worse initial conditions for a treasury inter-
ested in reducing refinancing risks. This can be seen in Figure 14, which compares the
efficient frontiers for two levels of ρ̂. Two observations arise from these results. First,
debt sustainability analysis that ignores interest rate endogeneity may lead to erroneous
conclusions both quantitatively and qualitatively. This observation is consistent with
the conjecture of Bohn (1990) that endogenous interest rates change not only quanti-
tively, but also qualitatively, the sovereign’s optimization problem. Second, abstracting
from moral hazard considerations, our model suggests that mitigating interest rate en-
dogeneity would be positive both from a cost and risk management perspective. To a
large extent, this is the aim of financial assistance programmes to countries facing debt
sustainability problems.15

15The relative benefits of optimizing documented in Table 3 were also found to be bigger for stronger
feedback loops, especially for higher debt and shorter maturities.
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7 Adjusting gross financing needs for sustainability

The risk constraints on gross financing needs (eqns. 13–16), and the pace of debt reduction
(eqns. 20–24), are at the heart of our model. In these constraints, ω defines the policy
marker’s risk tolerance, and δ the desired pace of debt stock reduction. We have already
hinted that, depending on the economic fundamentals of the economy, there is always
a threshold for ω beyond which refinancing risks can not be reduced further, even by
implementing the smartest issuance strategies (Remark 4). The same applies to δ.16 An
ambitious policy maker may want to see debt declining at a very fast pace, but that could
be beyond the potential of the economy. As discussed above, quantifying these thresholds
is already an important contribution of our model, which is especially convenient for debt
sustainability discussions involving the official sector and sovereigns in debt crises. We
now extend our baseline model to contribute further to this debate. In particular, the
model extension provides both qualitative and quantitative responses to the following
question: What can you do to ensure that the desired, but initially unattainable, targets
of refinancing risks and pace of debt reduction are reached?

We identify the hot spots where adjustments may be required. Adjustments can
mobilize a combination of domestic resources, such as higher revenues (e.g., tax proceeds,
privatisations) or expenditure reductions, and external resources, such as official sector
financing or debt restructuring.

To compute the adjustments required to reach a feasible solution in the constrained
optimization problem, we introduce variable ut to denote adjustments as a proportion of
GDP. If the sovereign manages to save (or to raise) an additional amount utY

n
t at state

n of period t, then the debt financing eqn. (9) reads as

J∑
j=1

Xn
t (j) + utY

n
t ≥ GFNn

t . (38)

16Of course, the model is always feasible if we relax the stock constraint to allow debt to grow, and
ignore refinancing risks.
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Figure 15 – Debt dynamics for an economy calibrated under non-sustainable conditions.

In this equation, utY
n
t represents the part of gross financing needs that does not need to

be financed by issuing new debt. Of course, if ut is unbounded and carries no cost, the
model will always meet all financing needs through ut. To ensure that these adjustments
are used as a last resort, we add a penalty term M∑T

t=0 ut to the objective function
(5), where the large constantM ensures that we compute the minimum amount required
to meet the desired policy targets on refinancing risks and stock dynamics. The timing
of these adjustments identifies the hot spots. A smoothing constraint can be imposed,
similar to the smoothing of issued maturities.

Equation (38) holds with inequality because the adjustment ut is time-dependent
but state-invariant, whereas the total amount raised from a given adjustment is state-
dependent due to GDP. This means that, under some states of the economy, a surplus
could be created. We assume that this state-dependent surplus will be used to pay down
debt, and the debt dynamics eqn. (32) is modified accordingly,

Dn
t = D

a(n)
t−1 + GFNn

t − utY n
t −

∑
m∈P(n)

J∑
j=1

Xm
τ(m)(j)1

n(j,m)− An
t . (39)

An alternative specification allows the adjustments to be both state- and time-dependent,
unt . In this case (38) holds with equality, and the optimal solution could be used to struc-
ture contingent contracts (Bazerman and Gillespie, 1999) for a country under an assistance
program.

We revisit the calibrated economy, but we lower long-term expected GDP growth to
3% to create non-sustainable debt dynamics. The optimal adaptive fixed-mix strategies
are now unable to reduce refinancing risks below 16% of GDP. Figure 15 shows the
dynamics of gross financing needs and debt stock for this risk level, and comparing with
the optimized dynamics of the baseline economy —Figure 8 for ω = 15.54— we observe
a significant increase of gross financing needs and explosive growth of debt stock.

We now search for the minimum adjustments that are required to reduce financing
risks below the threshold of ω = 15% of GDP. The minimum achievable risk level is ω =
13.7% and Figure 16(a) shows the size and timing of the adjustments, and Figure 16(b)
shows the new risk-complying gross financing needs that violate the threshold only at
the first period, due to the large legacy debt maturing in 2019. The model suggests
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adjustments of more than 5% of GDP in the early periods for a total adjustment of
10.14% of GDP. If these were, for example, additional fiscal efforts, they may reflect a
“surplus of ambition” (Eichengreen and Panizza, 2016), and may be difficult to implement
in practice due to technical and/or political reasons. In the same vein, such adjustments
through privatization proceeds may create concerns for fire sales under adverse conditions.
To address such concerns, we re-run the model setting a cap of 3% of GDP per period
in the adjustments, Figure 16(c)-(d). Naturally, this is a second best and, although the
adjustment per year is smaller, it carries on for two more years, the total adjustment is
slightly higher (10.52 % of GDP), and gross financing needs dynamics worsen (even if
the aggregate ω stays the same). Debt stock dynamics (not shown) are decreasing with
both adjustments.

We also consider delaying the adjustments. In particular, we re-run the model under
the assumption that no adjustments can be implemented in the first year of the decision
horizon, i.e. u2019 = 0, see Figure 16(e)-(f). An important observation is that the
total adjustment following the initial delay (12.55% of GDP) lasts for another two years
and is significantly higher than the total required if the country does not procrastinate
(10.52% of GDP), and gross financing needs dynamics worsen even further (although the
aggregate ω stays the same). This result mirrors the finding from the stylized model of
Blanchard et al. (1990) that “delaying adjustment substantially affects the size of the
needed policy action”. These findings can inform strategic policy decisions for public
finance and operational decisions for official sector borrowing.
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Figure 16 – Hot spots and adjustments of gross financing needs required to reach
an acceptable (and sustainable) refinancing risk for an economy calibrated under non-
sustainable conditions.

34



8 Conclusions and further work

In this paper, we have presented a very granular and flexible tool that, by incorporating
the main trade-offs embedded in the design of optimal issuance strategies, provides inter-
esting qualitative and quantitative insights for the analysis of sovereign debt dynamics.
Large-scale stochastic programming on scenario trees is a versatile and effective tool for
debt sustainability analysis.

We see at least three avenues for further work:

1. Real life implementation. In this paper, we have used a simulated but realistic
economy to illustrate the qualitative and quantitative functioning of our model.
An obvious next step would be to apply our optimizing tool to real-country data
complementing, from a risk management perspective, the debt sustainability anal-
ysis already carried out with more standard models.

2. Debt overhang. The ability of a country to create a primary surplus also depends
on debt overhang (Kobayashi, 2015; Reinhart et al., 2012), through the mechanism
of “fiscal fatigue” (Barr et al., 2014). To address this issue we need to link primary
balance scenarios with debt-to-GDP ratio within the model. Addressing this issue
is not simply a question of developing the appropriate simulations through fiscal
multipliers (see, e.g., (Barr et al., 2014, eqn. 5)). Instead, we would need to link
primary balance scenarios with the endogenous debt-to-GDP dynamics within the
model, fully internalizing the feedback loop X → D → r → Y → PB → X. This
extension would also make growth endogenous to debt.

3. Sovereign contingent debt financing. There is an ongoing debate on the merits of
contingent debt for sovereigns, with a special focus on sovereign-CoCos and GDP-
linked bonds (IMF, 2017). Incorporating such instruments into our model requires
two extensions. First, to develop the appropriate simulation models linking debt
payments to the appropriate risk factor, in order to calibrate the scenario trees. For
instance, we need to link the service payments of GDP-linked bonds to GDP sce-
narios (Benford et al., 2016; Blanchard et al., 2016; Consiglio and Zenios, 2018), or
those of sovereign-CoCos to the factor (potentially) triggering a standstill (Consiglio
et al., 2016b). Second, to link the new scenario trees to debt financing decisions.
To do so, our model must incorporate additional factors relating to contingent con-
tracts, and the endogenous modelling of cashflow payments of discrete contingent
debt in the case of sovereign-CoCos. This may require integer programming, thus
leading to complex mixed-integer non-linear programs.

The extension of the model in Section 7 also raises interesting questions. If the re-
quired adjustments imply additional fiscal effort, we would need to model the feedback
from fiscal effort to growth. If the adjustments imply debt restructuring, we must con-
sider its impact on the sovereign’s yield curve taking into account lenders’ considerations
through “principles-based constraints” (Guzman and Stiglitz, 2016), and strike a balance
between the use of domestic and external resources. Our setup provides a fertile ground
for further work on these relevant research and policy questions.
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A Modeling worst-case and risk-neutral measures

The worst-case gross financing needs for all states at all time periods is defined by
Ψ(gfn) = maxn∈Nt, t=0,1,2,...T{gfnnt }, and this is a suitable measure for stress testing. Un-
der risk neutrality we consider the expected value of gross financing needs at each period,
and the risk measure is Ψ(gfnt) =

∑
n∈Nt

πnt gfnnt for all t. Constraint eqn. (16) on the
coherent risk measure can be replaced by constraints on these risk measures. For the
worst-case we have

gfnnt ≤ ω, for all n ∈ Nt, t = 0, 1, 2, . . . T. (40)

For the risk-neutral measure we have∑
n∈Nt

πnt gfnnt ≤ ω, t = 0, 1, 2, . . . T. (41)

Similarly we can formulate debt stock constraints (section 4.3) using worst-case and
risk-neutral measures. The worst-case formulation adds the constraints

∆n = dn − da(n) (42)

∆n ≤ δ, for all n ∈ N . (43)

This requires that debt is reduced with pace δ from its ancestor state, for all time periods
and states. The risk-neutral formulation requires that average debt is inter-temporally
non-increasing and adds the following constraints

∆n = dn − da(n) (44)
1

Nt

∑
n∈Nt

∆n ≤ δ, t = 0, 1, 2, . . . T. (45)

With this formulation, situations where debt stock cannot decrease by δ temporarily, even
by small amounts, are considered unsustainable. We consider, instead, that the average
debt changes over the risk horizon should decrease with the target pace using the less
restrictive condition

∆n = dn − da(n) (46)
1

N

∑
n∈N

∆n ≤ δ. (47)
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