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The Endogenous Price under Perfect Liquidity

I. Introduction

The fundamental value of a security is a core but also a hard to assess concept in fi-

nance.1 The fundamental value is typically unobservable. Beginning with the seminal paper

of Demsetz (1968), the midpoint of the bid-ask spread is commonly used as the heuristic

estimator of the fundamental value of stocks. This midquote conjecture has multiple appli-

cations in market microstructure theory (e.g. liquidity measurement, price discovery). In

liquidity measurement, the implicit trading cost borne by a trader for the immediacy of her

buy or sell market order is measured by the deviation of the trading price from the funda-

mental value. The use of the midpoint as a proxy for the fundamental value facilitated the

construction of the well known illiquidity measures such as the relative quoted spread, the

effective spread, and the realized spread.2

This paper provides theoretical foundation for the estimation of the fundamental value

based on an endogenous model. I refer to this estimation of the security’s fundamental value

as the endogenous underlying value of the security.3 The model derives the endogenous

underlying value of the security in two steps: firstly, it evaluates the implicit trading cost

function associated to a limit order submitted on a continuous order-driven market, and,

secondly, it estimates the fundamental value at equilibrium under a zero trading cost en-

dogenous condition. Therefore, I state that the security’s endogenous underlying value is a

weighted average of the best bid and ask prices. The weights depend on the volatility of the

security and on the risk-free interest rate. The midpoint becomes only a particular case of

the endogenous underlying value. The endogenous underlying value of the stock explains the

asymmetrical price pressure on buy and sell trades. This value can be closer to the bid price

or to the ask price. It has major implications on liquidity measurement, price discovery or

asset pricing as an alternative to the traditional use of the midpoint.

The starting point of the model is that limit orders submissions generate a winner’s curse

phenomenon and an adverse selection effect. Biais, Glosten, and Spatt (2005) argue that the

limit order traders behave as the bidders in an auction. The winner’s curse and the adverse

selection risks occur because the specified limit price is fixed over time and the evolution of

the market price may lead to over/underestimation, giving a profit opportunity to a more

1The fundamental value is also called the consensus value or the true value.
2The Rule 605 of the SEC (The Securities and Exchange Commission) requires the monthly reporting of

the average effective spread and the average realized spread.
3In accordance with Foucault (1999), the underlying value denotes the expected stock’s fundamental value

conditional on public information.
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informed trader at the expense of the uninformed liquidity supplier. In continuous trading,

the informed trader identifies in the order book those pending limit orders, the execution of

which will create profit opportunity (i.e., the "picking off" risk). The commitment to trade

at a fixed limit price makes the liquidity supplier vulnerable to all these risks.

On the other hand, Copeland and Galai (1983) state that the commitment to trade at

a fixed price is equivalent to deliberately offering an option to other traders on the market.

I overlap the gain associated to the strategic game of the informed trader on the payoff of

this option. As the option replicates the trading mechanism generated by the winner’s curse

and the adverse selection, I name it replicating option. The pricing of this option gives the

implicit trading cost function associated to the limit orders. Thus, the model shows that

the trading cost function of a buy limit order is given by the price of a perpetual American

barrier put option, while the trading cost function of a sell limit order is defined by the price

of a perpetual American barrier call option. At equilibrium, these cost functions provide the

endogenous condition to obtain the estimate of the fundamental value.

The theoretical models of limit order market developed by Seppi (1997), Parlour and

Seppi (2003), and Goettler, Parlour, and Rajan (2005) take into account that limit orders

are a source of "picking off" risk. According to Foucault (1999), the limit order execution

is uncertain and price fluctuations are likely to induce the "picking off" risk generating a

winner’s curse effect. Foucault’s dynamic model shows that this risk depends on the volatility

of the stock and on the structure of the orders flow. The structure of the orders flow depends

on the traders’decision to trade immediately by placing market orders or to expect for a

better execution price by placing limit orders. Foucault, Kadan, and Kandel (2005) identify

two types of traders, patient traders and impatient traders, and show that, at equilibrium,

patient traders become liquidity suppliers for impatient traders. They find that traders

submit aggressive limit orders when the spread is large and the proportion of patient traders

is high.

The paper is organized as follows. Section II describes the model setup. Section III

presents the derivation of the function of the trading cost induced by the winner’s curse and

adverse selection effects associated to the placement of a limit order. The probability that the

winner’s curse and adverse selection effects will not occur is also derived. Section IV provides

the endogenous underlying value of the security and its implications on illiquidity measures.

In this section, I revise traditional illiquidity measures such as the relative quoted spread, the

effective spread and the realized spread. Section V exhibits the revisited Liquidity-adjusted

CAPM and illiquidity risk premium. Section VI provides a new estimator of the bid-ask

spread. Empirical investigation is provided in Section VII. Section VIII concludes.
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II. The Model Setup

A. The Market and the Traders

Consider a continuous limit order market. There are two types of orders on this market:

market orders and limit orders. These orders are executed according to price and time

priority. The buy orders at higher prices and the sell orders at lower prices have priority. If

the orders are at the equal prices, time priority is applied.

There are two main categories of traders on the market: liquidity traders and liquidity

suppliers. Liquidity traders submit market orders and they are willing to pay a cost to obtain

immediacy for their urgent consumption needs. Liquidity suppliers submit limit orders and

they are willing to provide liquidity at their own prices to the liquidity traders. Liquidity

traders are either informed or uninformed traders. Uninformed traders have access to public

information only. Informed traders also hold private information which gives them the

opportunity to estimate the future price of the security more precisely than the uninformed

traders. There are also noise traders on the market, among both liquidity traders and

liquidity suppliers. Noise traders conceal the presence of informed traders on the market.

The liquidity supplier who submits a limit order is facing the winner’s curse risk, adverse

selection risk and non-execution risk. On one hand, when trading with the informed trader

the liquidity supplier will pay an implicit trading cost associated to these risks. On the other

hand, the liquidity supplier will obtain a liquidity premium from the liquidity trader which

compensates for these risks. The limit order trader recoups the loss borne in trades with

informed liquidity traders by the gain obtained in trades with uninformed liquidity traders.

The trading price or the observed price Pt is the execution price of the limit order. The

limit price becomes the trading price when the limit order is executed. The trading price

becomes either the highest bid limit price or the lowest ask limit price as the buy and sell

limit orders are executed.

B. The Cash-in-the-Market Strategy of the Informed Trader

Let V > 0 be the fundamental or the true value of the asset. Let Ωt be the set of

all informations about the asset value at time t. As in the Glosten and Milgrom (1985)

model, the information set Ωt contains news and order flows. The information set Ωt can be

decomposed into a set of public information available to all traders Ωp
t and a set of private

information available only to informed traders Ωi
t, Ωt = {Ωi

t ∪ Ωp
t} and {Ωi

t ∩ Ωp
t} = ∅.

Let Kb be the bid limit price of a buy limit order and let Ka be the ask limit price of a

sell limit order. The limit prices are set in accordance with all public available information
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regarding the security’s value, Ωp
t . Conditional on their heterogeneous beliefs, liquidity

suppliers submit limit orders with different limit prices. All limit order traders believe that

their bid limit prices are lower than the security’s underlying value and their ask limit prices

are higher than the security’s underlying value.

The informed trader holds the best possible estimateXt of the fundamental value, where

Xt = E [V |Ωt] . (1)

According to the effi cient market hypothesis, the trading price incorporates instanta-

neously all available information on the market being at any time the best possible estimate

of the fundamental value. Due to microstructure frictions, the trading price is likely to

deviate from the effi cient price. The trading price at time t is defined as

Pt = Xt + ξt, (2)

where ξt denotes the deviation from the effi cient price. As the deviation is temporary

E [ξτ |Ωt] = 0, which implies E [Pτ |Ωt] = E [Xτ |Ωt], t < τ . Because the effi cient price is

a martingale conditional on Ωt, Xt = E [Xτ |Ωt], it results

Xt = E [Pτ |Ωt] . (3)

The random time τ is defined as the time when there is no more informational advantage

and trades take place at the fair price given all available information. At this time, the price

incorporates the information initially known by the informed trader. In other words, the

informed trader expects that the future trading price reaches Xt.

The informed trader’s objective is to cash-in-the-market her private information as

quickly as possible. This strategy depends on the speed with at which the information

is incorporated in the price. The informed trader is the only one who knows Xt. The in-

formed trader will exploit her superior information if the limit order trader is mispricing

the stock. Thus, if Xt < Kb, the informed trader will sell the stock, while if Xt > Ka, the

informed trader will buy the stock. The informed trader arrives to cash-in-the-market her

competitive advantage when the stock price will incorporate the information and will reach

the expected level Xt. Actually, insofar as limit order traders update their beliefs, the price

will be continuously adjusted incorporating information.

The limit order trader does not observe whether the informed trader’s expectation Xt

is above the ask limit price Ka, below the bid limit price Kb or within these two bounds.

As opposed, the informed trader can observe the relation between Xt and the limit prices.
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Insofar as the profit opportunity occurs, the limit order is picked off by a marketable order

initiated by the informed trader. The overpricing or the underpricing of the security will

be optimally exploited by contrary orders only when the price has incorporated the private

information. Henceforth, the optimal payoff of the informed trader’s cash-in-the-market

strategy is defined by

Payoff=

{
Xt −Ka if she buys at Ka and she sells at Xt > Ka

Kb −Xt if she sells at Kb and she buys at Xt < Kb

.

When Xt < Kb the trading price may reach Xt if and only if the buy limit order with

the bid limit price Kb has been entirely executed. Similarly, when Xt > Ka the trading

price may reach Xt if and only if the sell limit order with the ask limit price Ka has been

entirely executed. The target value Xt is a post-trade price. This one can occur only after

the execution of the limit order.

C. The Replicating Option

The informed trader’s strategy to cash-in-the-market her private information can be

replicated by means of an option mechanism. Copeland and Galai (1983) state that the

commitment to trade the security at a fixed price is equivalent to offering an option to other

traders. Following this statement, I associate the submission of a limit order to writing an

American option which has the strike price equal to the limit price. This option can be

also considered as being perpetual (i.e. its maturity is infinite) because the limit order can

stay indefinitely unexecuted in the limit order book. This option is free because the limit

order trader encashes no payment for writing the option. Pricing the option is equivalent to

estimating the implicit trading cost borne by the liquidity supplier at the order submission.

In informed traders’ presence, the perpetual American option can be redefined as a

replicating option of the trading mechanism by matching its strictly positive payoff to the

gain associated to the cash-in-the-market strategy of the informed trader. The cash-in-the-

market strategy of the informed trader is an optimal exercise strategy. Thus, the replicating

option will be also optimally exercised. The replicating option’s payoff corresponds to a

strategic game between traders because the resulting payoff comes from sequences of their

choices.4 This payoff occurs at a random time.

The replicating option is also a barrier option. Actually, the option can be exercised

anytime until its infinite maturity, but only at the moment when the trading price hits an

established barrier level given by Xt. If the stock price does not reach Xt, the option will

4See Ziegler (2004) for a game theory analysis of perpetual options.
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not be exercised, its payoff will be zero and the winner’s curse and the adverse selection will

not occur. The replicating option is not exercised when the limit order stays unexecuted in

the order book. Only when the cash-in-the-market strategy of the informed trader succeeds,

it will lead to a trading cost for the uninformed liquidity supplier.

It is unrealistic to assume that the trading price could instantaneously become Xt with-

out reaching any limit price of limit orders before that. For liquidity reasons, the informed

trader picks-off strategically and quickly any limit order which under/overestimates the se-

curity before its eventual cancelling.5 The trading price reaches at least one ask limit Ka

or one bid limit Kb before incorporating private information and becoming Xt. Therefore,

the value of the replicating option defines the trading cost associated to non-cancelled limit

orders picked off by informed traders.

The replicating option is a perpetual American barrier call option when the liquidity

supplier submits a sell limit order. If the liquidity supplier submits a buy limit order, the

replicating option will become a perpetual American barrier put option.

D. The Valuation Model

The function of the trading cost associated to a limit order at its submission time is

generated by a simple pricing model of the replicating option based on risk-neutral valuation

technique. Thus, the stock trading price is assumed to follow a risk-neutral stochastic process.

Assumption 1. In a risk-neutral world, the trading price process (PT , T ≥ t) is defined as

a geometric Brownian motion

dPT = rPTdT + σPTdW̃T , (4)

where the risk-free interest rate r and the volatility of the security σ are supposed to be

constant over time. W̃T is a standard Brownian motion under a risk-neutral probability

measure Q. The initial point in time is t and the process is initialized at point At > 0 (the

best ask) or Bt > 0 (the best bid) depending on whether a sell trade or a buy trade takes

place.

The option is optimally exercised by its owner when the trading price hits her estimation

of the true value. BecauseXt is publicly unknown, it can be equal to any positive real number

X. Thus, the pricing model evaluates the call replicating option as a function of the variable

X whenX > Ka and the put replicating option as a function of the variableX whenX < Kb.
5Biais, Hilton, Mazurier, and Pouget (2005) show that the miscalibrated traders with overconfidence in

judgement tend to overestimate the precision of their information becoming vulnerable to the winner’s curse
trap.
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In other words, the replicating option is evaluated when the stock price reaches the

level X. The call option payoff is X − Ka with X > Ka, while the payoff Kb − X with

X < Kb corresponds to the put option. These payoffs occur at a random time τ , which can

be modelled as a stopping time.

Assumption 2. Let τ be a hitting time which is defined as the first time when the trading
price process PT hits the level X

τ = min
{
T ≥ t;PT = X

}
,

where X is a real positive number.

Using the risk-neutral valuation, the trading cost function of a buy limit order is the

price of a perpetual American barrier put option defined by

Πb
t

(
X
)

= EQ
[
e−r(τ−t) max

(
Kb −X, 0

)]
= max

(
Kb −X, 0

)
EQ
[
e−r(τ−t)

]
. (5)

Similarly, the trading cost function of the sell limit order is the price of a perpetual American

barrier call option given by

Πa
t

(
X
)

= EQ
[
e−r(τ−t) max

(
X −Ka, 0

)]
= max

(
X −Ka, 0

)
EQ
[
e−r(τ−t)

]
. (6)

When the bid barrier X < Kb is reached, the payoff of the put replicating option is

achieved. Similarly, if the ask barrier X > Ka is reached, the payoff of the call replicating

option is attained. Two situations are possible. If the replicating option is never exercised

(τ =∞), then e−r(τ−t) = 0 and the trading cost is zero (the level X is never reached by the

trading price). If the replicating option is exercised (τ <∞), the trading cost functions are
strictly positive.

III. The Trading Cost Function

A. The Probability of the Winner’s Curse and Adverse Selection Effects

If the trading price does not hit X, the winner’s curse and adverse selection effects will

not occur and there will be no trading cost associated to the limit order. The following

proposition defines the probabilities that the trading price will not reach a level X lower or

equal to the bid limit price and a level X higher or equal to the ask limit price.

Proposition 1. Let Kb be the limit price of a buy limit order. At the order submission time

t, if min
(
X,Kb

)
< Bt, the probability that the trading price will not hit the level X ≤ Kb is
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given by

Qb (τ =∞) =

 1−
[

min(X,Kb)
Pt

] 2r
σ2
−1

if r > 1
2
σ2

0 otherwise
. (7)

If Bt < min
(
X,Kb

)
< At, the probability is given by

Qb (τ =∞) =


1−

[
min(X,Kb)

Bt

] 2r
σ2
−1

if Pt = Bt and r < 1
2
σ2

1−
[

min(X,Kb)
At

] 2r
σ2
−1

if Pt = At and r > 1
2
σ2

0 otherwise

. (8)

LetKa be the limit price of a sell limit order. At the order submission time t, ifmax
(
X,Ka

)
>

At, the probability that the trading price will not hit the level X ≥ Ka is defined by

Qa (τ =∞) =

 1−
[

max(X,Ka)
Pt

] 2r
σ2
−1

if r < 1
2
σ2

0 otherwise
. (9)

If Bt < max
(
X,Ka

)
< At, the probability is defined by

Qa (τ =∞) =


1−

[
max(X,Ka)

At

] 2r
σ2
−1

if Pt = At and r > 1
2
σ2

1−
[

max(X,Ka)
Bt

] 2r
σ2
−1

if Pt = Bt and r < 1
2
σ2

0 otherwise

. (10)

Proof. The proof is provided in Appendix A.

If min
(
X,Kb

)
= Kb and max

(
X,Ka

)
= Ka, Qb (τ =∞) and Qa (τ =∞) give the

probabilities that the buy and sell limit orders will not be executed. If min
(
X,Kb

)
= X

and max
(
X,Ka

)
= X, Qb (τ =∞) and Qa (τ =∞) give the probabilities that the winner’s

curse and the adverse selection will not occur. There are non-zero probabilities that the

winner’s curse and adverse selection effects will not occur. These probabilities have different

values depending on the sign of the drift (r − σ2/2) of the stock’s log-price risk-neutral

stochastic process. Thus, if the value X is outside the bid-ask spread, a non-zero probability

Qa (τ =∞) will be induced by a negative drift, while a non-zero probability Qb (τ =∞) will

be given by a positive drift. If the valueX is inside the bid-ask spread, a non-zero probability

will result depending on the drift’s sign but also on the initial trading price which can be
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either the best bid price or the best ask price.

B. The Trading Cost Function of a Buy Limit Order

The implicit trading cost of a buy limit order occurs when the bid limit price Kb is

higher than X. There are two possibilities to submit a buy limit order: (i) the limit price

Kb is framed between the best bid price Bt and the best ask price At and (ii) the limit

price Kb is lower than the best bid price Bt. In the first case, the put replicating option

is in-the-money, while, in the second one, the option is out-of-the-money. At the moment

when the buy limit order is submitted, the trading cost function is given by relation (5).

In this relation, the expected discount factor is the Laplace transform for first passage time

of drifted Brownian motion. Based on this Laplace transform, the trading cost function is

defined by the following proposition.

Proposition 2. At the order submission time t, the trading cost of a buy limit order with
the limit price Kb is a function of X. When the initial price is the best bid (Pt = Bt), the

trading cost function is

Πb
t

(
X
)

=

{
max

(
Kb −X, 0

)
Bt
X

if X ≥ Bt

max
(
Kb −X, 0

) (
Bt
X

)− 2r
σ2 if X < Bt

. (11)

When the initial price is the best ask (Pt = At), the trading cost function is

Πb
t

(
X
)

= max
(
Kb −X, 0

)(At
X

)− 2r
σ2

if X < At. (12)

Proof. The proof is provided in Appendix B.

The trading cost depends on three parameters: the best bid price or the best ask price,

the risk-free interest rate and the stock volatility. If the volatility increases, the trading cost

will also increase, as ∂Πb
t/∂σ > 0. If the risk-free interest rate increases, the trading cost will

decrease, as ∂Πb
t/∂r < 0. The trading cost will be a decreasing and convex function of the

bid price (i.e., ∂Πb
t/∂Bt < 0 and ∂2Πb

t/∂B
2
t > 0) if X < Bt, and an increasing and concave

function of the bid price (i.e., ∂Πb
t/∂Bt > 0 and ∂2Πb

t/∂B
2
t < 0) if X ≥ Bt. The trading cost

is a decreasing and convex function of the ask price, as ∂Πb
t/∂At < 0 and ∂2Πb

t/∂A
2
t > 0.

C. The Trading Cost Function of a Sell Limit Order

The trader placing a sell limit order pays an implicit trading cost when the ask limit

priceKa is lower thanX. The trader can choose to set the limit priceKa (i) between the best

9



bid price Bt and the best ask price At or (ii) at higher level than the best ask price At. When

the limit price is inside the bid-ask spread the call replicating option is in-the-money, while

the option is out-of-the-money when the limit price is outside the bid-ask spread. Using the

relation (6) and the theorem of Laplace transform for first passage time of drifting Brownian

motion, the following proposition results.

Proposition 3. At the order submission time t, the trading cost of a sell limit order with
limit price Ka is a function of X. When the initial price is the best ask (Pt = At), the trading

cost function is

Πa
t

(
X
)

=

{
max

(
X −Ka, 0

)
At
X

if X > At

max
(
X −Ka, 0

) (
At
X

)− 2r
σ2 if X ≤ At

. (13)

When the initial price is the best bid (Pt = Bt), the trading cost function is

Πa
t

(
X
)

= max
(
X −Ka, 0

) Bt

X
if X > Bt. (14)

Proof. The proof is similar to that of the Proposition 2.

The trading cost of the sell limit orders is an increasing and concave function of the best

ask price (i.e., ∂Πa
t /∂At > 0 and ∂2Πb

t/∂A
2
t < 0) when X > At, and a decreasing function of

the best ask price (i.e., ∂Πa
t /∂At < 0) when X ≤ At. The trading cost is a convex function

of the ask price when X ≤ At. The increase of the bid price leads to the increase of the

trading cost, as ∂Πa
t /∂Bt > 0. The trading cost is an increasing function of the volatility, as

∂Πa
t /∂σ > 0, and a decreasing function of the risk-free interest rate, as ∂Πa

t /∂r < 0.

IV. The Endogenous Underlying Value of Stocks

A. The Equilibrium

Beginning with the seminal papers of Demsetz (1968) and Roll (1984), a large market

microstructure literature heuristically considers that the midpoint of the bid-ask spread

Mt = (At +Bt) /2 is the best estimate of the security’s fundamental value. I adopt the

definition of the equilibrium as in Demsetz (1968) and Copeland and Galai (1983). According

to this definition, the equilibrium price is obtained in a world where there is no supply

or demand for immediacy (i.e., there is no market order) and there are only equally well

informed traders.

The trading cost functions of buy and sell limit orders can be represented as a bottom

straddle strategy by using in-the-money put and call replicating options. Actually, the
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current bid and ask prices frame the perfect liquidity price. If the limit prices of the two

opposite orders tend to a common value, Ka, Kb → Lt, they may be directly compensated

without being traded through order markets, creating perfect liquidity conditions. The

perfect liquidity price is defined by Lt.

The informed trader’s estimate of the fundamental value Xt can be straddled or not by

the current bid and ask prices. Firstly, consider X > Bt, X < At and Ka, Kb → Lt. When

Xt is inside the bid-ask spread, the implicit trading costs of buy and sell limit orders at the

initial prices (Pt = Bt and Pt = At) can be rewritten as

CB
in

(
X,Lt

)
=

∣∣X − Lt∣∣ Bt

X
, (15)

CA
in

(
X,Lt

)
=

∣∣X − Lt∣∣ (At
X

)− 2r
σ2

. (16)

Secondly, consider X < Bt, X > At and Ka, Kb → Lt. When Xt is outside the current

bid-ask spread, the implicit trading costs at the initial bid and ask prices can be redefined

as

CB
out

(
X,Lt

)
= max

(
Lt −X, 0

)(Bt

X

)− 2r
σ2

+ max
(
X − Lt, 0

) Bt

X
, (17)

CA
out

(
X,Lt

)
= max

(
Lt −X, 0

)(At
X

)− 2r
σ2

+ max
(
X − Lt, 0

) At
X
. (18)

Let Φt be the estimate of the fundamental value given that all traders are equally well

informed.

Condition 1. In informational effi cient markets, the underlying value Φt is the effi cient

price that cancels all implicit trading costs associated to limit orders. The value Xt equals

the underlying value Φt if private information vanishes and all traders possess symmetric

information. In equilibrium, the endogenous condition of the zero trading cost is{
limX→Φt

CA
in

(
X,Lt

)
= limX→Φt

CB
in

(
X,Lt

)
= 0

limX→Φt
CA
out

(
X,Lt

)
= limX→Φt

CB
out

(
X,Lt

)
= 0

. (19)

Based on the above condition, the endogenous underlying value Φt is given by proposi-

tion 4. The zero trading cost condition implies that the underlying value Φt equals the price

under perfect liquidity Lt. This is in accordance with Demsetz’s definition of the equilibrium.

Proposition 4. Let At and Bt be the best ask and the best bid prices of a stock. Let r be the

risk-free interest rate and let σ be the volatility of the trading price. Then, the endogenous
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underlying value of the stock is defined by

Φt = AγtB
1−γ
t , (20)

where γ = r/
(
r + 1

2
σ2
)
and 0 < γ < 1.6 ,7

Proof. The proof is provided in Appendix C.

The proposition states that, at equilibrium, the fundamental value should be straddled

by the current ask and bid prices. The endogenous underlying value of stocks is also an

average, as it is the midquote (At > Φt > Bt). The difference is that this estimate of the

fundamental value is endogenously obtained and it is defined as a weighted average of the

ask and bid prices. The weights are given by a coeffi cient that depends on the risk-free

interest rate and on the volatility of the security. If the expected risk-neutral log-return is

negative (r − σ2/2 < 0), Φt will be closer to the bid price, and if the expected risk-neutral

log-return is positive (r − σ2/2 > 0), Φt will be closer to the ask price. If the return drift is

null (r − σ2/2 = 0), the endogenous underlying value will be the geometric mean of the ask

and bid prices, Φt =
√
AtBt.

The midquote becomes a particular case of the endogenous underlying value. The

midquote is exogenous and it is based on the assumption that the buy and sell trades have

symmetric impact on market liquidity. Nevertheless, the endogenous underlying value of

stocks captures the asymmetric effects of buy and sell trades on the market liquidity. The

endogenous estimate of the fundamental value can be closer to the bid price or to the ask

price, signaling that the market is adjusted downward or upward.

B. Endogenous Illiquidity Measures

Illiquidity measures are extremely important in practice as market illiquidity generates

a cost defined as the gap between the trading price and the proxy of the fundamental value.

The simplest illiquidity measures that gauge this implicit trading cost are the quoted spread,

the effective spread, and the realized spread. The endogenous underlying value of the stock

can be used in redefining these widespread illiquidity measures.

The relative quoted spread is defined as the bid-ask spread divided to the midquote.

This illiquidity measure, commonly used in practice, may be redefined by dividing the bid-

ask spread to the underlying value Φ. Considering qA and qB the depths of the best ask and

6The expression of the endogenous underlying value Φ is similar to the Cobb-Douglas production function
with constant returns to scale. Thus, γ and 1− γ can be interpreted as elasticities of the ask and bid prices.

7If the security is a dividend-paying stock and d is the dividend yield, the parameter γ can be rewritten
as γ = (r − d)/

(
r − d+ 1

2σ
2
)
.
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the best bid, for small size trades (i.e., qt ≤ min (qA, qB)),

Sq =
At −Bt

Φt

=

(
At
Bt

)1−γ

−
(
Bt

At

)γ
. (21)

For large size trades (qt > min (qA, qB)), the illiquidity measure is given by the weighted

relative quoted spread

Sq =
A (qt)−B (qt)

Φt

, (22)

where A(qt) is the average execution price for a buy market order of size qt and B(qt) is the

average execution price for a sell market order of size qt.

The relative effective spread is commonly defined as the difference between the trading

price and the midquote divided to the same midquote. Similarly, the illiquidity measure may

be redefined based on the underlying value Φ, by replacing the midpoint, as follows

Se =
|Pt − Φt|

Φt

. (23)

The difference between the trading price and the perfect liquidity price defines the impact

cost. This impact cost is symmetrical for buy and sell orders when using the midpoint, while

it becomes asymmetrical if the endogenous underlying value is applied. An asymmetrical

impact cost of traded buy/sell orders is naturally more accurate because orders placed on

the market have different effects on ask and bid prices inducing an increase or a decrease in

the market depending on their size. That explains the price pressure for buy or sell trades.

If the trading price is the best ask price quoted the instant before trading (Pt = At > Φt),

then the relative effective spread at the ask price is defined by

SAe =
At − Φt

Φt

=

(
At
Bt

)1−γ

− 1. (24)

If the trading price is the best bid price quoted just before transaction (Pt = Bt < Φt), then

the relative effective spread at the bid price is defined by

SBe =
Φt −Bt

Φt

= 1−
(
Bt

At

)γ
. (25)

The sum of the two measures of relative effective spreads is equal to the relative quoted

spread measure. An increase in the volatility of the security leads to a higher effective

spread when the transaction is carried out at the ask price and to a lower effective spread

when the transaction is done at the bid price (the derivative of each effective spread with
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respect to the volatility is positive and negative, respectively). In other words, high volatility

leads to an increase in consumed liquidity when the security is to be sold and to a decrease in

consumed liquidity when the security is to be bought. Therefore, there are opposite effects

of volatility on the liquidity of buy and sell orders. The risk-free interest rate has a reverse

effect than the volatility. Increasing the risk-free interest rate decreases the effective spread

(increases liquidity) when the transaction takes place at the ask price and increases the

effective spread (decreases liquidity) when the transaction takes place at the bid price. The

differently exerted pressure on the bid prices and on the ask prices can be interpreted as a

signal of the market increase or decrease.

The realized spread is defined as the difference between the trading price and the fun-

damental value estimate at time t+ ∆t after the transaction

Sr = |Pt − Φt+∆t| . (26)

The relative realized spread at the ask price is defined by

SAr =
At − Φt+∆t

Φt

=

(
At
Bt

)1−γ

− Φt+∆t

Φt

, (27)

while the relative realized spread at the bid price is given by

SBr =
Φt+∆t −Bt

Φt

=
Φt+∆t

Φt

−
(
Bt

At

)γ
. (28)

V. Revisited Liquidity-Adjusted CAPM

Amihud andMendelson (1986) and Acharya and Pedersen (2005) show that trading costs

diminish investors’return. In consequence, rational investors will demand a compensation for

the risk of obtaining a lower return due to the lack of liquidity on the market. Liquidity varies

over time, and its fluctuations add an additional risk, called liquidity risk, to the underlying

risk of the asset. As liquidity risk is non-diversifiable, the return expected by investors must

also contain an additional illiquidity premium in excess over the risk premium. Amihud and

Mendelson (1986) studied the impact of liquidity on asset prices and expected returns and

pointed out that ask prices include a premium for immediate buy, while bid prices include

a compensation for immediate sale. The sum between the premium and the compensation

represents the bid-ask spread. The model developed in the previous section shows that due

to asymmetric information the value of the premium is not necessarily equal to the value

of the compensation, the endogenous underlying value of the security being asymmetrically
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positioned between the two, as opposed to the midpoint. Henceforth, I assume that the

endogenous underlying value Φ equals the fundamental value of the security.

The net return obtained by investors over a holding period t+ h is computed by taking

into account the buy price at t (ask) and the sell price at t + h (bid) which include the

premium and the compensation

Bt+h = Ate
Rt+hh. (29)

The net return is the required rate of return which gives the minimum price accepted by

investors. By normalizing the holding period to h = 1, the net return is defined as

Rt+1 = ln
Bt+1

At
. (30)

The future fundamental value over h holding periods is obtained by continuously com-

pounding the fundamental value of the security at the required rate of return Rφ

Φt+h = Φte
Rφt+hh. (31)

The fundamental value at time t is correlated with the trading cost. The lower the trading

cost, the higher the value of the asset. Over a single holding period, the fundamental value’s

return may be decomposed into the net return R and the returns on spread Rs

Rφ
t+1 = ln

Φt+1

Φt

= Rt+1 + γt+1R
s
t+1 + (1− γt)Rs

t , (32)

where the return on spread at time t + 1 is Rs
t+1 = ln (At+1/Bt+1) > 0 and the return on

spread at time t is Rs
t = ln (At/Bt) > 0. Thus, if the weighted sum of the returns on spread

would be added to the effective or net return, the result would be the gross return (i.e., the

fundamental value’s return). At time t, the relative illiquidity cost C l (i.e., the difference

between the gross return and the net return) under information asymmetry is defined by

C l
t = Rφ

t −Rt = γtR
s
t +
(
1− γt−1

)
Rs
t−1 > 0. (33)

Therefore, the higher the bid-ask spread when buying and/or when clearing the position on

the security, the higher the illiquidity cost borne by the investor. The fundamental value’s

return is greater than the net return because the difference compensates investors for the

transaction costs.8

Several empirical studies, beginning with Chordia, Roll, and Subrahmanyam (2000),

8See Foucault, Pagano and Röell (2013).
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Hasbrouck and Seppi (2001), show that illiquidity measures are usually positively correlated

with returns, the co-movement phenomenon being called "commonality" in liquidity. The

co-movements in liquidity prove that the liquidity risk of a security cannot be diminished

through diversification and, therefore, contributes to its systematic risk. The fact that

the fundamental value estimator and the illiquidity cost are endogenously obtained can

be exploited by adjusting the CAPM so that it takes into account the impact of liquidity

shortage on the expected return. Acharya and Pedersen (2005) proposed such an extension,

known as the Liquidity-adjusted CAPM (LCAPM). The Acharya-Pedersen model defines

the net return as a difference between the gross return and the illiquidity cost. Acharya and

Pedersen (2005) claim that in two economies, with and without frictions, it is possible to

obtain the expected return at equilibrium and, more than that, the prices at equilibrium

are the same in both economies. Therefore, the translation of the CAPM equation from

one economy to another, leads to obtaining LCAPM for gross returns. For each stock i, the

relation between the gross and the net return is endogenously obtained (Ri = Rφ
i −C l

i). By

using this in translating the CAPM equation, it results

E
[
Rφ
i − C l

i

]
= r + βi (E [RM − r]) , (34)

where the βi coeffi cient may be written

βi =
COV (Ri, RM)

V AR (RM)
=
COV

(
Rφ
i , RM

)
V AR (RM)︸ ︷︷ ︸

βφi

−
COV

(
C l
i , RM

)
V AR (RM)︸ ︷︷ ︸

βli

. (35)

Considering the decomposition of the βi coeffi cient into underlying beta (β
φ
i ) and illiq-

uidity beta (βli), the expected gross return is given by the following revisited LCAPM equa-

tion

E
[
Rφ
i

]
= r + βφi (E [RM − r]) + E

[
C l
i

]
− βli (E [RM − r]) , (36)

where the required total risk premium is composed of the illiquidity risk premium defined

by

IPi = E
[
C l
i

]
− βli (E [RM − r]) , (37)

and the underlying risk premium given by

UPi = βφi (E [RM − r]) . (38)

Unlike Acharya and Pedersen (2005), the market premium is set to be unchanged. The
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market portfolio should be the benchmark accepted by all investors in order to assess the

average risk-aversion on the market. Even if the stock market indices, generally used as

proxies for the market portfolio, are investable and traceable through investment vehicles

such as index funds or exchange-trading funds, they do not effectively trade on the market

and are not effectively subjected to liquidity costs. The CAPM is a normative model of

asset pricing under risk conditions, which only implies the existence of one optimal portfolio

on the effi cient frontier. The market portfolio should be observable for all investors and it

represents the complete benchmark portfolio in investment strategies. If a proxy for the

market portfolio is the benchmark accepted by all investors, then the illiquidity premium

should be determined with respect to this proxy. Moreover, this is consistent with another

important assumption of the CAPM model: the homogeneity of investors’ expectations.

Even if this assumption is not realistic, Sharpe (1964) argues that not the realism of an

assumption is important but the acceptability of its implications by the market participants.

Another difference is that our illiquidity measure is not exogenously derived (Acharya

and Pedersen (2005) use the measure of Amihud (2002), as the measure of illiquidity cost),

but endogenously, based on the definition of the endogenous underlying value. Testing the

revisited LCAPM relation is easier with gross returns computed based on the endogenous

underlying value.9

VI. A New Bid-Ask Spread Measure

Illiquidity measures, such as the quoted spread, the effective spread or the realized

spread, require data on best bid and best ask prices. Because such data is not always

available the spread between these quotes needs to be estimated. Beginning with Roll (1984),

a large branch of literature is focused on estimating the bid-ask spread of financial securities.

Roll’s bid-ask spread estimator is related to the serial covariance of price changes. Roll

(1984) associates the midquote to the fundamental value which follows a random walk.

The extensions of the model, developed, among others, by Stoll (1989), George, Kaul, and

Nimalendran (1991), Huang and Stoll (1997), Stoll (2000), Hasbrouck (2009) are also based

on similar hypothesis. Some authors make different assumptions on the dynamic of the stock

returns or about an unbalanced orders flow.

Corwin and Schultz (2012) propose a bid-ask spread estimator based on the definition

of the variance of stock prices given by Parkinson (1980) and Garman and Klass (1980),

taking into consideration the highest and the lowest price registered in a trading day. They

9Foucault, Pagano, and Röell (2013) derive the liquidity-adjusted CAPM for gross returns based on
midquotes. The model testing is relying on midquotes, rather than on trading prices.
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also assume that the midquote follows a diffusion process.

The new endogenously obtained estimator of the fundamental value is useful in estimat-

ing the bid-ask spread. I set up the hypothesis that the bid-ask spread (St = At −Bt) does

not change over two consecutive trading periods, otherwise used, by Roll (1984) or Corwin

and Schultz (2012) for their bid-ask spread estimation. Taking into account that the trading

price may become an ask or a bid price depending on whether the trade is corresponding

to a buy or to a sell order, the following approximation of the return on spread (Rs
t ) is

appropriate

Rs
t '

St
Pt
, (39)

because (At −Bt) /Bt ' ln (At/Bt) and (At −Bt) /At ' − ln (Bt/At). The net return is

approximated to the effective return which is continuously compounded over a single holding

period based on trading prices, Rt ' ln (Pt/Pt−1). Based on these approximations and on

the hypothesis that the spread is constant over two consecutive trading periods (S = St =

St−1 > 0), the equation (33) that defines the strictly positive difference between the gross

return and the net return becomes∣∣∣Rφ
t −Rt

∣∣∣ =

(
γt
Pt

+
1− γt−1

Pt−1

)
S = ΨtS, (40)

where Ψt = γt/Pt +
(
1− γt−1

)
/Pt−1 > 0.

The next proposition defines the bid-ask spread measure based on the above relation

and the assumption that the fundamental value follows a random walk and its expected

return is zero.

Proposition 5. Let Pt be the trading price of the security. Let rt be the risk-free interest
rate and let σt be the volatility of the trading price. Then, the bid-ask spread of the security

can be measured by

Ŝ =

∣∣∣∣∣RtΨt

Ψ2
t

∣∣∣∣∣ , (41)

where Rt = ln (Pt/Pt−1) and Ψt = γt/Pt +
(
1− γt−1

)
/Pt−1 with γt = rt/

(
rt + 1

2
σ2
t

)
.10

Proof. The proof is provided in Appendix D.

The new bid-ask spread estimator given by (41) is easy to compute. This bid-ask spread

estimator depends only on three parameters: the trading price, its volatility and the risk-free

interest rate. As opposed to the Roll’s family of estimators, the new bid-ask spread measure

10The expressions RtΨt and Ψ2
t refer to the sample average of RtΨt and Ψ2

t , respectively.
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does not admit complex values. Also, as opposed to the measure proposed by Corwin and

Schultz, the new bid-ask spread measure is more realistic by not admitting negative values.

VII. Empirical Investigation

A. Data and Descriptive Statistics

This section reports several empirical results on liquidity measurement and the impact

of liquidity on stock prices. More concrete, the empirical results from the revisited Liquidity-

adjusted CAPM, as well as bid-ask spreads estimations, are presented in the following.

The database comprises financial daily data collected from two markets that use limit

orders, NYSE and Euronext Paris. The sample consists of the most traded 30 corporations on

each market, included in the structure of the market indexes DJIA and CAC40. Actually, all

corporations composing the American index DJIA, have been encompassed in our database.

The period under analysis covers approximately one year between May 2, 2016 and June

1, 2017. On the American market, the US 10-Year Treasury yield is used as a proxy for

the risk-free interest rate. On the European market, the Germany 10-Year Treasury yield is

used as a proxy for the risk-free interest rate. The database covers daily opening and closing

prices, highest and lowest prices, ask and bid quotes at the closing trading day. For both

markets, the same number of observations is used in estimations.

As the trading cost model is based on the hypothesis that the prices are observed con-

tinuously and considering that the geometric Brownian motion characterizes the stochastic

dynamic of stocks prices, the variances (σ2) of the prices are computed for all corporations

included in the sample, according to the methodology indicated by Parkinson (1980) and

Corwin and Schultz (1980). In order to determine the time series of variances, the variance

is estimated in rolling window using a length N = 60 observations, as follows

σ̂2
t =

1

θ

{
1

N

t∑
i=t−N+1

[
ln

(
PH
i

PL
i

)]2
}
, (42)

where PH
i is the highest price in day i, PL

i is the lowest price in the same trading day i, and

θ = 4 ln 2 is a correction factor. Furthermore, the variances are annualized and the values of

the parameters γ and the endogenous values Φ are computed.

- Please insert Table I about here -

Table I reports the descriptive statistics of the prices and parameters of the model.

Panel A presents the statistics for the series of mean values of prices and parameters of all
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corporations. On the other hand, panel B reports statistics for the series of last values of

variables for each corporation (i.e., values recorded in the last trading day of the analyzed

period). It can be observed that both the bid-ask spread and the volatility are higher on

Euronext Paris, than on NYSE. On the other hand the γ parameter is higher than 0.5 on

NYSE, and lower than 0.5 on Euronext Paris. This result is correlated with the difference

between the endogenous underlying value Φ and the midquote M , which is very small and

positive on NYSE and negative on Euronext Paris. This is explainable, as the high volatility

and the low interest rate on Euronext Paris lead to endogenous underlying values which

are closer to the bid prices, while the situation is reverse on NYSE, where the endogenous

underlying values are closer to the ask prices. In consequence, the endogenous underlying

value in relation to the bid and ask prices may offer valuable information about the liquidity

impact on the evolution of the stock market. Unlike the midquote, the endogenous underlying

value explains how liquidity conditions on the market exercise more pressure on the buy price

than on the sell price or vice versa.

B. Illiquidity Premium

One of the implications of determining an endogenous underlying value of the stock is

that it leads to an illiquidity premium under the terms of assets pricing models. Therefore,

for each stock i, the following models are estimated
Rφ
it − C l

it = αi + βiRMt + εit

Rφ
it = αφi + βφiRMt + εφit

Rφ
it − C l

it − rt = αai + βai (RMt − rt) + εait

, (43)

where RMt is the market return in day t, computed based on daily closing values of the

market index. According to the definitions, the underlying returns Rφ
it and the illiquidity

costs C l
it are computed based on daily best bid and best ask quotations recorded at the

closing of the market and on daily values of the volatility and of the risk-free interest rate.

For each stock i, the βli coeffi cient is computed as the difference between beta coeffi cients β
φ
i

and βi.

- Please insert Table II about here -

Table II reports the estimated results for the most liquid 30 stocks traded on NYSE and

on Euronext Paris, respectively. For all stocks on both markets the beta coeffi cients, βφi and

βi, are significantly different from zero. According to t-statistic, two stocks listed on NYSE

and only one stock listed on Euronext Paris are characterized by a Jensen’s alpha different

from zero.
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The illiquidity premiums are computed based on the estimated coeffi cients. Illiquidity

premiums are significantly lower for the stocks trading on NYSE than for the stocks trading

on Euronext Paris. On the French market, the investors demand for a higher liquidity risk

premium. Moreover, the results also show that the weights of illiquidity premiums in total

risk premiums are higher for stocks trading on Euronext Paris, than on NYSE. On Euronext

Paris, for several stocks, the weights of illiquidity premiums in total risk premiums are higher

than the weights of underlying risk premiums in total risk premiums. On NYSE, this happens

only for a single stock, while for the rest of the stocks the weights of illiquidity premiums

in total risk premiums are always bellow half. On average, the values of the expected gross

returns are higher on Euronext Paris than on NYSE, and so are the empirical mean returns

(measured based on trading prices). The underlying risk premiums are significantly lower for

the stocks trading on NYSE than for the stocks trading on Euronext Paris. Only few French

stocks have the underlying risk premium below the average of the risk premiums recorded

on NYSE.

A positive illiquidity beta coeffi cient (βli) requires a lower expected gross return because

the illiquidity premium becomes implicitly smaller. A negative βli coeffi cient induces the

opposite effect. Regardless of whether the βli coeffi cients are positive or negative, they are

very small and closer to zero for all the stocks analyzed on both markets. Generally, on

both markets, the co-movements between the market excess returns and the illiquidity of

individual stocks are quite weak. On Euronext Paris, these co-movements are higher than on

NYSE, but the differences are very small. Actually, on both markets, the illiquidity premium

is composed of the expected illiquidity cost in a very high proportion.

C. Bid-Ask Spread Estimation

Based on Proposition 5, the bid-ask spread (Ŝ) is estimated for each stock traded on

NYSE and on Euronext Paris, as follows

Ŝt =

∣∣∣∣∣
∑t

i=t−N+1RiΨi∑t
i=t−N+1 Ψ2

i

∣∣∣∣∣ , (44)

where N is the number of observations. The number of observations is set to be equal to

the number of observations used in estimating the volatility (N = 60). The moment t is the

last trading day of the analyzed period. The bid-ask spread estimator is computed using

daily continuously compounded returns, daily risk-free interest rates and daily stock price

volatilities. Once the estimated value of the bid-ask spread (Ŝt) is known, it is used in

estimating the quoted spread (Ŝqt) and the effective spread (Ŝet). Thus, based on relation
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(21) and using the approximation given in (39), it follows that

Ŝqt = e
−γ Ŝt

Pt

(
e
Ŝt
Pt − 1

)
. (45)

Based on relation (24), the effective spread estimator at ask price is given by

ŜAet = e
(1−γ)

Ŝt
Pt − 1. (46)

Similarly, based on relation (25), the estimator of the effective spread at bid price is defined

by

ŜBet = 1− e−γ
Ŝt
Pt . (47)

The values presented in table III show that on Euronext Paris the average of relative

effective spreads and relative quoted spreads is higher than on NYSE for the stocks included

in the database while the average of the estimated bid-ask spreads is approximately the same

on both markets. On NYSE, the proportion of the effective spread at the bid price in the

quoted spread was on average 76.96 %, meanwhile on Euronext Paris the proportion was

on average 19.24 %. The proportion of the effective spread at the ask price in the quoted

spread equaled on average 23.03 % on NYSE and 80.75 % on Euronext Paris. Estimates

show that on both stock exchanges, the transactions corresponding to buy and sell orders

have asymmetric effects on the bid-ask spread. They are not equidistantly reflected in the

formation of the bid-ask spread.

- Please insert Table III about here -

On the French market, the buy and sell orders are unbalanced in relation to the bid-ask

spread on the market. The endogenous underlying value of stocks is much closer to the

bid price than to the ask price. Thus, the liquidity is much more consumed by buy market

orders than by sell market orders. The increasing difference between the best ask price

and the endogenous underlying value and the decreasing difference between the endogenous

underlying value and the best bid price indicate a larger illiquidity cost from dried up liquidity

for buy trades than for sell trades. Impatient sellers obtain a trading price much closer to the

fundamental value than impatient buyers. As counterpart, patient buyers obtain a trading

price much closer to the fundamental value than patient sellers.

Therefore, if the fundamental value is closer to the bid price, the market price will be

downward adjusted which, for a seller is a signal to submit a market order to get immediacy,

while, for a buyer is a signal to place a limit order in order to obtain a better price. These
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impatient market exit behavior and patient market enter behavior on the French market are

also explained by a negative expected risk-neutral return (r − σ2/2 < 0).

Investors’behavior on the American market is opposite to investors’behavior on the

French market. The endogenous underlying value of stocks is much closer to the ask price

than to the bid price. Therefore, the market price is upward adjusted. Sellers become patient

submitting limit orders, while buyers become impatient submitting market orders. These

impatient market enter behavior and patient market exit behavior occur when the expected

continuously compounded return is positive (r−σ2/2 > 0). In consequence, on both markets,

the pressure to buy and sell securities is disproportionately reflected in the bid-ask spread

in relation to the endogenous underlying value of stocks.

VIII. Conclusion

I derive a model for estimating the fundamental value of the stock. This estimate is

endogenously derived based on the valuation of the trading cost function associated to a

limit order. The trading cost is caused by the winner’s curse phenomenon and the adverse

selection effect. The formation mechanism of the trading cost associated to a buy limit

order is described by a perpetual American barrier put option, meanwhile the formation

mechanism of the trading cost associated to a sell limit order is described by a perpetual

American barrier call option.

The endogenous underlying value of the stock is deduced as a weighted average of the

ask and bid prices. The weights are functions of the security’s price volatility and the

risk-free interest rate. The endogenous underlying value is an alternative to the use of the

mid-quote price in constructing various illiquidity measures. Thus, immediate implications

on liquidity measuring are disclosed. First, I redefine the relative quoted spread, the relative

effective spread and the realized spread. Second, through the revisited liquidity-adjusted

CAPM, I deduce the illiquidity premium by using the gross yield based on the estimator of

the fundamental value. Third, based on the endogenous relationship between net and gross

yields, I propose a new estimator of the bid-ask spread.

By analyzing the estimated bid-ask spread, it follows that on the French stock exchange,

as opposed to the American stock exchange, there is a different aggregate strategy of investors

to place limit orders and to provide liquidity for buy trades against sell trades. The empirical

results indicate an impatient market enter behavior and a patient market exit behavior on

the American market, as opposed to an impatient market exit behavior and a patient market

enter behavior on the French market.
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APPENDIX

A Proof of Proposition 1

The proof is based on the following theorem which gives the probability of the first

passage time.

Theorem 1. Let W̃t be a Brownian motion under the probability measure Q. Let µ be

a real number. Define the drifted Brownian motion Yt = µt + W̃t and the hitting time

τ = min {t ≥ 0; Yt = k}, where k is a positive real number. Then,

Q (τ ≥ t) = N

(
k − µt√

t

)
− e2µqN

(
−k − µt√

t

)
, (A.1)

where N (z) =
∫ z
−∞

1√
2π
e−

1
2
u2du is the standard cumulative normal distribution.

Dana and Jeanblanc (2007) give an explicit proof of this theorem. According to the

model assumptions, the initial time of the price stochastic process is t and the initial price

can be the best ask At or the best bid Bt. The limit order is submitted instantaneously with

the transaction at the initial price. Let us consider that the trading price follows a geometric

Brownian motion (4), under the initial price Pt = Bt. According to Itô’s Lemma, for T ≥ t,

it results the drifted Brownian motion

1

σ
ln
PT
Bt

=
1

σ

(
r − 1

2
σ2

)
(T − t) +

(
W̃T − W̃t

)
. (A.2)

If Pτ = X > Bt, then ln
(
X/Bt

)
> 0. The parameters µ and k are given by{
k = 1

σ
ln X

Bt
> 0

µ = 1
σ

(
r − 1

2
σ2
) . (A.3)

By replacing the above expressions of µ and k in relation (A.1),

Q (τ ≥ T ) = N (−z1)−
(
X

Bt

) 2r
σ2
−1

N (−z2) , (A.4)

where the term z1 is given by z1 =
[
ln
(
Bt/X

)
+ (r − σ2/2) (T − t)

]
/σ
√

(T − t) and the
term z2 is given by z2 =

[
ln
(
X/Bt

)
+ (r − σ2/2) (T − t)

]
/σ
√

(T − t).
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If Pτ = X < Bt, then ln
(
X/Bt

)
< 0. Now, the parameter k is defined by

k = − 1

σ
ln
X

Bt

> 0. (A.5)

By rearranging the terms in drifted Brownian motion, it results

− 1

σ
ln
X

Bt

= − 1

σ

(
r − 1

2
σ2

)
(T − t)−

(
W̃T − W̃t

)
. (A.6)

In order to apply the above theorem, the drift is identified as follows:

µ = − 1

σ

(
r − 1

2
σ2

)
. (A.7)

Because −W̃t and W̃t are Brownian motions defined under the same probability measure Q,

by replacing the above definitions of µ and k in relation (A.1),

Q (τ ≥ T ) = N (z1)−
(
X

Bt

) 2r
σ2
−1

N (z2) . (A.8)

If Pτ = X = Bt, then k = 0. By replacing this value in (A.1), Q (τ ≥ T ) = 0. Thus,

at the order submission time, the probability that the bid trading price hits X for the first

time under initial condition Pt = Bt is defined by

Q (τ ≥ T ) =


N (−z1)−

(
X
Bt

) 2r
σ2
−1

N (−z2) if X > Bt

0 if X = Bt

N (z1)−
(
X
Bt

) 2r
σ2
−1

N (z2) if X < Bt

. (A.9)

Under initial condition Pt = At, the probability of the first passage time is similarly

derived. At the limit order submission time t, the probability that the ask trading price hits

X for the first time is given by

Q (τ ≥ T ) =


N (−z3)−

(
X
At

) 2r
σ2
−1

N (−z4) if X > At

0 if X = At

N (z3)−
(
X
At

) 2r
σ2
−1

N (z4) if X < At

, (A.10)

where the term z3 is defined by z3 =
[
ln
(
At/X

)
+ (r − σ2/2) (T − t)

]
/σ
√
T − t and the

term z4 is defined by z4 =
[
ln
(
X/At

)
+ (r − σ2/2) (T − t)

]
/σ
√
T − t.
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Based on relations (A.9) and (A.10), the hitting time probability Qb (τ ≥ T ) is defined

considering all X ≤ Kb < At, while the hitting time probability Qa (τ ≥ T ) is defined

considering all X ≥ Ka > Bt. By letting T → ∞ and taking into account the function

sgn (r − σ2/2) and the functionsmin
(
X,Kb

)
andmax

(
X,Ka

)
, the probabilitiesQb (τ =∞)

and Qa (τ =∞) that the trading price will not hit the level X are derived.

B Proof of Proposition 2

The proof is based on the following theorem of Laplace transform for the first passage

time.

Theorem 2. Let W̃t be a Brownian motion under the probability measure Q. Let µ be

a real number. Define the drifted Brownian motion Yt = µt + W̃t and the hitting time

τ = min {t ≥ 0; Yt = k}, where k is a positive real number. Then,

EQ
[
e−λτ

]
= e

−k
(
−µ+
√
µ2+2λ

)
, (B.1)

where λ is a real number.

Shreve (2004) and Dana and Jeanblanc (2007) give an explicit proof of this theorem. Let

us consider that the trading price follows a geometric Brownian motion (4) with the initial

time t, under the initial condition Pt = Bt. The buy limit order is submitted simultaneously

with the transaction at the initial price. If Pτ = X > Bt, then ln
(
X/Bt

)
> 0. The positive

real parameter k and the drift µ are given by{
k = 1

σ
ln X

Bt
> 0

µ = 1
σ

(
r − 1

2
σ2
) . (B.2)

By applying the theorem, when λ = r, it results

EQ
[
e−r(τ−t)

]
= e

−k
(
−µ+
√
µ2+2r

)
=
Bt

Xb

. (B.3)

If Pτ = X < Bt, then ln
(
X/Bt

)
< 0. Now, k and µ are defined by{
k = − 1

σ
ln X

Bt
> 0

µ = − 1
σ

(
r − 1

2
σ2
) . (B.4)

Because −W̃t and W̃t are Brownian motions defined under the same probability measure Q,
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by applying the theorem, when λ = r, the expected discount factor is defined as

EQ
[
e−r(τ−t)

]
= e

−k
(
−µ+
√
µ2+2r

)
=

(
Bt

X

)− 2r
σ2

. (B.5)

Under the X = Bt condition (k = 0), by applying the Laplace transform theorem for the

first passage time, EQ
[
e−r(τ−t)

]
= 1. Thus, the expected discount factor is defined by

EQ
[
e−r(τ−t)

]
=

{
Bt
X

if X ≥ Bt(
Bt
X

)− 2r
σ2 if X < Bt

. (B.6)

Under the initial condition Pt = At, if Pτ = X < At, then ln
(
X/At

)
< 0.11 Now, k and

µ are defined by {
k = − 1

σ
ln X

At
> 0

µ = − 1
σ

(
r − 1

2
σ2
) . (B.7)

Henceforth, the expected discount factor is defined as

EQ
[
e−r(τ−t)

]
= e

−k
(
−µ+
√
µ2+2r

)
=

(
At

X

)− 2r
σ2

. (B.8)

In relation (5), the expected discount factor is replaced with the above results, in com-

pliance with the ordering relationship between X, Bt, At and Kb. and the trading cost

function is obtained.

C Proof of Proposition 4

From the first condition of the endogenous zero trading cost (19), by adding and sub-

tracting the two limits, the following system in Φt and Lt results |Φt − Lt| BtΦt
− |Φt − Lt|

(
At
Φt

)− 2r
σ2

= 0

|Φt − Lt| BtΦt
+ |Φt − Lt|

(
At
Φt

)− 2r
σ2

= 0
. (C.1)

The system can be rewritten as
|Φt − Lt|

[
Bt
Φt
−
(
At
Φt

)− 2r
σ2

]
= 0

|Φt − Lt|
[
Bt
Φt

+
(
At
Φt

)− 2r
σ2

]
= 0

. (C.2)

11Because X < Kb, the case Pτ = X > At is impossible as Kb < At.
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The first equation from the condition (C.2) leads to the following system of equations satisfied

by Φt  Φt − Lt = 0

Bt
Φt
−
(
At
Φt

)− 2r
σ2

= 0
. (C.3)

The system of equations has following solutions{
Φt = Lt

Φt = AγtB
1−γ
t

, (C.4)

where γ = r/ (r + σ2/2). The second equation from the condition (C.2) only implies that

Φt − Lt = 0 (C.5)

because
Bt

Φt

+

(
At
Φt

)− 2r
σ2

> 0. (C.6)

The above equation (C.5) should be satisfied by both solutions (C.4). When Φt = Lt the

equation is obviously verified. When Φt = AγB1−γ, it results that Lt = AγtB
1−γ
t .

Thus, the endogenous underlying value of stocks is given by

Φt = Lt = AγtB
1−γ
t , (C.7)

and the final result (20) is derived.

From the second condition of the endogenous zero trading cost (19) it simply results

that Φt = Lt.

D Proof of Proposition 5

The log endogenous underlying value of stocks is supposed to follow a random walk

Rφ
t = ln Φt − ln Φt−1 = εt, (D.1)

where E [εt] = 0 and E [εtεs] = 0 for all t 6= s. The equation (40) can be written as a system

of linear regressions {
Rt = ΨtS + εt

Rt = −ΨtS + εt
. (D.2)
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Using ordinary least squares estimation, Ŝ is given by

Ŝ = ±RtΨt

Ψ2
t

. (D.3)

In consequence, the positive solution is of interest (Ŝ > 0)

Ŝ =


RtΨt
Ψ2
t

if RtΨt > 0

−RtΨt
Ψ2
t

if RtΨt < 0
=

∣∣∣∣∣RtΨt

Ψ2
t

∣∣∣∣∣ . (D.4)
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TABLE I: Descriptive Statistics on Prices and Parameters

NYSE Euronext Paris
γ σ2 Φ−M Spread γ σ2 Φ−M Spread

Panel A. Statistics on Mean Values of Variables
Mean 0.73 0.01 0.00 0.01 0.15 0.03 -0.01 0.05
25th Perc. 0.68 0.01 0.00 0.01 0.10 0.02 -0.02 0.01
Median 0.73 0.01 0.00 0.01 0.15 0.03 -0.01 0.03
75th Perc. 0.77 0.02 0.00 0.01 0.18 0.04 -0.00 0.07
St. Dev. 0.06 0.00 0.00 0.00 0.04 0.01 0.01 0.05
Panel B. Statistics on Last Trading Day Values of Variables
Mean 0.77 0.01 0.00 0.01 0.19 0.02 -0.01 0.05
25th Perc. 0.73 0.00 0.00 0.01 0.14 0.01 -0.01 0.01
Median 0.79 0.01 0.00 0.01 0.19 0.02 -0.01 0.05
75th Perc. 0.83 0.01 0.00 0.02 0.24 0.03 -0.00 0.09
St. Dev. 0.07 0.00 0.00 0.02 0.06 0.01 0.01 0.05

The table reports descriptive statistics for several variables: the gamma parameter, the annualized variance,

the difference between the endogenous underlying value and the midquote, and the observed bid-ask spread at

the closing day. The variables are daily computed for all 30 component stocks of DJIA and for 30 component

stocks of CAC40.
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TABLE II: Revisited Liquidity-adjusted CAPM Estimations

NYSE Euronext Paris

Co. βφi E
[
Rφ
i

]
IPi UPi Co. βφi E

[
Rφ
i

]
IPi UPi

(t-stat) % % % (t-stat) % % %
KO 0.23 0.05 0.02 0.01 RI 0.44 0.14 0.09 0.04

(2.06) [55.51] [44.49] (5.00) [66.91] [33.09]
PG 0.27 0.04 0.01 0.02 VIE 0.45 0.13 0.08 0.04

(2.05) [34.84] [65.16] (2.96) [63.75] [36.25]
VZ 0.34 0.05 0.02 0.02 OR 0.52 0.12 0.06 0.05

(2.07) [42.26] [57.74] (6.29) [53.62] [46.38]
WMT 0.36 0.05 0.01 0.03 PUB 0.56 0.14 0.08 0.06

(2.47) [34.34] [65.66] (4.76) [59.06] [40.94]
MCD 0.47 0.05 0.01 0.04 SW 0.57 0.17 0.11 0.06

(3.94) [21.49] [78.51] (6.23) [65.52] [46.11]
JNJ 0.50 0.06 0.01 0.04 EI 0.68 0.15 0.08 0.07

(4.15) [22.03] [77.97] (4.37) [53.89] [46.11]
DIS 0.62 0.07 0.01 0.05 CA 0.70 0.12 0.04 0.07

(5.59) [17.65] [82.35] (6.17) [39.29] [60.71]
TRV 0.64 0.07 0.01 0.05 CAP 0.71 0.14 0.06 0.07

(5.04) [19.89] [80.11] (5.74) [46.34] [53.66]
NKE 0.72 0.08 0.01 0.06 ML 0.75 0.19 0.10 0.08

(3.89) [23.99] [76.01] (8.24) [57.44] [42.56]
AAPL 0.73 0.08 0.01 0.06 ORA 0.77 0.13 0.05 0.08

(4.83) [19.78] [80.22] (8.02) [39.35] [60.65]
CSCO 0.76 0.10 0.03 0.06 KER 0.79 0.19 0.10 0.08

(4.77) [34.74] [65.26] (5.87) [55.48] [44.52]
MMM 0.79 0.08 0.01 0.06 SAN 0.81 0.12 0.03 0.08

(8.61) [13.80] [86.20] (8.03) [31.29] [68.71]
MRK 0.81 0.09 0.01 0.07 ENGI 0.86 0.16 0.07 0.09

(4.74) [19.20] [80.80] (6.17) [43.23] [56.77]
MSFT 0.86 0.10 0.02 0.07 FP 0.88 0.12 0.03 0.09

(6.52) [22.79] [77.21] (11.42) [26.73] [73.27]
UTX 0.87 0.09 0.01 0.07 AC 0.89 0.18 0.08 0.09

(8.73) [14.13] [85.87] (7.73) [46.88] [53.12]
INTC 0.88 0.11 0.03 0.07 RNO 0.89 0.14 0.04 0.09

(5.55) [29.87] [70.13] (6.46) [34.14] [65.86]
PFE 0.88 0.11 0.03 0.07 AI 0.89 0.17 0.07 0.09

(5.76) [29.49] [70.51] (12.27) [43.93] [56.07]
V 0.89 0.09 0.01 0.07 MC 0.91 0.17 0.07 0.09

(6.56) [15.49] [84.51] (10.25) [42.61] [57.39]
Continued on next page
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Continued from previous page
HD 0.89 0.09 0.01 0.07 STM 0.96 0.24 0.14 0.10

(6.96) [13.49] [86.51] (4.61) [58.08] [41.92]
CVX 0.93 0.09 0.01 0.08 EN 1.01 0.18 0.07 0.10

(6.79) [13.00] [87.00] (9.54) [40.78] [59.22]
XOM 0.93 0.10 0.01 0.08 VIV 1.03 0.18 0.07 0.11

(7.77) [14.99] [85.01] (7.08) [39.01] [60.99]
GE 0.94 0.12 0.03 0.08 AIR 1.06 0.16 0.05 0.11

(7.91) [30.21] [69.79] (9.45) [30.42] [69.58]
UNH 0.97 0.10 0.01 0.08 FR 1.14 0.21 0.08 0.12

(5.87) [13.62] [86.38] (9.83) [42.04] [57.96]
IBM 1.06 0.10 0.01 0.09 LHN 1.16 0.27 0.14 0.12

(8.12) [10.54] [89.46] (8.71) [54.37] [45.63]
DWDP 1.18 0.12 0.01 0.10 UG 1.19 0.20 0.07 0.12

(7.89) [13.58] [86.42] (8.95) [37.05] [62.95]
BA 1.26 0.12 0.01 0.10 SGO 1.29 0.19 0.05 0.13

(9.70) [9.61] [90.39] (15.44) [28.62] [71.38]
AXP 1.29 0.13 0.01 0.11 CS 1.53 0.21 0.05 0.16

(7.46) [11.54] [88.46] (14.10) [24.13] [75.87]
JPM 1.85 0.17 0.01 0.15 ACA 1.72 0.24 0.06 0.18

(14.21) [8.29] [91.71] (13.19) [25.41] [74.59]
CAT 2.00 0.19 0.01 0.17 BNP 1.93 0.25 0.05 0.20

(10.57) [7.92] [92.08] (16.56) [19.66] [80.34]
GS 2.22 0.21 0.02 0.19 GLE 2.03 0.26 0.04 0.21

(13.14) [10.24] [89.76] (14.46) [18.46] [81.54]

All corporations are identified by their market symbol. The table exhibits the underlying beta coeffi cient.

The t-statistics are reported in parentheses. The critical values at 1% and 5% are 2.6063 and 1.9746,

respectively. The expected gross return, the illiquidity premium and the underlying risk premium are also

reported. The weight of the illiquidity premium (%) and the weight of the underlying risk premium (%) in

total risk premium are reported between square brackets.
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TABLE III: Bid-Ask Spread Estimates

NYSE Euronext Paris
Co. Ŝt 95% CI ŜAet ŜBet Co. Ŝt 95% CI ŜAet ŜBet
KO 0.06 [0.01; 0.10] 0.02 0.12 RI 0.22 [0.01; 0.43] 0.14 0.06

(0.02) {15.50} {84.50} (0.10) {69.65} {30.35}
PG 0.03 [0.00; 0.15] 0.00 0.03 VIE 0.05 [0.00; 0.11] 0.29 0.05

(0.06) {14.74} {85.26} (0.02) {84.00} {16.00}
VZ 0.04 [0.00; 0.15] 0.02 0.07 OR 0.25 [0.00; 0.56] 0.10 0.04

(0.05) {23.09} {76.91} (0.15) {71.53} {28.47}
WMT 0.15 [0.02; 0.29] 0.05 0.17 PUB 0.10 [0.00; 0.27] 0.12 0.03

(0.06) {24.55} {75.45} (0.08) {76.80} {23.20}
MCD 0.37 [0.11; 0.64] 0.05 0.24 SW 0.29 [0.05; 0.54] 0.19 0.08

(0.13) {17.57} {82.43} (0.12) {69.38} {30.62}
JNJ 0.07 [0.00; 0.30] 0.01 0.05 EI 0.18 [0.00; 0.48] 0.14 0.03

(0.11) {19.04} {80.96} (0.15) {82.10} {17.90}
DIS 0.04 [0.00; 0.24] 0.00 0.03 CA 0.00 [0.00; 0.07] 0.02 0.00

(0.09) {17.65} {82.35} (0.03) {79.16} {20.84}
TRV 0.05 [0.00; 0.23] 0.00 0.03 CAP 0.18 [0.00; 0.45] 0.17 0.04

(0.08) {18.15} {81.85} (0.13) {78.90} {21.10}
NKE 0.07 [0.00; 0.25] 0.04 0.08 ML 0.15 [0.00; 0.46] 0.11 0.03

(0.09) {33.31} {66.69} (0.15) {77.50} {22.50}
AAPL 0.22 [0.00; 0.55] 0.02 0.13 ORA 0.01 [0.00; 0.06] 0.10 0.03

(0.16) {17.69} {82.31} (0.02) {77.00} {23.00}
CSCO 0.04 [0.00; 0.14] 0.02 0.09 KER 1.04 [0.05; 2.03] 0.34 0.10

(0.05) {19.87} {80.13} (0.49) {76.53} {23.47}
MMM 0.24 [0.00; 0.52] 0.01 0.10 SAN 0.09 [0.00; 0.28] 0.09 0.02

(0.13) {15.34} {84.66} (0.09) {79.16} {20.84}
MRK 0.01 [0.00; 0.12] 0.00 0.01 ENGI 0.01 [0.00; 0.05] 0.09 0.02

(0.05) {29.42} {70.58} (0.02) {81.26} {18.74}
MSFT 0.09 [0.00; 0.21] 0.02 0.11 FP 0.01 [0.00; 0.12] 0.01 0.00

(0.06) {20.35} {79.65} (0.05) {73.66} {26.34}
UTX 0.15 [0.00; 0.33] 0.02 0.11 RNO 0.01 [0.00; 0.30] 0.01 0.00

(0.08) {18.98} {81.02} (0.14) {88.47} {11.53}
INTC 0.00 [0.00; 0.08] 0.00 0.01 AI 0.11 [0.00; 0.36] 0.09 0.03

(0.03) {27.57} {72.43} (0.12) {75.52} {24.48}
PFE 0.02 [0.00; 0.06] 0.01 0.04 AC 0.09 [0.00; 0.22] 0.21 0.05

(0.02) {27.26} {72.74} (0.06) {81.09} {18.91}
V 0.10 [0.00; 0.23] 0.02 0.09 MC 0.62 [0.06; 1.18] 0.24 0.07

(0.06) {17.99} {82.01} (0.28) {75.65} {24.35}
Continued on next page
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HD 0.15 [0.00; 0.40] 0.02 0.08 STM 0.00 [0.00; 0.07] 0.02 0.00

(0.12) {19.99} {80.01} (0.03) {91.74} {8.26}
CVX 0.12 [0.00; 0.38] 0.02 0.08 EN 0.02 [0.00; 0.14] 0.04 0.01

(0.13) {22.36} {77.64} (0.06) {80.68} {19.32}
XOM 0.03 [0.00; 0.18] 0.00 0.02 VIV 0.05 [0.00; 0.12] 0.26 0.06

(0.07) {22.74} {77.26} (0.03) {81.18} {18.82}
GE 0.03 [0.00; 0.10] 0.02 0.10 AIR 0.07 [0.00; 0.29] 0.08 0.01

(0.03) {18.63} {81.37} (0.10) {81.68} {18.32}
UNH 0.17 [0.00; 0.52] 0.02 0.07 FR 0.07 [0.00; 0.29] 0.10 0.02

(0.17) {26.97} {73.03} (0.11) {83.63} {16.37}
IBM 0.45 [0.05; 0.84] 0.05 0.19 LHN 0.01 [0.00; 0.22] 0.02 0.00

(0.19) {21.38} {78.62} (0.10) {83.55} {16.45}
DWDP 0.01 [0.00; 0.24] 0.00 0.00 UG 0.02 [0.00; 0.09] 0.12 0.01

(0.11) {30.00} {70.00} (0.03) {91.04} {8.96}
BA 0.08 [0.00; 0.49] 0.01 0.03 SGO 0.08 [0.00; 0.25] 0.15 0.04

(0.20) {25.22} {74.78} (0.08) {78.56} {21.44}
AXP 0.02 [0.00; 0.23] 0.00 0.02 CS 0.00 [0.00; 0.08] 0.02 0.00

(0.10) {25.21} {74.79} (0.04) {86.17} {13.83}
JPM 0.13 [0.00; 0.38] 0.04 0.10 ACA 0.03 [0.00; 0.09] 0.22 0.03

(0.12) {27.53} {72.47} (0.03) {88.05} {11.95}
CAT 0.15 [0.00; 0.54] 0.06 0.09 BNP 0.08 [0.00; 0.36] 0.13 0.01

(0.19) {37.94} {62.06} (0.14) {88.66} {11.34}
GS 0.56 [0.00; 1.43] 0.07 0.14 GLE 0.04 [0.00; 0.29] 0.09 0.00

(0.43) {35.12} {64.88} (0.12) {90.25} {9.75}

The table reports the estimation outputs of bid-ask spread, the effective spread at ask price (%) and the

effective spread at bid price (%) for 30 stocks traded on NYSE and for 30 stocks traded on Euronext Paris.

All corporations are identified by their market symbol. The standard error of the bid-ask spread estimate is

reported between round brackets. The weights (%) of estimated effective spreads in estimated quoted spread

are reported between braces. The 95% confidence interval for the estimated bid-ask spread is reported

between square brackets.
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