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Abstract

Cochrane (2011) points out that the burgeoning characteristic-related ”factor

zoo” to explain the average returns in equity market are in disarray. This paper

introduces a newly developed machine learning tool, ordered and weighted L1 norm

regularisation (OWL) to ”regularise” this chaotic ”factor zoo”. OWL permits high

correlations among explanatory variables, which is novel in the finance literature

and of great importance. Factor correlation prevails in high dimensionality (fac-

tor zoo) and distorts standard estimators such as Fama-MacBeth (FM) regression,

LASSO, etc. I show OWL estimator is consistent with finite factors and derive the

convergence rate with infinite factors. I also derive conditions that OWL groups

highly correlated variables, while shrinks off useless/redundant variables simultane-

ously. Monte Carlo experiments show OWL outperforms LASSO, adaptive LASSO

and Elastic Net (EN) in various settings, particularly when factors are highly cor-

related. Empirical evidence suggests that liquidity related factors are primary to

drive asset prices. Following Freyberger et al. (2017), out-of-sample Sharpe ratio of

hedge portfolios, formed using OWL selected factors as predictors are considerably

larger than that of LASSO, EN and FM.
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1 Introduction

In the past few decades, hundreds of anomaly variables have been proposed, claiming

explanatory power to the cross section of average returns. Harvey et al. (2015) document

316 anomaly variables and raise concerns about data snooping. Hou et al. (2017) repli-

cate 447 anomaly variables and find 64% to 85% are insignificant, depending on cut-off

levels. Mclean and Pontiff (2016) find many anomalies vanish once they are discovered

and published. Cochrane (2011) dubs this phenomenon the ”factor zoo” and further

argues that the characteristics related factors to explain the cross section of average re-

turns are in disarray. He emphasises the importance of finding factors that can provide

independent information about average returns, and of distinguishing factors that can be

summarised by others or factors that have no explanatory powers to the cross section of

average returns. Fama and French (2008) survey empirical methods used for dissecting

anomalies and point out that portfolio sorting and Fama-MacBeth regression are tradi-

tionally employed to measure and test for factor’s ability to drive asset prices. However,

in high dimensionality, portfolio sorting will encounter the curse of dimensionality, while

Fama-MacBeth regression will suffer from multicollinearity. Cochrane (2011) points out:

”How to address these questions in the zoo of new variables, I suspect we will have to use

different methods.”

This paper introduces a newly developed machine learning tool, the ordered and

weighted L1 norm regularisation (OWL) to regularise this chaotic ”factor zoo” which, to

the best of my knowledge, is the first time applied in Finance. OWL permits high cor-

relation among explanatory variables, which is of great importance. Correlation prevails

in high dimensionality and can bias estimators severely if left neglected (see more details

in section 2 and 3). Kozak et al. (2017), for instance, point out that the LASSO estima-

tor will ignore correlations, and tends to pick one (highly correlated) characteristic and

disregard the rest. DeMiguel et al. (2017) state that correlation between factors matters

in a portfolio perspective and find that six factors selected through their procedure are

correlated. Asness et al. (2013) also find a negative correlation between ’momentum’ and

’value’ factors, and achieve superior portfolio performance by exploiting this correlation.

Factor correlations are common, especially in high dimensional big data. Yet, factor
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correlations measured by factor loadings 1 are usually much higher than those measured

by their time series (see section 4 for a detailed illustration). Cochrane (2011) shows

that to determine which factors are useful to explain the cross section of average returns,

we need to check whether expected returns line up with the covariances of returns with

factors. In other words, we want to check the regression of average returns on the co-

variance matrix of asset returns and anomaly factors (or regression of average returns on

factor loadings in the Fama MacBeth framework). Kleibergen (2009) cautions that the

estimation of risk premium that results from a Fama MacBeth regression is sensitive to

collinearity of factor loadings.

The main empirical question of this paper is, under highly correlated anomaly factors,

how to select useful factors and shrink off useless and redundant ones? OWL provides a

unified solution to this question. I first show OWL estimator is consistent with finite fac-

tors. Then I derive the converge rate of OWL estimator when the number of factors goes

to infinity, hence the conditions for a consistent estimator. I also show analytically that

when two factors are highly correlated, OWL estimator will assign similar coefficients to

them. This statistical property allows one to identify highly correlated factors and shrink

off useless and redundant factors simultaneously. Like other shrinkage based estimators,

it is, however, challenging to make direct statistical inferences on OWL estimator. Fol-

lowing DeMiguel et al. (2017) and Feng et al. (2017), I adopt a two stage (select and test)

procedure to infer statistical significance of OWL estimators. In the first stage, I employ

OWL to obtain a sparse set of useful factors. In the second stage, I propose a bootstrap

based testing procedure to infer factor significance. At the presence of factor correlation,

I bootstrap the orthogonalised asset returns to bypass multicollinearity issues (see section

2 for a detailed discussion). This method is in line with Harvey and Liu (2017) in which

they design a step-wise bootstrap testing method to select useful factors. However, I test

factors jointly because I am interested in the joint factor inference.

DeMiguel et al. (2017) point out that firm characteristics based long-short returns

and factors have different implications. Firm characteristics are computed using firm

1which is important in the secnod stage Fama-MacBeth regression.
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specific data, for instance, accounting data or historical stock returns. Stocks are then

sorted into decile portfolios according to their characteristics. Anomaly variables are

obtained by computing the spread return between the top and bottom decile portfolios.

Factors, on the other hand, command a common source of risk, for instance, the market

return. Yet, they are closely related. Fama and French (1996) reckon that the return of

a long-short hedging portfolio is a proxy for an underlying unknown risk. Kozak et al.

(2018) argue there is no clear distinction between risk-factor pricing and behavioural as-

set pricing. The goal of this paper is to search for useful anomaly variables that explain

the cross section of average returns. I make no distinction between risk-bearing factors

and firm-specific characteristics based anomaly variables, and I refer to them all as factors.

In a Monte Carlo experiment, I consider 90 candidate factors with some are highly

correlated. I compare OWL with LASSO, Elastic Net, adaptive LASSO, and OLS estima-

tors. I do this experiment in two settings, one with small number of test assets (N = 100),

another with large number of test assets (N = 1000). OWL is the only estimator that

can successfully group together highly correlated factors by assigning them with similar

coefficients; it also has the smallest error (zero, in the case of large N). On the other

hand, benchmarks like LASSO, Elastic Net, and adaptive LASSO fail to identify any cor-

related factors and also yield very noisy estimators. When sample size is small, adaptive

LASSO, influenced by the adaptive weight (i.e. the OLS estimator), performs poorly to

shrink off useless/redundant factors. Nonetheless, adaptive LASSO does a good job for

uncorrelated factors when sample size is large. This experiment shows that OWL has

superior performance to other estimators when high correlation is present among factors.

Empirically, I initially consider 100 firm characteristics documented in Green et al.

(2017), using CRSP and Compustat datasets, from January 1980 to December 2017. I

first construct anomaly factors of each characteristic according to Fama and French (1992)

and Fama and French (2015) 2. I obtain 80 anomaly factors. 3. For test portfolios, I

2I first discard any characteristics having more than 40% missing data. I then use non-micro stocks
to form decile portfolios at each point of time. If at any point of time, there are insufficient stocks to
form the decile portfolios, I delete the characteristic.

3Note that the sorting is always from high to low according to characteristics, and the anomaly
variables are top decile return minus the bottom decile return. That will end up with some slight
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follow suggestions of Cochrane (2011), Lewellen et al. (2010) and Feng et al. (2017) by

forming bi-variate sorted portfolios, and then combine them together as the grand set of

test portfolios. 4. For a robustness check, I also consider different methods of sorting,

including uni-variate sorting and all combinations of bi-variate 2 by 2 sorting, finding

OWL estimation is consistent in picking useful factors.

The empirical results complement and challenge some common stances in asset pricing

literature.

First, I find moderate correlation among 80 anomaly factors, measured by their time

series. Some beta related anomalies are highly correlated with other anomalies, including

accruals, profitability, volatility and liquidities 5. 15% correlation coefficients are higher

than 0.5 (absolute value). It, however, rises to 68% when factor correlation is measured

by their factor loadings (important for the second stage of Fama-MacBeth regression).

This casts doubts on the validity of employing Fama-MacBeth regression to infer factor

premiums. These alarmingly high correlations among factors echo Cochrane (2011)’s

outcry: in the high dimensional setting, we need to consider new methods.

Second, OWL identifies ’market’ as the primary factor important for the cross sec-

tion of asset returns. This finding confirms the empirical evidence by Harvey and Liu

(2017), and is consistent when using either the value weighted or equal weighted method,

excluding micro stocks. However, when micro stocks are included, the importance of

market factor plummets. Micro stocks, although only taking up less than 10% of market

capitalisation, constitute 56% of all stocks in the database. That rings alarms about

methodologies using individual stocks as test assets: they may bias results because of the

abundance of small stocks and their inferiority in aggregated market capitalisation.

Third, liquidity related factors are the main driver of the variation of cross sectional

average returns. ’Illiquidity’ (Amihud (2002)) is the most important anomaly factor, fol-

lowed by ’standard deviation of traded dollar volume’ (Chordia et al. (2001)). Their high

difference with some familiar notations. For instance, the famous size factor ’small-minus-big’ in my
factor library would be ’big-minus-small’, however, they are essentially the same after giving a negative
sign. In estimation, we only care about the coefficient magnitude. The interpretation of the sign of
coefficients should be looked at together with the sorting order when forming anomaly variables.

4I single out ’size’ as a common characteristic to form bi-variate sorted portfolios with the remaining
ones ,also see Feng et al. (2017).

5For this reason, Green et al. (2017) discard beta related anomalies in their factor library.
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correlation is identified by OWL by assigning them with similar coefficients. Liquidity

related factors are more evident with smaller stocks, implying small firms face severe

liquidity constraints, thus demand risk premiums to compensate for bearing the risk.

Furthermore, Liquidity related factors are particularly evident after the 2000 internet-

bubble bursts, while before that (1980 - 2000), ’profitability’ and ’momentum’ are the

most important factors to drive asset prices. Some asset growth rate, profitability and

investment related factors are also significant to explain the cross section of average re-

turns. This finding is consistent with Hou et al. (2018). Interestingly, the ’size effect’

disappears during the 1980-2000 period, which is well documented: the size effect weak-

ened after its discovery in the early 1980s. (see Amihud (2002), van Dijk (2011) and

Asness et al. (2018)). However, it becomes evident again after removing micro stocks

(smaller than 40 percentile of NYSE listed), implying the vanishing size effect is likely

to be caused by some small ”junk” stocks. Once ”junk” stocks are removed, size effect

resurfaces again, which echoes the discovery by Asness et al. (2018): size matters, if you

control your junk.

Fourth, from an out-of-sample (OOS) perspective, OWL selected factors achieve im-

pressive OOS Sharpe ratio for hedge portfolios using OWL selected factors as predictors.

I follow a similar procedure to Freyberger et al. (2017) to conduct the OOS exercise and

find that for the full sample selected factors, annualised OOS Sharpe ratio is around

3.13 when considering all stocks and around 1 once excluding micro-stocks, implying

that micro stocks are main contributors to high OOS Sharpe ratio. However, the OOS

Sharpe ratio is much higher once we split the full sample into two parts (before 2000

and after) and estimate each sub-sample with OWL separately. OWL selects different

factors within these two sub-samples, indicating a shift in economic characteristics. The

liquidity related factors are essential after the 2000 internet bubble burst, but insignif-

icant before 2000. By contrast, momentum and profitability related factors drive asset

prices primarily before 2000. Considering each sub-sample with unique OWL selected

factors, the annualised OOS Sharpe ratio is above 3.5 for all stocks, and once removing

micro-stocks, around 2 for the first sub-sample, and above 2.3 for the second sub-sample.
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1.1 Related literature

This paper naturally builds on a series of papers devoted to identifying pricing factors.

Fama and French (1992) propose the three-factor model consisting of a market return

factor, a size, and a value factor that achieves enormous success. Carhart (1997) adds the

momentum factor in Fama-French’s three factor model that makes it the new standard

among practitioners. Hou et al. (2014) explore the investment perspectives and propose

the q-theory model which includes an investment factor, a profitability factor, and a size

factor along with the market factor. Fama and French (2015) develop their own version

of investment and profitability factors and expand the three-factor model to a five-factor

model. Fama and French (2018) argue that an extra ”momentum” factor increases Sharpe

ratio according to Barillas and Shanken (2018), and they suggest a six-factor model. Now

after over half a century since the CAPM of Sharpe (1964) and Lintner (1965), hundreds

of anomaly factors have been proposed, claiming explanatory power to the cross section

of average returns. Harvey et al. (2015) document 316 factors and find most of them are

results of data-snooping. Hou et al. (2017) try to replicate 447 anomaly factors, and find

64% to 85% of them are not replicable.

This paper also relates to a series of econometric papers devoted to asset pricing model

testing. Fama and Macbeth (1973) put forward the two-pass regression method that has

now become a standard practice in finance. Green et al. (2017) use Fama MacBeth

regression to find significant factors for the US stock market. Lewellen (2015) studies the

cross sectional properties of return forecasts derived from the Fama-MacBeth regression

and finds that forecasts vary substantially across stocks and have strong predictive power

for actual returns. Kan and Zhang (1999) caution that the presence of useless factors bias

test results, leading to a lower than normal threshold to accept priced factors. Gospodinov

et al. (2014) develop model misspecification robust test to tackle spurious factors, using a

step-wise test to remove useless factors one by one. Fama and French (2018) use Sharpe

ratio and employ the Right-Hand-Side method of Barillas and Shanken (2018) to ”choose

factors”. Harvey and Liu (2017) suggest a step-wise bootstrap method to test for factors.

In particular, at each step they pick a factor that has the best statistics (for instance,
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the t-stat), then bootstrap the null hypothesis that factor has no explanatory power by

orthogonalising asset returns with the factor. Pukthuanthong et al. (2018) propose a

protocol to select factors: all factors should be correlated with principal components of

test assets covariance matrix.

However, this paper differs from the literature in several ways: I resort to an SDF

setting instead of Fama-Macbeth regression to identify useful factors. It has important

implications in terms of redundant factors: redundant factors are not priced but corre-

lated with some priced factors and they usually have non-zero risk premiums. Under

this circumstance, Fama-MacBeth regression would be ill-positioned to identify priced

factors. Second, I restrict my test portfolios to sorted portfolios rather than individual

stocks. The latter may suffer from missing data issues over a long period which could

lead to imprecise estimation of covariances, particularly in an out-of-sample framework.

Besides, micro/small stocks may dominate the result: although they only take up less

than 10% of the market capitalisation, they consist of 56% of all stocks. Third and

most importantly, to deal with high dimensionality with potential correlation among

factors, which has not yet been discussed much in the literature, my shrinkage based

estimator can identify highly correlated factors and group them together while removing

useless/redundant factors simultaneously.

This paper also contributes to the vast growing literature using machine learning

techniques to solve financial problems. Tibshirani (1996) proposed LASSO (L1 norm

regularisation) that achieves dimension reduction within a convex optimisation problem.

Since then, many modifications and improvements have been made to achieve various

targets. The LASSO family evolves rapidly. Yuan and Lin (2006) allow LASSO to shrink

variables as groups by introducing the group LASSO. Freyberger et al. (2017) employ the

adaptive group LASSO to find pervasive factors to explain the cross section of average

returns. Zou (2006) introduces the adaptive LASSO by adding a consistent estimator as

the weight of LASSO which makes the adaptive LASSO estimator consistent and enjoys

the oracle property. Bryzgalova (2015) modifies the adaptive LASSO by replacing the

consistent estimator (OLS estimator of risk premium) with factor loadings from the first

pass of Fama-MacBeth regression. Feng et al. (2017) adopt the double selection LASSO
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of Belloni et al. (2014). In the first step they use LASSO to choose controlling factors

with test assets; in the second step they use LASSO again to choose controlling factors

with candidate factors yet to be tested; in the third step, they run OLS regression of

test assets on the union of candidate and controlling factors selected from the first two

steps. They make statistical inferences on the candidate factors in the third step. Fan

and Li (2001) propose the smoothly clipped absolute deviation (SCAD) so that it bridges

the hard-thresholding and soft-thresholding. Ando and Bai (2015) employ SCAD to

find Chinese stock predictors. Zou and Hastie (2005) combine the L1 and L2 norm and

propose the elastic net (EN), which achieves clustering selection of correlated variables.

Kozak et al. (2017) employ EN in a Bayesian framework and find that sparse principle

components can largely explain the cross section of the average returns.

Bondell and Reich (2008) propose the octagonal shrinkage and clustering algorithm

for regression (OSCAR) by exploring the L∞ norm of parameters pair-wisely to achieve

clustered selection when variables are highly correlated. This paper is closely related

to Zeng and Figueiredo (2015), Figueiredo and Nowak (2016) in which they study the

ordered and weighted L1 regularisation (OWL) and reveal the close connection between

OWL and OSCAR: by adopting a linear decreasing weighting scheme for the penalty

term, OWL encompasses the OSCAR regularisation. Zeng and Figueiredo (2015) apply

OWL on image processing and attain significant noise deduction.

2 Methodology

To study which factors jointly explain the cross section of average returns, I adopt the

SDF method in Cochrane (2005). Section 2.1 explains the relation between risk price

and risk premium and which one should be used to make factor inferences; section 2.2

points out limitations of traditional methods when facing high-dimensionality, and section

2.3 offers a remedy by imposing sparsity; sections 2.4 - 2.6 introduce OWL and discuss

its statistical properties; section 2.7 proposes a two stage testing procedure to validate

selected factors.
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2.1 Risk price or risk premium?

Let mt denote the stochastic discount factor (SDF). A linear SDF:

mt = r−1
0 (1− b′(f − E(f))) (1)

where r0 is the zero beta rate which is a constant, f (K × 1) is a vector of K factor

returns, which can be either traded factors or mimic portfolio returns of non-traded

factors. f−E(f) is the demeaned factor return. b (K×1) is the SDF coefficient, referred

to as the risk price, it reflects whether a factor is priced or not.

I want to draw inferences on the risk prices of factors. Finding useful factors is the

goal of this paper, that is factors with risk prices which are non-zero and directly drive

the variation of SDF and contain pricing information. More specifically, they reflect the

marginal utility of factors to explain the cross-section of average returns. Factors can

also be useless or redundant. Useless factors are those whose risk prices are zero and

are uncorrelated with test assets. Redundant factors also have zero risk prices but they

are correlated with some useful factors. In other words, they can be subsumed by other

useful factors.

Risk premium refers to the free parameter in the second pass Fama-MacBeth regres-

sion: the first pass obtains the factor loadings by running time-series regressions of each

asset; the second pass runs cross-sectional regressions of asset returns on factor loadings

at each time. Risk price and risk premium are directly related through the covariance

matrix of factors, yet they differ substantially in their interpretation. Cochrane (2005)

shows that b (risk price) and λ (risk premium) are related by

λ = E(ff ′)b (2)

Risk premium of a factor infers how much an investor demands to pay for bearing a

certain risk. Risk price implies whether a factor is useful to explain the cross-section of

average asset returns. When factors are uncorrelated with each other, that is, E(ff ′) is a

diagonal matrix, bi = 0 (the ith factor is not priced) implies λi = 0, and vice verse. How-

10



ever, this is not true when factors are correlated. Risk premium of a factor can be non-zero

while the factor is not priced. A factor can earn positive risk premium by being corre-

lated with a useful factor, even though its risk price is indeed zero. To give an example,

suppose we have two factors f1 and f2, the covariance matrix is E(ff ′) =

 10 1

1 10


, and the first factor is priced and the second is not, that is b1 = 1 6= 0 and b2 = 0,

according to (2), λ1 = 10, λ2 = 1. Although factor f2 is not priced it earns non-zero

risk premium by simply being correlated with a useful factor f1. As discussed before, if

factors are uncorrelated it is interchangeable to use either risk price or risk premium to

select factors. However, factors are likely correlated in a high dimensional setting, and

our goal is to find useful factors to explain the cross-section of average returns, so we

should infer on risk price rather than risk premium.

I observe a T × N matrix of test assets, denoted by Rt as excess returns. The

fundamental asset pricing equation states: E(mtRt) = 0 for any admissible SDF, mt.

However, when mt is unknown and estimated from a model, the fundamental equation

no longer holds. The deviation from the equation is regarded as the pricing error. Let

mt(b) be the unknown SDF which depends on the unknown risk price b. Pricing error

e(b) can be written and simplified as:

e(b) = E[Rtmt(b)] = E(Rt)E(mt(b)) + cov(Rt,mt(b)) (3)

= E(Rt)E(mt(b)) + r−1
0 cov(Rt, 1− b(f − E(f))) (4)

= r−1
0 (µR − Cb) (5)

where C = cov(Rt, f) is the covariance matrix (N ×K) of excess return and factors; µR

(N × 1) are the expectations of excess returns of test assets.

A quadratic form of the pricing error measures how far the candidate model deviates

from the true model. Let Q(b) be the distance measure, we can recover b by minimising

Q(b):

b̂ = argmin
b

Q(b) = argmin
b

1

2
(µR − Cb)′WT (µR − Cb) (6)
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gives

b̂ = (C ′WTC)−1C ′WTµR (7)

where WT is a weighting matrix. r0 is a constant, so it can be dropped out.

Ludvigson (2013) offers two choices of the weighting matrix WT when comparing

models. First, E(RR′)−1, the inverse of the second moment of test assets returns, which

corresponds to the well known Hansen-Jaganathen (HJ) distance. The use of HJ distance

is more appealing when facing limited asset choices (small N). The weighting matrix

E(RR′)−1 accounts for and offsets the variations of test assets, producing stable estima-

tors regardless of limited test assets. It is, however, challenging to obtain HJ distance

when N is large: large T is required (T > N) to avoid near-singular matrix condition

when estimating HJ distance, and the length of T is usually limited. Ludvigson (2013)

advocates the second choice of WT : the identity matrix, if N is large. Additionally, when

test portfolios represent particular economic interests, for instance, firm characteristic

sorted portfolios, the identity matrix will be a better choice. Identity matrix does not

re-weight test portfolios and each characteristic sorted portfolio will be and should be

treated equally.

2.2 Challenges of high-dimensionality

Cochrane (2011) points out that traditional methods like portfolio sorting to identify

useful factors have fallen short in the high-dimensional world. Following Fama and French

(1992) and Fama and French (2008) to construct 5 by 5 portfolios, and supposing n

characteristics based anomaly factors need to be tested, we have to sort all stocks into 5n

portfolios. When n is small, for instance n = 2, it is handy to sort portfolios, and check

the marginal distribution of returns on each characteristic. However, when n is large, for

instance, n = 100, it is infeasible to sort stocks into 5100 portfolios.

For the Fama-MacBeth regression, there are several complications in high dimensional

setting too. First, the convergence rate of the risk premium estimator is O(
√
K/N),

where N is the number of test assets and K is the number of factors. When K di-

verges (K > N), the Fama-MacBeth regression becomes infeasible. Second, variables are

likely correlated under high-dimensinoality. As discussed in section 2.1, when factors are
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correlated, unpriced factors can earn positive risk premium if they are correlated with

priced factors (redundant factors), so Fama-MacBeth regression is likely to pick up re-

dundant factors. Third, Kleibergen (2009) also cautions that Fama-MacBeth regression

faces multicollinearity issues under high-dimensionality.

2.3 Remedy through Sparsity

Empirical finance research has demonstrated strong evidence that many of the proposed

factors are actually useless or redundant, see Harvey et al. (2015), Mclean and Pontiff

(2016) and Hou et al. (2017). In this paper, I am going to impose a sparsity assumption

on K candidate factors: there are only at most S useful factors, and S << K. With this

assumption, the convergence rate of estimator becomes
√

S logK
N

, which greatly alleviates

the high-dimensionality problem, and makes it feasible even in the case when K > N

(see section 2.6 for a detailed discussion).

Sparsity has been widely used in the machine learning literature. Tibshirani (1996)

proposed the LASSO estimator which is a milestone to achieving sparsity. The LASSO

penalty term takes the form of L1 norm of parameters and it would set many coeffi-

cients to zero. Since Tibshirani (1996)’s ground-breaking work, many researchers have

improved and extended LASSO to meet specific requirements. Zou (2006) added an

adaptive weight (usually a first stage OLS estimator) for L1 norm to derive the adaptive

LASSO. Bryzgalova (2015) modified the adaptive LASSO to shrink off spurious factors

by casting the adaptive LASSO in the Fama-MacBeth framework and using the factor

loadings as adaptive weights to estimate risk premiums.

However, (adaptive) LASSO is derived from the assumption of orthogonal matrix

design, which requires that factors are uncorrelated with each other. Thus, it is difficult to

implement in high-dimensional setting, in which factors usually exhibit strong correlation

( see section 4.2 for a detailed discussion).

Kozak et al. (2017) employed the ridge shrinkage and the elastic net in a Bayesian

framework, which allows factors to be correlated. They found that a small number of

principal components of characteristics based factors can approximate the SDF well.

This paper introduces a newly developed machine learning tool, the ordered and
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weighted L1 norm (OWL) regularisation, to circumvent the curse of dimensionality while

taking account of factor correlations.

2.4 The Ordered and Weighted L1 (OWL) regularisation

OWL estimator is achieved by adding a penalty term in equation (6):

b̂ = argmin
b

1

2
(µR − Cb)′WT (µR − Cb) + Ωω(b) (8)

where Ωω(b) = ω′|b|↓ , and ω is a K×1 weighting vector, and ω ∈ κ, where κ is a mono-

tone non-negative cone, defined as κ := {x ∈ Rn : x1 ≥ x2 ≥ ... ≥ xn ≥ 0}, ω1 > ωK. |b|↓
is the absolute value of risk price, decreasingly ordered by its magnitude.

The weighting vector ω is restricted in a monotone non-negative cone, which makes

the optimisation problem in (8) convex. The weighting vector ω is set to be linearly

decreasing:

ωi = λ1 + (K − i)λ2, i = 1, ..., K

Zeng and Figueiredo (2015), Figueiredo and Nowak (2016) show that by adopting a linear

weighting scheme, OWL maps to the OSCAR (Bondell and Reich (2008)) setting, which

has appealing properties of grouping highly correlated variables.

In order to solve (8), I use the proximal gradient descent algorithm. More details are

in appendix.

2.5 Tuning parameters and cross-validation

OWL estimator is sensitive to the choice of the weighting vector ω. So finding appropriate

values for tuning parameter λ1 and λ2, which pins down the weighting vector, is crucial.

Following the machine learning literature, I use a five-fold cross-validation method to

find tuning parameters. Given the grid values of λ1 and λ2, at each point on the grid, I

first divide sample into five equal parts in their time series dimension. I use four parts

to estimate the model with OWL. After obtaining the estimated model, I forecast the

returns of the fifth part, and compute the out-of-sample root of mean squared forecast
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error (RMSE). I then repeat the same procedure five times by rotating the training

samples and testing samples, and compute the average RMSE. Turning parameters are

determined by the smallest RMSE on each point on the grid.

2.6 Statistical Properties

This section discusses OWL’s statistical properties. I first show the case when the number

of factors K is finite, the OWL estimator is a consistent estimator. Then I allow K to go

infinity, with the sparsity assumption, I derive the convergence rate of OWL estimator,

hence the conditions for a consistent estimator. Lastly, I show the grouping conditions

under which two correlated factors will be assigned with the same coefficients.

When the weighting matrix W is an identity matrix 6, the model can be written as a

regression model such that: µR = Cb0+ε, and the OWL estimator is given by b̂ = b̂OWL =

argmin
b

1
N
||µR − Cb||22 + 1

N

∑
i

[λ1 + λ2(K − i)]|b|[i], where |b|[1] > |b|[2] > ... > |b|[K]. I

make following assumptions.

Assumption 1: Let Ci = (Ci,1, ..., Ci,j, ..., Ci,K) be a row vector of covariance ma-

trix of returns and factors, where i = 1, ..., N ; j = 1, ..., K and C be normalised such

that Σ̂ =
C ′C

N
→
d

Σ, full rank, and Σ̂j,j = 1. ε follows a normal distribution such that

ε ∼ N(0, σ2), and E(ε′C(j)) = 0 .

Theorem 2.1 (consistency of OWL). With assumption (1), for some t > 0, λ0 =

2σ

√
t2 + 2 logK

N
,

λ1

N
≥ λ0, λ1 = o(N), and λ2 = o(N)

with probability at least

P = 1− 2exp(−t
2

2
)

we have

(b̂− b0)′Σ̂(b̂− b0) ≤
(
λ0 +

λ1 + λ2(K − 1)

N

)
||b0||1

if K is finite, N →∞ then

||b̂− b0||2 → 0

6When the weighting matrix is not identity matrix, as long as it is a semi-positive definite matrix, we
can use Cholesky decomposition of W , then we can map into the identify matrix format.
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Proof: see appendix.

Theorem (2.1) shows that when K is finite, the OWL estimator converges to the true

value when N goes to infinity. Assuming Gaussian distribution of the error term ε, and

suitable conditions for λ1 and λ2 we can obtain the probability of this convergence is

greater than 1− 2exp(−t
2

2
) for some t > 0. The value of λ0 is determined to utilise the

Gaussian tail bounds.

Next, I show the convergence rate of OWL estimator when the number of factors

K goes to infinity, and (hence) the conditions for a consistent estimator. To deal with

infinite K, I impose the sparsity assumption and the compatibility assumption.

Assumption 2 (Sparsity): For K, (K →∞) number of factors, there are at most

S factors that have non-zero coefficients, and S << K.

Assumption 3 (compatibility condition): For a set s ⊂ {1, ..., K}, bS :=

bi1{i ∈ s}, bSc := bi1{i /∈ s} and b = bS + bSc . For some φ0 > 0, and for all b sat-

isfying ||bSc
0
||1 ≤ 3||bS0 ||1, it holds that: ||bS0||21 ≤ (b′Σ̂b)S/φ2

0.

Assumption 3 is similar to the restricted eigenvalues in Bickel et al. (2009), where φ2
0

is a compatibility constant.

Theorem 2.2 (convergence rate of OWL). With assumptions (1), (2) and (3), for some

t > 0, let λ0 = 2σ

√
t2 + 2 logK

N
,
λ1

N
≥ 2λ0, λ1 = o(N) , we have:

(b̂− b0)′Σ̂(b̂− b0) +
λ1

N
||b̂− b0||1 ≤ 4(

λ1

N
)2S/φ2

0 + 2
λ2

N
(K − 1)||b0||1

with probability at least

P = 1− 2exp(−t
2

2
)

If λ2 = O(
S logK

K
)

||b̂− b0||2 = O(

√
S logK

N
)
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Proof: see appendix.

Theorem (2.2) shows when number of factors goes to infinity, if λ1 and λ2 satisfy

some conditions, particularly λ2 is of the same of smaller order of
S logK

K
, then the

convergence rate of OWL estimator is of

√
S logK

N
.

Theorem 2.3 (grouping). Let b̂(K× 1) be a solution of (8), fi and fj (both T × 1)be the

ith and jth factors, so bi and bj are the coefficients in the SDF specification associated

with the ith and jth factors. Let µR(N × 1) be a vector of test asset means, and λ2 be the

tuning parameter in the weighting vector, if

σfi−fj <
λ2

||µR||2||σR||2

then b̂i = b̂j.

Proof: see appendix.

Theorem (2.3) has several implications. First, when factors are highly correlated, they

are more likely to be grouped together by assigning them with the same coefficients. It

safeguards highly correlated variables from being neglected and distorted. Second, the

weighting hyper parameter λ2 which defines the distance of neighbouring weights in ω

has direct impact on factor grouping. Large λ2 encourages grouping. From a geometric

perspective (more detailed geometric interpretation, see Zeng and Figueiredo (2015)),

that is because a large λ2 makes the atomic norm of OWL regulariser more pointy, thus

more likely tangent to the contour coming from the unregularised quadratic minimisation

solution. Third, the mean (µR) and standard deviation (σR) of test assets affect the

grouping property. A set of less informative assets (small µR and/or small σR) will result

in factor clusterings: all factors assigned with the same (and small) coefficients. Factors,

even if they are not highly correlated, are equally inadequate to explain a set of less

informative test assets.

On the other hand, orthogonal-design based estimators (that is assuming factors are

uncorrelated, for instance, LASSO), will neglect factor correlation and distort factor

interpretations (see section 3 for a detailed discussion). Fama-MacBeth regression usually
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requires deletion of factors with high correlations (for instance, see Green et al. (2017)).

However, it is difficult to define a threshold to split factors.

OWL provides a unified solution to the issues faced by other estimators. No factor-

trimming is required and factors with high correlation will be identified and grouped

together, while useless/redundant factors will be shrunk off simultaneously.

2.7 Two stage selection procedure

In the first stage, OWL selects a sparse number of factors; in the second stage, a bootstrap

testing procedure will be implemented to infer factor significance.

Considering high correlation between OWL selected factors, I design a bootstrap test

that is robust in collinearity. Instead of testing the slope coefficients by bootstrapping

their standard errors, I bootstrap the null hypothesis, that is all factors have no explana-

tory power. This method is in line with Harvey and Liu (2017) in which they use an

orthogonal bootstrap method to select factors step by step. However, their step-wise

selection method usually yields very conservative results: only 2 or 3 factors are tested

as significant to explain the cross section of average returns. Instead, I test factor signif-

icance jointly, because I am interested in joint factor inferences.

In particular, suppose I obtain a sparse number of factors from OWL (after the first

stage), I first compute the covariance of survival factors and test assets: let’s denote this

covariance matrix as C. Let µR denote the average returns of test assets. I first regress µR

on C to obtain tstat of estimated slopes and the residual series e. I then draw sub-samples

with replacement from C and e, call them C∗ and e∗. Regress e∗ on C∗, compute and

save t∗stat. Since e is orthogonal to C, t∗stat represents the tstat distribution under the null

hypothesis, that is factors can not explain the correspondent variable. I then compare

tstat estimated from real data with t∗stat distribution. If tstat exceeds 95 percentile of t∗stat

distribution, I then declare the associated coefficient is significant.
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3 Simulation

This section studies the finite sample performance of OWL estimator together with other

benchmarks in a Monte Carlo simulation experiment, where factors can be highly corre-

lated.

3.1 Simulation design

Consider K candidate factors, 2K/3 of them are useful factors, that is they are priced

(b 6= 0), and K/3 of them are useless or redundant factors (b = 0). Within these useful

factors, K/3 are highly correlated, and K/3 are uncorrelated.

Let ρ (K × K) denote the correlation coefficient matrix of the covariance matrix of

asset return and factors C = cov(R, f). Let ρ1, ρ2, ρ3 ∈ (−1, 1) and ρ is divided into 3

blocks such that:

bk1 =


1 . . . ρ1

...
. . .

...

ρ1 . . . 1


︸ ︷︷ ︸

K/3

; bk2 =


1 . . . ρ2

...
. . .

...

ρ2 . . . 1


︸ ︷︷ ︸

K/3

; bk3 =


1 . . . ρ3

...
. . .

...

ρ3 . . . 1


︸ ︷︷ ︸

K/3

and

ρ =


bk1 0

bk2

0 bk3


In bk1 (block 1) the diagonal of matrix are ones, elsewhere are ρ1; similarly for bk2

and bk3 where off-diagonal elements are ρ2 and ρ3, respectively. Then these three blocks

constitute the diagonal direction of matrix ρ, and elsewhere is filled with zeros.

This setting implies three blocks of factors. Within themselves they are correlated

with a correlation coefficient ρ1, ρ2 or ρ3, but factors in different blocks are uncorrelated

with each other.

I specify the values of ρ1, ρ2 and ρ3 (some are zeros and some are non-zeros), and

randomly generate an N×K matrix using the i.i.d. Gaussian distribution. Then multiply

it with the Choleski decomposition of ρ to obtain the covariance matrix C, denoted as
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simC.

I further specify an oracle value for b (risk price). Then I simulate the cross-section

of average returns as µR = simC ∗ b + e, where e is a N × 1 i.i.d. error vector with the

scale about 10% of simC.

Finally, I estimate risk price with simulated data simC and µR using OWL, LASSO,

adaptive LASSO, Elastic Net, and naive OLS 7. Then I compare these estimators with

the oracle value of b, pre-specified.

3.2 Simulation result

In this Monte Carlo experiment, I consider 90 candidate factors (K = 90). 30 of them

(block 1) are useful factors which are also highly correlated, with correlation coefficient

ρ1 = 0.9; 30 of them (block 2) are useless/redundant factors, which are also highly

correlated (ρ2 = 0.9); and 30 of them (block 3) are useful factors but not correlated

(ρ3 = 0). In the first experiment the number of assets N = 100 and in the second

experiment the number of assets is N = 1000.

[Figure 1 about here.]

Figure (1) reports the plot of OWL estimator along with other benchmarks and the

oracle value (black). There are 100 test assets. The upper left panel displays the plots of

all factors. The remaining three panels are detailed plot for each of these three blocks.

The upper right panel displays the plot of all estimators of useful factors that are

highly correlated. At the presence of high correlation, LASSO performs poorly with

highest estimation errors. EN is a hybrid estimator between LASSO and Ridge regres-

sion, the component of Ridge regression makes EN slightly better than LASSO. Adaptive

LASSO is strongly governed by the adaptive weights which is the OLS estimator, thus

adaptive LASSO and OLS estimator behave similarly. OWL produces the smallest esti-

mation error and is the only estimator that groups together highly correlated variables by

assigning them with similar coefficients, while other estimators, particularly LASSO and

EN, are adversely affected by high correlation, yielding noisy and inaccurate estimators.

7See appendix for a concise introduction of LASSO, adaptive LASSO, and Elastic Net (EN).
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The bottom left panel displays all estimators of useless/redundant factors. In terms of

shrinking off useless/redundant factors, LASSO, EN, and OWL all perform well: LASSO

and EN have a few outliers, but overall they set most of useless factors to zeros. OWL

performs the best in which it has the smallest estimation errors. By contrast, adaptive

LASSO is affected by the adaptive weights (i.e. OLS estimator) and fails to set many

useless/redundant factors to zeros.

The bottom right panel displays all estimators of useful factors which are not corre-

lated. OWL is the most efficient estimator. LASSO together with EN have the biggest

estimation errors. Adaptive LASSO and OLS provide unbiased but more volatile esti-

mators. Note that in the case of uncorrelated variables, both LASSO, EN and OWL

are biased towards zeros, which is a trade-off between shrinkage and consistence in many

shrinkage based estimators.

[Figure 2 about here.]

Figure (2) reports the plot of OWL estimator along with other benchmarks with 1000

test assets. When test assets are abundant, all shrinkage based estimators do a good job

to shrink off useless/redundant factors. Adaptive LASSO performs the best to estimate

uncorrelated factors: governed by the OLS weights, it is the only unbiased estimator

among shrinkage based estimators. However, for the same reason, it performs poorly

to shrink off useless/redundant factors when sample size is small. LASSO and EN offer

noisy and most biased estimators among all benchmarks. With highly correlated factors,

OWL produces the most accurate estimation (zero errors, in this case), and is the only

estimator which correctly identifies highly correlated factors.

These two experiments confirm the poor performance of LASSO. LASSO was devel-

oped for uncorrelated factor structure, if incorrectly employed for highly correlated vari-

ables, it can cause disastrous results. Adaptive LASSO is strongly influenced by the adap-

tive weight (OLS estimator), which makes it problematic to shrink off useless/redundant

factors when sample size is small. OWL is the only estimator that can identify highly

correlated factors.
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4 Empirical analysis

This section applies the two stage procedure on 80 anomaly factors to infer which are

priced and can explain the cross section of average returns in stock market. I first

introduce the datasets, followed by a detailed account of the construction of anomaly

factors and test portfolios. I consider both value weighted and equal weighted methods

controlling micro stocks. Following a similar line of Feng et al. (2017), I construct pooled

bi-variate sorted portfolios as test assets.

4.1 Data

I use the U.S. stock data from the Center for Research in Security Prices (CRSP) and

Compustat database 8 to construct anomaly variables and test portfolios because of their

availability and better data quality. The period spans from January 1980 to December

2017, totalling 456 months on all NYSE, AMEX and NASDAQ listed common stocks.

I consider 100 firm characteristics described in Green et al. (2017) 9, while deleting

characteristics that have more than 40% missing data. Then, for each remaining charac-

teristic, I sort portfolios into deciles at each month, according to Fama and French (1992)

and Fama and French (2015). Micro stocks, defined as market capitalisation smaller than

the 20 percentile of NYSE listed stocks, are removed. Although micro stocks only account

for less than 10% of aggregated market capitalisation, they constitute about 56% of all

stocks in the database, implying that small stocks should be treated with caution. Then,

anomaly factors are computed as the spread returns between the top and the bottom

decile portfolios. Characteristics having insufficient data to construct decile portfolios at

every month will be dropped. Overall, I obtain 80 anomaly factors, see table (1) for a

detailed description.

[Table 1 about here.]

There is a debate in the literature about using either individual stocks or sorted

8downloaded from the Wharton Research Data Services
9I am grateful to Jeremiah Green for providing SAS code to compute firm characteristics. I modified

the SAS code to cope with only CRSP and Compustat database.
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portfolios as test assets. Harvey and Liu (2017) use individual stocks with bootstrap

method to test for predictability of anomaly factors, and they find that only 2-3 anomaly

factors can significantly predict asset returns. Lewellen (2015) employed Fama-MacBeth

to test for anomaly factors with individual stocks. However, others argue that individual

stocks will introduce errors in variables (EIV). When regression is made on estimated

variables, i.e. factor loadings, the pre-estimated factor loadings would incur estimation

errors. Shanken (1992) modified the estimator by introducing the ”Shanken’s correction”

term to mitigate EIV. However, empirical work shows that ”Shanken’s correction” is

minimal in small samples. On the other hand, Fama and French (2008), Hou et al.

(2014), Feng et al. (2017) advocate sorted portfolios as test assets. Individual stocks are

usually noisy and exhibit outliers, which are the main source of EIV. Sorted portfolios

are (weighted) mean returns of a group of stocks sharing some similar characteristics,

which would mitigate the EIV problem. Hence, using sorted portfolios as test assets is

an alternative way to avoid EIV.

Yet, the biggest drawbacks of using individual stocks stem from missing data and

micro stocks. It is inevitable, over a long period, to have new firms entering and old

firms exiting, that will result in continuous missing data. Discontinuity of data can bias

the estimation of covariance matrix of factors and test assets, which is essential for factor

inference. A possible remedy could be deleting all stocks with any missing data. However,

that will leave only 375 stocks during the period between January 1980 and December

2017, which is insufficient to represent the stock market. A less extreme treatment could

be setting up a threshold for missing data: first, delete stocks with many missing data

while keeping stocks with a few (depending on the threshold) missing data then, when

estimating covariance matrix, delete rows with any missing data. However this treatment

will lead to imprecise estimation of covariance matrix. It is particularly challenging to

implement in an out-of-sample framework.

Using sorted portfolios, however, can circumvent this shortcoming. Portfolios are

formed at each point of time according to certain characteristics, then portfolio returns

are weighted averages of (varying) stocks in each portfolio, that guarantees continuity of

portfolio returns.

Micro stocks bring up another concern of using individual stocks as test assets. Small
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stocks take up the majority of all stocks while only a few big stocks constitute a large

share of total market capitalisation. If using individual stocks to gauge factor impact, it

is inevitable to distort the market implications: micro stocks, as long as individual stocks

are concerned for test assets, will dominate the estimation result. Big stocks which have

much larger impact on market price fluctuation will be out-weighted by a large number

of small stocks.

Portfolio sorting, however, can circumvent this issue by using the value weighted

method. First, micro stocks can be removed before sorting. Then returns of each sorted

portfolio can be computed by the weighted average of stocks returns where the weights

reflect their market capitalisations.

Fama and French (1992), Fama and French (2008), Fama and French (2015), used

bi-variate sorting to create the 5 by 5 test portfolios and they have now become popular

choices of test assets. However, Harvey et al. (2015) caution that when only a small set

of sorted portfolios are considered, for instance, the bi-variate sorted 25 portfolios, factor

selection is biased towards the same characteristics that are used to form test portfolios.

Lewellen et al. (2010) argue that the 25 size and value sorted portfolios are too low a

threshold to test factors. They recommend adding other portfolios in test assets. Feng

et al. (2017) construct a large set of combined portfolios as test assets. In particular,

they single out ’size’ characteristic and combine it with the remaining characteristics to

form 5 by 5 bi-variate sorted portfolios and pool them together. ’Size’ has been widely

acknowledged as an important characteristic in asset pricing literature. Fama and French

(1992), Fama and French (2015), Hou et al. (2014), Carhart (1997) all include the ’size’

and the ’market’ factors in their models. Asness et al. (2018) find size matters while

controlling other variables.

To strike a balance between using sorted portfolios and individual stocks as test as-

sets, I follow Feng et al. (2017) by singling ’size’ out as a common characteristic, together

with the remaining characteristics to form bi-variate sorted 25 portfolios. I drop any test

portfolios which have insufficient stocks (due to missing data) to sort. Finally, I group

them together, which amounts to 1927 test portfolios.
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Risk-free rate and market excess returns are downloaded from Kenneth French’s on-

line data library. All anomaly variables are demeaned and scaled to have the same

standard deviation with the market factor.

4.2 Factor correlation

[Figure 3 about here.]

Figure (3) displays the heat map of factor correlation coefficients matrix measured by

their time series. It suggests that 16% of factors exhbit correlation coefficients (absolute

value) greater than 0.5. In particular, beta related characteristics are highly correlated

with factors associated with liquidity, profitability, investment, and other financial ratios.

Green et al. (2017) excluded beta related factors as candidate factors because of their

high correlation profile with other factors.

[Figure 4 about here.]

Figure (4) displays the heat map of factor correlation coefficients matrix measured by

factor loadings. It exhibits much higher correlation compared to figure (3): 64% correla-

tion coefficients (absolute value) are greater than 0.5, implying serious multicollinearity

issues if standard Fama-MacBeth regression is employed. Cochrane (2011) points out

that we need to find whether expected returns line up with covariances of returns with

factors, implying that correlation measured by factor loadings really matters to infer

priced factors.

4.3 Which factors matter?

Considering high correlation among factors, I apply the two stage procedure to select

useful factors from the 80 candidate factors. I first employ OWL to shrink off use-

less/redundant factors, obtaining a sparse number of survival factors. In the second

stage I use bootstrap method described in section 2 to test survival factors.

[Figure 5 about here.]
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Figure (5) shows the convergence of OWL estimation using Fista-OWL with back-

tracking algorithm (see appendix). Vertical axis shows the distance between the kth

estimation and the optimiser. Horizontal axis shows the number of iterations (steps)

until a stopping criterion is met. I set a tight stopping criterion of OWL searching for the

optimiser, which is ||b(k)−b(k−1)||2
||b(k)||2 < 10−6, b(k) is the OWL estimation of the risk price at

the kth iteration. This figure shows that Fista-OWL algorithm has a sound convergence

property: it converges quickly at the first 1000 steps, then it gradually converges to the

optimiser because of a tight stopping criterion.

[Table 2 about here.]

Table (2) reports the result of the two-stage procedure to find factors that explain the

cross section of average returns. The first 5 columns are estimated with the full sample,

ranging from January 1980 to December 2017; columns 6-7 report results from 1980 to

2000, and columns 8-9 from 2001-2017. Both the value weighted (vw) and equal weighted

(ew) methods are considered. In order to gauge the impact of small stocks, I consider

three thresholds for micro stocks. Before sorting test portfolios, I screen out stocks with

market capitalisation smaller than 20, 30 or 40 percentile of all NYSE listed stocks. This

table lists all anomaly factors selected by the two-stage procedure in each estimation.

It also reports the ordinal number after each factor selected by OWL (in the bracket),

indicating the importance of each factor (smaller number implies bigger impact).

’Size’ (mve) has been selected as the most important factor in most of these estima-

tions, which is not surprising. ’Size’ characteristic has multiple entries in forming test

portfolios, thus ’size’ impact prevails in test portfolios. For this reason I exclude ’size’

factor as a competing factor, yet I include it in the table to show that OWL can correctly

identify relevant factors.

Amihud (2002)’s ’illiquidity’ (ill) is the most important factor that drives variations

of test asset returns. Its explanatory power is particularly evident with smaller stocks.

Portfolios sorted with size greater than 20 or 30 percentile (i.e. removing stocks that

are smaller than 20 or 30 percentile) of NYSE listed stocks exhibit higher importance of

’illiquidity’ (smaller ordinal number after OWL selection) than those with 40 percentile.

That implies small firms face severer liquidity constraints, and demand risk premiums to
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compensate for bearing the risk.

’Standard deviation of dollar volume’ (std dolvol) follows ’illiquidity’, becoming the

second most important anomaly factor. ’Standard deviation of dollar volume’ is strongly

correlated with ’illiquidity’. Both are proxies for liquidity risk. Recognising their high

correlation, OWL groups them together by assigning them with similar coefficients. In

the next subsection, I will show that portfolios can achieve high Sharpe ratios by taking

advantage of their correlation.

’Asset growth rate’ (agr) follows ’illiquidity’ and ’standard deviation of dollar volume’

as the third most important anomaly factor. This finding coincides with Hou et al.

(2018)’s new q5 model, in which they add ’asset growth rate’ as a fifth factor after their

famous q4 model (see Hou et al. (2014)). I also find ’asset growth rate’ is more prominent

with smaller stocks, with equal weighted method showing stronger impact of ’asset growth

rate’ on stock returns.

Other anomaly factors that have been selected multiple times include ’beta’, ’beta

squared’ (betasq), ’cash to debt ratio’, and ’percentage change in current ratio’ (pchcur-

rat), which are also related to liquidity risk. Beyond that, ’Return on invested capital’

(roic), and ’return on assets’ (roaq) are profitability related factors and are also significant

to explain the cross section of average stock returns.

Column 6 and 7 report estimations using the 1980-2000 sub-sample and column 8

and 9 report estimations using the 2001-2017 sub-sample. I find liquidity constraint only

appears in the second sub-sample (2001-2017), where liquidity related factors (’baspread’,

’standard deviation of dollar volume’, ’change in quick ratio’, etc...) play an important

role to explain the cross section of average returns. However, in the first sub-sample

(1980-2000) market shows no strong evidence of liquidity related factors to drive asset

prices. On the contrary, ’momentum’ and ’profitability’ are the most important factors

between 1980 and 2000.

Interestingly, during 1980 to 2000, with 20-percentile-micro-stocks excluded, I find

’size’ (mve) is not selected by OWL, which makes it the only exception from all estima-

tions. This phenomenon is well documented in the literature (see Amihud (2002), van

Dijk (2011) and Asness et al. (2018)): the size effect weakened after its discovery in the

early 1980s. However, when removing 40 percentile micro stocks, size effect was evident
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again, which implies the vanishing of size effect is likely to be caused by some small ”junk”

stocks. When removing these junk stocks, size effect resurfaces again, which echoes the

discovery by Asness et al. (2018): size matters, if you control your junk.

4.4 Robustness check

In this section, I want to check whether liquidity related factors are robust in explaining

the cross section of asset returns and also how small stocks affect factors’ implications.

For the first task, I will consider four types of sorting methods for constructing test

portfolios and check whether liquidity related factors are consistent to drive asset prices.

First, I apply the uni-variate sorting method to sort all non-micro stocks into decile

portfolios using each characteristic, and combine them together to obtain 800 test port-

folios. Compared to the test portfolio in empirical analysis, all characteristics are treated

equally. In other words, ’size’, like any other anomaly factor, is a candidate factor. Sec-

ond, I consider bi-variate sorting, but with all possible combinations of 80 characteristics,

that is 3240 possible combinations. To reduce the dimension of test portfolios, I consider

the 2 by 2 (instead of 5 by 5) sorting, that is I sort all stocks into high and low groups

where the threshold is the median of each characteristic. I obtain 3240×4, total 12960

test portfolios. Third, I consider a similar method in empirical analysis, that is singling

out ’size’ as a common characteristic, and using it with the remaining characteristics to

form bi-variate sorted portfolios; however, instead of forming the 5 by 5 portfolios, I form

3 by 3 portfolios. Fourth, I consider the sorting method used in empirical analysis, that

is 5 by 5 bi-variate sorting between ’size’ and the remaining characteristics.

For the second task, I use the same sorting method as in empirical analysis, but I

consider six types of treatment of micro stocks: (1), keep all micro stocks (P00); (2),

remove stocks that are smaller than 10 percentile of NYSE listed stocks (P10); (3-6),

similarly, remove stocks that are smaller than (20-50) percentile of NYSE listed stocks

(P20-P50). I want to check how factors’ implications vary within each scenario.

[Figure 6 about here.]

Figure (6) reports the two-stage procedure result using four different sets of test assets

(including the one used in empirical analysis). First, ’market’ along with ’illiquidity’
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and ’standard deviation of dollar volume’ are consistently chosen as the most important

factors to drive asset prices, with ’illiquidity’ top the chart of anomaly factors. Second,

the impact of ’size’ factor (mve) on test assets dropped colossally once it is not singled

out to form bi-variate sorted portfolios. We can conclude that in ’type3’ and ’type4’

where ’size’ effect tops the chart, it is artificially caused by portfolio sorting methods.

However in empirical analysis (’type4’), ’size’ is not a competing factor. Third, although

singling out ’size’ to form bi-variate sorted portfolios may alter the ’size’ effect, it does

not alter other factors’ implications: liquidity related factors are primary factors driving

asset prices.

[Figure 7 about here.]

Figure (7) reports the heat map of OWL estimation before bootstrap test. We find

some clear patterns. First, micro stocks alter market factor’s interpretation to drive asset

prices. When micro stocks are all included to form test portfolios, I find market factor

only plays a mediocre role for asset prices; however, liquidity related factors dominating

the chart. Market factor, nonetheless consistently becomes the primary factor to drive

asset prices once micro stocks are removed (at P20 and above levels). Second, liquidity

related factors consistently top the chart to drive asset prices, particularly with the

inclusion of small stocks. It shows that small firms face severe liquidity constraint, and

investors demand risk premiums to bear that risk. Third, to be consistent with the finance

literature, I consider the typical 20 percentile cut-off level to remove micro stocks. In

which case, profitability and growth related factors, after liquidity related factors, become

the second tier of factors to drive asset prices.

4.5 Liquidity as a risk factor

Liquidity as a risk source for stocks that commands risk premiums has been documented

extensively in the literature. Pástor and Stambaugh (2003) show that market-wide liq-

uidity is a state variable important for asset pricing. Average returns on stocks with high

sensitivities to liquidity exceed that for stocks with low sensitivities by 7.5%, while con-

trolling for ’market’, ’size’, ’value’ and ’momentum’ factors. Acharya and Pedersen (2005)

unified several empirical findings on liquidity in an equilibrium model, where illiquidity
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is modelled by per-share cost of selling security. They decompose liquidity risk premium

into three components: 1) the covariance of individual stock’s illiquidity to the aggre-

gated market illiquidity. That implies an investor requires risk premium for a stock that

is illiquid while the market is illiquid. 2) the covariance between individual stock’s return

and market-wide illiquidity, which is consistent with Pástor and Stambaugh (2003). 3)

the covariance between individual stock’s illiquidity and market returns, which implies

investors are willing to pay a premium for stock that is liquid while the market return is

low.

4.6 Out-Of-Sample Sharpe ratio

In this subsection, I will evaluate the performance of OWL selected factors in an out-of-

sample (OOS) context. OOS method is less prone to data mining and gains robustness

against in-sample overfit. Freyberger et al. (2017) point out that OOS exercise ensures

that in-sample overfit does not explain superior performance. Although the 5-fold cross

validation method used for evaluating OWL hyper parameters 10 ensures an OOS metric

by construction, the choice of factors is based on the overall sample. It is possible that

factors selected to explain the cross-sectional returns for one period do not hold well for

another period.

I follow a similar procedure to Freyberger et al. (2017) to form hedge portfolios using a

rolling window scheme, to predict returns of each test assets, that is the bi-variate sorted

portfolios, OOS. Rolling window size is 120 months (10 years). Specifically, at the end

of the estimation window, I regress each test asset on factors selected by the two-stage

procedure, but one period back. For instance, at time t, I regress each test asset return

from t − 120 − 1 to t on selected factors from t − 120 − 2 to t − 1, and obtain β̂. I

then forecast each test asset’s next period return (at t+ 1) by multiplying β̂ and selected

factors at t. I then sort stocks by their predicted returns into decile portfolios. I then

long the top decile and short the bottom decile. At the next period (t+ 1), when returns

are realised, I can compute the spread portfolio return. Then roll the window one period

forward and repeat the steps until the end of period. In the end I compute the Sharpe

ratio based on the OOS returns.

10use 4 folds to estimate the model and 1 fold to evaluate the model performance OOS.
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For the fact that OWL selects some different factors for some sub-periods, I also

evaluate the OOS performance for two sub-samples. OWL selected factors may differ in

each sub-period. In particular, in the 1980 to 2000 sub-sample, 11 the top 3 OWL selected

factors are ’momentum’, ’return on asset’ and ’sales cash ratio’ which are distinguished

from other periods. The second sub-sample estimation suggests ’illiquidity’ related factors

are most important to explain the cross section of average returns.

[Table 3 about here.]

Table 3, panel A reports that annualised OOS Sharpe ratio of all stocks is 3.1340,

where OWL selected factors are ’illiquidity’ related factors. But when excluding small

stocks, OOS Sharpe ratio declines drastically: excluding stocks smaller than 20 percentile

of NYSE listed stocks, OOS Sharpe ratio drops by around half; and drops a further third

when excluding stocks smaller than 40 percentile of NYSE listed stocks. This finding is

consistent with Freyberger et al. (2017) and Lewellen (2015) that micro stocks contribute

largely to the high out-of-sample Sharpe ratio.

Panel B shows that in the first sub-sample, where prevailing factors are ’momentum’

and ’profitability’ related factors, annualised OOS Sharpe ratio is 3.7603 for all stocks.

OOS Sharpe ratios for stocks larger than 20 or 40 percentile of NYSE listed stocks did

not drop as much as in the full sample: 1.9714 and 1.8294 respectively.

Panel C shows that in the second sub-sample, where ’illiquidity’ related factors mainly

drive the cross-sectional asset returns, annualised OOS Sharpe ratio is 3.5763 for all

stocks, and declines even less for larger stocks: 2.2309 and 2.3701 for stocks larger than

20 and 40 percentile of NYSE listed stocks, respectively.

On the other hand, out-of-sample Sharpe ratios of LASSO, EN and FM are smaller

than OWL. FM is typically the worst performer. EN and LASSO select the same factors

in many cases, which is not surprising. Because the shrinkage component of EN is a

combination of LASSO and Ridge shrinkage.

Sub-sample analysis suggests prevailing factors may change over time. A shift in

economy may drive factors’ contribution to explaining the cross section of stock returns

to vary. ’Profitability’ factors drive asset returns in the first sub-period and ’liquidity’

11 excluding stocks whose size are less than 20 percentile of NYSE listed stocks
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factors dominate the second sub-period that is after the 2000 internet bubble burst. In

a full sample estimation, prevailing factors in the first sub-sample are suppressed by

’liquidity’ related factors which are essential to explain the second half of sample. That

explains why the OOS Sharpe ratio increases dramatically after splitting into two sub-

samples.

5 Conclusion

In the zoo of factors, traditional methods to find useful factors that can explain the cross

section of stock average returns face tremendous challenges. Correlation in the factor

zoo makes the challenge even harsher. Yet, factor correlation should not be neglected,

as it causes severe consequences in standard analytical tools. For instance, (Adaptive)

LASSO ignores factor correlation and picks up a small set of highly correlated variables

randomly while discarding the rest. LASSO also fails to shrink off useless/redundant

factors when factors are highly correlated. In a high-dimensional setting, Fama-MacBeth

regression faces multicollinearity issues. Among 80 anomaly factors I considered, I find

64% are highly correlated (absolute value of correlation coefficient is greater than 0.5)

when investigating factor loadings.

I introduce a newly developed machine learning tool, the ordered and weighted L1

norm (OWL) regularisation, which is designed to cope with high correlations among

explanatory variables. OWL groups together highly correlated variables by assigning

them with similar coefficients.

Empirical analysis shows that ’illiquidity’ related factors play an important role in

explaining the cross section of average stock returns. A small set of (3 or 4) OWL

selected factors, usually highly correlated, explains a bulk of the cross section of average

returns, demonstrating strong Sharpe ratios (in-sample and out-of-sample), high cross

sectional R2, and small HJ distance and GRS statistic. Out-of-sample Sharpe ratio

of hedge portfolios formed by using OWL selected factors as predictors is around 3.5

(annualised) for all stocks, and above 2.3 for non-micro stocks in the past two decades.

However, it is worth stressing the importance of using sorted portfolios rather than
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individual stocks as test assets. Many papers have argued that error-in-variables (EIV)

will bias testing if individual stocks are used. For that, Shanken (1992) proposed the

Shanken’s correction. However, there are two other major shortcomings of using individ-

ual stocks as test assets.

First, micro stocks (market capitalisation smaller than 20 percentile of NYSE listed)

will dominate the estimation result. Although micro stocks comprise less than 10 percent

of aggregated stock capitalisation, they constitute 56% of all stocks. Hence, if individual

stocks are used, estimation will primarily explain only a small fraction of the market

value.

Second, individual stocks face tremendous challenges of missing data. The typical

treatment is to delete stocks with many missing data. For example, deleting stocks with

any missing data will lead to only a handful of stocks surviving over a long period. Al-

ternatively, a threshold of missing data can be set to determine which stocks to keep,

for instance, deleting stocks with more than 20% missing data. Then when evaluating

historical covariance matrix, delete rows with any missing data. This treatment, however,

would have extra challenge within an out-of-sample estimation framework. With a smaller

(than full sample) rolling window, after deleting rows with missing data, the estimation

of covariance matrix is inaccurate, and very often leads to non-invertible covariance ma-

trix. Sorted portfolios, on the contrary, bypass all the shortcomings of individual stocks.

Sorting portfolios at each point of time avoids missing data issues. Before sorting, mi-

cro stocks can be removed (or set up thresholds to control the effect of small stocks) to

mitigate the issue with small stocks. Additionally, value weighted method can further

alleviate small stock impact. Fama and French (2008) have already shown how sorted

portfolios can alleviate the error-in-variables.

Finally, note that the purpose of this paper is not to find a parsimonious asset pricing

model (since OWL selected factors are usually highly correlated), but to identify a set

of sparse factors to explain the cross section of average returns. With that in mind,

my procedure is particularly useful for factor investing: OWL can identify correlated

factors that jointly drive stock returns, which can then be utilised to form portfolio

strategies. Asness et al. (2013) find ’momentum’ and ’value’ are negatively correlated, and

this correlation can be further exploited to achieve high-performance portfolio strategies.
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DeMiguel et al. (2014) employed a VAR(1) model to explore the correlation among stocks

and find consistent superior out-of-sample performance. Ordered and weighted L1 norm

regularisation is a general tool useful for sparsity selection which permits correlations.

Since stocks are usually correlated, future research can be extended to explore portfolio

selection strategies, where individual stock weights are regularised by OWL.
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Appendix A Solve the OWL optimisation problem

A.1 OWL proximal function

First define the proximal function as

ProxΩω(b) = argminx
1

2
||x− b||22 + Ωω(x) (9)

With the definition of Ωω(b), we have:

Ωω(b) = Ωω(|b|) (10)

It is easy to show that

||b− sign(b)� |x|||22 ≤ ||b− x||22 (11)

where sign(.) is a function to retrieve signs from a vector, with elements in {1,−1, 0}. �

is a point-wise production operator.

(10) and (11) infer:

ProxΩω(b) = sign(b)� ProxΩω(|b|) (12)

Let P be a permutation matrix that orders a vector decreasingly, we have ||P (x −

b)||22 = ||x− b||22, and with the definition of Ωω(b), we have: Ωω(b) = Ωω(Pb) . These two

equations imply:

ProxΩω(b) = sign(b)� P ′(|b|)ProxΩω(|b|↓) (13)

where |b|↓ is a vector of decreasingly ordered absolute value of coefficients, and P ′(|b|) is

the transpose of the permutation matrix, which recovers the order of |b|.

For any |b|↓ ∈ κ, where κ is a monotone non-negative cone, defined above:

1

2
||x− |b|↓||22 + Ωω(x) =

1

2
||x||22 +

1

2
|||b|↓||22 − |b|′↓x+ Ωω(x)

≥ 1

2
||x∗||22 +

1

2
|||b|↓||22 − |b|′↓x∗ + Ωω(x∗)

where x∗ ∈ κ. It infers: ProxΩω(|b|↓) ∈ κ, and Ωω(x) = ω′x,
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Further, we have:

argminx∈κ
1

2
||x− |b|↓||22 + ω′x = argminx∈κ

1

2
||x− (|b|↓ − ω)||22

which is the projection of (|b|↓ − ω) onto κ, Then equation (13) can be written as:

ProxΩω(b) = sign(b)� (P ′(|b|)Projκ(|b|↓ − ω)) (14)

where Projκ(.) is the projection operator onto κ. 12

After solving the proximal function, we can employ the iterative soft-thresholding

algorithm.

First initialise b(0), then repeat:

b(k+1) = proxΩω(b(k) − szk 5 g(b(k))) (15)

until convergence. where k = 1, 2, 3, ... are steps of each iteration; g(b) = 1
2
(µR −

Cb)′WT (µR − Cb) and szk is the step size at each iteration of k.

To achieve the optimal convergence rate, I consider the accelerated proximal gradient

method, also regarded as the fast iterative soft-thresholding algorithm (FISTA), which

has a much faster rate to converge.

12 The projection onto κ can be obtained by using the Pool-Adjacent-Violators algorithm. see de Leeuw
et al. (2009).
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A.2 FISTA algorithm

Algorithm 1: FISTA-OWL

1 Input: µR, C, ω

2 Output: b̂ in (8)

3 Initialisation:b0 = b̂OLS, t0 = t1 = 1, u1 = b0, k = 1, η ∈ (0, 1), τ0 ∈ (0, 1/L) a

4 while some stopping criterion not met do

5 τk = τk−1;

6 bk = ProxΩω(uk + τ ∗ C ′ ∗ (µR − Cb))

7 while 1
2
||µR − Cbk||22 > Q(bk, uk)

b do

8 τk = η ∗ τk;

9 bk = ProxΩω(uk + τ ∗ C ′ ∗ (µR − Cb))

10 end

11 tk+1 = (1 +
√

1 + 4t2k)/2

12 uk+1 = bk + tk−1

tk+1
(bk − bk−1)

13 k ← k + 1

14 end

15 Return: bk−1

a L is a Lipschitz constant.
b Q(bk, uk) = 1

2 ||µR − Cuk||
2
2 − (bk − uk)′C ′(µR − Cuk) + 1

2τk
||bk − uk||22
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Appendix B Proof of Theorem (2.1)

The OWL estimator is minimising the function such that:

b̂ = b̂OWL = argmin
b

1

N
||µR − Cb||22 +

1

N

∑
i

[λ1 + λ2(K − i)]|b|[i]

Let b0 be the vector of true values of risk prices, and µR = Cb0 + ε, |b|[·] denotes the

element of the decreasingly ordered vectors of |b|, such that |b|[1] ≥ |b|[2] ≥ ... ≥ |b|[K].

According to the ”argmin” properties:

1

N
||µR−Cb̂||22 +

1

N

∑
i

[λ1 +λ2(K− i)]|b̂|[i] ≤
1

N
||µR−Cb0||22 +

1

N

∑
i

[λ1 +λ2(K− i)]|b0|[i]

(16)

Since ωi = λ1 + λ2(K − i) is in a monotone non-negative cone where ω1 ≥ ω2 ≥ ... ≥ ωK ,

we can write:

∑
i

[λ1 + λ2(K − i)]|b̂|[i] ≥ ωK ||b̂||1 = λ1||b̂||1∑
i

[λ1 + λ2(K − i)]|b0|[i] ≤ ω1||b0||1 = [λ1 + λ2(K − 1)]||b0||1

together with µR = Cb0 + ε, (16) can be simplified as:

1

N
||C(b̂− b0)||22 +

λ1

N
||b̂||1 ≤

2

N
ε′C(b̂− b0) +

1

N
[λ1 + λ2(K − 1)]||b0||1 (17)

in which,

2|ε′C(b̂− b0)| ≤
(
max

1≤j≤K
2|ε′C(j)|

)
||b̂− b0||1

Let λ0 be a constant, such that

1

N
max

1≤j≤K
2|ε′C(j)| ≤ λ0 (18)

(17) can be written as:

1

N
||C(b̂− b0)||22 +

λ1

N
||b̂||1 ≤ λ0||b̂− b0||1 +

1

N
[λ1 + λ2(K − 1)]||b0||1 (19)
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Use triangle inequality, we have:

||b̂− b0||1 ≤ ||b̂||1 + ||b0||1

(19) can be written as:

1

N
||C(b̂− b0)||22 + (

λ1

N
− λ0)||b̂||1 ≤ [λ0 +

λ1 + λ2(K − 1)

N
]||b0||1 (20)

Since
λ1

N
− λ0 ≥ 0 and λ1 = o(N), λ2 = o(N) we have:

1

N
||C(b̂− b0)||22 ≤ [λ0 +

λ1 + λ2(K − 1)

N
]||b0||1 (21)

(b̂− b0)′Σ̂(b̂− b0) ≤ [λ0 +
λ1 + λ2(K − 1)

N
]||b0||1 (22)

Now we compute the probability of this inequality.

Let λ0 = 2σ

√
t2 + 2 logK

N
, for any t > 0 and Vj := ε′C(j)/

√
Nσ2 v N(0, 1), since C has

been normalised such that σ̂2
j = 1.

Using the Gaussian tail bound and union bound, we have:

P(
1

N
max

1≤j≤K
2|ε′C(j)|) ≥ λ0) = P( max

1≤j≤K
|Vj| >

√
t2 + 2 logK)

≤ 2Kexp[−t
2 + 2 logK

2
]

= 2exp(−t
2

2
)

Consequently, the probability of (18) is

P ≥ 1− 2exp(−t
2

2
)

Appendix C Proof of Theorem (2.2)

Using the ”argmin” inequality on OWL, we have:

1

N
||C(b̂− b0)||22 +

1

N
λ1||b̂||1 ≤ λ0||b̂− b0||1 +

1

N
[λ1 + λ2(K − 1)]||b0||1 (23)
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Let
λ1

N
≥ 2λ0, (23) can be written as:

2

N
||C(b̂− b0)||22 +

2

N
λ1||b̂||1 ≤

λ1

N
||b̂− b0||1 +

2

N
[λ1 + λ2(K − 1)]||b0||1 (24)

in which,

||b̂||1 = ||b̂s0||1 + ||b̂sc0||1 ≥ ||b
0
s0
||1 − ||b̂s0 − b0

s0
||1 + ||b̂sc0||1

||b̂− b0||1 = ||b̂s0 − b0
s0
||1 + ||b̂sc0||1

then (24) can be written as:

2

N
||C(b̂− b0)||22 +

λ1

N
||b̂sc0 ||1 ≤ 3

λ1

N
||b̂s0 − b0

s0
||1 +

2λ2(K − 1)

N
||b0||1 (25)

Using (25), we can obtain below inequality:

2

N
||C(b̂− b0)||22 +

λ1

N
||b̂− b0||1 =

2

N
||C(b̂− b0)||22 +

λ1

N
||b̂s0 − b0

s0
||1 +

λ1

N
||b̂sc0||1 (26)

≤ 4
λ1

N
||b̂s0 − b0

s0
||1 +

2λ2(K − 1)

N
||b0||1 (27)

Using compatibility condition on ||b̂s0 − b0
s0
||1 we have:

4
λ1

N
||b̂s0 − b0

s0
||1 ≤ 4

λ1

N

√
S||C(b̂− b0)||2/(

√
Nφ0)

≤ 1

N
||C(b̂− b0)||22 + 4(

λ1

N
)2S/φ2

0

where the second inequality is using 4ab ≤ 4a2 + b2. So (27) can be written as:

1

N
||C(b̂− b0)||22 +

λ1

N
||b̂− b0||1 ≤ 4(

λ1

N
)2S/φ2

0 +
2λ2(K − 1)

N
||b0||1 (28)

Give
λ1

N
= 2λ0 = 4σ̂

√
t2 + 2 logK

N
and λ2 = O(

S logK

K
), both two terms on the right

hand side of (28) are O(
S logK

N
), so

||b̂− b0||2 = O(

√
S logK

N
)
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Appendix D Proof of Theorem (2.3)

The proof of theorem (2.3) relies on the Pigou-Dalton-transfer and directional derivative

lemma.

Lemma 1 (Pigou-Dalton-Transfer(P.D.T)). A vector x ∈ Rp
+, and its two components

xi, xj such that xi > xj; let ε ∈ (0, (xi − xj)/2), zi = xi − ε, zj = xj + ε, and zk = xk,

∀k 6= i, j, then

Ωω(x)− Ωω(z) ≥ ∆ωε

where Ωω(.) is the OWL norm defined in 8, and ∆ω is the smallest gap in weighting vector

ω.

Lemma 2. The directional derivative of a real valued convex function f at x ∈ dom(f),

f(x) 6=∞, is:

f ′(x, u) = lim
α→0+

[f(x+ αu)− f(x)]/α

then x∗ ∈ argmin(f), if and only if f ′(x∗, u) ≥ 0 for any u.

Proof: Denote the object function as Q = 1
2
(µR −Cb)′WT (µR −Cb) + Ωω(b). Let b̂

be a solution of (8).

Suppose

σfi−fj <
λ2

||µR||2||σR||2

and

b̂i 6= b̂j

assume b̂i > b̂j without loss of the generality (we want to find a condition under which this

assumption is violated, and thus we have a contradiction between the implied condition

and the assumption).

The directional derivative of Q at b̂ with ui = −1, uj = 1, uk = 0,∀k 6= i, j, is:

Q′(b̂, u) = lim
α→0+

||µR − Cb̂+ α(Ci − Cj)||22 − ||µR − Cb̂||22
2α

+ lim
α→0+

Ωω(b̂+ αu)− Ωω(b̂)

α

= (µR − Cb̂)(Ci − Cj) + lim
α→0+

Ωω(b̂+ αu)− Ωω(b̂)

α
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Applying the Pigou-Dalton-transfer on the OWL norm, we have:

Q′(b̂, u) ≤ (µR − Cb̂)(Ci − Cj)− lim
α→0+

∆ωα

α

= (µR − Cb̂)(Ci − Cj)−∆ω

= (µR − Cb̂)(Ci − Cj)− λ2

In the linear weighting scheme of OWL, each neighbouring weight has the same distance,

that is ∆ω = λ2.

Cauchy-Schwarz inequality states that for any vector u and v, < u, v > is the inner

product of vector u and v, we have:

| < u, v > | ≤ ||u||2||v||2

And since µR − Cb̂ is a pricing error, we can establish ||µR − Cb̂||2 < ||µR||2. We have:

Q′(b̂, u) ≤ ||µR − Cb̂||2||Ci − Cj||2 − λ2

< ||µR||2||cov(R, fi − fj)||2 − λ2

Using the Cauchy-Schwarz inequality again on the covariance term:

Q′(b̂, u) < ||µR||2||σR||2σfi−fj − λ2

< 0

which violates the directional derivative lemma. Hence there is a contradiction. So if

b̂ is an optimiser of Q(b̂, u) we must have:

b̂i = b̂j
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Appendix E Introduction of LASSO, adaptive LASSO,

Elastic Net and OSCAR

Let y denote a vector of responses which is a N × 1 column vector; x is a data matrix of

size N ×K. βi is the ith element of parameter vector β of size K × 1.

Lasso solves the below problem:

β̂a.d.Lasso = argmin
β

||y −Xβ||2 + λ||β||1 (29)

where ||β||1 is the summation of the absolute values of the parameter vector β, or the L1

norm of β. Lasso achieves sparsity selection by shrink many unimportant explanatory

variables’ coefficients to zeros.

Elastic net solves the below problem:

β̂a.d.Lasso = argmin
β

||y −Xβ||2 + λα||β||1 + λ(1− α)||β||22 (30)

Elastic net is combines the L1 (or Lasso) penalty and the L2 (or Ridge) penalty together,

which gives more robust results when variables are correlated; however, it is not designed

to select highly correlated factors.

Adaptive Lasso minimise the following problem:

β̂a.d.Lasso = argmin
β

||y −Xβ||2 + λ

K∑
i=1

1

|β̂ols|γ
|βi| (31)

where
1

|β̂ols|γ
, γ > 0, is the adaptive weight. β̂ols is a consistent estimator of β. |βi|

is the absolute value of the ith element of the parameter vector. Essentially, adaptive

Lasso adds an adaptive weight, for instance, the first stage OLS estimator, to each of the

element of the Lasso penalty. The variables with small (absolute value) OLS estimated

coefficients receive stronger penalty.

43



OSCAR (Octagonal shrinkage and clustering algorithm for regression) solves the below

problem:

β̂OSCAR = argmin
β

||y −Xβ||2 + λ1||β||1 + λ2

∑
i<j

max{|βi|, |βj|} (32)

where
∑
i<j

max{|βi|, |βj|} is a L∞ norm. Bondell and Reich (2008) show that OSCAR’s

octagonal atomic norm encourages factor clustering when they are correlated. Figueiredo

and Nowak (2016) shows that by adopting a linear decreasing weighting vector, OWL

maps to OSCAR exactly. Starting from the OSCAR penalty,

ΩOSCAR(β) = λ1||β||1 + λ2

∑
i<j

max{|βi|, |βj|}

=
∑
i

λ1 + λ2(K − i)︸ ︷︷ ︸
linear decreasing weights

|β|↓

= ΩOWL(β)

with ω = λ1 + λ2(K − i), OWL encompasses OSCAR. Further, if we set λ2 = 0, OWL

encompasses Lasso.
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Figure 1. Simulation: N = 100, K = 90
This figure reports the plot of OWL estimator along with other benchmarks and the oracle value

(black). There are 100 test assets, 90 candidate factors, which are divided into 3 equal block, where

their correlation coefficients within each block are ρ1 = 0.9, ρ2 = 0.9, ρ3 = 0. The upper left panel

displays the plots of all factors. The remaining three panels are detailed plot for each of these three

blocks. The upper right panel displays the plot of all estimators of useful factors that are highly

correlated. The bottom left panel displays the plot of all estimators of useless/redundant factors. The

bottom right panel displays the plot of all estimators of useful factors but not correlated. In each plot,

OWL estimator (red) is displayed along with LASSO, adaptive LASSO, Elastic Net, and native OLS

estimators.
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Figure 2. Simulation: N = 1000, K = 90
This figure reports the plot of OWL estimator along with other benchmarks. The number of assets is

1000, all the rest are the same with the first experiment.
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Figure 3. Factor correlation measured by times series
This heat map displays the correlation coefficients of all 80 anomaly factors, measured by times series

of factors. Dark red and deep blue indicate high correlation (positive or negative), while light colours

indicate low correlation.
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Figure 4. Factor correlation measured by factor loadings
This heat map displays the correlation coefficients measured by factor loadings, all the rest are the same

in figure (3).
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Figure 5. Convergence check
This figure shows the convergence of OWL estimation using Fista-OWL algorithm, where the stopping

criterion is ||b(k)−b(k−1)||2||b(k)||2 < 10−6, in which k is the number of iterations. and b(k) is the OWL estimation

of risk price at the kth iteration.

54



Figure 6. Robustness check using different sorting methods
This figure reports the absolute value of coefficients estimated by OWL using different sorting methods.

’type1’ is the uni-variate sorting method; ’type2’ is 2 by 2 bi-variate sorting, considering all possible

combinations of 80 characteristics; ’type3’ is 3 by 3 bi-variate sorting by singling out ’size’ to form bi-

variate sorting with the remaining characteristics; ’type4’ is the 5 by 5 bi-variate sorting in empirical

analysis.
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Figure 7. Robustness check with micro stocks
This figure reports six OWL estimations (before bootstrap test) with different treatments of micro stocks:

(1), keep all micro stocks (P00); (2), remove stocks that are smaller than 10 percentile of NYSE listed

stocks (P10); (3-6), similarly, remove stocks that are smaller than (20-50) percentile of NYSE listed

stocks (P20-P50).
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Table 1. Anomaly factors and their acronyms

Acronym Firm Characteristics Acronym Firm Characteristics

’absacc’ absolute accruals ’mom1m’ 1 month momentum
’acc’ working capital accruals ’mom36m’ 36 month momentum
’aeavol’ abnormal earnings announcement volume ’mom6m’ 6 month momentum
’agr’ asset growth ’ms’ financial statement score
’baspread’ bid-ask spread ’mve’ size
’beta’ beta ’mve ia’ industry adjusted size
’betasq’ beta squared ’nincr’ number of earnings increases
’bm’ book-to-market ’operprof’ operating profitability
’bm ia’ industry adjusted book-to-market ’pchcapx ia’ i.a. %change in capital expenditures
’cash’ cash holding ’pchcurrat’ % change in current ratio
’cashdebt’ cash flow to debt ’pchdepr’ % change in depreciation
’cashpr’ cash productivity ’pchgm pchsale’ % change in gross margin - %change in sales
’cfp’ cash flow to price ratio ’pchquick’ %change in quick ratio
’cfp ia’ industry adjusted cfp ’pchsale pchinvt’ % change in sale - % change in inventory
’chatoia’ industry adjusted change in asset turnover ’pchsale pchrect’ % change in sale - % change in A/R
’chcsho’ change in share outstanding ’pchsale pchxsga’ % change in sale - % change in SG&A
’chempia’ industry adjusted change in employees ’pchsaleinv’ % change in sales-to-inventory
’chinv’ change in inventory ’pctacc’ percent accruals
’chmom’ change in 6-month momentum ’pricedelay’ price delay
’chpmia’ industry adjusted change in profit margin ’ps’ financial statement score
’chtx’ change in tax expense ’quick’ quick ratio
’cinvest’ corporate investment ’retvol’ return volatility
’currat’ current ratio ’roaq’ return on assets
’depr’ depreciation ’roavol’ earning volatility
’dolvol’ dollar trading volume ’roeq’ return on equity
’dy’ dividend to price ’roic’ return on invested capital
’ear’ earnings announcement return ’rsup’ revenue surprise
’egr’ growth in common shareholder equity ’salecash’ sales to cash
’ep’ earnings to price ’saleinv’ sales to inventory
’gma’ gross profitability ’salerec’ sales to receivables
’grcapx’ growth in capital expenditure ’sgr’ sales growth
’grltnoa’ growth in long term net operating assets ’sp’ sales to price
’hire’ employee growth rate ’std dolvol’ volatility of liquidity (dollar trading volume)
’idiovol’ idiosyncratic return volatility ’std turn’ volatility of liquidity (share turnover)
’ill’ illiquidity ’stdacc’ accrual volatility
’invest’ capital expenditure and inventory ’stdcf’ cash flow volatility
’lev’ leverage ’tang’ debt capacity/firm tangibility
’lgr’ growth in long term debt ’tb’ Tax income to book income
’maxret’ max daily return ’turn’ share turnover
’mom12m’ 12 month momentum ’zerotrade’ zero trading days
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Table 2. Robust estimation of Two-step selection procedure

This table reports the two-stage select-and-test procedure to find anomaly factors that explains the cross section of average stock returns. I consider

the full sample size from 1980 to 2017 and two sub sample sizes breaks on year 2000. equal weighted (ew) and valued weighted (vw) methods are both

considered. Three measures of micro stock impact are employed: I remove stocks that is smaller than 20 (30 and 40 ) percentile of NYSE listed stocks.

Within each estimation I list all selected factors, where in the bracket is the ordinal number it selected by OWL (smaller means more important).

Sample size full full full full full 1980:2000 1980:2000 2001:2017 2001:2017
Weighting vw vw vw ew ew vw vw vw vw
Micro stock 20 prctile 30 prctile 40 prctile 20 prctile 40 prctile 20 prctile 40 prctile 20 prctile 40 prctile

# selected
agr 5 agr (8) agr (8) agr (5) agr (4) agr (5)
baspread 2 baspread (7) baspread (4)
beta 2 beta (1) beta (1)
betasq 3 betasq (4) betasq (2) betasq (2)
cash 3 cash (6) cash (7) cash (6)
cashdebt 4 cashdebt (6) cashdebt (2) cashdebt (7) cashdebt (2)
dolvol 3 dolvol (10) dolvol (6) dolvol (6)
egr 3 egr (4) egr (3) egr (9)
ill 7 ill (2) ill (2) ill (6) ill (2) ill (5) ill (2) ill (6)
invest 2 invest (7) invest (10)
mom12m 1 mom12m (3)
mom6m 2 mom6m (1) mom6m (4)
mve 8 mve (1) mve (1) mve (1) mve (1) mve (3) mve (1) mve (1) mve (5)
pchcapx ia 1 pchcapx ia (5)
pchcurrat 4 pchcurrat (4) pchcurrat (3) pchcurrat (9) pchcurrat (4)
pchquick 2 pchquick (11) pchquick (4)
retvol 1 retvol (3)
roaq 2 roaq (2) roaq (7)
roic 3 roic (5) roic (7) roic (5)
salecash 1 salecash (3)
saleinv 1 saleinv (5)
sp 1 sp (6)
std dolvol 6 std dolvol (3) std dolvol (5) std dolvol (4) std dolvol (3) std dolvol (7) std dolvol (3)
stdcf 1 stdcf (7)
turn 1 turn (8)
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Table 3. Out-of-sample Sharpe ratio of OWL and alternative factor selection
strategies

This table reports the out-of-sample (OOS) Sharpe ratio of portfolios using a rolling window scheme.
Rolling window size is of 120 months, at the end of estimation window, I regress each test asset

(bi-variate sorted portfolios) on factors selected by the two-stage procedure, but one period back.
Suppose at time t, I regress each test asset return from t− 120− 1 to t on selected factors from

t− 120− 2 to t− 1, and obtain estimated β. I then forecast each test asset’s next period return (at
t+ 1) by multiply estimated β and selected factors at t. I then sort test assets by their predicted returns

into decile portfolios, I long the top decile and short the bottom decile, at next period (t+ 1) when
returns are realised, I can compute the OOS portfolio returns and its Sharpe ratio. Panel A reports the

full sample estimation. Panel B and Panel C reports two sub-sample estimations. Factor selection
strategies include OWL, LASSO, Elastic Net (EN), and two-pass Fama-MacBeth regression (FM).

Panel A

Sample 1980:01 - 2017:12
OOS period 1990:01 - 2017:12
Stocks All stocks >20 prctile >40 prctile
OWL 3.1340 1.2086 0.8757
LASSO 2.4654 1.0943 0.8253
EN 2.5055 1.0943 0.8253
FM 2.4742 1.0448 0.7826

Panel B

Sample 1980:01 - 2000:12
OOS period 1990:01 - 2000:12
Stocks All stocks >20 prctile >40 prctile
OWL 3.7603 1.9714 1.8294
LASSO 3.4189 1.9006 1.1144
EN 3.4189 1.9006 1.1144
FM 2.9419 1.7426 0.9200

Panel C

Sample 2001:01 - 2017:12
OOS period 2011:01 - 2017:12
Stocks All stocks > 20 prctile > 40 prctile
OWL 3.5763 2.2309 2.3701
LASSO 3.2726 1.9877 2.0819
EN 3.2315 1.9877 1.7862
FM 3.0998 2.2030 2.0604
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