
TAIL DEPENDENCE STRUCTURE                                      1 

 

 

 
Tail dependence structure of metal commodity 

futures in London Metal Exchange  

 

𝐗𝐮𝐲𝐮𝐚𝐧	𝐇𝐚𝐧𝟏,	𝐙𝐡𝐞𝐧𝐲𝐚	𝐋𝐢𝐮𝟐,	𝐒𝐡𝐢𝐱𝐮𝐚𝐧	𝐖𝐚𝐧𝐠𝟑 

Abstract 

Since the 2008 financial crisis, academics and practitioners have paid more 

attention to the dependence structures among futures contracts in futures market. We 

use the vine-copula approach to study the dependence structures among major metal 

commodity futures in the London Metal Exchange, with a focus on analyzing the 

change after the crisis. We find that the core of metal futures moves from copper to zinc 

after the crisis. The risk diversification benefit among metal futures is shown to 

diminish. However, the dependence structure between core futures and the futures who 

exhibits the highest (lowest) concordance with core futures remains unchanged after 

the crisis. 
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1 Introduction 

The dependence structure between different futures contracts in the commodity 

futures market reduces the effectiveness of hedging strategies and increases the 

difficulty of portfolio management. Therefore, academics and practitioners pay much 

more attention to the dependence structure between futures contracts in the commodity 

futures market. The metal futures market is an important part of the commodity futures 

market. This is due to the fact that the hedging capacity of precious metals caused by 

their low correlation with equity markets makes them even more attractive (Hillier et 

al., 2006). Additionally, the value of metal futures contracts is relatively stable 

compared with other commodity futures. Hence, metal futures are widely included in 

asset portfolios in order to enhance portfolio performance and obtain diversification 

benefits. The dependence between metal futures contracts therefore raises further 

concern. 

In this paper, we use the vine-copula approach to study the dependence structures 

among major futures contracts in the London Metal Exchange (LME) and their changes 
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after the crisis. We select five major futures contracts in the LME, namely aluminum, 

copper, nickel, zinc, and lead. The sample dates from 03 December 1993 to 29 

September 2017. We find that the core metal commodity futures - the metal commodity 

futures with the strongest dependence with the other four futures - moves from copper 

to zinc after the crisis. The diversification benefit among major metal commodity 

futures was also shown to diminish. However, the dependence structures between core 

futures and the futures who exhibits the highest concordance with core futures remains 

unchanged after the crisis. Same evidence can also be found for the futures who exhibits 

the lowest concordance with core futures. 

This study contributes to the literature in three ways: first, we investigate the 

dependence structures among different metal commodity futures in the LME, with a 

focus on analyzing the change after the crisis, which to the best of our knowledge has 

rarely been studied; second, we find that the change of dependence structures among 

these metal commodity futures in the LME indicates a reduction in their diversification 

benefit, which generates valuable insights for portfolio management; third, we further 
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show that the metal commodity futures which has the strongest dependence with the 

remaining futures moves from copper to zinc after the crisis. 

In the literature, the evidence of less diversification benefits has been confirmed 

in many other types of markets; for example, Silvennoinena and Thorp (2013) suggest 

that diversification benefits to investors across the equity, bond and stock markets were 

significantly reduced during the crisis period they studied. The evidence from Lu et al. 

(2013) indicates that diversification benefits between the US REIT (Real Estate 

Investment Trust) market and twelve international REIT markets eroded considerably 

during turbulent market conditions. Gerlach et al. (2014) examined the impact that the 

1997 Asian financial crisis has had upon the integration and dynamic links between a 

number of Asia-Pacific real estate markets; The results show that the diversification 

benefits in the Asia-Pacific region are actually less than those suggested by an analysis 

incorrectly ignoring the crisis. 

Many studies have focused on the dependence and volatility across spot markets 

or metal futures markets. Sensoy (2013) used the DCC (dynamic conditional 

correlation) model to examine volatility shift contagion effects in the returns of four 
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major precious metals (i.e. gold, silver, platinum, and palladium) and found no 

significant effect on the volatility levels of gold and silver during the turbulent year of 

2008. Using daily data over the period 1992 to 1998, Ciner (2001) reported that gold 

and silver futures contracts traded in Japan were not cointegrated. Xu and Fung (2005) 

found evidence of strong volatility feedback between these precious metals across both 

markets. Choi and Hammoudeh (2010) used the dynamic conditional correlation model 

to identify increasing correlations among all the considered spot commodity returns 

(i.e., Brent oil, WTI oil, copper, gold and silver) over recent years. 

Due to the sophisticated dependence structures among financial asset returns, the 

sample linear dependence cannot fully capture these dependence structures. Hence, the 

linear correlation coefficient cannot precisely measure the non-linear dependence 

structures as well as tail-dependence structures among financial asset returns. 

In order to remedy the defect of the linear correlation coefficient, the copula 

approach is widely used in risk management and option pricing. The copula function 

captures the dependence more completely. In addition, based on the copula function, 
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many new measures can be defined to determine the dependence structure, which to 

some extent expands the limitations of existing measures. 

Embrechts (1999) introduced the copula approach to the field of finance to study 

the dependence problem. Longin and Solnik (2001) studied the dependence structure 

across international stock markets using the Gumbel copula. Patton (2002) used the 

copula approach to examine the economic and statistical significance of asymmetries 

of stock returns for asset allocation decisions in an out-of-sample setting. Ang and Chen 

(2002), Poon et al. (2003) and Hartmann et al. (2004) found that a multivariate normal 

distribution could not fully capture the tail dependence among financial asset returns, 

especially the lower tail dependence. Junker and May (2005) modified the t-copula and 

Clayton-copula to investigate portfolio dependence. Nelsen (2006) systematically 

introduces the bivariate copula and its properties. Patton (2006) used the copula 

approach to analyze the asymmetric dependence structure of the foreign exchange 

market. Ning (2010) examined the dependence structure between the stock market and 

foreign exchange market in developed countries and found that there exists a significant 

symmetric tail dependence between them, though this dependence weakened after the 
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establishment of the European Union. Zhang (2014) employed the copula approach to 

investigate the dependence structure between the sovereign debt markets of major 

European countries and further calculated the potential probabilities of future sovereign 

debt crises of these markets. Huang and Ning (2017) investigated the inter- and intra-

continental dependence of developed stock markets before and after the financial crisis 

of 2008 to identify whether inter-continental and intra-continental diversification 

potential is disappearing. 

However, the dependence among high-dimensional random variables cannot be 

captured by a bivariate copula function, therefore, the multivariate copula was 

introduced to solve high-dimensional cases. The multivariate copula uses a specific 

multivariate copula family to capture the dependence among high-dimensional random 

variables. Unfortunately, the choice of multivariate copulas is rather limited in contrast 

to the bivariate case, where a rich variety of different copula types exhibiting flexible 

and complex dependence patterns exists (Brechmann and Czado, 2013). Multivariate 

copula equips different pairs of random variables with the same dependence structure. 

Hence, a single multivariate copula is still unable to fully and completely capture the 
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sophisticated dependence among high-dimensional random variables. For example, 

multivariate Archimedean copulas only allow exchangeable structures with a narrower 

range of negative dependences in a higher dimension (McNeil and Neslehova, 2009). 

Demarta and McNeil (2007) presented multivariate skewed t-copula, which model well, 

but are computationally intensive. In summary, the defects of multivariate copula in 

capturing high dimensional dependence are inflexible and insufficient. 

The vine-copula approach can remedy the defects of multivariate copulas. This 

approach has been widely used to capture high dimensional dependence. Schlüter (2009) 

compared the different copula estimation methods used in vine-copula. Low et al. (2013) 

applied the vine-copula approach to portfolio management. Weiss and Supper (2013) 

used the vine-copula approach to predict VaR. So and Yeung (2014) used the dynamic 

GARCH-vine-copula model to study the time-varying dependence structures among 

five stocks on the Hong Kong stock market. Abbara (2014) used the vine-copula model 

to study the dependence and contagion of the stock market. Markwat (2014) applied 

the vine-copula approach to investigate the probability of a global stock market crash. 

Zhang (2014) used vine-copula to study the dependence between European sovereign 
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debt markets and predict the probability of a sovereign debt crisis. Nagler and Czado 

(2016) applied non-parametric estimation to the vine-copula model and reported that it 

can overcome the “curse of dimensionality”. Pircalabu and Jung (2017) utilized the 

vine-copula model to examine the dependence between wind power production and 

electricity prices and discussed its implications for the pricing and risk distributions 

associated with contracts that are exposed to joint price and volumetric risk. Shahzad 

et al. (2018) investigate the downside and upside spillover effects, systemic and tail 

dependence risks of the DJ World Islamic (DJWI) and DJ World Islamic Financial 

(DJWIF) indices, and of Islamic equity indices from Japan, USA and the UK. In this 

paper, they employ a robust modeling framework consisting of various models, such as 

delta conditional VaR (ΔCoVaR), vine-copula to study the problem they concern. 

Few studies in metal commodity futures have used the R-vine copula approach. 

However, it is a suitable method because different dependence structures between each 

pair of metal commodity futures can be captured while modelling the high dimensional 

dependence among these futures. This present study is one of the first to employ the R-

vine copula model to investigate the dependence structures among major futures 
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contracts in the European metal futures market, with a focus on analyzing the change 

after the 2008 financial crisis. Our study expands the literature on metal commodity 

futures, while our findings may help improve the performance of hedging strategies, 

thus being valuable for portfolio managers in optimizing their asset allocation and 

diversifying risk. 

This paper is organized as follows: Section 2 describes the methodology, Section 

3 addresses the data description and empirical analysis, while finally, Section 4 presets 

the conclusion. 

 

2 Methodology 

    2.1 Vine-copula approach 

A copula is a multidimensional joint distribution function whose marginal is 

uniformly distributed on [0,1]. The capacity of a copula to capture dependence 

structures is endowed by Sklar’s theorem. However, a single copula function can only 

characterize well the dependence structure in the two-dimension case. When the 

dimension is higher than two, a multivariate copula forces the same dependence 
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structure for each pair of random variables. This defect greatly restricts the capacity of 

multivariate copula to capture multidimensional dependence structures. Hence, the 

multivariate copula approach is not widely used. 

The vine-copula approach was first proposed by Aas et al. (2009) based on the 

work of Bedford and Cooke (2002). This approach uses the pair-copula construction 

(PCC) (Aas et al., 2009) to capture high dimensional dependence by building a multi-

level tree structure. Specifically, this approach decomposes a multivariate density 

function into the product of the marginal density function and a series of unconditional 

or conditional pair-copulas. Furthermore, various kinds of pair-copula families can be 

chosen to model the dependence of each pair of random variables. Therefore, the vine-

copula approach is more flexible and efficient than the multivariate copula approach in 

terms of the measurement of dependence. 

The construction of vine-copula models is diverse due to different types of 

connections between nodes and edges and different progressive relationships of tree 

structures. Bedford and Cooke (2002) proposed a graphical construction approach: the 

regular vine (R-vine). In this approach, the tree structure of each level is different. The 
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nodes in each tree are connected through the edges, and each node comes from a 

specific edge in the previous tree. Two nodes in each tree are only connected by an 

edge if they share a common node in the previous tree (proximity condition). Paired 

random variables corresponding to each edge are characterized by a pair-copula. 

Using the vine-copula approach to decompose n-dimensional random 

vectors 	𝑋6 = (X:, X<,… , X>)	will generate n-1 tree structures and n(n-1) pairs of 

random variables which need to be characterized by pair-copula functions. If 

𝑓(𝑥:, 𝑥<,… , 𝑥6)	denotes the joint density function of this random vector, the R-vine 

decomposition of the joint density function is as follows: 

 

𝑓(𝑥:, 𝑥<,… , 𝑥6) =B𝑓(𝑥C)
6

CD:

BB𝑐FG,HG|JG
K∈MN

6O:

CD:

{𝐹(𝑗K|𝑑K), 𝐹(𝑘K|𝑑K); 𝑑K} 

 

where 	𝑓(𝑥H), 𝑘 = 1,2,… , 𝑛  denotes the marginal density of 𝑋6 , 		𝑐FG,HG|JG(∙,∙) 

represents the pair-copula density corresponding to edge 𝑒	which connects nodes 𝑗 

and 𝑘 in the 𝑖th tree, 𝐸C	is a set that consists of all edges in the 𝑖th tree.	𝑑K = AF ∩

𝐴H, where AF	and 𝐴Hare two sets of nodes in the first tree that are reachable by nodes 
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𝑗 and	𝑘, 𝑗K = AF − 𝑑K，𝑘K = AH − 𝑑K. The second product symbol takes all n-1 trees, 

while the third product symbol takes all n-j pair-copula functions in the 𝑖th tree. 

     Each bivariate copula in vine-copula depends on two conditional cumulative 

distribution functions (CDF): 	𝐹(𝑗K|𝑑K), 𝐹(𝑘K|𝑑K) and conditioning variables in	𝑑K. 

The number of variables in 𝑑K increases with the tree level goes higher, which makes 

each bivariate copula a |𝑑K| + 2 dimensional function to be estimated. Haff et al 

(2010) suggest that it may still be possible to estimate a bivariate copula that depends 

additionally on the single conditioning variable, using some sort of smoothing 

technique. However, at higher levels, this becomes very difficult in a parametric setting, 

and impossible in a non-parametric one. In order to make inference to be fast, flexible 

and robust, one must assume that each bivariate copula in vine copula construction is 

independent of the conditioning variables. i.e. 

 

𝑐FG,HG|JG{𝐹(𝑗K|𝑑K), 𝐹(𝑘K|𝑑K); 𝑑K} = 𝑐FG,HG|JG{𝐹(𝑗K|𝑑K), 𝐹(𝑘K|𝑑K)} 

 

This equation is so-called simplifying assumption. 
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     Whether simplifying assumption can be relax depends on the given dataset and 

the tree structure of vine copula. Recently, Kurz and Spanhel (2017) proposed a new  

statistical method called constant conditional correlation (CCC) test to check whether 

the simplifying assumption is suitable for each conditional bivariate copula in a vine 

copula. The idea of this test is that if a conditional copula can be represented by an 

unconditional copula then the correlation coefficient corresponding to conditional 

copula is a constant with respect to conditioning variables. Based on this fact, the null 

hypothesis of this method is:   

𝜌de = ⋯ = 𝜌dg 

Where 𝜌dN ∶= 𝐶𝑜𝑟𝑟l𝑈FG|nG	, 𝑈HG|nG|	𝐔nG ∈ ΩCq , 𝑈FG|nG  and 𝑈HG|nG are 

conditioned variables in conditional copula. 𝐔nG  is conditioning variables set. The 

support Ωr of 𝐔nG is divided by a partition Γ ≔ {Ω:, … ,Ωu}, ΩC is an element in 

the partition Γ.  

Kurz and Spanhel (2017) further derive a test statistic to test the null hypothesis 

by using the asymptotic normality of the vector consist of estimated conditional 

correlations: 𝜌vdN
(6). This novel testing procedure can mitigate the curse of dimensions 
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due to the discretizing of the conditioning variable set and the penalty incorporated in 

the test statistic. 

      

    2.2 Model selection and estimation 

Financial data are commonly found to exhibit conditional heteroscedasticity, 

skewness, and leptokurtosis in logarithmic returns (Siburg et al., 2015). The generalized 

autoregressive conditional heteroscedastic (GARCH) model proposed by Bollerslev 

(1986) is widely used to model time series data with conditional heteroscedasticity. 

Further, compared with the standard normal distribution, using the student-t 

distribution as the conditional innovation distribution in the GARCH model can better 

capture the skewness and leptokurtosis of financial time series data (Bollerslev, 1987). 

In addition, most theoretical results for copulas only hold for independent identical 

distributed (i.i.d.) samples, and financial data are usually filtered by GARCH models 

to yield approximately i.i.d. samples of standardized residuals (Siburg et al., 2015). The 

approximately i.i.d. sample is necessary for the inference for a specific pair-copula 

decomposition (Aas et al., 2009). Besides, using GARCH filters to account for the 
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time-varying volatility in financial returns is indeed necessary when later estimating a 

copula model (Garmann and Grundke, 2013). Based on the studies above, we employ 

the GARCH-t model to fit the marginal distribution of the return series considered in 

this paper. 

The following three steps are necessary for fitting an R-vine copula specification 

to a given high-dimensional data set: 

     1)   Select a specific R-vine copula structure.  

2)   Select the appropriate pair-copula family for each pair in the selected R-

vine-copula structure.  

3)   Estimate the parameter(s) for each copula. 

The ideal way is to repeat step (2) and (3) for every possible R-vine copula 

structure. However, n-dimensional random variables may have l6<q × (𝑛 − 2)! ×

2l
yz{
{ q	possible R-vine copula structures (Morales-Napoles et al., 2010). Compared to 

the number of dimensions, the rapidly expanding number of R-vine copula structures 

make the ideal method inefficient. 
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Therefore, in this paper the sequential estimation method proposed by Dißmann 

et al. (2013) is applied to fit the R-vine copula to the data set considered. Dißmann et 

al. claimed that it is more important to model the dependence structure between random 

variables that have high dependencies correctly; furthermore, the copula families 

specified in the first tree of the R-vine often have the greatest influence on the model 

fit. Joe et al. (2010) also stated that in order for a vine-copula to have dependence for 

all bivariate margins, it is sufficient for the bivariate copulas in the first tree to display 

dependence. Thus, the stronger dependence the first tree structure can capture, the more 

independent the transform variables in the subsequent tree structures are. Whether the 

first tree structure can fully capture the strongest dependence structure among variables 

is of vital importance. Based on these pieces of evidence, this method starts from the 

first tree structure and repeats steps (1), (2) and (3) for each tree structure sequentially, 

and employs the MST (maximum spanning tree) method based on some dependence 

measure as the selection criteria for the first tree and subsequent tree structures. In other 

words, the tree structure that solves the following optimization problem is selected: 
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max
�N∈�N

� �𝛿C,��					,
KJ�K�	KD{C,F}C6
	���66C6�	��KK	�N

i ≠ j 

 

where 𝑇C is a collection of all possible tree structures in the 𝑖th tree. 𝑡C denotes 

a specific 𝑖th tree structure, 𝑒 is an arbitrary edge in tree 𝑡C , 𝛿�,� is the dependence 

measure’s value between a pair of random variables corresponding to edge 𝑒. Since 

dependence measures that are negative in value indicate negative dependence among 

random variables, the dependence measure requires that the absolute value is taken so 

as to take negative dependence into account (Brechmann and Czado, 2013). 

Kendall�s	τ  is a type of dependence measure which is especially useful when 

combining different (non-Gaussian) copula families, since the assumed distribution 

cannot affect the measurement of its dependence (Dißmann et al., 2013). Hence, we use 

Kendall�s	τ as the dependence measure in the MST method. 

After the tree structure selection, we need to select an appropriate pair-copula 

family for each pair of random variables in this tree. Two approaches are widely used 

as selection criteria for pair-copulas: the copula goodness-of-fit test and the AIC criteria. 

Manner (2007) found that compared with the copula goodness-of-fit test, the AIC 



TAIL DEPENDENCE STRUCTURE                                      19 

 

 

criteria is more reliable in the context of pair-copula selection. Therefore, we use the 

AIC criteria as the pair-copula selection criterion. 

Finally, we apply the maximum likelihood estimation to estimate the parameters 

of each specified pair-copula in this tree. After parameter(s) estimation, the transformed 

variables which are used as input parameters for the next trees are obtained by using 

the h(·) function (Aas et al., 2009; Dißmann et al., 2013). The treewise selection and 

estimation procedure described here gives sequential estimates of pair-copula 

parameters, which are quite quickly obtained and can be used as starting values for a 

full maximum likelihood estimation (Aas et al., 2009; Hobæk Haff, 2010). Since most 

of the pair-copula families can model the independence well, this method also reduces 

the difficulty of fitting high order tree structures. In addition, sequential estimation can 

minimize rounding errors caused by high-order tree structures (Brechmann and Czado, 

2013).  

 

3 Data and empirical study 

3.1 Data  
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This paper examines the log-returns of weekly settlements of five major metal 

commodity futures, namely aluminum, copper, nickel, zinc, lead, in the European metal 

futures market. These metal futures have large trading volumes and their underlying 

metal commodities are widely used for industrial purposes. The sample comes from the 

London Commodity Exchange (LME). The LME is the world’s largest trading center 

for non-precious metals and thus can be regarded as a useful starting point to investigate 

the dependence among metal commodity futures. The sample starts from 03 December 

1993 and goes to 29 September 2017. 

The sample period covers the global financial crisis in 2008, allowing us to study 

the dependence structures among these five major metal commodity futures, with a 

focus on analyzing the change after the crisis. Thus, we separate the sample into two 

periods: 03 December 1993 to 29 December 2006 is Period 1 and represents the period 

before the crisis; 05 January 2007 to 29 September 2017 is Period 2 and represents the 

period during and after the crisis. Table 1 and Table 2 summarize the descriptive 

statistics for the weekly log-returns of the five metal commodity futures in both periods. 
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Table 1 and Table 2 show that the log-returns of all five metal commodity futures 

exhibit negative skewness and leptokurtosis in both periods. Correspondingly, the 

Jarque-Bera normality test of each metal commodity future confirms this fact. 

 

Table 1 The descriptive statistics for weekly log-returns of five metal commodity futures in 

period 1 

 n Min Max Mean Std.Dev. Skew Kurtosis Jarque–Bera 

Al 682 -13.48 8.33 0.14 2.55 -0.18 1.54 0.0000 

CO 682 -13.89 11.02 0.2 3.08 -0.28 1.63 0.0000 

NIC 682 -19.97 14.75 0.29 4.37 -0.02 1.41 0.0000 

ZINC 682 -14.09 16.09 0.22 3.21 0.02 2.63 0.0000 

LEAD 682 -15 11.54 0.2 3.37 -0.23 1.83 0.0000 

 

In addition, the minimum log-return of each metal commodity future in Period 2 

is generally smaller than those in Period 1, while the maximum log-return of each metal 

commodity future in Period 2 is generally greater than those in Period 1. This evidence 

tentatively implies that the extent of the European metal futures market shocked by the 

"tail events" increases after the crisis. 
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Table2 The descriptive statistics for weekly log-returns of five metal commodity futures 

in period 2 
 

n Min Max Mean Std.Dev. Skew Kurtosis Jarque–Bera 

Al 560 -16.49 9.57 -0.04 3.13 -0.27 1.69 0.0000 

CO 560 -24.45 13.48 0.02 3.92 -0.93 5.96 0.0000 

NIC 560 -22.31 32.01 -0.21 5.23 0.21 3.29 0.0000 

ZINC 560 -17.75 13.53 -0.04 4.4 -0.26 1.43 0.0000 

LEAD 560 -19.09 23.35 0.07 5.19 -0.06 2.29 0.0000 

 

3.2 Marginal distributions modelling 

The ADF test shows that all five log-return sequences are stationary. The LM test 

(Engle, 1982) indicates the heteroscedasticity of all five log-return sequences in both 

periods. Following Fantazzini (2009) and Siburg et al. (2015), we employ the standard 

GARCH model with t-distributed innovations to fit the marginal distributions. 

The i.i.d sample is necessary and essential for the copula parameter(s) estimation. 

A GARCH-filter with well identified orders can remove the heteroscedasticity in the 

sample and obtain the approximately i.i.d residuals for the following copula estimation. 

Based on this evidence, we thus employ the GARCH(1,1)-t model to filter the return 

sequences: 

𝑅�,� = 𝜇F +	𝜎�,F𝑍�,F                                      (1) 
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𝜎�,F< = 𝜔F + 𝛼:Fl𝑅�O:,F − 𝜇Fq + 𝛽:,F𝜎�O:,F< 												𝑗 = 1, … , 𝑑							𝑡 = 1,… , 𝑛C							 (2) 

where	𝑍�,F~𝑡(0,1, 𝑣).		𝑅�,� denotes the log-return of variety 𝑗 in time 𝑡,	𝑑 denotes the 

number of commodity futures studied, 𝑛C	(𝑖 = 1，2) denotes the sample sizes of 

Period 1 and Period 2. The conditions of coefficients that ensure positive volatility and 

the existence of second moments are respectively: 𝛼:, 𝛽: > 0 and	𝛼: + 𝛽: < 1 

The parameter estimates and statistical tests for the GARCH (1,1)-t-filter in both 

periods are listed in Table 3 and Table 4 respectively. In both periods, all the 

coefficients of the five log-return sequences satisfy the condition, 𝛼:, 𝛽: > 0 and	𝛼: +

𝛽: < 1, which ensures the positive conditional volatility and confirms the existence of 

a second moment of a GARCH –t model. 

The Ljung-Box tests applied to each marginal model strongly reject the null 

hypothesis of autocorrelation at lag 1, 2, and 5 at the 5% significance level in both 

periods, which indicates no autocorrelation in standardized residuals of marginal 

models.  
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The LM tests applied to each marginal model strongly reject the null hypothesis 

at lag 3, 5, and 7 at the 5% significance level in both periods, which implies no 

homoscedasticity of standardized residuals of marginal models.  

The sign bias test (SB test) can diagnose the existence of an asymmetry response 

of the volatility to innovations (Engle et al., 1993). The positive and negative SB test 

accept the null hypothesis of no asymmetry volatility at the 5% significance level in 

both periods. Thus, the asymmetric GARCH model (EGARCH, TGARCH) is 

unnecessary for marginal modelling. 

To sum up, the GARCH (1,1)-t-filter is an adequate marginal model for the five 

time series of log-returns of metal commodity futures. 
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Table 3 Parameter estimates and statistic tests for GARCH(1,1)-t in period 1 

Parameter 
AL CO NIC ZINC LEAD 

Est./Stat. p-value Est./Stat. p-value Est./Stat. p-value Est./Stat. p-value Est./Stat. p-value 

𝜇 0.0801 0.3642 0.1068 0.3221 0.1892 0.2156 0.0464 0.6336 0.0791 0.4905 

𝜔 0.3061 0.0390 0.5107 0.0401 0.9608 0.1242 0.1533 0.1187 0.0557 0.4567 

𝛼1 0.1006 0.0007 0.1063 0.0006 0.0671 0.0062 0.0911 0.0000 0.0294 0.0064 

𝛽1 0.8517 0.0000 0.8387 0.0000 0.8847 0.0000 0.8966 0.0000 0.9677 0.0000 

shape 28.7366 0.2868 34.9707 0.4082 6.8541 0.0002 10.0189 0.0068 6.9692 0.0001 

AIC 4.6202 4.9788 5.7177 4.9148 5.1631 

Logli. -1570.4890 -1692.7730 -1944.7390 -1670.9340 -1755.6010 

LB test: 
          

lags Est./Stat. p-value Est./Stat. p-value Est./Stat. p-value Est./Stat. p-value Est./Stat. p-value 

1 0.1077 0.7428 2.7980 0.0944 1.8040 0.1792 0.5603 0.4542 3.6700 0.0554 

2 0.1095 0.9131 2.9300 0.1466 1.8050 0.2974 0.5628 0.6648 3.7120 0.0901 

5 0.3265 0.9809 3.0660 0.3952 3.4450 0.3318 1.4888 0.7427 4.0100 0.2529 

LM test: 
          

lags Est./Stat. p-value Est./Stat. p-value Est./Stat. p-value Est./Stat. p-value Est./Stat. p-value 

3 1.7360 0.1877 0.2323 0.6298 0.4530 0.5009 0.8039 0.3699 2.1990 0.1381 

5 3.3840 0.2388 0.7395 0.8114 0.6461 0.8398 1.5360 0.5829 3.5660 0.2176 

7 4.3750 0.2957 0.8403 0.9381 0.8999 0.9293 3.5326 0.4190 6.2150 0.1274 

SB test 
          

 
Est./Stat. p-value Est./Stat. p-value Est./Stat. p-value Est./Stat. p-value Est./Stat. p-value 

Negative 0.5082 0.6115 0.0878 0.9301 0.8725 0.3833 0.7885 0.4307 1.0450 0.2962 

Positive 0.4403 0.6599 1.9054 0.0572 1.8119 0.0704 0.1049 0.9165 1.9240 0.0547 
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Table 4 Parameter estimates and statistic tests for GARCH(1,1)-t in period 2 

Parameter 
AL CO NIC ZINC LEAD 

Est./Stat. p-value Est./Stat. p-value Est./Stat. p-value Est./Stat. p-value Est./Stat. p-value 

𝜇 -0.0056 0.9620 -0.0018 0.9877 -0.1908 0.2889 0.0666 0.6470 0.0260 0.8622 

𝜔 0.0883 0.2329 0.1707 0.1598 0.2447 0.1836 0.0684 0.2356 0.0891 0.2851 

𝛼1 0.0413 0.0052 0.0804 0.0019 0.0537 0.0053 0.0435 0.0002 0.0613 0.0011 

𝛽1 0.9487 0.0000 0.9072 0.0000 0.9350 0.0000 0.9517 0.0000 0.9353 0.0000 

shape 18.0344 0.1174 6.7676 0.0001 15.6411 0.0664 12.6012 0.0379 8.6643 0.0029 

AIC 5.0187 5.2606 5.9466 5.6054 5.8042 

Logli. -1400.2380 -1467.9810 -1660.0420 -1564.5230 -1620.1750 

LB test:           

lags Est./Stat. p-value Est./Stat. p-value Est./Stat. p-value Est./Stat. p-value Est./Stat. p-value 

1 0.9917 0.3193 1.5280 0.2163 0.1734 0.6771 0.0560 0.8129 0.0505 0.8222 

2 1.2326 0.4286 2.6630 0.1732 1.1299 0.4579 0.0789 0.9347 0.2814 0.8062 

5 2.1187 0.5907 4.3010 0.2188 1.8704 0.6494 1.1198 0.8320 0.8448 0.8937 

LM test:           

lags Est./Stat. p-value Est./Stat. p-value Est./Stat. p-value Est./Stat. p-value Est./Stat. p-value 

3 0.0001 0.9919 0.1880 0.6645 0.7427 0.3888 0.0001 0.9930 0.5976 0.4395 

5 1.0629 0.7144 1.7740 0.5234 2.8733 0.3087 0.5730 0.8619 0.6490 0.8389 

7 2.9505 0.5230 6.1150 0.1337 3.5533 0.4156 3.4770 0.4282 3.0689 0.5006 

SB test:           

 Est./Stat. p-value Est./Stat. p-value Est./Stat. p-value Est./Stat. p-value Est./Stat. p-value 

Negative 0.4982 0.6185 0.8268 0.4087 0.2143 0.8304 0.0615 0.9510 0.5724 0.5673 

Positive 1.5045 0.1330 1.4006 0.1619 1.4120 0.1585 0.5411 0.5887 0.1375 0.8907 
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4 Empirical results 

We use the vine-copula approach to study the dependence structures among 

major metal commodity futures in the London Metal Exchange, with a focus on 

analyzing the change after the financial crisis. 

There is always some uncertainty in the innovation distribution when the sample 

size is large (Dißmann et al., 2013). In order to overcome this issue, first, we transform 

the standardized residuals obtained from the GARCH-filter into marginally uniform 

data by using the empirical probability integral transformation (PIT). Then we apply 

the vine copula approach to investigate the dependence structures among transformed 

data, and use CCC method to test whether simplifying assumption holds for each 

conditional bivariate copula in vine copula. 

The CCC test is applied to R-vine copula we modeled in both periods. The results 

show that the total number of rejections in all three high level tree structures is zero at 

5% significant level in both periods, which indicates that the simplifying assumption 

cannot be rejected at 5% significant level in both periods. The dependence structure 

modeled by the R-vine copula in both periods is listed in Table 5. Figure 1 shows the 
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first tree structure of the R-vine copula in Period 1 and Figure 2 shows the first tree 

structure of the R-vine copula in Period 2. 

 

    4.1 The dependence structure before the 2008 financial crisis 

Copper and aluminum have strong correlation and concordance, and the t-copula 

between them implies the existence of a symmetrical tail dependence. The Clayton-

copula and indices of tail dependence between copper and lead indicate the existence 

of weak lower tail dependence. Copper has no tail dependence with zinc and nickel. 

Excluding copper, aluminum exhibits a slight concordance with the other three 

metal commodity futures. However, the value of the indices of lower tail dependence 

of aluminum and nickel (𝜆u = 0.2) and the Gumbel copula (see Appendix B) between 

them together indicate high lower tail dependence between the two metal commodity 

futures. The value of the indices of lower tail dependence of aluminum and lead (𝜆u =

0.01, 𝜆ª = 0.01 ) and the t-copula between them together show a symmetrical tail 

dependence between the two metal commodity futures. The value of the tail 
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dependence indices of aluminum and zinc are both equal to zero, which indicates no 

tail dependence. 

Nickel has weak concordance with zinc and lead. Nickel and zinc have no tail 

dependence. The Gumbel copula between nickel and lead implies lower tail dependence 

between the two metal commodity futures. Zinc and lead have strong concordance, and 

the Gumbel copula between this pair indicates lower tail dependence between the two 

metal commodity futures. 

The first tree structure of an R-vine copula can capture the strongest dependence 

structure between random variables to the maximum extent. Figure 1 shows that there 

are three edges connected to copper while only four edges exist in the first tree structure; 

thus, copper has the strongest dependence with the other four futures before the crisis. 

 

4.2 The dependence structure after the 2008 financial crisis 

The concordance levels of aluminum with zinc, copper, nickel and lead are 

shown to decrease after the crisis. There is no tail dependence between aluminum and 

the remaining three metal commodity futures except zinc. 
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Zinc has strong concordance with aluminum, copper and lead, while weak 

concordance was shown between zinc and nickel. The BB1 copula (see Appendix B) 

between zinc and aluminum implies strong asymmetric tail dependence. Furthermore, 

the lower tail dependence is relatively strong. The copulas for the zinc-copper pair and 

zinc-lead pair are both t-copula, which indicates that zinc has a symmetrical tail 

dependence with these two metal commodity futures. Moreover, the large value of the 

tail dependence indices of these two pairs further implies a high degree of symmetrical 

tail dependence. The Gumbel copula between zinc and nickel implies lower tail 

dependence between the two metal commodity futures. Copper has no tail dependence 

but weak concordance with nickel and lead.  

Nickel has weak concordance with lead, and the t-copula between this pair 

implies symmetrical tail dependence between the two metal commodity futures. Further, 

the indices of the tail dependence of this pair indicate a low degree of tail dependence. 

Figure 2 shows that there are three edges connected to zinc while only four edges 

exist in the first tree structure; thus, zinc has the strongest dependence with the other 

four futures after the financial crisis. 
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4.3 Comparison between the dependence structure before 

and after the 2008 financial crisis 

First, we compare the dependence structures of each metal commodity futures 

before and after the crisis. Kendall�s	τ  between aluminum and the other metal 

commodity futures ranges in [0.07,0.46] before the crisis, which decreases to [0.03,0.41] 

afterwards. Additionally, the concordance between aluminum and the other metal 

commodity futures generally decreases. In particular, the metal commodity futures 

which have strongest concordance with aluminum change from copper to zinc after the 

crisis. Before the crisis, aluminum has a symmetrical tail dependence with copper and 

lead, but afterwards, the tail dependence disappears. In contrast, aluminum and zinc 

exhibit asymmetric tail dependence after the crisis, moreover, the lower tail dependence 

is stronger after the crisis. 

The concordance between copper and aluminum decreases after the crisis, but 

the concordance between copper and the other three metal commodity futures generally 

increases. Before the crisis, copper has no tail dependence with nickel and zinc. 
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However, an asymmetric tail dependence appears in this pair after the crisis. 

Furthermore, the lower tail dependence of this pair is stronger after the crisis. Similarly, 

after the crisis, copper and zinc exhibit symmetric tail dependence, and the lower tail 

dependence between this pair disappears. The change of tail dependence between 

copper and aluminum has been discussed in this paper. 

After the crisis, the concordances of nickel-aluminum, nickel-zinc and nickel-

lead generally decrease, while the concordance between nickel and copper increases. 

The dependence structure between nickel and zinc changes from no tail dependence to 

lower tail dependence after the crisis. The dependence structure between nickel and 

lead changes from lower tail dependence to symmetric tail dependence after the crisis. 

The change of the tail dependences of nickel-copper and nickel-aluminum have been 

discussed in this paper. 

Kendall�s	τ between zinc and the other metal commodity futures ranges in [0.13, 

0.42] before the crisis which increases to [0.17, 0.51] after the crisis, and the 

concordance between zinc and the other metal commodity futures generally increases. 

The dependence structure between zinc and aluminum changes from lower tail 
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dependence to symmetric tail dependence after the crisis. The change in tail dependence 

between zinc and the other three metal commodity futures has been discussed in this 

paper. 

The concordance between lead-zinc and lead-copper increases after the crisis, 

and the concordance between lead and zinc increases significantly. In contrast, the 

concordance between lead-aluminum and lead-nickel decreases. The change in the 

dependence between lead and the remaining four metal commodity futures has been 

discussed in this paper.  

By analyzing the first level tree structure formed by five metal commodity futures 

before and after the crisis, we find that as shown in figure1 and figure2, the first level 

tree structure does not change after the crisis. Before the crisis, copper exhibits 

strongest dependence with the other four metal commodity futures. After the crisis, zinc 

shows the strongest dependence with peripheral futures. Kendall�s	τ of the first tree 

ranges in [0.35, 0.46] before the crisis, which increases to [0.37, 0.48] after the crisis. 

The increase in Kendall�s	τ  means that the concordance among the five metal 

commodity futures becomes stronger, together with the change of core metal futures—
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—the metal commodity futures which has strongest dependence with the remaining 

four futures. 

In addition, the range of the indices of upper tail dependence of the first tree 

structure increases from [0, 0.12] to [0.19, 0.33] after the crisis. Similarly, the range 

of the indices of lower tail dependence of the first tree structure shifts from [0.12, 0.43] 

to [0.21, 0.4] after the crisis. The degree of concordance and the tail dependence 

become higher after the crisis, which implies the disappearance of diversification 

benefit among the major metal commodity futures. 

Before the crisis, metal commodity futures are ranked according to the degree of 

concordance with core futures contract, the ranking order from high to low is as follows: 

aluminum, zinc, nickel and lead. After the crisis, this order changes to: lead, copper, 

aluminum and nickel. By analyzing the differences in tail dependence of the metal 

commodity futures in these two descending orders, we find that t copula captures the 

dependence between first-place futures and core futures contract before and after the 

crisis. This evidence indicates that the symmetric tail dependence between the first-

place futures contract and the core futures contract does not change after the crisis. 
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Similarly, clayton copula captures the dependence between the last-place futures and 

the core futures contract before the crisis. After the crisis, this dependence is captured 

by sGumbel copula. Since both clayton copula and sGumbel copula display lower tail 

dependence, this result implies that the lower tail dependence between the last-place 

futures contract and the core futures contract does not change after the crisis. Therefore, 

the tail dependence structure between the first-place futures contract and the core 

futures contract is not affected by the crisis, as also found for the last-place contract. 

Before the crisis, the second and third place futures contracts (zinc, nickel) do not 

display any tail dependence with the core futures contract; however, after the crisis, 

copper and nickel exhibit symmetric tail dependence and asymmetric lower tail 

dependence with the core futures contract, respectively. This change implies that the 

tail dependence between the second-place futures contract and core futures contract 

becomes stronger after the crisis. The same results are shown for the third-place futures 

contract. 

 

 



TAIL DEPENDENCE STRUCTURE                                      36 

 

 

 

Table 5 The R-vine copula in period 1 and period 2 

  Period1  Period 2 
Tree-1: Margins 2,1  2,3  4,2  5,4  

 
4,1 2,3 4,2 5,4 

 Family t N F SG 
 

SBB1 SBB1 t t 
 𝜃: 0.66 0.51 4.42 1.54 

 
0.29 0.3 0.68 0.71 

 𝜃< 12.45 0 0 0 
 

1.47 1.38 8.64 5.5 
 τ 0.46 0.34 0.42 0.35 

 
0.41 0.37 0.48 0.51 

 𝜆ª 0.12 0 0 0 
 

0.19 0.19 0.21 0.33 
 𝜆u 0.12 0 0 0.43 

 
0.4 0.35 0.21 0.33 

Tree-2: Margins 3,1|2  4,3|2  5,2|4  
  

2,1;4 4,3;2 5,2;4 
 

 Family SG N C 
  

F SG N 
 

 𝜃: 1.18 0.29 0.18 
  

1.83 1.21 0.24 
 

 𝜃< 0 0 0 
  

0 0 0 
 

 τ 0.15 0.18 0.08 
  

0.2 0.17 0.15 
 

 𝜆ª 0 0 0 
  

0 0 0 
 

 𝜆u 0.2 0 0.02 
  

0 0.23 0 
 

Tree-3: Margins 4,1|3,2  5,3|4,

2  

   
3,1;2,4 5,3;4,2 

  

 Family N SG 
   

N t 
  

 𝜃: 0.21 1.1 
   

0.22 0.06 
  

 𝜃< 0 0 
   

0 7.95 
  

 τ 0.13 0.09 
   

0.14 0.04 
  

 𝜆ª 0 0 
   

0 0.02 
  

 𝜆u 0 0.12 
   

0 0.02 
  

Tree-4: Margins 5,1|4,3,2  
    

5,1;3,2

,4 

   

 Family t 
    

SC 
   

 𝜃: 0.1 
    

0.07 
   

 𝜃< 12.24 
    

0 
   

 τ 0.07 
    

0.03 
   

 𝜆ª 0.01 
    

0 
   

 𝜆u 0.01         0       

*1:AL，2:CO，3:NIC，4:ZINC，5:LEAD 

*t: Student-t copula, N: Gaussian copula, F: Frank copula, C: Clayton copula, 

SBB1:sBB1 copula, SG: sGumbel copula, SC: sClayton copula. 
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Figure 1 the first tree structure of R-vine copula in period 1 

 

 

Figure 2 the first tree structure of R-vine copula in period 2 
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5 Conclusion 

To sum up, the core futures contract moves from copper to zinc after the crisis. 

The diversification benefit among the major metal commodity futures has diminished. 

However, the first level tree structure formed by five metal commodity futures remains 

the same after the crisis. Ranking the remaining four futures by concordance with core 

futures contract from high to low, we find that the dependence structure between the 

first-place futures and the core futures contract remains unchanged after the crisis. 

Same result can be observed for the last-place futures. 
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Figures 

Figure 1. The first tree structure of the R-vine copula in Period 1. 

Figure 2. The first tree structure of the R-vine copula in Period 2. 
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Tables 

Table 1 The descriptive statistics for weekly log-returns of the five metal commodity 

futures in Period 1. 

Table2 The descriptive statistics for weekly log-returns of the five metal commodity 

futures in Period 2. 

Table 3 Parameter estimates and statistical tests for GARCH(1,1)-t in Period 1. 

Table 4 Parameter estimates and statistical tests for GARCH(1,1)-t in Period 2. 

Table 5 The R-vine copula in Period 1 and Period 2. 
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Appendix A. Measure of dependence  

  Many kinds of dependence measures can be defined based on the copula theory. 

This paper refers to two dependence measures: Kendall’s	τ and the indices of tail 

dependence. 

  A.1.𝐊𝐞𝐧𝐝𝐚𝐥𝐥’𝐬	𝛕 

  Kendall’s	τ measures the concordance between two random variables. The higher 

the concordance between two random variables, the stronger the dependence. In the 

discrete case, given two random vectors with the same joint distribution and copula 

function (𝑋:, 𝑌:)  and (𝑋<, 𝑌<) , the vectors are said to be concordant if 𝑋: > 𝑋< 

whenever Y: > 𝑌< , and 𝑋: < 𝑋< , whenever 𝑌: < 𝑌< ; the vectors are said to be 

discordant in the opposite case. Kendall’s	τ measures the difference between the 

probability of concordance and of the discordance between two independent random 

vectors. 

  Definition: Kendall’s	τ  for two random variables 𝑋:  and 𝑋<  with copula 

𝐶(𝑢, 𝑣), is: 

τ = 4¶¶𝐶(𝑢, 𝑣)
:

r

:

r

𝑑𝐶(𝑢, 𝑣) − 1 



TAIL DEPENDENCE STRUCTURE                                      48 

 

 

 

A.1.The indices of tail dependence 

  The indices of tail dependence measure the dependence in a tail, or extreme values 

of two random variables. In particular, there are two kinds of indices: the indices of 

upper tail dependence and the indices of lower tail dependence. 

  Definition: X and Y are two continuous random variables, with distribution 

functions 𝐹·(. ), 𝐹 (. ). If C(.,.) denotes the copula for X and Y, then: 

 

𝜆u = lim
¹→r

Pr	(𝐹·(𝑥) ≤ 𝑢|𝐹 (. ) ≤ 𝑢) = lim
¹→r

𝐶(𝑢, 𝑢)
𝑢  

𝜆ª = lim
¹→:

Pr	(𝐹·(𝑥) ≥ 𝑢|𝐹 (. ) ≥ 𝑢) = lim
¹→:

1 − 2𝑢 + 𝐶(𝑢, 𝑢)
1 − 𝑢  

 

Where 𝜆u  and 𝜆ª represent the indices of lower tail dependence and upper tail 

dependence respectively. 	𝜆u，𝜆ª ∈ (0,1) . If 𝜆u  and 𝜆ª  take positive values, it 

means that there exists tail dependence between the two random variables. The 

definition of these two measures is independent from the marginal distribution 

𝐹·(. ), and	𝐹 (. ) and only relates to the copula C(.,.).  



TAIL DEPENDENCE STRUCTURE                                      49 

 

 

 

Appendix B. Bivariate copula families 

  The vast majority of studies have confirmed the existence of extreme and 

asymmetric volatility in various financial asset markets. Therefore, we apply several 

bivariate copulas with different tail dependence structures to fully capture the tail 

dependence between the variables considered in this paper. 

  B.1. Elliptical copula family 

  The Gaussian copula function is as follows: 

 

𝐶¿�À��C�6(𝑢, 𝑣; 𝜌) = 𝛷Â(𝛷O:(𝑢),𝛷O:(𝑣); 𝜌) 

  

Where 𝜌 ∈ (−1,1) denotes the linear correlation coefficient between two random 

variables. ΦÂ is the bivariate normal distribution function. 𝛷O: is the inverse of the 

univariate normal distribution function. The Gaussian copula has no tail dependence.  

   The bivariate student-t copula is as follows:  
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𝐶Ä��ÀJK6�O�(𝑢, 𝑣; 𝜌) = 𝑡Â	Ä(𝑡O:(𝑢), 𝑡O:(𝑣); 𝜌) 

 

Where 𝜌 ∈ (−1,1) denotes the linear correlation coefficient between two random 

variables. 𝑡Â	Ä  is the bivariate t-distribution function with linear correlation coefficient 

𝜌  and the degree of freedom 𝜈 . 	𝑡O:  is the inverse of the univariate t-distribution 

function. The t-copula exhibits symmetrical tail dependence. 

  B.2. Archimedean copula family 

  The bivariate Archimedean copula function is: 

   

C(𝑢:, 𝑢<) = 𝜑[O:](𝜑(𝑢:) + 𝜑(𝑢<)) 

 

Where φ: [0,1] → [0,∞]  is a continuous strictly decreasing convex such that 

φ(1) = 0 and 	𝜑[O:] is the pseudo-inverse φ as follows: 

 

𝜑[O:] = Í
𝜑O:(𝑡),						0 ≤ 𝑡 ≤ 𝜑(0)
								0,									𝜑(0) ≤ 𝑡 ≤∞		
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Table 6 presents some properties of Clayton, Gumbel, Frank, and BB1 copulas that 

belong to the bivariate Archimedean copula families. 

 

Table 6 Properties of bivariate copula families 

Name Function Para.range Kendall's τ Tail.dep.(l.u.) 

Frank − log Ð
eOÑ� − 1
eOÑ − 1

Ò θ ∈ ℜ 1 −
4
θ +

4D:(θ)∗

θ  (0,0) 

Gumbel (− log t)Ñ θ ≥ 1 1 −
1
θ (2,2 − 2

:
Ñ) 

BB1 (𝑡OØ − 1)OÙ θ > 0, δ ≥ 1 1 −
2

𝛿(𝜃 + 2) (2O
:
ØÙ, 2 − 2

:
Ø) 

Clayton 
1
𝜃 (𝑡

OØ − 1) θ > 0 
𝜃

(𝜃 + 2) (2O
:
Ø) 

     *𝐷:(𝜃) = ∫ Ý Ø⁄
K·�(·)O:

Ø
r 𝑑𝑥 is Debye function. 

 

 The table above shows that the Frank-copula has no tail dependence, the Gumbel-

copula exhibits asymmetrical lower tail dependence, and the BB1 copula has 

asymmetrical upper dependence. 

  B.3. Survival copula 

  A survival copula is a special rotated-copula function. The rotation of the copula 

greatly enriches the types of copulas and enables them to better capture the dependence. 
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A copula function which is rotated 180 degrees is called the survival copula of the 

original： 

 

𝐶:ßr(𝑢:, 𝑢<) = 𝑢: + 𝑢< − 1 + 𝐶(1 − 𝑢:, 1 − 𝑢<) 

 

  In contrast, the Gumbel copula has an asymmetrical upper tail dependence, while the 

BB1 copula exhibits an asymmetrical lower tail dependence. 
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