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Abstract

This study provides evidence on the common determinants for two prominent features of equity
market volatility: its persistence over time and its asymmetric dependence on past returns. We
show that daily volatility persistence increases with current returns, especially negative returns.
It decreases with current volatility. The estimated volatility persistence from the observed
variables is termed “conditional volatility persistence”. It provides a new economic link from
return to future volatility, and a more robust explanation for their asymmetric relationship. By
estimating the variations in the latent volatility persistence, our model significantly improves
volatility forecasts relative to recent advances in volatility models.
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“The ‘state of the world’ is a serially correlated thing; hence, we find ARCH.”
Diebold and Nerlove (1989)

1. Introduction

This study examines the determinants of short-run volatility persistence. Our empirical
design is motivated by several economic mechanisms linking the information process as well
as uninformed trading to volatility persistence. Our evidence supports the above view of
Diebold and Nerlove (1989): the overall “state of the world”, as measured by daily return and
volatility, is an important determinant of volatility persistence. Volatility persistence as a
function of return represents a new link from current return to future volatility. It sharply
reduces the direct return impact on future volatility and offers a new and more robust
explanation for asymmetric volatility. By estimating volatility persistence from the observed

market variables, our model significantly improves volatility forecasts.

Since the seminal studies by Engle (1982) and Bollerslev (1986), a vast literature has
emerged, extending GARCH-family models to capture a wide range of statistical features.
However, the literature on the economic origins of volatility persistence remains relatively
small and diverse. The most prominent is the mixture of distribution hypothesis (MDH) where
volatility persistence is driven by the persistence in information arrivals.! Other explanations
include the persistence in wealth distribution (Cabrales and Hoshi, 1996), investor learning
about uncertainty (e.g. Brock and LeBaron, 1996; Johnson, 2000; He, Li, and Wang, 2016),
information cost (de Fontnouvelle, 2000), time-varying risk aversion (McQueen and Vorkink,
2004), and heterogeneous trading frequencies (Xue and Gengay, 2012), among others. Since
the relevant variables are unobservable, empirical tests of these mechanisms are inherently
difficult and affected by how well the latent variable is estimated. The MDH as a mechanism
for volatility persistence finds mixed empirical support. Several studies, e.g. Laux and Ng
(1993), Andersen (1996), and He and Velu (2014), show that the latent information arrivals
can partially explain volatility persistence. Other studies, e.g. Lamoureux and Lastrapes (1994)
and Liesenfeld (1998), fail to find empirical support for the MDH. Liesenfeld (2001) and
Berger, Chaboud, and Hjalmarsson (2009) point to time-varying price sensitivity to new
information as an important source for volatility persistence. Lamoureux and Lastrapes (1990)

and Hamilton and Susmel (1994) show that persistence is lower after accounting for volatility

! The MDH was originally proposed to explain the non-Gaussian distribution of asset returns (Clark, 1973) and
the volatility-volume relationship (Tauchen and Pitts, 1983; Andersen, 1996). Diebold (1986) and Gallant,
Hsieh, and Tauchen (1991) were among the first to suggest the persistence of exogenous information flow as the
source for volatility persistence.



regime shifts. Patton and Sheppard (2015) show that persistence comes mostly from the “bad”
volatility associated with negative returns. Ning, Xu, and Wirjanto (2015) report that high
volatility is more persistent than low volatility. Bollerslev, Patton, and Quaedvlieg (2016, BPQ
hereafter) provide the first evidence on time-varying daily volatility persistence that is

inversely related to measurement errors in daily volatility.

Instead of focusing on one particular mechanism, we take a broader view on the origins
of volatility persistence and propose several mechanisms linking the overall market state to
volatility persistence. To illustrate the idea, let’s assume that daily volatility o follows a
simple dynamic process 6Z,; = o + Bo? + &, . In this study, we present evidence that
volatility persistence as measured by P is a function of market state s,. Using return and
volatility as proxies for the market state s, = (ry, 62), the dynamic process for 62 becomes
nonlinear: 6Z,; = a + B(ry, 02)0% + £.44. In section II, we argue that B(r, 07) increases with
r¢| but decreases with 2. The intuition is that large information shocks cause large |r;| and
high 0. They draw greater investor attention, causing further information search and
additional information arrivals. They may also trigger portfolio adjustments and herding
behaviour which often last several days. Such endogenous information flows and uninformed
trading increase the dependence of 6Z,; on 6%, i.e. B(r, 62). Negative returns tend to generate
greater investor reaction and higher B(r, 62). On the other hand, volatility is often viewed as
an information flow measure (Ross, 1989; Hasbrouck, 1995; Andersen, 1996). Given an
information event, a high 67 implies more information being priced on a trading day, less
unpriced information and less correlation between 62, ; and o2, i.e. B(r(, 62). The economic
mechanisms linking return and volatility to volatility persistence are further elaborated in
Section II. To the degree that return and volatility reflect the overall “state of the market”, our
approach echoes the view of Diebold and Nerlove (1989) in the epigraph. Volatility persistence
as a function of market state variables, e.g. B(ry, 02), is termed the conditional volatility

persistence (CVP), akin to the conditional variance in the GARCH-family models.

Since the proposed mechanisms for CVP are strongest at daily frequency, our empirical
analyses focus on daily persistence of realized variance (RV). We modify the heterogeneous
autoregressive (HAR) model of Corsi (2009) to allow RV persistence to vary with return and
RV. The estimated HAR CVP model shows that daily RV persistence changes with the size
and sign of daily returns and the effect is economically large. For the S&P 500 ETF (ticker
SPY), a +1% daily return implies an increase in volatility persistence by 14 to 16% of the

average daily RV persistence, and a -1% daily return implies an increase in volatility



persistence by 48 to 54%! The percentages are 13% and 29% respectively for large stocks in
the S&P 100 index. The asymmetric return impact on volatility persistence remains highly
significant after controlling the asymmetric effects of semi-variances in Patton and Sheppard
(2015) and the impact of measurement errors in BPQ (2016). We find a small but significant
negative impact from RV to its persistence. Overall the evidence strongly supports CVP and
the proposed mechanisms for volatility persistence. Return and RV remain significant
determinants of volatility persistence in models with non-linear CVP specifications, additional

market-state variables, and alternative measures for volatility persistence.

The strong return impact on RV persistence documented here has not been formally
studied in the literature. In a HAR model with semi-variances, Patton and Sheppard (2015)
estimate the impact of RVl <o) on RVw1 where Iy is an indicator variable. They report
positive and highly significant coefficients of RV, <¢), which is consistent with our finding
of negative returns associated with high volatility persistence. However, Patton and Sheppard
(2015) term RV(I(, <oy as “a simple leverage effect variable” unrelated to volatility persistence.
Palandri (2015) examines the persistence of positive and negative semi-variances. He reports
sharp differences in the half lives of positive and negative semi-variances when semi-variances
are estimated from GARCH-based volatility models. However, the differences largely

disappear when semi-variances are calculated from intraday returns.

Evidence linking volatility level with its persistence is limited. Ning, Xu, and Wirjanto
(2015) report that daily RV has greater right-tail dependence than left-tail dependence, i.e. high
RV levels have greater persistence. Their study does not consider the effect of return on RV
persistence. We emphasize the differential impact of return and RV on RV persistence. Our
CVP combines a large positive effect from return size with a small negative effect from RV.
Daily CVP is indeed positively correlated with RV (Table 3). BPQ (2016) document a negative
impact on RV persistence from RV measurement errors captured by realized quarticity (RQ).
Since RQ and RV are highly correlated (Table 1), their result is consistent with our finding of
a negative impact from RV to RV persistence. However, the underlying mechanisms are very
different. They argue that RQ reduces RV’s information content and its impact on future RV.
In their model, high RV periods have high RQ and low RV persistence (see the example in
their Figure 2). We emphasize the impact of information shocks and price discovery on RV
persistence. By conditioning RV persistence on daily returns, daily CVP is high in high RV
periods, e.g. during the global financial crisis of 2008-09.



Conditional volatility persistence provides a new link from return to future volatility.
Based on Shapley R?, this new link has much higher explanatory power than the direct impact
from return to future volatility. It offers a new explanation for asymmetric volatility, in addition
to financial leverage (Black, 1976), volatility feedback (Pindyck, 1984), and herding and
contrarian trading (Avramov, Chordia, and Goyal, 2006). CVP implies an asymmetric return
impact on volatility persistence: negative returns increase volatility persistence more than
positive returns. Ceteris paribus, higher persistence leads to higher volatility tomorrow. Thus
CVP provides an alternative mechanism for the asymmetric return impact on future volatility.
In section II, we show that in the well-known Glosten, Jagannathan, and Runkle (1993, GJR
hereafter) model, asymmetric volatility comes entirely from asymmetric volatility persistence.
In section V, we demonstrate that CVP sharply reduces the asymmetry in RV attributed to the
direct return impact, by 57 to 67% for SPY and 46 to 58% for stocks. Overall the evidence
indicates that at daily frequency, CVP is the dominant link from return to future volatility and

the dominant source for volatility asymmetry.

By estimating the dependence of future RV on today’s RV, our HAR CVP model
significantly improves daily volatility forecasts relative to the HARSV model of Patton and
Sheppard (2015) and the HARQ model of BPQ (2016). Based on four loss functions, the
median loss values of HAR CVP are § to 28% lower than HARQ and HARSV for SPY and
10 to 16% lower for individual stocks. The average loss values of HAR CVP are often more
than 40% lower than the competing models. DM tests show the loss reductions are highly
significant. HAR_CVP’s superior performance is robust to most market conditions. It is even
stronger on days with large positive or negative returns, e.g. during the global financial crisis.
It is also stronger in periods (and for stocks) with high CVP variations. These findings indicate
that the superior forecast accuracy of HAR CVP comes from its ability to capture large
variations in the latent daily volatility persistence. HAR and HARSV have constant volatility
persistence for the rolling forecast windows and HARQ adjusts volatility persistence only to
realized quarticity (RQ). We find mixed evidence on whether a high CVP value itself is the

source for HAR CVP’s superior forecast accuracy.

This paper has the following sections. Section II outlines the economic mechanisms in
which daily volatility persistence increases with the size of daily returns and decreases with
volatility level. They motivate the empirical specification for conditional volatility persistence.
In section III, we review and modify recent models of RV dynamics to allow conditional

persistence. Section [V presents empirical evidence on the determinants and the characteristics



of daily volatility persistence, together with a range of robustness checks. Section V shows that
CVP offers an alternative and robust mechanism for the asymmetric impact of return on future
volatility. Section VI compares volatility forecasts of models with constant or conditional

volatility persistence. We conclude in Section VII.

IL. Return, Volatility, Volatility Persistence, and Asymmetric Volatility

This section first explores the economic links from daily return and volatility to
volatility persistence. The MDH is taken as the baseline case: the clustering of periodic macro
news releases and company disclosures, is an important source for volatility persistence. We
argue heuristically additional economic mechanisms linking daily return and volatility to
volatility persistence. Using the GJR model, we show that the well-known asymmetric
volatility can be the results of an asymmetric impact from return to volatility persistence. The

GJR model is in fact a model of asymmetric volatility persistence.

Return and volatility persistence

There are several economic mechanisms linking daily return to volatility persistence.
The first mechanism is based on the observation that daily information arrivals are partially
endogenous. We define correlated information as pieces of information relating to the same
information event. A large return [ri| reflects the net price impact of an information event on
day t. It draws greater investor and media attention, triggering further information search and
the arrivals of correlated information on day t+1.2 These correlated information arrivals
increase the correlation between RViand RV+1. When the information event is ambiguous, one
would expect more information searches and more subsequent arrivals of correlated
information. Boudoukh, et al. (2015) examine volatility persistence after large daily price
changes, e.g. || above one standard deviation. They show that volatility does not persist when
its source can be identified; volatility is persistent only when it is driven by unidentified and
complex events. Dimpfl and Jank (2016) report that large price swings drive more Google
searches on stocks, leading to higher volatility on the next day. Economic intuition and
empirical evidence suggest that following large and complex information shocks, investors

increase their effort in searching for information and explanations. The arrivals of correlated

2 Evidence on investor attention and endogenous information arrivals can be found in Cao, Coval, Hirshleifer
(2002), Barber and Odean (2008), Hou, Peng, and Xiong (2009), and Andrei and Hasler (2015) among others.
Recent studies link volatility to internet search activities, e.g. Da, Engelberg, and Gao (2011), Drake, Roulstone,
and Thornock (2012), and Dimpfl and Jank (2016). Such information search increases short-run information
arrivals. It is different from long-run information production, e.g. Veldkamp (2005, 2006) and Brockman,
Liebengerg, and Schutte (2010). It also differs from price discovery through trading.



information increase volatility persistence. On the other hand, a small |r¢| is unlikely to motivate
investors to seek further information; volatility persistence is driven by the persistence in

exogenous information arrivals as in the MDH.

There are non-information channels linking large returns to high volatility persistence.
For example, large returns can trigger portfolio adjustments by passive investors. Since
investors cannot perfectly separate informed and uninformed trading, such non-information
trading may increase volatility and volatility persistence. Large returns may also cause herding
trades, e.g. momentum traders trading in one direction and contrarian traders trading in the
opposite direction. Kremer and Nautz (2013a and 2013b) find strong evidence of short-term
institutional herding from daily data, with lagged daily return as a significant determinant for
institutional herding. Persistence in herding is likely to increase volatility persistence. In
addition, large returns may trigger long-run investors to react to short-run information shocks.
As illustrated by Xue and Gengay (2012), the interaction of short and long-run investors can

lead to volatility persistence.

We expect large negative rt to increase volatility persistence more than large positive .
Investors tend to have strong loss aversion (Kahneman and Tversky, 1979). They pay more
attention to bad news, resulting in greater endogenous information search and correlated
information arrivals after large negative r.. Andrei and Hasler (2015) provide theoretical and
empirical evidence that greater investor attention is a source for stock volatility especially
during bad times. Dzielinski, Rieger, and Talpsepp (2018) show that investor attention is a
source for the asymmetric return-volatility relation. Consistent with greater investor attention
to negative returns, Patton and Sheppard (2015) show that future volatility depends more on

today’s negative semi-variance that reflects bad news.

Volatility level and its persistence

The economic link between volatility level and persistence is centred on price discovery.
Andersen (1996) defines the price discovery process as “private information arrivals induce a
dynamic learning process that results in prices fully revealing the content of the private
information through the sequence of trades and transaction prices.” In his MDH model, “each
informational arrival induces a price discovery phrase followed by an equilibrium phrase.”
While investors acquire information through information search discussed above, price
discovery is the trading process incorporating new information into a new equilibrium price.
Greater price discovery implies that more information is being priced and less correlated

information arrivals on the next day. Therefore, price discovery reduces volatility persistence.



Hasbrouck (1993) develops a widely used measure for price discovery. The observed
return (rr) is decomposed into a random-walk component (m¢) capturing the price impact of
information arrivals, and a serially correlated noise (nt) reflecting the effects of microstructure
frictions, transaction costs, behavioural biases, etc. Price discovery is measured by var(mt) and
pricing error is measured by var(n;).> Based on a sample of 1361 NYSE stocks, Boehmer and
Wu (2013) report the average var(n,)'/?var(r;)~%/? to be 0.095 with a median of 0.062.
Based on 50 stocks in the S&P 500 index, Ozturk, van der Wel, and van Dijk (2017) report that
var(my) is about 20 times larger than var(nt). These results suggest that var(rt) is dominated by,
thus, a close proxy for var(mt). Since price discovery reduces volatility persistence, we expect

a negative relationship between var(rt) and its persistence.

The proposed inverse relationship between volatility level and its persistence appears
to contradict the common perceptions that “volatility drives volatility”, e.g. high-volatility days
tend to be followed by high volatilities. Under the proposed mechanisms, persistence is due to
large swings in daily return rt, not high RVt itself. When RVt is high, the market is experiencing
an active price discovery period. If the resulting rt is small, it indicates that investors’ prior
expectation has been reaffirmed; there is less information search and less endogenous
information arrivals on day t+1. Therefore, high RV: and small rt lead to low volatility
persistence. Empirically the uncertainty associated with a large information shock, as
approximated by rt, is usually not resolved by daily price discovery approximated by RV:. Our
estimated daily CVP: is indeed positively correlated with RV (Table 3).

Conditional Volatility Persistence

The above discussion implies that (1) daily volatility persistence increases with daily
return size; (2) negative returns increase volatility persistence more than positive returns; and
(3) daily volatility level reduces daily volatility persistence. In this study, we test the above

implications using a simple linear specification:
CVPi= Bo+ Bprre| + Prre + PrvR Vit

Let rg = rd(y, <oy and r{” = 1, 50). An equivalent specification is CVPe = Bo + (Br-Pir)ry +
(B+PB)ry + PrvR Vi The above implications become Br> 0, B:< 0, Prv < 0, and |B: - B >
BrtPir> 0. The return-based component of CVP is termed the asymmetric volatility persistence

(AsyVP). It can be a source for asymmetric volatility as shown below and in section V. Return

3 Various extensions to the Hasbrouck model have been developed, e.g. De Jong and Schotman (2010), Yan and
Zivot (2010), Wang and Yang (2011), and Putnins (2013).
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and volatility are the outcomes of the overall trading process, e.g. the information arrivals and
uninformed trading. The above CVP improves upon the MDH where volatility persistence is

determined only by the number of information arrivals.

We note that CVP is economically and statistically different from models of volatility
regime switching, where regimes are based on volatility levels and persistence is constant
within each regime. It also differs from regressions with time-varying coefficients where the
determinants for time-varying coefficients are unknown. The proposed mechanisms work
better for short-run persistence than for long-run persistence. Large daily returns are better
proxies for information shocks and have greater effect on investor attention than large weekly
or monthly return. Therefore, endogenous information arrivals and non-information trading are
likely to have a strong effect on daily volatility persistence. Long-run persistence may be driven
by other mechanisms.* Recent studies by Patton and Sheppard (2015) and BPQ (2016) also

focus on daily persistence while controlling long-run dependence.

Asymmetric Volatility Persistence and Asymmetric Volatility

As discussed above, negative returns should increase volatility persistence more than
positive returns. Ceteris paribus, higher persistence leads to higher future volatility. Thus the
asymmetric volatility persistence may lead to asymmetric volatility, without invoking financial

leverage or volatility feedback.
We illustrate this mechanism using the GJR model for volatility dynamics. Assuming
E(rt) = 0, the variance equation of the GJR model is

021 = @ + a0} + (B + Mrp<o) )17

Since E(r?|$w1) = 62, where .1 is the information set at t-1, A can be interpreted as the

incremental effect of 6 on 6%,; when 1t < 0. The variance equation can be written as

021 = 0+ (a4 B+ Mg<0))08 + (B + Mr<0) )t

where g, = r? — o2. Here volatility persistence is time-varying and asymmetric. Since return
is the only conditioning variable, CVPt= AsyVPi= o+ B + Ay <¢). Since E(g¢|&i-1)= 0, return
impact on oZ,; comes from AsyVP: E(0?,[r>0,5w.1) < E(0%,,[r<0,5t1) is caused by low

persistence a+f when 1. > 0 versus high persistence a+p+A when i < 0.° Therefore, in the GJR

4 Liesenfeld (2001) shows that “the short-run volatility dynamics are directed by the information arrival process,
whereas the long-run dynamics are associated with the sensitivity to new information.”

5 Metaphorically the flow of water depends not only on the water level in the tank (0?) but also on the time-
varying size of the pipe (a+f or a+p+1).



model, asymmetric volatility comes entirely from AsyVP. Many other GARCH models have

the same property, i.e. volatility persistence depends on recent returns.

The significance of the alternative representation of the GJR model is to reveal CVP as
a potential new source for asymmetric volatility. Neither the original GJR study nor subsequent
studies on asymmetric volatility have explored the modelling and implications of time-varying
volatility persistence. However, the empirical success of the GJR model lends support to the
alternative representation and interpretation. In section V, we further explore the degree of
asymmetry in RV persistence and present evidence that CVP sharply reduces the asymmetry

in the news impact curve of Engle and Ng (1993) and Chen and Ghysels (2010).

III.  Modelling Volatility Dynamics

Investors in financial markets have different investment horizons: high-frequency
traders often reverse their positions within a few seconds or shorter while pension funds
typically hold their positions for several months if not longer. Investors trade on different
information (e.g. order flow versus fundamental value) at different frequencies (e.g. intraday
versus quarterly), therefore have different impact on future volatility. Miiller, et al. (1997)
suggests a heterogeneous ARCH model to capture the impact from investors trading at different
frequencies. Corsi (2009) argues that investors can be broadly classified as trading at daily,
weekly, and monthly frequencies. He proposes a heterogeneous autoregressive (HAR) model

that allows differential impact from three volatility components: the daily RV, the average
weekly RVyw = %Zf‘:o RV;_; and the average monthly RV, = % 21 RV,_;. Future RV
follows an autoregressive structure of the three volatility components:

(1) RViyy = a+ BpRV, + BWRVt,W + BMRVt,M + €41

The coefficients, Bp, Bw, and By measure the step-wise dependence of RVi+1 on short and
long-run volatility. In spite of its simplicity, the HAR model can generate long memory in
volatility and has good out-of-sample forecast performance. Corsi (2009), Craioveanu and
Hillebrand (2012), and Audrino and Knaus (2016) show that it has equal or better forecasts
than the fractionally integrated ARMA model, models with flexible lag structures, and models
selected by the lasso-based procedures. It is closely related to the mixed data sampling (MIDAS)
models of Ghysels, Santa-Clara, and Valkanov (2006) and Ghysels, Sinko, and Valkanov
(2007), and has better volatility forecasts than a freely parameterized MIDAS model (Clements,
Galvao, and Kim, 2008). According to Bollerslev, et al. (2017), it has become ‘““a benchmark

in the financial econometrics literature for judging other RV-based forecasting procedures.”

9



The asymmetric relationship between asset return and volatility has been extensively
documented. Corsi and Reno (2012) demonstrate that the return impact on future volatility is
highly persistent and propose a HAR structure for returns to capture their heterogeneous effects.
The lagged weekly (r.w) and monthly (rtm) returns are similarly defined as RViw and RViwm.

The heterogeneous return impact is estimated in a modified HAR model:
(2) RVit1 = a+ BpRVy + BwRVyw + BMRVem + Opre + Owrew + Ourem + €e41

We take the model in (2) as our baseline model for RV dynamics and further calibrate daily

RV persistence (Bp) in terms of the observed market state variables below.

Empirical evidence on time-varying RV persistence as captured by fBp in (2) remains
limited. Forsberg and Ghysels (2007) allow Bp to vary with a dummy for volatility jumps but
report no change in RV dynamics. Forsberg and Ghysels (2007) and BPQ (2016) show
theoretically that the autocorrelation of RVs is inversely related to integrated quarticity, which

is the variance of measurement errors of daily RV+. Integrated quarticity can be consistently

estimated by realized quarticity defined as RQ: = 2 o ri‘ft. BPQ (2016) use a simple linear

function of RQi/ % to capture the effect of measurement errors on RV persistence:
1/2
3) RVeys = o+ (Bo + BroRQy IRV: + BwRVew + BuRVow + €04t

The estimated Brq is negative and highly significant. We denote the implied RV persistence

as CVPtRQ =By + BRQRQ? 2. The forecasting performance of the model in (3) surpasses

several benchmark models. BPQ (2016, page 9) attribute the superior performance to “the
model’s ability to place a larger weight on the lagged daily RV on days when RV is measured
relatively accurately (RQ is low), and to reduce the weight on days when RV is measured
relatively poorly (RQ is high).” Their evidence indicates that the time-varying “weight on the
lagged daily RV” can better capture the true RV persistence.

The current study explores economic determinants of RV persistence. Section II
suggests that persistence increases with returns, especially negative returns, and decreases with
RV. A linear representation of the above implications is CVPt= o+ Bp|ri| + Bt + BrvR Vi. The
CVP coefficients are estimated from the modified HAR model:

4) RViy =a+ (Bo + Blrllrtl + Brre + BrvRVORV, + @Z; + €44

where Z: = (RViw, RViw, 11, 1w, 1eMm)’ captures the dependence at longer horizons as well as

the heterogeneous return impact, and ¢ = (Bw, Bm, Op, Ow, Om). As in BPQ (2016), the lagged

10



variables are non-overlapping, e.g. RV, w = i £ RV, RV y = %ZQS RV,_;, and similarly
for r,w and rem. The model in (4) is termed the HAR CVP model and is estimated in Section
IV. The mechanism in Section II is supported if the CVP coefficients are significant with the
expected signs. The HAR _CVP model also provides a direct comparison between two channels
linking rt to RVi+1: the new CVP effect via B and B, and the “leverage” effect via Z: and its

coefficient ¢. The comparison is carried out in Section V.

IV.  Evidence on Conditional Volatility Persistence

This section presents the empirical results of the HAR CVP model in (4). The impact
of CVP on RV dynamics is measured through its coefficients and its explanatory power. We
also explore the empirical characteristics of the estimated daily CVP. We conduct a range of
robustness checks, including alternative models, an alternative measure for RV persistence,
and additional conditioning variables. The evidence indicates that CVP has a strong and robust

impact on future RV and explain a large portion of RV variations over time.

(i) Sample and Summary Statistics

Our analyses are based on the S&P 500 ETF (ticker SPY) and the S&P 100 index
constituent stocks. Our sample for SPY is from 2 January 2000 to 30 May 2014. From the
S&P 100 constituent stocks, we remove seven stocks with less than five years of intraday data
and six stocks with share prices below $5 during the sample period. We find that in 2000 and
2001, several stock-months have less than 15 days of intraday data. Our sample of 87 stocks
starts on or after 2 January 2002 and ends on 31 December 2014.

Intraday 5-minute data are extracted from the Thomson Reuters Tick History (TRTH)
database, including the first, the high, the low, and the last prices, as well as the volume and
the number of trades for each 5-minute interval. Data outside the NYSE trading hours are
removed. We also remove short trading days, e.g. the day before July 4 and Christmas, and
days with less than 3 hours of data possibly due to missing data or slow trading. To filter out
possible data errors, we apply a filter similar to those of Barndorff-Nielsen, et al. (2009). For
each 5-minute return, we calculate the standard deviation of the remaining returns on the same
day. A return is removed if it is outside 6 standard deviations from zero. The filter removes
246 intervals for SPY, representing 0.088% of the 5-minute sample. It has no effect on 96.3%
of the SPY trading days. Of the remaining 3.7% trading days, 2.9% have unfiltered realized
variance larger than the filtered ones by 50% or more. Therefore, the filter removes extremely

large returns relative to the rest of the trading day.
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Our measure for daily volatility is realized variance (RV) based on 5-minute returns.
This is a common practice as surveyed by Hansen and Lunde (2006) and remains popular in
recent studies.® Let riy be the log-return in interval i and n (=78) be the number of intraday
intervals on a trading day t. RVt is calculated as )i rft. Zhang, Mykland, and Ait-Sahalia
(2005) propose to use sub-grids to improve RV precision. Patton and Sheppard (2015) uses
ten grids of 5-minute returns to calculate ten RVs and take the average as the daily RV. We
use the average RV from two grids of 5-minute returns from the first and the last price in each
5-minute interval. To compare with models proposed by Patton and Sheppard (2015) and BPQ

(2016), we also calculate the negative semi-variance NSVi= {1 riz,tl(ri .<0)» the positive semi-
variance PSVi= YL, 1l (y, >0y, and the realized quarticity RQu = EZ{LI riy. As arobustness

check, we also use RV measures based on subsampling and realized kernel that reduce the
impact of microstructure noise. For SPY, we obtain daily RV and semi-variances from the
Oxford-Man Institute (OMI) realized library: the RVOM from 5-minute returns with 1-minute
subsampling and the corresponding semi-variance, and the realized kernel RKM after
removing microstructure noise. RV measures from OMI have superscript OM while RV based

on TRTH data has no superscript.

Panel A of Table 1 presents summary statistics on our return and RV measures, and
Panel B reports their correlations. For stocks, the summary statistics are calculated for each
stock and then are averaged across stocks. Since returns are calculated in percentage, the
realized variance is inflated by 10*. This also appears to be the case for OMI data. The mean,
median, and standard deviation of our RV are broadly similar to those of RVO™. Our RV has
lower skewness and kurtosis than RVOM. Both our RV and RVOM have lower mean, median,
and standard deviation than the realized kernel RK®M. To facilitate replication, we use the OM
daily returns which are publicly available. They are very similar to the daily returns from
DataStream with a correlation coefficient of 0.97. Not surprisingly, stocks have higher RV
than SPY, with an average of 2.50 and standard deviation 5.60. Daily correlations in Panel B
are broadly consistent with the literature. Daily returns have negative correlations with different
RV measures except PSV. The realized variances and semi-variances have strong positive

correlations ranging from 0.85 to 0.97.

6 E.g. Patton and Ramadorai (2013), Amaya, Christoffersen, Jacobs, and Vasquez (2016), BPQ (2016),
Bollerslev, Li, and Zhao (2017).
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Table 1: Data Summary

For SPY, return is the daily return from the Oxford-Man Institute (OMI) Realized Library. RV
is the Realized Variance based on Thomson-Reuters data. NSV and PSV are the negative and
positive semi-variances. RQ is the Realized Quarticity. RVOM is the Realized Variance from
the OMI Realized Library. NSVOM and PSVOM are the negative and positive semi-variances.
RK®M is the Realized Kernel from the OMI Realized Library. All variances and RQ'? are
scaled by 10*. LB5 is the Ljung-Box statistic for 5 lags. For stocks, all variables are based on
the Thomson-Reuters data. Summary statistics and correlations are calculated for each stock
and then averaged across stocks.

Panel A: Summary statistics

Mean Median St Dev  Skew Kurt LB5
SPY
RV 1.13 0.551 2.35 10.6 185 7074
NSV 0.558 0.268 1.09 8.04 98 8028
PSV 0.570 0.261 1.34 13.6 306 4909
RQ'? 1.29 0.625 2.88 13.2 291 4872
Return 0.007 0.064 125 -0.152  10.2 41.2
RVOM 1.10 0.537 2.49 14.8 402 5946
NSVOM 0.551 0.256 1.25 13.4 329 5671
pPSVOM 0.551 0.255 1.30 15.3 415 4960
RKOM 1.25 0.615 2.75 14.2 378 6032
Stocks
Return 0.018 0.037 2.31 -5.37 247 19.8
RV 2.50 1.21 5.60 9.64 172 6065
NSV 1.24 0.585 2.83 9.63 174 5665
PSV 1.26 0.593 2.93 10.2 185 4976
RQ'? 3.14 1.44 7.83 10.8 220 4631
Panel B: Correlations
Retun RV~ NSV PSV  RQ"? RVOM NSVOM pSyoM
SPY
RV -0.067
NSV -0.224  0.963
PSV 0.065 0976 0.881
RQ'? -0.053 0976 0.929  0.961
RVOM -0.066 0.957 0.906 0.946 0.940
NSVOM 1 0249 0926 0920 0.881 0.910 0.973
pPSVOM 0.114 0937 0.846 0961 0.921 0975  0.898
RKOM -0.056 0944 0.893  0.935 0.927 0.995 0967 0972
Stocks
RV -0.058
NSV -0.171  0.966
PSV 0.052 0970 0.875
RQ!? -0.058 0.975 0.947  0.940
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(ii) Estimation of the HAR Models

Patton and Sheppard (2015) point out that because the dependent variable in a HAR
model is a volatility measure, OLS estimates tend to overweigh periods with high volatility and
under-weigh periods with low volatility. Therefore, OLS residuals have heteroskedasticity
related to the level of RV. We follow Patton and Sheppard (2015) and use the weighted least
squares (WLS) to overcome this problem. For SPY, inference is based on the Newey-West
robust covariance with automatic lag selection using Bartlett kernel. For individual stocks, the

reported coefficients are the cross-sectional averages. Following Hameed, Kang, and

Viswanathan (2010), the standard error of the k™ average coefficient Ek is given by

) StDev (Ek) = StDev (%Zyﬂ Bi,k) = % \/ PRAEP IR \/ Var(B; ) Var(B;x)

where Var(f%i,k) is based on the Newey-West standard error of the regression of stock i and @;;

is the correlation between the regression residuals for stocks i and j.

(iii) Empirical Evidence on CVP

The HAR and HAR_CVP Models for SPY

Table 2 reports the estimation results of the baseline HAR model in (2) and the
HAR CVP model in (4). Panels A and B report the results for SPY and individual stocks
respectively. We focus first on SPY and discuss the results for individual stocks shortly below.
The realized variance measures for SPY are RV: based on TRTH data, RV and RKPM from
the OMI realized library. The baseline HAR model restricts By = Br = Brv = 0. As in earlier
studies, the lagged weekly and monthly RVs and all lagged returns are significant at 1% or 5%,
consistent with high volatility persistence and heterogeneous effects of returns. Overall the RV

dynamics based on RV, RVOM, and RKM are qualitatively similar.

The HAR CVP model results confirm that By > 0, Br < 0, and Brv < 0, supporting the
mechanisms and hypotheses on the determinants of CVP in Section II. The F test resoundingly
rejects B = Pr=Prv=0. The return size effect B is numerically larger and statistically stronger
than the return sign effect Br. The signs of the coefficients of positive and negative returns,
Bir+Pr > 0 and Br - By < 0, indicate that they both increase RV persistence with negative returns
having greater effects, i.e. |Br - Bi| > Br + B > 0. For RVy, CVPr = 0.222 + 0.108|rf — 0.0572r
— 0.0043RVt: a -1% return increases CVP by (Br-Bi)(-1) = 0.165 and a +1% return increases
CVP by Bi+pr = 0.051, holding RV: fixed. Over the sample period, the average of daily CVP;
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is 0.308 (Table 3). Ceteris paribus, a -1% return increases CVP by 54% (=0.165/0.308) relative
to its average and a 1% return increases CVP by 16% (=0.051/0.308). The numbers are 50%
and 14% for RVOM, and 48% and 15% for RK®™. Given the daily return standard deviation of
1.25% (Table 1 Panel A), days with |rf > 1% and large changes in volatility persistence occur
quite often. The impact of RV on CVP is relatively small. Ceteris paribus, a one-standard
deviation (Table 1) increase in RV reduces CVP by -0.0101 which is -3.3% of the average
CVP. The corresponding values are -2.2% for RVOM and -1.9% for RKOM.

The model diagnostics show remarkable improvements of fit for HAR_CVP. The R?
increases by 11.2% for both RV: (0.729-0.617) and RV°M (0.666-0.554), and 9.6% for RKOM
(0.654-0.558)! The R?s for HAR_CVP are 17 to 20% higher than those for HAR. The Akaike
information criteria (AIC) for HAR CVP are 20 to 46% lower than those for HAR. The Ljung-
Box statistics for residuals at 5 lags (LBS5) are 64 to 78% lower for HAR _CVP.

The HAR and HAR_CVP Models for Individual Stocks

Panel B of Table 2 reports the results for individual stocks. We report in Appendix A
that in the baseline HAR model, stock returns are not significant when the S&P 500 index
returns are included. In the HAR CVP model, the S&P 500 returns have larger coefficients
and greater significance than stock returns.” Therefore, in the analyses of individual stocks,
daily returns are the S&P 500 index returns. We report the average coefficients across stocks
with t statistics based on the Hameed, Kang, and Viswanathan (2010) standard error in (5).
Inference for individual stock regressions is based on Newey-West robust covariance. We
summarize how the model performs for individual stocks, with %(t<-1.96) and %(t=1.96)
being the percentages of stocks with significant coefficients at 5%.

The results for individual stocks are qualitatively the same as those for SPY. The cross-
stock average coefficients By > 0, Br < 0, and Brv < 0, supporting the CVP mechanisms in
Section II. The F test rejects Br= Pr= Prv = 0. At 5% level of significance, 77% of the stocks
have significant B > 0, 47% have significant : < 0, and 90% have significant frv < 0. The
cross-sectional median coefficients are similar to the averages. The return effect on CVP is
large: across all stocks, a +1% (-1%) return increases RV persistence by 0.0413 (0.0903), which
is 13% (29%) of the average CVP (0.434). The mean and median Bgy are larger than those for
SPY. Given the standard deviation of 5.60 for stock RVs, a one-standard deviation increase in

stock RVt reduces CVP by -0.0336 which is -10.9% of the average CVP.

7 Vlastakis and Markellos (2012) show that firm-level RV increases with demand for market-related information
but is largely unrelated to demand for firm-specific information.

15



Table 2: The HAR and HAR_CVP Models

This table reports the estimation of the following regression:
RViyg = a+ (Bo + Blrllrtl + B,re + BrRvRVO)RV, + BwRVew + BMRVem + Opre + Owrew + Omrem + €c4q

The variables are the same as in Table 1. AIC is the Akaike information criteria. F is the F statistic for By = B = Bry = 0. LB5 is the Ljung-
Box statistic for residuals at 5 lags. In Panel A, the t statistics are based on the Newey—West robust covariance with Bartlett kernel. In Panel B,
the reported t statistics are based on the standard error for the average coefficient proposed by Hameed, Kang, and Viswanathan (2010). The t
statistics for individual stock regressions are based on the Newey—West robust covariance with Bartlett kernel. %(t<-1.96) and %(t>1.96) are
the percentage of stocks with significant coefficients at 5%. The asterisks ***, **_ * indicate significance at 1%, 5%, and 10% respectively. In
Panel C, A% is the percentage change of Shapley R? relative to the standard HAR model with Biry = Br =Brv = 0.

Panel A: SPY
Bo Bir| Br Brv Bw Bm Op Bw Om R? F AIC LBS
RV 0.223" 0.490™" 0.151™"  -0.396"" -0.559"" -0.361"" | 0.617 2692 259
t-stat 1.90 3.16 2.89 -2.93 -2.85 -2.47
0.222™  0.108™  -0.0572"" -0.0043"™" 0.316"™ 0.093" -0.096 -0.385™  -0.3317" | 0.729 489 1467 57
2.58 3.49 -2.13 -3.57 4.62 1.86 -1.39 -3.34 -2.10
RVOM | 0.207 0.455™" 0.188™" -0.394™"  -0.654™ -0.408""" | 0.554 3627 140
t-stat 1.64 3.76 3.30 -2.68 -2.37 -2.82
0.234™  0.099"™"  -0.0562" -0.0028"" 0.274™ 0.112" -0.086 -0.464™"  -0.329" | 0.666 397 2604 34
2.34 2.76 -1.92 -2.59 3.73 2.32 -1.16 -2.74 -2.46
RKOM | 0.225™ 0.434™ 0.190™" -0.417"" -0.724" -0.477"" | 0.558 4308 132
t-stat 1.96 3.82 3.33 -2.84 -2.37 -2.96
02177 0.098"  -0.0503" -0.0021"" 0.263" 0.129™" -0.114 -0.549"™  -0.414™" | 0.654 328 3444 47
2.16 2.93 -1.90 -2.12 3.59 2.70 -1.51 -2.74 -2.83
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Panel B: Individual stocks

Bo Bir| Br Brv Bw Bm Op Bw Om R? F AIC  LBS

Ave Coeff | 0.275™" 0.370" 0.210™* -0.602"" -1.069"" -0.971"*" | 0.585 6327 71
Median 0.285 0.375 0.202 -0.458 -0.899 -0.666 0.631 5347 53
t stat 4.70 5.54 451 -4.13 -4.53 -3.40

%(t<-1.96) 0% 0% 0% 99% 98% 2%

%(t=1.96) 87% 94% 87% 0% 0% 0%

Ave Coeff | 0.390™"  0.0658™"  -0.0245"" -0.0060""" 0.273" 0.144™ -0.267™" -0.770"" -0.662"" | 0.638 181 5845 36
Median 0.381 0.0673 -0.0250 -0.0053 0.270 0.148 -0.142 -0.666 -0.493 0.687 163 4810 25
t stat 6.42 4.40 -2.62 -6.26 5.36 341 -2.85 -3.98 -2.91

%(t<-1.96) 0% 0% 47% 90% 0% 0% 47% 92% 41%

%(t=1.96) 91% 7% 1% 0% 93% 67% 0% 0% 0%
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Panel C: Shapley R?

RV IRVe rRVe RVZ  |r[RVetrRVe+RVZ RViw+RVim It I, wHre,m R? ([r{RVi+rRV+RVZ)/R?
SPY
RV
HAR 17.2% 33.1% 4.3% 7.1% | 61.8%
HAR CVP | 13.4% 19.6% 4.6% 3.8% 28.0% 24.4% 2.1% 52% | 73.0% 38.4%
A% -22.5% -26.5% -51.2%  -26.8%
RVOM
HAR 14.9% 30.1% 3.7% 6.8% | 55.5%
HAR CVP | 12.2% 189% 4.2% 2.7% 25.8% 22.0% 1.7% 51% | 66.6% 38.7%
A% -18.4% -26.9% -54.1%  -25.0%
RKOM
HAR 15.6% 29.9% 3.5% 6.9% | 55.9%
HAR CVP | 12.4% 183% 3.4% 2.6% 24.2% 22.0% 1.7% 52% | 65.5% 36.9%
A% -20.6% -26.5% -52.3%  -24.2%
Stocks
HAR 17.9% 31.6% 2.2% 6.8% | 58.6%
HAR CVP | 13.5% 124% 19% 5.4% 19.7% 24.3% 1.2% 51% | 63.9% 30.1%
A% -24.6% -23.2% -45.5%  -25.0%
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The model diagnostics are strongly in favour of the HAR_CVP model. The average R?
increases by 5.3% and the median R? increases by 5%. The R?s for HAR_CVP are 7.8 t0 9.1%
higher than those for HAR. The AIC and LB5 are substantially lower for HAR CVP. We
note that the median diagnostic statistics are better than the cross-stock averages, indicating
outliers with unfavourable HAR CVP diagnostics. Overall the evidence from individual stocks

supports the mechanisms and hypotheses for volatility persistence outlined in Section II.

Contribution of CVP to RV Dynamics

A striking feature in Panels A and B is that when CVP is included, the coefficients of
all lagged returns as well as the lagged weekly and monthly RVs are sharply reduced. The
large and pervasive impact of CVP inclusion on the coefficients of other variables indicates
that CVP captures important features in RV dynamics. Without CVP, the direct impact of

return on future RV and the long-run RV persistence are significantly overstated.

To further assess the impact of CVP on RV dynamics, we compute the Shapley
decomposition of the regression R?. The Shapley R? of an explanatory variable measures its
incremental explanatory power while controlling its correlations with all other explanatory
variables.® We defined the CVP variables as [rfRVy, rRV;, and RV? in (4), excluding RV;
whose coefficient is the constant volatility persistence in HAR. Panel C of Table 2 reports the

Shapley R? of individual or group of variables and has several important features.

First, CVP explains large portions of changes in RV. Shapley R? of the CVP variables
is 24~28% for SPY and 20% for individual stocks. The last column of Panel C shows that CVP
variables account for 30 to 39% of the explanatory power of all variables. The CVP variable
iRV has the highest Shapley R? across all explanatory variables for SPY, and the third highest
Shapley R? for individual stocks.

Second, for SPY, the combined Shapley R? for |r|RV: and rRV: is around 22~25%,
much higher than the combined Shapley R? of r, r,w, and rim at around 7%. For stocks, the
combined Shapley R? for [rfRV:and riR Vi is 14.3% compared to 6.3% for returns. Almost 90%
of individual stocks have higher Shapley R? for [r{RV: and riRV: than for returns. Therefore,
CVP as a link from rt to RV is two to three times more important than the impact of ri, re,w,

and r,m on RV,

8 Shapley decomposition provides a linear attribution of the regression R? to each explanatory variable. The
Shapley R? of a group of variables is the sum of the Shapley R?s within the group. The sum of Shapley R2s
across all variables is the total R2. Lahaye and Neely (2016) provide a brief literature review, an illustrative
example of the calculation, and a finance application. Owen and Prieur (2017) demonstrate the advantage of
Shapley decomposition over ANOVA-based decompositions.
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Third, although Panel B shows that the estimated coefficient of RVt (Po) increases in
size and significance in the HAR _CVP model, the Shapley R? of RVt in the HAR_CVP model
for stocks 1s 25% lower than in the HAR model. In other words, around 25% of the explanatory
power of RVt in the HAR model for stocks are crowed out when CVP variables are included.
The corresponding number for SPY is 18 to 22%. Overall Panel C of Table 2 shows that CVP

variables explain a very large portion of variations in RV.

Figure 1: Asymmetric Volatility Persistence

This figure depicts the relationship AsyVP: = By + B*rf + Br; where the coefficients are
calculated from Table 2. The RV measure for SPY is RVOM, The individual stocks are Bank
of New York Mellon Corp (BK) and Wells Fargo (WFC).
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Asymmetric Volatility Persistence

From the linear CVP specification in section II, the asymmetric volatility persistence is
AsyVPe = Bo+ Brlrd + e = Bo + (Br-Prre + (BriPrdre -
From Panel A of Table 2, the estimated coefficients for SPY with RVOM implies that
AsyVP:=0.234 - 0.155r; +0.0428r;
The average coefficients for stocks in Panel B of Table 2 implies that
AsyVP:=0.390 — 0.0903r; + 0.0413r;

These linear relations are depicted in Figure 1 together with those of two stocks. For SPY and
stocks on average, the impact of r; on CVP is over twice the impact of ry. This is similar to

the AsyVP implied by the GJR model and appears to be a property of equity returns. The
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asymmetry is stronger for SPY than for stocks on average. Both the degree and the direction
of the asymmetry vary across stocks. Bank of New York Mellon (BK) is one of the five stocks
(out of 87) with the opposite asymmetry. Wells Fargo (WFC) is one of the five stocks where
persistence is lower for large positive returns, i.e. fi+Pr < 0. How AsyVP relates to the well-

known asymmetric volatility is further explored in section V.

Statistical Characteristics of Daily CVP

We now summarize the statistical properties of the estimated daily CVP. Figure 2
depicts the time series and the histogram of the daily CVP for SPY based on RVOM, CVP is
very high during the height of the financial crisis in October 2008 due to large and mostly
negative daily returns. Table 3 reports the summary statistics of the estimated daily CVP. They
are qualitatively similar across RV, RVOM and RK®M for SPY. The mean values are significant
at 1%. Medians are below the means, indicating some extremely high CVP values. The CVP
histogram has a long right tail. Depending on the RV measure used, the estimated CVP > 1 on
10~14 days, representing 0.28% to 0.4% of the sample days. Although Brv <0, the correlations
between CVP and the RV measures are above 0.3. This is consistent with the findings of Ning,
Xu, and Wirjanto (2015) and is due to positive correlations between CVP and the absolute
return (about 0.8) and positive correlations between the absolute return and RV (about 0.45).

Ljung-Box statistics indicate that CVP is highly autocorrelated.

For stocks, we report cross-sectional mean and median summary statistics. Table 3
shows that across all stocks the average CVP is slightly higher and the average CVP standard
deviation is slight lower than those of SPY. The median correlations are larger than the mean,

indicating the presence of extremely low correlations.

Table 3: Characteristics of the estimated CVP

Summary Statistics Correlations

Mean Median StDev Skew Kurt LBS5 | |Return| Return RV

SPY

CVP(RV) 0308 0264 0.122 3.53 203 573 | 0.812 -0.627 0313
CVP(RVOM) | 0314 0272 0.116 3.58 206 600 | 0.797 -0.648 0.321
CVP(RK®™) | 0297 0258 0.110 3.55 206 715 | 0.823 -0.614 0.349

Stocks
CVP(RV) 0.434 0.412 0.133 2.71 254 356 0.763 -0.474  0.067
Median 0.431 0.407 0.126 323 24.1 301 0.828 -0.530 0.124
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Figure 2: Daily Conditional Volatility Persistence
(A) Daily CVP(RVM)
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Robustness Checks

We conduct several robustness checks for the HAR CVP results in Table 2. We test

variables and sub-period estimations are reported in the Appendix.
CVP and Measurement Errors

The HAR CVP model in (4) offers an alternative mechanism for time-varying RV
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whether CVP survives the inclusion of (1) RQ which affects RV persistence as shown by BPQ
(2016); (2) semi-variances or jump variations as in Patton and Sheppard (2015), and (3) an

alternative measure for daily volatility persistence. Results with additional conditioning

persistence to that of BPQ (2016) in (3). It would be of interest to jointly estimate strength of

the two alternatives. However, the correlation of RVt and RQi/ % s extremely high at 0.976 for



SPY and 0.975 on average for the individual stocks, making it difficult to separate the impact

of RViand RQi/ %, We test the impact of returns on CVP after taking into account of RQi/ 2,

(6) RViyy = a+ (Bo + Berel + Bere + BrqRQY DRV, + 0Z¢ + ¢4

Table 4 reports the estimation results for (6). When By and Br are set to zero, our results are
qualitatively similar to those of BPQ (2016, Table 3): BRQ is negative and highly significant,’
confirming the negative impact of measurement errors on RV persistence. When By and Br are

not restricted to zero, they are numerically and statistically similar to the values in the

HAR_CVP model in Table 2, and so are the model diagnostics. The combined Shapley R? is
over 20% for [rRV:t and 1RVt in (6) and is around 3% for RQi/ 2 RV,. The adjusted R? when
Bir| = Br = 0 is much lower than the adjusted R* of unrestricted models. This helps to explain

why HAR CVP has better out-of-sample forecast accuracy than HARQ in section VI.

CVP and Semi-variances

Barndorff-Nielsen, Kinnerbrock, and Shephard (2010) show that daily RV can be
decomposed into the positive and negative semi-variances: RVi = PSV: + NSV where PSV:
and NSV are defined above in IV(i). The difference between PSV: and NSV is termed the
signed jump variations SJV: = PSV: — NSV, with negative and positive jump variations

defined as NJV: = SJViXIsiv<o) and PJVi = SJVi X Isiv=0) respectively. The continuous
component of RVt is the bi-power variation defined as BVt =§ i=2 ITi—1,¢||ri¢|. Patton and

Sheppard (2015) estimate the impact of these components on RVi+1:

(7 RViyq = a+ BysyNSVy + BpsyPSVi + 6.RViI (1, <0y + BwRVew + BuRVem + €c44

®) RV 1 = a+ ByjyNJVi + Bpyy PIVe + BevBV: + BwRVew + BMRVim + €41

They report that NSVt has much greater impact on RVi+1 than PSVy, i.e. Bygy >> Bpsy > 0,

suggesting different information content in the two components. Similarly they find Byyy <0

and highly significant but Bpjy has mixed signs. Therefore, NJV increases volatility while PJV
has mixed effects. These return-based RV decompositions may affect the working of CVP.
For example, it is unclear whether the impact of negative returns on CVP would remain if NSV
and NJVtare included. We test the impact of RV decompositions on CVP in the following two

regressions:

? Our ﬁRQ is similar to those of Berkierman and Manner (2017) but is much smaller than the one reported in
Table 3 of BPQ (2016). Using demeaned RQi/ 2 (as they do) only affects B, not GRQ.

23



Table 4: The HAR_CVP-RQ Model

This table reports the daily persistence coefficients of the following models:

1/2
RViyy = a+ (Bo + Birylrel + Bere + BRQRQt/ IRV + @Z; + €44

RV and RQ are the Realized Variance and the Realized Quarticity constructed from the
TRTH data. RVOM and RK®M are the Realized Variance and the Realized Kernel taken from
the OMI Realized Library. The other variables are the same as in Table 2. Zi = (RV,,
RVim, T'v Tews Tem)'. Fois the Fostatistic for By = Br = 0. AIC is the Aikaike information
criteria. LBS5 is the Ljung-Box statistic for residuals at 5 lags. The t-statistics are based on
the Newey—West robust covariance with automatic lag selection using Bartlett kernel. %(t <
-1.96) and %(t = 1.96) are the percentage of stocks with t < -1.96 or t > 1.96 respectively.
The asterisks ***, ** * indicate significance at 1%, 5%, and 10% respectively.

Bo Bir Br Brq R? F AIC  LB5
SPY
RV 0.614™" -0.0075™ | 0.651 - 2362 168
t-stat 9.04 -8.26
0.254™  0.103™" -0.057  -0.0037™" | 0.732 536 1428 57
3.26 3.32 -2.17 -4.38
RVOM | 0.647" -0.0070™" | 0.593 - 3307 115
t-stat 6.60 -4.92
0.207°  0.101"" -0.054" -0.0024™ | 0.665 382 2617 31
1.79 2.73 -1.80 -1.96
RKOM | 0.579" -0.0061™" | 0.586 - 4079 96
t-stat 6.98 -6.17
0.171 0.102*" -0.050" -0.0016 0.653 339 3460 44
1.48 2.83 -1.73 -1.33

Stocks

Ave Coeff | 0.530™" -0.0038™" | 0.599 - 6224 66
Median 0.519 -0.0033 0.642 5328 48
t stat 8.16 -3.76

%(t<-1.96) 0% 71%

%(t=>1.96) 99% 0%

Ave Coeff | 0.400™"  0.0672""  -0.0269""  -0.0050""" | 0.640 223 5823 37
Median 0.390 0.0707 -0.0278 -0.0048 0.689 209 4822 24
t stat 6.44 452 -2.97 -6.38

%(t<-1.96) 0% 0% 55% 92%

%(t=1.96) 91% 78% 0% 0%
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(9) RV = a+ BysyNSV; + BpsyPSV; + (B|r||rt| + B + BRVRVt)RVt + @Z; + €41

(10) RViyy =a+ BN]VN]Vt + BP]VP]Vt + (Bo + Blrllrtl + Brre + BeyBVO)BV: + ©Z; + £y

The model in (9) splits BoR Vi in (4) into BnsvNSVi and BrsvPSVi. The model in (10) includes
the negative and positive jump variations; daily RV persistence is measured by its continuous
component. The estimation results are reported in Table 5.

Panel A of Table 5 reports the estimation results for (9). When B = Br = Brv = 0, Bnsv >
0 is significant but Besv is not significant: NSVi dominates volatility spillover as in Patton and
Sheppard (2015). When RV persistence is allowed to vary with re and R V¢, Bnsv is insignificant
for SPY. The significance of Brsv depends on the RV measure used. For stocks, Brsv becomes
significant and Bnsv no longer dominates the impact on RVi+1. For both SPY and stocks, the
values and significance of the CVP coefficients remain largely intact as in Table 2. F test
strongly rejects Br = Br = Brv = 0. Model diagnostics clearly favour the one with CVP. The
results for (10) in Panel B show that the strong impact of NJVi on RV+1 does not survive the
inclusion of CVP. On the other hand, the CVP variables are significant and have the same signs
as in Table 2; CVP works for both RVt and BV:. Overall the evidence indicates that CVP is
robust to the inclusion of NSV and PSV or their difference.

An Alternative Persistence Measure

As a further robustness check, we test our findings in Table 2 using a persistence

measure that does not depend on a specific model of volatility dynamics. We may measure

E[(RVi+1—p)(RVe—1)

E(RV,— )2 I Where p=E(RVy). Itis the coefficient on RV, in the
-

RV persistence as p =

regression RV, = a4 pRV; + €p41. Let prppq = (thg(llgvu)(i;t_”) therefore p = E(pyry1)-
-

We use E(pt,tﬂ |rt_1, RVt_l) as an alternative conditional measure of volatility persistence. It
can be estimated from the regression piryq = E(pt,t+1|rt_1,RVt_1) + eyyq With a suitable

specification for E(pg41|rt—1, RV;_; ) when E(e¢|ri_s, RV;_;)=0. Since p; 41 is unobservable,

. ~ RVi4+1—RV)(RV{—RV . .
we use its sample counterpart Py = (RVers sZ) RVe"RY) for the above regression with RV =

Y1 RVpand s? = —— 3T, (RV, — RV)2,

Figure 3 explores the characteristics of P14 for SPY. Panel A shows the asymmetric
relationships between p and returns. Large rt-1, especially large negative 11, are associated with
high p¢41. This is consistent with the sign and size of return coefficients of the CVP in Table

2. Since Peryq 1S not exactly a correlation, it can be outside [-1,1] with some high values.
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Table 5: Semi-Variances, Jump variations, and Conditional Persistence

Panel A of this table reports selected coefficients of the following regression:

RVii1 = a+ BysyNSVe + BpsyPSVi + (ByrIrel + Brre + BrvRVORV: + @Z¢ + €144

NSV, and PSV, are the negative and positive semi-variances respectively. The other variables
are the same as in Table 2. Panel B reports selected coefficients of the following regression:

RViyp =a+ BN]VN]Vt + BP]VP]Vt + (Bo + Blrllrtl + Brre + BeyBVO)BV: + ©Z¢ + €444

NJV; and P]V; are the negative and positive jump variations respectively. Zi= (RVyw, RViy,
Iy, T'ews T'ewm) - For stocks, %(t < -1.96) and %(t = 1.96) are the percentage of stocks with

robustt < -1.96 or t > 1.96 respectively. The asterisks ***, ** * indicate significance at 1%,
5%, and 10% respectively.

Panel A: Impact of negative and positive semivariances

BNSV BPSV Blrl Br BRV Rz F AIC LB5
SPY
RV 1.3277  -0.491 0.645 - 2426 259
t-stat 2.19 -1.03
0.365 0.096 0.105™"  -0.053™  -0.0037° | 0.729 370 1464 61
0.94 0.25 3.31 -2.02 -1.71
RVOM 0.934™  -0.460 0.563 - 3556 119
t-stat 2.28 -0.80
-0.633 1.040"  0.099"" -0.085"  -0.0028"" | 0.672 390 2548 35
-0.98 2.08 2.72 -1.88 -2.63

Stocks

Ave Coeff | 0.438™  0.146 0.595 - 6264 68
Median 0.487 0.090 0.634 - 5321 53
t stat 2.65 0.84

%(t<-1.96) 1% 0%

%(t=>1.96) 53% 16%

Ave Coeff | 0.413™ 0359  0.0668" -0.0229" -0.0062"" | 0.643 171 5807 34
Median 0.416 0.322 0.0684 -0.0226 -0.0057 0.690 148 4807 24
t stat 2.80 2.59 457 -2.55 -6.52

%(t<-1.96) 1% 0% 0% 47% 92%

%(t=>1.96) 56% 38% 79% 1% 0%
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Panel B: Impact of negative and positive jump variations

Bnjv Bpjv Bo Bir| Br Brv R? F AIC
SPY
RV -1.7217  -0.331 03057 0.654 - 2336
t-stat -1.85 -1.01 456
-0.646  0.341°  0.234™  0.105""  -0.059" -0.0067"" | 0.740 392 1323
-0.95 1.90 3.14 3.02 -2.36 -3.86
RVOM -1.8677  0.316  0.162 0.592 - 3312
t-stat -2.11 0.82 1.59
0.956 0.525  0.246™ 0.110"  -0.083" -0.0035"" | 0.677 309 2492
1.24 1.09 2.01 2.16 -1.77 -2.66
Stocks
Ave Coeff | -0.715™ 0308 0.254™ 0.604 - 6184
Median -0.664  0.262 0.270 0.638 - 5195
HKV t stat -2.22 1.56 3.27
%(t<-1.96) 28% 1% 0%
%(t=1.96) 1% 14% 60%
Ave Coeff | -0.271  0.196  0.390™" 0.076™ -0.031™" -0.0076"" | 0.649 162 5749
Median -0.266  0.128 0.382 0.078 -0.030 -0.0065 | 0.690 137 4766
HKV t stat -1.01 1.18 5.14 4.98 -3.12 -6.36
%(t<-1.96) 11% 1% 0% 0% 55% 87%
%(t=1.96) 0% 14% 84% 77% 0% 0%

Panels B and C depict the relationship between P4, and RVe1. Panel B shows a nonlinear

relationship between py¢y1 and RVei1. This is not surprising since P41 involves the product

of RVt and RVt+1, which are highly correlated with RVe1. From Table 1 we see that the mean

and median RV are 1.13 and 0.551 respectively for SPY, indicating daily RVs are heavily

concentrated in the low end of the RV range. Panel C zooms into the range RVt1 < 3. This is

the normal range of daily RV, accounting for 93% of trading days for SPY. Higher RVt is

associated with lower ¢4, consistent with the negative RV coefficients in CVP in Table 2.

On most trading days, higher volatility is associated with lower future volatility persistence.

Figure 3 motivates the following regression specification for E(pt,t+1 |rt_1, RVt_l):lo

(11)

E(pt,t+1|rt—1r th—l) =a+ Blrllrt—ll + Brre—1 + BrvRVi—q + BRVZRVtz—l

The quadratic term RV ; captures the relationship in Panel B of Figure 3, which shows

extremely high P41 associated with extremely high RVii. We winsorize the top 1% RV to

1" We do not include the lagged dependent variable {,_ ; because it is a function of RV, which is not observed
on day t-1. It is also a function of RVy; so its inclusion is likely to distort the estimated coefficients of RVy.
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Figure 3: SPY Return, RV, and the Proxy for RV Persistence P,

(RVi4+1—RV)(RV{—RV)
52

This figure plots Pyyq = against return and RV. RV = %22;1 RV; and
1 i,
s? = Ezg‘zl(RVt —RV)%

(A) Return and the proxy for RV persistence P41 defined in eq. (8)
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reduce their impact. Table 6 reports the estimated coefficients. It holds the qualitative features
of the estimated CVP in Table 2: By > 0, Br < 0, and Brv < 0, all significant at 5% except frv
for stocks. Both positive and negative returns increase Peq: PirtPr > 0 and Br - Py < 0.
Negative returns increase P4 more than positive returns: |Br - Bis| > Br + Py > 0. In the case
of Brv for stocks, 23% of stocks have negative and significant frv with only 3% having positive

and significant Bryv.

Table 6: Alternative Volatility Persistence Measure

This table reports the results of the following regression for SPY:

Prrr1 = Bo + ByryIre—1] + Brre—1 + BrvRVi—1 + Brv2RVE; + eyq

Whel‘e 5t,t+1 = (RVt+1_R‘S/2)(RVt—RV) Wlth W = %ZE:l th and SZ = %Zg;l(th - W)Z. The
other variables are the same as Table 2. %(t < -1.96) and %(t = 1.96) are the percentage of
stocks with t < -1.96 or t > 1.96 respectively. The asterisks ***, ** and * indicate statistical

significance at 1%, 5%, and 10% respectively.

Bo Bir Br Brv Brv2 R? AIC  LBS5
SPY
RV -0.068 0.640""  -0.189™  -0.487"  0.256"" | 0.595 6166 355
t stat -0.54 3.50 -2.38 -2.45 6.44
RVOM -0.062 0.562""  -0.219™"  -0.444™  0251" | 0.623 6616 322
-0.53 3.26 -2.94 -2.15 6.34
RKM 0.006 0.533""  -0276™"  -0.454"  0.197"" | 0.607 6671 280
0.05 3.14 -3.52 -2.39 6.37
Stocks
Ave Coeff -0.154 0.513™  -0.180™"  -0.127 0.094™" | 0.577 5288 423
Median -0.156 0.534 -0.175 -0.101 0.056 0.611 5306 354
t stat -1.35 419 -3.23 -1.29 7.71
%(t<-1.96) 8% 0% 57% 23% 0%
%(t=>1.96) 0% 90% 0% 3% 97%

Other Robustness Checks

Andersen (1996) reports that volatility persistence is much lower when volume data are
used in estimating a stochastic volatility model. We add additional conditioning variables and
report the results in Appendix B. The additional variables are volatility jumps, number of
trades, Amihud illiquidity, and trade imbalance. Overall the CVP results in Table 2 remain
qualitatively the same when additional conditioning variables are included. Some of the new
variables are significant for SPY but none is significant for stocks. Appendix C reports the
results of the HAR CVP model in 2-year sub-periods. At least two of the CVP coefficients

are significant in each sub-period. Therefore, CVP is present in all sub-periods.
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Additional robustness results are reported in the internet Applendix. We estimate CVP
as a threshold function and a power function of returns. The results are qualitatively the same.
Allowing conditional persistence for the lagged weekly and monthly RVs does not change the
results for daily CVP. Results in Table 2 hold qualitatively after daily RV is adjusted for time-
trend and seasonality, same as in Chordia, Sarkar, and Subrahmanyam (2005). They hold for
the square root of daily RV and when RV is replaced by the high-low based volatility measure
of Parkinson (1980). They hold when CVP includes a holiday or weekend dummy that may

affect RV autocorrelation.

V. Conditional Volatility Persistence and Asymmetric Volatility

The asymmetric return impact on future volatility is “one of the most enduring
empirical regularities in equity markets” (Hasanhodzic and Lo, 2013) and is becoming stronger
in many markets around the world (Talpsepp and Rieger, 2010). There is a sizable literature
and an ongoing debate on financial leverage versus volatility feedback as the main reason for
asymmetric volatility, e.g. Choi and Richardson (2016) and Engle and Siriwardane (2016). In
this section, we present evidence that CVP sharply reduces volatility asymmetry attributed to
financial leverage and volatility feedback, thus offers a new and robust explanation for
asymmetric volatility.

To further understand the asymmetric return impact on RV level and persistence, we
divide daily returns into 10 ranges in percentage, {-x, -3, -2, -1,-0.5,0,0.5, 1, 2, 3, o0}, indexed
by k =-5, ..., 5 with k # 0. The size of the range is smaller around zero since daily returns are

heavily concentrated around zero. We estimate a modified HAR CVP model

(12) RVerr = a+ (Bo + Xie—s BkltDek + BrvRVe)RVe + X5 BkreDex + @Z¢ + £ppy
where Zt = (RVyw, RVem, Tews Tem)’ and Dok = 1 if 1 s in the k™ range, 0 otherwise. AsyVP
is captured by Yp__s Br'tD¢ which allows step-wise changes in return impact on CVP. The
direct return impact on volatility is captured by Yp__: Oxr¢D;x and is typically attributed to

financial leverage (Black, 1976), volatility feedback (Pindyck, 1984), and herding and
contrarian trading (Avramov, Chordia, and Goyal, 2006).

The estimated By and 0 in (12) are reported in Table 7. Consistent with AsyVP in
Figure 2 and Table 2, Panel A shows that RV persistence increases with return size, especially
negative returns. We note that the size of By is almost strictly inversely related to the size of

return, while the size of t statistics generally increases with the size of return. Let ry’ be the
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Table 7: Return Impact on RV and RV Persistence

This table reports the estimation results of the following regression:

RViyp = a+ (Bo + 21§=—5 Bir¢Dex + BRVRVt)RVt + Zli:—s OxriDiex + OZ¢ + €c4q
where Zt = (RVw, RV, Tew, Tem) and Dk = 1 if 1 is in the k™ range, and 0 otherwise. There
are 10 return ranges in percentage (-, -3, -2, -1, -0.5, 0, 0.5, 1, 2, 3, o) which are indexed by

k=-5,...,5 (k # 0). The asterisks ***, ** and * indicate statistical significance at 1%, 5%,

and 10% respectively.

Panel A: Return impact on RV persistence

B_s P-4 B_3 B2 B_1 B1 B2 Ba B4 Bs

SPY

RV -0.178" -0.215™" -0.201" -0.488™ -1.152"" 0.791" 0.580™" 0.387" 0.179™ 0.078""
t stat 207  -344  -183 217  -278 164 236 188 218  3.12
RVOM | .0.185" -0.161"" -0.187 -0.383 -1.128"" 0.749 0.542"° 0.335 0.117 0.067""
t stat 177 219 161 -150 254 108 196 153 129  2.39
Stocks

Ave [-0.096™" -0.114™ -0.169" -0.180 -0.369 0.449 0.151 0.145 0.048 0.054™"
Med -0.096  -0.124 -0.199 -0.173  -0.447 0.502 0208 0.148 0.053  0.059
t stat 311 224 -188 -100 099 115 100 151 095 271

Panel B: Return impact on RV

0_c 0_, 0_ 0_, 0_; 0, 0, 03 0, 0
No AsyVP (Bx =0)
SPY
RV -1.449™" -0.444™ -0.388""" -0.341" -0.665" 0.439 0.149 0.016 0.010 0.109
t stat -3.07 -5.16 -4.06 -2.47 -186 157  1.19 0.22 0.16 0.92
RVOM [-1.406™" -0.422"" -0.322"" -0.293" -0.746" 0.351 0.121 -0.028 -0.044 0.082
t stat 277 -4.92 -4.06 -2.37 204 144 104 049 -084 079
Stocks
Ave [-1.731" -0.597™" -0.350™" -0.472""" -0.679™ 0.695" 0.091 -0.031 -0.063 0.045
Med -1361  -0.510 -0.291  -0.407 -0.587 0.566 0.105 -0.022 -0.050 0.103
t stat -3.85 -4.90 -3.35 -2.88 205 218 059 028 -062 023
AsyVP (B # 0)

SPY
RV -0.346 -0.086 -0.182 0.152 0.616" -0.448 -0.405™" -0.400™" -0.164" 0.019
t stat -1.10 -1.38 -1.47 1.05 222  -153 257 -214 -197 023
RVOM | 0.079 -0.164™ -0.105 0.123 0470 -0.456 -0.387" -0.381" -0.144 -0.053
t stat -0.18 -2.27 -1.09 0.71 156 -1.03 -206 -1.87 -137 -0.63
Stocks
Ave -0.573  -0209 0.077 -0.063 0.065 -0.215 -0.168 -0.345" -0.160 -0.283
Med -0.288 -0.096 0.135 0.019 0.522 -0.544 -0.340 -0.352  -0.121 -0.183
t stat -1.62 -153 0.40 -0.21 012 -039 -071 -207 -1.29 -1.33
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mid-point of the return range k with r™ = -3.5 and rg"* = 3.5. The impact of return in range k
on CVP is approximated by CVP(r) = By + Pxri™. We estimate CVP(r™) using RV and
RVOM of SPY and the average and median coefficients of stocks. Figure 4 (A) and (B) plot the
resulting CVP(ry"). Although large returns have small (3, large negative returns are associated
with high CVP. The linear representations in Figure 2 are reasonable proxies for CVP(ry")
when return is negative. When return is positive, CVP(ry") is non-monotonic. It peaks when
daily return is around 1.5% for both SPY and stocks. Consistent with AsyVP in Figure 2,

positive returns on average have lower CVP than negative returns.

To explore how the inclusion of CVP affect the direct return impact on RV, we estimate
(12) with and without restricting 3 = O for all k. This allows us to measure volatility
asymmetry implied by 0, with and without AsyVP. The results reported in Panel B of Table
7 show that, without AsyVP (i.e. Bk = 0), By for negative returns are all negative and highly
significant: negative returns significantly increase future RV, echoing typical findings in the
literature. On the other hand, only one 8) for positive returns is positive and significant:
positive returns have no significant impact on future RV. With AsyVP (i.e. B # 0), only one
By for negative returns remains negative and significant. One 8 for small negative returns
actually becomes positive and significant. Therefore, AsyVP almost entirely accounts for the
impact of negative rt on RVi+1. This posts a strong challenge to existing explanations for
asymmetric volatility. Interestingly, most 8 for positive returns are now negative and some
are significant at 10% or above. When AsyVP is present, positive returns in the range of 0.5 to
2% often significantly reduces future RV, especially for SPY. Overall Table 7 shows richer
RV dynamics from both CVP and the direct return impact on RV than revealed in Table 2.

The direct impact of r¢ in range k on RV is approximated by RV(r®) = 8, r™ and
varies with ry’ for k = -5, ..., 5 with k # 0. RV(ry') can be visualized in Figure 4 (C) to (F)
which are similar in spirit to the news impact curve of Engle and Ng (1993) and Chen and
Ghysels (2010). Again we estimate RV(ry') with and without restricting B, = 0 for all k.
RV(ry'|Bk = 0) measures the direct return impact on RV when return does not affect RV
persistence. The corresponding lines are denoted as “No AsyVP”. RV(ry'|Bx # 0) measures
the direct return impact on RV when there is AsyVP. The corresponding lines are denoted as
“AsyVP”. Figures (C) and (D) draw RV(r{?|Bx = 0) and RV(rj|By # 0) for RV and RVM of
SPY. Figures (E) and (F) draw RV(ry'|Bx = 0) and RV(ry'|Bx # 0) based on the average and

median coefficients across stocks. Two features are present in all four figures: when AsyVP
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Figure 4: Conditional Volatility Persistence and Asymmetric Volatility

The graphs below are based on the following regression:
RViyp = a+ (Bo + 212:—5 Bir¢Dex + BRVRVt)RVt + Zli:—s OxriDiex + OZ¢ + €c4q

where Zi= (RVyw, RVem, Tews Tem) and Dok = 1if 1 is in the k™ range, and 0 otherwise. There
are 10 return ranges in percentage by (-, -3, -2, -1,-0.5,0, 0.5, 1, 2, 3, 0). Let ry’ be the mid-
point of the return range k with ri" =-3.5 and rjj = 3.5. Return impact on CVP is CVP(ry') =
Bo + Pxri. The direct return impact on RV is RV(ri®) = §, ™.
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is allowed (B # 0), the RV impact of large negative returns are sharply reduced, and positive

returns are associated with lower RV, particularly for returns around 0.5 to 2%.

To quantify the change in the degree of volatility asymmetry when AsyVP is included,
we use the following measure which is similar to the one proposed by Daouk and Ng (2011).

For a return size |ry’|, the asymmetric impact of negative and positive returns on RV is
RV(I™) - RV(I™) = (B_y — By)|r®| fork=1,....5.

The asymmetry in RV is defined as AsyRV = ¥2_,[RV(r™) — RV(r{")]. Again we compute
AsyRV with and without AsyVP. For SPY RV, AsyRV without AsyVP is 6.533 and AsyRV
with AsyVP is 2.789, a reduction of 57%. For SPY RVOM, AsyRV without AsyVP is 6.552
and AsyRV with AsyVP is 2.156, a reduction of 67%! For stocks, AsyRV without AsyVP is
8.404 based on average coefficients and 6.506 based on median coefficients; AsyRV with
AsyVP is 4.533 based on average coefficients and 2.760 based on median coefficients. AsyVP
reduces stocks’ AsyRV by 46 to 58%.

Overall the results in Table 7 and Figure 4 show the presence of complex nonlinear
AsyVP. As in the GJR model, CVP almost entirely accounts for the impact of negative daily
returns on RV and sharply reduces volatility asymmetry associated with direct impact from
daily returns. These findings support CVP as a dominant and robust explanation for asymmetric

volatility at daily frequency.

VI.  Conditional Volatility Persistence and Volatility Forecast

A key contribution of the recent advances in modelling RV dynamics is the improved
volatility forecasts. The HAR model of Corsi (2009) generates more accurate forecasts than a
true long-memory model with fractional integration. The semivariance HAR model of Patton
and Sheppard (2015) has better RV forecasts than the original HAR and a RV-based GJR model.
BPQ (2016) show that the HAR model with realized quarticity outperforms a range of models
including the semivariance HAR. This section compares volatility forecasts of the HAR CVP
model in (4) against these three competing models.

To isolate the effect of CVP on forecast performance, we control the direct impact from
returns on RV by adding (rt, rw, rim)’ to all models. Let Zt = (RViw, RViw, 1, tiw, 1em)’.

The HAR in (2) can be written as

(13) RVip1 = a4 BoRV + @Z¢ + &4
The HAR with realized quarticity (HARQ) of BPQ (2016) can be written as
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(14) RViy1 = a+ (Bo + BrRQY DRV, + @Z¢ + €444

The semivariance HAR (HARSV) of Patton and Sheppard (2015) is
(15) RVit1 = o+ BysyNSVe + BpsyPSVe + @Z¢ + &4
The HAR_CVP model in (4) is

(16) RViy = a+ (Bo + Blrllrtl + B.re + BryRVORV, + @Z; + €44

We compare the forecast performance of the HAR CVP model against HARi = HAR, HARQ,
and HARSV. If CVP is a better proxy for the unobserved true RV persistence, HAR CVP
should have better forecasts than the competing models. Furthermore, its performance should

be stronger for assets with greater variations in RV persistence.

(i) Loss Functions

Forecast accuracy can be measured by a wide range of loss functions, e.g. mean squared
error (MSE), mean absolute error (MAE), etc. The choice of loss functions may affect the
ranking of forecasting models, e.g. Hamilton and Susmel (1994), Bollerslev and Ghysels
(1994), Hansen and Lunde (2005), Patton and Sheppard (2009), and Patton (2011). Let 1t be

the daily return with E(r|¥1) = 0 and 62 = Var(r{¥w1) where ¥t is the information set up to

day t-1. RV is a noisy ex-post measure for o7 and let RV, be the forecast of 6?. Competing
models for RV, are ranked based on the distance between RV: and RV,. Patton (2011) shows
that for some loss functions, the noise in RVi may distort the ranking of competing models. He

proposes a class of robust loss functions indexed by the parameter b:

1 b+2 _ pyub+2) _ _1 myb+1 BV 1 _
(b+1)(b+2) (th RVe ) b+1 Rvt (th RVt),forb ¢{-1-2}
— 55 RV,
(17) LRV, RV;; b) =< RV = RV, + RthnRTVE, forb= —1
&—11’1(&)—1, forb= -2
RVt RVt

The above loss function is robust to the noise in RVt: the ranking of competing models based
on the noisy RV is the same as the ranking based on the true 6Z. Two popular loss functions
are part of this family, subject to additive and multiplicative constants. The mean-squared error
MSE = (RV, — RV,)? is a special case with b = 0 and the quasi-likelihood function QLIKE is
the case with b = -2 given above. As noted in Proposition 2 of Patton (2011), MSE is the only
robust loss function that depends solely on RV, — RV, and QLIKE is the only robust loss

function that depends solely on RV,/RV,. However, many studies avoid using MSE because it

35



is often heavily influenced by a few large forecast errors.!! In addition, Patton and Sheppard
(2009) show that the Diebold-Mariano tests using QLIKE have higher power than those using
MSE. Patton (2011) advocates the use of QLIKE instead of MSE.

We compare forecast accuracy based on four loss functions. The first two are MSE and
QLIKE defined above. The third is the case of b = -1 in (17) which is a combination of the
forecast error RV, — RV, and ratio RV,/RV,. We term this the FER loss function. In addition,
we compare forecasts based on MSE-In = [In(RV,) — In(RV,)]? a popular alternative to MSE
that mitigates the impact of a few large forecast errors. We report the results for SPY based on

RV and RV®M to conserve space.

(ii) Forecast Procedure and Comparison

Following Patton and Sheppard (2015) and BPQ (2016), our forecasts are based on 4-
year rolling windows, starting in 2004 for SPY and in 2006 for stocks. We have 72 stocks in
the S&P 100 index with continuous data from 2002. An “insanity filter” is used to replace a
negative RV forecast with the lowest RV in the rolling window.!? For the HAR_CVP and
HARQ models, if the estimated CVP: or CVPtRQ is below 0 (above 1), it is replaced by the
minimum (maximum) value within the rolling window.

Inference on the difference in loss values is based on the Diebold-Mariano (1995) test.
While HAR is nested in HAR CVP, Giacomini and White (2006) show that the DM test
remains asymptotically valid when the estimation period is finite. Define the pair-wise loss

difference against HAR CVP as
(18) di(HARi) = L(RVy, RV;; b; HAR_CVP) — L(RV,, RV;; b; HARI)

where HARi = HAR, HARQ, and HARSV. Let d(HARi) and Var[d(HARi)] be the time-series
average and long-run variance of d(HARIi) respectively. The number of autocovariances in

Var[d(HAR1)] is based on Andrews (1991). The DM test statistic for E[d(HARi)] = 0 is

d(HARI)
JVar[d(HARi)]/T
The above DM test is applied to SPY and individual stocks. For stocks as a whole, we

DM[d(HARi)] =

with T being the number of forecasts.

test whether the expected cross-sectional average difference in loss values is zero. Let a,- (HAR1)

1 The impact of large forecast errors is related to the impact of data scale or data unit discussed in Proposition 3
of Patton (2011) and may affect model ranking based on MSE.

12 Our insanity filter is the same as in Patton and Sheppard (2015). BPQ (2016) replace RV forecasts outside the
high-low range of the rolling window by the average RV in the rolling window. The results based on this
alternative filter are reported in the internet Appendix and are strongly in favour of HAR CVP.
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be the average loss difference for stock j and E(HARi) = % ]N=1 c_il- (HARI) be average across N

stocks. To takes into account both time-series and cross-sectional variations in loss difference,

the standard deviation of (=1(HARi) is calculated as

(19) StDev[d(HARi)] = —

j Ly YR Bk \/Var[c_lj (HARi)]Var[dy(HARIi)]

where ®; the sample correlation between dj(HARi) and dk«(HARi) defined in (18), and

Var[aj (HARIi)] = Var[dj(HARIi)]/T. The above standard error is analogous to the one in eq. (5).
d(HARi)

StDev[d(HAR{)]’

The DM statistic is defined as DM[(=1(HARi)] =

(iii) Forecast Performance

Table 8 reports forecast comparisons for SPY. Panel A is a summary of loss values for
four models and loss functions. For both RV and RVOM, HAR_CVP has the lowest average
and median loss values for FER, QLIKE, and MSE-In. It has the lowest median MSE but not
the lowest average MSE. MSE has extremely high mean-to-media ratios and extremely high
standard deviations of loss values. Both are consistent with strong impact from a few large
errors, which has been documented in many studies, e.g. Pagan and Schwart (1990), Diebold
and Lopez (1996), Poon and Granger (2003), and Hansen and Lunde (2005). Model ranking
based on average MSE is likely to reflect such impact.

The performance of HAR CVP is measured by the change in loss values defined as

f(HAR_CVP)

A(HAR) = f(HARi)

— 1 with f being the mean or median of the loss values and HARi =

HAR, HARQ, and HARSV. It is reported in the right three columns of Panel A. For RV and
RVOM, the changes in the median FER, QLIKE, and MSE-In are around -25%. The changes in
the average QLIKE and MSE-In are much larger at -32 to -57%, suggesting the presence of a
few days with very large loss reductions. Overall the improvement from HAR CVP is larger
than those reported in similar studies. Panel B of Table 8 reports the DM test for equal average
loss values between HAR CVP and HARi = HAR, HARQ, and HARSV. The DM statistics
are highly significant for FER, QLIKE, and MSE-In. Not surprisingly, the high volatility of
MSE values makes the differences in average MSE not statistically significant.

Table 9 reports forecast performance for individual stocks. Loss value comparisons in
Panel A are qualitatively the same as for SPY. HAR CVP has the lowest average and median
loss values for three of the four loss functions. The exception is MSE where HAR CVP has

the lowest median loss but not the lowest average loss. Compared to SPY, stock MSE has even
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Table 8: Volatility Forecast Comparison for SPY

This table reports summary for MSE, FER, QLIKE, and MSE-In loss functions for SPY.
Panel A: Summary statistics for loss function values. The lowest values across four models
are in bold numbers. “A(HARIi)” reports HHARCVE)

FHARD) 1 where f is the mean or median and
HARi = HAR, HARQ, and HARSV.

HAR_CVP HAR HARQ HARSV | A(HAR) A(HARQ) A(HARSV)
RV
MSE
Mean 2.973 3.167 3.920 2.836 -6% -24% 5%
Median 0.0297 0.0357  0.0342 0.0323 -17% -13% -8%
StDev 55.4 50.8 84.7 41.0
FER
Mean 0.211 0.296 0.275 0.276 -29% -24% -24%
Median 0.037 0.0487  0.0514 0.0447 -24% -28% -17%
StDev 1.03 1.13 1.29 1.03
QLIKE
Mean 0.519 1.191 1.199 1.084 -56% -57% -52%
Median 0.0872 0.114 0.114 0.107 -24% -24%, -19%
StDev 3.53 8.15 9.45 8.31
MSE-In
Mean 0.527 0.892 0.896 0.814 -41% -41% -35%
Median 0.182 0.241 0.243 0.223 -24% -25% -18%
StDev 1.32 2.06 1.98 1.95
RVoM
MSE
Mean 7.129 5.193 6.206 4.839 37% 15% 47%
Median 0.0312 0.0372  0.0360 0.0359 -16% -13% -13%
StDev 197 113 157 98
FER
Mean 0.283 0.360 0.324 0.359 -21% -13% -21%
Median 0.0382 0.0495  0.0508 0.0478 -23% -25% -20%
StDev 2.23 1.95 2.10 2.00
QLIKE
Mean 0.531 1.241 1.097 0.928 -57% -52% -43%
Median 0.0854 0.111 0.116 0.104 -23% -26% -18%
StDev 2.85 7.81 6.87 3.83
MSE-In
Mean 0.564 0.912 0.867 0.827 -38% -35% -32%
Median 0.181 0.233 0.242 0.223 -22% -25% -19%
StDev 1.34 2.12 1.94 1.80
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Panel B: DM test against HAR CVP. A negative value indicates that HAR CVP has lower
loss values than the competing model. The asterisks ***, ** and * indicate statistical
significance at 1%, 5%, and 10% respectively.

HAR  HARQ HARSV | HAR  HARQ HARSV
RV RVM
MSE -0.849  -0.993 0.176 0.969 1.023 0.850
FER -6.19""  -3.62™° 33777 | 33177 4777 2627
QLIKE | -4.00"" -3.08"" -3.19™ | -4.00™" -4.50"" -4.54™
MSE-In | -6.97"" -6.46™" -593"" | 636" 697" -6.74™

higher mean-to-media ratios and higher standard deviations of loss values, indicating longer
right tails for loss values. The reductions in loss values from using HAR CVP are somewhat
smaller than for SPY. The changes in median loss values range from -10 to -16%. The changes
in average loss values range from -9 to -53%, indicating the presence of a few stocks with very
large reductions. HAR CVP has the lowest volatility of loss values and achieves larger loss
reductions for QLIKE and MSE-In, the same as SPY. The right three columns of Panel A shows
that based on FER, QLIKE, and MSE-In, HAR CVP has the lower average or median loss
values for 83 to 99% of the stocks. It has lower average MSE for 56 to 63% of the stocks. Even
though HARQ has lowest cross-sectional average MSE, HAR CVP has lower average MSE
than HARQ for 57% of stocks.

The DM tests for stocks are presented in Panel B of Table 9. Based on FER, QLIKE,
and MSE-In, DM[E(HARi)] statistics indicate that HAR CVP has significantly lower cross-
sectional average loss than HARi=HAR, HARQ, and HARSV. DM tests based on MSE show
no significant difference in cross-sectional average loss values. A summary of individual stock
DM statistics shows that for 72 to 89% of the stocks, HAR CVP has lower average FER and
MSE-In at 5% significance. The percentage drops to 28 to 36% for QLIKE, and to 4 to 7% for
MSE. On the other hand, virtually no stocks have HAR CVP significantly underperforming
than the competing models. Over the forecast periods of 2004-2014/5 for SPY and 2006-
2014/12 for stocks, HAR CVP significantly outperforms the competing models.
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Table 9: Volatility Forecast Comparison for Stocks

This table reports summary for MSE, FER, QLIKE, and MSE-In loss functions for individual stocks. The mean, median, and standard deviation
are the average values across stocks.

Panel A: Summary statistics for loss values. The lowest values across four models are in bold numbers. “A(HARi)” reports m:::{T‘Ei\;m — 1 where
f is the mean or median and HARi = HAR, HARQ, and HARSV. “A(HAR1)<0” reports the percentage of stocks with % <1.

HAR CVP | HAR  HARQ HARSV | A(HAR) A(HARQ) A(HARSV) | A(HAR)<0O A(HARQ)<0 A(HARSV)<0

MSE
Mean 33.4 63.8 29.3 70.7 -48% 14% -53% 56% 57% 63%
Median 0.288 0344 0318 0.343 -16% -10% -16% 97% 88% 97%
StDev 645 1981 568 2138
FER
Mean 0.663 0729  0.728 0.737 9% 9% -10% 96% 92% 97%
Median 0.109 0.125  0.122 0.125 -13% -10% -13% 96% 92% 99%
StDev 4.65 4.46 5.16 4.58

LIKE
Mean 0.585 0944  1.168 0.938 -38% -50% -38% 83% 89% 85%
Median 0.0879 0.100  0.0987  0.0993 12% 1% -12% 96% 94% 99%
StDev 6.44 13.4 20.5 14.8
MSE-In
Mean 0.543 0.673  0.683 0.663 -19% 20% -18% 96% 97% 96%
Median 0.185 0212 0.208 0.210 -13% 11% 12% 96% 96% 99%
StDev 1.24 1.60 1.68 1.58
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Panel B: Summary of DM test against HAR_CVP. DM[d(HARi)] is based on the cross-
sectional average difference in loss values and the cross-sectional standard deviation in (19).
DM < 0 indicates that HAR CVP has lower loss function values. The asterisks *** ** and
* indicate statistical significance at 1%, 5%, and 10% respectively. DM[d(HARi)] is the
stock-level DM statistic for testing equal average loss values for HAR CVP against HAR.
DM(HARI1) <-1.96 and DM(HARI) > 1.96 are the percentages of stocks satisfying the
respective conditions.

MSE FER QLIKE  MSE-In

DM[d(HAR)] -1.00  -4.02" 51777 -11.6™
DM[d(HARQ)] 0.83  -4.10"" -3.90™" -12.2**
DM[d(HARSV)] -1.01  -4.85™ 428 -12.6™
DM[d(HAR)] <-1.96 7% 79% 31% 89%

DM[d(HARQ)] < -1.96 4%  72% 36% 89%
DM[d(HARSV)] <-1.96 | 7%  75% 28% 89%

DM[d(HAR)] > 1.96 0% 0% 0% 0%
DM[d(HARQ)] > 1.96 0% 0% 0% 1%
DM[d(HARSV)] > 1.96 0% 0% 1% 0%

(iv)  Market Conditions and Forecast Performance

To examine the robustness and the source of HAR CVP’s forecast performance, we
investigate how HAR CVP performance varies with market conditions. Let r25 (r75) and RVas
(RV75) be the 25 (75) percentile values for daily return and RV respectively.!® They form a
3X3 matrix of market conditions, e.g. low return (rt < r25) and high volatility (RV:i> RV7s). As
before, the performance of HAR CVP is measured by A(HARi). Tables 8 and 9 show that
A(HARI) is more stable when f is the median. We use A(HARi) with f being the median to
avoid the undue impact of a few extremely high or low loss values.

Table 10 reports A(HARi) under different market conditions.'* We use bold-faced
numbers to highlight the cases where A(HAR1) under specific market conditions is more

negative than the overall A(HARI) under the same lost function.!> We can see that most bold

13 In our sample, the quartiles for SPY are ry5 = -0.44%, r75 = 0.54%, RV25 = 0.23x10*, and RV75 = 0.82x 10,
14 To conserve space, we only report the results based on RVOM for SPY. The results based on RV and RKM are

reported in the internet appendix.
15 For example, in Table 8, median A(HAR) based on RVOM and FER is -23%. In Table 10 for SPY RV°M, the

numbers in the 3X3 matrix for FER and A(HAR) are compared against -23%. They are in bold-faced if they are
more negative than -23%, e.g. -44% when r; > 175 and RV; <RVys.
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Table 10: Market Conditions and Forecast Performance

This table compares forecast performance under different market conditions. Threshold
values 125 (r75) and RV2s (RV7s) are the 25 (75) percentile values for daily return and RV

f(HAR CVP) )
~HOARD 1 where fis the

median. Bold numbers indicate that HAR CVP has better relative performance than the full
sample values in Tables 8 and 9.

respectively. Forecast comparison is based on A(HARi) =

A(HAR) A(HARQ) A(HARSV)
It<I2s 125<1t<I75 1175 It<I2s 125<1t<I75 1175 I<I2s I25<1t<I75 1175

SPY RVoM
MSE
RV<RV3s -20% -14% -35% 10% -28% -47% 16% -17% -36%
RV,5<RV<RV7; -15% -23% -10% | -18% -20% -12% | -19% -26% 0%
RV>RV7s -41% -33% 27% | -33% -14% -10% | -33% -34% -30%
FER
RV<RVjys -1% -17% -44% 11% -33% -46% 15% -18% -39%
RV,5<RV<RV7;s -15% -26% -33% | -13% -24% -38% | -11% -26% -5%
RV>RV7s -36% -22% -34% | -25% -17% 27% | -32% -23% -32%

LIKE
RV<RV3s -21% -13% -37% -5% -35% -44% | -20% -13% -30%
RV,5<RV<RV7;s -14% -18% -45% | -12% -22% -50% | -13% -21% -10%
RV>RV7s -33% -15% -25% | -28% -5% 0% -25% -11% -25%
MSE-In
RV<RV3s -9% -10% -34% 10% -31% -49% 3% -17% -34%
RV,5<RV<RV7; -23% -17% -34% | -18% -24% -44% | -20% -23% -6%
RV>RV7s -32% -26% 24% | -25% -16% 5% -24% -16% -25%
Stocks
MSE
RV<RV3s -32% -2% 14% -17% 12% 18% -24% 1% 13%
RV,5<RV<RV7;s -26% -14% -9% -17% -9% -11% | -22% -14% -8%
RV>RV7s -8% -14% -6% -13% -18% -4% -7% -15% -7%
FER
RV<RVjys -28% -3% 0% -16% 5% -3% 21% 0% 2%
RV,5<RV<RV7;s -23% -12% -17% | -16% -9% -19% | -19% -13% -14%
RV>RV7s -5% -12% -12% | -10% -15% -8% -3% -15% -13%

LIKE
RV<RV3s -24% -3% -9% -15% -3% 20% | -15% -1% -7%
RV,5<RV<RV7;s -18% -10% 20% | -11% -9% -25% | -16% -10% -17%
RV>RV7s -5% -10% -15% -7% -10% -8% -5% -12% -15%
MSE-In
RV<RV3s -26% -4% -16% -6% 2% -22% | -24% 2% -11%
RV,5<RV<RV7; -21% -12% 24% | -14% -8% -28% | -21% -14% -24%
RV>RVys -4% -11% -13% -8% -12% -7% -6% -14% -14%
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Table 11: Forecast Performance during the Global Financial Crisis

This table reports forecast comparison during the global financial crisis from 1 July 2008 to 30 June 2009. Forecast comparison is based on

A(HARI) = %{T‘;‘;m — 1 where f is the mean or median and HARi = HAR, HARQ, and HARSV. Bold numbers indicate that HAR CVP has

better relative performance than the full sample values in Tables 8 and 9.

SPY RV SPY RVOM Stocks
A(HAR) A(HARQ) A(HARSV) | A(HAR) A(HARQ) A(HARSV) | A(HAR) A(HARQ) A(HARSV)

MSE
Mean -5% -25% 6% 42% 17% 54% -49% 15% -55%
Median -57% -53% -51% -50% -52% -52% -15% -14% -17%
FER
Mean -25% -13% -21% -19% -3% -22% -6% -6% -9%
Median -50% -34% -35% -44% -17% -38% -20% -14% -19%

LIKE
Mean -31% 24% -35% -63% -53% -55% -45% -47% -41%
Median -39% -19% -24% -33% -12% -28% -17% -12% -19%
MSE-In
Mean -38% -7% -37% -50% -22% -44% -27% -19% -27%
Median -42% -19% -28% -34% -15% -29% -19% -13% -19%
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numbers are on days with rt <125 or 1t > r7s: HAR CVP performs stronger when daily return is
large, either positive or negative. The effect is stronger at the top return quartile for SPY but
at the bottom return quartile for stocks. If CVPy= Bo + Brg + B+r{+ PrvR Vi is a good proxy
for the latent RV persistence, large returns implies large changes in RV persistence. The
superior forecasts by HAR CVP when return is large suggests that CVP is able to capture a
significant portion of the daily variations in RV persistence. On the other hand, HAR and
HARSYV have constant RV persistence over the 4-year estimation window; HARQ captures the

changes in RV persistence associated with RQ.'®

To further test the performance of HAR CVP under extreme market conditions, we
next compare forecast accuracy during the global financial crisis (GFC) period of 1 July 2008
to 30 June 2009.!'7 The GFC was a period of extreme economic, financial, and policy
uncertainty. The heightened uncertainty was reflected in large daily swings in market indices
and prolonged high volatility. Iflarge returns are a key driver of the latent volatility persistence,
one would expect HAR CVP to perform even better during the GFC relative to models with
constant volatility persistence (e.g. HAR and HARSV) and models where volatility persistence

is unrelated to returns (e.g. HARQ).

f(HAR_CVP)

Table 11 reports A(HAR1) = HCHARD)

— 1 during the GFC period. For SPY and stocks

and f being the mean or the median, A(HAR1) is mostly negative: HAR CVP maintains its
superior forecast accuracy during the GFC. Again we use bold-faced numbers to indicate that
HAR_CVP has greater percentage loss reduction during GFC than for the full sample.'® For
SPY and stocks, 30 out of the 36 median loss values and 14 out of the 36 average loss values
are in bold numbers, indicating even stronger relative performance by HAR CVP during the
GFC. HAR CVP is able to capture the surge in volatility persistence driven by larges swings
in daily returns (Figure 1). Models that are slow to capture the large increase in volatility
persistence tend to do relatively worse during the GFC. Through RQ, HARQ can partially
capture daily variations in RV persistence. We note that during the GFC, the loss reductions

from HAR CVP are often smaller against HARQ than against HAR and HARSV.

16 There is no strong unconditional effect from RV on HAR CVP performance, perhaps due to the small Bgy.
Conditional on r; < 125, A(HARI) becomes more negative for SPY and less negative for stocks as RV increases.
Conditional on r; > r75, A(HARI) becomes less negative for SPY and has not strong trend as RV increases.
These empirical patterns should be further explored in future studies.

17 A shorter volatility-based GFC period from 2008/9/1 to 2009/4/30 produces the same qualitative results.

18 For example, the change in the median FER against HAR for SPY RVM is -44% during GFC vs -23% in the
full sample in Table 8. The same comparison is -50% vs -24% for SPY RV and -20% vs -13% for stocks.
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v) CVP and HAR_CVP Forecast Performance

This subsection explores the direct link between CVP and HAR CVP forecast accuracy.
The high CVP during the GFC (Figure 1) may leave the impression that high CVP values
improve HAR CVP forecast accuracy. This is true only if the true volatility persistence is also
high, as during the GFC. In general, CVP improves forecast accuracy when it is a good proxy
for the latent RV persistence. As such, one may not expect a positive relation between CVP
values and HAR CVP’s forecast accuracy. On the other hand, if the variations of CVP capture
the variations of the latent RV persistence, it would give HAR CVP an advantage over models
with constant persistence (e.g. HAR and HARSV) or partially adjusting persistence (e.g.
HARQ). While the issue deserves greater attention given here, we provide some preliminary
evidence that highlights the importance of time-varying volatility persistence.

We examine the link between HAR CVP forecast performance and the characteristics

f(HAR_CVP)

f(HAR)) 1 with

of daily CVP. Again HAR CVP performance is measured by A(HAR1) =

f being the median loss values. The basic characteristics of daily CVP are its average and
standard deviation. For SPY, we first compute CVP average, standard deviation, and A(HAR1)
for each quarter from 2004 to 2014/5. We then compute the time-series correlations across 42
quarters between CVP average and A(HARi), and between CVP standard deviation and
A(HARI). For stocks, we first compute each stock’s CVP average, standard deviation, and
A(HARIi), then the correlations across 72 stocks between CVP average and A(HARi), and
between CVP standard deviation and A(HAR1). These correlations shed light on the direction
and strength of the relations between CVP and HAR CVP’s relative forecast performance.
The correlations are reported in Table 12. For SPY, across three competing models and
four loss functions, the average correlation between CVP average and A(HAR1) is 0.107 and
significant at 5%:!° high CVP is associated with less negative A(HARi), i.e. poor HAR_CVP
forecasts. However, most quarterly correlations are not significant and one of them is actually
negative and significant. On the other hand, all of the correlations between CVP standard
deviation and A(HARi) are negative. While only three of the twelve correlations are statistical
significant, the average correlations across three models and four loss functions are -0.185 and
significant at 1%. There is strong evidence that high CVP standard deviation is associated with

more negative A(HARI), i.e. superior HAR CVP forecasts.

.. . PN . 1-p2 .
19 Test for zero correlation is based on the estimated correlation p and its standard error ’N——pz where N is the

sample size.
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Table 12: CVP and HAR_CVP Forecast Performance

This table reports the correlations between CVP average, standard deviation, and the relative

forecast performance of HAR CVP based on A(HAR1) = % — 1 with HARi = HAR,

HARQ, and HARSV. For SPY, fis the quarterly median loss values. For stocks, fis the
median loss values of each stock. The asterisks ***, ** and * indicate significance at 1%,
5%, and 10% respectively.

SPY Stocks

Ave(CVP) | StDev(CVP) | Ave(CVP) | StDev(CVP)
MSE
Cor[CVP, A(HAR)] 0.119 -0.367" -0.339™ -0.247"
Cor[CVP, A(HARQ)] -0.320™ -0.139 -0.256" -0.055
Cor[CVP, A(HARSV)] 0.091 -0.427" -0.265™ -0.352°"
FER
Cor[CVP, A(HAR)] 0.183 -0.198 -0.188 -0.219"
Cor[CVP, A(HARQ)] -0.057 -0.033 -0.196" -0.092
Cor[CVP, A(HARSV)] 0.127 -0.294" -0.109 -0.371°"
QLIKE
Cor[CVP, A(HAR)] 0.265" -0.136 -0.002 -0.088
Cor[CVP, A(HARQ)] 0.157 -0.007 -0.126 -0.044
Cor[CVP, A(HARSV)] 0.156 -0.183 0.023 -0.216"
MSE-In
Cor[CVP, A(HAR)] 0.255" -0.177 -0.008 -0.078
Cor[CVP, A(HARQ)] 0.107 -0.063 -0.113 -0.034
Cor[CVP, A(HARSV)] 0.197 -0.195 0.033 -0.217"
Average 0.107" -0.185™ -0.129™ -0.168"™"

For stocks, the evidence is stronger for a negative correlation between CVP standard
deviation and A(HARi). All of the correlations between CVP standard deviation and A(HAR1)
are negative and six of them are significant. The average correlations across three models and
four loss functions are -0.168 and significant 1%. Figure 5 plots stocks’ A(HAR1) against their
CVP standard deviations for MSE, FER, QLIKE, and MSE-In. In all four cases, stocks’
A(HARI) are mostly negative, and become more negative for stocks with high CVP standard
deviations. While most stocks have CVP standard deviations ranging from 0.08 to 0.23, there
is one stock GILD (Gilead Sciences Inc.) with exceptionally high CVP standard deviation at
0.34. Removing this stock increases the number of significant correlations between CVP
standard deviation and A(HAR1) to eight out of twelve and the average correlation to -0.255.

Unlike SPY, stocks have a significantly negative average correlation between CVP average
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Figure S: CVP Variation and Relative Forecast Performance of HAR_CVP for Stocks

HAR CVP performance is measured by A(HARi) = % — 1 with f being the median loss values of each stock and HARi = HAR, HARQ,

and HARSV. The loss functions are MSE, FER, QLIKE, and MSE-In. The horizonal axis is the CVP standard deviation of each stock.
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and A(HARi) of -0.129: high CVP values are associated with better HAR CVP performance.
Removing GILD increases the average correlation to -0.137.

Overall we find a strong link between CVP variations and HAR CVP forecast
performance. This is consistent with the high Shapley R? from CVP variables reported in Panel
C of Table 2. While HAR CVP performs better than the competing models, it performs even
stronger when there is high variation in RV persistence. We find mixed evidence on the link

between CVP level and HAR CVP forecast performance.

VII. Conclusion and Future Research

This study shows that the persistence in daily volatility is mainly driven by return.
Large returns, positive or negative, are associated with higher dependence of tomorrow’s
volatility on today’s volatility. The dependence is lower when today’s return is small but
volatility is high. Negative returns increase volatility persistence more than positive returns.
This asymmetric volatility persistence has much higher explanatory power than the direct
return impact on future volatility and offers a new explanation for asymmetric volatility. By
estimating the time-varying dependence between the current and future volatilities, our model
improves volatility forecast relative to recent advances in the literature.

The key finding of our study is that volatility persistence varies with the market state.
This can be further tested in a more flexible multi-frequency model such as the MIDAS model
of Ghysels, Santa-Clara, and Valkanov (2006). It can also be tested in the panel-based HAR
models in Bollerslev et al. (2017) for commonality in volatility persistence. Different
functional forms for CVP, e.g. a logit function, can be experimented. Extensions to long-run
volatility and different asset classes should also be investigated. While we outline the heuristic
arguments for CVP in Section II, formal economic modelling is needed to provide theoretical
support. Alternative mechanisms for CVP should be explored. Given the on-going debate on
leverage effect versus volatility feedback as the main channel for asymmetric volatility, e.g.
Choi and Richardson (2016) and Engle and Siriwardane (2016), a valuable empirical analysis
would be to assess these explanations while controlling the asymmetric return impact on
volatility persistence. At a more fundamental level, the return impact on volatility persistence
should be considered in modelling and testing the risk-return relationship and in studies of

volatility risk premium.
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Appendix A: Volatility Impact of Stock and Market Returns

We show that in the HAR and HAR CVP models for individual stocks, the effects of the S&P index returns dominate those of stock returns.
Panel A reports the estimation results of the HAR model with both stock returns and the S&P index returns:

RViy1 = a+ BpRVy + BywRViw + BuRVem + @pri + (Pwl”gw + (PMrtS,M + Opre + Owrew + Omrem + €c41

where rf is the stock return and 1t is the S&P 500 index return. It shows that coefficients of stock returns are not significant when the S&P index

returns are included. Panel B reports the estimation results of the HAR CVP model in (4) with stock returns, not S&P 500 index returns.

Compared to Panel B of Table 2, the CVP return coefficients B and B, and the leverage coefficients Op, Byy, and 6y are smaller with lower t

statistics.
Panel A: HAR
Bm () Pw Pm Op Bw Om 0‘ R? AIC LBS
Ave Coeff 0.192™"  -0.240"" -0.360""  -0.295" 0.293 0.567 6464 77
t stat 3.97 -3.24 -3.37 227 4.18
%(t<-1.96) 0% 66% 53% 23% 0%
%(t=>1.96) 79% 0% 0% 0% 91%
Ave Coeff 0.214™  -0.0943 -0.127 -0.134  -0.453™  -0.899""  -0.820""  0.420™" 0.587 6315 70
t stat 4.65 152 -1.28 -0.87 -3.36 -3.56 -2.33 5.59
%(t<-1.96) 0% 10% 8% 5% 87% 90% 57% 0%
%(t=>1.96) 90% 1% 1% 0% 0% 0% 0% 100%
Panel B: HAR CVP
Br Brv Bw Bm @Pp Pw POm R? F AIC LB5
Return = Stock Returns
Ave Coeff -0.0160™  -0.0069™" 0.316™ 0.129™  -0.090"  -0.293""  -0.231"" 0.608 126 6124 56
t stat -2.26 -4.86 6.12 2.72 -1.66 -3.35 -2.06
%(t<-1.96) 28% 89% 0% 0% 21% 54% 16%
%(t=>1.96) 0% 0% 93% 47% 0% 0% 0%
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Appendix B: Additional Conditioning Variables

In addition to daily return and RV, we examine whether daily volatility persistence is
affected by volatility jumps (VJ), number of trades (NT), illiquidity (IL), and the imbalance of
buyer- and seller-initiated trades (TI). Volatility jumps have been shown to help forecast future

volatility, e.g. Corsi and Reno (2012). The continuous component of RVt is the bipower

. . | . .
variation defined as BVi = EZ?=2|ri,t| Iri—1¢|. It converges to the integrated variance as n — oo

and is calculated using the skip-4 method of Huang and Tauchen (2005) and Patton and
Sheppard (2015) to improve its properties. Volatility jump is VJi = RVi — BVi. Barndorft-
Nielsen and Shephard (2006) suggest the following statistic for testing VJi = 0:

- n'/2(BV,/RV, — 1)
©T (m2/4 + 1 — 5)1/2 x max{1, QV./2/BV}

2

where QVi = % in=4|ri't||ri_1‘t||ri_2't||ri_3’t|. Z: is asymptotically N(0,1) in the absence of

jumps. Let zq be the left tail of N(0,1) with P(Z<z«) = a. Volatility jump is defined as VJi =

l(z,<2)(RVi—BVy). With o= 1% and zq = -2.326, jumps occur on 9% of trading days for SPY

and more often for individual stocks. Daily illiquidity is measured by the Amihud (2000)
measure defined as ILt = [r/Volt where Vol is trading volume in unit of million. We use the
bulk volume classification of O’Hara, et al. (2012) to partition the 5-minute trades into buyer-
and seller-initiated portions, with the difference being the trade imbalance (TI:). Recently
O’Hara, et al. (2015) show that order imbalance based on bulk volume classifications are good
proxies of information-based trading.

Let Yt be VJi, NTy, ILt, or Tl. To assess the impact of these variables on volatility
persistence, we extend the model in (4) to include Yt and its interaction with RVt:

RViyp =a+ (Bo + Byr|Irel + Bere + BryRV: + BYYt)RVt + 8yYe + @OZ¢ + &4
Table B reports the impact of the additional conditioning variables. While some of the

additional variables have a significant impact on future volatility level, their effects on
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volatility persistence are either insignificant or discrepant. Volatility jumps reduces volatility
persistence for SPY but have no effect for individual stocks. Forsberg and Ghysels (2007) find
that “the dynamics of the [volatility] process do not change whether we have a jump at time t
or not, not even at the one day prediction horizon.” Clements and Liao (2017) show that the
jump intensity as estimated from a Hawkes model increases RV persistence. They do not
control the impact of return and RV. The lack of impact from trading intensity (NT) is
consistent with those of Fleming, Kirby, and Ostdiek (2006) who find trading volume does not
explain the ARCH effect in volatility. For SPY, both IL and TI increase future volatility level
but decrease volatility persistence. For individual stocks, IL reduces future volatility and VI
has no effect. Any information asymmetry embedded in VI appears to be subsumed by return
and RV. Table B shows that the CVP coefficients remain significant in almost all cases. For
SPY, Glrl is largely intact as in Table 2; B, is significant except for TI; Bry is also smaller but
highly significant. For stocks, additional variables are largely insignificant and the CVP

coefficients are similar to those in Table 2.
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Table B: Additional Conditioning Variables

This table reports the estimated coefficients of the following regression:
RVesr = a+ (Bo + By Irel + Brre + BryRVe + By Y )RVe + 8y Y, + @Z¢ + €44

Y is one of the following variables: volatility jump (VJ), the number of trades (NT), illiquidity
(IL), and trade imbalance (TI). Zt = (RVyw, RVim, Ty, Tew, Tem)’- The other variables are the
same as in Table 3. The asterisks *** ** * indicate significance at 1%, 5%, and 10%
respectively.

Bo Biry Br Brv By 8y R?
SPY:
Vi 0.322""  0.106™" -0.036"  -0.011"™" -0.070"" 0.222 0.718
t-stat 3.97 3.38 -2.12 -5.63 -2.02 0.65
NT 0.304™"  0.100™" -0.033"  -0.011™ 0.019 -0.031 0.713
3.51 3.40 -2.05 -4.11 0.20 -0.13
IL 0.361™"  0.102""  -0.034™ -0.011™ -0.088" 0.381"" 0.716
4.60 3.56 -2.15 -5.59 -1.79 2.78
TI 0.322"*  0.105™ -0.013 -0.009""  -0.003" 0.006™ 0.720
4.36 3.60 -0.92 -6.52 -1.76 2.28
Stocks
VI 0.404™"  0.068™"  -0.027""  -0.006""  -0.005 -0.015 0.643
t-stat 6.64 4.62 -2.95 -6.18 -0.28 -0.05
%(t<-1.96) 0% 0% 54% 87% 22% 16%
%(t=1.96) 92% 82% 0% 0% 21% 5%
NT 0.353""  0.067""  -0.026"" -0.006""" 0.000 0.000 0.644
t-stat 4.92 4.62 -2.84 -4.89 0.08 0.01
%(t<-1.96) 0% 0% 51% 80% 15% 8%
%(t=1.96) 85% 80% 0% 0% 9% 7%
1L 0.478™" 0.067""  -0.029" -0.006"" -0.004 -0.461" 0.648
t-stat 6.56 4.82 -3.19 2.77 -0.25 -1.73
%(t<-1.96) 0% 0% 57% 53% 20% 18%
%(t=1.96) 94% 82% 0% 3% 11% 2%
TI 0.388""  0.069™" -0.020" -0.006""  -0.015 0.118 0.643
t-stat 6.77 488 -1.82 -6.01 -0.44 0.88
%(t<-1.96) 0% 0% 36% 92% 9% 1%
%(t=1.96) 93% 83% 3% 0% 7% 10%
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Appendix C: Sub-period Results

Sub-period analyses allow us to assess how the statistical relationship has evolved over
time and when the relationship is strong and weak. We require all stocks have 6 sub-periods,
i.e. starting from 2002, which leaves 72 stocks in the sample. Table C reports the results of
sub-period estimation. In most sub-periods, at least two of the three conditioning variables are
significant with the same signs as in Table 2. There is no significant coefficient of the opposite
sign. Negative returns have greater impact than positive returns in almost all sub-periods.
Therefore the return-size effect is greater than the return-direction effect in most sub-periods.
The HAR _CVP model works particularly well during the crisis period of 2008-09, with all
conditioning variables highly significant. The results indicate that the qualitative relationship
in Table 2 holds in most sub-periods regardless the level of volatility.

Table C: Sub-period estimations

This table reports the daily persistence coefficients of the following models:
RViy, = a+ (Bo + Blrllrtl + Brre + BryRVORV: + @Z; + &4

Zi=(RVew, RVewm, Ty, Tews Tem)'- %(t < -1.96) and %(t = 1.96) are the percentage of stocks
with t < -1.96 or t > 1.96 respectively. The asterisks *** ** * indicate significance at 1%,
5%, and 10% respectively.

Panel A: Sub-periods for SPY

Bo Bir] B Brv R?

2000 — 2001 0.455™ 0.002 -0.022 -0.014"  0.287

t stat 2.55 0.08 -1.07 -1.67

2002 — 2003 03117 0.177"  -0.066"™"  -0.021"" 0.798
2.88 5.04 -6.34 -2.27

2004 — 2005 0.260  0.196™" 0.022 -0.178  0.437
2.14 455 0.30 -1.59

2006 — 2007 0.292""  0.160™" -0.020 -0.037  0.583
2.95 2.67 -0.33 -1.56

2008 — 2009 0.388""  0.098™"  -0.035"  -0.012"" 0.726
2.78 2.71 -1.78 -3.31

2010 -2011 0.413"  0.079™"  -0.046" 0.002  0.697
2.46 2.94 -2.19 0.12

2012 —2014/5 0.582"  0.037 -0.04 -0.387"  0.336
413 0.98 -0.96 -2.25

57



Panel A: Sub-periods for stocks

Bo Blrl Br Bry R?
2002 - 2003
Average 0.344™  0.106™  -0.040"" -0.015""  0.550
t stat 571 5.18 -3.35 -3.35
%(t<-1.96) 0% 0% 47% 42%
%(t=1.96) 76% 78% 1% 3%
2004 — 2005
Average 0367 0.079™  -0.018  -0.042"" 0.259
t stat 7.01 2.89 -0.59 -3.42
%(t<-1.96) 0% 0% 6% 46%
%(t=1.96) 79% 35% 6% 3%
2006 — 2007
Average 0363 0.070™ -0.031  -0.025""  0.379
t stat 5.18 252 -1.08 -2.82
%(t<-1.96) 0% 0% 14% 42%
%(t=1.96) 86% 42% 0% 1%
2008 — 2009
Average 0.389™"  0.066™"  -0.022"  -0.0069"" 0.632
t stat 3.41 3.48 -1.72 -3.68
%(t<-1.96) 0% 0% 39% 71%
%(t=1.96) 63% 65% 1% 0%
2010 - 2011
Average 0.454™"  0.070™  -0.013 -0.013 0411
t stat 4.27 3.14 -0.94 -1.30
%(t<-1.96) 0% 0% 24% 49%
%(t=1.96) 83% 67% 7% 1%
2012 -2014
Average 0.428™ 0.033 -0.066™  -0.039""  0.318
t stat 7.99 1.40 -2.49 -2.67
%(t<-1.96) 0% 0% 36% 50%
%(t=1.96) 90% 10% 3% 1%
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