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Abstract 
 

This study provides evidence on the common determinants for two prominent features of equity 
market volatility: its persistence over time and its asymmetric dependence on past returns. We 
show that daily volatility persistence increases with current returns, especially negative returns. 
It decreases with current volatility.  The estimated volatility persistence from the observed 
variables is termed “conditional volatility persistence”. It provides a new economic link from 
return to future volatility, and a more robust explanation for their asymmetric relationship. By 
estimating the variations in the latent volatility persistence, our model significantly improves 
volatility forecasts relative to recent advances in volatility models. 
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“The ‘state of the world’ is a serially correlated thing; hence, we find ARCH.”   

Diebold and Nerlove (1989) 

I. Introduction 

This study examines the determinants of short-run volatility persistence.  Our empirical 

design is motivated by several economic mechanisms linking the information process as well 

as uninformed trading to volatility persistence.  Our evidence supports the above view of 

Diebold and Nerlove (1989): the overall “state of the world”, as measured by daily return and 

volatility, is an important determinant of volatility persistence.  Volatility persistence as a 

function of return represents a new link from current return to future volatility. It sharply 

reduces the direct return impact on future volatility and offers a new and more robust 

explanation for asymmetric volatility. By estimating volatility persistence from the observed 

market variables, our model significantly improves volatility forecasts.   

Since the seminal studies by Engle (1982) and Bollerslev (1986), a vast literature has 

emerged, extending GARCH-family models to capture a wide range of statistical features. 

However, the literature on the economic origins of volatility persistence remains relatively 

small and diverse. The most prominent is the mixture of distribution hypothesis (MDH) where 

volatility persistence is driven by the persistence in information arrivals.1  Other explanations 

include the persistence in wealth distribution (Cabrales and Hoshi, 1996), investor learning 

about uncertainty (e.g. Brock and LeBaron, 1996; Johnson, 2000; He, Li, and Wang, 2016), 

information cost (de Fontnouvelle, 2000), time-varying risk aversion (McQueen and Vorkink, 

2004), and heterogeneous trading frequencies (Xue and Gençay, 2012), among others. Since 

the relevant variables are unobservable, empirical tests of these mechanisms are inherently 

difficult and affected by how well the latent variable is estimated.  The MDH as a mechanism 

for volatility persistence finds mixed empirical support. Several studies, e.g. Laux and Ng 

(1993), Andersen (1996), and He and Velu (2014), show that the latent information arrivals 

can partially explain volatility persistence. Other studies, e.g. Lamoureux and Lastrapes (1994) 

and Liesenfeld (1998), fail to find empirical support for the MDH. Liesenfeld (2001) and 

Berger, Chaboud, and Hjalmarsson (2009) point to time-varying price sensitivity to new 

information as an important source for volatility persistence.  Lamoureux and Lastrapes (1990) 

and Hamilton and Susmel (1994) show that persistence is lower after accounting for volatility 

                                                            
1 The MDH was originally proposed to explain the non-Gaussian distribution of asset returns (Clark, 1973) and 
the volatility-volume relationship (Tauchen and Pitts, 1983; Andersen, 1996).  Diebold (1986) and Gallant, 
Hsieh, and Tauchen (1991) were among the first to suggest the persistence of exogenous information flow as the 
source for volatility persistence.  
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regime shifts. Patton and Sheppard (2015) show that persistence comes mostly from the “bad” 

volatility associated with negative returns. Ning, Xu, and Wirjanto (2015) report that high 

volatility is more persistent than low volatility. Bollerslev, Patton, and Quaedvlieg (2016, BPQ 

hereafter) provide the first evidence on time-varying daily volatility persistence that is 

inversely related to measurement errors in daily volatility.  

Instead of focusing on one particular mechanism, we take a broader view on the origins 

of volatility persistence and propose several mechanisms linking the overall market state to 

volatility persistence.  To illustrate the idea, let’s assume that daily volatility σ୲ଶ  follows a 

simple dynamic process σ୲ାଵ
ଶ ൌ α ൅ βσ୲ଶ ൅ ε୲ାଵ . In this study, we present evidence that 

volatility persistence as measured by β is a function of market state s୲ .  Using return and 

volatility as proxies for the market state s୲ ൌ ሺr୲, σ୲ଶሻ, the dynamic process for σ୲ଶ becomes 

nonlinear: σ୲ାଵ
ଶ ൌ α ൅ βሺr୲, σ୲ଶሻσ୲ଶ ൅ ε୲ାଵ. In section II, we argue that βሺr୲, σ୲ଶሻ increases with 

|r୲| but decreases with σ୲ଶ. The intuition is that large information shocks cause large |r୲| and 

high σ୲ଶ . They draw greater investor attention, causing further information search and 

additional information arrivals. They may also trigger portfolio adjustments and herding 

behaviour which often last several days.  Such endogenous information flows and uninformed 

trading increase the dependence of σ୲ାଵ
ଶ  on σ୲ଶ, i.e. βሺr୲, σ୲ଶሻ.  Negative returns tend to generate 

greater investor reaction and higher βሺr୲, σ୲ଶሻ. On the other hand, volatility is often viewed as 

an information flow measure (Ross, 1989; Hasbrouck, 1995; Andersen, 1996). Given an 

information event, a high σ୲ଶ  implies more information being priced on a trading day, less 

unpriced information and less correlation between σ୲ାଵ
ଶ  and σ୲ଶ, i.e. βሺr୲, σ୲ଶሻ.  The economic 

mechanisms linking return and volatility to volatility persistence are further elaborated in 

Section II.  To the degree that return and volatility reflect the overall “state of the market”, our 

approach echoes the view of Diebold and Nerlove (1989) in the epigraph. Volatility persistence 

as a function of market state variables, e.g. βሺr୲, σ୲ଶሻ , is termed the conditional volatility 

persistence (CVP), akin to the conditional variance in the GARCH-family models.  

Since the proposed mechanisms for CVP are strongest at daily frequency, our empirical 

analyses focus on daily persistence of realized variance (RV). We modify the heterogeneous 

autoregressive (HAR) model of Corsi (2009) to allow RV persistence to vary with return and 

RV. The estimated HAR_CVP model shows that daily RV persistence changes with the size 

and sign of daily returns and the effect is economically large.  For the S&P 500 ETF (ticker 

SPY), a +1% daily return implies an increase in volatility persistence by 14 to 16% of the 

average daily RV persistence, and a -1% daily return implies an increase in volatility 
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persistence by 48 to 54%! The percentages are 13% and 29% respectively for large stocks in 

the S&P 100 index. The asymmetric return impact on volatility persistence remains highly 

significant after controlling the asymmetric effects of semi-variances in Patton and Sheppard 

(2015) and the impact of measurement errors in BPQ (2016). We find a small but significant 

negative impact from RV to its persistence. Overall the evidence strongly supports CVP and 

the proposed mechanisms for volatility persistence. Return and RV remain significant 

determinants of volatility persistence in models with non-linear CVP specifications, additional 

market-state variables, and alternative measures for volatility persistence.   

The strong return impact on RV persistence documented here has not been formally 

studied in the literature.  In a HAR model with semi-variances, Patton and Sheppard (2015) 

estimate the impact of RV୲Iሺ୰౪ழ଴ሻ  on RVt+1 where Iሺ.ሻ  is an indicator variable.  They report 

positive and highly significant coefficients of RV୲Iሺ୰౪ழ଴ሻ, which is consistent with our finding 

of negative returns associated with high volatility persistence. However, Patton and Sheppard 

(2015) term RV୲Iሺ୰౪ழ଴ሻ as “a simple leverage effect variable” unrelated to volatility persistence. 

Palandri (2015) examines the persistence of positive and negative semi-variances.  He reports 

sharp differences in the half lives of positive and negative semi-variances when semi-variances 

are estimated from GARCH-based volatility models.  However, the differences largely 

disappear when semi-variances are calculated from intraday returns.   

Evidence linking volatility level with its persistence is limited.  Ning, Xu, and Wirjanto 

(2015) report that daily RV has greater right-tail dependence than left-tail dependence, i.e. high 

RV levels have greater persistence. Their study does not consider the effect of return on RV 

persistence. We emphasize the differential impact of return and RV on RV persistence. Our 

CVP combines a large positive effect from return size with a small negative effect from RV. 

Daily CVP is indeed positively correlated with RV (Table 3). BPQ (2016) document a negative 

impact on RV persistence from RV measurement errors captured by realized quarticity (RQ).  

Since RQ and RV are highly correlated (Table 1), their result is consistent with our finding of 

a negative impact from RV to RV persistence. However, the underlying mechanisms are very 

different.  They argue that RQ reduces RV’s information content and its impact on future RV.  

In their model, high RV periods have high RQ and low RV persistence (see the example in 

their Figure 2). We emphasize the impact of information shocks and price discovery on RV 

persistence. By conditioning RV persistence on daily returns, daily CVP is high in high RV 

periods, e.g. during the global financial crisis of 2008-09.   
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Conditional volatility persistence provides a new link from return to future volatility.  

Based on Shapley R2, this new link has much higher explanatory power than the direct impact 

from return to future volatility. It offers a new explanation for asymmetric volatility, in addition 

to financial leverage (Black, 1976), volatility feedback (Pindyck, 1984), and herding and 

contrarian trading (Avramov, Chordia, and Goyal, 2006). CVP implies an asymmetric return 

impact on volatility persistence: negative returns increase volatility persistence more than 

positive returns. Ceteris paribus, higher persistence leads to higher volatility tomorrow. Thus 

CVP provides an alternative mechanism for the asymmetric return impact on future volatility. 

In section II, we show that in the well-known Glosten, Jagannathan, and Runkle (1993, GJR 

hereafter) model, asymmetric volatility comes entirely from asymmetric volatility persistence. 

In section V, we demonstrate that CVP sharply reduces the asymmetry in RV attributed to the 

direct return impact, by 57 to 67% for SPY and 46 to 58% for stocks.  Overall the evidence 

indicates that at daily frequency, CVP is the dominant link from return to future volatility and 

the dominant source for volatility asymmetry.  

By estimating the dependence of future RV on today’s RV, our HAR_CVP model 

significantly improves daily volatility forecasts relative to the HARSV model of Patton and 

Sheppard (2015) and the HARQ model of BPQ (2016). Based on four loss functions, the 

median loss values of HAR_CVP are 8 to 28% lower than HARQ and HARSV for SPY and 

10 to 16% lower for individual stocks. The average loss values of HAR_CVP are often more 

than 40% lower than the competing models.  DM tests show the loss reductions are highly 

significant. HAR_CVP’s superior performance is robust to most market conditions. It is even 

stronger on days with large positive or negative returns, e.g. during the global financial crisis.  

It is also stronger in periods (and for stocks) with high CVP variations.  These findings indicate 

that the superior forecast accuracy of HAR_CVP comes from its ability to capture large 

variations in the latent daily volatility persistence. HAR and HARSV have constant volatility 

persistence for the rolling forecast windows and HARQ adjusts volatility persistence only to 

realized quarticity (RQ). We find mixed evidence on whether a high CVP value itself is the 

source for HAR_CVP’s superior forecast accuracy. 

This paper has the following sections.  Section II outlines the economic mechanisms in 

which daily volatility persistence increases with the size of daily returns and decreases with 

volatility level. They motivate the empirical specification for conditional volatility persistence. 

In section III, we review and modify recent models of RV dynamics to allow conditional 

persistence. Section IV presents empirical evidence on the determinants and the characteristics 
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of daily volatility persistence, together with a range of robustness checks. Section V shows that 

CVP offers an alternative and robust mechanism for the asymmetric impact of return on future 

volatility. Section VI compares volatility forecasts of models with constant or conditional 

volatility persistence. We conclude in Section VII.   

II. Return, Volatility, Volatility Persistence, and Asymmetric Volatility 

This section first explores the economic links from daily return and volatility to 

volatility persistence.  The MDH is taken as the baseline case: the clustering of periodic macro 

news releases and company disclosures, is an important source for volatility persistence. We 

argue heuristically additional economic mechanisms linking daily return and volatility to 

volatility persistence.  Using the GJR model, we show that the well-known asymmetric 

volatility can be the results of an asymmetric impact from return to volatility persistence.  The 

GJR model is in fact a model of asymmetric volatility persistence.  

Return and volatility persistence 

There are several economic mechanisms linking daily return to volatility persistence. 

The first mechanism is based on the observation that daily information arrivals are partially 

endogenous. We define correlated information as pieces of information relating to the same 

information event.  A large return |rt| reflects the net price impact of an information event on 

day t. It draws greater investor and media attention, triggering further information search and 

the arrivals of correlated information on day t+1. 2  These correlated information arrivals 

increase the correlation between RVt and RVt+1. When the information event is ambiguous, one 

would expect more information searches and more subsequent arrivals of correlated 

information.  Boudoukh, et al. (2015) examine volatility persistence after large daily price 

changes, e.g. |rt| above one standard deviation. They show that volatility does not persist when 

its source can be identified; volatility is persistent only when it is driven by unidentified and 

complex events.  Dimpfl and Jank (2016) report that large price swings drive more Google 

searches on stocks, leading to higher volatility on the next day. Economic intuition and 

empirical evidence suggest that following large and complex information shocks, investors 

increase their effort in searching for information and explanations.  The arrivals of correlated 

                                                            
2 Evidence on investor attention and endogenous information arrivals can be found in Cao, Coval, Hirshleifer 
(2002), Barber and Odean (2008), Hou, Peng, and Xiong (2009), and Andrei and Hasler (2015) among others. 
Recent studies link volatility to internet search activities, e.g. Da, Engelberg, and Gao (2011), Drake, Roulstone, 
and Thornock (2012), and Dimpfl and Jank (2016). Such information search increases short-run information 
arrivals.  It is different from long-run information production, e.g. Veldkamp (2005, 2006) and Brockman, 
Liebengerg, and Schutte (2010).  It also differs from price discovery through trading.   
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information increase volatility persistence. On the other hand, a small |rt| is unlikely to motivate 

investors to seek further information; volatility persistence is driven by the persistence in 

exogenous information arrivals as in the MDH.   

There are non-information channels linking large returns to high volatility persistence. 

For example, large returns can trigger portfolio adjustments by passive investors. Since 

investors cannot perfectly separate informed and uninformed trading, such non-information 

trading may increase volatility and volatility persistence.  Large returns may also cause herding 

trades, e.g. momentum traders trading in one direction and contrarian traders trading in the 

opposite direction. Kremer and Nautz (2013a and 2013b) find strong evidence of short-term 

institutional herding from daily data, with lagged daily return as a significant determinant for 

institutional herding. Persistence in herding is likely to increase volatility persistence. In 

addition, large returns may trigger long-run investors to react to short-run information shocks.  

As illustrated by Xue and Gençay (2012), the interaction of short and long-run investors can 

lead to volatility persistence.   

We expect large negative rt to increase volatility persistence more than large positive rt.  

Investors tend to have strong loss aversion (Kahneman and Tversky, 1979). They pay more 

attention to bad news, resulting in greater endogenous information search and correlated 

information arrivals after large negative rt.  Andrei and Hasler (2015) provide theoretical and 

empirical evidence that greater investor attention is a source for stock volatility especially 

during bad times. Dzielinski, Rieger, and Talpsepp (2018) show that investor attention is a 

source for the asymmetric return-volatility relation. Consistent with greater investor attention 

to negative returns, Patton and Sheppard (2015) show that future volatility depends more on 

today’s negative semi-variance that reflects bad news.  

Volatility level and its persistence 

The economic link between volatility level and persistence is centred on price discovery.  

Andersen (1996) defines the price discovery process as “private information arrivals induce a 

dynamic learning process that results in prices fully revealing the content of the private 

information through the sequence of trades and transaction prices.” In his MDH model, “each 

informational arrival induces a price discovery phrase followed by an equilibrium phrase.” 

While investors acquire information through information search discussed above, price 

discovery is the trading process incorporating new information into a new equilibrium price. 

Greater price discovery implies that more information is being priced and less correlated 

information arrivals on the next day.  Therefore, price discovery reduces volatility persistence.   
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Hasbrouck (1993) develops a widely used measure for price discovery. The observed 

return (rt) is decomposed into a random-walk component (mt) capturing the price impact of 

information arrivals, and a serially correlated noise (nt) reflecting the effects of microstructure 

frictions, transaction costs, behavioural biases, etc.  Price discovery is measured by var(mt) and 

pricing error is measured by var(nt).3  Based on a sample of 1361 NYSE stocks, Boehmer and 

Wu (2013) report the average varሺn୲ሻଵ/ଶvarሺr୲ሻିଵ/ଶ  to be 0.095 with a median of 0.062.  

Based on 50 stocks in the S&P 500 index, Ozturk, van der Wel, and van Dijk (2017) report that 

var(mt) is about 20 times larger than var(nt).  These results suggest that var(rt) is dominated by, 

thus, a close proxy for var(mt). Since price discovery reduces volatility persistence, we expect 

a negative relationship between var(rt) and its persistence.  

The proposed inverse relationship between volatility level and its persistence appears 

to contradict the common perceptions that “volatility drives volatility”, e.g. high-volatility days 

tend to be followed by high volatilities.  Under the proposed mechanisms, persistence is due to 

large swings in daily return rt, not high RVt itself.  When RVt is high, the market is experiencing 

an active price discovery period.  If the resulting rt is small, it indicates that investors’ prior 

expectation has been reaffirmed; there is less information search and less endogenous 

information arrivals on day t+1. Therefore, high RVt and small rt lead to low volatility 

persistence.  Empirically the uncertainty associated with a large information shock, as 

approximated by rt, is usually not resolved by daily price discovery approximated by RVt.  Our 

estimated daily CVPt is indeed positively correlated with RVt (Table 3).  

Conditional Volatility Persistence 

The above discussion implies that (1) daily volatility persistence increases with daily 

return size; (2) negative returns increase volatility persistence more than positive returns; and 

(3) daily volatility level reduces daily volatility persistence.  In this study, we test the above 

implications using a simple linear specification: 

CVPt = β0 + β|r||rt| + βrrt + βRVRVt 

Let r୲ି = rtIሺ୰౪ழ଴ሻ and r୲
ା = rtIሺ୰౪வ଴ሻ. An equivalent specification is CVPt = β0 + (βr-β|r|)r୲ି + 

(βr+β|r|)r୲
ା

 + βRVRVt. The above implications become β|r| > 0, βr < 0, βRV < 0, and |βr - β|r|| > 

βr+β|r|
 > 0.  The return-based component of CVP is termed the asymmetric volatility persistence 

(AsyVP). It can be a source for asymmetric volatility as shown below and in section V.  Return 

                                                            
3 Various extensions to the Hasbrouck model have been developed, e.g. De Jong and Schotman (2010), Yan and 
Zivot (2010), Wang and Yang (2011), and Putnins (2013).   
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and volatility are the outcomes of the overall trading process, e.g. the information arrivals and 

uninformed trading.  The above CVP improves upon the MDH where volatility persistence is 

determined only by the number of information arrivals.  

We note that CVP is economically and statistically different from models of volatility 

regime switching, where regimes are based on volatility levels and persistence is constant 

within each regime. It also differs from regressions with time-varying coefficients where the 

determinants for time-varying coefficients are unknown.  The proposed mechanisms work 

better for short-run persistence than for long-run persistence.  Large daily returns are better 

proxies for information shocks and have greater effect on investor attention than large weekly 

or monthly return. Therefore, endogenous information arrivals and non-information trading are 

likely to have a strong effect on daily volatility persistence. Long-run persistence may be driven 

by other mechanisms.4 Recent studies by Patton and Sheppard (2015) and BPQ (2016) also 

focus on daily persistence while controlling long-run dependence.  

Asymmetric Volatility Persistence and Asymmetric Volatility 

As discussed above, negative returns should increase volatility persistence more than 

positive returns. Ceteris paribus, higher persistence leads to higher future volatility. Thus the 

asymmetric volatility persistence may lead to asymmetric volatility, without invoking financial 

leverage or volatility feedback.  

We illustrate this mechanism using the GJR model for volatility dynamics. Assuming 

E(rt) = 0, the variance equation of the GJR model is  

σ୲ାଵ
ଶ ൌ ω ൅ ασ୲ଶ ൅ ൫β ൅ λIሺ୰౪ழ଴ሻ൯r୲

ଶ 

Since Eሺr୲ଶ|Ft-1) = σ୲ଶ,	where	Ft-1	 is	 the	 information	set	at	 t‐1, λ can be interpreted as the 

incremental effect of σ୲ଶ on σ୲ାଵ
ଶ  when rt < 0.  The variance equation can be written as 

σ୲ାଵ
ଶ ൌ ω ൅ ൫α ൅ β ൅ λIሺ୰౪ழ଴ሻ൯σ୲

ଶ ൅ ൫β ൅ λIሺ୰౪ழ଴ሻ൯ε୲ 

where ε୲ ≡ r୲ଶ െ σ୲ଶ.  Here volatility persistence is time-varying and asymmetric. Since return 

is the only conditioning variable, CVPt = AsyVPt = α + β + λIሺ୰౪ழ଴ሻ.  Since E(ε୲|Ft-1) = 0, return 

impact on σ୲ାଵ
ଶ  comes from AsyVP: E(σ୲ାଵ

ଶ |rt>0,Ft-1) < E(σ୲ାଵ
ଶ |rt<0,Ft-1) is caused by low 

persistence α+β when rt > 0 versus high persistence α+β+λ when rt < 0.5 Therefore, in the GJR 

                                                            
4 Liesenfeld (2001) shows that “the short-run volatility dynamics are directed by the information arrival process, 
whereas the long-run dynamics are associated with the sensitivity to new information.” 
5 Metaphorically the flow of water depends not only on the water level in the tank (σ୲ଶ) but also on the time-
varying size of the pipe (α+β or α+β+λ).  
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model, asymmetric volatility comes entirely from AsyVP.  Many other GARCH models have 

the same property, i.e. volatility persistence depends on recent returns.   

The significance of the alternative representation of the GJR model is to reveal CVP as 

a potential new source for asymmetric volatility. Neither the original GJR study nor subsequent 

studies on asymmetric volatility have explored the modelling and implications of time-varying 

volatility persistence. However, the empirical success of the GJR model lends support to the 

alternative representation and interpretation. In section V, we further explore the degree of 

asymmetry in RV persistence and present evidence that CVP sharply reduces the asymmetry 

in the news impact curve of Engle and Ng (1993) and Chen and Ghysels (2010).   

III. Modelling Volatility Dynamics 

Investors in financial markets have different investment horizons: high-frequency 

traders often reverse their positions within a few seconds or shorter while pension funds 

typically hold their positions for several months if not longer. Investors trade on different 

information (e.g. order flow versus fundamental value) at different frequencies (e.g. intraday 

versus quarterly), therefore have different impact on future volatility.  Müller, et al. (1997) 

suggests a heterogeneous ARCH model to capture the impact from investors trading at different 

frequencies. Corsi (2009) argues that investors can be broadly classified as trading at daily, 

weekly, and monthly frequencies. He proposes a heterogeneous autoregressive (HAR) model 

that allows differential impact from three volatility components: the daily RVt, the average 

weekly RV୲,୛ ≡ ଵ

ହ
∑ RV୲ି୧
ସ
୧ୀ଴  and the average monthly RV୲,୑ ≡ ଵ

ଶଶ
∑ RV୲ି୧
ଶଵ
୧ୀ଴ .  Future RV 

follows an autoregressive structure of the three volatility components:   

(1) RV୲ାଵ ൌ α ൅ βୈRV୲ ൅ β୛RV୲,୛ ൅ β୑RV୲,୑ ൅ ε୲ାଵ 

The coefficients, βୈ, β୛, and β୑ measure the step-wise dependence of RVt+1 on short and 

long-run volatility. In spite of its simplicity, the HAR model can generate long memory in 

volatility and has good out-of-sample forecast performance.  Corsi (2009), Craioveanu and 

Hillebrand (2012), and Audrino and Knaus (2016) show that it has equal or better forecasts 

than the fractionally integrated ARMA model, models with flexible lag structures, and models 

selected by the lasso-based procedures. It is closely related to the mixed data sampling (MIDAS) 

models of Ghysels, Santa-Clara, and Valkanov (2006) and Ghysels, Sinko, and Valkanov 

(2007), and has better volatility forecasts than a freely parameterized MIDAS model (Clements, 

Galvao, and Kim, 2008).  According to Bollerslev, et al. (2017), it has become “a benchmark 

in the financial econometrics literature for judging other RV-based forecasting procedures.” 
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The asymmetric relationship between asset return and volatility has been extensively 

documented.  Corsi and Reno (2012) demonstrate that the return impact on future volatility is 

highly persistent and propose a HAR structure for returns to capture their heterogeneous effects. 

The lagged weekly (rt,W) and monthly (rt,M) returns are similarly defined as RVt,W and RVt,M. 

The heterogeneous return impact is estimated in a modified HAR model:  

(2) RV୲ାଵ ൌ α ൅ βୈRV୲ ൅ β୛RV୲,୛ ൅ β୑RV୲,୑ ൅ θୈr୲ ൅ θ୛r୲,୛ ൅ θ୑r୲,୑ ൅ ε୲ାଵ 

We take the model in (2) as our baseline model for RV dynamics and further calibrate daily 

RV persistence (βD) in terms of the observed market state variables below.      

Empirical evidence on time-varying RV persistence as captured by βD in (2) remains 

limited. Forsberg and Ghysels (2007) allow βD to vary with a dummy for volatility jumps but 

report no change in RV dynamics. Forsberg and Ghysels (2007) and BPQ (2016) show 

theoretically that the autocorrelation of RVs is inversely related to integrated quarticity, which 

is the variance of measurement errors of daily RVt.  Integrated quarticity can be consistently 

estimated by realized quarticity defined as RQt ≡
୬

ଷ
∑ r୧,୲

ସ୬
୧ୀଵ .  BPQ (2016) use a simple linear 

function of RQ୲
ଵ/ଶ to capture the effect of measurement errors on RV persistence: 

(3) RV୲ାଵ ൌ α ൅ ሺβ଴ ൅ βୖ୕RQ୲
ଵ/ଶሻRV୲ ൅ β୛RV୲,୛ ൅ β୑RV୲,୑ ൅ ε୲ାଵ 

The estimated βୖ୕ is negative and highly significant. We denote the implied RV persistence 

as CVP୲
ୖ୕ ≡ β଴ ൅ βୖ୕RQ୲

ଵ/ଶ . The forecasting performance of the model in (3) surpasses 

several benchmark models. BPQ (2016, page 9) attribute the superior performance to “the 

model’s ability to place a larger weight on the lagged daily RV on days when RV is measured 

relatively accurately (RQ is low), and to reduce the weight on days when RV is measured 

relatively poorly (RQ is high).” Their evidence indicates that the time-varying “weight on the 

lagged daily RV” can better capture the true RV persistence.   

The current study explores economic determinants of RV persistence. Section II 

suggests that persistence increases with returns, especially negative returns, and decreases with 

RV. A linear representation of the above implications is CVPt = β0 + β|r||rt| + βrrt + βRVRVt. The 

CVP coefficients are estimated from the modified HAR model: 

(4) RV୲ାଵ ൌ α ൅ ሺβ଴ ൅ β|୰||r୲| ൅ β୰r୲ ൅ βୖ୚RV୲ሻRV୲ ൅ φZ୲ ൅ ε୲ାଵ 

where Zt = (RVt,W, RVt,W, rt, rt,W, rt,M)’ captures the dependence at longer horizons as well as 

the heterogeneous return impact, and φ ൌ ሺβ୛, β୑, θୈ, θ୛, θ୑ሻ.  As in BPQ (2016), the lagged 
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variables are non-overlapping, e.g. RV୲,୛ ≡ ଵ

ସ
∑ RV୲ି୧
ସ
୧ୀଵ , RV୲,୑ ≡ ଵ

ଵ଻
∑ RV୲ି୧
ଶଵ
୧ୀହ , and similarly 

for rt,W and rt,M. The model in (4) is termed the HAR_CVP model and is estimated in Section 

IV. The mechanism in Section II is supported if the CVP coefficients are significant with the 

expected signs. The HAR_CVP model also provides a direct comparison between two channels 

linking rt to RVt+1: the new CVP effect via β|୰| and β୰ and the “leverage” effect via Zt and its 

coefficient φ. The comparison is carried out in Section V.  

IV. Evidence on Conditional Volatility Persistence 

This section presents the empirical results of the HAR_CVP model in (4).  The impact 

of CVP on RV dynamics is measured through its coefficients and its explanatory power. We 

also explore the empirical characteristics of the estimated daily CVP. We conduct a range of 

robustness checks, including alternative models, an alternative measure for RV persistence, 

and additional conditioning variables. The evidence indicates that CVP has a strong and robust 

impact on future RV and explain a large portion of RV variations over time.  

(i) Sample and Summary Statistics 

Our analyses are based on the S&P 500 ETF (ticker SPY) and the S&P 100 index 

constituent stocks.  Our sample for SPY is from 2 January 2000 to 30 May 2014.  From the 

S&P 100 constituent stocks, we remove seven stocks with less than five years of intraday data 

and six stocks with share prices below $5 during the sample period.  We find that in 2000 and 

2001, several stock-months have less than 15 days of intraday data.  Our sample of 87 stocks 

starts on or after 2 January 2002 and ends on 31 December 2014.  

Intraday 5-minute data are extracted from the Thomson Reuters Tick History (TRTH) 

database, including the first, the high, the low, and the last prices, as well as the volume and 

the number of trades for each 5-minute interval. Data outside the NYSE trading hours are 

removed.  We also remove short trading days, e.g. the day before July 4 and Christmas, and 

days with less than 3 hours of data possibly due to missing data or slow trading.  To filter out 

possible data errors, we apply a filter similar to those of Barndorff-Nielsen, et al. (2009). For 

each 5-minute return, we calculate the standard deviation of the remaining returns on the same 

day.  A return is removed if it is outside 6 standard deviations from zero. The filter removes 

246 intervals for SPY, representing 0.088% of the 5-minute sample.  It has no effect on 96.3% 

of the SPY trading days. Of the remaining 3.7% trading days, 2.9% have unfiltered realized 

variance larger than the filtered ones by 50% or more. Therefore, the filter removes extremely 

large returns relative to the rest of the trading day.   
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Our measure for daily volatility is realized variance (RV) based on 5-minute returns. 

This is a common practice as surveyed by Hansen and Lunde (2006) and remains popular in 

recent studies.6 Let ri,t be the log-return in interval i and n (=78) be the number of intraday 

intervals on a trading day t. RVt is calculated as ∑ r୧,୲
ଶ୬

୧ୀଵ .  Zhang, Mykland, and Aït-Sahalia 

(2005) propose to use sub-grids to improve RV precision.  Patton and Sheppard (2015) uses 

ten grids of 5-minute returns to calculate ten RVs and take the average as the daily RV.  We 

use the average RV from two grids of 5-minute returns from the first and the last price in each 

5-minute interval. To compare with models proposed by Patton and Sheppard (2015) and BPQ 

(2016), we also calculate the negative semi-variance NSVt = ∑ r୧,୲
ଶ Iሺ୰౟,౪ழ଴ሻ

୬
୧ୀଵ , the positive semi-

variance PSVt = ∑ r୧,୲
ଶ Iሺ୰౟,౪வ଴ሻ

୬
୧ୀଵ , and the realized quarticity RQt = 

୬

ଷ
∑ r୧,୲

ସ୬
୧ୀଵ .  As a robustness 

check, we also use RV measures based on subsampling and realized kernel that reduce the 

impact of microstructure noise. For SPY, we obtain daily RV and semi-variances from the 

Oxford-Man Institute (OMI) realized library: the RVOM from 5-minute returns with 1-minute 

subsampling and the corresponding semi-variance, and the realized kernel RKOM after 

removing microstructure noise. RV measures from OMI have superscript OM while RV based 

on TRTH data has no superscript.   

Panel A of Table 1 presents summary statistics on our return and RV measures, and 

Panel B reports their correlations. For stocks, the summary statistics are calculated for each 

stock and then are averaged across stocks. Since returns are calculated in percentage, the 

realized variance is inflated by 104. This also appears to be the case for OMI data.  The mean, 

median, and standard deviation of our RV are broadly similar to those of RVOM.  Our RV has 

lower skewness and kurtosis than RVOM.  Both our RV and RVOM have lower mean, median, 

and standard deviation than the realized kernel RKOM.  To facilitate replication, we use the OM 

daily returns which are publicly available.  They are very similar to the daily returns from 

DataStream with a correlation coefficient of 0.97.  Not surprisingly, stocks have higher RV 

than SPY, with an average of 2.50 and standard deviation 5.60.  Daily correlations in Panel B 

are broadly consistent with the literature. Daily returns have negative correlations with different 

RV measures except PSV.  The realized variances and semi-variances have strong positive 

correlations ranging from 0.85 to 0.97.  

  

                                                            
6 E.g. Patton and Ramadorai (2013), Amaya, Christoffersen, Jacobs, and Vasquez (2016), BPQ (2016), 
Bollerslev, Li, and Zhao (2017).   
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Table 1: Data Summary 

For SPY, return is the daily return from the Oxford-Man Institute (OMI) Realized Library.  RV 
is the Realized Variance based on Thomson-Reuters data. NSV and PSV are the negative and 
positive semi-variances. RQ is the Realized Quarticity. RVOM is the Realized Variance from 
the OMI Realized Library. NSVOM and PSVOM are the negative and positive semi-variances.  
RKOM is the Realized Kernel from the OMI Realized Library. All variances and RQ1/2 are 
scaled by 104. LB5 is the Ljung-Box statistic for 5 lags. For stocks, all variables are based on 
the Thomson-Reuters data. Summary statistics and correlations are calculated for each stock 
and then averaged across stocks.   
 
Panel A: Summary statistics 

  Mean  Median  St Dev  Skew  Kurt  LB5 
SPY       

RV  1.13 0.551 2.35 10.6 185 7074 
NSV  0.558 0.268 1.09 8.04 98 8028 
PSV  0.570 0.261 1.34 13.6 306 4909 
RQ1/2  1.29 0.625 2.88 13.2 291 4872 
Return 0.007 0.064 1.25 -0.152 10.2 41.2 
RVOM  1.10 0.537 2.49 14.8 402 5946 
NSVOM  0.551 0.256 1.25 13.4 329 5671 
PSVOM  0.551 0.255 1.30 15.3 415 4960 
RKOM  1.25 0.615 2.75 14.2 378 6032 
Stocks       
Return  0.018 0.037 2.31 -5.37 247 19.8 
RV  2.50 1.21 5.60 9.64 172 6065 
NSV  1.24 0.585 2.83 9.63 174 5665 
PSV  1.26 0.593 2.93 10.2 185 4976 
RQ1/2  3.14 1.44 7.83 10.8 220 4631 

Panel B: Correlations 

 Return RV NSV PSV RQ1/2 RVOM NSVOM PSVOM 
SPY         
RV -0.067        
NSV -0.224 0.963       
PSV 0.065 0.976 0.881      
RQ1/2 -0.053 0.976 0.929 0.961     
RVOM -0.066 0.957 0.906 0.946 0.940    
NSVOM -0.249 0.926 0.920 0.881 0.910 0.973   
PSVOM 0.114 0.937 0.846 0.961 0.921 0.975 0.898  
RKOM -0.056 0.944 0.893 0.935 0.927 0.995 0.967 0.972 
Stocks         
RV -0.058        
NSV -0.171 0.966       
PSV 0.052 0.970 0.875      
RQ1/2 -0.058 0.975 0.947 0.940     
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(ii) Estimation of the HAR Models 

Patton and Sheppard (2015) point out that because the dependent variable in a HAR 

model is a volatility measure, OLS estimates tend to overweigh periods with high volatility and 

under-weigh periods with low volatility. Therefore, OLS residuals have heteroskedasticity 

related to the level of RV.  We follow Patton and Sheppard (2015) and use the weighted least 

squares (WLS) to overcome this problem.  For SPY, inference is based on the Newey-West 

robust covariance with automatic lag selection using Bartlett kernel. For individual stocks, the 

reported coefficients are the cross-sectional averages. Following Hameed, Kang, and 

Viswanathan (2010), the standard error of the kth average coefficient β෠୩ is given by  

(5) StDev ቀβ෠୩ቁ ൌ StDev ቀଵ
୒
∑ β෠୧,୩
୒
୧ୀଵ ቁ ൌ ଵ

୒
ඨ∑ ∑ ωෝ୧,୨ටVarሺβ෠୧,୩ሻVarሺβ෠୨,୩ሻ୒

୨ୀଵ
୒
୧ୀଵ  

where Varሺβ෠୧,୩ሻ is based on the Newey-West standard error of the regression of stock i and ωෝ୧,୨ 

is the correlation between the regression residuals for stocks i and j.   

(iii) Empirical Evidence on CVP 

The HAR and HAR_CVP Models for SPY 

Table 2 reports the estimation results of the baseline HAR model in (2) and the 

HAR_CVP model in (4). Panels A and B report the results for SPY and individual stocks 

respectively.  We focus first on SPY and discuss the results for individual stocks shortly below.  

The realized variance measures for SPY are RVt based on TRTH data, RV୲
୓୑ and RK୲

୓୑ from 

the OMI realized library.  The baseline HAR model restricts β|r| = βr = βRV = 0. As in earlier 

studies, the lagged weekly and monthly RVs and all lagged returns are significant at 1% or 5%, 

consistent with high volatility persistence and heterogeneous effects of returns. Overall the RV 

dynamics based on RVt, RV୲
୓୑, and RK୲

୓୑ are qualitatively similar.  

The HAR_CVP model results confirm that β|r| > 0, βr < 0, and βRV < 0, supporting the 

mechanisms and hypotheses on the determinants of CVP in Section II. The F test resoundingly 

rejects β|r| = βr = βRV = 0. The return size effect β|r| is numerically larger and statistically stronger 

than the return sign effect βr. The signs of the coefficients of positive and negative returns, 

β|r|+βr > 0 and βr - β|r| < 0, indicate that they both increase RV persistence with negative returns 

having greater effects, i.e. |βr - β|r|| > βr + β|r| > 0. For RVt, CVPt = 0.222 + 0.108|rt| – 0.0572rt 

– 0.0043RVt: a -1% return increases CVP by (βr-β|r|)(-1) = 0.165 and a +1% return increases 

CVP by β|r|+βr  = 0.051, holding RVt fixed. Over the sample period, the average of daily CVPt 
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is 0.308 (Table 3). Ceteris paribus, a -1% return increases CVP by 54% (=0.165/0.308) relative 

to its average and a 1% return increases CVP by 16% (=0.051/0.308).  The numbers are 50% 

and 14% for RV୲
୓୑, and 48% and 15% for RK୲

୓୑.  Given the daily return standard deviation of 

1.25% (Table 1 Panel A), days with |rt| > 1% and large changes in volatility persistence occur 

quite often.  The impact of RV on CVP is relatively small. Ceteris paribus, a one-standard 

deviation (Table 1) increase in RVt reduces CVP by -0.0101 which is -3.3% of the average 

CVP.  The corresponding values are -2.2% for RV୲
୓୑ and -1.9% for RK୲

୓୑.   

The model diagnostics show remarkable improvements of fit for HAR_CVP. The Rഥଶ 

increases by 11.2% for both RVt (0.729-0.617) and RV୲
୓୑ (0.666-0.554), and 9.6% for RK୲

୓୑ 

(0.654-0.558)!  The Rഥଶs for HAR_CVP are 17 to 20% higher than those for HAR.  The Akaike 

information criteria (AIC) for HAR_CVP are 20 to 46% lower than those for HAR.  The Ljung-

Box statistics for residuals at 5 lags (LB5) are 64 to 78% lower for HAR_CVP.   

The HAR and HAR_CVP Models for Individual Stocks 

Panel B of Table 2 reports the results for individual stocks.  We report in Appendix A 

that in the baseline HAR model, stock returns are not significant when the S&P 500 index 

returns are included.  In the HAR_CVP model, the S&P 500 returns have larger coefficients 

and greater significance than stock returns.7 Therefore, in the analyses of individual stocks, 

daily returns are the S&P 500 index returns.  We report the average coefficients across stocks 

with t statistics based on the Hameed, Kang, and Viswanathan (2010) standard error in (5). 

Inference for individual stock regressions is based on Newey-West robust covariance. We 

summarize how the model performs for individual stocks, with %(t൑-1.96) and %(t൒1.96) 

being the percentages of stocks with significant coefficients at 5%.  

The results for individual stocks are qualitatively the same as those for SPY. The cross-

stock average coefficients β|r| > 0, βr < 0, and βRV < 0, supporting the CVP mechanisms in 

Section II. The F test rejects β|r| = βr = βRV = 0. At 5% level of significance, 77% of the stocks 

have significant β|r| > 0, 47% have significant βr < 0, and 90% have significant βRV < 0. The 

cross-sectional median coefficients are similar to the averages. The return effect on CVP is 

large: across all stocks, a +1% (-1%) return increases RV persistence by 0.0413 (0.0903), which 

is 13% (29%) of the average CVP (0.434). The mean and median β෠ୖ୚ are larger than those for 

SPY.  Given the standard deviation of 5.60 for stock RVs, a one-standard deviation increase in 

stock RVt reduces CVP by -0.0336 which is -10.9% of the average CVP.  

                                                            
7 Vlastakis and Markellos (2012) show that firm-level RV increases with demand for market-related information 
but is largely unrelated to demand for firm-specific information.   
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Table 2: The HAR and HAR_CVP Models 

This table reports the estimation of the following regression:  

RV୲ାଵ ൌ α ൅ ሺβ଴ ൅ β|୰||r୲| ൅ β୰r୲ ൅ βୖ୚RV୲ሻRV୲ ൅ β୛RV୲,୛ ൅ β୑RV୲,୑ ൅ θୈr୲ ൅ θ୛r୲,୛ ൅ θ୑r୲,୑ ൅ ε୲ାଵ 

The variables are the same as in Table 1.  AIC is the Akaike information criteria.  F is the F statistic for β|୰| ൌ β୰ ൌ βୖ୚ ൌ 0.  LB5 is the Ljung-
Box statistic for residuals at 5 lags.  In Panel A, the t statistics are based on the Newey–West robust covariance with Bartlett kernel.  In Panel B, 
the reported t statistics are based on the standard error for the average coefficient proposed by Hameed, Kang, and Viswanathan (2010).  The t 
statistics for individual stock regressions are based on the Newey–West robust covariance with Bartlett kernel. %(t൑-1.96) and %(t൒1.96) are 
the percentage of stocks with significant coefficients at 5%. The asterisks ***, **, * indicate significance at 1%, 5%, and 10% respectively.  In 
Panel C, Δ% is the percentage change of Shapley R2 relative to the standard HAR model with β|୰| ൌ β୰ ൌ βୖ୚ ൌ 0.   

Panel A: SPY 

 β଴ β|୰| β୰ βୖ୚ β୛ β୑ θୈ θ୛ θ୑ Rഥଶ F AIC LB5 

RV 0.223*    0.490*** 0.151*** -0.396*** -0.559*** -0.361** 0.617  2692 259 
t-stat 1.90    3.16 2.89 -2.93 -2.85 -2.47     

 0.222** 0.108*** -0.0572** -0.0043*** 0.316*** 0.093* -0.096 -0.385*** -0.331** 0.729 489 1467 57 
 2.58 3.49 -2.13 -3.57 4.62 1.86 -1.39 -3.34 -2.10     

RVOM 0.207    0.455*** 0.188*** -0.394*** -0.654** -0.408*** 0.554  3627 140 
t-stat 1.64    3.76 3.30 -2.68 -2.37 -2.82     

 0.234** 0.099*** -0.0562* -0.0028*** 0.274*** 0.112** -0.086 -0.464*** -0.329** 0.666 397 2604 34 
 2.34 2.76 -1.92 -2.59 3.73 2.32 -1.16 -2.74 -2.46     

RKOM 0.225**    0.434*** 0.190*** -0.417*** -0.724** -0.477*** 0.558  4308 132 
t-stat 1.96    3.82 3.33 -2.84 -2.37 -2.96     

 0.217** 0.098*** -0.0503* -0.0021** 0.263*** 0.129*** -0.114 -0.549*** -0.414*** 0.654 328 3444 47 
 2.16 2.93 -1.90 -2.12 3.59 2.70 -1.51 -2.74 -2.83     
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Panel B: Individual stocks 

 β଴ β|୰| β୰ βୖ୚ β୛ β୑ θୈ θ୛ θ୑ Rഥଶ F AIC LB5 

Ave Coeff 0.275***    0.370*** 0.210*** -0.602*** -1.069*** -0.971*** 0.585  6327 71 
Median 0.285    0.375 0.202 -0.458 -0.899 -0.666 0.631  5347 53 

t stat 4.70    5.54 4.51 -4.13 -4.53 -3.40     
%(t൑-1.96) 0%    0% 0% 99% 98% 72%     
%(t൒1.96) 87%    94% 87% 0% 0% 0%     

Ave Coeff 0.390*** 0.0658*** -0.0245*** -0.0060*** 0.273*** 0.144*** -0.267*** -0.770*** -0.662*** 0.638 181 5845 36 
Median 0.381 0.0673 -0.0250 -0.0053 0.270 0.148 -0.142 -0.666 -0.493 0.687 163 4810 25 

t stat 6.42 4.40 -2.62 -6.26 5.36 3.41 -2.85 -3.98 -2.91     

%(t൑-1.96) 0% 0% 47% 90% 0% 0% 47% 92% 41%     

%(t൒1.96) 91% 77% 1% 0% 93% 67% 0% 0% 0%     
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Panel C: Shapley R2 

 RVt |rt|RVt rtRVt RV୲ଶ |rt|RVt+rtRVt+RV୲ଶ RVt,W+RVt,M rt rt,W+rt,M R2 (|rt|RVt+rtRVt+RV୲ଶ)/R2 
SPY            
RV           
HAR 17.2%     33.1% 4.3% 7.1% 61.8%  
HAR_CVP 13.4% 19.6% 4.6% 3.8% 28.0% 24.4% 2.1% 5.2% 73.0% 38.4% 
Δ% -22.5%     -26.5% -51.2% -26.8%   

RVOM           

HAR 14.9%     30.1% 3.7% 6.8% 55.5%  
HAR_CVP 12.2% 18.9% 4.2% 2.7% 25.8% 22.0% 1.7% 5.1% 66.6% 38.7% 
Δ% -18.4%     -26.9% -54.1% -25.0%   

RKOM           

HAR 15.6%     29.9% 3.5% 6.9% 55.9%  
HAR_CVP 12.4% 18.3% 3.4% 2.6% 24.2% 22.0% 1.7% 5.2% 65.5% 36.9% 
Δ% -20.6%     -26.5% -52.3% -24.2%   
Stocks           
HAR 17.9%     31.6% 2.2% 6.8% 58.6%  
HAR_CVP 13.5% 12.4% 1.9% 5.4% 19.7% 24.3% 1.2% 5.1% 63.9% 30.1% 
Δ% -24.6%     -23.2% -45.5% -25.0%   
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The model diagnostics are strongly in favour of the HAR_CVP model. The average Rഥଶ 

increases by 5.3% and the median Rഥଶ increases by 5%.  The Rഥଶs for HAR_CVP are 7.8 to 9.1% 

higher than those for HAR.  The AIC and LB5 are substantially lower for HAR_CVP.  We 

note that the median diagnostic statistics are better than the cross-stock averages, indicating 

outliers with unfavourable HAR_CVP diagnostics. Overall the evidence from individual stocks 

supports the mechanisms and hypotheses for volatility persistence outlined in Section II.  

Contribution of CVP to RV Dynamics 

A striking feature in Panels A and B is that when CVP is included, the coefficients of 

all lagged returns as well as the lagged weekly and monthly RVs are sharply reduced.  The 

large and pervasive impact of CVP inclusion on the coefficients of other variables indicates 

that CVP captures important features in RV dynamics.  Without CVP, the direct impact of 

return on future RV and the long-run RV persistence are significantly overstated.   

To further assess the impact of CVP on RV dynamics, we compute the Shapley 

decomposition of the regression R2. The Shapley R2 of an explanatory variable measures its 

incremental explanatory power while controlling its correlations with all other explanatory 

variables.8  We defined the CVP variables as |rt|RVt, rtRVt, and RV୲ଶ in (4), excluding RVt 

whose coefficient is the constant volatility persistence in HAR. Panel C of Table 2 reports the 

Shapley R2 of individual or group of variables and has several important features.   

First, CVP explains large portions of changes in RV. Shapley R2 of the CVP variables 

is 24~28% for SPY and 20% for individual stocks. The last column of Panel C shows that CVP 

variables account for 30 to 39% of the explanatory power of all variables. The CVP variable 

|rt|RVt has the highest Shapley R2 across all explanatory variables for SPY, and the third highest 

Shapley R2 for individual stocks.  

Second, for SPY, the combined Shapley R2 for |rt|RVt and rtRVt is around 22~25%, 

much higher than the combined Shapley R2 of rt, rt,W, and rt,M at around 7%. For stocks, the 

combined Shapley R2 for |rt|RVt and rtRVt is 14.3% compared to 6.3% for returns.  Almost 90% 

of individual stocks have higher Shapley R2 for |rt|RVt and rtRVt than for returns. Therefore, 

CVP as a link from rt to RVt+1 is two to three times more important than the impact of rt, rt,W, 

and rt,M on RVt+1.     

                                                            
8 Shapley decomposition provides a linear attribution of the regression R2 to each explanatory variable.  The 
Shapley R2 of a group of variables is the sum of the Shapley R2s within the group. The sum of Shapley R2s 
across all variables is the total R2.  Lahaye and Neely (2016) provide a brief literature review, an illustrative 
example of the calculation, and a finance application.  Owen and Prieur (2017) demonstrate the advantage of 
Shapley decomposition over ANOVA-based decompositions.  



20 
 

Third, although Panel B shows that the estimated coefficient of RVt (β0) increases in 

size and significance in the HAR_CVP model, the Shapley R2 of RVt in the HAR_CVP model 

for stocks is 25% lower than in the HAR model.  In other words, around 25% of the explanatory 

power of RVt in the HAR model for stocks are crowed out when CVP variables are included.  

The corresponding number for SPY is 18 to 22%.  Overall Panel C of Table 2 shows that CVP 

variables explain a very large portion of variations in RV.   

Figure 1: Asymmetric Volatility Persistence 

This figure depicts the relationship AsyVPt ൌ β଴ ൅ βାr୲
ା ൅ βିr୲ି where the coefficients are 

calculated from Table 2.  The RV measure for SPY is RVOM.  The individual stocks are Bank 
of New York Mellon Corp (BK) and Wells Fargo (WFC).   

 

Asymmetric Volatility Persistence 

From the linear CVP specification in section II, the asymmetric volatility persistence is  

AsyVPt ≡ β0 + β|r||rt| + βrrt = β0 + (βr-β|r|)r୲ି + (βr+β|r|)r୲
ା. 

From Panel A of Table 2, the estimated coefficients for SPY with RVOM implies that 

AsyVPt = 0.234 – 0.155r୲ି + 0.0428r୲
ା 

The average coefficients for stocks in Panel B of Table 2 implies that 

AsyVPt = 0.390 – 0.0903r୲ି + 0.0413r୲
ା 

These linear relations are depicted in Figure 1 together with those of two stocks. For SPY and 

stocks on average, the impact of r୲ି on CVP is over twice the impact of r୲
ା.  This is similar to 

the AsyVP implied by the GJR model and appears to be a property of equity returns. The 
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asymmetry is stronger for SPY than for stocks on average.  Both the degree and the direction 

of the asymmetry vary across stocks.  Bank of New York Mellon (BK) is one of the five stocks 

(out of 87) with the opposite asymmetry. Wells Fargo (WFC) is one of the five stocks where 

persistence is lower for large positive returns, i.e. βr+β|r| < 0. How AsyVP relates to the well-

known asymmetric volatility is further explored in section V. 

Statistical Characteristics of Daily CVP 

We now summarize the statistical properties of the estimated daily CVP.  Figure 2 

depicts the time series and the histogram of the daily CVP for SPY based on RVOM.  CVP is 

very high during the height of the financial crisis in October 2008 due to large and mostly 

negative daily returns.  Table 3 reports the summary statistics of the estimated daily CVP. They 

are qualitatively similar across RV, RVOM, and RKOM for SPY.  The mean values are significant 

at 1%.  Medians are below the means, indicating some extremely high CVP values. The CVP 

histogram has a long right tail. Depending on the RV measure used, the estimated CVP > 1 on 

10~14 days, representing 0.28% to 0.4% of the sample days. Although βRV < 0, the correlations 

between CVP and the RV measures are above 0.3. This is consistent with the findings of Ning, 

Xu, and Wirjanto (2015) and is due to positive correlations between CVP and the absolute 

return (about 0.8) and positive correlations between the absolute return and RV (about 0.45).  

Ljung-Box statistics indicate that CVP is highly autocorrelated.  

For stocks, we report cross-sectional mean and median summary statistics. Table 3 

shows that across all stocks the average CVP is slightly higher and the average CVP standard 

deviation is slight lower than those of SPY.  The median correlations are larger than the mean, 

indicating the presence of extremely low correlations.   

Table 3: Characteristics of the estimated CVP 

 Summary Statistics Correlations 

 Mean Median St Dev Skew Kurt LB5 |Return| Return RV 

SPY          

CVP(RV) 0.308 0.264 0.122 3.53 20.3 573 0.812 -0.627 0.313 
CVP(RVOM) 0.314 0.272 0.116 3.58 20.6 600 0.797 -0.648 0.321 

CVP(RKOM) 0.297 0.258 0.110 3.55 20.6 715 0.823 -0.614 0.349 
Stocks          

CVP(RV) 0.434 0.412 0.133 2.71 25.4 356 0.763 -0.474 0.067 
Median 0.431 0.407 0.126 3.23 24.1 301 0.828 -0.530 0.124 
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Figure 2: Daily Conditional Volatility Persistence 

(A) Daily CVP(RVOM) 

 

(B) Histogram of CVP(RVOM) 

 

(iv) Robustness Checks 

We conduct several robustness checks for the HAR_CVP results in Table 2.  We test 
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(2016); (2) semi-variances or jump variations as in Patton and Sheppard (2015), and (3) an 

alternative measure for daily volatility persistence. Results with additional conditioning 

variables and sub-period estimations are reported in the Appendix.  

CVP and Measurement Errors 

The HAR_CVP model in (4) offers an alternative mechanism for time-varying RV 
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SPY and 0.975 on average for the individual stocks, making it difficult to separate the impact 

of RVt and RQ୲
ଵ/ଶ.  We test the impact of returns on CVP after taking into account of RQ୲

ଵ/ଶ:  

(6) RV୲ାଵ ൌ α ൅ ሺβ଴ ൅ β|୰||r୲| ൅ β୰r୲ ൅ βୖ୕RQ୲
ଵ/ଶሻRV୲ ൅ φZ୲ ൅ ε୲ାଵ 

Table 4 reports the estimation results for (6).  When β|r| and βr are set to zero, our results are 

qualitatively similar to those of BPQ (2016, Table 3): β෠ୖ୕ is negative and highly significant,9 

confirming the negative impact of measurement errors on RV persistence. When β|r| and βr are 

not restricted to zero, they are numerically and statistically similar to the values in the 

HAR_CVP model in Table 2, and so are the model diagnostics. The combined Shapley R2 is 

over 20% for |rt|RVt and rtRVt in (6) and is around 3% for RQ୲
ଵ/ଶRV୲.  The adjusted R2 when 

β|୰| ൌ β୰ ൌ 0 is much lower than the adjusted R2 of unrestricted models. This helps to explain 

why HAR_CVP has better out-of-sample forecast accuracy than HARQ in section VI.  

CVP and Semi-variances 

Barndorff-Nielsen, Kinnerbrock, and Shephard (2010) show that daily RV can be 

decomposed into the positive and negative semi-variances: RVt = PSVt + NSVt where PSVt 

and NSVt are defined above in IV(i). The difference between PSVt and NSVt is termed the 

signed jump variations SJVt ≡  PSVt – NSVt, with negative and positive jump variations 

defined as NJVt = SJVtൈ I(SJV<0) and PJVt = SJVt ൈ I(SJV>0) respectively. The continuous 

component of RVt is the bi-power variation defined as BVt = 
஠

ଶ
∑ |r୧ିଵ,୲||r୧,୲|
୬
୧ୀଶ . Patton and 

Sheppard (2015) estimate the impact of these components on RVt+1: 

(7) RV୲ାଵ ൌ α ൅ β୒ୗ୚NSV୲ ൅ β୔ୗ୚PSV୲ ൅ θ୰RV୲Iሺ୰౪ழ଴ሻ ൅ β୛RV୲,୛ ൅ β୑RV୲,୑ ൅ ε୲ାଵ 

(8) RV୲ାଵ ൌ α ൅ β୒୎୚NJV୲ ൅ β୔୎୚PJV୲ ൅ β୆୚BV୲ ൅ β୛RV୲,୛ ൅ β୑RV୲,୑ ൅ ε୲ାଵ 

They report that NSVt has much greater impact on RVt+1 than PSVt, i.e. β୒ୗ୚ >> β୔ୗ୚ > 0, 

suggesting different information content in the two components. Similarly they find β୒୎୚ < 0 

and highly significant but β୔୎୚ has mixed signs. Therefore, NJV increases volatility while PJV 

has mixed effects.  These return-based RV decompositions may affect the working of CVP. 

For example, it is unclear whether the impact of negative returns on CVP would remain if NSVt 

and NJVt are included.  We test the impact of RV decompositions on CVP in the following two 

regressions:  

                                                            
9 Our β෠ୖ୕	is similar to those of Berkierman and Manner (2017) but is much smaller than the one reported in 

Table 3 of BPQ (2016). Using demeaned RQ୲
ଵ/ଶ (as they do) only affects β෠଴, not β෠ୖ୕.   
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Table 4: The HAR_CVP-RQ Model 

This table reports the daily persistence coefficients of the following models: 

RV୲ାଵ ൌ α ൅ ሺβ଴ ൅ β|୰||r୲| ൅ β୰r୲ ൅ βୖ୕RQ୲
ଵ/ଶሻRV୲ ൅ φZ୲ ൅ ε୲ାଵ 

RV and RQ are the Realized Variance and the Realized Quarticity constructed from the 
TRTH data. RVOM and RKOM are the Realized Variance and the Realized Kernel taken from 
the OMI Realized Library. The other variables are the same as in Table 2.  Zt = (RV୲,୛,
RV୲,୑, r୲, r୲,୛, r୲,୑)’.   F is the F statistic for β|r| = βr = 0. AIC is the Aikaike information 

criteria.  LB5 is the Ljung-Box statistic for residuals at 5 lags.  The t-statistics are based on 
the Newey–West robust covariance with automatic lag selection using Bartlett kernel. %(t ൑ 
-1.96) and %(t ൒ 1.96) are the percentage of stocks with t ൑ -1.96 or t ൒ 1.96 respectively.  
The asterisks ***, **, * indicate significance at 1%, 5%, and 10% respectively.   

 β଴ β|୰| β୰ βୖ୕ Rഥଶ F AIC LB5 

SPY         

RV 0.614***   -0.0075*** 0.651 - 2362 168 
t-stat 9.04   -8.26     

 0.254*** 0.103*** -0.057** -0.0037*** 0.732 536 1428 57 
 3.26 3.32 -2.17 -4.38     

RVOM 0.647***   -0.0070*** 0.593 - 3307 115 
t-stat 6.60   -4.92     

 0.207* 0.101*** -0.054* -0.0024** 0.665 382 2617 31 
 1.79 2.73 -1.80 -1.96     

RKOM 0.579***   -0.0061*** 0.586 - 4079 96 
t-stat 6.98   -6.17     

 0.171 0.102*** -0.050* -0.0016 0.653 339 3460 44 
 1.48 2.83 -1.73 -1.33     

Stocks         

Ave Coeff 0.530***   -0.0038*** 0.599 - 6224 66 
Median 0.519   -0.0033 0.642  5328 48 

t stat 8.16   -3.76     

%(t൑-1.96) 0%   71%     

%(t൒1.96) 99%   0%     

         
Ave Coeff 0.400*** 0.0672*** -0.0269*** -0.0050*** 0.640 223 5823 37 

Median 0.390 0.0707 -0.0278 -0.0048 0.689 209 4822 24 

t stat 6.44 4.52 -2.97 -6.38     

%(t൑-1.96) 0% 0% 55% 92%     

%(t൒1.96) 91% 78% 0% 0%     
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(9) RV୲ାଵ ൌ α ൅ β୒ୗ୚NSV୲ ൅ β୔ୗ୚PSV୲ ൅ ൫β|୰||r୲| ൅ β୰r୲ ൅ βୖ୚RV୲൯RV୲ ൅ φZ୲ ൅ ε୲ାଵ 

(10) RV୲ାଵ ൌ α ൅ β୒୎୚NJV୲ ൅ β୔୎୚PJV୲ ൅ ሺβ଴ ൅ β|୰||r୲| ൅ β୰r୲ ൅ β୆୚BV୲ሻBV୲ ൅ φZ୲ ൅ ε୲ାଵ 

The model in (9) splits β0RVt in (4) into βNSVNSVt and βPSVPSVt.  The model in (10) includes 

the negative and positive jump variations; daily RV persistence is measured by its continuous 

component. The estimation results are reported in Table 5.  

Panel A of Table 5 reports the estimation results for (9). When β|r| = βr = βRV = 0, βNSV > 

0 is significant but βPSV is not significant: NSVt dominates volatility spillover as in Patton and 

Sheppard (2015).  When RV persistence is allowed to vary with rt and RVt, βNSV is insignificant 

for SPY.  The significance of βPSV depends on the RV measure used. For stocks, βPSV becomes 

significant and βNSV no longer dominates the impact on RVt+1.  For both SPY and stocks, the 

values and significance of the CVP coefficients remain largely intact as in Table 2.  F test 

strongly rejects β|r| = βr = βRV = 0. Model diagnostics clearly favour the one with CVP. The 

results for (10) in Panel B show that the strong impact of NJVt on RVt+1 does not survive the 

inclusion of CVP. On the other hand, the CVP variables are significant and have the same signs 

as in Table 2; CVP works for both RVt and BVt. Overall the evidence indicates that CVP is 

robust to the inclusion of NSV and PSV or their difference.  

An Alternative Persistence Measure 

As a further robustness check, we test our findings in Table 2 using a persistence 

measure that does not depend on a specific model of volatility dynamics.  We may measure 

RV persistence as ρ ൌ ୉ሾሺୖ୚౪శభିஜሻሺୖ୚౪ିஜሻሿ

୉ሺୖ୚౪ିஜሻమ
 where μ = E(RVt).  It is the coefficient on RV୲ in the 

regression RV୲ାଵ ൌ α ൅ ρRV୲ ൅ ε୲ାଵ.  Let ρ୲,୲ାଵ ൌ
ሺୖ୚౪శభିஜሻሺୖ୚౪ିஜሻ

୉ሺୖ୚౪ିஜሻమ
 therefore ρ ൌ E൫ρ୲,୲ାଵ൯. 

We use E൫ρ୲,୲ାଵหr୲ିଵ, RV୲ିଵ൯ as an alternative conditional measure of volatility persistence. It 

can be estimated from the regression ρ୲,୲ାଵ ൌ E൫ρ୲,୲ାଵหr୲ିଵ, RV୲ିଵ൯ ൅ e୲ାଵ  with a suitable 

specification for E൫ρ୲,୲ାଵหr୲ିଵ, RV୲ିଵ൯ when Eሺe୲|r୲ିଵ, RV୲ିଵሻ= 0. Since ρ୲,୲ାଵ is unobservable, 

we use its sample counterpart ρ෤୲,୲ାଵ ≡ 	
ሺୖ୚౪శభିୖ୚തതതതሻሺୖ୚౪ିୖ୚തതതതሻ

ୱమ
	for the above regression with RVതതതത ൌ

ଵ

୘
∑ RV୲୘
୲ୀଵ  and sଶ ൌ ଵ

୘ିଵ
∑ ሺRV୲ െ RVതതതതሻଶ୘
୲ୀଵ .  

Figure 3 explores the characteristics of ρ෤୲,୲ାଵ for SPY.  Panel A shows the asymmetric 

relationships between ρ෤ and returns. Large rt-1, especially large negative rt-1, are associated with 

high ρ෤୲,୲ାଵ. This is consistent with the sign and size of return coefficients of the CVP in Table 

2. Since ρ෤୲,୲ାଵ  is not exactly a correlation, it can be outside [-1,1] with some high values.  
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Table 5: Semi-Variances, Jump variations, and Conditional Persistence 

Panel A of this table reports selected coefficients of the following regression: 

RV୲ାଵ ൌ α ൅ β୒ୗ୚NSV୲ ൅ β୔ୗ୚PSV୲ ൅ ሺβ|୰||r୲| ൅ β୰r୲ ൅ βୖ୚RV୲ሻRV୲ ൅ φZ୲ ൅ ε୲ାଵ 

NSV୲ and PSV୲ are the negative and positive semi-variances respectively.  The other variables 
are the same as in Table 2.  Panel B reports selected coefficients of the following regression:   

RV୲ାଵ ൌ α ൅ β୒୎୚NJV୲ ൅ β୔୎୚PJV୲ ൅ ሺβ଴ ൅ β|୰||r୲| ൅ β୰r୲ ൅ β୆୚BV୲ሻBV୲ ൅ φZ୲ ൅ ε୲ାଵ 

NJV୲ and PJV୲ are the negative and positive jump variations respectively.  Zt = (RV୲,୛, RV୲,୑,
r୲, r୲,୛, r୲,୑)’.  For stocks, %(t ൑ -1.96) and %(t ൒ 1.96) are the percentage of stocks with 

robust t ൑ -1.96 or t ൒ 1.96 respectively. The asterisks ***, **, * indicate significance at 1%, 
5%, and 10% respectively. 

Panel A: Impact of negative and positive semivariances 

 β୒ୗ୚ β୔ୗ୚ β|୰| β୰  βୖ୚ Rഥଶ F AIC LB5 

SPY          
RV 1.327** -0.491    0.645 - 2426 259 

t-stat 2.19 -1.03        

 0.365 0.096 0.105*** -0.053** -0.0037* 0.729 370 1464 61 
 0.94 0.25 3.31 -2.02 -1.71     
          

RVOM 0.934** -0.460    0.563 - 3556 119 
t-stat 2.28 -0.80        

 -0.633 1.040** 0.099*** -0.085* -0.0028*** 0.672 390 2548 35 
 -0.98 2.08 2.72 -1.88 -2.63     

Stocks          
Ave Coeff 0.438*** 0.146    0.595 - 6264 68 

Median 0.487 0.090    0.634 - 5321 53 
t stat 2.65 0.84        

%(t൑-1.96) 1% 0%        

%(t൒1.96) 53% 16%        

          
Ave Coeff 0.413*** 0.359*** 0.0668*** -0.0229** -0.0062*** 0.643 171 5807 34 

Median 0.416 0.322 0.0684 -0.0226 -0.0057 0.690 148 4807 24 
t stat 2.80 2.59 4.57 -2.55 -6.52     

%(t൑-1.96) 1% 0% 0% 47% 92%     

%(t൒1.96) 56% 38% 79% 1% 0%     

 

  



27 
 

Panel B: Impact of negative and positive jump variations 
 

 β୒୎୚ β୔୎୚ β଴  β|୰| β୰  βୖ୚ Rഥଶ F AIC 

SPY          
RV -1.721* -0.331 0.305***    0.654 -  2336 

t-stat -1.85 -1.01 4.56       

 -0.646 0.341* 0.234*** 0.105*** -0.059** -0.0067*** 0.740 392 1323 
 -0.95 1.90 3.14 3.02 -2.36 -3.86    
          

RVOM -1.867** 0.316 0.162    0.592 - 3312 
t-stat -2.11 0.82 1.59       

 0.956 0.525 0.246** 0.110** -0.083* -0.0035*** 0.677 309 2492 
 1.24 1.09 2.01 2.16 -1.77 -2.66    

Stocks          
Ave Coeff -0.715** 0.308 0.254***    0.604 -  6184 

Median -0.664 0.262 0.270    0.638 - 5195 

HKV t stat -2.22 1.56 3.27       

%(t൑-1.96) 28% 1% 0%       

%(t൒1.96) 1% 14% 60%       

          
Ave Coeff -0.271 0.196 0.390*** 0.076*** -0.031*** -0.0076*** 0.649 162 5749 

Median -0.266 0.128 0.382 0.078 -0.030 -0.0065 0.690 137 4766 

HKV t stat -1.01 1.18 5.14 4.98 -3.12 -6.36    

%(t൑-1.96) 11% 1% 0% 0% 55% 87%    

%(t൒1.96) 0% 14% 84% 77% 0% 0%    

Panels B and C depict the relationship between ρ෤୲,୲ାଵ and RVt-1. Panel B shows a nonlinear 

relationship between ρ෤୲,୲ାଵ and RVt-1. This is not surprising since ρ෤୲,୲ାଵ involves the product 

of RVt and RVt+1, which are highly correlated with RVt-1.  From Table 1 we see that the mean 

and median RV are 1.13 and 0.551 respectively for SPY, indicating daily RVs are heavily 

concentrated in the low end of the RV range.  Panel C zooms into the range RVt-1 < 3. This is 

the normal range of daily RV, accounting for 93% of trading days for SPY.  Higher RVt-1 is 

associated with lower ρ෤୲,୲ାଵ, consistent with the negative RV coefficients in CVP in Table 2. 

On most trading days, higher volatility is associated with lower future volatility persistence.   

Figure 3 motivates the following regression specification for E൫ρ୲,୲ାଵหr୲ିଵ, RV୲ିଵ൯:10 

(11) E൫ρ୲,୲ାଵหr୲ିଵ, RV୲ିଵ൯ ൌ α ൅ β|୰||r୲ିଵ| ൅ β୰r୲ିଵ ൅ βୖ୚RV୲ିଵ ൅ βୖ୚ଶRV୲ିଵ
ଶ  

The quadratic term RV୲ିଵ
ଶ  captures the relationship in Panel B of Figure 3, which shows 

extremely high ρ෤୲,୲ାଵ associated with extremely high RVt-1. We winsorize the top 1% RV to 

                                                            
10 We do not include the lagged dependent variable ρ෤୲ିଵ,୲ because it is a function of RVt which is not observed 
on day t-1.  It is also a function of RVt-1; so its inclusion is likely to distort the estimated coefficients of RVt-1. 
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Figure 3: SPY Return, RV, and the Proxy for RV Persistence ૉ෥ܜ,ܜା૚  

This figure plots ρ෤୲,୲ାଵ ≡ 	
ሺୖ୚౪శభିୖ୚തതതതሻሺୖ୚౪ିୖ୚തതതതሻ

ୱమ
	against return and RV.  RVതതതത ൌ ଵ

୘
∑ RV୲୘
୲ୀଵ  and 

sଶ ൌ ଵ

୘ିଵ
∑ ሺRV୲ െ RVതതതതሻଶ୘
୲ୀଵ .  

(A) Return and the proxy for RV persistence ρ෤୲,୲ାଵ defined in eq. (8) 

 
 
(B) RV and the proxy for RV persistence ρ෤୲,୲ାଵ  
 
 

 
(C) Small RV and the proxy for RV persistence ρ෤୲,୲ାଵ  
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reduce their impact.  Table 6 reports the estimated coefficients.  It holds the qualitative features 

of the estimated CVP in Table 2: β|r| > 0, βr < 0, and βRV < 0, all significant at 5% except βRV 

for stocks.  Both positive and negative returns increase ρ෤୲,୲ାଵ:  β|r|+βr > 0 and βr - β|r| < 0. 

Negative returns increase ρ෤୲,୲ାଵ more than positive returns: |βr - β|r|| > βr + β|r| > 0. In the case 

of βRV for stocks, 23% of stocks have negative and significant βRV with only 3% having positive 

and significant βRV.   

Table 6: Alternative Volatility Persistence Measure 

This table reports the results of the following regression for SPY:  
 

ρ෤୲,୲ାଵ ൌ β଴ ൅ β|୰||r୲ିଵ| ൅ β୰r୲ିଵ ൅ βୖ୚RV୲ିଵ ൅ βୖ୚ଶRV୲ିଵ
ଶ ൅ e୲ାଵ 

 

where ρ෤୲,୲ାଵ ≡ 	
ሺୖ୚౪శభିୖ୚തതതതሻሺୖ୚౪ିୖ୚തതതതሻ

ୱమ
 with RVതതതത ൌ ଵ

୘
∑ RV୲୘
୲ୀଵ  and sଶ ൌ ଵ

୘ିଵ
∑ ሺRV୲ െ RVതതതതሻଶ.୘
୲ୀଵ  The 

other variables are the same as Table 2.  %(t ൑ -1.96) and %(t ൒ 1.96) are the percentage of 
stocks with t ൑ -1.96 or t ൒ 1.96 respectively. The asterisks ***, **, and * indicate statistical 
significance at 1%, 5%, and 10% respectively.   
 

 β଴ β|୰| β୰ βୖ୚ βୖ୚ଶ Rഥଶ AIC LB5 
SPY         
RV -0.068 0.640*** -0.189** -0.487** 0.256*** 0.595 6166 355 
t stat -0.54 3.50 -2.38 -2.45 6.44    

RVOM -0.062 0.562*** -0.219*** -0.444** 0.251*** 0.623 6616 322 
 -0.53 3.26 -2.94 -2.15 6.34    

RKOM 0.006 0.533*** -0.276*** -0.454** 0.197*** 0.607 6671 280 
 0.05 3.14 -3.52 -2.39 6.37    

Stocks         
Ave Coeff -0.154 0.513*** -0.180*** -0.127 0.094*** 0.577 5288 423 

Median -0.156 0.534 -0.175 -0.101 0.056 0.611 5306 354 

t stat -1.35 4.19 -3.23 -1.29 7.71    

%(t൑-1.96) 8% 0% 57% 23% 0%    

%(t൒1.96) 0% 90% 0% 3% 97%    

Other Robustness Checks  

 Andersen (1996) reports that volatility persistence is much lower when volume data are 

used in estimating a stochastic volatility model.  We add additional conditioning variables and 

report the results in Appendix B.  The additional variables are volatility jumps, number of 

trades, Amihud illiquidity, and trade imbalance.  Overall the CVP results in Table 2 remain 

qualitatively the same when additional conditioning variables are included.  Some of the new 

variables are significant for SPY but none is significant for stocks.  Appendix C reports the 

results of the HAR_CVP model in 2-year sub-periods.  At least two of the CVP coefficients 

are significant in each sub-period.  Therefore, CVP is present in all sub-periods.  
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Additional robustness results are reported in the internet Applendix. We estimate CVP 

as a threshold function and a power function of returns. The results are qualitatively the same.   

Allowing conditional persistence for the lagged weekly and monthly RVs does not change the 

results for daily CVP. Results in Table 2 hold qualitatively after daily RV is adjusted for time-

trend and seasonality, same as in Chordia, Sarkar, and Subrahmanyam (2005). They hold for 

the square root of daily RV and when RV is replaced by the high-low based volatility measure 

of Parkinson (1980).  They hold when CVP includes a holiday or weekend dummy that may 

affect RV autocorrelation.   

V. Conditional Volatility Persistence and Asymmetric Volatility 

The asymmetric return impact on future volatility is “one of the most enduring 

empirical regularities in equity markets” (Hasanhodzic and Lo, 2013) and is becoming stronger 

in many markets around the world (Talpsepp and Rieger, 2010). There is a sizable literature 

and an ongoing debate on financial leverage versus volatility feedback as the main reason for 

asymmetric volatility, e.g. Choi and Richardson (2016) and Engle and Siriwardane (2016).  In 

this section, we present evidence that CVP sharply reduces volatility asymmetry attributed to 

financial leverage and volatility feedback, thus offers a new and robust explanation for 

asymmetric volatility.   

 To further understand the asymmetric return impact on RV level and persistence, we 

divide daily returns into 10 ranges in percentage, {-∞, -3, -2, -1, -0.5, 0, 0.5, 1, 2, 3, ∞}, indexed 

by k = -5, …, 5 with k ് 0. The size of the range is smaller around zero since daily returns are 

heavily concentrated around zero.  We estimate a modified HAR_CVP model 

(12) RV୲ାଵ ൌ α ൅ ൫β଴ ൅ ∑ β୩r୲D୲,୩
ହ
୩ୀିହ ൅ βୖ୚RV୲൯RV୲ ൅ ∑ θ୩r୲D୲,୩

ହ
୩ୀିହ ൅ φZ୲ ൅ ε୲ାଵ  

where Zt = (RV୲,୛, RV୲,୑, r୲,୛, r୲,୑)’ and Dt,k = 1 if rt is in the kth range, 0 otherwise.  AsyVP 

is captured by ∑ β୩r୲D୲,୩
ହ
୩ୀିହ  which allows step-wise changes in return impact on CVP.  The 

direct return impact on volatility is captured by ∑ θ୩r୲D୲,୩
ହ
୩ୀିହ  and is typically attributed to 

financial leverage (Black, 1976), volatility feedback (Pindyck, 1984), and herding and 

contrarian trading (Avramov, Chordia, and Goyal, 2006).  

The estimated β୩ and θ୩ in (12) are reported in Table 7. Consistent with AsyVP in 

Figure 2 and Table 2, Panel A shows that RV persistence increases with return size, especially 

negative returns. We note that the size of β୩ is almost strictly inversely related to the size of 

return, while the size of t statistics generally increases with the size of return.  Let r୩
୫ be the 
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Table 7: Return Impact on RV and RV Persistence 

This table reports the estimation results of the following regression: 

RV୲ାଵ ൌ α ൅ ൫β଴ ൅ ∑ β୩r୲D୲,୩
ହ
୩ୀିହ ൅ βୖ୚RV୲൯RV୲ ൅ ∑ θ୩r୲D୲,୩

ହ
୩ୀିହ ൅ φZ୲ ൅ ε୲ାଵ  

where Zt = (RV୲,୛, RV୲,୑, r୲,୛, r୲,୑)’ and Dt,k = 1 if rt is in the kth range, and 0 otherwise.  There 

are 10 return ranges in percentage (-∞, -3, -2, -1, -0.5, 0, 0.5, 1, 2, 3, ∞) which are indexed by 
k = -5,…,5 (k ് 0).  The asterisks ***, **, and * indicate statistical significance at 1%, 5%, 
and 10% respectively. 

Panel A: Return impact on RV persistence 

 βିହ βିସ βିଷ βିଶ βିଵ βଵ βଶ βଷ βସ βହ 

SPY           

RV -0.178** -0.215*** -0.201* -0.488** -1.152*** 0.791* 0.580*** 0.387* 0.179** 0.078*** 
t stat -2.07 -3.44 -1.83 -2.17 -2.78 1.64 2.36 1.88 2.18 3.12 

RVOM -0.185* -0.161** -0.187 -0.383 -1.128*** 0.749 0.542** 0.335 0.117 0.067*** 
t stat -1.77 -2.19 -1.61 -1.50 -2.54 1.08 1.96 1.53 1.29 2.39 

Stocks           

Ave -0.096*** -0.114** -0.169* -0.180 -0.369 0.449 0.151 0.145 0.048 0.054*** 

Med -0.096 -0.124 -0.199 -0.173 -0.447 0.502 0.208 0.148 0.053 0.059 

t stat -3.11 -2.24 -1.88 -1.00 -0.99 1.15 1.00 1.51 0.95 2.71 

Panel B: Return impact on RV 

 θିହ θିସ θିଷ θିଶ θିଵ θଵ θଶ θଷ θସ θହ 

    No AsyVP (β୩ = 0)      

SPY           

RV -1.449*** -0.444*** -0.388*** -0.341** -0.665* 0.439 0.149 0.016 0.010 0.109 
t stat  -3.07 -5.16 -4.06 -2.47 -1.86 1.57 1.19 0.22 0.16 0.92 

RVOM -1.406*** -0.422*** -0.322*** -0.293** -0.746** 0.351 0.121 -0.028 -0.044 0.082 
t stat -2.77 -4.92 -4.06 -2.37 -2.04 1.44 1.04 -0.49 -0.84 0.79 

Stocks           

Ave -1.731*** -0.597*** -0.350*** -0.472*** -0.679** 0.695** 0.091 -0.031 -0.063 0.045 

Med -1.361 -0.510 -0.291 -0.407 -0.587 0.566 0.105 -0.022 -0.050 0.103 

t stat -3.85 -4.90 -3.35 -2.88 -2.05 2.18 0.59 -0.28 -0.62 0.23 

     AsyVP (β୩ ് 0)     

SPY           

RV -0.346 -0.086 -0.182 0.152 0.616** -0.448 -0.405*** -0.400** -0.164* 0.019 
t stat -1.10 -1.38 -1.47 1.05 2.22 -1.53 -2.57 -2.14 -1.97 0.23 

RVOM -0.079 -0.164** -0.105 0.123 0.470 -0.456 -0.387** -0.381* -0.144 -0.053 
t stat -0.18 -2.27 -1.09 0.71 1.56 -1.03 -2.06 -1.87 -1.37 -0.63 

Stocks           

Ave -0.573 -0.209 0.077 -0.063 0.065 -0.215 -0.168 -0.345** -0.160 -0.283 

Med -0.288 -0.096 0.135 0.019 0.522 -0.544 -0.340 -0.352 -0.121 -0.183 

t stat -1.62 -1.53 0.40 -0.21 0.12 -0.39 -0.71 -2.07 -1.29 -1.33 
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mid-point of the return range k with rିହ
୫  = -3.5 and rହ

୫ = 3.5. The impact of return in range k 

on CVP is approximated by CVPሺr୩
୫ሻ ൌ β෠଴ ൅ β෠୩r୩

୫.  We estimate CVPሺr୩
୫ሻ using RV and 

RVOM of SPY and the average and median coefficients of stocks. Figure 4 (A) and (B) plot the 

resulting CVPሺr୩
୫ሻ. Although large returns have small β୩, large negative returns are associated 

with high CVP.  The linear representations in Figure 2 are reasonable proxies for CVPሺr୩
୫ሻ 

when return is negative. When return is positive, CVPሺr୩
୫ሻ is non-monotonic.  It peaks when 

daily return is around 1.5% for both SPY and stocks.  Consistent with AsyVP in Figure 2, 

positive returns on average have lower CVP than negative returns.  

To explore how the inclusion of CVP affect the direct return impact on RV, we estimate 

(12) with and without restricting β୩  = 0 for all k.  This allows us to measure volatility 

asymmetry implied by θ୩ with and without AsyVP.  The results reported in Panel B of Table 

7 show that, without AsyVP (i.e. β୩ = 0), θ෠୩ for negative returns are all negative and highly 

significant: negative returns significantly increase future RV,  echoing typical findings in the 

literature.  On the other hand, only one θ෠୩  for positive returns is positive and significant: 

positive returns have no significant impact on future RV. With AsyVP (i.e. β୩ ് 0), only one 

θ෠୩ for negative returns remains negative and significant. One θ෠୩ for small negative returns 

actually becomes positive and significant.  Therefore, AsyVP almost entirely accounts for the 

impact of negative rt on RVt+1. This posts a strong challenge to existing explanations for 

asymmetric volatility.  Interestingly, most θ෠୩ for positive returns are now negative and some 

are significant at 10% or above. When AsyVP is present, positive returns in the range of 0.5 to 

2% often significantly reduces future RV, especially for SPY.  Overall Table 7 shows richer 

RV dynamics from both CVP and the direct return impact on RV than revealed in Table 2.  

The direct impact of rt in range k on RVt+1 is approximated by RV(r୩
୫) = θ෠୩r୩

୫ and 

varies with r୩
୫ for k = -5, …, 5 with k ് 0.  RV(r୩

୫) can be visualized in Figure 4 (C) to (F) 

which are similar in spirit to the news impact curve of Engle and Ng (1993) and Chen and 

Ghysels (2010). Again we estimate RVሺr୩
୫ሻ with and without restricting β୩  = 0 for all k.   

RV(r୩
୫|β୩  = 0) measures the direct return impact on RV when return does not affect RV 

persistence.  The corresponding lines are denoted as “No AsyVP”. RV(r୩
୫|β୩ ് 0) measures 

the direct return impact on RV when there is AsyVP.  The corresponding lines are denoted as 

“AsyVP”.  Figures (C) and (D) draw RV(r୩
୫|β୩ = 0) and RV(r୩

୫|β୩ ് 0) for RV and RVOM of 

SPY.  Figures (E) and (F) draw RV(r୩
୫|β୩ = 0) and RV(r୩

୫|β୩ ് 0) based on the average and 

median coefficients across stocks.  Two features are present in all four figures: when AsyVP 
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Figure 4: Conditional Volatility Persistence and Asymmetric Volatility 

The graphs below are based on the following regression: 

RV୲ାଵ ൌ α ൅ ൫β଴ ൅ ∑ β୩r୲D୲,୩
ହ
୩ୀିହ ൅ βୖ୚RV୲൯RV୲ ൅ ∑ θ୩r୲D୲,୩

ହ
୩ୀିହ ൅ φZ୲ ൅ ε୲ାଵ  

where Zt = (RV୲,୛, RV୲,୑, r୲,୛, r୲,୑)’ and Dt,k = 1 if rt is in the kth range, and 0 otherwise.  There 
are 10 return ranges in percentage by (-∞, -3, -2, -1, -0.5, 0, 0.5, 1, 2, 3, ∞).  Let r୩

୫ be the mid-
point of the return range k with rଵ

୫ = -3.5 and rଵ଴
୫  = 3.5. Return impact on CVP is CVP(r୩

୫) = 
β෠଴ + β෠୩r୩

୫.  The direct return impact on RV is RV(r୩
୫) = θ෠୩r୩

୫.   

(A) SPY CVP(r୩
୫)      (B) Stocks CVP(r୩

୫)  

 
(C) SPY RV(r୩

୫)      (D) SPY RVOM(r୩
୫)  

(E) Stocks Mean RV(r୩
୫)     (F) Stocks Median RV(r୩

୫) 
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is allowed (β୩ ് 0), the RV impact of large negative returns are sharply reduced, and positive 

returns are associated with lower RV, particularly for returns around 0.5 to 2%.   

To quantify the change in the degree of volatility asymmetry when AsyVP is included, 

we use the following measure which is similar to the one proposed by Daouk and Ng (2011). 

For a return size |r୩
୫|, the asymmetric impact of negative and positive returns on RV is  

RV(rି୩
୫ ) - RV(r୩

୫) = (θ෠ି୩ െ θ෠୩)|r୩
୫| for k = 1,…,5. 

The asymmetry in RV is defined as AsyRV = ∑ ሾRVሺrି୩
୫ ሻ െ RVሺr୩

୫ሻሿହ
୩ୀଵ .  Again we compute 

AsyRV with and without AsyVP.  For SPY RV, AsyRV without AsyVP is 6.533 and AsyRV 

with AsyVP is 2.789, a reduction of 57%.  For SPY RVOM, AsyRV without AsyVP is 6.552 

and AsyRV with AsyVP is 2.156, a reduction of 67%!  For stocks, AsyRV without AsyVP is 

8.404 based on average coefficients and 6.506 based on median coefficients; AsyRV with 

AsyVP is 4.533 based on average coefficients and 2.760 based on median coefficients.  AsyVP 

reduces stocks’ AsyRV by 46 to 58%.    

   Overall the results in Table 7 and Figure 4 show the presence of complex nonlinear 

AsyVP.  As in the GJR model, CVP almost entirely accounts for the impact of negative daily 

returns on RV and sharply reduces volatility asymmetry associated with direct impact from 

daily returns. These findings support CVP as a dominant and robust explanation for asymmetric 

volatility at daily frequency.   

VI. Conditional Volatility Persistence and Volatility Forecast  

A key contribution of the recent advances in modelling RV dynamics is the improved 

volatility forecasts. The HAR model of Corsi (2009) generates more accurate forecasts than a 

true long-memory model with fractional integration. The semivariance HAR model of Patton 

and Sheppard (2015) has better RV forecasts than the original HAR and a RV-based GJR model. 

BPQ (2016) show that the HAR model with realized quarticity outperforms a range of models 

including the semivariance HAR. This section compares volatility forecasts of the HAR_CVP 

model in (4) against these three competing models.  

To isolate the effect of CVP on forecast performance, we control the direct impact from 

returns on RVt+1 by adding (rt, rt,W, rt,M)’ to all models.  Let Zt = (RVt,W, RVt,W, rt, rt,W, rt,M)’.  

The HAR in (2) can be written as 

(13) RV୲ାଵ ൌ α ൅ β଴RV୲ ൅ φZ୲ ൅ ε୲ାଵ 

The HAR with realized quarticity (HARQ) of BPQ (2016) can be written as  
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(14) RV୲ାଵ ൌ α ൅ ሺβ଴ ൅ βୖ୕RQ୲
ଵ/ଶሻRV୲ ൅ φZ୲ ൅ ε୲ାଵ 

The semivariance HAR (HARSV) of Patton and Sheppard (2015) is  

(15) RV୲ାଵ ൌ α ൅ β୒ୗ୚NSV୲ ൅ β୔ୗ୚PSV୲ ൅ φZ୲ ൅ ε୲ାଵ 

The HAR_CVP model in (4) is  

(16) RV୲ାଵ ൌ α ൅ ሺβ଴ ൅ β|୰||r୲| ൅ β୰r୲ ൅ βୖ୚RV୲ሻRV୲ ൅ φZ୲ ൅ ε୲ାଵ 

We compare the forecast performance of the HAR_CVP model against HARi = HAR, HARQ, 

and HARSV. If CVP is a better proxy for the unobserved true RV persistence, HAR_CVP 

should have better forecasts than the competing models. Furthermore, its performance should 

be stronger for assets with greater variations in RV persistence.  

(i) Loss Functions  

Forecast accuracy can be measured by a wide range of loss functions, e.g. mean squared 

error (MSE), mean absolute error (MAE), etc.  The choice of loss functions may affect the 

ranking of forecasting models, e.g. Hamilton and Susmel (1994), Bollerslev and Ghysels 

(1994), Hansen and Lunde (2005), Patton and Sheppard (2009), and Patton (2011). Let rt be 

the daily return with E(rt|Ft-1) = 0 and σ୲ଶ ≡ Var(rt|Ft-1) where Ft-1 is the information set up to 

day t-1.  RVt is a noisy ex-post measure for σ୲ଶ and let RV෢୲ be the forecast of σ୲ଶ.  Competing 

models for RV෢୲ are ranked based on the distance between RVt and RV෢୲.  Patton (2011) shows 

that for some loss functions, the noise in RVt may distort the ranking of competing models. He 

proposes a class of robust loss functions indexed by the parameter b: 

(17) L(RVt, RV෢୲; b) = 

ە
ۖ
۔

ۖ
ۓ

ଵ

ሺୠାଵሻሺୠାଶሻ
൫RV୲

ୠାଶ െ RV෢୲
ୠାଶ൯ െ

ଵ

ୠାଵ
RV෢୲

ୠାଵ൫RV୲ െ RV෢୲൯, for	b ∉ ሼെ1,െ2ሽ	

RV෢୲ െ RV୲ ൅ RV୲ln
ୖ୚౪
ୖ୚෢ ౪

,																																																												for	b ൌ 	െ1											

ୖ୚౪
ୖ୚෢ ౪

െ ln ቀ
ୖ୚౪
ୖ୚෢ ౪

ቁ െ 1,																																																																				for	b ൌ 	െ2											

 

The above loss function is robust to the noise in RVt: the ranking of competing models based 

on the noisy RVt is the same as the ranking based on the true σ୲ଶ.  Two popular loss functions 

are part of this family, subject to additive and multiplicative constants. The mean-squared error 

MSE ≡ (RV୲ െ RV෢୲)
2 is a special case with b = 0 and the quasi-likelihood function QLIKE is 

the case with b = -2 given above.  As noted in Proposition 2 of Patton (2011), MSE is the only 

robust loss function that depends solely on RV୲ െ RV෢୲  and QLIKE is the only robust loss 

function that depends solely on RV୲/RV෢୲.  However, many studies avoid using MSE because it 
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is often heavily influenced by a few large forecast errors.11 In addition, Patton and Sheppard 

(2009) show that the Diebold-Mariano tests using QLIKE have higher power than those using 

MSE.  Patton (2011) advocates the use of QLIKE instead of MSE.  

We compare forecast accuracy based on four loss functions. The first two are MSE and 

QLIKE defined above.  The third is the case of b = -1 in (17) which is a combination of the 

forecast error RV୲ െ RV෢୲ and ratio RV୲/RV෢୲.  We term this the FER loss function. In addition, 

we compare forecasts based on MSE-ln ≡ [lnሺRV୲ሻ െ ln	ሺRV෢୲ሻሿ2, a popular alternative to MSE 

that mitigates the impact of a few large forecast errors.  We report the results for SPY based on 

RV and RVOM to conserve space.  

(ii) Forecast Procedure and Comparison 

Following Patton and Sheppard (2015) and BPQ (2016), our forecasts are based on 4-

year rolling windows, starting in 2004 for SPY and in 2006 for stocks.  We have 72 stocks in 

the S&P 100 index with continuous data from 2002. An “insanity filter” is used to replace a 

negative RV forecast with the lowest RV in the rolling window.12  For the HAR_CVP and 

HARQ models, if the estimated CVPt or CVP୲
ୖ୕ is below 0 (above 1), it is replaced by the 

minimum (maximum) value within the rolling window.  

Inference on the difference in loss values is based on the Diebold-Mariano (1995) test. 

While HAR is nested in HAR_CVP, Giacomini and White (2006) show that the DM test 

remains asymptotically valid when the estimation period is finite.  Define the pair-wise loss 

difference against HAR_CVP as  

(18) dt(HARi) = L(RVt, RV෢୲; b; HAR_CVP) െ L(RVt, RV෢୲; b; HARi) 

where HARi = HAR, HARQ, and HARSV. Let dത(HARi) and Var[d(HARi)] be the time-series 

average and long-run variance of dt(HARi) respectively. The number of autocovariances in 

Var[d(HARi)] is based on Andrews (1991). The DM test statistic for E[d(HARi)] = 0 is 

DM[dത(HARi)] =
ഥୢሺୌ୅ୖ୧ሻ

ඥ୚ୟ୰ሾୢሺୌ୅ୖ୧ሻሿ/୘
 with T being the number of forecasts.   

The above DM test is applied to SPY and individual stocks. For stocks as a whole, we 

test whether the expected cross-sectional average difference in loss values is zero.  Let dത୨(HARi) 

                                                            
11 The impact of large forecast errors is related to the impact of data scale or data unit discussed in Proposition 3 
of Patton (2011) and may affect model ranking based on MSE.   
12 Our insanity filter is the same as in Patton and Sheppard (2015).  BPQ (2016) replace RV forecasts outside the 
high-low range of the rolling window by the average RV in the rolling window. The results based on this 
alternative filter are reported in the internet Appendix and are strongly in favour of HAR_CVP.   
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be the average loss difference for stock j and dധ(HARi) = 
ଵ

୒
∑ dത୨ሺHARiሻ
୒
୨ୀଵ  be average across N 

stocks. To takes into account both time-series and cross-sectional variations in loss difference, 

the standard deviation of dധ(HARi) is calculated as  

(19) StDev[dധ(HARi)] = 
ଵ

୒
ඨ∑ ∑ ωෝ୨,୩ටVarሾdത୨ሺHARiሻሿVarሾdത୩ሺHARiሻሿ୒

୩ୀଵ
୒
୨ୀଵ   

where ωෝ୨,୩  the sample correlation between dj,t(HARi) and dk,t(HARi) defined in (18), and 

Varሾdത୨ሺHARiሻሿ = Var[dj(HARi)]/T. The above standard error is analogous to the one in eq. (5). 

The DM statistic is defined as DM[dധ(HARi)] = 
നୢሺୌ୅ୖ୧ሻ

ୗ୲ୈୣ୴ሾനୢሺୌ୅ୖ୧ሻሿ	
.   

(iii) Forecast Performance 

Table 8 reports forecast comparisons for SPY. Panel A is a summary of loss values for 

four models and loss functions.  For both RV and RVOM, HAR_CVP has the lowest average 

and median loss values for FER, QLIKE, and MSE-ln.  It has the lowest median MSE but not 

the lowest average MSE. MSE has extremely high mean-to-media ratios and extremely high 

standard deviations of loss values. Both are consistent with strong impact from a few large 

errors, which has been documented in many studies, e.g. Pagan and Schwart (1990), Diebold 

and Lopez (1996), Poon and Granger (2003), and Hansen and Lunde (2005).  Model ranking 

based on average MSE is likely to reflect such impact.  

The performance of HAR_CVP is measured by the change in loss values defined as 

Δ(HARi) ≡ ୤ሺୌ୅ୖ_େ୚୔ሻ

୤ሺୌ୅ୖ୧ሻ
െ 1 with f being the mean or median of the loss values and HARi  = 

HAR, HARQ, and HARSV.  It is reported in the right three columns of Panel A. For RV and 

RVOM, the changes in the median FER, QLIKE, and MSE-ln are around -25%. The changes in 

the average QLIKE and MSE-ln are much larger at -32 to -57%, suggesting the presence of a 

few days with very large loss reductions. Overall the improvement from HAR_CVP is larger 

than those reported in similar studies.  Panel B of Table 8 reports the DM test for equal average 

loss values between HAR_CVP and HARi  = HAR, HARQ, and HARSV.  The DM statistics 

are highly significant for FER, QLIKE, and MSE-ln. Not surprisingly, the high volatility of 

MSE values makes the differences in average MSE not statistically significant.  

Table 9 reports forecast performance for individual stocks. Loss value comparisons in 

Panel A are qualitatively the same as for SPY.  HAR_CVP has the lowest average and median 

loss values for three of the four loss functions.  The exception is MSE where HAR_CVP has 

the lowest median loss but not the lowest average loss.  Compared to SPY, stock MSE has even  



38 
 

Table 8: Volatility Forecast Comparison for SPY 

This table reports summary for MSE, FER, QLIKE, and MSE-ln loss functions for SPY.  

Panel A: Summary statistics for loss function values. The lowest values across four models 
are in bold numbers. “Δ(HARi)” reports  ୤ሺୌ୅ୖ_େ୚୔ሻ

୤ሺୌ୅ୖ୧ሻ
െ 1 where f is the mean or median and 

HARi  = HAR, HARQ, and HARSV. 

 HAR_CVP HAR HARQ HARSV Δ(HAR) Δ(HARQ) Δ(HARSV) 
RV        
MSE        
Mean  2.973 3.167 3.920 2.836 -6% -24% 5% 
Median  0.0297 0.0357 0.0342 0.0323 -17% -13% -8% 
StDev  55.4 50.8 84.7 41.0    
FER        
Mean  0.211 0.296 0.275 0.276 -29% -24% -24% 
Median  0.037 0.0487 0.0514 0.0447 -24% -28% -17% 
StDev  1.03 1.13 1.29 1.03    
QLIKE        
Mean  0.519 1.191 1.199 1.084 -56% -57% -52% 
Median  0.0872 0.114 0.114 0.107 -24% -24% -19% 
StDev  3.53 8.15 9.45 8.31    
MSE-ln        
Mean  0.527 0.892 0.896 0.814 -41% -41% -35% 
Median  0.182 0.241 0.243 0.223 -24% -25% -18% 
StDev  1.32 2.06 1.98 1.95    

RVOM        
MSE        
Mean  7.129 5.193 6.206 4.839 37% 15% 47% 
Median  0.0312 0.0372 0.0360 0.0359 -16% -13% -13% 
StDev  197 113 157 98    
FER        
Mean  0.283 0.360 0.324 0.359 -21% -13% -21% 
Median  0.0382 0.0495 0.0508 0.0478 -23% -25% -20% 
StDev  2.23 1.95 2.10 2.00    
QLIKE        
Mean  0.531 1.241 1.097 0.928 -57% -52% -43% 
Median  0.0854 0.111 0.116 0.104 -23% -26% -18% 
StDev  2.85 7.81 6.87 3.83    
MSE-ln        
Mean  0.564 0.912 0.867 0.827 -38% -35% -32% 
Median  0.181 0.233 0.242 0.223 -22% -25% -19% 
StDev  1.34 2.12 1.94 1.80    
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Panel B: DM test against HAR_CVP.  A negative value indicates that HAR_CVP has lower 
loss values than the competing model. The asterisks ***, **, and * indicate statistical 
significance at 1%, 5%, and 10% respectively.   

 HAR HARQ HARSV HAR HARQ HARSV 

  RV   RVOM  

MSE -0.849 -0.993 0.176 0.969 1.023 0.850 

FER -6.19*** -3.62*** -3.37*** -3.31*** -4.77*** -2.62*** 

QLIKE -4.00*** -3.08*** -3.19*** -4.00*** -4.50*** -4.54*** 

MSE-ln -6.97*** -6.46*** -5.93*** -6.36*** -6.97*** -6.74*** 

 

higher mean-to-media ratios and higher standard deviations of loss values, indicating longer 

right tails for loss values. The reductions in loss values from using HAR_CVP are somewhat 

smaller than for SPY. The changes in median loss values range from -10 to -16%. The changes 

in average loss values range from -9 to -53%, indicating the presence of a few stocks with very 

large reductions. HAR_CVP has the lowest volatility of loss values and achieves larger loss 

reductions for QLIKE and MSE-ln, the same as SPY. The right three columns of Panel A shows 

that based on FER, QLIKE, and MSE-ln, HAR_CVP has the lower average or median loss 

values for 83 to 99% of the stocks. It has lower average MSE for 56 to 63% of the stocks.  Even 

though HARQ has lowest cross-sectional average MSE, HAR_CVP has lower average MSE 

than HARQ for 57% of stocks.   

The DM tests for stocks are presented in Panel B of Table 9. Based on FER, QLIKE, 

and MSE-ln, DM[dധ(HARi)] statistics indicate that HAR_CVP has significantly lower cross-

sectional average loss than HARi = HAR, HARQ, and HARSV.  DM tests based on MSE show 

no significant difference in cross-sectional average loss values.  A summary of individual stock 

DM statistics shows that for 72 to 89% of the stocks, HAR_CVP has lower average FER and 

MSE-ln at 5% significance.  The percentage drops to 28 to 36% for QLIKE, and to 4 to 7% for 

MSE.  On the other hand, virtually no stocks have HAR_CVP significantly underperforming 

than the competing models. Over the forecast periods of 2004-2014/5 for SPY and 2006-

2014/12 for stocks, HAR_CVP significantly outperforms the competing models.  
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Table 9: Volatility Forecast Comparison for Stocks 

This table reports summary for MSE, FER, QLIKE, and MSE-ln loss functions for individual stocks.  The mean, median, and standard deviation 
are the average values across stocks.  

Panel A: Summary statistics for loss values. The lowest values across four models are in bold numbers. “Δ(HARi)” reports  ୤ሺୌ୅ୖ_େ୚୔ሻ
୤ሺୌ୅ୖ୧ሻ

െ 1 where 

f is the mean or median and HARi  = HAR, HARQ, and HARSV.  “Δ(HARi)<0” reports the percentage of stocks with ୤ሺୌ୅ୖିେ୚୔ሻ
୤ሺୌ୅ୖ୧ሻ

൏ 1.    

 HAR_CVP HAR HARQ HARSV Δ(HAR) Δ(HARQ) Δ(HARSV) Δ(HAR)<0 Δ(HARQ)<0 Δ(HARSV)<0 

MSE           
Mean  33.4 63.8 29.3 70.7 -48% 14% -53% 56% 57% 63% 
Median  0.288 0.344 0.318 0.343 -16% -10% -16% 97% 88% 97% 
StDev  645 1981 568 2138       

FER           
Mean  0.663 0.729 0.728 0.737 -9% -9% -10% 96% 92% 97% 
Median  0.109 0.125 0.122 0.125 -13% -10% -13% 96% 92% 99% 
StDev  4.65 4.46 5.16 4.58       

QLIKE           
Mean  0.585 0.944 1.168 0.938 -38% -50% -38% 83% 89% 85% 
Median  0.0879 0.100 0.0987 0.0993 -12% -11% -12% 96% 94% 99% 
StDev  6.44 13.4 20.5 14.8       

MSE-ln           
Mean  0.543 0.673 0.683 0.663 -19% -20% -18% 96% 97% 96% 
Median  0.185 0.212 0.208 0.210 -13% -11% -12% 96% 96% 99% 
StDev  1.24 1.60 1.68 1.58       
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Panel B: Summary of DM test against HAR_CVP.  DM[dധ(HARi)] is based on the cross-
sectional average difference in loss values and the cross-sectional standard deviation in (19). 
DM < 0 indicates that HAR_CVP has lower loss function values.  The asterisks ***, **, and 
* indicate statistical significance at 1%, 5%, and 10% respectively. DM[dത(HARi)] is the 
stock-level DM statistic for testing equal average loss values for HAR_CVP against HARi.  
DM(HARi) < -1.96 and DM(HARi) > 1.96 are the percentages of stocks satisfying the 
respective conditions.   

   MSE FER QLIKE MSE-ln 

DM[dധ(HAR)] -1.00 -4.02*** -5.17*** -11.6*** 

DM[dധ(HARQ)] 0.83 -4.10*** -3.90*** -12.2*** 

DM[dധ(HARSV)] -1.01 -4.85*** -4.28*** -12.6*** 

DM[dത(HAR)] < -1.96 7% 79% 31% 89% 

DM[dത(HARQ)] < -1.96 4% 72% 36% 89% 

DM[dത(HARSV)] < -1.96 7% 75% 28% 89% 

DM[dത(HAR)] > 1.96 0% 0% 0% 0% 

DM[dത(HARQ)] > 1.96 0% 0% 0% 1% 

DM[dത(HARSV)] > 1.96 0% 0% 1% 0% 

 

(iv) Market Conditions and Forecast Performance 

To examine the robustness and the source of HAR_CVP’s forecast performance, we 

investigate how HAR_CVP performance varies with market conditions.  Let r25 (r75) and RV25 

(RV75) be the 25 (75) percentile values for daily return and RV respectively.13 They form a 

3ൈ3 matrix of market conditions, e.g. low return (rt < r25) and high volatility (RVt > RV75).  As 

before, the performance of HAR_CVP is measured by Δ(HARi). Tables 8 and 9 show that 

Δ(HARi) is more stable when f is the median.  We use Δ(HARi) with f being the median to 

avoid the undue impact of a few extremely high or low loss values.  

Table 10 reports Δ(HARi) under different market conditions.14 We use bold-faced 

numbers to highlight the cases where Δ(HARi) under specific market conditions is more 

negative than the overall Δ(HARi) under the same lost function.15  We can see that most bold  

                                                            
13 In our sample, the quartiles for SPY are r25 = -0.44%, r75 = 0.54%, RV25 = 0.23ൈ10-4, and RV75 = 0.82ൈ10-4.  
14 To conserve space, we only report the results based on RVOM for SPY. The results based on RV and RKOM are 
reported in the internet appendix.  
15 For example, in Table 8, median Δ(HAR) based on RVOM and FER is -23%. In Table 10 for SPY RVOM, the 
numbers in the 3ൈ3 matrix for FER and Δ(HAR) are compared against -23%.  They are in bold-faced if they are 
more negative than -23%, e.g. -44% when rt > r75 and RVt < RV25. 
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Table 10: Market Conditions and Forecast Performance 

This table compares forecast performance under different market conditions. Threshold 
values r25 (r75) and RV25 (RV75) are the 25 (75) percentile values for daily return and RV 

respectively. Forecast comparison is based on Δ(HARi) = 
୤ሺୌ୅ୖ_େ୚୔ሻ

୤ሺୌ୅ୖ୧ሻ
െ 1 where f is the 

median. Bold numbers indicate that HAR_CVP has better relative performance than the full 
sample values in Tables 8 and 9.  

  Δ(HAR)  Δ(HARQ) Δ(HARSV) 
 rt<r25 r25<rt<r75 rt>r75 rt<r25 r25<rt<r75 rt>r75 rt<r25 r25<rt<r75 rt>r75 
SPY RVOM          

MSE          
RVt<RV25 -20% -14% -35% 10% -28% -47% 16% -17% -36% 
RV25<RVt<RV75 -15% -23% -10% -18% -20% -12% -19% -26% 0% 
RVt>RV75 -41% -33% -27% -33% -14% -10% -33% -34% -30% 

FER          
RVt<RV25 -1% -17% -44% 11% -33% -46% 15% -18% -39% 
RV25<RVt<RV75 -15% -26% -33% -13% -24% -38% -11% -26% -5% 
RVt>RV75 -36% -22% -34% -25% -17% -27% -32% -23% -32% 

QLIKE          
RVt<RV25 -21% -13% -37% -5% -35% -44% -20% -13% -30% 
RV25<RVt<RV75 -14% -18% -45% -12% -22% -50% -13% -21% -10% 
RVt>RV75 -33% -15% -25% -28% -5% 0% -25% -11% -25% 

MSE-ln          
RVt<RV25 -9% -10% -34% 10% -31% -49% 3% -17% -34% 
RV25<RVt<RV75 -23% -17% -34% -18% -24% -44% -20% -23% -6% 
RVt>RV75 -32% -26% -24% -25% -16% 5% -24% -16% -25% 

Stocks          

MSE          
RVt<RV25 -32% -2% 14% -17% 12% 18% -24% 1% 13% 
RV25<RVt<RV75 -26% -14% -9% -17% -9% -11% -22% -14% -8% 
RVt>RV75 -8% -14% -6% -13% -18% -4% -7% -15% -7% 

FER          
RVt<RV25 -28% -3% 0% -16% 5% -3% -21% 0% 2% 
RV25<RVt<RV75 -23% -12% -17% -16% -9% -19% -19% -13% -14% 
RVt>RV75 -5% -12% -12% -10% -15% -8% -3% -15% -13% 

QLIKE          
RVt<RV25 -24% -3% -9% -15% -3% -20% -15% -1% -7% 
RV25<RVt<RV75 -18% -10% -20% -11% -9% -25% -16% -10% -17% 
RVt>RV75 -5% -10% -15% -7% -10% -8% -5% -12% -15% 

MSE-ln          
RVt<RV25 -26% -4% -16% -6% 2% -22% -24% -2% -11% 
RV25<RVt<RV75 -21% -12% -24% -14% -8% -28% -21% -14% -24% 
RVt>RV75 -4% -11% -13% -8% -12% -7% -6% -14% -14% 
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Table 11: Forecast Performance during the Global Financial Crisis 

This table reports forecast comparison during the global financial crisis from 1 July 2008 to 30 June 2009. Forecast comparison is based on 

Δ(HARi) =  
୤ሺୌ୅ୖ_େ୚୔ሻ

୤ሺୌ୅ୖ୧ሻ
െ 1 where f is the mean or median and HARi  = HAR, HARQ, and HARSV.  Bold numbers indicate that HAR_CVP has 

better relative performance than the full sample values in Tables 8 and 9. 

  SPY RV   SPY RVOM   Stocks  
 Δ(HAR) Δ(HARQ) Δ(HARSV) Δ(HAR) Δ(HARQ) Δ(HARSV) Δ(HAR) Δ(HARQ) Δ(HARSV) 
MSE          
Mean  -5% -25% 6% 42% 17% 54% -49% 15% -55% 
Median  -57% -53% -51% -50% -52% -52% -15% -14% -17% 

FER          
Mean  -25% -13% -21% -19% -3% -22% -6% -6% -9% 
Median  -50% -34% -35% -44% -17% -38% -20% -14% -19% 

QLIKE          
Mean  -31% 24% -35% -63% -53% -55% -45% -47% -41% 
Median  -39% -19% -24% -33% -12% -28% -17% -12% -19% 
MSE-ln          
Mean  -38% -7% -37% -50% -22% -44% -27% -19% -27% 
Median  -42% -19% -28% -34% -15% -29% -19% -13% -19% 
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numbers are on days with rt < r25 or rt > r75: HAR_CVP performs stronger when daily return is 

large, either positive or negative.  The effect is stronger at the top return quartile for SPY but 

at the bottom return quartile for stocks. If CVPt = β0 + β-r୲ି + β+r୲
ା+ βRVRVt is a good proxy 

for the latent RV persistence, large returns implies large changes in RV persistence. The 

superior forecasts by HAR_CVP when return is large suggests that CVP is able to capture a 

significant portion of the daily variations in RV persistence. On the other hand, HAR and 

HARSV have constant RV persistence over the 4-year estimation window; HARQ captures the 

changes in RV persistence associated with RQ.16  

To further test the performance of HAR_CVP under extreme market conditions, we 

next compare forecast accuracy during the global financial crisis (GFC) period of 1 July 2008 

to 30 June 2009. 17  The GFC was a period of extreme economic, financial, and policy 

uncertainty. The heightened uncertainty was reflected in large daily swings in market indices 

and prolonged high volatility.  If large returns are a key driver of the latent volatility persistence, 

one would expect HAR_CVP to perform even better during the GFC relative to models with 

constant volatility persistence (e.g. HAR and HARSV) and models where volatility persistence 

is unrelated to returns (e.g. HARQ).   

Table 11 reports Δ(HARi) = ୤ሺୌ୅ୖ_େ୚୔ሻ
୤ሺୌ୅ୖ୧ሻ

െ 1 during the GFC period.  For SPY and stocks 

and f being the mean or the median, Δ(HARi) is mostly negative: HAR_CVP maintains its 

superior forecast accuracy during the GFC.  Again we use bold-faced numbers to indicate that 

HAR_CVP has greater percentage loss reduction during GFC than for the full sample.18 For 

SPY and stocks, 30 out of the 36 median loss values and 14 out of the 36 average loss values 

are in bold numbers, indicating even stronger relative performance by HAR_CVP during the 

GFC. HAR_CVP is able to capture the surge in volatility persistence driven by larges swings 

in daily returns (Figure 1).  Models that are slow to capture the large increase in volatility 

persistence tend to do relatively worse during the GFC.  Through RQ, HARQ can partially 

capture daily variations in RV persistence. We note that during the GFC, the loss reductions 

from HAR_CVP are often smaller against HARQ than against HAR and HARSV.   

                                                            
16 There is no strong unconditional effect from RV on HAR_CVP performance, perhaps due to the small βୖ୚. 
Conditional on rt < r25, Δ(HARi) becomes more negative for SPY and less negative for stocks as RV increases. 
Conditional on rt > r75, Δ(HARi) becomes less negative for SPY and has not strong trend as RV increases.  
These empirical patterns should be further explored in future studies. 
17 A shorter volatility-based GFC period from 2008/9/1 to 2009/4/30 produces the same qualitative results.  
18 For example, the change in the median FER against HAR for SPY RVOM is -44% during GFC vs -23% in the 
full sample in Table 8.  The same comparison is -50% vs -24% for SPY RV and -20% vs -13% for stocks. 
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(v) CVP and HAR_CVP Forecast Performance 

This subsection explores the direct link between CVP and HAR_CVP forecast accuracy. 

The high CVP during the GFC (Figure 1) may leave the impression that high CVP values 

improve HAR_CVP forecast accuracy.  This is true only if the true volatility persistence is also 

high, as during the GFC.  In general, CVP improves forecast accuracy when it is a good proxy 

for the latent RV persistence.  As such, one may not expect a positive relation between CVP 

values and HAR_CVP’s forecast accuracy.   On the other hand, if the variations of CVP capture 

the variations of the latent RV persistence, it would give HAR_CVP an advantage over models 

with constant persistence (e.g. HAR and HARSV) or partially adjusting persistence (e.g. 

HARQ). While the issue deserves greater attention given here, we provide some preliminary 

evidence that highlights the importance of time-varying volatility persistence.  

We examine the link between HAR_CVP forecast performance and the characteristics 

of daily CVP.  Again HAR_CVP performance is measured by Δ(HARi) ≡ ୤ሺୌ୅ୖ_େ୚୔ሻ

୤ሺୌ୅ୖ୧ሻ
െ 1 with 

f being the median loss values.  The basic characteristics of daily CVP are its average and 

standard deviation.  For SPY, we first compute CVP average, standard deviation, and Δ(HARi) 

for each quarter from 2004 to 2014/5. We then compute the time-series correlations across 42 

quarters between CVP average and Δ(HARi), and between CVP standard deviation and 

Δ(HARi). For stocks, we first compute each stock’s CVP average, standard deviation, and 

Δ(HARi), then the correlations across 72 stocks between CVP average and Δ(HARi), and 

between CVP standard deviation and Δ(HARi). These correlations shed light on the direction 

and strength of the relations between CVP and HAR_CVP’s relative forecast performance.  

The correlations are reported in Table 12. For SPY, across three competing models and 

four loss functions, the average correlation between CVP average and Δ(HARi) is 0.107 and 

significant at 5%:19 high CVP is associated with less negative Δ(HARi), i.e. poor HAR_CVP 

forecasts. However, most quarterly correlations are not significant and one of them is actually 

negative and significant.  On the other hand, all of the correlations between CVP standard 

deviation and Δ(HARi) are negative.  While only three of the twelve correlations are statistical 

significant, the average correlations across three models and four loss functions are -0.185 and 

significant at 1%.  There is strong evidence that high CVP standard deviation is associated with 

more negative Δ(HARi), i.e. superior HAR_CVP forecasts.  

                                                            

19 Test for zero correlation is based on the estimated correlation ρො and its standard error ට
ଵି஡ෝమ

୒ିଶ
 where N is the 

sample size. 
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Table 12: CVP and HAR_CVP Forecast Performance  

This table reports the correlations between CVP average, standard deviation, and the relative 

forecast performance of HAR_CVP based on Δ(HARi) =  
୤ሺୌ୅ୖ_େ୚୔ሻ

୤ሺୌ୅ୖ୧ሻ
െ 1 with HARi  = HAR, 

HARQ, and HARSV.  For SPY, f is the quarterly median loss values.  For stocks, f is the 
median loss values of each stock.  The asterisks ***, **, and * indicate significance at 1%, 
5%, and 10% respectively.  

 SPY Stocks 
 Ave(CVP) StDev(CVP) Ave(CVP) StDev(CVP) 
MSE     
Cor[CVP, Δ(HAR)] 0.119 -0.367** -0.339*** -0.247** 
Cor[CVP, Δ(HARQ)] -0.320** -0.139 -0.256** -0.055 
Cor[CVP, Δ(HARSV)] 0.091 -0.427*** -0.265** -0.352*** 
FER     
Cor[CVP, Δ(HAR)] 0.183 -0.198 -0.188 -0.219* 
Cor[CVP, Δ(HARQ)] -0.057 -0.033 -0.196* -0.092 
Cor[CVP, Δ(HARSV)] 0.127 -0.294* -0.109 -0.371*** 
QLIKE     
Cor[CVP, Δ(HAR)] 0.265* -0.136 -0.002 -0.088 
Cor[CVP, Δ(HARQ)] 0.157 -0.007 -0.126 -0.044 
Cor[CVP, Δ(HARSV)] 0.156 -0.183 0.023 -0.216* 
MSE-ln     
Cor[CVP, Δ(HAR)] 0.255* -0.177 -0.008 -0.078 
Cor[CVP, Δ(HARQ)] 0.107 -0.063 -0.113 -0.034 
Cor[CVP, Δ(HARSV)] 0.197 -0.195 0.033 -0.217* 
Average 0.107** -0.185*** -0.129*** -0.168*** 

 

For stocks, the evidence is stronger for a negative correlation between CVP standard 

deviation and Δ(HARi).  All of the correlations between CVP standard deviation and Δ(HARi) 

are negative and six of them are significant.  The average correlations across three models and 

four loss functions are -0.168 and significant 1%.  Figure 5 plots stocks’ Δ(HARi) against their 

CVP standard deviations for MSE, FER, QLIKE, and MSE-ln. In all four cases, stocks’ 

Δ(HARi) are mostly negative, and become more negative for stocks with high CVP standard 

deviations. While most stocks have CVP standard deviations ranging from 0.08 to 0.23, there 

is one stock GILD (Gilead Sciences Inc.) with exceptionally high CVP standard deviation at 

0.34. Removing this stock increases the number of significant correlations between CVP 

standard deviation and Δ(HARi) to eight out of twelve and the average correlation to -0.255.   

Unlike SPY, stocks have a significantly negative average correlation between CVP average  
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Figure 5: CVP Variation and Relative Forecast Performance of HAR_CVP for Stocks 

HAR_CVP performance is measured by Δ(HARi) = 
୤ሺୌ୅ୖ_େ୚୔ሻ

୤ሺୌ୅ୖ୧ሻ
െ 1 with f being the median loss values of each stock and HARi  = HAR, HARQ, 

and HARSV.  The loss functions are MSE, FER, QLIKE, and MSE-ln. The horizonal axis is the CVP standard deviation of each stock. 
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and Δ(HARi) of -0.129: high CVP values are associated with better HAR_CVP performance. 

Removing GILD increases the average correlation to -0.137.   

Overall we find a strong link between CVP variations and HAR_CVP forecast 

performance.  This is consistent with the high Shapley R2 from CVP variables reported in Panel  

C of Table 2.  While HAR_CVP performs better than the competing models, it performs even 

stronger when there is high variation in RV persistence.  We find mixed evidence on the link 

between CVP level and HAR_CVP forecast performance.  

VII. Conclusion and Future Research  

This study shows that the persistence in daily volatility is mainly driven by return.  

Large returns, positive or negative, are associated with higher dependence of tomorrow’s 

volatility on today’s volatility.  The dependence is lower when today’s return is small but 

volatility is high.  Negative returns increase volatility persistence more than positive returns. 

This asymmetric volatility persistence has much higher explanatory power than the direct 

return impact on future volatility and offers a new explanation for asymmetric volatility.  By 

estimating the time-varying dependence between the current and future volatilities, our model 

improves volatility forecast relative to recent advances in the literature.  

The key finding of our study is that volatility persistence varies with the market state.  

This can be further tested in a more flexible multi-frequency model such as the MIDAS model 

of Ghysels, Santa-Clara, and Valkanov (2006).  It can also be tested in the panel-based HAR 

models in Bollerslev et al. (2017) for commonality in volatility persistence. Different 

functional forms for CVP, e.g. a logit function, can be experimented.  Extensions to long-run 

volatility and different asset classes should also be investigated.  While we outline the heuristic 

arguments for CVP in Section II, formal economic modelling is needed to provide theoretical 

support. Alternative mechanisms for CVP should be explored. Given the on-going debate on 

leverage effect versus volatility feedback as the main channel for asymmetric volatility, e.g. 

Choi and Richardson (2016) and Engle and Siriwardane (2016), a valuable empirical analysis 

would be to assess these explanations while controlling the asymmetric return impact on 

volatility persistence. At a more fundamental level, the return impact on volatility persistence 

should be considered in modelling and testing the risk-return relationship and in studies of 

volatility risk premium.  
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Appendix A: Volatility Impact of Stock and Market Returns 

We show that in the HAR and HAR_CVP models for individual stocks, the effects of the S&P index returns dominate those of stock returns.  
Panel A reports the estimation results of the HAR model with both stock returns and the S&P index returns:  

   RV୲ାଵ ൌ α ൅ βୈRV୲ ൅ β୛RV୲,୛ ൅ β୑RV୲,୑ ൅ φୈr୲
ୗ ൅ φ୛r୲,୛

ୗ ൅ φ୑r୲,୑
ୗ ൅ θୈr୲ ൅ θ୛r୲,୛ ൅ θ୑r୲,୑ ൅ ε୲ାଵ 

where r୲
ୗ is the stock return and rt is the S&P 500 index return.  It shows that coefficients of stock returns are not significant when the S&P index 

returns are included.  Panel B reports the estimation results of the HAR_CVP model in (4) with stock returns, not S&P 500 index returns.  
Compared to Panel B of Table 2, the CVP return coefficients β|୰| and β୰ and the leverage coefficients θୈ, θ୛, and θ୑ are smaller with lower t 
statistics.  

Panel A: HAR 

 βୈ  β୛  β୑ φୈ  φ୛  φ୑ θୈ  θ୛  θ୑ α  Rഥଶ AIC LB5 

Ave Coeff 0.312*** 0.392*** 0.192*** -0.240*** -0.360*** -0.295**    0.293 0.567 6464 77 
t stat 5.61 5.57 3.97 -3.24 -3.37 -2.27    4.18    

%(t൑-1.96) 0% 0% 0% 66% 53% 23%    0%    
%(t൒1.96) 93% 97% 79% 0% 0% 0%    91%    

              
Ave Coeff 0.270*** 0.371*** 0.214*** -0.0943 -0.127 -0.134 -0.453*** -0.899*** -0.820*** 0.420*** 0.587 6315 70 

 t stat 4.61 5.67 4.65 -1.52 -1.28 -0.87 -3.36 -3.56 -2.33 5.59    

%(t൑-1.96) 0% 0% 0% 10% 8% 5% 87% 90% 57% 0%    

%(t൒1.96) 85% 95% 90% 1% 1% 0% 0% 0% 0% 100%    

Panel B: HAR_CVP 

 β଴ β|୰| β୰ βୖ୚ β୛ β୑ φୈ  φ୛  φ୑ Rഥଶ F AIC LB5 

Return = Stock Returns            

Ave Coeff 0.494*** 0.0323*** -0.0160** -0.0069*** 0.316*** 0.129*** -0.090* -0.293*** -0.231*** 0.608 126 6124 56 
 t stat 7.19 3.19 -2.26 -4.86 6.12 2.72 -1.66 -3.35 -2.06     

%(t൑-1.96) 0% 1% 28% 89% 0% 0% 21% 54% 16%     
%(t൒1.96) 99% 49% 0% 0% 93% 47% 0% 0% 0%     
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Appendix B: Additional Conditioning Variables 

In addition to daily return and RV, we examine whether daily volatility persistence is 

affected by volatility jumps (VJ), number of trades (NT), illiquidity (IL), and the imbalance of 

buyer- and seller-initiated trades (TI).  Volatility jumps have been shown to help forecast future 

volatility, e.g. Corsi and Reno (2012).  The continuous component of RVt is the bipower 

variation defined as BVt = 
஠

ଶ
∑ หr୧,୲ห|r୧ିଵ,୲|
୬
୧ୀଶ . It converges to the integrated variance as n	→ ∞ 

and is calculated using the skip-4 method of Huang and Tauchen (2005) and Patton and 

Sheppard (2015) to improve its properties. Volatility jump is VJt = RVt – BVt.  Barndorff-

Nielsen and Shephard (2006) suggest the following statistic for testing VJt = 0:  

Z୲ ൌ
nଵ ଶ⁄ ሺBV୲ RV୲⁄ െ 1ሻ

ሺπଶ 4⁄ ൅ π െ 5ሻଵ ଶ⁄ ൈ max	ሼ1, QV୲
ଵ ଶ⁄ BV୲ൗ ሽ

	 

where QVt ≡
஠మ୬

ସ
∑ หr୧,୲ห|r୧ିଵ,୲|หr୧ିଶ,୲ห|r୧ିଷ,୲|
୬
୧ୀସ . Zt is asymptotically N(0,1) in the absence of 

jumps.  Let zα be the left tail of N(0,1) with P(Z<zα) = α.  Volatility jump is defined as VJt = 

Iሺ୞౪ழ୸ಉሻ(RVt – BVt).  With α = 1% and zα = -2.326, jumps occur on 9% of trading days for SPY 

and more often for individual stocks.  Daily illiquidity is measured by the Amihud (2000) 

measure defined as ILt = |rt|/Volt where Volt is trading volume in unit of million. We use the 

bulk volume classification of O’Hara, et al. (2012) to partition the 5-minute trades into buyer- 

and seller-initiated portions, with the difference being the trade imbalance (TIt).  Recently 

O’Hara, et al. (2015) show that order imbalance based on bulk volume classifications are good 

proxies of information-based trading.   

Let Yt be VJt, NTt, ILt, or TIt. To assess the impact of these variables on volatility 

persistence, we extend the model in (4) to include Yt and its interaction with RVt: 

RV୲ାଵ ൌ α ൅ ൫β଴ ൅ β|୰||r୲| ൅ β୰r୲ ൅ βୖ୚RV୲ ൅ βଢ଼Y୲൯RV୲ ൅ δଢ଼Y୲ ൅ φZ୲ ൅ ε୲ାଵ 

Table B reports the impact of the additional conditioning variables. While some of the 

additional variables have a significant impact on future volatility level, their effects on 
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volatility persistence are either insignificant or discrepant. Volatility jumps reduces volatility 

persistence for SPY but have no effect for individual stocks.  Forsberg and Ghysels (2007) find 

that “the dynamics of the [volatility] process do not change whether we have a jump at time t 

or not, not even at the one day prediction horizon.” Clements and Liao (2017) show that the 

jump intensity as estimated from a Hawkes model increases RV persistence.  They do not 

control the impact of return and RV.  The lack of impact from trading intensity (NT) is 

consistent with those of Fleming, Kirby, and Ostdiek (2006) who find trading volume does not 

explain the ARCH effect in volatility. For SPY, both IL and TI increase future volatility level 

but decrease volatility persistence.  For individual stocks, IL reduces future volatility and VI 

has no effect.  Any information asymmetry embedded in VI appears to be subsumed by return 

and RV.  Table B shows that the CVP coefficients remain significant in almost all cases.  For 

SPY, β෠|୰| is largely intact as in Table 2; β෠୰ is significant except for TI; β෠ୖ୚ is also smaller but 

highly significant.  For stocks, additional variables are largely insignificant and the CVP 

coefficients are similar to those in Table 2.   
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Table B: Additional Conditioning Variables 
 

This table reports the estimated coefficients of the following regression:  

RV୲ାଵ ൌ α ൅ ൫β଴ ൅ β|୰||r୲| ൅ β୰r୲ ൅ βୖ୚RV୲ ൅ βଢ଼Y୲൯RV୲ ൅ δଢ଼Y୲ ൅ φZ୲ ൅ ε୲ାଵ 

Yt is one of the following variables: volatility jump (VJ), the number of trades (NT), illiquidity 
(IL), and trade imbalance (TI). Zt = (RV୲,୛, RV୲,୑, r୲, r୲,୛, r୲,୑)’. The other variables are the 

same as in Table 3.  The asterisks ***, **, * indicate significance at 1%, 5%, and 10% 
respectively.   

 β଴ β|୰| β୰ βୖ୚ βଢ଼ δଢ଼  തܴଶ 
SPY:        
VJ 0.322*** 0.106*** -0.036** -0.011*** -0.070** 0.222 0.718 
t-stat 3.97 3.38 -2.12 -5.63 -2.02 0.65  

NT 0.304*** 0.100*** -0.033** -0.011*** 0.019 -0.031 0.713 
 3.51 3.40 -2.05 -4.11 0.20 -0.13  

IL 0.361*** 0.102*** -0.034*** -0.011*** -0.088* 0.381*** 0.716 
 4.60 3.56 -2.15 -5.59 -1.79 2.78  

TI 0.322*** 0.105*** -0.013 -0.009*** -0.003* 0.006** 0.720 
 4.36 3.60 -0.92 -6.52 -1.76 2.28  

Stocks        

VJ 0.404*** 0.068*** -0.027*** -0.006*** -0.005 -0.015 0.643 
t-stat 6.64 4.62 -2.95 -6.18 -0.28 -0.05  

%(t൑-1.96) 0% 0% 54% 87% 22% 16%  
%(t൒1.96) 92% 82% 0% 0% 21% 5%  
NT 0.353*** 0.067*** -0.026*** -0.006*** 0.000 0.000 0.644 
t-stat 4.92 4.62 -2.84 -4.89 0.08 0.01  

%(t൑-1.96) 0% 0% 51% 80% 15% 8%  
%(t൒1.96) 85% 80% 0% 0% 9% 7%  
IL 0.478*** 0.067*** -0.029*** -0.006*** -0.004 -0.461* 0.648 
t-stat 6.56 4.82 -3.19 -2.77 -0.25 -1.73  

%(t൑-1.96) 0% 0% 57% 53% 20% 18%  
%(t൒1.96) 94% 82% 0% 3% 11% 2%  
TI 0.388*** 0.069*** -0.020* -0.006*** -0.015 0.118 0.643 
t-stat 6.77 4.88 -1.82 -6.01 -0.44 0.88  

%(t൑-1.96) 0% 0% 36% 92% 9% 1%  

%(t൒1.96) 93% 83% 3% 0% 7% 10%  
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Appendix C: Sub-period Results 

Sub-period analyses allow us to assess how the statistical relationship has evolved over 

time and when the relationship is strong and weak.  We require all stocks have 6 sub-periods, 

i.e. starting from 2002, which leaves 72 stocks in the sample. Table C reports the results of 

sub-period estimation. In most sub-periods, at least two of the three conditioning variables are 

significant with the same signs as in Table 2. There is no significant coefficient of the opposite 

sign.  Negative returns have greater impact than positive returns in almost all sub-periods.  

Therefore the return-size effect is greater than the return-direction effect in most sub-periods.  

The HAR_CVP model works particularly well during the crisis period of 2008-09, with all 

conditioning variables highly significant. The results indicate that the qualitative relationship 

in Table 2 holds in most sub-periods regardless the level of volatility.  

Table C: Sub-period estimations  

This table reports the daily persistence coefficients of the following models: 

RV୲ାଵ ൌ α ൅ ሺβ଴ ൅ β|୰||r୲| ൅ β୰r୲ ൅ βୖ୚RV୲ሻRV୲ ൅ φZ୲ ൅ ε୲ାଵ 

Zt = (RV୲,୛, RV୲,୑, r୲, r୲,୛, r୲,୑)’. %(t ൑ -1.96) and %(t ൒ 1.96) are the percentage of stocks 

with t ൑ -1.96 or t ൒ 1.96 respectively.  The asterisks ***, **, * indicate significance at 1%, 
5%, and 10% respectively.   

Panel A: Sub-periods for SPY 

 β଴ β|୰| β୰ βୖ୚ Rഥଶ 
2000 – 2001 0.455** 0.002 -0.022 -0.014* 0.287 
t stat 2.55 0.08 -1.07 -1.67  

2002 – 2003  0.311*** 0.177*** -0.066*** -0.021** 0.798 
 2.88 5.04 -6.34 -2.27  

2004 – 2005 0.260** 0.196*** 0.022 -0.178 0.437 
 2.14 4.55 0.30 -1.59  

2006 – 2007  0.292*** 0.160*** -0.020 -0.037 0.583 
 2.95 2.67 -0.33 -1.56  

2008 – 2009 0.388*** 0.098*** -0.035* -0.012*** 0.726 
 2.78 2.71 -1.78 -3.31  

2010 – 2011  0.413** 0.079*** -0.046** 0.002 0.697 
 2.46 2.94 -2.19 0.12  

2012 – 2014/5 0.582*** 0.037 -0.04 -0.387** 0.336 
 4.13 0.98 -0.96 -2.25  
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Panel A: Sub-periods for stocks 

 β଴ β|୰| β୰ βୖ୚ Rഥଶ 
2002 – 2003      

Average 0.344*** 0.106*** -0.040*** -0.015*** 0.550 
t stat 5.71 5.18 -3.35 -3.35  

%(t൑-1.96) 0% 0% 47% 42%  

%(t൒1.96) 76% 78% 1% 3%  

2004 – 2005      
Average 0.367*** 0.079*** -0.018 -0.042*** 0.259 

t stat 7.01 2.89 -0.59 -3.42  

%(t൑-1.96) 0% 0% 6% 46%  

%(t൒1.96) 79% 35% 6% 3%  

2006 – 2007      
Average 0.363*** 0.070** -0.031 -0.025*** 0.379 

t stat 5.18 2.52 -1.08 -2.82  

%(t൑-1.96) 0% 0% 14% 42%  

%(t൒1.96) 86% 42% 0% 1%  

2008 – 2009      
Average 0.389*** 0.066*** -0.022* -0.0069*** 0.632 

t stat 3.41 3.48 -1.72 -3.68  

%(t൑-1.96) 0% 0% 39% 71%  

%(t൒1.96) 63% 65% 1% 0%  

2010 – 2011      
Average 0.454*** 0.070*** -0.013 -0.013 0.411 

t stat 4.27 3.14 -0.94 -1.30  

%(t൑-1.96) 0% 0% 24% 49%  

%(t൒1.96) 83% 67% 7% 1%  

2012 – 2014      
Average 0.428*** 0.033 -0.066** -0.039*** 0.318 

t stat 7.99 1.40 -2.49 -2.67  

%(t൑-1.96) 0% 0% 36% 50%  

%(t൒1.96) 90% 10% 3% 1%  

 
 


