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1. Introduction 

Since 2000s investment in commodities has rapidly grown and this growth has been 

benefited from the creation of exchange-traded funds (ETFs) (Yan and Garcia, 2017), 

which allow to trade on commodities as if they were stocks. ETFs are employed to track 

the price of a reference asset, whereas the aim of leveraged exchanged-traded funds 

(LETFs) is to amplify the returns of the benchmark asset. So far, the leverage ratio is 

available up to (minus and plus) three times the target asset returns. However, LETFs and 

inverse ETFs have been criticized from a regulatory point of view (e.g. Financial Stability 

Board and Bank for International Settlements) due to its systemic risk and this is maybe 

explained by the timing and their rebalancing activities (Shum et al., 2016).  

For an excellent and recent review of the literature regarding ETFs (also LETFs) and 

financial markets, see Ben-David et al. (2017). The authors find that ETFs add 

(nonfundamental) volatility into market prices and have effects on the correlation 

structure of returns. Based on the results of other studies, it is also found that LETFs 

injected market volatility in the subprime crisis. Several events where ETFs have had 

impact on market instabilities are also documented. In particular, on June 20, 2013 most 

of the prices in emerging markets plunged and the prices of ETFs declined. Another event 

on August 24, 2015, the high volatility of almost half of the US equity markets was due 

to ETF trading. On that day, 11 ETFs were interrupted more than 10 times. This was a 

consequence of a decision of the Security Exchange Commission (SEC), which, after the 

Flash Crash of 2010, has the power to interrupt trading of securities, including ETFs, if 

the prices show extreme volatility fluctuations. 
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In addition, commodities exhibit higher volatilities than equity assets because, among 

other properties, they cannot be easily stored. In spite of these facts, little work has 

devoted to risk quantification of commodity (L)ETFs, and this work contributes to the 

literature in order to prevent future market crashes based on the adequate quantification 

of market risks when trading (L)ETFs. 

In a recent paper, Del Brio et al. (2018) investigate the risk assessment for individual 

commodity ETFs under different density specifications. The authors apply traditional 

backtesting methods for Value-at-Risk (VaR) and a recent proposal for Expected 

Shortfall (ES). Nevertheless, investment strategies usually involve portfolio decisions and 

thus the extension of these results to the multivariate framework is worthwhile. This paper 

covers this gap by comparing ES backtesting results for commodity ETF and LETF 

portfolios. To this end, we extend the study in Del Brio et al. (2011), by applying semi-

nonparametric (SNP) dynamic conditional correlation (DCC) model in a risk measure 

framework. To the best of our knowledge, this is the first work that employs the SNP-

DCC model to provide ES measures for portfolio risk. The SNP-DCC model 

encompasses the Gaussian-DCC (Engle, 2002) by accounting for skewness and kurtosis, 

as well as further high-order moments. This issue is extremely important in commodity 

assets, which not only exhibit high volatility but also feature skewness, leptokurtosis and 

extreme events. For instance, in a recent paper Fernandez-Perez et al. (2018) find a 

negative relationship between skewness of commodity futures returns and expected 

returns. 

Most of the literature concerning commodity portfolios has been based on the investment 

(asset allocation) point of view (Daskalaki and Skiadopoulos, 2011; You and Daigler, 

2013; Levine et al., 2016). With the introduction of sophisticated multivariate models, 

especially multivariate GARCH models, there have been broad applications in risk 



4 
 

management and quantification. Multivariate GARCH models have been employed not 

only to analyze hedging in commodities (Coakley, 2008; Fernandez, 2008; Aroui, et al., 

2015; Zhang and Choudry, 2015; Abul Basher and Sadorsky, 2016; Charalampous and 

Madlener, 2016; Ulusoy and Onbirler, 2017), and interactions between assets and markets 

(see e.g. Manera et al., 2013; Mensi et al., 2014; Gardebroek et al., 2016; Kang et al., 

2017; Roy and Roy, 2017; Sanjuan-Lopez and Dawson, 2017, for commodity market 

applications) but also to estimate portfolio VaR (Berens et al., 2015; Huang et al., 2016; 

Amendola and Candila, 2017; Kole et al., 2017; Scheffer and Weiss, 2017).  

On the other hand, LETFs have been recently the focus of study in the financial literature. 

For instance, Leung et al. (2017) analyze the implied volatility surfaces of LETFs; 

Giannetti (2017) proposes a panel data study to investigate the dynamics of LETFs 

returns; March-Dallas et al. (2018) examine the differences of liquidity factors between 

(unlevered) ETFs and LETFs; Jiang and Peterburgsky (2017) analyze investment 

strategies involving LETFs; Tang et al. (2014) examine the tracking performance of 

international LETFs; and Charupat and Miu (2013) analyze the pricing efficiency of 

LETFs. Nevertheless, few papers analyze Commodity LETFs (Guo and Leung 2015; 

Leung and Ward 2015). 

For portfolio commodity risk quantification, White and Dawson (2005) show that 

multivariate GARCH models outperform RiskMetrics model to estimate VaR for 

commodities of UK arable farms. Moreover, Zolotko and Okhrin (2014) introduce a 

family of dynamic conditional correlation models based on hierarchical Archimedean 

copulae (HAC-DCC) models and found that certain of this type of models produce 

accurate VaR estimates by modelling commodity forward curves. In a similar study, 

Aepli et al. (2017) apply DCC model to multivariate elliptical copulas and show that the 
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static Clayton copula, followed by the dynamic Clayton model are more suitable for 

estimating risk applied to commodity futures portfolio.  

On the other hand, Zou et al. (2015) show that entropy-optimized bivariate empirical 

mode decomposition (BEMD)-based model outperforms multivariate exponential 

weighted moving average (MEWMA) and DCC-GARCH model for estimating portfolio 

VaR in the electricity markets. By also employing BEMD model, He et al. (2016) analyze 

the precious metal markets to estimate portfolio VaR. The authors show that the proposed 

model improves portfolio risk forecasting performance.  

Lu et al. (2014) combine copula (t-Copula, Gaussian copula and Symmetric Joe-Clayton 

copula) with GARCH-type models to estimate VaR of an equally weighted portfolio 

formed by crude oil futures and natural gas futures. The results show that t-Copula 

performs well and skewed-t has a better fit than normal and Student-t for individual assets. 

Another study involving copulas is conducted by Ghorbel and Trabelsi (2014). The 

authors examine the relation between WTI crude oil, natural gas and heating oil markets. 

The results show that GARCH-t, conditional EVT and FIGARCH extreme value copula 

methods produce acceptable VaR estimates. In a related study, regarding risk-adjusted 

returns of carbon assets, Wen et al. (2017) employ static and generalized autoregressive 

score dynamic copulas to model the performance of two portfolio strategies involving 

energy commodity futures and carbon assets. Other type of copula, named R-vine model 

is employed by Koliai (2016) to compare the accuracy of VaR estimates with DCC-

GARCH model for commodity assets (Brent, gold, copper, wheat, and corn). The author 

found that copula-based models seem more efficient than DCC models. 

Our SNP-DCC model is related to the use of copulas (see Del Brio et al., 2014 for a 

related SNP copula) but inherits the flexibility of the SNP approach, which is the basis of 

commodity ETFs risk measures accuracy. Furthermore, it also presents a clear advantage 
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with respect to other multivariate estimation approaches, which is the fact that can be 

consistently estimated in two steps as explained in Section 3. 

All in all, the paper presents contributions in three different directions: Firstly, it presents 

a general model, the SNP-DCC with EGARCH innovations, which have not used before 

for portfolio risk management. We show that this model is very tractable and provides 

very accurate results. Secondly, we applied recently techniques for backtesting ES and, 

particularly, for computing the ES with GC densities. Finally, our application focuses on 

portfolio (L)ETFs, which has scarcely been studied in the literature and never with a 

(multivariate) SNP approach. 

The remainder of this paper is organized as follows: Section 2 introduces the discussion 

on risk measures and backtesting, Section 3 describes the risk models and VaR and ES 

methodologies, Section 4 presents the data and the empirical performance of the models 

for forecasting ES with a sample of three different commodity LETFs and Section 5 

includes further results that allow a direct comparison to the individual asset backtesting 

procedures in Del Brio et al. (2018). Finally, Section 6 summarizes the main conclusions 

of the paper. 

2. Risk quantification and backtesting 

In the last decades, VaR and ES (conditional VaR) have been the two standard risk 

measures for market risk. As is well-known, VaR is defined as the maximum loss given 

a certain confidence level (usually 99%) for market risk and time horizon (1 or 10 days). 

Formally, if 𝑋𝑋 represents the returns, VaR is computed as 

VaR𝛼𝛼(𝑋𝑋) = 𝐹𝐹𝑋𝑋−1(1 − 𝛼𝛼) = inf(𝑥𝑥 ∈ ℝ:ℙ(𝑋𝑋 ≤ 𝑥𝑥) ≥ 1 − 𝛼𝛼),  (1) 

where 𝛼𝛼 = 0.01 (i.e. for computing 99%-VaR), and 𝐹𝐹𝑋𝑋−1 is the quantile function. Though 

VaR has been the standard risk measure in the financial industry for three decades, VaR 
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is not a coherent risk measure (Artzner et al., 1999) since it might violate the subadditivity 

axiom. Consequently, the VaR of a portfolio formed by two assets can be higher than the 

sum of the individual VaR of both assets. This might happen when (i) the return 

distribution is seriously heavy-tailed (ii) the return distribution is highly skewed, and/or 

(iii) there is special dependence structure of the asset returns (McNeil et al., 2005). On 

the other hand, ES is proven to be a coherent risk measure, and can be defined as the 

expected loss given that losses have exceeded VaR, 

ES𝛼𝛼(𝑋𝑋) = 1
𝛼𝛼 ∫ VaR𝑢𝑢(𝑋𝑋)𝑑𝑑𝑑𝑑𝛼𝛼

0 ,      (2) 

and for a continuous cumulative distribution function (cdf) of returns it holds that 

ES𝛼𝛼(𝑋𝑋) = 𝔼𝔼[𝑋𝑋|𝑋𝑋 < VaR𝛼𝛼(𝑋𝑋)].     (3) 

Therefore, for a given 𝛼𝛼, ES is higher than (or equal to) VaR. After the global financial 

crisis, the Basel Committee of Banking Supervision (BCBS) decided to switch from 99%-

VaR to 97.5%-ES for regulatory capital market requirements, since VaR seems not to be 

able to adequately capture tail risk and, according to the Committee (BCBS, 2012), ES 

provides more accurate risk measures for periods of financial distress (BCBS, 2016). For 

the Gaussian distribution 97.5%-ES is very close to 99%-VaR, however, under heavy-

tailed distributions these two measures are far from being equivalent. As stylized facts of 

financial asset returns reveal that empirical return distributions exhibit heavier tails than 

the Gaussian, then, with the new regulation an increasing regulatory capital for market 

risk is expected. 

Despite ES is a coherent risk measure, under general conditions, ES does not satisfy the 

elicitability property, whereas VaR does. Elicitability is a desirable property in order to 

make and evaluate point forecasts (Gneiting, 2011). That is, if 𝑦𝑦 is a prediction computed 

on the basis of the statistic 𝑦𝑦�, such statistic 𝑦𝑦� is elicitable if it solves 
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𝑦𝑦�(𝐹𝐹) = argmin
𝑦𝑦

𝔼𝔼𝐹𝐹�𝑆𝑆𝑦𝑦�(𝑦𝑦,𝑋𝑋)�,     (4) 

for some scoring (loss) function 𝑆𝑆𝑦𝑦�(𝑦𝑦,𝑋𝑋), and 𝑋𝑋 being a random variable with distribution 

𝐹𝐹. For more details, see for instance Gneiting (2011), Ziegel (2016), and Bellini and 

Bignozzi (2013), and the references therein. However, backtesting VaR is 

straightforward, since a well-known scoring function for this risk measure is given by 

(Gneiting, 2011; Fissler and Ziegel, 2016) 

𝑆𝑆𝑉𝑉(𝑣𝑣, 𝑥𝑥) = �𝐼𝐼{𝑥𝑥≤𝑣𝑣} − 𝛼𝛼��𝐺𝐺(𝑣𝑣) − 𝐺𝐺(𝑥𝑥)�,    (5) 

where 𝐺𝐺 is a strictly increasing function, 𝑥𝑥 represents the observed return and 𝑣𝑣 the 

estimated VaR. 

The purpose of backtesting is to validate a certain model for internal approach to quantify 

risk. The traditional procedure for VaR is to estimate (forecast) this risk measure, based 

on past returns. Then, the forecasted VaR is compared to the realized return, and if a 

negative return is less than the estimated VaR for a given date, it is considered as an 

exception or violation. The model performs relatively well if the number of exceptions is 

nearly around the 𝛼𝛼 level times the backtesting period, named the expected number of 

violations. If the number of exceptions for a certain model is significantly less (greater) 

than the expected number of violations, then the model overestimate (underestimate) risk. 

According to this procedure, the binomial test provides a natural way for VaR backtesting 

assessment. See Christoffersen (1998) for description of traditional tests for VaR. 

Though Gneiting (2011) show that ES itself is not elicitable, Fissler et al. (2016) prove 

that ES is jointly elicitable with VaR and propose as appropriate scoring function  

𝑆𝑆𝑉𝑉,𝐸𝐸(𝑣𝑣, 𝑒𝑒, 𝑥𝑥) = (𝐼𝐼𝑥𝑥≤𝑣𝑣 − 𝛼𝛼)�𝐺𝐺1(𝑣𝑣) − 𝐺𝐺1(𝑥𝑥)�   
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+ 1
𝛼𝛼
𝐺𝐺2(𝑒𝑒)𝐼𝐼𝑥𝑥≤𝑣𝑣(𝑣𝑣 − 𝑥𝑥) + 𝐺𝐺2(𝑒𝑒)(𝑒𝑒 − 𝑣𝑣) − ℊ2(𝑒𝑒),    (6) 

where 𝑥𝑥 represents the observed return, 𝑣𝑣 and 𝑒𝑒 the estimated VaR and ES respectively. 

Furthermore, ℊ2′ = 𝐺𝐺2, 𝐺𝐺1 and 𝐺𝐺2 are continuous, differentiable and strictly increasing 

functions, see Fissler and Ziegel (2016) for more details. In this paper, we employ1 

𝐺𝐺1(𝑥𝑥) = 𝑥𝑥 and 𝐺𝐺2(𝑥𝑥) = exp(𝑥𝑥). For such scoring function, the relative performance of 

the models can be assessed by implementing Diebold-Mariano (DM) test. The test 

statistic (DM) is calculated as 

𝐷𝐷𝐷𝐷 = 𝑑𝑑�

𝑠𝑠.𝑒𝑒.(𝑑𝑑),       (7) 

where �̅�𝑑 denotes the mean of 𝑑𝑑𝑡𝑡 which is 

𝑑𝑑𝑡𝑡 = 𝑆𝑆𝑉𝑉,𝐸𝐸
(𝑖𝑖) �𝑣𝑣𝑡𝑡

(𝑖𝑖), 𝑒𝑒𝑡𝑡
(𝑖𝑖), 𝑥𝑥𝑡𝑡� − 𝑆𝑆𝑉𝑉,𝐸𝐸

(𝑗𝑗)�𝑣𝑣𝑡𝑡
(𝑗𝑗), 𝑒𝑒𝑡𝑡

(𝑗𝑗), 𝑥𝑥𝑡𝑡�,     (8) 

where 𝑆𝑆𝑉𝑉,𝐸𝐸
(𝑖𝑖)  and 𝑆𝑆𝑉𝑉,𝐸𝐸

(𝑗𝑗)  denote the scores obtained from VaR and ES models (𝑖𝑖) and (𝑗𝑗) 

respectively, 𝑠𝑠. 𝑒𝑒. (𝑑𝑑) denotes the standard error of the statistics and requires the 

implementation of a heteroskedasticity and autocorrelation consistent (HAC) variance 

estimator (e.g., Newey-West estimator). The null hypothesis is 𝔼𝔼[𝑑𝑑𝑡𝑡] = 0, meaning that 

both models present equal predictive accuracy and the composite alternative is 

𝐻𝐻1
(𝑖𝑖):𝔼𝔼[𝑑𝑑𝑡𝑡] < 0 and 𝐻𝐻1

(𝑗𝑗):𝔼𝔼[𝑑𝑑𝑡𝑡] > 0. Since under null hypothesis (and “fairly weak” 

conditions) the limiting distribution of DM statistic is Gaussian, the null hypothesis is 

rejected when |DM| > 1.96 at 5% significance level, indicating the outperformance of 

model (𝑖𝑖) for large negative values of the statistic and the opposite signaling that model 

(𝑗𝑗) is better. 

                                                           
1 Another variant is to employ  𝐺𝐺2(𝑥𝑥) = exp(𝑥𝑥)

1+exp(𝑥𝑥)
,  thus ℊ2(𝑥𝑥) = log (exp(𝑥𝑥) + 1),  as suggested by Fissler 

et al. (2016). We also implement this function as a check on the robustness of the test. 
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Another test for ES is based on the violation residuals which is calculated as 

𝐾𝐾𝑡𝑡+1 = �𝐿𝐿𝑡𝑡+1−𝐸𝐸𝐸𝐸𝑡𝑡+1
𝛼𝛼

𝐸𝐸𝐸𝐸𝑡𝑡+1
𝛼𝛼 −𝜇𝜇𝑡𝑡+1

� 𝐼𝐼{𝐿𝐿𝑡𝑡+1>𝑉𝑉𝑉𝑉𝑉𝑉𝑡𝑡+1
𝛼𝛼 },     (9) 

where 𝐿𝐿𝑡𝑡+1 is the actual loss, 𝐸𝐸𝑆𝑆𝑡𝑡+1𝛼𝛼  is the estimated ES − which is expressed for a 

portfolio in equation (12) − and 𝜇𝜇𝑡𝑡+1 represents the conditional mean of the model. The 

indicator function 𝐼𝐼{𝐿𝐿𝑡𝑡+1>𝑉𝑉𝑉𝑉𝑉𝑉𝑡𝑡+1
𝛼𝛼 } takes value 1 when the actual loss has exceeded the 

estimated VaR, and 0 otherwise. Then, the null hypothesis of zero mean violation 

residuals may be tested by a simple t-test on this variable (McNeil et al., 2015), 

𝑡𝑡 − 𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡 = 𝐾𝐾�

𝑠𝑠 √𝑇𝑇⁄ ,      (10) 

where 𝐾𝐾� is the sample mean of the violation residuals of size 𝑇𝑇, and 𝑠𝑠 denotes its standard 

deviation. 

Further methods have been proposed to test ES. For instance, Acerbi and Székely (2014; 

2017) suggest several (non-parametric) tests to validate ES estimates. Costanzino and 

Curran (2015) introduce a coverage test for ES, whereas Du and Escanciano (2016) 

propose to backtest ES based on cumulative violations. Based on the approximation of 

ES by a weighted sum of VaRs, Kratz et al. (2016) propose a multinomial test for different 

VaR levels as an implicit method to backtest ES. 

3. Models and Methodology 

The Gram-Charlier (GC) distribution has recently attracted the attention of risk 

management literature (León and Moreno, 2017; Zoia et al., 2018; Del Brio et al., 2018). 

Particularly, the latter has proved the GC to be an accurate distribution to measure ETFs 

risk according to both VaR and ES. In this paper we extend these analyses to portfolios 

of leveraged ETFs by modelling the multivariate GC (henceforth, named as multivariate 
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SNP distribution) and studying its relative performance for backtesting VaR and ES to 

different competing models (Gaussian or Historical Simulation). 

For both the VaR and ES backtesting procedures the predicted risk measures for the 

portfolio return Rp at the time horizon t+1 and with confidence level 1 − α is given by 

VaR𝑝𝑝,𝑡𝑡+1
1−α = �̂�𝜇𝑝𝑝,𝑡𝑡+1 + 𝜎𝜎�𝑝𝑝,𝑡𝑡+1𝑞𝑞�𝛼𝛼�𝑧𝑧𝑝𝑝,𝑡𝑡+1�,   (11) 

ES𝑝𝑝,𝑡𝑡+1
1−α = �̂�𝜇𝑝𝑝,𝑡𝑡+1 + 𝜎𝜎�𝑝𝑝,𝑡𝑡+1�̂�𝑆𝛼𝛼�𝑧𝑧𝑝𝑝,𝑡𝑡+1�,   (12) 

where 𝑞𝑞�𝛼𝛼  and �̂�𝑆𝛼𝛼 are estimations of VaR and ES given by equation (1) and (2), 

respectively, and forecasted conditional mean and variance of the portfolio are computed 

as in equations (13) and (14) below. 

 �̂�𝜇𝑝𝑝,𝑡𝑡+1 = ∑ 𝑤𝑤𝑖𝑖�̂�𝜇𝑖𝑖,𝑡𝑡+1𝑛𝑛
𝑖𝑖=1 ,     (13) 

𝜎𝜎�𝑝𝑝,𝑡𝑡+1
2 = ∑ 𝑤𝑤𝑖𝑖𝑤𝑤𝑗𝑗𝜎𝜎�𝑖𝑖𝑗𝑗,𝑡𝑡+1

𝑛𝑛
𝑖𝑖=1 ,     (14) 

which are obtained through the forecasted mean for every asset i (�̂�𝜇𝑖𝑖,𝑡𝑡+1) and the 

forecasted covariance of every couple of assets i and j  

𝜎𝜎�𝑖𝑖𝑗𝑗,𝑡𝑡+1 = 𝜌𝜌�𝑖𝑖𝑗𝑗,𝑡𝑡+1𝜎𝜎�𝑖𝑖,𝑡𝑡+1𝜎𝜎�𝑗𝑗,𝑡𝑡+1,     (15) 

 and considering the weight of every asset i, denoted by 𝑤𝑤𝑖𝑖 and satisfying 0≤ 𝑤𝑤𝑖𝑖≤ 1 and 

∑ 𝑤𝑤𝑖𝑖
𝑛𝑛
𝑖𝑖=1 = 1. Note that 𝜌𝜌�𝑖𝑖𝑗𝑗,𝑡𝑡+1 accounts for the estimated conditional correlation 

coefficient between assets i and j and then 𝜎𝜎�𝑖𝑖𝑗𝑗,𝑡𝑡+1 = 𝜎𝜎�𝑖𝑖,𝑡𝑡+12  when i = j. 

The model may be estimated with ease, since loglikelihood functions of both Gaussian-

DCC and SNP-DCC models can be split in two terms, volatility and correlation, which 

allows to consistently estimate the density parameters in two steps: Firstly, conditional 

means and variances are estimated independently for every variable and, secondly, 

conditional correlations are estimated in the standardized (zero mean and unit variance) 
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Gaussian and SNP distributions. This second step involves the jointly estimation of both 

skewness and kurtosis for the SNP distributions. 

First stage: Volatility part. EGARCH model 

We assume that the marginal distribution of every individual asset follows the 

ARMA(1,1)-EGARCH(1,1) model in equations (16)-(19) with either Gaussian or GC 

innovations with 𝐻𝐻 distribution.  

𝑅𝑅𝑡𝑡 = 𝜇𝜇𝑡𝑡 + 𝜎𝜎𝑡𝑡𝑍𝑍𝑡𝑡,          (16) 

𝜇𝜇𝑡𝑡 = ϖ + δ𝜇𝜇𝑡𝑡−1 + 𝜃𝜃𝜀𝜀𝑡𝑡−1 + 𝜀𝜀𝑡𝑡 ,             (17) 

log𝜎𝜎𝑡𝑡2 = 𝜔𝜔 + 𝛼𝛼(|𝑍𝑍𝑡𝑡−1| − 𝔼𝔼[|𝑍𝑍𝑡𝑡−1|]) + 𝛾𝛾𝑍𝑍𝑡𝑡−1 + 𝛽𝛽 log 𝜎𝜎𝑡𝑡−12  ,    (18) 

𝑍𝑍𝑡𝑡 = 𝜀𝜀𝑡𝑡 𝜎𝜎𝑡𝑡⁄ ,   𝑍𝑍𝑡𝑡~𝐻𝐻(0,1),             (19) 

where ϖ  and 𝜔𝜔 are the intercepts of the conditional mean and variance models, δ  and  𝜃𝜃 

the parameters of AR(1) and MA(1) structures of the conditional mean, and  𝛼𝛼 and 𝛾𝛾  the 

parameters associated with the size and sing effects of the EGARCH model 

(respectively).  

The probability density functions (pdf) for 𝐻𝐻 are described below. 

(i) Gaussian pdf: 

𝜙𝜙(𝑧𝑧𝑡𝑡) = 1
√2𝜋𝜋

𝑒𝑒−
𝑧𝑧𝑡𝑡2

2 .     (20) 

(ii) GC Type A pdf: 

𝑓𝑓(𝑧𝑧𝑡𝑡,𝒅𝒅) = (1 + ∑ 𝑑𝑑𝑠𝑠𝐻𝐻𝑠𝑠(𝑧𝑧𝑡𝑡)𝐸𝐸
𝑠𝑠=3 )𝜙𝜙(𝑧𝑧𝑡𝑡),    (21) 
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where 𝜙𝜙(𝑧𝑧𝑡𝑡) denotes the standard normal pdf in equation (20), 𝒅𝒅′ = (𝑑𝑑1, … ,𝑑𝑑𝐸𝐸) ∈ ℝ𝐸𝐸 is 

a vector of parameters such that 𝑓𝑓(𝑧𝑧𝑡𝑡,𝒅𝒅) ≥ 0 and 𝐻𝐻𝑠𝑠 is the Hermite polynomial (HP) of 

order s, which is defined in terms of the sth order derivative of 𝜙𝜙(𝑧𝑧𝑡𝑡) as  

𝑑𝑑𝑠𝑠𝜙𝜙(𝑧𝑧𝑡𝑡)
𝑑𝑑𝑧𝑧𝑡𝑡𝑠𝑠

= (−1)𝑠𝑠𝐻𝐻𝑠𝑠(𝑧𝑧𝑡𝑡)𝜙𝜙(𝑧𝑧𝑡𝑡).     (22) 

In particular, the first four HP are: 𝐻𝐻1(𝑧𝑧𝑡𝑡) = 𝑧𝑧𝑡𝑡, 𝐻𝐻2(𝑧𝑧𝑡𝑡) = 𝑧𝑧𝑡𝑡2 − 1, 𝐻𝐻3(𝑧𝑧𝑡𝑡) = 𝑧𝑧𝑡𝑡3 − 3𝑧𝑧𝑡𝑡, 

𝐻𝐻4(𝑧𝑧𝑡𝑡) = 𝑧𝑧𝑡𝑡4 − 6𝑧𝑧𝑡𝑡2 + 3. These polynomials form an orthonormal basis, thus satisfying 

the orthogonality property, 

∫𝐻𝐻𝑠𝑠(𝑧𝑧𝑡𝑡)𝐻𝐻𝑗𝑗(𝑧𝑧𝑡𝑡)𝜙𝜙(𝑧𝑧𝑡𝑡)𝑑𝑑𝑧𝑧𝑡𝑡 = 0 ∀𝑠𝑠≠𝑗𝑗 ,   (23) 

which is the basis of the characterization of GC series as a pdf (i.e. the GC density 

integrates to one) and its parameters in terms of density moments. For instance, even non-

central moments depend on the even 𝑑𝑑𝑠𝑠 parameters (e.g. 𝑑𝑑2 accounts for the variance, 𝑑𝑑4 

for the excess kurtosis and the rest of the even parameters capture higher-order moments) 

and skewness is captured by the odd parameters (particularly, 𝑑𝑑3). 

The loglikelihood function of the GC incorporating conditional EGARCH variances is 

given by (after dropping out some constants) 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = −1
2

log𝜎𝜎𝑡𝑡2 −
1
2
∑ 𝜀𝜀𝑡𝑡2

𝜎𝜎𝑡𝑡2
𝑇𝑇
𝑡𝑡=1 + log �1 + ∑ 𝑑𝑑𝑠𝑠𝐸𝐸

𝑠𝑠=2 𝐻𝐻𝑠𝑠 �
𝜀𝜀𝑡𝑡
𝜎𝜎𝑡𝑡
��,   (24) 

where 𝜀𝜀𝑡𝑡 = 𝜎𝜎𝑡𝑡𝑍𝑍𝑡𝑡, 𝜎𝜎𝑡𝑡2 is described in equation (18) and 𝔼𝔼[|𝑍𝑍𝑡𝑡|] = �2
𝜋𝜋

(1 − 𝑑𝑑4). See 

Appendix C in Del Brio et al. (2018) for derivation of expected value of the GC-

innovations in an EGARCH model. The Gaussian case is obtained as a particular nested 

distribution by setting 𝑑𝑑𝑠𝑠 = 0, ∀s. 
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In addition, an estimation for the conditional correlation 𝜌𝜌�𝑖𝑖𝑗𝑗,𝑡𝑡+1 is necessary to find the 

predicted volatility of portfolio returns. To this end, standard Dynamic Conditional 

Correlation (Gaussian-DCC) (Engle, 2002) and semi-nonparametric DCC (SNP-DCC) 

(Del Brio et al., 2011) models are estimated in the second step. Next subsection reviews 

these models. 

Second stage: Correlation part. The Gaussian-DCC and SNP-DCC models 

The multivariate SNP of vector 𝒛𝒛𝑡𝑡 = (𝑧𝑧1𝑡𝑡 , 𝑧𝑧2𝑡𝑡, … , 𝑧𝑧𝑛𝑛𝑡𝑡)′ ∈ ℝ𝑛𝑛 with 𝑧𝑧i𝑡𝑡~𝐺𝐺𝐺𝐺(0,1) − i.e.  

distributed as in equation (21) − and conditional correlation matrix 𝑹𝑹𝑡𝑡 (with general 

element {ρ𝑖𝑖𝑗𝑗}) is characterized in terms of the following pdf: 

𝒇𝒇𝐸𝐸𝑆𝑆𝑆𝑆(𝒛𝒛𝑡𝑡|Ω𝑡𝑡−1) = (2𝜋𝜋)−
𝑛𝑛
2|𝑹𝑹𝑡𝑡|

−12exp �− 1
2
𝒛𝒛𝑡𝑡′𝑹𝑹𝑡𝑡−1𝒛𝒛𝑡𝑡� [∑ 𝜓𝜓𝑖𝑖(𝑥𝑥𝑖𝑖𝑡𝑡)𝑛𝑛

𝑖𝑖=1 ] 1
𝑛𝑛
,       (25) 

where 

𝜓𝜓𝑖𝑖(𝑥𝑥𝑖𝑖𝑡𝑡) = 1 + 𝑑𝑑3𝑖𝑖�𝑥𝑥𝑖𝑖𝑡𝑡3 − 3𝑥𝑥𝑖𝑖𝑡𝑡�+ 𝑑𝑑4𝑖𝑖 �𝑥𝑥𝑖𝑖𝑡𝑡4 − 6𝑥𝑥𝑖𝑖𝑡𝑡2 + 3�,    (26) 

𝒙𝒙𝑡𝑡 = (𝑥𝑥1𝑡𝑡, 𝑥𝑥2𝑡𝑡, … , 𝑥𝑥𝑛𝑛𝑡𝑡)′ = 𝑹𝑹𝑡𝑡
−1 2⁄ 𝒛𝒛𝑡𝑡.            (27) 

It is noteworthy that equation (26) corresponds to the case where only skewness (𝑑𝑑3𝑖𝑖) and 

kurtosis (𝑑𝑑4𝑖𝑖) are considered and that the multivariate SNP distribution becomes the 

multivariate Gaussian when 𝑑𝑑3𝑖𝑖 = 𝑑𝑑4𝑖𝑖 = 0 and thus Gaussian-DCC is a particular case 

of SNP-DCC. Furthermore, the transformation in equation (27) is not unique, although 

this fact does not impact the estimates of the conditional correlations. For example, for 

the bivariate case (𝑛𝑛 = 2) and the eigenvalue decomposition this transformation yields 

𝑥𝑥1𝑡𝑡 = 1
2
� 1
�1+𝜌𝜌12,𝑡𝑡

+ 1
�1−𝜌𝜌12,𝑡𝑡

� 𝑧𝑧1𝑡𝑡 + 1
2
� 1
�1+𝜌𝜌12,𝑡𝑡

− 1
�1−𝜌𝜌12,𝑡𝑡

� 𝑧𝑧2𝑡𝑡  (28) 

𝑥𝑥2𝑡𝑡 = 1
2
� 1
�1+𝜌𝜌12,𝑡𝑡

− 1
�1−𝜌𝜌12,𝑡𝑡

� 𝑧𝑧1𝑡𝑡 + 1
2
� 1
�1+𝜌𝜌12,𝑡𝑡

+ 1
�1−𝜌𝜌12,𝑡𝑡

� 𝑧𝑧2𝑡𝑡  (29) 
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Then, the DCC model employed in this article can be formulated as: 

𝒓𝒓𝑡𝑡 = µ𝑡𝑡(𝝓𝝓) + ε𝑡𝑡       (30) 

ε𝑡𝑡~𝑮𝑮𝑮𝑮(𝟎𝟎,𝑫𝑫𝒕𝒕𝑹𝑹𝒕𝒕𝑫𝑫𝒕𝒕)      (31) 

log𝑫𝑫𝒕𝒕
𝟐𝟐 = 𝑑𝑑𝑖𝑖𝑠𝑠𝐿𝐿{ω𝑖𝑖} + 𝑑𝑑𝑖𝑖𝑠𝑠𝐿𝐿{α𝑖𝑖} ∘ (|ε𝒕𝒕−𝟏𝟏| − 𝔼𝔼[|ε𝒕𝒕−𝟏𝟏|]) + 𝑑𝑑𝑖𝑖𝑠𝑠𝐿𝐿{𝛾𝛾𝑖𝑖} ∘ ε𝒕𝒕−𝟏𝟏 + 𝑑𝑑𝑖𝑖𝑠𝑠𝐿𝐿�β𝑖𝑖� ∘ log𝑫𝑫𝒕𝒕−𝟏𝟏

𝟐𝟐           (32) 

𝒛𝒛𝒕𝒕 = 𝑫𝑫𝒕𝒕
−𝟏𝟏ε𝒕𝒕       (33) 

𝑸𝑸𝒕𝒕 = 𝑺𝑺 ∘ (𝜾𝜾𝜾𝜾′ − 𝑨𝑨 − 𝑩𝑩) + 𝑨𝑨 ∘ 𝒛𝒛𝒕𝒕−𝟏𝟏𝒛𝒛𝒕𝒕−𝟏𝟏′ + 𝑩𝑩 ∘ 𝑸𝑸𝒕𝒕−𝟏𝟏   (34) 

𝑹𝑹𝒕𝒕 = 𝑑𝑑𝑖𝑖𝑠𝑠𝐿𝐿{𝑸𝑸𝒕𝒕}−
1
2� 𝑸𝑸𝒕𝒕𝑑𝑑𝑖𝑖𝑠𝑠𝐿𝐿{𝑸𝑸𝒕𝒕}−

1
2�     (35) 

where 𝑫𝑫𝒕𝒕
𝟐𝟐 is the diagonal matrix of conditional variances with EGARCH dynamics  and 

𝑸𝑸𝒕𝒕 the conditional covariance matrix of the DCC type − i.e. 𝜾𝜾 is a vector of ones, the 

symbol ∘ represents the element-by-element multiplication operator (Hadamard product), 

matrices A, B and 𝜾𝜾𝜾𝜾′ − 𝑨𝑨 − 𝑩𝑩  are positive definite matrices and S is the unconditional 

correlation matrix of 𝒛𝒛𝒕𝒕. Note that, to the best of our knowledge, this paper presents the 

first application of the SNP-DCC model with EGARCH innovations. 

In particular, the loglikelihood function in the second stage for SNP-DCC becomes (after 

deleting unnecessary constants) 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑆𝑆𝑆𝑆𝑆𝑆) = −1
2

log|𝑹𝑹𝑡𝑡|− 1
2
𝒛𝒛𝑡𝑡′𝑹𝑹𝑡𝑡−1𝒛𝒛𝑡𝑡 +∑ log�∑ 𝜓𝜓𝑖𝑖(𝒙𝒙𝑖𝑖𝑡𝑡)𝑛𝑛

𝑖𝑖=1 �𝑇𝑇
𝑡𝑡=1 .  (36) 

Once the model is estimated, VaR and ES measures are computed for the fitted portfolio 

density. It is also noteworthy that the VaR computation in equation (1) involves the 

estimation of the α-quantile of the portfolio distribution,  𝑞𝑞�𝛼𝛼�𝑧𝑧𝑝𝑝,𝑡𝑡+1�, and given this value 

the ES of the portfolio GC density can be easily obtained through the following 

expression:   
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�̂�𝑆𝛼𝛼�𝑧𝑧𝑝𝑝,𝑡𝑡+1� = φ �𝑞𝑞�𝛼𝛼�𝑧𝑧𝑝𝑝,𝑡𝑡+1�� �1 + ∑ 𝑑𝑑𝑠𝑠 �𝐻𝐻𝑠𝑠 �𝑞𝑞�𝛼𝛼�𝑧𝑧𝑝𝑝,𝑡𝑡+1�� + 𝑠𝑠𝐻𝐻𝑠𝑠−2 �𝑞𝑞�𝛼𝛼�𝑧𝑧𝑝𝑝,𝑡𝑡+1���𝑆𝑆
𝑠𝑠=3 �, 

 (37) 

where 𝜙𝜙 is the pdf of standard Gaussian and 𝐻𝐻𝑠𝑠 the Hermite polynomial of s-th order. In 

order to compare the performance of SNP-DCC and Gaussian-DCC models, the 

traditional Historical Simulation method will also be employed. 

Historical Simulation approach 

The Historical Simulation technique assumes that future portfolio returns can be 

approximated by the empirical distribution of previous returns. Therefore, the 97.5% VaR 

is calculated as the 2.5% percentile of the past portfolio returns. On the other hand, 97.5% 

ES is estimated as the expected value of the returns given that the returns are less than 

2.5% percentile of historical returns. Though Historical Simulation is one of the most 

popular methods to forecast VaR at commercial banks (Perignon and Smith, 2010), 

several studies have shown that this method could lead inconsistent risk estimates 

(Pritsker, 2006; Escanciano and Pei, 2012). 

4. Data and Application 

Three different Commodity LETFs2 are considered for the empirical application, which 

are the VelocityShares 3X Long Natural Gas ETN (LGas), the ProShares Ultra 

Bloomberg Crude Oil Exchange Traded Fund (LOil), and the VelocityShares 3X Long 

Silver ETN (LSilver). For backtesting analysis, according to recent regulation (BCBS, 

2016), 12 months are employed to test the risk measures. Then, three years are considered 

                                                           
2 The reason to choose these three leveraged ETFs is because they are the largest commodity LETFs by 
total assets for 2018 according to the ETF Database (ETFdb.com). More details are found in Appendix A. 
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in our analysis: 2015, 2016 and 2017 to perform the tests.3 Table 1 shows the descriptive 

statistics of each leveraged ETF for the abovementioned dates.  

[INSERT TABLE 1]  

High volatility is presented in Commodity LETFs returns, especially for LGas, which 

annual volatility ranged between 101% (2017) and 123% (2016). Though LOil exhibits 

the minimum annual standard deviation (47% in 2017), it is higher than average annual 

volatility of stock returns. For instance, the average of annual volatility of S&P500 is 16% 

between 1966 and 2015, and it is 25% in the period of 2006 and 2010.4 These large values 

of volatility may be explained by the leverage multiplier and the volatility of the 

underlying asset (Cheng and Madhavan, 2009). 

We form three equally weighted portfolios with the individual Leveraged Commodity 

ETFs: Portfolio A (LGas and LOil), Portfolio B (LGas and LSilver) and Portfolio C (LOil 

and LSilver) and its descriptive statistics is shown in Table 2.  

[INSERT TABLE 2]  

Similar characteristics of individual LETFs are presented for LETF Portfolio returns. The 

minimum annual volatility is presented for Portfolio C in 2017 (37%) and Portfolio A has 

the maximum annual standard deviation (81%) in 2016. These figures are higher than 

volatilities of (unlevered) ETFs portfolios in the period of 2007-2016 (see Table 7). Both 

individual and portfolio LETFs returns exhibit identical empirical characteristics of 

                                                           
3 Important events related to (L)ETFs that affected financial markets have occurred in the three analyzed 
periods. In 2017, A LETF was blamed for highly fluctuations in gold stock prices from Toronto to Sidney. 
In September 2016 the Bank of Japan hit a record in ETF (tracking the Nikkei 225) purchase (before May 
2018) and then diminished its stock purchases. The stock market crash in August 24, 2015 was, in part, 
caused by ETFs trading. Source: Financial Times and Bloomberg news.  
4 Source: McKinsey Corporate Performance Analytics. 
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financial returns: mean returns are close to zero, negative skewed (most of them) and 

leptokurtic distributions. 

Results of VaR tests 

The traditional and very well-known coverage test for 97.5%-VaR is applied to the three 

equally-weighted LETFs portfolios and shown in Table 3. For each year (2015, 2016 and 

2017) a two-year length rolling window5 was used for parameter estimation (e.g., in-

sample period covers around the 500 observations previous to the forecasting date) and 

backtesting (out-of-sample) period spanned through all trading dates (around 250 days) 

of every subsequent natural year, therefore, the number of expected exceptions being 

around 6. 

[INSERT TABLE 3]  

The results show that Gaussian model assumption does not perform well in all cases, 

while Historical Simulation and SNP-DCC work relatively well for all portfolios. All 

models present good results for independence test (i.e. VaR violations seem to be 

independently distributed) with the exception of the Gaussian-DCC model for Portfolio 

C in 2017, as shown in Table 4. 

[INSERT TABLE 4]  

Results of ES tests 

The mean of violation residuals test show that Gaussian-DCC model performs poorly for 

all portfolios. On the other hand, SNP-DCC model works well in all cases, whereas 

Historical Simulation does not perform well in one case (Portfolio C in 2015), and it was 

                                                           
5 The rolling window procedure results in higher forecast accuracy than other (recursive) backtesting 
procedures and its use seem to be analytically convenient in economic time series (Giacomini and White, 
2006). 
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not possible to compute the test in one case (Portfolio C in 2017). The results are shown 

in Table 5. 

[INSERT TABLE 5]  

The relative comparison tests show that Gaussian-DCC model is outperformed by SNP-

DCC model and Historical Simulation method for all cases. In just one case (Portfolio C 

in 2017) the SNP-DCC model’s performance is surpassed by the Historical Simulation 

technique. The abovementioned results are displayed on Table 6.  

[INSERT TABLE 6]  

As a robustness check, Table 7 shows that similar results are obtained when  𝐺𝐺2(𝑥𝑥) =

exp(𝑥𝑥)
1+exp(𝑥𝑥) is assumed in the score function − see equation (6).  

[INSERT TABLE 7]  

An illustration of the 97.5%-ES estimated by the three analyzed methods for Portfolio A 

(LGas and LSilver) is provided in Figure 1. It is noteworthy that Gaussian-DCC 

underestimates risk, but also that the dynamics of the return instability is not accurately 

captured by Historical Simulation. On the contrary, the SNP-DCC model provides 

accurate risk dynamics measures. 

[INSERT FIGURE 1]  

5. Further Results 

One contribution of this paper is the extension of procedures for backtesting ES provided 

in Del Brio et al. (2018) to portfolios of (multivariate) SNP distributions. Therefore, in 

this section we perform a counterpart portfolio application for equally weighted portfolios 

and DCC-type dependencies with exactly the same dataset, which allows a direct 
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comparison of the results. Particularly, we consider three bivariate (n = 2) and equally 

weighted (𝑤𝑤𝑖𝑖 = 0.5,∀𝑖𝑖 = 1,2) portfolios: Portfolio A, formed by Gold and Silver ETFs; 

Portfolio B, formed by Gold and Oil ETFs; and Portfolio C, formed by Silver and Oil 

ETFs. The data covers a sample of daily prices from January 2007 to January 2016 

obtained from Bloomberg (see Appendix B for more details). Table 8 displays the main 

descriptive statistics for the portfolio returns, which are characterized by the same stylized 

facts than the individual financial assets, i.e. daily median returns are approximately zero, 

and they exhibit negative skewness and fat tails. 

[INSERT TABLE 8] 

Table 9 shows the estimated parameters for Gaussian-DCC (Panel A) and SNP-DCC 

(Panel B). The estimation period comprises a sample of daily data from December 2008 

to January 2016. The first two rows present the estimations for the DCC part, and results 

support the conditional correlation model. It must be noted that our application 

incorporates an AR(1)-EGARCH(1,1). As expected, the parameters of the volatility part 

are similar to the estimations found in Table 2 for the univariate application of Del Brio 

et al. (2018). Furthermore, the parameters of the GC density for both dimensions are 

significant reflecting the outperformance of the SNP-DCC model.  

[INSERT TABLE 9] 

Table 10 presents the results of the t-test for ES at 97.5%. The backtesting was is carried 

out with rolling windows on the sample (December 2008 to January 2016) keeping a total 

of 1771 days for backtesting. The model is good enough if the null hypothesis cannot be 

rejected. The SNP-DCC and Historical Simulation perform adequately in all cases, 

whereas Gaussian-DCC fails in the three analyzed portfolios. 

[INSERT TABLE 10] 
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The results of relative performance test for ES are shown in Table 11. A pairwise Diebold 

Mariano test less than −1.96 indicates that SNP-DCC is preferred to Gaussian-DCC at 

5% of significance. Moreover, Gaussian-DCC is outperformed by Historical Simulation 

in all cases and SNP-DCC works better than Historical Simulation for Gold-Oil portfolio. 

The results show the outperformance of SNP-DCC for the analyzed portfolios. 

[INSERT TABLE 11] 

Finally, Figure 2 presents the comparison of 97.5%-ES estimated by Gaussian-DCC and 

SNP-DCC for the conditional correlations of the three analyzed portfolios. This figure 

illustrates the underperformance of the Gaussian-DCC for capturing extreme values and 

the more accuracy of the SNP-DCC for this purpose. 

[INSERT FIGURE 2] 

From the multivariate perspective used for analyzing portfolios, different results from 

calculating ES at 97.5% under a Gaussian or SNP distribution can be observed. The ratio 

SNP-ES/Gaussian-ES for Portfolio B (Gold-Oil) and C (Silver-Oil) is 1.66, and for 

Portfolio A (Gold-Silver) is 1.91. This evidence implies that risk is underestimated more 

than a half (for Portfolio A) if a financial institution employs the Gaussian model to buffer 

capital against potential losses in commodity ETF markets. Therefore, the SNP-DCC 

model should be considered as an interesting tool for risk management. 

6. Conclusions 

The recent change proposed by the Basel Committee of Banking Supervision of replacing 

VaR by ES for market risk poses a challenge to academics and financial industry 

regarding the adequate manner to validate ES estimates. Unlike the VaR, this risk measure 

is not elicitable and this finding generated a discussion around whether ES can be 

backtestable or not. In a recent study, Fissler et al. (2016) show that ES is jointly elicitable 
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with VaR, and then relative comparison of models for risk assessment is possible. 

However, how to backtest ES appropriately and the best models to perform for highly 

volatile financial instruments are still open questions. Our paper sheds some light on this 

issue. 

In particular, we employ the result of Fissler et al. (2016) and t-test for the sample mean 

of violation residuals to validate ES calculations for commodity (L)ETF portfolios. To 

this end, we employ Gaussian-DCC and SNP-DCC to model conditional correlation and 

EGARCH with both Gaussian and GC innovations to model volatilities. In addition, the 

results are compared with the Historical Simulation technique. The so-obtained portfolio 

volatilities are used to compute conditional risk measures. The results show that for 

portfolios of commodity (L)ETFs, the SNP-DCC and Historical Simulation are preferred 

to the Gaussian-DCC according to t-test and relative performance tests. Nevertheless, 

Historical Simulation fails to capture the dynamics of risk forecasting instability. 

Therefore, the SNP-DCC results in an accurate tool for dealing with (L)ETFs risk 

management, which represents an important contribution from the financial stability point 

of view, since LETFs may induce systemic instability according to independent reports 

and research studies. For example, Ben-David et al. (2017) states that “The concerns 

raised by academics and regulators about the risks that these classes of investors may 

create during events of market turbulence deserve additional investigation…As a result 

of the financial crisis of 2008,…both investors and policymakers have raised concerns 

about the fragility of the ETF market…Our hope is that the academic research about ETFs 

is useful in quantifying the systemic risks that these investment vehicle pose and that it 

can potentially help address them.” In line with these arguments, recently, some ETFs 

and LETFs have implied high risks and led to extreme losses, e.g. the crash of XIV ETN 

(tracking the inverse return of VIX).  
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Our study sheds light on how to tackle the risk quantification of LETFs portfolios with 

relatively simple SNP techniques. This approach provides more accurate results than 

simpler models and admits two-step estimation, which eases the model implementation. 

Future research will be focused on the comparison of the results obtained by other 

methods proposed in the literature to test ES (Acerbi and Székely, 2014, 2017; Costanzino 

and Curran, 2015; Du and Escanciano, 2016; Kratz et al., 2016). Another future research 

can be devoted to analyzing different SNP models for portfolio returns such as copulas 

(Del Brio et al., 2014) or general moment expansions (Ñíguez and Perote, 2016). 
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Table 1. Descriptive statistics of commodity LETF individual assets 

2015 LGas LOil  LSilver  

Mean -0.8041 -0.5438 -0.2531 
Median -0.3656 -0.5627 0.0000 
Standard deviation 7.0421 (111.34) 5.1142 (80.86) 4.4622 (70.55) 
Min -21.2258 -14.6758 -20.1460 
Max 28.3829 16.5692 14.3673 
Skewness 0.3136 0.1058 -0.2414 
Excess Kurtosis 1.3870 0.5233 2.3265 

2016 LGas LOil  LSilver  

Mean -0.1066 -0.0272 0.0586 
Median 0.0000 0.0000 0.3252 
Standard deviation 7.8342 (123.87) 5.0963 (80.58) 4.6244 (73.12) 
Min -26.1561 -16.6153 -21.7001 
Max 22.0816 16.3731 13.4774 
Skewness -0.2512 0.1185 -0.6255 
Excess Kurtosis 0.5116 0.6625 2.9202 

2017 LGas LOil  LSilver  

Mean -0.7109 0.0013 0.0060 
Median -0.2178 0.2106 0.0000 
Standard deviation 6.3991 (101.18) 2.9969 (47.38) 3.1602 (49.97) 
Min -38.5000 -10.7960 -11.5596 
Max 18.3822 6.7139 7.9292 
Skewness -1.1784 -0.8137 -0.1989 
Excess Kurtosis 5.6874 1.5538 0.8332 

Annual volatility in parentheses. 
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Table 2. Descriptive statistics of commodity LETFs Portfolios 

2015 Portfolio A (LGas and 
LOil)  

Portfolio B (LGas and 
LSilver)  

Portfolio C (LOil and 
LSilver)  

Mean -0.6740 -0.5286 −0.3985 
Median -0.2192 -0.1819 -0.4992 
Standard deviation 4.6844 (74.07) 4.3284 (68.44) 3.7870 (59.88) 
Min -15.6076 -17.4032 -11.3274 
Max 17.6238 12.6855 11.9131 
Skewness -0.0832 -0.1225 0.2738 
Excess Kurtosis 0.8034 0.3647 0.5204 

2016 Portfolio A (LGas and 
LOil)  

Portfolio B (LGas and 
LSilver)  

Portfolio C (LOil and 
LSilver)  

Mean -0.0669 -0.0240 0.0157 
Median 0.0157 -0.0474 0.000 
Standard deviation 5.1078 (80.76) 4.5734 (72.31) 3.6366 (57.50) 
Min -18.3554 -13.4635 -13.6611 
Max 12.1445 15.9078 11.6113 
Skewness -0.3608 -0.1622 -0.1095 
Excess Kurtosis 0.5048 0.5971 0.8636 

2017 Portfolio A (LGas and 
LOil)  

Portfolio B (LGas and 
LSilver)  

Portfolio C (LOil and 
LSilver)  

Mean -0.3548 -0.3524 0.0037 
Median 0.0000 -0.1931 0.0000 
Standard deviation 3.6870 (58.30) 3.6595 (57.86) 2.3244 (36.75) 
Min -21.5271 -15.9903 -7.8276 
Max 9.6873 10.3028 6.4194 
Skewness -1.0291 -0.4985 -0.3869 
Excess Kurtosis 4.3003 1.9033 0.7188 

Annual volatility in parentheses. 
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Table 3. Backtesting 97.5%-VaR for Commodity LETFs returns 
 

2015 
250 days  Portfolio A Portfolio B Portfolio C 
Historical Simulation 8 (0.565)  4 (0.286) 12 (0.050) 

Gaussian-DCC 101 (0.000) 94 (0.000) 92 (0.000) 

SNP-DCC  7 (0.844) 3 (0.121) 3 (0.121) 

2016 
250 days  Portfolio A Portfolio B Portfolio C 
Historical Simulation 7 (0.844)  11 (0.101) 8 (0.558) 

Gaussian-DCC 90 (0.000) 70 (0.000) 64 (0.000) 

SNP-DCC  4 (0.289) 3 (0.121) 3 (0.121) 

2017 
250 days  Portfolio A Portfolio B Portfolio C 
Historical Simulation 4 (0.289)  3 (0.122) 1 (0.007) 

Gaussian-DCC 73 (0.000) 80 (0.000) 54 (0.000) 

SNP-DCC  2 (0.037) 2 (0.037) 3 (0.121) 

P-values for the Bernoulli Coverage test in parentheses. Expected number of exceptions are 6. 
 

 

Table 4. Independence Test for 97.5%-VaR for Commodity LETFs returns 
 

2015 
 Portfolio A Portfolio B Portfolio C 
Historical Simulation 0.510 (0.475)  0.125 (0.723) 1.166 (0.280) 

Gaussian-DCC 0.786 (0.375) 0.090 (0.764) 0.034 (0.854) 

SNP-DCC  0.389 (0.533)  0.070 (0.791) 0.070 (0.791) 

2016 
 Portfolio A Portfolio B Portfolio C 
Historical Simulation 1.912 (0.167)  0.508 (0.476) 0.512 (0.474) 

Gaussian-DCC 3.358 (0.067) 0.181 (0.670) 0.036 (0.848) 

SNP-DCC  0.125 (0.723) 0.070 (0.791) 0.070 (0.791) 

2017 
 Portfolio A Portfolio B Portfolio C 
Historical Simulation 0.094 (0.759)  0.047 (0.828) 0.008 (0.930) 

Gaussian-DCC 0.542 (0.461) 1.702 (0.192) 4.219 (0.040) 

SNP-DCC  0.015 (0.901) 0.015 (0.901) 0.031 (0.860) 

P-values for the Independence Coverage test in parentheses. 
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Table 5. T-test for 97.5%-ES for Commodity ETFs returns 
 

Mean of violation residual is zero   
2015  Portfolio A Portfolio B Portfolio C 
Historical Simulation 0.478 (0.647) -0.967 (0.405) -3.123 (0.009) 

Gaussian-DCC 11.67 (0.000) 11.358 (0.000) 10.652 (0.000) 

SNP-DCC  0.967 (0.371) 1.257 (0.428) -0.887 (0.469) 

2016  Portfolio A Portfolio B Portfolio C 

Historical Simulation 0.276 (0.792) -1.436 (0.181) -0.846 (0.425) 

Gaussian-DCC 9.015 (0.000) 8.283 (0.000) 7.303 (0.000) 

SNP-DCC  -0.095 (0.930) -2.372 (0.141) 0.308 (0.787) 

2017  Portfolio A Portfolio B Portfolio C 

Historical Simulation 0.356 (0.745) 1.363 (0.306) NA* 

Gaussian-DCC 7.307 (0.000) 7.942 (0.000) 5.906 (0.000) 

SNP-DCC  0.557 (0.676) 0.491 (0.710) -6.676** (0.094) 

P-values for the t-test test in parentheses. *There was just one value to perform the test. ** t-test with one 
degree of freedom 
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Table 6. Pairwise Diebold-Mariano test for 97.5%-ES (2015-2017) 

 2015 Portfolio A:  
Model A → 
Model B ↓ 

Gaussian-DCC SNP-DCC 

Historical Simulation 6.192 (0.999) -1.285 (0.099) 

Gaussian-DCC  -5.748 (0.000) 

Portfolio B: 
Historical Simulation 5.836 (0.999) -0.341 (0.367) 

Gaussian-DCC  -4.583 (0.843) 

Portfolio C: 
Historical Simulation 5.960 (0.999) -1.298 (0.098) 

Gaussian-DCC  -5.170 (0.000) 

 
2016 Portfolio A:  

Model A → 
Model B ↓ 

Gaussian-DCC SNP-DCC 

Historical Simulation 4.555 (0.999) -1.498 (0.068) 

Gaussian-DCC  -4.503 (0.000) 

Portfolio B:  
Historical Simulation 4.634 (0.999) -1.541 (0.062) 

Gaussian-DCC  -4.676 (0.000) 

Portfolio C: 
Historical Simulation 3.622 (0.999) 0.283 (0.611) 

Gaussian-DCC  -4.041 (0.000) 

 
2017 Portfolio A:  

Model A → 
Model B ↓ 

Gaussian-DCC SNP-DCC 

Historical Simulation 3.855 (0.999) 0.897 (0.814) 

Gaussian-DCC  -3.010 (0.001) 

Portfolio B:  
Historical Simulation 4.355 (0.999) -0.769 (0.221) 

Gaussian-DCC  -3.521 (0.000) 

Portfolio C: 
Historical Simulation 3.644 (0.999) 5.284 (0.999) 

Gaussian-DCC  -3.330 (0.000) 

The table shows the Diebold-Mariano statistics for different models. Bold figures indicate Model A 
is preferred than Model B, figures in red indicate the opposite. Otherwise both models present the 
same performance. P-values in parentheses. 
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Table 7. Pairwise Diebold-Mariano test for 97.5%-ES (2015-2017) 

 2015 Portfolio A:  
Model A → 
Model B ↓ 

Gaussian-DCC SNP-DCC 

Historical Simulation 5.777 (0.999) -1.284 (0.100) 

Gaussian-DCC  -5.772 (0.000) 

Portfolio B: 
Historical Simulation 4.723 (0.999) -0.341 (0.367) 

Gaussian-DCC  -4.707 (0.000) 

Portfolio C: 
Historical Simulation 5.783 (0.999) -1.303 (0.097) 

Gaussian-DCC  -5.772 (0.000) 

 
2016 Portfolio A:  

Model A → 
Model B ↓ 

Gaussian-DCC SNP-DCC 

Historical Simulation 4.166 (0.999) -1.498 (0.067) 

Gaussian-DCC  -4.155 (0.000) 

Portfolio B:  
Historical Simulation 4.553 (0.999) -1.541 (0.062) 

Gaussian-DCC  -4.611 (0.000) 

Portfolio C: 
Historical Simulation 3.469 (0.999) 0.270 (0.606) 

Gaussian-DCC  -3.468 (0.000) 

 
2017 Portfolio A:  

Model A → 
Model B ↓ 

Gaussian-DCC SNP-DCC 

Historical Simulation 3.277 (0.999) 0.896 (0.814) 

Gaussian-DCC  -3.216 (0.000) 

Portfolio B:  
Historical Simulation 4.180 (0.999) -0.770 (0.221) 

Gaussian-DCC  -4.174 (0.000) 

Portfolio C: 
Historical Simulation 3.636 (0.999) 5.284 (0.999) 

Gaussian-DCC  -3.634 (0.000) 

The table shows the Diebold-Mariano statistics for different models. Bold figures indicate Model A 
is preferred than Model B, figures in red indicate the opposite. Otherwise both models present the 
same performance. P-values in parentheses. 
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Table 8. Descriptive statistics of commodity ETF Portfolios 

Portfolios A: Gold-Silver B: Gold-Oil C: Silver-Oil 

Mean 0.0144 −0.0243 −0.343 
Median 0.0592 0.0013 −0.0061 
Standard deviation 1.6434 (25.98) 1.4132 (22.34) 1.8221 (28.81) 
Min −13.7779 −7.0676 −12.1956 
Max 12.0853 7.4417 8.3828 
Skewness −0.7347 −0.1067 −0.4720 
Excess Kurtosis 6.7643 2.4751 3.4321 

Annual volatility in parentheses. 
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Table 9. Estimates of DCC models 

Panel A: Gaussian-DCC 

Portfolios A: Gold-Silver B: Gold-Oil C: Silver-Oil 

Α-DCC 0.041 (0.000) 0.044 (0.000) 0.024 (0.002) 

Β-DCC 0.937 (0.000) 0.909 (0.000) 0.950 (0.000) 

ϕ1 0.021 (0.338) 0.021 (0.338) -0.015 (0.686) 

ω1 0.014 (0.002) 0.014 (0.002) 0.051 (0.000) 

α1 -0.012 (0.504) -0.012 (0.504) -0.016 (0.345) 

δ1 0.980 (0.000) 0.980 (0.000) 0.972 (0.000) 

β1 0.146 (0.000) 0.146 (0.000) 0.201 (0.023) 

ϕ2 -0.015 (0.686) -0.042 (0.191) -0.042 (0.191) 

ω2 0.051 (0.000) 0.013 (0.000) 0.013 (0.000) 

α2 -0.016 (0.345) -0.052 (0.000) -0.052 (0.000) 

β2 0.972 (0.000) 0.991 (0.000) 0.991 (0.000) 

γ2 0.201 (0.023) 0.102 (0.000) 0.102 (0.000) 

Panel B: SNP-DCC 

Portfolios A: Gold-Silver B: Gold-Oil C: Silver-Oil 

Α-DCC 0.030 (0.000) 0.039 (0.000) 0.025 (0.001) 

Β-DCC 0.942 (0.000) 0.911 (0.000) 0.945 (0.000) 

ϕ1 0.003 (0.000) 0.003 (0.000) -0.003 (0.925) 

ω1 0.016 (0.000) 0.016 (0.000) 0.061 (0.000) 

α1 -0.004 (0.621) -0.004 (0.621) -0.003 (0.848) 

β1 0.980 (0.000) 0.980 (0.000) 0.963 (0.000) 

γ1 0.053 (0.000) 0.053 (0.000) 0.055 (0.000) 

ϕ2 -0.003 (0.925) -0.036 (0.490) -0.036 (0.490) 

ω2 0.061 (0.000) 0.010 (0.000) 0.010 (0.000) 

α2 -0.003 (0.848) -0.055 (0.000) -0.055 (0.000) 
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β2 0.963 (0.000) 0.990 (0.000) 0.990 (0.000) 

γ2 0.055 (0.000) 0.022 (0.000) 0.022 (0.000) 

d31 -0.008 (0.700) -0.067 (0.003) -0.073 (0.001) 

d41 0.101 (0.000) 0.099 (0.000) 0.116 (0.000) 

d32 -0.059 (0.005) -0.048 (0.010) -0.052 (0.007) 

d42 0.121 (0.000) 0.034 (0.000) 0.032 (0.000) 

A-DCC and B-DCC are the parameters of the DCC model; ϕi is the parameter of the AR(1) model; ωi, αi, γi 

and βi are the parameters of the EGARCH(1,1) model; d3i and d4i are the parameters of the GC model. P-
values in parentheses. 
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Table 10. T-test for 97.5%-ES for commodity ETFs portfolio returns 

 

Mean of violation residual is zero 

Data: December 2008 – January 2016 (1771 days for backtesting)  

Portfolios A: Gold-Silver B: Gold-Oil C: Silver-Oil 

Historical Simulation 0.196 (0.845) -0.589 (0.559) 0.184 (0.855) 

Gaussian-DCC 6.944 (0.000) 4.810 (0.000) 4.713 (0.000) 

SNP-DCC 1.938 (0.061) 1.664 (0.110) 1.699 (0.100) 
P-values for the t-test test in parentheses. 

 

Table 11. Pairwise Diebold Mariano test for 97.5%-ES 

A: Gold-Silver 
Model A → 
Model B ↓ 

Gaussian-DCC SNP-DCC 

Historical Simulation 4.327 (0.999) 1.068 (0.857) 

Gaussian-DCC  -5.540 (0.000) 

B: Gold-Oil 
Historical Simulation 4.264 (0.999) -1.702 (0.044) 

Gaussian-DCC  -3.532 (0.000) 

C: Silver-Oil 
Historical Simulation 3.561 (0.999) 0.271 (0.607) 

Gaussian-DCC  -3.584 (0.000) 

The table shows the Diebold-Mariano statistics for different models. Bold figures indicate Model A 
is preferred than Model B, figures in red indicate the opposite. Otherwise both models present the 
same performance. P-values in parentheses. 
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Figure 1. 97.5%-ES for Portfolio of commodity LETFs (LGas and LSilver) in 2015 
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Figure 2. 97.5%-ES for portfolio of commodity ETFs 
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Appendix A. Data description 

LETF 

Commodity 

Ticker Description 

LGas UGAZ VelocityShares Daily 3x Long Natural Gas ETN is an 

exchange-traded note issued in the USA. The Note will 

provide investors with a cash payment at the scheduled 

maturity or early redemption based on the performance of the 

underlying index, S&P GSCI Natural Gas Index ER.  

LSilver USLV VelocityShares 3x Long Silver ETN is an exchange-traded 

note issued in the USA. The Note will provide investors with 

a cash payment at the scheduled maturity or early redemption 

based on the performance of the underlying index, the S&P 

GSCI Silver Index Excess Return.  

LOil UCO ProShares Ultra Bloomberg Crude Oil is an exchange-traded 

fund incorporated in the USA. The Fund will seek daily 

investment results that correspond to twice (200%) the daily 

performance of its corresponding benchmark, the Bloomberg 

Crude Oil Sub-Index. 

Source: Bloomberg LP. 
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Appendix B. Data description 

ETF 

Commodity 

Ticker Description 

Gold GLD SPDR Gold Shares is an investment fund incorporated in the 

USA.  The investment objective of the Trust is for the Shares 

to reflect the performance of the price of gold bullion, less the 

Trust’s expenses. The Trust holds gold and is expected from 

time to time to issue Baskets in exchange for deposits of gold 

and to distribute gold in connection with redemptions of 

Baskets.  

Silver SLV iShares Silver Trust is a trust formed to invest in silver. The 

assets of the trust consist primarily of silver held by the 

custodian on behalf of the trust. The objective of the trust is for 

the shares to reflect the price of silver owned by the trust, less 

the trust’s expenses and liabilities.  

Oil USO United States Oil Fund LP is a Delaware limited partnership 

incorporated in the USA. The Fund’s objective is to have 

changes in percentage terms of its unit's net asset value reflect 

the changes of the price of WTI Crude Oil delivered to 

Cushing, Oklahoma, as measured by changes in percentage 

terms of the price of the WTI Crude Oil futures contract on the 

NYMEX. 

Source: Bloomberg LP. 

 


