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Abstract
Portfolio insurance strategies that control benchmark-underperformance risk re-

quire estimating the maximum multiplier of the risk budget, which determines the
allocation to the performance-seeking asset (PSA) at each point in time. We explore
the implications of taking into account the expected co-movements of the PSA and
the benchmark asset for the estimation of the multiplier of these portfolio insurance
strategies. We illustrate these implications with a maximum relative-drawdown strat-
egy investing in the equal-weighted S&P 500 index as the PSA and in the cap-weighted
S&P 500 index as the benchmark asset. Through Monte Carlo simulations we find
that the multiplier almost doubles in size across scenarios, and the long-term returns
of the strategy using this approach are superior relative to the strategy with a multi-
plier that ignores expected co-movements according to stochastic dominance tests.
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1 Introduction

Cushion-based portfolio insurance strategies are popular among investment practitioners,
and have gained increasing attention in the academic literature. For instance, management
fees in hedge funds are often defined in terms of a high water mark, which implies that
controlling drawdowns is crucial for professional asset managers. Indeed, Lan, Wang, and
Yang (2013) indicate that this kind of strategies are optimal, if one assumes the fund is
liquidated when the assets under management fall below a given fraction of its high water-
mark (see also Goetzmann, Ingersoll, and Ross, 2003, for a related theoretical argument).
Furthermore, Dichtl and Drobetz (2011) run Monte Carlo simulations for popular cushion-
based portfolio insurance strategies and benchmark strategies and find that most portfolio
insurance strategies are the preferred investment strategy for a prospect theory investor.

Cushion-based portfolio insurance strategies need reliable estimates of the upper bound
of their multiplier parameter. Former research have provided several approaches to estimate
the multiplier upper bound of portfolio insurance strategies using a locally riskless asset
paying a constant interest rate as their reserve asset. However, strategies using locally risky
reserve assets are more relevant in practical applications. This paper presents an estimation
methodology of the multiplier upper bound that takes into account the dependence structure
of the two assets composing the strategy, in the general case of a risky reserve asset.

Portfolio insurance strategies using a locally riskless asset paying a constant interest rate
as their reserve asset (often approximated as cash) are unsuitable for investors with long
horizons or long-term ‘commitments’, such as pension funds, because cash presents a large
duration miss-match with their long-term liabilities. This kind of investors would rather use
an insurance strategy in which the riskless asset is a liability hedging portfolio matching the
pensions fund’s liabilities. The reason for this is that losses in such context are measured
in relative terms with respect to the present value of the pension fund’s liabilities.

Another relevant application in which losses are measured in relative terms with re-
spect to a benchmark, is investing in the so-called ‘smart-beta’ or alternative equity indices.
Indeed, there is a very large and growing offer of exchange traded funds (ETFs) track-
ing ‘alternative beta’ indices (also called ‘smart beta’) that offer systematic diversification
strategies different from the standard market-capitalization weighted indices (see Amenc,
Goltz, and Lodh, 2012; Hsu, Chow, Kalesnik, and Little, 2011). These alternative indices
tend to have higher returns in the long run than their benchmarks, but also represent signif-
icant deviations from the cap-weighted benchmark indices. Measuring and controlling the
relative losses related to the risk of deviating from the benchmark is important for agents
investing in the index trackers of alternative indices.
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Cushion-based portfolio insurance strategies that can use locally risky assets different
from cash, in which the riskless asset is a benchmark portfolio, include the Constant Propor-
tion Portfolio Insurance (CPPI) introduced in Perold (1986), and Black and Jones (1987)
(see also Black and Perold, 1992; Perold and Sharpe, 1995), the relative drawdown control
(RDD) and the excess drawdown control strategies (EDD) discussed in detail in Mantilla-
Garcia (2014). The latter two strategies are extensions of the maximum drawdown control
strategy, also known as Time Invariant Portfolio Protection (see Estep and Kritzman, 1988;
Grossman and Zhou, 1993; Cvitanic and Karatzas, 1995).

Most former studies on the estimation of the multiplier upper bound of this kind of
strategies, such as Bertrand and Prigent (2002), Cont and Tankov (2009), Ben Ameur and
Prigent (2013), Hamidi, Jurczenko, and Maillet (2009), Hamidi, Maillet, and Prigent (2008,
2009a, 2014) assume that the reserve asset is a locally riskless asset paying a constant rate
of return. In such case there is no dependence with the risky asset (since the correlation
with a constant is null). This paper presents a formula of the multiplier for portfolio
insurance strategies in the general case with a locally risky reserve or benchmark asset,
and an estimation methodology that takes into account the dependence structure of the
two assets composing the strategy. We find that ignoring the dependence structure of the
two assets can potentially imply large underestimations of the multiplier upper bound and
hence a significant opportunity cost related to the underspending of the risk budget of the
portfolio insurance strategy.

2 Portfolio Insurance Multiplier of Dependent Assets

The CPPI, RDD, and EDD risk-control strategies aim to insure that the portfolio respects
a given performance constraint by following an asset allocation rule that prevents the value
of the portfolio, denoted hereafter A, to fall below a Floor value F at all times. In order to
achieve so, this kind of strategies dynamically allocate wealth to a risky performance-seeking
asset S at every time t equal to,

ωS(t) = mt × (A(t)− F (t)), mt > 0, (1)

while the remaining wealth is invested in the reserve or benchmark asset B. The pair,
reserve asset and floor type, must be chosen such that the reserve asset super-replicates
the Floor value process. Whenever A approaches F , caused by underperformance of the
risky asset, wealth is reallocated towards the reserve asset to maintain a positive cushion,
i.e. C(t) = A(t) − F (t) > 0, at all times. The multiplier parameter that determines the
risk exposure of the strategy per unit of available cushion may be a positive constant or an
adapted non-negative time-varying process.
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While the allocation of type (1) strategies changes continuously over time in theory,
trading only happens in discrete time. Hence, in order to set weights back to the current
target, reallocations are triggered whenever the actual portfolio exposure and its target
drift apart beyond a given percentage. More precisely, let the implied multiplier of type (1)
strategies be defined as

m̃t := ωS(t)
c(t) (2)

where c(t) := 1− F (t)
A(t) . No trading takes place whenever the implied multiplier is inside

the no-trading band, m̃t ∈ (mt(1− τ),mt(1 + τ)), and reallocations are triggered every
time m̃t exits the no-trading band. In our illustrations below, we set τ = 0.2 as in Hamidi,
Maillet, and Prigent (2009b), and we enforce a no-leverage upper bound on ωS(t) i.e.,
ωS(t) = min

{
1,mt ×

(
1− F (t)

A(t)

)}
. In our tests, we assume 3 basis points (bps) of trading

costs per share (a reasonable figure given the high liquidity of S&P500 ETFs), in order to
account for the impact that trading has in the returns of these dynamic strategies.

Assuming continuous-time trading and prices, type (1) portfolio insurance strategies
with properly defined Floors satisfy Ct > 0 at all t for all possible values of m. However, in
practice trading can only happen in discrete time and asset prices present “jumps”. Thus,
it is important to determine the maximum value of m̃t that would allow the Cushion to
remain positive even if the worst possible scenario happens between t and t+ 1, before the
portfolio manager can reallocate assets.

Most former studies about the estimation of the multiplier upper bound such as Bertrand
and Prigent (2002), Cont and Tankov (2009), Ben Ameur and Prigent (2013), Hamidi et al.
(2009), Hamidi et al. (2008, 2009a, 2014) assume that B is a locally riskless asset paying a
constant rate of return considered “relatively small” compared to the worst possible loss in
the risky asset. In that particular case, neglecting the return of B, the upper bound of the
multiplier is:

mt ≤Mt := −1
rS(t, t+ 1) , (3)

for every t and t+ 1 such that rS(t, t+ 1) < 0, where rS(t, t+ 1) = St+1
St
− 1. In equation (3)

the left tail of the risky asset is the only matter of concern to estimate the upper bound,
hence an univariate approach is sufficient to estimate the multiplier upper bound.

Neglecting the potential impact of rB in the multiplier upper bound is a reasonable
assumption in the particular case in which the reserve asset is cash, which is the case of the
MDD strategy, as in Hamidi et al. (2014). However, in all applications of type (1) strategies
in which the reserve asset B is locally risky, neglecting the potential impact of B in the
multiplier upper bound is imprudent from a risk-management standpoint. For instance,
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in cases such as a Dynamic Core-Satellite (i.e., a CPPI strategy adapted to a relative risk
control context) as in Amenc, Malaise, and Martellini (2004), an asset-liability management
floor protection strategy as in Martellini and Milhau (2009), or a relative drawdown control
relative to an equity benchmark as in Mantilla-Garcia (2014), the reserve asset B can be
a benchmark equity index, a portfolio of zero-coupon bonds with long maturity matching
future cash-flow needs (i.e. a pension fund’s liability), or a “safe enough” asset different
from cash, such as a bonds portfolio with short maturity.

Hamidi et al. (2014) and Mantilla-Garcia (2014) showed that in the general case in which
the reserve asset B is stochastic, the discrete-time trading upper bound of the multiplier,
Mt, that can guarantee in general the Cushion’s positivity condition is:

mt ≤Mt := −(1 + rB(t, t+ 1))
rS(t, t+ 1)− rB(t, t+ 1) , (4)

for every t and t + 1 at which the condition (rS(t, t + 1) − rB(t, t + 1)) < 0 is satisfied
(there is no condition or upper bound otherwise). Mantilla-Garcia (2014) showed that, if
(rS(t, t+ 1)− rB(t, t+ 1)) < 0, then2


−1

rS(t,t+1)−rB(t,t+1) ≤Mt, if rB(t, t+ 1) > 0
−1

rS(t,t+1) ≤Mt, if rB(t, t+ 1) ≤ 0

Hence in general,

mt := min
{

−1
rS(t, t+ 1) ,

−1
rS(t, t+ 1)− rB(t, t+ 1)

}
≤Mt. (5)

Mantilla-Garcia (2014) used the following conservative estimate of mt given by,

m̂u
t := −1

LTS(t)−RTB(t) ≤
−1

LTS(t) ≤Mt, (6)

where LTS(t) < 0 and RTB(t) > 0 are univariate estimates of the left and right tails of the
return distributions of assets S and B at time t respectively3. In the remainder of the paper,
we refer to this estimate of the multiplier upper bound as the “Univariate Multiplier”, as it
does not take into account the dependence between the two assets of the portfolio insurance
strategies. This multiplier constitutes the benchmark for the bivariate approach to estimate
the multiplier that we propose hereafter.

2See Appendix in Mantilla-Garcia (2014) for a detailed proof.
3Notice that expressions (5) and (6) show that in cases in which the reserve asset B is locally risky, the

right tail of the return distribution of B is also relevant to estimate the upper bound of the multiplier, as
a sudden significant increase in its value may also cause a Floor violation. In other words, the right tail of
the distribution of the reserve asset can be of critical importance for the estimation of the upper bound of
the multiplier in several applications.
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Notice that estimate (6) calculates LTS(t) and RTB(t) independently, ignoring the po-
tential dependence between assets S and B, which implicitly assumes that the most negative
value of rS(t, t+ 1) would arrive at the same time as the largest value of rB(t, t + 1). In
the particular case in which S and B present a correlation ρSB close to −1, such approach
would not be too conservative, but for any other value of ρSB >> −1, this approach might
be too conservative.

Thus, given inequality (5), we propose a more general method to estimate mt, as

m̂t = min
{
−1

LTS(t) ,
−1

LTW (t)

}
≤Mt, (7)

where LTW (t) denotes the left tail of the distribution of W (t) = rS(t, t + 1) − rB(t, t + 1),
in which the distribution of W is a function of a general dependence structure between S
and B modeled with a copula, and given marginal distribution functions.

3 An application to the Relative MaxDrawdown Strategy

Hereafter we consider a relevant application in practice of a portfolio insurance strategy in
which the performance-seeking asset S is an alternative equity index and the benchmark
asset B is a market cap-weighted equity index for the same universe of stocks. In such case,
the correlation ρSB is in fact very close to 1, and as a consequence the bivariate approach
integrating the dependence between the two assets yields an upper bound estimate for
the multiplier that is materially larger than the estimate using the conservative univariate
approach (6) used in previous studies, which we take as the benchmark strategy.

A common practice to deal with benchmark underperformance risk is to impose tracking
error constraints on the performance of the portfolio, which is measured as the standard
deviation of the differences in periodic (say daily or monthly) returns. From the standpoint
of investors, a more sensible measure of risk would be the cumulative underperformance with
respect to the benchmark. In fact, if a manager accumulates too much relative losses with
respect to the benchmark, in general there is no guarantee that the portfolio will be able
to recover back the lost ground in terms of wealth with respect to its benchmark. Hence,
limiting the relative underperformance at all times, can limit the potential regret of the
investor. Indeed, severe underperformance relative to a given benchmark, such as standard
equity market indices, is one of the main risks faced by portfolio managers and institutional
investors seeking to outperform their benchmarks by investing in active investment strategies
or ‘alternative betas’.

Equal-weighted portfolios constitute the simplest alternative diversification form of in-
dexation. DeMiguel, Garlappi, and Uppal (2009) report that equal-weighted portfolios
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significantly outperform the market cap-weighted portfolios over long periods of time for
a universe of stocks covered by the S&P 500 index (they also find it performs better than
portfolio optimization techniques that are prone to parameter estimation error). Hence,
an investor seeking to outperform the benchmark S&P 500 cap-weighted index (CW) but
with a predefined limit on its potential underperformance could implement a relative max-
drawdown control strategy using the allocation formula (1) for portfolio insurance, using the
S&P 500 equal-weighted index (EW) as the performance-seeking asset S and the benchmark
cap-weighted (CW) index as the reserve asset B.

Below we describe in detail the relative drawdown control strategy, which is equivalent
to an absolute maximum drawdown control strategy, also known as TIPP, after a change of
numeraire from dollars to shares of the benchmark asset. First we introduce some notation
to define the notion of maximum drawdown. The maximum drawdown (MDD) of an invest-
ment is defined as the largest value loss from a peak to a bottom observed at current time
t. More precisely, for a value process A, the drawdown at time s, denoted Ds(A), is the
percentage loss experienced by A with respect to its running maximum observed since time
t0, denoted MA

t0 (s), attained for the last time at s?
t0,A. Therefore, the maximum drawdown

observed since inception t0 = 0 to current time t, denoted by D̄t0,t(A), is defined as follows:

D̄t0,t(A) := sup
t0≤s≤t

Ds(A) (8)

where Ds(A) := −rA
(
s?

t0,A, s
)

(9)

MA
t0 (s) := sup

t0≤q≤s
{Aq,M

A
t0} (10)

and s?
t0,A := sup

t0≤q≤s
{q : Aq ≥MA

t0 (s)}, (11)

where rA(t1, t2) denotes the return of the value process A between the two instants t1 and
t2, for any t0 ≤ t1 ≤ t2. For simple returns, rA

(
s?

t0,A, s
)

:=
(

A(s)
A(s?

t0,A) − 1
)
.

Now, let the relative value process of any given portfolio A with respect to benchmark
B be denoted as Z = A

B
. This is equivalent to a change of numeraire where the value of the

portfolio is measured in shares of the benchmark asset instead of dollars.
The relative value Z increases (decreases) when portfolio A outperforms (underperforms)

benchmark B. Notice that for log returns, log
(

Z(t)
Z(s)

)
= rA(s, t) − rB(s, t) for any s ∈ [0, t]

and t ∈ [s,∞). For instance, the process log
(

Z(t)
Z(s)

)
is defined as the relative return process

by Fernholz (2002) (page 16). Thus, the relative drawdown, and the RDD Floor are defined
as follows.

Definition
(
RDt0,t(A,B)

)
: The relative drawdown of portfolio A with respect to the bench-
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mark B at time s is defined as

RDs(A,B) := Ds(Z),

and the maximum relative drawdown at time t is defined as

RDt0,t(A,B) := D̄t0,t(Z),

for Z(s) = A(s)
B(s) ∀s ∈ [t0, t].

Definition (RDDFloor): Let the Relative Drawdown Floor value process for a type (1)
strategy be defined as

F (t) = k
A(t?t0,Z)
B(t?t0,Z)B(t), (12)

for all t ∈ [t0,∞), where A is the value of the portfolio, B the value of the benchmark,
Z := A/B and t?t0,Z is defined such that: Z(t?t0,Z) = sups∈[t0,t] Z(s).

Mantilla-Garcia (2014) also showed that if the value of the RDD Floor of the portfolio
is always above the RDD Floor (12), then its maximum relative drawdown is lower than
the risk budget x. Additionally, it showed that the underperformance to the benchmark
asset, measured as the maximum difference in log returns between any two times s and t

such that s ≤ t, is also limited to x̃ = − log(1− x). Formally,

RDt0,t(A,B) ≤ x

rA(s, t)− rB(s, t) ≥ −x̃

for all s ≤ t and t ∈ [s,∞).
Notice that the formula of RMDD Floor (12), when measured in shares of the benchmark

asset, i.e. dividing its value by B(t), yields the TIPP Floor formula when the interest rate
is assumed to be zero4.

4 Estimation of multiplier for dependent asset returns

In this section we discuss the methodological aspects around the estimation of the multiplier
of portfolio insurance strategies taking into account the dependence structure of rS and rB

using copulas. For the sake of clarity, we first present an estimation of the multiplier
that introduces the dependence structure, but assumes constant parameters for the assets’

4The TIPP Floor formula assuming zero interest rate for the risk-free asset is F (t) = kA(t?
t0,Z), i.e. a

fraction k of the running maximum of the value of the portfolio.
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return distribution, and then we present an estimation of the multiplier using a model with
time-varying volatilities.

A general approach to modeling the dependence structure of two variables X and Y is
to use the concept of copula. The concept of copula dates back to Sklar (1959) but has
been successfully used in finance, as in Embrechts, McNeil, and Straumann (1999). We
shall assume that the reader is already familiar to some extent with copulas and refer to
the works of Nelsen (2007) or Joe (1997) for a thorough review. Sklar’s theorem (see for
instance Nelsen, 2007) states that any joint distribution function G can be decomposed into
a series of marginal distribution functions and a unique copula function C coupling the
marginal distribution functions (dfs) as follows (in the two-dimensional case),

G(x, y) = C (FX(x), FY (y)) , x, y ∈ R, (13)

for continuous marginal distribution functions FX and FY . The copula is a df on [0, 1]2 with
uniform marginal dfs.

Fischer, Köck, Schlüter, and Weigert (2009) show that even though copulas have been
thoroughly understood and well studied in the bivariate case, the higher-dimensional case
still offers several open issues where it is still unclear how to construct copulas which capture
the characteristics of financial returns. They show that traditional elliptical copulas (i.e.
Gaussian and Student-t copula) dominate both empirical and practical applications. This
is why we use both the Gaussian and Student-t copulas in the rest of this work.

4.1 Unconditional Multiplier Estimates

Embrechts and Puccetti (2007) introduced a computationally efficient method with quasi-
analytical solutions to estimate quantiles of the distribution function FX+Y of the sum of
two5 dependent random variables variables X and Y , given marginal distributions and a
copula dependence structure. We use their algorithm to produce estimates of low-probability
quantiles that composes the multiplier of the distribution, with a change of variables to
calculate the difference of two dependent random variables in order to compute the quantile
of the tracking error process W = rS − rB.

Embrechts and Puccetti (2007)’s algorithm assumes that X and Y are non-negative
random variables with a constant dependence copula structure C. Hence, in order to obtain
an unconditional estimate of low probability quantiles of W , we set X = 1 − rB and
Y = 1 + rS. We fit the marginal dfs FX , FY , and copula function C to the historical data
and then perform a numerical inversion of P (X+Y < sq) = q, to obtain sq, with q = 0.01%.

5Arbenz, Embrechts, and Puccetti (2011) improved and generalized it to calculate the sum of n variables.
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Finally we obtain LT q
W = sq − 2, and mq = min{ −1

LT q
S
, −1

LT q
W
}, where LT q

S is obtained using
the fitted distribution FY .

Hereafter we present the results of the aforementioned procedure applied on the daily
returns series of the equal-weighted and cap-weighted S&P 500 total return index including
dividend distributions from 1980-01-02 to 2010-12-31, retrieved from the CRSP database
S&P 500 index file, and estimate LT q

W , and mq.
First, we fit t-student marginal distributions and two different Copula functions to the

data. The estimated degrees of freedom of the marginals and the t-student copula were all
both equal to 3 (within rounding error), implying fat tails for both returns and extreme
co-movements. The estimated Pearson correlation between X and Y is −0.9606 (hence
ρSB = 0.9606) suggesting that the univariate approach ignoring the dependence structure
of equation (7) might be too conservative in this case.

Indeed, the unconditional estimate of the multiplier upper bound obtained with the
bivariate approach, using the t-student marginals and Copula is m̂ = min{6.50, 21.66} =
6.50, which is almost twice the upper bound obtained with the conservative univariate
approach, m̂ = −1

−0.15−0.13 = 3.57. This suggests that using the bivariate approach can yield
important opportunity cost reductions for investors using portfolio insurance strategies.

In order to check whether this large difference comes from the dependence structure,
we set the correlation parameter of the t-student copula to ≈ 1 (hence ρSB ≈ −1), and
0. The multiplier value obtained with ρSB ≈ −1, is m̂ = min{6.50, 3.58} = 3.58, which
approximately matches the multiplier obtained with the univariate approach (3.57). On the
other hand, even under the independence assumption (ρSB = 0), which is very conservative
in this case, a much larger value (m̂ = 5.13) than the univariate approach is obtained.

4.2 Multipliers Estimates with Conditional Variance

There is a large amount of evidence that the conditional variance of stock returns varies over
time, and hence extreme distribution quantile estimates should also be adjusted accordingly.
Furthermore, Zieling, Mahayni, and Balder (2014) showed that a cushion-based portfolio
insurance strategies using a multiplier that varies over time with the level of volatility is
superior to the respective strategies using a constant multiple. Hence, we now consider
a model in which the dependence structure between the variables considered is constant
over time, but their marginal distributions present time-varying second moments following
a GARCH(1,1) model (see Engle, 1982; Bollerslev, 1986), and assume that the residuals of
the GARCH models follow t-student distributions with degrees of freedom ν as in Bollerslev
(1987):
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rit|Ft−1 ∼ t (µi, hit, νi) , (14)

for i = {S,B}. In equation (14), Ft−1 denotes the information set available at time t−1, the
returns’ mean µ is assumed constant, and the detrended return process denoted ut := rt−µ
has conditional variance with dynamics

hit = αi0 + αi1u
2
it + αi2hit−1, (15)

where αi0, αi1 and αi2 are the GARCH(1,1) model parameters. Given the t-student distri-
bution assumption of the residuals, it is possible to fit the parameters of the GARCH model
to data using maximum likelihood. We use the ‘rugarch’ package from R to fit the model to
the S&P 500 cap-weighted and equal-weighted indices daily log-returns. The parameters are
presented in Table 1. We then fit a copula to the standardized residuals εi,t = uit/

√
hit using

the ‘copula’ package from R. We consider a t-student copula as well as a normal copula to
model the dependence structure of the bivariate distribution of the two assets, and obtain a
correlation coefficient of 0.9669 and 4 degrees of freedom for the t-student copula. For the
normal copula we find a correlation parameter of 0.9651.

Using the GARCH and copula parameters, we generate 10,000 Monte Carlo simulations
of 10 years of daily log-returns6 of S and B and convert them to simple returns (i.e. R =
exp(r) − 1). We present a summary of the distribution of the annualized returns of the
simulated scenarios over the 10 years period for both indices in Tables 2 and 5, for the
normal and t-student copulas respectively. As observed in these tables, the median excess
annualized return of the equal-weighted index relative to the cap-weighted index is 4.77%
for the simulations with the normal copula and 4.82% for the scenarios from the t-student
copula. The excess annualized return over the historical sample was 3.9%. However, the
1% quantile of the distribution of the 10 year annualized return is −1.4% and −1.14% for
the normal and t-copulas, which represents a very large potential relative risk, despite the
very high correlation between the two indices.

Tables 3 and 6 present summaries of the simulated indices’ annualized volatility, absolute
maxdrawdown and relative maxdrawdown distributions across the 10,000 scenarios, for the
normal and t-copulas respectively. In these tables we observe that in terms of absolute
risk (volatility and maxdrawdown), both indices have very similar values across scenarios.
Furthermore, we observe a relative maxdrawdown for the equal-weighted index, relative to
the cap-weighted becnhmark that ranges from 4% for the 1% quantile up to almost 50% for
the 99% quantiles, which represents a very important risk of underperformance for investors

6We assume 260 trading days per year.
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seeking to outperform the cap-weighted benchmark. These figures are also consistent with
the relative maxdrawdown of the historical equal-weighted index of 30.9%.

Table 1: GARCH(1,1) parameters fitted to S&P 500 cap-weighted and equal-weighted indices daily returns
from 1980-01-02 to 2010-12-31.

µ α0 α1 α2 ν
CW index 7.010E-04 6.442E-07 5.562E-02 9.396E-01 6.499E+00
EW index 8.503E-04 8.813E-07 6.630E-02 9.268E-01 6.497E+00

In order to estimate the multiplier upper bound at each point in time for each of the sim-
ulated scenarios using formula (7), we need to estimate the quantiles, at a given confidence
level 1 − q, of the distributions of the return difference W = rS − rB and of the returns of
S. Embrechts and Puccetti (2007)’s algorithm assumes that the two random variables are
i.i.d., hence in this section we use instead a Monte Carlo simulation approach to estimate the
quantiles of the return differences as follows. Notice that the quantiles of the distributions
of rS and W will vary at each point in time of each scenario, because the model for the
assets returns above accommodates for time-varying variance. Hence, for every simulated
value of the variances pair (hSt, hBt) for each scenario j at time point t, we will estimate
the quantiles of W and rS, by multiplying the 10,000 standardized shocks pairs (εS, εB)
generated in at time step t with the Copula function in order to generate a distribution of
the possible values of W and rS for every simulated pair level of variances (hSt, hBt) at each
scenario j and time t. In other words, for every variance simulation (hSt, hBt) at time t of
scenario j, we will have 10,000 possible values of rS and rB, from which we can calculate the
quantiles LT q

S(t, j) and LT q
W (t, j) at a confidence level 1 − q, and replace them in formula

(7) to obtain a multiplier level at each point in time for each scenario.
Tables 4 and 7 present the distribution of the multiplier using the bivariate and uni-

variate approaches across time and scenarios. The multiplier from the bivariate approach
presents values in all quantiles of their distribution that are about twice the corresponding
values of the estimates obtained with the univariate approach, under both the normal and
the t-student copula simulations. This result represents an important reduction in opportu-
nity costs for the portfolio insurance strategy, in the sense that the strategy can invest twice
as much in the risky performance-seeking asset, for the same level of maximum relative
drawdown across scenarios. Indeed, the portfolio insurance strategy limits the relative max-
drawdown across all scenarios to be below the corresponding risk budget, as we can observe
in Tables 9 and 15 for the 10% risk budget (for normal and t-student copula simulations),
Tables 11 and 17 for the 15% risk budget, and Tables 13 and 19 for the 20% risk budget.

Tables 8 presents a summary of the distribution of the annualized return over the 10 year

12
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period for the two strategies across scenarios, one using the bivariate multplier and one under
the univariate multiplier, for the 10% risk budget and the normal copula simulations.The
strategy using the bivariate multiplier presents a return above the strategy with univariate
multiplier of around 1% across all the quantiles of the distribution (notice also that the
return of the strategy is about 2% above the return of the benchmark index across quantiles).
Table 14 presents similar results for the t-copula simulations. These results suggest that
the bivariate strategy might present stochastic dominance (SD) over the strategy with the
univariate multiplier7.

In Table 20 we present the results of two formal tests of stochastic dominance. The
first three columns are the output of the stochastic dominance test from the R package
‘dunn.test’, which computes Dunn’s test (Dunn (1964)) for stochastic dominance and reports
the results among multiple pairwise comparisons after a Kruskal-Wallis test for stochastic
dominance among k groups (Kruskal and Wallis, 1952). The ‘dunn.test’ makes pairwise
comparisons based on Dunn’s z-test-statistic approximations to the actual rank statistics.
The null hypothesis for each pairwise comparison is that the probability of observing a
randomly selected value from the first group that is larger than a randomly selected value
from the second group equals one half; this null hypothesis corresponds to that of the
Wilcoxon-Mann-Whitney rank-sum test. As we can see from the p-values in the third
column of Table 20, the null hypothesis is clearly rejected at 1% level for all risk budgets
in both the normal and t-student copulas simulations. The last four columns of the table
present the percentage of the observations for which the stochastic dominance statistics
indicate that the bivariate approach dominates the univariate approach at the 1st to 4th
SD levels. These SD statistics were calculated using the function stochdom2 from the R
package ‘generalCorr’ (Vinod and Fordham University, Vinod and Fordham University).
The dominating distribution is superior in terms of local mean, variance, skewness and
kurtosis respectively, representing dominance orders 1 to 4 (see Vinod, 2004, 2008, sec. 4.3
for details). For all risk budgets, the percentage of stochastic dominance of the bivariate
approach over the univariate approach is above 99.9% in the simulations from both, the
normal and the t-student copula.

5 Conclusion

There are several applications in finance in which losses are measured in relative terms, with
respect to a benchmark index. In such cases the benchmark index becomes the numeraire
or unit of value, as opposed to current dollar terms. This paper studies the parametrization

7Stochastic dominance means that the probability that a randomly drawn observation from one group
will be greater than a randomly drawn observation from another.
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of a portfolio insurance strategy that limits cumulative losses, measured in relative terms,
to a predefined limit set ex-ante. In order to achieve this objective, the strategy allocates
at every point in time to a performance-seeking asset, a multiple of the distance between
the current value of the portfolio, and the value of a Floor process (the rest is allocated
to the bechmark asset or portfolio). Hence, the estimation of the multiple is crucial for
the performance of the strategy. On the one hand, the multiplier parameter cannot be too
high, so that the relative performance of the two assets before the next rebalancing of the
portfolio does not cause the value of portfolio to fall below its Floor value. On the other
hand, if the multiplier is too low, the insurance protection becomes more expensive, because
the strategy under-spends its risk budget, having a lower access to the upside potential of
the performance-seeking asset of the strategy.

Former research has mainly focused on the estimation of the multiplier upper bound of
portfolio insurance strategies investing in a locally riskless asset paying a constant interest
rate as their reserve asset. In such case, there is no dependence structure between the risky
asset and a constant return (since the latter is not a stochastic process). However, strategies
relying in a locally risky reserve or benchmark asset, are more relevant in practice. This
paper presents an estimation approach of the multiplier upper bound that takes into account
the dependence structure of the two assets composing the strategy.

We illustrate the advantages of the proposed methodology over the alternative approach
which ignores the dependence structure of the two assets, with an application that has
become increasingly relevant for practitioners. We present the results of Monte Carlo sim-
ulations of a strategy controlling the relative drawdown of an alternative equity index with
respect to a standard market-cap weighted benchmark index. Indeed, several ‘smart-beta’
indices that offer systematic diversification strategies different from the rather concentrated
market-cap weighted indices. Such alternative indices tend to have higher returns in the
long run than their benchmarks, but also represent significant deviations from them. Hence,
investing in alternative indices presents an underperformance risk relative to the benchmark
index that is not limited a priori. In this sense, the relative drawdown control strategy al-
lows investors to bet on any alternative investment of their choice, but to limit cumulative
relative losses at every horizon to a chosen level set ex-ante.

In our tests we find that, in this context, taking into account the correlation between
the two assets, almost doubles the level of the multiplier, without presenting any Floor
violations, and hence maintaining the maximum level of relative underperformance equal.
This increase in the multiplier is reflected in a very consistent benefit in terms of the long-
term average return of the strategy. Indeed, in our simulations we find that the strategy
using the proposed multiplier estimation method, which takes into account the dependence

16



structure of the two assets, presents stochastic dominance relative to the strategy using the
multiplier that ignores the dependence structure of the assets.

17
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