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Abstract 
 

  

This paper examines the interconnection between four implied volatility 

indices representative of the investors' consensus view of expected stock 

market volatility at different maturities during the period January 3, 2011-May 

4, 2018. To this end, we first perform a static analysis to measure the total 

volatility connectedness in the entire period using a framework proposed by 

Diebold and Yilmaz (2014). Second, we apply a dynamic analysis to 

evaluate both the net directional connectedness for each market using the 

TVP-VAR connectedness approach developed by Antonakakis and Gabauer 

(2017). Our results suggest that a 72.27%, of the total variance of the 

forecast errors is explained by shocks across the examined investor time 

horizons, indicating that the remainder 27.73% of the variation is due to 

idiosyncratic shocks. Furthermore, we find that volatility connectedness 

varies over time, with a surge during periods of increasing economic and 

financial instability. Finally, we also document a superior performance of the 

TVP-VAR approach to connectedness respect to the original one proposed 

by Diebold and Yilmaz (2014). 
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1. Introduction 

Volatility is a crucial ingredient in many different areas of macroeconomics (e.g., 

business cycle fluctuations or monetary policy transmission; Bloom et al., 2018, and 

Mankiw and Reis, 2002) and finance (e.g., asset allocation, option pricing, risk 

management or systemic risk measurement; Campbell, 2000), as well as a key factor 

influencing the effect of public information signals (Morris and Shin, 2002). High 

volatility may also anticipate a financial crisis as it is a signal of growing uncertainty 

(see, e. g., Baker et al., 2016, and Engle et al., 2013). Furthermore, investment risk 

varies not only with asset class, but also with investment horizon, thus creating a “term 

structure of the risk–return trade-off” (Campbell and Viceira, 2005).  

A common way of measuring volatility in financial markets is through the implied 

volatility obtained from financial derivatives. The best-known applications of this 

methodology are the market volatility indices developed by the Chicago Board Options 

Exchange (CBOE). Based on the theoretical papers of Demeterfi et al. (1999) and Carr 

and Madan (1998), CBOE obtains the implied volatility from options markets
1
. The 

forward-looking nature of option market data allows deriving economically-based and 

model-free conditional risk measures. Since they represent the expectations of the 

investors about the future realized volatility of the underlying assets for certain calendar 

days ahead, the implied volatilities are often referred to as the “fear gauge” of financial 

markets by market participants and media (Whaley, 2000).  

Prior studies have provided support for the predictive ability of the Volatility Index 

(VIX, a measure of implied volatility of the Standard & Poor's 500 Index) with regard 

to stock return (see, e.g., Giot, 2005; Guo and Whitelaw, 2006; Banerjee et al., 2007, 

                                                             
1 For excellent primers on the VIX, see Whaley (2009) and Gonzalez-Perez (2015). Carr and Lee (2009) 

provide an exemplary history of the market for volatility derivatives and a survey of the relevant 

methodologies for pricing and hedging volatility derivatives products.  
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inter alia). Furthermore, the forward-looking characteristic of implied volatility indices 

make them have a superiority of the information content over historical volatility 

measures as it has been extensively documented in the literature (Jorion, 1995; Xu and 

Taylor, 1995; Christenssen and Prabhala, 1998: Fleming, 1998; Blair, Poon, and Taylor, 

2001; and Jiang and Tian, 2005; among others).
2
  

More recently, Jabłecki et al. (2014) find that volatility term structure calculated from 

implied volatility index futures (VIX index, hereafter) at different maturities shows a 

clear pattern of dependence on the current level of the VIX index. Lu and Zhu (2010), 

empirically examine variance term structure based on time series data from the CBOE 

VIX futures market. Using a principal component analysis they provide evidence that a 

third factor, based on the curvature, is statistically significant to capture variance term 

structure dynamics. Johnson (2017) follows the methodology used to compute the VIX 

to form the VIX term structure to estimate the implied volatility over the next one, two, 

three, six, nine, and twelve months. He finds that a single factor, the second principal 

component (slope), summarizes nearly all information about variance risk premia in the 

VIX term structure. Branger et al. (2017) study the volatility-of-volatility (VVIX) term 

structure, finding that the slope of the VVIX (defined as VVIX's second principal 

component) predicts excess returns of Standard & Poor's 500 Index and VIX straddles, 

incrementing the informational content of the VIX term structure and the variance risk 

premium. 

Financial economists have argued the asset allocation may be significantly different 

across investment horizons (see, e.g., Christoffersen and Diebold, 2000 or Campbell 

and Viceira, 2005). Although one could expect that the shorter-term VIX indices should 

                                                             
2 Poon and Granger (2003) concluded that the VIX is the best predictor of realized volatility, although it 

may be a biased one.  
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be below the longer-term VIX indices as investors need to be compensated for unknown 

future risk, simple observation of the interaction between VIX indicators at different 

time horizons reveals a non-constant and irregular relation between them. We assert that 

this evidence could suggest that they react differently and by different degrees of 

incremental changes to the same economic event.  

Motivated by such considerations, the aim of this paper is to systematically examine the 

nature and intensity of the volatility connectedness among VIX indicators representative 

of market-based expectations of volatility at different time horizons. We employ the 

shock connectedness measurement framework popularized by Diebold and Yilmaz 

(2012, 2014). This empirical framework, based on a generalized vector autoregressive 

(VAR) system, enables us to effectively quantify total (non-directional) connectedness, 

gross directional spillovers, net directional connectedness, and net pairwise 

connectedness. In particular, we perform a full-sample (static) analysis uncovering 

average or unconditional connectedness. Moreover, we employ the extension of the 

time-varying parameter VAR (TVP-VAR, hereafter) connectedness approach of 

Antonakakis and Gabauer (2017) to characterize dynamic connectedness.  

The rest of the paper is organized as follows. Section 2 outlines the econometric 

framework to quantify both the total and directional volatility connectedness. Section 3 

presents our data and a preliminary analysis. In Section 4, we report the empirical 

results (both static and dynamic) obtained for our sample of four market volatility 

indices (a system-wide measure of connectedness). Section 5 examines the evolution of 

net directional and net pairwise directional connectedness in each market.  Section 6 

provides robustness check. Finally, Section 7 summarizes the findings and offers some 

concluding remarks. 
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2. Methodology  

The main tool for measuring the amount of connectedness is based on a decomposition 

of the forecast error variance. In this paper, we make use of Diebold and Yilmaz’s 

connectedness methodology which we will briefly describe in Section 2.1. Finally, we 

also employ the dynamic connectedness based on TVP-VAR provided by Antonakakis 

and Gabauer (2017) which will be developed in Section 2.2. 

2.1 Diebold and Yilmaz’s (DY) connectedness. 

Given a multivariate empirical time series, the forecast error variance decomposition is 

obtained from the following steps: 

1. Fit a reduced-form vector autoregressive (VAR) model to the series, 

 1 , 0,    t t t tY Y N      (1) 

where   , represents an Nx1 series vector at time t,  is an NxNp dimensional coefficient 

matrix and  t  is an Nx1 dimensional error disturbance vector with an NxN variance-

covariance matrix,  . 

2. Using series data up to and including time t, establish an H period-ahead forecast (up 

to time t + H). 

3. Decompose the error variance of the forecast for each component with respect to 

shocks from the same or other components at time t. 

Diebold and Yilmaz (2014) propose several connectedness measures built from pieces 

of variance decompositions in which the forecast error variance of variable i is 

decomposed into parts attributed to the various variables in the system. This section 

provides a summary of their connectedness index methodology. 
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Let us denote by 
H

ijd the ij-th H-step variance decomposition component (i.e., the 

fraction of variable i’s H-step forecast error variance due to shocks in variable j). The 

connectedness measures are based on the “non-own”, or “cross”, variance 

decompositions, 
H

ijd , , 1, , , . i j N i j  

Consider an N-dimensional covariance-stationary data-generating process (DGP) with 

orthogonal shocks: ,)( tt uLx   ...,)( 2

210  LLL .),( IuuE tt   Note that 

0 need not be diagonal. All aspects of connectedness are contained in this very general 

representation. Contemporaneous aspects of connectedness are summarized in 0  and 

dynamic aspects in ,...}.,{ 21   Transformation of ,...},{ 21   via variance 

decompositions is needed to reveal and compactly summarize connectedness. Diebold 

and Yilmaz (2014) propose a connectedness table such as Table 1 to understand the 

various connectedness measures and their relationships. Its main upper-left NxN block, 

which contains the variance decompositions, is called the “variance decomposition 

matrix,” and is denoted by [ ].H H

ijD d  The connectedness table increases 
HD  with a 

rightmost column containing row sums, a bottom row containing column sums, and a 

bottom-right element containing the grand average, in all cases for .i j  

[Insert Table 1 here] 

The off-diagonal entries of 
HD are the parts of the N forecast-error variance 

decompositions of relevance from a connectedness perspective. In particular, the gross 

pairwise directional connectedness from j to i is defined as follows: 

.H

ij

H

ji dC   
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Since in general ,H

ij

H

ji CC    the net pairwise directional connectedness from j to i, 

can be defined as: 

.H

ji

H

ij

H

ij CCC    

As for the off-diagonal row sums in Table 1, they give the share of the H-step forecast-

error variance of variable xi coming from shocks arising in other variables (all others, as 

opposed to a single other). The off-diagonal column sums provide the share of the H-

step forecast-error variance of variable xi going to shocks arising in other variables. 

Hence, the off-diagonal row and column sums, labelled “from” and “to” in the 

connectedness table, offer the total directional connectedness measures. In particular, 

total directional connectedness from others to i is defined as 

,
1





 
N

ij
j

H

ij

H

i dC  

and total directional connectedness from j to others is defined as 

1

.
N

H H

j ij

i
j i

C d




  

We can also define net total directional connectedness as 

.
  H

i

H

i

H

i CCC  

Finally, the grand total of the off-diagonal entries in D
H
 (equivalently, the sum of the 

“from” column or “to” row) measures total connectedness: 

.
1

1,






N

ij
ji

H

ij

H d
N

C  



8 
 

For the case of non-orthogonal shocks, the variance decompositions are not as easily 

calculated as before, because the variance of a weighted sum is not an appropriate sum 

of variances. Otherwise, methodologies for providing orthogonal innovations like 

traditional Cholesky-factor identification may be sensitive to ordering. Therefore, 

following Diebold and Yilmaz (2014), a generalized VAR decomposition (GVD), 

which is invariant to ordering, proposed by Koop et al. (1996) and Pesaran and Shin 

(1998) will be used. The H-step generalized variance decomposition matrix is defined 

as gH gH

ijD d    , where 

 

 

1
2

1 '

0

1
' '

0












 



 





H

jj i h j
gH h
ij H

i h h

h

i

e e

d

e e

     (2) 

In this case, je  is a vector with jth element unity and zeros elsewhere; h  is the 

coefficient matrix in the infinite moving-average representation from VAR;   is the 

covariance matrix of the shock vector in the non-orthogonalized-VAR, jj  being its jth 

diagonal element. In this GVD framework, the lack of orthogonality means that the 

rows of 
gH

ijd  do not have sum unity and, in order to obtain a generalized connectedness 

index g g

ijD d    , the following normalization is necessary: 

1

,

g

ijg

ij N
g

ij

j

d
d

d





 where by 

construction 
1

1



N

g

ij

j

d  and 
, 1

N
g

ij

i j

d N


 .  

The matrix g g

ijD d     permits us to define similar concepts as defined before for the 

orthogonal case, that is, total directional connectedness, net total directional 

connectedness, and total connectedness. 
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It is worthily to note that the Diebold and Yilmaz’s (2014) connectedness framework is 

closely linked with both modern network theory (see Glover and Richards-Shubik, 

2014) and modern measures of systemic risk (see Ang and Longstaff, 2013 or 

Acemoglu et al., 2015). This framework has been used by Diebold and Yilmaz (2015) 

for defining, measuring, and monitoring connectedness in financial and related 

macroeconomic environments (cross-firm, cross-asset, cross-market, cross-country, 

etc.). The degree of connectedness, on the other hand, measures the contribution of 

individual units to systemic network events, in a fashion very similar to the conditional 

value at risk (CoVaR) of this unit (see, e.g., Adrian and Brunnermeier, 2016). 

2.2 Dynamic connectedness based on TVP-VAR 

Antonakakis and Gabauer (2017) extend and refine the current connectedness literature 

by applying TVP-VAR, instead of the currently proposed rolling-window VAR. This 

improves the methodology provided by Diebold and Yilmaz (2014) substantially, 

because under their proposed methodology: (1) there is no need to arbitrarily set the 

rolling window-size, (2) it employs the entire sample to estimate the dynamic 

connectedness so there is no major loss of observations, and (3) it is not outlier 

sensitive. Another advantage of their proposed TVP-VAR-based measure of 

connectedness is that it adjusts immediately to events.  

The TVP-VAR methodology allows both the VAR parameters and the variances to vary 

via a stochastic volatility Kalman Filter estimation with forgetting factors introduced by 

Koop and Korobilis (2014). As such, this approach can also be conducted to examine 

dynamic connectedness with limited time-series data. 

The TVP-VAR model can be written as follows, 

 1 1, 0,     t t t t t t tY Y F N      (3) 
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 1 1, 0,    t t t t t tv v F N R      (4) 

Where t
 is an NxNp dimensional time-varying coefficient matrix and  t

 is an Nx1 

dimensional error disturbance vector with an NxN time varying variance-covariance 

matrix, t
. The parameters t

 follow a random walk and depend on their own lagged 

values 
1 t
 and on an NxNp dimensional matrix with an NpxNp variance-covariance 

matrix, 
tR .

3
 

The time-varying coefficients t  and t  can be used in the DY connectedness measure 

where the dynamic H-step generalized variance decomposition matrix is now 

 

 

1
2

1 '

, ,

0
, 1

' '

, ,

0












 



  





H

jj t i h t t j
gH h
ij t H

i h t t h t

h

i

e e

d

e e

     (5) 

Which after normalization would be 
,

,

,

1





gH

ij tg

ij t N
gH

ij t

j

d
d

d

. Similarly, the matrix 
,

   t

g g

ij tD d

permits us to define the dynamic total directional connectedness, net total directional 

connectedness, and total connectedness. 

3. Data and preliminary analysis  

We download close daily data on four volatility indices representative of the investors' 

consensus view of expected stock market volatility in the Standard & Poor's 500 Index. 

We make use of the CBOE Short-Term Volatility Index (VIX9D) to gauge market-

based expectations of 9-day volatility. The CBOE Volatility Index (VIX) is employed to 

                                                             
3
 Following Koop and Korobilis (2014), we use the same non-informative initial conditions in 

the Kalman filter, a decay factor of 0.96 and a forgetting factor of 0.99 (see online appendix in 

Koop and Korobilis, 2014, for the technical details). Without loss of generality, we normalize 

the series,   , to get a faster convergence in the Kalman filter and smoother. This normalization 

does not have any effect on the connectedness matrix.  
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measure expectations of 30-day future volatility. We utilize the CBOE 3-Month 

Volatility Index (VIX3M) to measure of 3-month implied volatility.  Finally, the CBOE 

Mid-Term Volatility Index (VIX6M) is used as indicator of the expected volatility over 

a 6-month time horizon. All four indexes are calculated by the CBOE by applying the 

VIX methodology.
4
 The data are collected from the CBOE website. Given that the GVD 

requires normality, and that volatilities tend to be distributed asymmetrically (with a 

right skew), we approximate normality by taking natural logarithms (see, e.g. Diebold 

and Yilmaz, 2015). Hence, we work with the logarithm of the daily implied-volatilities. 

Our sample spans from January 3, 2011 until May 4, 2018 (i.e., a total of 1,914 

observations). 

The Panel A of Table 2 presents the descriptive statistics for these series. As can be 

seen, the average log implied volatility in our sample decreases with the time horizon, 

being the VIX6M the highest and the VIX9D the lowest. The logarithm of our market 

volatility indices presents a positive skewness (suggesting that the distribution has a 

long right tail) and kurtosis slightly greater than 3 (indicating that the distribution has 

longer tails relative to the normal). However, these figures are close to the theoretical 

skewness and kurtosis of a normal distribution. We report the pairwise correlations in 

the Panel B of Table 2. As expected, these correlations are high, being not lower than 

0.86. Intuitively, these high correlations could shed light about the connections between 

the implied-volatilities at different maturities, which we develop further below as the 

main goal of this paper.  

[Insert Table 2 here] 

Finally, Figure 1 shows the daily evolution in the logarithm of the implied volatilities 

under study. We can easily identify three salient characteristics: (a) sudden spikes, in 

                                                             
4 See http://www.cboe.com/micro/vix/vixwhite.pdf 
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which volatility jumps from (relatively) low levels to (relatively) high ones; (b) slow 

exponential declines, which bring down volatility to more reasonable levels following a 

spike; and c) the spikes in the implied-volatility seems to coincide for all the maturities 

which also suggests a connection between them. 

Note that the highest values of implied volatility occur when investors anticipate that 

huge movements in the Standard & Poor's 500 Index in either direction are likely. In 

these graphs, we observe several well-known peaks in volatilities, which coincide with 

important events, such as: 

i) the debt ceiling crisis of August 2011, when the US Congress and White 

House clashed over raising the government borrowing limit, prompting a 

spike in economic policy uncertainty and a downgrading of US credit rating 

from AAA to AA+;  

ii) China’s bursting equity bubble and the subsequent international stock market 

sell-off in August 2015; 

iii) the global financial turmoil after the UK voted to leave the European Union 

in June 2016; and  

iv) the correction observed in early February 2018 triggered by market 

perceptions of rising inflation and a corresponding adjustment in monetary 

policy expectations. 

 [Insert Figure 1 here] 

4. Empirical results  

In this section, we report the empirical results of the implied volatility connectedness. 

First, we show the static or full-sample GVD table. Second, we analyze the dynamic 

connectedness through TVP-VAR.  
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4.1 Static (full-sample, unconditional) analysis 

In the Table 3, we report the full-sample connectedness table where the off-diagonal 

elements measure the connectedness between the implied-volatility indices. As 

mentioned in Section 2, the ijth entry of the upper-left 4x4 market submatrix gives the 

estimated ijth pair-wise directional connectedness contribution to the forecast error 

variance of market i’s implied volatility coming from innovations to market j. Hence, 

the off-diagonal column sums (labelled TO) and row sums (labelled FROM) gives the 

total directional connectedness to all others from i and from all others to i, respectively. 

The bottom-most row (labelled NET) gives the difference in total directional 

connectedness (TO minus FROM). Finally, the bottom-right element (in boldface) is 

total connectedness, which is calculated as the sum of the non-diagonal elements of the 

connectedness matrix, divided by number of assets.
5
 

[Insert Table 3 here] 

As can be seen, the diagonal elements (own connectedness) are the largest individual 

elements in the table, ranging from 27.36% (VIX3M) to 28.78% (VIX6M). 

Interestingly, the own connectedness is smaller than any total directional connectedness 

FROM and TO others, reflecting that these implied volatilities are somewhat dependent 

of each other. Namely, news shocks that affect to the implied volatility of a particular 

maturity extensively spread on the implied volatilities of the other maturities. 

Accordingly, the total connectedness of implied volatilities is 72.27%, indicating that 

only a 27.73% of the variation is due to idiosyncratic shocks. This result is in line with 

the value of 78.3% obtained by Diebold and Yilmaz (2014) for the total connectedness 

                                                             
5 All results are based on a VAR model of order 2 and generalized variance decompositions of 10-day 

ahead volatility forecast errors. To check for the sensitivity of the results to the choice of the order of 

VAR, we also calculate the spillover index for orders 2 through 4, as well as for forecast horizons varying 

from 4 days to 10 days. The main results of our paper are not affected by these choices. Detailed results 

are available from the authors upon request. 
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between US financial institutions, but lower than the value of 97.2% found by Diebold 

and Yilmaz (2012) for international financial markets. 

Regarding to the net (TO minus FROM) contribution, our results suggest that the 

VIX9D is the only net receiver of implied volatility (-10.02%), being VIX, VIX3M and 

VIX6M net volatility triggers (4.48%, 3.85%, and 1.68%, respectively), suggesting that 

the volatility shocks of long maturities are spread on the shortest maturity. Finally, the 

highest observed net pairwise connectedness is from VIX to VIX9D (3.81%), followed 

by that from VIX3M to VIX9D (3.32%). 

4.2 Dynamic analysis 

The previous section provides a snapshot of the “unconditional”, or full-sample, aspects 

of the connectedness measure among the implied volatility indices. However, the 

dynamics of the connectedness measures remains covered. The appeal of connectedness 

methodology lies in its use as a measure of how quickly volatility shocks spread across 

holding periods as well as within the same maturity. As previously stated, we carry out 

an analysis of dynamic connectedness based on TVP-VAR.  

In the Figure 2, we report the evolution of the total connectedness between the four 

implied volatility indices.
6
 Figure 2 also highlights several cycles of connectedness 

where the total connectedness is higher or lower than the full sample average. As 

expected, the connectedness index shows a time-varying pattern over the sample period. 

The most significant spikes are observed (i) in the end of 2011, where significant 

tensions where observed in a context of uncertainty about global economic growth; (ii) 

in the first few months of 2013, coinciding with political agreements to temporarily 

avoid the so-called fiscal cliff and raise the federal debt ceiling; (iii) in the second half 

of 2014, possibly associated with the rising of geopolitical tensions due to the 

                                                             
6 To eliminate the effect of the non-informative initial conditions in the Kalman filter, we have 

skipped the first 200 days of the sample and plot the results from October 12, 2011 to May 4, 

2018. This number is somehow arbitrary but conservative. 
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Russia/Ukraine conflict and concerns about the global growth outlook; (iv) in the 

middle of 2015, reflecting uncertainty surrounding events in Greece and the sharp 

declines in Chinese equity prices, which (coupled with a rapid fall in oil prices) raised 

concerns about the global economic outlook; and in February 2018, in a context of 

significant correction of share prices which caused the decease of volatility ETFs such 

as XIV
7
, following the sudden signs of an increase in wage inflation in the United 

States. Interestingly, there are also important reductions in connectedness during our 

sample in February 2012 (corresponding to Greek government-debt crisis), in 

September 2012 (after a series of terrorist attacks are directed against United States 

diplomatic missions worldwide, as well as diplomatic missions of Germany, 

Switzerland and the United Kingdom), in June 2016 (when the United Kingdom voted 

in a referendum to leave the European Union), in January 2017 (after Donald Trump 

sword in as the 45th President of the United States), and in August 2017 (in an 

environment of favourable economic activity figures, contained inflation and abundant 

liquidity built up after several years of highly expansionary monetary policies). 

As can be seen, triggers of connectedness intensity among the implied volatility indices 

under study can come in many different shapes and sizes (policy uncertainty, 

geopolitical unrest, etc.), since the effects of these triggers on particular investors 

depend on their time horizon. Indeed, some events can increase the perceived volatility 

in a given investment horizon, but not in the others, depending on how much risk an 

investor is exposed and her expectations about the future evolution after the event. For 

example, the appointment of Donald Trump as president of the US affected investors 

with a short time horizon (VIX9D and VIX), but investors with longer time horizons 

                                                             
7 https://www.cnbc.com/2018/02/06/the-obscure-volatility-security-thats-become-the-focus-of-this-sell-

off-is-halted-after-an-80-percent-plunge.html 

https://en.wikipedia.org/wiki/United_Kingdom
https://en.wikipedia.org/wiki/United_Kingdom_European_Union_membership_referendum,_2016
https://en.wikipedia.org/wiki/European_Union
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were not so influenced because they would have thought that the potential disruptive 

change would dissipate with the passage of time. 

Therefore, the “unconditional”, or full-sample, total connectedness of 72.27% that we 

report in the previous section actually undervalues the potential connectedness of the 

implied volatilities indices. These indices seem to be more connected in periods of high 

market stress with potential effect across the whole range of investors’ time horizons, 

making them most vulnerable to contagion.  

5. Net directional connectedness 

5.1. Net directional volatility connectedness plots 

The net directional connectedness index provides information about how much each 

market’s volatility with certain maturity contributes in net terms to other maturities. As 

the dynamic total connectedness measure presented in Section 4.2, it also relies on the 

TVP-VAR connectedness approach. Figure 3 displays the dynamic net connectedness. 

[Insert Figure 3] 

As can be seen, our results suggest that VIX9D (blue line) was net absorber of volatility 

throughout the sample, and VIX (black line), VIX3M (red line) and VIX6M (green line) 

were net volatility propagators during the most of the sample (being -12.78% and 

4.08%, 4.94%, 3.75%, respectively, their estimated average net directional 

connectedness in Figure 3). Remarkably, the net directional volatility connectedness for 

VIX9D fluctuated substantially within a band of (-1.20%, -56.16%), reaching the 

minimum level, -56.16%, coinciding with the reintensification of the euro area 

sovereign debt crisis in the late spring of 2012
8
. Regarding, VIX, VIX3M and VIX6M 

are net receivers of volatility during short periods of the sample, being their minimum 

                                                             
8
 Recall that VIX9D provides a market-based gauge of expectations of 9-day volatility, making it 

particularly responsive to the short term changes in the S&P 500 Index. 
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net directional volatility connectedness of -3.23% (August 2013), -2.10% (May 2015) 

and -4.96% (December 2015), respectively. 

A further inspection of Figure 3 indicates the existence of at least three significant 

subperiods of intense transmission of volatility: (a) from December 2011 to July 2012, 

when concerns about the political and financial stability of the euro area re-emerged and 

triggered renewed flight-to-safety flows and widening spreads for some euro area 

government bonds
9
; (b) from May to July 2014, reflecting rising geopolitical tensions 

and concerns about the global growth outlook; and (c) from November 2016 to May 

2017, when the equity risk premium remained significantly higher than before the onset 

of the financial crisis in 2008. 

5.2. Dynamic net pair-wise directional volatility connectedness plots 

So far, we have discussed the behavior of the total connectedness and total net 

directional connectedness measures for the four implied volatility indices with different 

maturities. However, we have also examined their net pairwise directional 

connectedness during the financial turmoil periods experienced in the sample period. By 

construction, the net directional connectedness from implied volatility i-th to others is 

equal to the sum of all the net pair-wise connectedness from implied volatility i-th to 

implied volatility j-th, for all j with i ≠ j, i.e.  
1


 
N

H H H

i ji ij

j
j i

C d d . Having this 

relationship in mind, in Figures 4 to 7, the dynamics of the net pairwise directional 

connectedness of the implied volatility with maturity i-th with respect to the other 

maturities under study are added to the net directional connectedness (grey area) 

explained before. This decomposition of the dynamics of net directional connectedness 

into their pairwise directional connectedness is appealing since it allows a deeper 

                                                             
9 These concerns were mainly fueled by the outcome of the Greek elections in May, by a number of 

downgrades of Spanish and Italian banks and by Moody’s downgrade of the Spanish sovereign rating in 

June. 
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understanding how the transmission of volatility works for each implied volatility 

index.     

As can be seen in Figure 4, VIX9D was completely a net absorber of volatility from all 

the implied volatility indices, being all the computed values negatives in our sample. As 

can be seen (Figures 5-7, blue line), the net pair-wise directional volatilities to VIX9D 

from VIX, VIX3M and VIX6M highlight how there may exist direct mechanisms of 

volatility transmission to the short-term volatility index from higher time horizons in at 

least three significant subperiods of intense transmission of volatility as commented 

before. One can note its net pair-wise directional volatilities were declining gradually 

around this period until reaching the lowest values, -23.01%, -16.81% and -16.36% in 

late March 2012, respectively (corresponding to Greek government-debt crisis). 

Moreover, in the second half of 2014 (associated with the rising of geopolitical tensions 

due to the Russia/Ukraine conflict and concerns about the global growth outlook), and 

in January 2017 (after Donald Trump was inaugurated as the President of the United 

States) the behaviour is analogous. 

[Insert Figure 4] 

In Figure 5, we observe that VIX was mostly a net trigger of volatility to VIX9D over 

all time periods. Interestingly, the short episodes where VIX shows swing in net 

volatility where periods of net generator of volatility are followed by periods where this 

is net receiver of volatility, e.g., in the period May 2013-January 2014. This period 

coincides with an episode of heightened uncertainty and renewed volatility in global 

financial markets following suggestion by the Chairman of the US Federal Open Market 

Committee of the likelihood that the Federal Reserve System would be tapering its asset 

purchase programme. The transmission of volatility to VIX from VIX3M and VIX6M 

persisted until the beginning of 2015, highlighting that, despite improving real 
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economic outlooks, market participants considered that vulnerabilities still remained. 

Likewise, VIX was net receiver of volatility from higher time horizons during much of 

the sample, except from the first months of 2015 to late 2016, reflecting the episodes of 

heightened uncertainty and short-lived peaks in financial market volatility following the 

UK referendum on EU membership in June and the US presidential election in 

November. Immediately after that, the net pair-wise directional connectedness from 

VIX3M and VIX6M to VIX were decreasing slowly until reaching low values, -3.67% 

and -3.50%, respectively, being this behaviour possibly related with political 

uncertainty after the U.S. presidential election.  Finally, VIX turned into net transmitter 

of volatility to VIX6M remained a net receiver of volatility from VIX3M from March 

2017 until the end of the sample, in a context of low financial market volatility, elevated 

asset valuations and compressed risk premia, pointing to increased risk-taking.  

[Insert Figure 5] 

Regarding VIX3M (Figure 6), as can be seen, it was net generator of volatility to all 

other implied volatility indices most of the sample. It is interesting to note that the two 

episodes when VIX3M is net receiver of volatility (April-June 2015 and January-March 

2016), the main trigger of volatility to VIX3M is VIX, although during the first of two 

VIX6M had a negative influence. 

[Insert Figure 6] 

Finally, Figure 7 reports the results for VIX6M. VIX6M was a strong trigger of 

volatility to VIX9D over all time periods, but also to VIX from the beginning until 2015 

as described above. Furthermore, the VIX6M was a net receiver of volatility from 

VIX3M whose net pairwise volatility to VIX was decreasing gradually along 2013, 

reverting this trend at the end of that year after the Federal Reserve indicated its 

willingness to start scaling back its bond purchases. Interestingly, the two episodes 
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where VIX6M was net receiver of volatility (October 2015-January 2016 and January 

2018-May 2018), both of them are linked to the net pair-wise volatilities from VIX and 

VIX3M: while the first period could be associated with increased fears of a renewed 

global slowdown, the second period could be related with a significant correction of 

share prices, following the sudden signs of an increase in wage inflation in the United 

States in February 2018. 

[Insert Figure 7] 

In summary, Figures 4 to 7 have shown how the dynamics of the net pair-wise 

connectedness between all the volatility indices are not constant but switching from net 

generator to net receiver of volatility to other, depending on either time horizons. 

Therefore, the unconditional or full-sample connectedness measure is not able to 

uncover all the dynamics of the connectedness between the implied volatility indices at 

different maturities. 

6. Robustness checks 

To provide robustness to the previous results, in this Section, we successively make use 

of the generalized impulse-response functions (GIRF) to further evaluate the 

relationship between the implied volatility indices under study. In addition, we compare 

the dynamic total connectedness obtaining using both Diebold and Yilmaz (2014)’s 

original connectedness approach via rolling windows and the alternative TVP-VAR 

connectedness approach developed by Antonakakis and Gabauer (2017). 

6.1 Generalized impulse-response functions. 

Since the Cholesky-factor identification may be sensitive to ordering, once again, we 

make use of a generalized VAR decomposition, invariant to ordering, proposed by 

Koop et al. (1996) and Pesaran and Shin (1998) of our VAR system in Equation (1). 



21 
 

GIFR traces out the responsiveness of the dependent variable in the VAR to shocks to 

each of the variables. 

To easy interpretation, the graphs in Figure 8 show the standardized impact of one 

standard deviation shock to the individual implied volatility of certain maturity on its 

own and those of the other maturities on one year, or a 250-day forecasting horizon. 

These results should be interpreted with care as they have been produced in the 

generalized VAR framework that impairs the orthogonality of shocks affecting the 

individual implied volatility indices at different holding periods (Antonakakis and 

Vergos, 2013). In any case, these generalized impulse-response functions are simply 

indicative of the impact of future shocks.   

[Insert Figure 8] 

In short, we observe how shocks to any maturity have a strong effect on itself and on 

the other maturities of similar magnitude. However, this effect dies off quicker, the 

shorter the maturity of the implied volatility.  

6.2 Dynamic connectedness: TVP-VAR versus 200-day rolling windows 

Finally, we compare the dynamic total connectedness based on TVP-VAR with that of 

the standard approach in the connectedness literature, which consists in applying the 

Diebold-Yilmaz connectedness methodology based on overlapping 200-day rolling 

windows. Figure 9 plots the dynamic total connectedness with both approaches. 

[Insert Figure 9] 

As it can be seen, although both approaches track each other well (with a significant 

Pearson correlation of 24%), the TVP-VAR is able to pick up changes in the 

connectedness earlier than the rolling windows approach. Hence, we confirm the 

superiority of the TVP-VAR at tracking changes in the connectedness. This feature is 

related to the fact that the latter could be capturing the changing market participants' 
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expectations, being therefore able to identify substantially different episodes of 

connectedness intensification, yielding more accurate and sensible indicators of the 

spread of market disturbances between different time investment horizons. 

7. Concluding remarks 

With a strong understanding of volatility and its causes, investors potentially can take 

advantage of investment opportunities resulting from volatile markets. Over the last two 

decades, the demand for volatility derivative products has grown exponentially, driven 

in part by the need to hedge volatility risk in portfolio management. Since risk may be 

significantly different for different investment horizons, the transmission of volatility at 

different maturities has important implications for asset allocation decisions. 

In this paper, we have investigated interconnection between four implied volatility 

indices representative of the investors' consensus view of expected stock market 

volatility at different holding horizons during the period January 3, 2011-May 4, 2018. 

To that end, we make use of both the original connectedness approach proposed by 

Diebold and Yilmaz (2014) and the TVP-VAR connectedness approach developed by 

Antonakakis and Gabauer (2017). In particular, we have focused the interdependence 

between CBOE implied volatility indices representative of 9-day, 30-day, 3-month and 

6-month time horizons.  

By making especial emphasis in the dynamic analysis of implied volatility transmission 

between investment time horizons during the successive of financial crises registered 

during the sample period, our study may enhance the understanding of time fear 

connectedness dynamics in times of both turbulence and calm, and may help to assess 

the perceived risk of crisis transmission.  
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The main findings of our research can be summarized as follows. In the first step, we 

found a system-wide value of 72.27% for the total connectedness between the four 

implied volatility indices under study for the full sample period. This level is in line 

with that obtained by Diebold and Yilmaz (2014) for US financial institutions. In the 

second step, we analysed the dynamic nature of total net connectedness, obtaining 

evidence of spillovers, showing large variation over time and supporting the literature 

documenting that volatility across markets increases during times of financial 

turbulence, making the real-time detection of instability an important practical issue 

(see, e. g., Shi et al., 2018). In a third step, we examined the time-varying net spillovers 

across markets, observing in all cases that the implied volatility indices frequently 

switch between a net transmitting and a net receiving role. Furthermore, when using 

generalized impulse-response functions to alternatively evaluate the relationship 

between the implied volatility indices under study, we observe how shocks to any 

maturity have a strong effect on itself and on the other maturities of similar magnitude. 

Finally, we compare the time-varying connectedness using the traditional and the TVP-

VAR approaches, confirming the superiority of the latter.  

Our results may be of interest to policy-makers or portfolio risk managers, who should 

take into consideration the spillover effects detected by the dynamic interdependences 

between the implied volatility indices under study. Indeed, the connectedness measure 

can be used in a static or dynamic context, by showing the state of potential contagion 

among different time horizons at a certain point in time. 

A natural extension to the analysis presented in this paper would be to explore the main 

determinants of the detected net directional connectedness, with special emphasis in the 

economic and institutional factors. This is an item in our future research agenda. 
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 x1 x2   ... xN Connectedness 

from others 

x1 Hd11  
Hd12

 

  … H

Nd1  1,
1 1  

jd
N

j

H

j
 

x2 Hd 21  
Hd 22

 

  … H

Nd 2  2,
1 2  

jd
N

j

H

j

 

. . .   .   

. 

. 

. 

. 

. 

. 

  . 

. 

  

xN H

Nd 1  
H

Nd 2

 

  … H

NNd  Njd
N

j

H

Nj  
,

1

 

Connectedness 

to others  

N

i

H

id
1 1

1i  

 

N

i

H

id
1 2

2i  

  …  

N

i

H

iNd
1

Ni   

Total 

connectedness =

, 1

1 N H

iNi j
d

N   

i j  

 

 

 

 

 

  



29 
 

Table 2: Descriptive statistics and contemporaneous correlations of implied volatilities 

 

  VIX9D 
 

VIX 
 

VIX3M 
 

VIX6M   

Panel A: Descriptive statistics  

Mean 2.6960 

 

2.7466 

 

2.8696 

 

2.9623   

Std. Dev. 0.3498 

 

0.2902 

 

0.2360 

 

0.2041   

Min 1.9601 

 

2.2127 

 

2.4723 

 

2.6210   

Median 2.6599 

 

2.7057 

 

2.8291 

 

2.9242   

Max 4.2195 

 

3.8712 

 

3.7700 

 

3.7223   

Skewness 0.7522 

 

0.9395 

 

0.9947 

 

0.9815   

Kurtosis 3.7403 

 

4.0836 

 

4.1119 

 

3.9515   

Observations 1,914 

 

1,914 

 

1,914 

 

1,914   

 

                

Panel B: Matrix correlations               

  VIX9D   VIX   VIX3M   VIX6M   

VIX9D 1 

      

  

VIX 0.9729 *** 1 

    

  

VIX3M 0.9154 *** 0.9736 *** 1 

  

  

VIX6M 0.8577 *** 0.9302 *** 0.9856 *** 1   

 
Notes:  

All the series are in logs.  

Daily data from January 3, 2011 to May 4, 2018.  
*** indicates significance at the 1% level 
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Table 3: Full-sample connectedness 

  VIX9D VIX VIX3M VIX6M 

Directional 

FROM 

Others 

VIX9D 27.39 26.71 23.77 22.13 72.61 

VIX 22.90 27.39 25.50 24.21 72.61 

VIX3M 20.45 25.63 27.36 26.56 72.64 

VIX6M 19.25 24.75 27.23 28.78 71.22 

Directional TO Others 62.60 77.09 76.49 72.91 
Total 

connectedness 
=72.27 

Net 

Contribution 

(To – From) 

Others 

-10.01 4.48 3.85 1.68 
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Figure 1: Daily financial market volatilities (in logs) 

 

—VIX9D — VIX  — VIX3M  —VIX6M 
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Figure 2: Dynamic total connectedness

 

 

Note: The rolling estimation window width is 200 days, and the predictive horizon for the underlying variance decomposition is 10 days. 

 

Figure 3: Net directional connectedness 
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Figure 4: Net directional connectedness and net pair-wise directional connectedness:  

CBOE Short-Term Volatility Index (VIX9D Index) 

 

—VIX9D — VIX  — VIX3M  —VIX6M 

:  
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Figure 5: Net directional connectedness and net pair-wise directional connectedness: 

CBOE Volatility Index (VIX Index) 

 

—VIX9D — VIX  — VIX3M  —VIX6M 
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Figure 6: Net directional connectedness and net pair-wise directional connectedness: 

CBOE 3-Month Volatility Index (VIX3M Index) 

 

—VIX9D — VIX  — VIX3M  —VIX6M 
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Figure 7: Net directional connectedness and net pair-wise directional connectedness: 

CBOE Mid-Term Volatility Index (VIX6M Index) 

 

—VIX9D — VIX  — VIX3M  —VIX6M 
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Figure 8: Generalized Impulse-Response Functions. 

Shocks in VIX9D:       Shocks in VIX: 

               

Shocks in VIX3M:       Shocks in VIX6M: 

           

—VIX9D — VIX  — VIX3M  —VIX6M 
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Figure 9: Total connectedness with TVP-VAR and Diebold-Yilmaz based on 200-day rolling windows. 

 

— TVP-VAR  — Diebold-Yilmaz  

Note: Dynamic total connectedness of TVP-VAR with that of Diebold and Yilmaz (2012) with 200-day rolling windows. The sample period is 

from October 12, 2011 to May 4, 2018. 
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