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Abstract

A model is presented for analyzing the investor-entrepreneur relationship in

the financing of highly innovative projects under double moral hazard. It is shown

that a broad family of financing contracts are optimal, a conclusion that fits well

with the mixed security structures observed in the real world such as convertible

preferred equity, warrants and call options. Schemes that reward risk (and failure)

are also desirable, as extreme returns can be good indicators of highly innovative

investment projects. Numerical simulations show that the conditions for credit

rationing emerge when straight debt is used, stressing the welfare-improving role

played by hybrid securities. The simulation results replicate several stylized facts

of innovative firms, suggesting that the proposed approach is a suitable starting

point for modelling venture capital financing.
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1 Introduction

Investment projects and the schemes for financing them in innovative high-tech indus-

tries exhibit a number of distinguishing features. First, their returns profiles tend to be

characterized by (i) abnormally high but highly improbable success returns, and (ii) a

high probability of failure.1 Second, small high-growth firms in these industries display

lower levels of financial leverage than large firms in less innovative industries,2 often

adopting hybrid financing structures that combine debt and equity with preferential

seniority and conversion options. This is especially so in the U.S.3 Third, investors fi-

nancing small innovative businesses frequently supply the entrepreneur not only funds

but also effort in the form of advice, management, networks and monitoring.4 Fourth,

and finally, high-growth innovative firms appear to face greater barriers in obtaining

external financing, which suggests that credit rationing in this class of firms may be

relatively more prevalent.5

The present paper attempts to account for these features and stylized facts. We

propose a financial contracting model that formalizes the relationship between an in-

vestor and an entrepreneur on investment projects of the type just described. Our

setting includes two assumptions not traditionally made in contract theory. First, to

model highly innovative projects we posit a non-monotone statistical relationship be-

tween (verifiable) returns and (unverifiable) innovation, thus ruling out the conven-

tional monotone likelihood ratio property (MLRP). Secondly, to allow the investor to

influence innovation decisions we assume a two-sided moral hazard setup, meaning

that both the principal and the agent must have an incentive to attain an optimal

joint innovation level. Within this framework we then fully characterize the optimal

financing schemes for highly innovative investment projects.

Our results show that the two-sided moral hazard nature of the proposed model

implies that the first-best and second-best contracts generate a balanced solution,

which in turn means there must be positive levels of innovation on the part of both the

investor and the entrepreneur. In a symmetric information environment, the effi cient

innovation level can be implemented with either a full-insurance or a full-franchise

1Empirical evidence suggests that the proportion of innovative investment projects that is successful

is typically no greater than 20% (Bergemann and Hege, 1998; Sahlman, 1990; Gorman and Sahlman,

1989).
2See Chang and Song (2014), Frank and Goyal (2003), Barclay et al. (1995), and Long and Malitz

(1985).
3See Kaplan and Strömberg (2003), Kaplan et al. (2012), Bengtsson and Sensoy (2011), Sahlman

(1990), and Trester (1998).
4See Kaplan and Strömberg (2004), Cumming and Johan (2007), Sapienza et al. (1996), Gorman

and Sahlman (1989), and Bengtsson and Sensoy (2011).
5See Chang and Song (2014), and Brown (1997).
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contract. Interestingly, however, both contract types must impose a penalty, in the

former case on the entrepreneur and in the latter case on the investor.

We also show that under asymmetric information, a large family of financing rules

can achieve the optimal (second-best) innovation level, including strictly increasing,

strictly decreasing, and a wide variety of non-monotone schemes. However, because

of the double moral hazard problem (reminiscent of team moral hazard), there is no

financing rule in this environment that can implement first-best innovation levels.

The fact that under asymmetric information there can be a broad array of non-

monotone optimal contracts is a consequence of the highly innovative nature of the

type of businesses we are considering. This is so because in this class of projects, it is

not the shape (average slope) of the contract that matters but rather the relationship

between the rewards to returns at opposite extremes. Technically, this phenomenon

occurs because in the absence of MLRP regarding observed returns and unobserved

innovation decisions, failure as well as success can be a good signal of a truly innovative

project. We thus show that a salient class of optimal non-monotone financing schemes

consists of those that reward extreme returns and punish, in relative terms, moderate

returns such as those for U-shaped and J-shaped contracts. These risk-reward schemes

also have a failure reward property, which although counter-intuitive, can be associated

with hybrid contracts used in practice by entrepreneurial businesses to finance highly

innovative projects.

In the case of a strictly decreasing financing rule, the rule’s optimality is a conse-

quence of both the absence of MLRP and the double moral hazard setup. In this setting

a scheme may reward extreme results through an optimal combination of incentives for

both the investor and the entrepreneur. A decreasing scheme can then work if the rel-

ative reward given to the investor (entrepreneur) exceeds the relative penalty imposed

on the entrepreneur (investor) when high (low) returns are observed. In other words,

since the ultimate goal of the financial rule is joint innovation, a decreasing scheme

can be optimal if it properly counterbalances the opposing incentives facing the two

parties in the relationship.

We further demonstrate that the features of various of these theoretical optimal

contracts are consistent with non-linear and hybrid financing schemes combining equity

and other securities that are used in practice to fund high-return, high-risk investment

projects. In particular, we explore the implementation of two optimal contracts. The

first one is a strictly increasing scheme implemented through convertible preferred

equity and a sequence of warrants while the second is a risk-reward scheme (the U-

shaped contract) implemented through equity plus either call options or a dilution

process in favour of the investor. In the latter case, we analyze the possibility that the
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investor can infuse new capital into the project when returns are suffi ciently low and

thus cross-subsidize incomes from success and failure scenarios. All of these optimal

hybrid structures highlight the importance of combining both inside and outside equity,

a property that ensures, under double moral hazard, the creation of high-powered

incentives for both the investor and the entrepreneur to engage in innovation.

Also to be studied are two classes of suboptimal contracts that are relevant in

the context of our model: straight debt and full franchise. In the straight debt case,

our analysis suggests that it induces a corner solution in which only the entrepreneur

engages in innovation. Under double moral hazard, the outcome is joint innovation

and an expected surplus lower than the levels obtained with an optimal contract.

This result follows from the inability of the pure debt scheme to replicate a crucial

property of our optimal hybrid security, namely, providing equity to the investor and

the entrepreneur and thus giving both parties high-powered incentives to undertake

innovation. Interestingly, this theoretical finding is consistent with the above-cited

evidence that leverage is less frequent in high-tech innovative industries.

A comparative statics analysis performed on the straight debt contract reveals that

under this scheme, credit rationing may occur with profitable investment projects that

have either (i) a suffi ciently high probability of moderate returns, or (ii) an excessively

high probability of failure. This implies that if our optimal mixed securities were used

to finance investment projects with either of these two characteristics, they would

be particularly welfare-enhancing. The reason is that despite being profitable, these

projects may not be able to secure funding under conventional debt schemes such as

bank loans or bond issues. This implication of the model is also supported by the

evidence mentioned at the beginning of the paper, since more innovative firms seem to

be particularly financially constrained.

In the full-franchise case, although the extant literature has shown that under risk-

neutrality and single moral hazard this type of contract achieves the first-best effort

level, we prove that under double moral hazard not only does this no longer hold but

also that the contract is not even second best. This is so because the full-franchise

scheme performs similarly to the debt contract (a corner solution) in the sense that

the entrepreneur alone is strongly motivated to innovate.

An important contribution of this study is the characterization of innovation as an

endogenous variable that depends on the primitive characteristics of the investment

projects such as the parameters of the returns space and the returns probability dis-

tribution. To illustrate this, we conduct a number of comparative static analyses on

these parameters and the effects of changes in them on the optimal contracts. Three

classes of results emerge from these numerical simulations. First, the optimal (first-
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best and second-best) innovation levels and expected surplus increase if either (i) the

probability of moderate returns decreases, i.e., what we will call probability extremism

increases, or (ii) the level of abnormally good returns increases, i.e., returns are more

skewed towards success. By contrast, optimal innovation and surplus decrease if the

probability of low returns increases i.e., the returns are more skewed towards failure.

The second set of results suggests which types of projects incur higher costs due

to asymmetric information by computing the innovation and surplus gaps between

the first-best and second-best solutions. Finally, the results on the returns distribution

parameters allow us to perform two additional analyses: (i) the a priori classification of a

project according to a three-class typology often used in the venture capital industry to

predict the performance of innovative investment prospects; and (ii) an examination of

the impact of technological shocks on the innovation levels and the social value created

by highly innovative investment projects.

The rest of this paper is organized as follows. Section 2 reviews the most closely

related works in the existing literature, identifying by way of comparisons with them

the contributions of the present study. Section 3 proposes a model of the financing

of highly innovative investment projects under double moral hazard. Section 4 fully

characterizes the family of optimal financial contracts (first-best and second-best),

with special emphasis on those that involve a risk reward feature and thus a reward for

failure. Section 5 performs various comparative statics analyses on optimal innovation

and surplus and their relationship with different parameters of the project returns

distribution. A similar analysis is also applied to the U-shaped contract, a specific

case of the optimal risk-reward schemes. Section 6 explores and compares different

alternatives for implementing the optimal financing scheme via straight debt, franchise

contracts, and hybrid securities structures such as convertible preferred equity, warrants

and call options. Finally, Section 7 presents our main conclusions. Most of the proofs

are set out in the Appendix.

2 Related literature

The present paper is related to previous works on optimal financial arrangements under

a double-sided moral hazard environment, especially those devoted to venture capital

financing. One of the main goals of this literature is to show and justify the opti-

mality of mixed securities for financing this class of entrepreneurial business. In this

vein, Casamatta (2003) posits a single-stage financing in which effort and advice are

substitutes and outside financial investment is endogenous, showing that it is optimal

for the venture capitalist (entrepreneur) to be given preferred stocks when the level
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of outside financing is suffi ciently high (low).6 Repullo and Suarez (2004) assume a

two-stage financing setting (start-up and expansion stages) in which effort and advice

are complements, concluding that a set of standard non-linear claims (warrants) are

optimal when a project’s interim profitability is not verifiable. Schmidt (2003) adopts

an incomplete contract approach where the efforts of the entrepreneur and the investor

are sequential decisions and can be either substitutes or complements, finding that con-

vertible debt outperforms any standard debt-equity contract since it induces first-best

decisions in every state of the world. Wang and Zhou (2004) and Wang (2009) develop

a two-period analysis in which entrepreneur effort and outside investment resemble a

double moral hazard environment. Whereas the first paper demonstrates that equity

sharing and staged (instead of upfront) financing work complementarily to achieve ap-

proximately the first-best solutions for high-potential ventures, the second one shows

that with staged financing, certain types of convertibles can be fully effi cient. Inderst

and Müller (2004) propose an equilibrium model in which investor and entrepreneur

efforts can be either substitutes or complements, showing that a combination of debt,

inside and outside equity optimally balances the incentives of both agents when their

bargaining powers depend ultimately on primitive market characteristics.

A number of theoretical works examining double-moral hazard in the investor-

entrepreneur relationship, though broadly related to the present paper, do not have

the same ultimate purpose. Some are focussed on the entrepreneur’s choice between a

venture capitalist and other financiers such as an angel investor (Fairchild, 2011) or a

bank (de Bettignies and Brander, 2007) while others are concerned with the optimal

portfolio of start-up firms in venture capital finance when managerial advice is scarce

(Kanniainen and Keuschnigg, 2003, and 2004). But with different goals in mind, they

all assume that the venture capitalist provides equity finance, and are therefore unable

to characterize non-standard financial contracts.

The present paper also has connections with theoretical works that, although con-

sidering only single moral hazard or none at all, do attempt to provide explanations

for the use of hybrid securities structures to finance innovative firms.7 This literature

argues that non-standard claims are optimal if they either (i) balances the venture cap-

italist’s incentive to intervene and the entrepreneur’s desire for control (Marx, 1998),

(ii) reduce the entrepreneur’s incentives to focus on short-term success and window-

6Vergara, Bonilla and Sepúlveda (2016) generalize some of Casamatta’s results by assuming com-

plementarity between the two partners’efforts. The authors’numerical simulations (perhaps influenced

by their assumption that the partners’parameters are symmetric) suggest that a fifty-fifty combination

of inside and outside equity is optimal no matter what the degree of effort complementarity might be.
7An exception is the one-sided moral hazard approach of Elitzur and Gavious (2003), whose results

suggest that a straight debt contract is optimal in a multi-period setup.
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dressing (Cornelli and Yosha, 2003), (iii) mitigate the distributional conflicts associated

with a future sale of a company (Berglöf, 1994), or (iv) allow the entrepreneur to re-

solve the tension between two different dimensions of moral hazard, namely, effort and

excessive risk-taking (Biais and Casamatta, 1999).

It should be noted, however, that unlike the present paper, none of the above

cited works assuming either one-sided or two-sided moral hazard consider the returns

distribution in modelling what it really means for a firm to be highly innovative. All of

them make the classic MLRP assumption that the actions of the entrepreneur and the

investor influence monotonically and positively the returns distribution, without linking

innovative efforts to greater risk, heavier distribution tails or any other statistical

moment apart from the expected return.

Finally, our paper is related to works that determine theoretically the conditions for

credit rationing in the case of start-up and highly innovative firms. Biais and Casamatta

(1999) attribute the lack of financing for profitable investment projects to both insuf-

ficient internal cash flow and the tension between the entrepreneur’s incentives to put

in effort and take risks. Cornelli and Yosha (2003) argue that short-term manipulation

by the entrepreneur can render otherwise profitable projects unworthy of funding by

the venture capitalist under a staged financing scheme. By contrast, under the model

we develop here, credit rationing arises from the characteristics of the returns distri-

bution for highly innovative projects, and specifically when either their failure rates

are suffi ciently high or the probability they will generate extreme returns is suffi ciently

low.

3 The Model

Consider the agency relationship between an investor (the principal, she) and an en-

trepreneur (the agent, he) who are partners in a project with an initial investment I

normalized to zero. The entrepreneur has no initial wealth so the entire investment is

financed by the investor. Each of them must choose their own level of innovation in a

simultaneous-move game. The entrepreneur’s innovation level is denoted by a ∈ [0, 1]

and the investor’s by p ∈ [0, 1]. Whereas a can be interpreted as innovation in the

venture’s operational processes, p can be thought of as innovation or advice regarding

the management side. We define e = a + p as the joint innovation level of the two

partners’agency relationship such that e ∈ [0, 1].8

8We are thus assuming that a and p are substitutes, as in Casamatta (2003), but other functional

forms for joint innovation are also possible. In general terms, we can define e = f(a, p) such that

both parties’innovation levels are productive and mutually complementary (see Kim and Wang, 1998;

Repullo and Suarez, 2004).
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3.1 Innovation and return

Our model assumes that although each partner’s innovation is private information and

thus not verifiable by the other, the project return is verifiable by both. We then let

x
(a,p)
i be the return on a project with an innovation pair (a, p) in state of nature i. Also,

let π(a,p)
i be the conditional probability of observing return x(a,p)

i such that π(a,p)
i > 0

for all i = 1, .., n and for all (a, p) 6= (0, 0). The sum of the conditional probabilities

must satisfy
∑n

i=1 π
(a,p)
i = 1 for all (a, p). These assumptions imply that for any given

observed xi, no innovation pair (a, p) can be ruled out a priori except (0, 0).

For simplicity’s sake we assume there are only three possible states of nature (i =

1, 2, 3) such that x(a,p)
i ∈ X = {x1, x2, x3} for all (a, p), and x1 < x2 < x3. Specifically,

we posit the following formulations for returns and their conditional distribution.

Assumption 1 (A1). The returns space for x(a,p)
i is

X = {1− σ, 1, k(1 + σ)} ,

where σ > 0 and k > 1, and their probability distribution is described by9

π
(a,p)
i =


mγ(a+ p) if xi = 1− σ (i = 1)

−γ(1 +m)(a+ p) + 1 if xi = 1 (i = 2)

γ(a+ p) if xi = k(1 + σ) (i = 3)

,

where m > 1 and γ ∈
(

0, 1
1+m

)
.

This assumption merits a number of comments.

Positive skewness. (A1) captures the idea that the entrepreneur faces an investment

project whose returns distribution exhibits positive skewness.10 This is consistent with

the empirical evidence on highly innovative ventures. The skewness is the consequence

of assumptions on the nature of parameters k and m. Regarding the first parameter,

by assuming k > 1 we can formalize the idea that the success return x3 = k(1 + σ)

is potentially abnormally good because it deviates more from the intermediate return

x2 = 1 than the failure return x1 = 1−σ. In statistical terms, this assumption ensures
9Biais and Casamatta (1999) use a distribution function similar to the one presented here, but with

binary effort and risk choices. Their model does not study investment projects with both high returns

and high risk, however. The distribution functions in Hermalin and Weisbach (2005) and Loyola and

Portilla (2014) are also similar, but the first is formulated in the context of corporate governance and

the second in the context of fund management compensation. None of these frameworks consider a

double moral hazard setup.
10 In one of the extensions of their initial coin offering (ICO) setup, Chod and Lyandres (2018) also

consider a right-skewed payoff distribution. However, they do not study the conventional moral hazard

problem (either single or double) in the investor-entrepreneur relationship, but a particular agency

problem arisen from the ICO financing scheme.
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that the right tail of the returns distribution is longer than its left tail. As for the m

parameter, by assuming m > 1 we formalize the idea that failure is much more likely

than an exceptional but unlikely success. Statistically, this assumption ensures that

the mass of the distribution is more concentrated on the left side of the distribution

than the right side.

To illustrate how these two parameters characterize the asymmetry of the returns

distribution, we take the intermediate return x2 = 1 as a reference point. Then, if k

and m were 1, the right and left sides of the distribution would be equally long and

fat, and the distribution would be symmetric. We thus say that while the parameter

k measures the skew of the project’s returns distribution towards success, that is, its

success returns skew, the parameter m measures the skew of the project’s probability

towards failure, that is, its failure probability skew.

Type of projects. Assumption (A1) is also consistent with the empirical evidence,

which suggests that innovative projects can be classified in terms of three different

profiles: (i) poor projects, (ii) the living dead, and (iii) high flyers (Sahlman, 1990;

Gorman and Sahlman, 1989). For instance, according to the sample studied by Salh-

man (1990), poor projects (35% of the sample) suffered a total loss or could not repay

the initial investment. The living dead (50% of the sample) showed moderate prof-

itability, but venture capitalists generally did not invest additional resources or effort

in them. Lastly, high flyers (the remaining 15%) exhibited outstanding profitability,

with a return more than five times their initial investment.

The values taken by some parameters of the models ex ante suggest whether a

project will ex post end up in one of these three profiles. In particular, for a given pair

of innovation (a, p), a high flyer should exhibit a priori a larger k while a poor project

would display a larger m. A living dead project should a priori show a smaller γ since

this term parameterizes positively (negatively) the probability of extreme (moderate)

returns. We will therefore say that γ measures the project’s level of probability extrem-

ism.

Technological shocks. The way we model the return distribution also allows us to

examine the consequences of a change in the profitability of investments caused by

real or perceived exogenous technological shocks. For example, the increase of k could

be associated with a technological bubble like the Internet boom that occurred at the

turn of the 21st century and an increase of m can then be associated with the bubble’s

later burst. Also, since episodes of boom and bust are accompanied by an increase in

volatility, we can study this class of effects through the parameter σ, which we consider

as the measure of the project’s level of returns extremism.

Innovation and risk. The parameter definitions guarantee that ∂π(a,p)
i /∂a > 0 and
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∂π
(a,p)
i /∂p > 0 for i = 1 and i = 3, but ∂π(a,p)

i /∂a < 0 and ∂π(a,p)
i /∂p < 0 for i = 2.

Thus, a higher level of either a or p increases (decreases) the probability of extreme

(moderate) events. This property is consistent with the idea that innovation parame-

terizes the project’s risk, and is also consistent with the fact that real-world high-tech

projects involve a high degree of uncertainty, whether technological, business/market-

related or regulatory, especially in their early stages (Metric and Yasuda, 2010).

In statistical terms, this characteristic implies that MLRP is not satisfied. To illus-

trate this phenomenon, let us define the likelihood ratio associated with innovation a

as

LRai =
∂π

(a,p)
i /∂a

π
(a,p)
i

, for i = 1, 2, 3,

from which it is easily verified that LRa1 > LRa2 as

LRa2 =
1

e− (γ(1 +m))−1
< 0 <

1

e
= LRa1, (3.1)

even though x2 > x1.11

Recall that LRai indicates how good is the return xi as a signal of the fact that the

entrepreneur selected an innovation level a. In other words, LRai reflects how informa-

tive is the project’s (verifiable) return xi with respect to an (unverifiable) innovation

decision. The larger is LRai , the more likely it is that the entrepreneur chose an innova-

tion level a. Thus, if this is the level the investor desires, the financial contract should

compensate the entrepreneur more whenever return xi is observed. But note that such

a provision does not guarantee the optimal financing scheme will be increasing in the

returns on the project. That property will only hold if the likelihood ratio is monoton-

ically increasing in xi, that is, if the MLRP condition is met. As will be established

later, the non-satisfaction of this property in our model is crucial to our main results.

3.2 Preferences

The entrepreneur’s preferences are assumed to be described by the following (ex post)

additively separable risk-neutral utility function:

U(w, a) = w − θ1a
2

2
,

where w is the entrepreneur’s share of the return generated by the project. The sec-

ond term of the function is the disutility the entrepreneur experiences by choosing a

positive innovation level, with θ1 > 0 representing a coeffi cient of his aversion to in-

novation. Whereas the financing contract must satisfy a limited liability constraint on

the entrepreneur side so that w ≥ 0, there is no such constraint on the investor side.

11The inequalities in expression (3.1) hold because e ∈ [0, 1] and γ ∈
(

0, 1
1+m

)
by assumption (A1).
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The investor is also risk neutral and her preferences (before the initial investment

I) are represented by the (ex post) utility function

B(x,w, p) = x− w − θ2p
2

2
,

where x − w is her share of the project’s return and the last term is the disutility to

her of engaging in innovation, θ2 > 0 then being her coeffi cient of innovation aversion.

Since the optimal financing scheme may be contingent on returns, for simplicity

we define wi ≡ w(xi), the entrepreneur’s share of the return if xi is observed for all

i = 1, 2, 3.

The investor’s opportunity cost is the riskless interest rate r so the optimal contract

must satisfy a gross expected payoff to her that is equal to or greater than (1 + r)I.

Because of our normalization of I, however, this payoff is reduced to zero. Since all the

bargaining power is in the hands of the investor, the optimal contract must offer the

entrepreneur at least his reservation utility U > 0. This utility represents the fact that

in general the entrepreneur gives up an alternative wage when deciding to undertake

a venture project.

To compare the optimal schemes under symmetric and asymmetric information, we

define the investor’s optimal expected payoff as12

EBj =
3∑
i=1

π
(aj ,pj)
i

(
xi − wji

)
− θ2(pj)2

2
(3.2)

where j indicates the type of sharing rule: a first-best contract (j = FB) and a second-

best contract (j = ∗). As for the expected surplus generated by sharing rule j, we define
it as

Sj =
3∑
i=1

π
(aj ,pj)
i xi −

θ1(aj)2

2
− θ2(pj)2

2
. (3.3)

3.3 Technical assumptions

To obtain certain of our results we adopt two additional assumptions regarding the

model parameters, as explained below.

Definition 1. Let Ψ be the project’s expected marginal return on innovation, defined

as

Ψ ≡ ∂E(x
(a,p)
i )

∂a
=
∂E(x

(a,p)
i )

∂p
.

12Because we normalized I to zero, this is indeed an expected payoff before and after initial invest-

ment. The same applies to the expected surplus defined below.
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Thus, Ψ represents the change in the project’s expected return when innovation a or

p increases. In our model this term is given by

Ψ = mγ(x1 − x2) + γ(x3 − x2)

= γ(σ(k −m) + (k − 1)). (3.4)

Assumption 2 (A2). The expected marginal return on innovation is such that

0 < Ψ <
θ1θ2

θ1 + θ2
.

The implications of these two bounds on Ψ are the following. The lower bound Ψ > 0

implies that the effect of innovation on a higher expected return conditional on success,

represented by the positive term γ(x3 − x2), outweighs the effect of a lower expected

return conditional on failure, expressed by the negative term mγ(x1 − x2). This is

equivalent to assuming that an increase in innovation a or p shifts the returns distri-

bution towards more profitable riskier ventures. The upper bound Ψ < θ1θ2
θ1+θ2

ensures

that the first-best joint innovation level e is strictly smaller than 1, thus avoiding a

corner solution (see Proposition 1 in Section 4).

The other additional assumption relates to the entrepreneur’s reservation payoff.

Assumption 3 (A3). The entrepreneur’s reservation utility is such that

Ψ2 2θ2
1 + θ2

2

2θ1(θ1 + θ2)2
< U < 1 + Ψ2 θ

2
1 + θ2

2 + θ1θ2

2θ1θ2(θ1 + θ2)
.

Setting these bounds on U is not just a simplifying assumption since it guarantees two

important results in the context of our analysis. First, the lower bound ensures that

under asymmetric information, the optimal w2 will be strictly positive (see Proposition

2 in Section 4), which rules out the possibility of a debt-like scheme as one of the

optimal arrangements (see Corollary 1, case (c1) in Section 4). Second, the upper

bound guarantees that under symmetric and asymmetric information, the optimal

contract is such that the investor’s participation constraint is satisfied, thus preventing

the existence of a credit rationing equilibrium.

4 Results

In this section we characterize the optimal innovation pair and its associated financing

rule under both symmetric and asymmetric information. We then focus our analysis

on sharing rules that reward risk-taking and therefore failure.
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4.1 First-Best Solution

Under symmetric information the optimal sharing rule must solve the following pro-

gram:13

max
{wi}3i=1, a,p∈[0,1]

3∑
i=1

π
(a,p)
i (xi − wi)−

θ2p
2

2
(4.1)

subject to
3∑
i=1

π
(a,p)
i wi −

θ1a
2

2
≥ U (4.2)

3∑
i=1

π
(a,p)
i (xi − wi)−

θ2p
2

2
≥ 0 (4.3)

wi ≥ 0 for all i (4.4)

a+ p ≤ 1, (4.5)

where (4.2) and (4.4) are the entrepreneur’s participation and limited liability con-

straints, (4.3) is the investor’s participation constraint and (4.5) is the constraint en-

suring joint innovation is not greater than 1.

Once this program is solved, we can establish the following result.

Proposition 1. The first-best incentive scheme is such that the optimal innovation

levels are

aFB =
Ψ

θ1

pFB =
Ψ

θ2

eFB = Ψ
θ1 + θ2

θ1θ2
.

Two possible sharing rules for implementing this scheme are as follows:

(i) A full-insurance contract that specifies a fixed compensation for the entrepreneur

given by

wFB = U +
Ψ2

2θ1

if a = aFB, and a penalization otherwise.

(ii) A full-franchise contract that specifies a fixed payment by the entrepreneur to the

13Since the initial investment I is normalized to zero, it is not included in the computation of the

investor’s expected payoff. Note, however, that because in our fixed-investment model I is an exogenous

variable, even if this term were positive it would be excluded from the investor’s objective function in

all the optimization programs posited in this paper.
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investor given by14

FFB = 1− U + Ψ2 2θ1 + θ2

2θ1θ2

if p = pFB, and a penalization otherwise.

Proof. See the Appendix.

Thus, under symmetric information there is a balanced solution in terms of innovation

in that both a and p are strictly positive due to assumption (A2). Since we have assumed

that these two innovations are perfect substitutes and have the same social marginal

expected benefit Ψ, the difference between individual innovations are explained solely

by the two θ cost coeffi cients.

4.2 Second-Best Solution

Under asymmetric information, the optimal sharing rule must solve the following pro-

gram:

max
{wi}3i=1, a,p∈[0,1]

3∑
i=1

π
(a,p)
i (xi − wi)−

θ2p
2

2
(4.6)

subject to
3∑
i=1

π
(a,p)
i wi −

θ1a
2

2
≥ U (4.7)

3∑
i=1

π
(a,p)
i (xi − wi)−

θ2p
2

2
≥ 0 (4.8)

a ∈ arg max
ã∈[0,1]

3∑
i=1

π
(ã,p)
i wi −

θ1ã
2

2
(4.9)

p ∈ arg max
p̃∈[0,1]

3∑
i=1

π
(a,p̃)
i (xi − wi)−

θ2p̃
2

2
(4.10)

wi ≥ 0 for all i (4.11)

a+ p ≤ 1, (4.12)

where (4.7), (4.9), and (4.11) represent the entrepreneur’s participation, incentive com-

patibility and limited liability constraints, and (4.8) and (4.10) are the investor’s par-

ticipation and incentive compatibility constraints.

Once this program is solved, we can establish the following additional result.

Proposition 2. The second-best incentive scheme is such that the optimal innovation
14The upper bound imposed by assumption (A3) on the entrepreneur’s reservation utility implies

that FFB is always positive.
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levels are

a∗ =
Ψ

θ1

θ2

θ1 + θ2

p∗ =
Ψ

θ2

θ1

θ1 + θ2

e∗ =
Ψ

θ1θ2

θ2
1 + θ2

2

θ1 + θ2
,

and the scheme can be implemented by a sharing rule characterized by the following

set:

Ω∗ =

{
(w∗1, w

∗
2, w

∗
3) : w∗1 ∈

[
0,
A

m

]
, w∗2 = U −B,w∗3 ∈ [0, A] and w∗3 = A−mw∗1

}
,

where

A ≡ Ψ
θ2

γ(θ1 + θ2)
+ (1 +m)

(
U −Ψ2 2θ2

1 + θ2
2

2θ1(θ1 + θ2)2

)
,

B ≡ Ψ2 2θ2
1 + θ2

2

2θ1(θ1 + θ2)2
.

Proof. See the Appendix.

In terms of innovation, the optimal solution under asymmetric information is also bal-

anced since both a∗ and p∗ are strictly positive. However, the optimal values are smaller

than those under full information, which implies that despite risk-neutrality, there is

no financial contract under asymmetric information that can achieve first-best levels of

individual and joint innovation. Note also that unlike the symmetric information case,

under asymmetric information each player’s optimal innovation level depends posi-

tively on his/her counterpart’s cost coeffi cient θ, which reflects a substitution effect

between the two individual innovation efforts.15

In terms of sharing rules, the set Ω∗ implies that there are multiple financial con-

tracts for implementing the second-best innovation levels. This multiplicity of contracts

is illustrated in Fig. 1, which clearly shows that the optimal contract allows a wide

range of financing rules including strictly increasing, non-monotone and even strictly

decreasing schemes. A formal characterization of this multiplicity of contracts is given

in the next statement.

〈Insert Fig. 1 here〉

Corollary 1. The second-best financing rule is such that all of the following classes of

contracts are optimal:

(a) Strictly increasing contracts: w∗3 > w∗2 > w∗1.

15A more detailed discussion of the properties of the optimal innovation levels is presented in Section

5.
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(b) Strictly decreasing contracts: w∗1 > w∗2 > w∗3.

(c) Non-monotone contracts:

(c1) Bonus plus fixed compensation: w∗3 > w∗2 = w∗1.

(c2) J-shaped contract: w∗3 > w∗1 > w∗2.

(c3) U-shaped contract: w∗3 = w∗1 > w∗2.

(c4) G-shaped contract: w∗1 > w∗3 > w∗2.

(c5) L-shaped contract: w∗1 > w∗3 = w∗2,

where w∗2 > 0.

Proof. The multiplicity of contracts follows directly from Proposition 2 and Fig. 1.

Moreover, the lower bound on U imposed by assumption (A3) ensures that w∗2 > 0.

Thus, in the absence of MLRP, what measures the optimal contract’s incentive power

is not its shape or its average slope but rather the relationship of rewards paid to

the extreme returns as given by the equation w∗3 = A − mw∗1 in Proposition 2 (and
illustrated in Fig. 1). Indeed, this means that it is irrelevant whether the average slope

of the entire sharing rule increases or decreases (even if it changes from positive to

negative). All of this makes sense because, according assumption (A1), whereas extreme

returns (either high or low) are more indicative of a higher innovation level, moderate

returns are indicative of a lower level. One consequence of this last phenomenon is that

a scheme rewarding moderate returns (an inverse-U-shaped contract) is excluded from

the wide range of optimal financing rules characterized in Corollary 1.

4.3 Strictly decreasing and risk-reward contracts

Two schemes in this broad family of second-best contracts merit further analysis:

strictly decreasing and risk-reward. In the counter-intuitive strictly decreasing case,

the optimality of this contract can be explained by the absence of MLRP and the

double moral hazard environment. In such a setting, the incentives are provided by the

particular combination of reward and punishment applied to the agent and the princi-

pal, since both of them contribute innovation to an entrepreneurial business venture.

Thus, although in relative terms a decreasing contract w(x) rewards the entrepreneur

for failure and punishes him for success, the complementary optimal scheme x−w(x)

confronts the investor with the opposite pair of incentives. In the end, therefore, it is

the interplay of the two schemes that induces the optimal individual and joint innova-

tion levels. Under our model formulation, it is the optimal combination of incentives

facing the two parties that induces a balanced innovation solution.16

16Kim and Wang (1998) also characterize the optimal financial contracts under double moral hazard,

but they assume MLRP and agent risk-aversion. They find that one of the optimal contracts exhibits

a less severe non-monotonicity than our strictly decreasing scheme, but in their setup this is due to
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The risk-reward scheme, on the other hand, is a contract that in relative terms

rewards extreme returns and punishes moderate results. Under this class of financing

rules w∗1 > w∗2, hence they promise a larger share to the entrepreneur when the observed

return is low (x1) than when it is moderate (x2). Thus, we cannot rule out the possibility

that a scheme with a reward-for-failure property will be an optimal arrangement for

financing highly innovative ventures. Examples of this class of schemes are the J-shaped

and U-shaped contracts identified in Corollary 1.

Although these contracts are counter-intuitive, in the context of entrepreneurial

business financing they have an appealing economic rationale. In the real world, higher

innovation levels usually mean greater expected returns but also greater risk and failure

rates. Thus, we may reasonably expect that (ex post) low returns are often a better

signal that a relatively innovative project was chosen than (ex post) moderate returns.

It may therefore be optimal for the investor to punish the entrepreneur (in relative

terms) when the returns are moderate and reward him when they are extreme (high

or low). This in turn implies that it may be effi cient to reward failure to the extent

that low returns are suffi ciently suggestive of a high degree of effort and creativity

supplied by the entrepreneur in developing investment projects with attractive risk-

return profiles.17

Our analysis suggests that this reward-for-failure property may explain some non-

monotone characteristics of schemes commonly adopted to fund highly innovative firms.

This issue is explored in Section 6, which focuses on the implementation of the opti-

mal sharing rule through real-world financing structures that mix debt, equity and

conversion clauses.

4.4 First-best vs. second-best contracts

We end this section by summarizing our main results in terms of innovation levels, the

investor’s expected payoff and expected surplus. We also compare the optimal schemes

under symmetric and asymmetric information in terms of these three dimensions.

Corollary 2. (i) Innovation levels under symmetric information are strictly greater

than those induced under asymmetric information:

aFB > a∗

pFB > p∗

eFB > e∗.

the absence of a limited liability condition on the principal side.
17A similar notion of ‘reward for failure’is discussed by Manso (2011) in the context of an exploration

technological innovation, and Loyola and Portilla (2014) in the context of top executive compensation.
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(ii) The investor’s expected payoff under symmetric information is strictly greater than

that obtained under asymmetric information:

EBFB = 1− U + Ψ2 θ1 + θ2

2θ1θ2
> 1− U + Ψ2 θ

2
1 + θ2

2 + θ1θ2

2θ1θ2(θ1 + θ2)
= EB∗.

(iii) The expected surplus generated under symmetric information is strictly greater

than that generated under asymmetric information:

SFB = EBFB + U > EB∗ + U = S∗.

Proof. See the Appendix.

It is well known that under double moral hazard and MLRP, there is no incentive

scheme that induces the first-best effort level even when the agent is risk- neutral

(Hölmstrom, 1982; Kim and Wang, 1998). Thus, the present work extends this result

to a model with double moral hazard and no MLRP, as established in point (i) of

Corollary 2.

5 Comparative statics

In this section we present the results of comparative statics analysis applied first to

various parameters in optimal contracts and then to an optimal risk-reward scheme.

5.1 Comparative statics on optimal contracts

We begin by analyzing the properties of the optimal innovation and surplus levels with

respect to changes in the innovation cost parameters.

Corollary 3. (i) The first-best innovation levels for both the entrepreneur and the

investor are decreasing in his/her own innovation cost parameter.

(ii) The first-best joint innovation and surplus levels are decreasing in the two cost

parameters.

(iii) The second-best innovation levels for both the entrepreneur and the investor are

decreasing in his/her own innovation cost parameter (direct effect) but increasing in

the cost parameter of his/her counterpart (cross effect).

(iv) The second-best joint innovation level is decreasing in a given innovation cost

parameter if its direct effect dominates in absolute value terms its cross effect.

(v) The second-best surplus is decreasing in the two cost parameters.

Proof. See the Appendix.

Thus, under symmetric information, both actors’innovation levels depend only on their

own individual cost parameters (direct effect) while under asymmetric information
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they also depend positively on the cost parameter of their counterpart (cross effect).

This cross effect reflects substitution between the two innovation levels at the optimal

solution and stems from our assumption of an additive formulation for joint innovation

e. The latter can therefore be either increasing or decreasing in each θ, depending on

the relative magnitudes of the direct and cross effects. The expected surplus, however,

is always decreasing under asymmetric information in each θ, suggesting that even

when an increase in one of these parameters produces a greater joint innovation level

and thus a greater expected project return, it also generates an increase in innovation

costs that in the end will outweigh the expected return.

We now present our comparative statics analysis of four parameters in the returns

distribution. The results of the analysis may be summarized as follows.

Corollary 4. The first-best and second-best levels of innovation and surplus all have

the following characteristics:

(i) Increasing in γ.

(ii) Increasing in k.

(iii) Decreasing in m.

(iv) Increasing (decreasing) in σ as long as k > m ( k < m).

Proof. See the Appendix.

Our model allows us to examine how innovation behaves in the face of changes in a

project’s primitives, that is, the returns space and returns distribution parameters.

Thus, it can be applied to the analysis of the effects of technological shocks. For exam-

ple, the Corollary 4 results indicate that the sign of the effect on optimal innovation

and surplus levels of increasing positive skew in a project’s returns distribution will

depend on this greater skew’s source. If it is an increase in a project’s real or perceived

success return (an increase in k) generated, for instance, by a positive technological

change, the effect on the project’s social value will be positive. An example of this

change would be the Internet bubble at the turn of the present century. If, on the

other hand, the source is an increase in real or perceived project failure rates (an in-

crease in m) brought about, for example, by the later burst of the Internet bubble, the

ultimate effect on social value will be negative.

Our framework also enables us to predict the effects of greater volatility in the

returns on highly innovative projects caused, for instance, by a bubble-burst cycle

such as the one just mentioned. Corollary 4 suggests that the effect of a high degree

of returns extremism as represented by an increase in the σ parameter will depend on

the phase of the cycle. During the bubble, the model predicts that an increase in σ will

have a positive effect on project innovation levels and social value given that it is likely

k > m. By contrast, once the bubble bursts, the model predicts that an increase of σ
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will have a negative effect on innovation and social value since the relation between k

and m is more likely to be the other way around.

Further results can be derived regarding the gap between the first-best and second-

best contracts, which can be thought of as a measure of the cost of asymmetric infor-

mation.

Corollary 5. The gap between first-best and second-best innovation levels as well as

the gap between first-best and second-best expected surplus all have the following char-

acteristics:

(i) Increasing in γ.

(ii) Increasing in k.

(iii) Decreasing in m.

(iv) Increasing (decreasing) in σ as long as k > m ( k < m).

(v) Decreasing in θ1 and θ2.

Proof. See the Appendix.

Thus, in the case of highly innovative projects, the welfare cost of asymmetric infor-

mation will increase with success returns skew and decrease with failure probability

skew.

With the results of Corollaries 4 and 5 we can predict the performance of projects

that have been identified ex ante as fitting one of the three empirical profiles described

in Subsection 3.1. Projects with an ex ante profile resembling that of a living dead

(i.e., with a low value of γ) should exhibit low optimal innovation levels and innovation

social values. Due to asymmetric information, however, the welfare cost of such projects

should also be low. Ventures more reminiscent of a poor project (i.e., with a high value

of m) would according to our analysis yield low levels of both optimal innovation and

the corresponding social value. However, they would also involve low social cost, due

once again to asymmetric information. Lastly, projects with an ex ante profile more

like that of a high flyer (i.e., with a high value of k) should experience a high level of

both optimal innovation and social value. The welfare costs attributable to asymmetric

information for this class of projects should also be high.

5.2 Comparative statics on a risk-reward scheme

Our second comparative statics analysis considers the U-shaped contract, a specific

risk-reward type of optimal financing rule. Since w∗3 = w∗1 = w∗ > w∗2, we can define

∆w∗, the optimal risk reward, as follows

∆w∗ ≡ w∗ − w∗2,
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such that ∆w∗ represents a reward for either success or failure. This risk reward mea-

sures the power of the incentives to the entrepreneur created by the U-shaped contract

for engaging in innovation. It can be shown that

∆w∗ =
θ2

θ1 + θ2

σ(k −m) + (k − 1)

2 (1 +m)
,

from which it is simple to confirm that

∂∆w∗

∂m
= − θ2

θ1 + θ2

σ(k + 1) + k − 1

2 (m+ 1)2 < 0,

∂∆w∗

∂k
=

θ2

θ1 + θ2

σ + 1

2m+ 2
> 0,

and if it is the case that k > m,

∂∆w∗

∂σ
=

θ2

θ1 + θ2

k −m
2m+ 2

> 0.

Note that the sign of these partial derivatives is the same as those established by

Corollary 4 in the comparative statics analysis of innovation and surplus levels with

optimal contracts. The effects of changes in the m, k and σ parameters on the optimal

risk reward ∆w∗ can thus be interpreted quite intuitively. These results imply that

whenever exogenous changes in either the returns space or the returns distribution

generate higher levels of optimal innovation, the incentives of a U-shaped financing

contract for the entrepreneur should be more powerful.

Note also that

∂∆w∗

∂θ1
= − θ2

(θ1 + θ2)2

σ(k −m) + (k − 1)

2 (1 +m)
< 0

and
∂∆w∗

∂θ2
=

θ1

(θ1 + θ2)2

σ(k −m) + (k − 1)

2 (1 +m)
> 0,

which implies that the incentives created by a U-shaped contract will be lower-powered

the more innovation-averse is the entrepreneur (a standard result in the literature in

the case of effort) but higher-powered the more innovation-averse is the investor due

to the substitution effect discussed earlier.

6 Implementation

In this section we present two sets of implementation analyses, one for optimal financing

schemes and the other for suboptimal schemes.
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6.1 Optimal financing rules

Our first set of analyses concerns the implementation of certain of the optimal financing

rules characterized in Corollary 1 for three classes of hybrid securities: (i) convertible

preferred equity with optimal dividend, (ii) a sequence of warrants, and (iii) an initial

equity stake with either short positions in call options or dilution in favour of the

investor.

All three examples highlight the idea that the optimal financing rule must give

some level of preferred inside equity to the entrepreneur and some level of common

outside equity to the investor. In a double moral hazard setup, a proper combination

of these two claims will create incentives that are suffi ciently high-powered to induce

both parties to undertake a positive level of innovation and thus achieve a balanced

solution.

6.1.1 Convertible preferred equity

For this class of securities, we focus on the optimal strictly increasing contract w∗3 >

w∗2 > w∗1 in which
18

w∗1 = 0, (6.1)

w∗2 = U −B, (6.2)

w∗3 = A. (6.3)

Following Marx (1998), we consider a financing contract in which the investor receives

an ex post payoff described by

x− w(x) =

{
x if x < d

d+ β(x− d) if x ≥ d

where d > 0 represents a fixed dividend payment. The contract can be interpreted as a

convertible preferred stock whose holder has seniority over a preferred dividend d and

converts this equity into common stock at a rate β if the threshold d is exceeded by

the project’s return.

In the context of our model, we must look for the optimal pair (d∗, β∗) that allows

us to implement the contract (6.1)-(6.3) so that it satisfies

(1− β∗)(x2 − d) = w∗2, (6.4)

(1− β∗)(x3 − d) = w∗3, (6.5)

18This contract is obtained by substituting w∗1 = 0 into Proposition 2.
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as long as d ∈ (x1, x2). Upon combining equations (6.2), (6.3), (6.4) and (6.5), and

recalling the values for x2 and x3 in Assumption 1, we have

d∗ =
A− k(1 + σ)(U −B)

A− (U −B)
, (6.6)

and

β∗ = 1− U −B
1− d∗ . (6.7)

From (6.6), it can be shown that whereas it is indeed the case that d∗ < x2 (since

k(1 + σ) > 1), it is also the case that d∗ > x1 only if

k(1 + σ)− (1− σ)

σ
<

A

U −B . (6.8)

To illustrate this type of implementation, we simulate the results obtained for the

parameter values θ1 = θ2 = 1, γ = 0.35, σ = 0.5, k = 1.6, m = 1.5 and U = 0.15,

which generates the return space X = {0.5, 1, 2.4}.19 The optimal financing rule is
then given by w∗1 = 0, w∗2 = 0.13059 and w∗3 = 0.65148, which can be implemented by

preferred equity with dividend d∗ = 0.59886 and a conversion rate of β∗ = 0.67445.

Thus, the investor’s payoff profile under this convertible security is given by

x− w∗ =

{
x if x < 0.59886

0.59886 + 0.67445(x− 0.59886) if x ≥ 0.59886
,

which is displayed in Fig. 2.

〈Insert Fig. 2 here〉

6.1.2 Sequence of warrants

As in the previous example of convertible preferred stock, our analysis for a sequence of

warrants is centred on the optimal strictly increasing contract represented by equations

(6.1)-(6.3). However, inspired in this case by the analysis of Repullo and Suarez (2004)

we now consider a financing contract that includes an investor’s initial outside equity

and various thresholds for the project’s return at which the investor’s share changes.

This contract can be viewed as preferred equity plus a set of warrants that yield higher

payoffs to the investor as long as the firm value hits higher and higher strike prices.20

In more concrete terms, the preferred equity gives the investor priority on dividend

d = d1, and given two strike prices (d1, d2) such that d1 < d2, the investor also holds

a long position in two call options over additional equity. Then, if the project’s return

x ∈ (d1, d2], the investor has the option to buy an additional equity stake β1 at a

19Note that all of these parameters values satisfy assumptions (A1)-(A3).
20Since our framework is a one-stage financing setup, this contract can also be interpreted as a

convertible bond with a coupon equal to the preferred dividend.
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unitary exercise of d1. Alternatively, if the return is suffi ciently high so that x > d2,

the investor can then buy an extra equity stake β2 at a unitary exercise price of d2.

Thus, the investor’s ex post payoff is represented by the structure21

x− w(x) =


x if x ≤ d1

d1 + β1 max {x− d1, 0} if d1 < x ≤ d2

d1 + β2 max {x− d2, 0} if x > d2

.

Letting the strike prices be set exogenously at d1 = x1 and d2 = x2, we must then

determine the optimal pair (β∗1, β
∗
2) that implements the contract described by (6.1)-

(6.3) so that it satisfies

(1− β∗1)(x2 − x1) = w∗2, (6.9)

(x3 − x1) + β∗2(x2 − x3) = w∗3. (6.10)

Upon combining equations (6.2), (6.3), (6.9) and (6.10), and recalling the values of xi’s

in Assumption 1, we obtain

β∗1 = 1− U −B
σ

,

β∗2 = 1 +
A− σ

1− k(1 + σ)
.

Illustrating this implementation with a numerical example using the same parameter

values employed for the convertible preferred equity case, we get β∗1 = 0.73882 and

β∗2 = 0.8918. Thus, the investor’s payoff profile under this warrant-based structure is

x− w(x) =


x if x ≤ 0.5

0.5 + 0.73882(x− 0.5) if 0.5 < x ≤ 1

0.5 + 0.8918(x− 1) if x > 1

which is shown in Fig. 3.

〈Insert Fig. 3 here〉

6.1.3 Equity, call options, and dilution

Finally, we analyze a mixed financing structure that combines outside/inside equity

with either short positions held by the investor in call options or an equity dilution

process. This hybrid arrangement enables the investor to potentially infuse new funds

if low returns are observed, thereby permitting a cross-subsidization between incomes

from good and bad states of nature.

21Note that conditional on one of the two warrants being active, the call option involved in each of

the contracts will always be ‘in the money’.



Financing of innovative projects 25

To this end, we examine how to implement the class of optimal risk-reward schemes

analyzed in subsections 4.3 and 5.2. For simplicity, we focus on the U-shaped contract

in which w∗1 = w∗3 = w∗ and whose specific sharing rule, obtained from Proposition 2,

is

w∗ =
A

1 +m
, (6.11)

and

w∗2 = U −B. (6.12)

We further simplify by supposing that x1 > 0 and normalizing the number of initial

shares to 1. Two cases then arise, depending on the possibility of the investor infusing

new funds.

Case 1: w∗ > x1. The U-shaped contract is implemented by a combination of a

full-outside investor equity stake and a set of call options over different equity stakes

depending on the project’s returns. Following is a description of this mixed security

structure.

Corollary 6 (Case 1). Assume that w∗ > x1. The U-shaped contract is implemented

by giving the investor an initial full equity stake and the investor (entrepreneur) a short

(long) position in a set of equity call options triggered in accordance with the following

scheme:

(i) If x ≤ x1, a call option over an equity stake (1 + δ1) with a zero strike price is

active. For this option to be exercised, there must first have been an infusion by the

investor of new funds in an amount equal to δ1x1 and a new share issue of δ1 > 0

such that

δ1 =
A

(1 +m)(1− σ)
− 1.

(ii) If x1 < x ≤ x2, a call option on an equity stake (1 + δ2) with a zero strike price

is active, where δ2 > −1 such that

δ2 = U −B − 1.

(iii) If x > x2, a call option over an equity stake (1 + δ3) with a zero strike price is

active, where δ3 > −1 such that

δ3 =
(1 + δ1)(1− σ)

k(1 + σ)
− 1.

Proof. See the Appendix.
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This implies that the investor’s ex post payoff is represented by the following structure:

x− w(x) =


x− (1 + δ1) max {x, 0} if x ≤ x1

x− (1 + δ2) max {x, 0} if x1 < x ≤ x2

x− (1 + δ3) max {x, 0} if x > x2

, (6.13)

which reflects the difference between the full-initial-equity payoff and the losses on the

investor’s short position in each call option.

Therefore, if in the worst state of nature the lowest project return x1 is suffi ciently

low (i.e., x1 < w∗), this mixed financing structure allows the investor to infuse new

resources. This result is the consequence of the reward-for-failure feature of the optimal

risk reward scheme. Notice, however, that since the investor’s expected payoffwith the

optimal contract must be positive (since the investor’s participation constraint at the

optimal solution is satisfied with inequality), at least one of the ex post payoffs in the

other states of nature must be positive. By expression (6.13), this implies that either

δ2 or δ3 (or both) must be strictly negative, which ensures that the investor enjoys

a stake in the success returns of the project, and thus a combination of outside and

inside equity must be adopted.

The foregoing analysis implies that in this case the risk-reward sharing rule allows

the investor to cross-subsidize from high-profitability to low-profitability states, thereby

avoiding credit rationing for projects that are ex ante profitable.22

We illustrate this phenomenon with a numerical example based on the same para-

meter values adopted so far. The optimal financing rule is then given by w∗ = 0.7106

and w∗2 = 0.58059, which can be implemented by the mixed security structure of Corol-

lary 5 with equity stakes δ∗1 = 0.4212, −δ∗2 = 0.41941 and −δ∗3 = 0.70392. The investor’s

payoff profile under this scheme is23

x− w(x) =


x− 1.4212 max {x, 0} if x ≤ 0.5

0.41941x if 0.5 < x ≤ 1

0.70392x if x > 1

,

which is displayed in Fig. 4.

〈Insert Fig. 4 here〉

Case 2: w∗ ≤ x1. The U-shaped contract can be implemented by an initial profit-

sharing rule that gives the investor an equity stake of (1 − α) in the project’s return,

meaning that an initial combination of outside and inside equity is optimal. A subse-

quent issue of an amount φi of shares to the investor is considered when a return xi
22A similar property emerges from the multiple-stage finance setting of Repullo and Suarez (2004).
23 In this example the two last call options are always ‘in the money’.
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(i = 2, 3) is observed. This additional equity dilutes the participation of the entrepre-

neur to a fraction α
1+φi

of the project’s outcome. The specific values of these stakes

and shares are characterized as follows.

Corollary 7 (Case 2). Assume that w∗ ≤ x1. A U-shaped financing rule can be

implemented by giving the investor an initial equity stake (1− α) ∈ [0, 1) such that

α =
A

(1 +m)(1− σ)
,

and by issuing new shares to her according to the following scheme:

(i) If xi = x2, the quantity of these additional shares is:

φ2 =
α− U +B

U −B .

(ii) If xi = x3, the quantity of these additional shares is:

φ3 =
k(1 + σ) + σ − 1

1− σ .

Proof. See the Appendix.

6.2 Suboptimal financing rules

We now examine the implementation of two notable suboptimal financing schemes: the

straight debt and full-franchise contracts.

6.2.1 Debt contract

The pure debt contract is a particularly interesting scheme since it represents the

sharing rule applied in traditional sources of financing such as a bank loan or a bond

issue. In contrast to the framework adopted here, these conventional financial contracts

generally involve a single moral hazard environment as neither the bank nor the bond-

holders contribute managerial effort to, or advise the entrepreneur on, the process of

selecting and/or managing innovative investment projects. To illustrate the extent to

which optimal hybrid securities perform better than straight debt contracts under a

double moral hazard setup, we present in what follows some numerical comparisons.

The debt scheme we will consider has a coupon D = x1 such that the investor’s ex

post payoff (before disutility of innovation) is24

x− w(x) =

{
x if x ≤ x1

x1 if x > x1

.

24We also explored a pure debt contract with a coupon D = x2, but the results indicated that it

performed much worse.
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In the context of our three-outcome model, this implies that wd1 = 0, wd2 = σ and wd3 =

k(1 + σ)− (1− σ), where superscript d refers to the debt contract. Upon substituting

this scheme into the program in Subsection 4.2, we obtain that the innovation levels

satisfying the incentive compatibility constraints are ad = Ψ
θ1
, pd = 0 and ed = Ψ

θ1
. It

can then be easily shown that the joint innovation level generated by the debt contract

ed will be larger than that of the second-best solution e∗ as long as θ1 < θ2. Note

that this condition represents a plausible situation as it means the entrepreneur is

marginally more effi cient at innovating than the investor.

The debt scheme solution delivers an expected investor’s payoff of

EBd = 1− σ, (6.14)

and an expected surplus of

Sd = 1 +
Ψ2

2θ1
. (6.15)

Note that this contract is admissible if, in addition, it satisfies a participation constraint

for each actor. The entrepreneur’s participation constraint was given earlier as (4.7)

and is equivalent to the condition

σ ≥ U − Ψ2

2θ1
. (6.16)

The investor’s participation constraint (4.8) is equivalent to the condition

σ ≤ 1. (6.17)

Therefore, if either (6.16) or (6.17) is not satisfied, there is no financing through debt

and the resulting equilibrium will involve credit rationing.

Observe also that it follows from Corollary 2 and equation (6.15) that the straight

debt scheme cannot implement the second-best solution since

S∗ > Sd.

Importantly, this result holds irrespective of the comparison between θ1 and θ2, most

notably when θ1 < θ2, in which case, as noted earlier, the debt structure induces a level

of joint innovation larger than that of the second-best contract. This occurs because,

in terms of individual innovation levels, the debt scheme has a corner solution different

from the balanced solution achieved by the optimal contract.

Thus, a pure debt scheme cannot provide an optimal solution to the double moral

hazard problem. The reason for this suboptimality is that it does not create the same

high-powered innovation incentives for the principal as for the agent. Under this scheme

the returns profile for the entrepreneur’s claims (inside common equity) is contingent
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and variable, strongly motivating him to innovate, whereas the returns on the in-

vestor’s claims (straight debt) are fixed and riskless, a significantly weaker motivation.

This stands in contrast with our optimal hybrid financial structure, which always con-

siders some combination of inside and outside equity (see the three structures studied

in Subsection 6.1) and thus gives both sides of the contract the required level of incen-

tives.25

This theoretical result is consistent with three stylized facts regarding the financing

schemes adopted in most innovative industries. First, in young, high-tech, high-growth

firms, especially when they are funded either by venture capitalists investing in the US

or more experienced ones investing elsewhere, financial structures are commonly hy-

brids consisting of debt and equity combinations rather than polar solutions of either

one alone (Kaplan et al., 2007; Sahlman, 1990; Trester, 1998). Second, the investor

frequently also provides the entrepreneur advice, management and/or active monitor-

ing (Bengtsson and Sensoy, 2011; Kaplan and Strömberg, 2004; Sapienza et al., 1996),

which as noted above, is not the case with a conventional debt scheme. Third, the sub-

optimality of straight debt established here theoretically is consistent with empirical

evidence suggesting counter-intuitively that the pecking order theory may not apply

in the case of firms with large information asymmetries such as those that are highly

innovative. What this evidence shows is that leverage in high-tech industries is smaller

than that observed in their low-tech counterparts (Chang and Song, 2014; Frank and

Goyal, 2003; Barclay et al., 1995) and that it decreases with R&D expenditures (Long

and Malitz, 1985).

To illustrate the suboptimality of the debt scheme, we conducted numerical simu-

lations of the impact of changes in the probability extremism level parameter γ and

the failure probability skew parameter m on the expected surplus.26 In the case of γ,

we assumed the same constellation of parameters as in Subsection 6.1 except that in

this case U = 0.51, yielding an expected surplus of

Sd = 1 + 0.21125γ2,

as long as (6.16) is satisfied and thus there is no credit rationing, which is guaranteed

by the condition27

γ ≥ 0.2176.

25A result reminiscent of this mix between inside and outside equity is obtained by Casamatta

(2003), but in a setting where outside investment arises endogenously.
26Simulation results for other returns distribution parameters are available from the authors upon

request.
27Since σ = 0.5, condition (6.17) is satisfied and thereby the investor’s participation constraint as

well.
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A graphical comparison of the straight debt scheme with the second-best solution is

displayed in Fig. 5, in which we observe two phenomena. First, with a debt scheme

there is credit rationing for investment projects that have a suffi ciently low probability

extremism level (the dashed segment of the green curve), or what amounts to the same

thing, a probability mass suffi ciently concentrated on moderate returns. In terms of

the three-profile project typology discussed in previous sections, this result implies

that conventional debt structures might not fund highly innovative projects if, despite

yielding a positive expected surplus, they have an ex ante profile more like a living dead.

This highlights the fact that mixed securities can be especially welfare-enhancing when

used to finance profitable projects with such characteristics. In particular, note that

in the numerical example illustrated in Fig.5, the expected surplus for the projects

subject to credit rationing is not given by the dashed segment of the green curve but

zero. Thus, the gap between S∗ and Sd is larger than 1 for these projects.

Interestingly, this credit rationing result is consistent with empirical evidence show-

ing that relative to other types of businesses, small, high-growth, highly innovative

firms seem to be more financially constrained (Chang and Song, 2014; Brown, 1997),

and that consequently, the latter make intensive use of private equity and other equity

vehicles rather than bank loans or publicly traded bonds.

The second phenomenon observable in Fig. 5 is that the expected surplus gap

between the second-best and straight debt contracts increases with γ. This means that

those projects fundable through debt (the solid segment of the green curve) whose

returns distributions most diverge from a living dead profile would generate a larger

social welfare increase if they were funded instead by a hybrid security structure.

〈Insert Fig. 5 here〉

Now turning to the simulations of changes in m, we used the same parameters values

and intervals as in Subsection 6.1 except that U = 0.53. The expected surplus from

the pure debt contract then becomes

Sd = 1 +
1

2
(0.49− 0.175m)2,

as long as there is no credit rationing, which by (6.16) is equivalent to the condition

m ≤ 1.4003.

A comparison of the reactions of the second-best and the straight debt contracts to

changes in m is shown in Fig. 6. Two results in particular are worthy of note. The first

one is that a debt scheme can involve credit rationing for projects that generate a pos-

itive expected surplus but exhibit a large probability of failure (the dashed segment of
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the green curve). This implies that from a social standpoint, mixed security structures

will show their greatest advantage over debt when financing profitable ventures with

an ex ante profile similar to a poor project. This is so because under traditional debt

schemes, such projects may not be funded at all.28

The other notable result illustrated in Fig. 6 is that the expected surplus gap

between the second-best and straight debt contracts decreases with m. Thus, among

the projects that may be financed with debt (the solid segment of the green curve),

those whose returns distribution have relatively less asymmetric tails would generate

a larger social welfare increase if they were funded using a mixed security structure

instead.

〈Insert Fig. 6 here〉

6.2.2 Full-franchise contract

The franchise contract is an especially interesting case because under single moral

hazard, this scheme induces the first-best effort when the agent is risk neutral, as is

the case in our model. The previous literature has, however, established that under

double moral hazard and MLRP, this fixed rent contract is just a second-best option

unable to implement the first-best solution (Kim and Wang, 1998). We will show that

in a double-moral hazard setup with no MLRP, not only does this result continue to

hold but the franchise contract is not even a second-best solution.

Consider the contract

w(x) = x− F f

for all x, where F f is a fixed payment by the entrepreneur to the investor. Substituting

this into the program in Section 4.2 yields the innovation levels af = Ψ
θ1
, pf = 0 and

ef = Ψ
θ1
and a fixed payment given by

F f = 1 +
Ψ2

2θ1
− U.

Thus, under asymmetric information the investor’s expected payoff is

EBf = 1 +
Ψ2

2θ1
− U, (6.18)

and the expected surplus is

Sf = EBf + U . (6.19)

Comparing this surplus with the surplus generated by the second-best solution (Corol-

lary 2) reveals that

S∗ > Sf ,

28Recall that the expected surplus for projects subject to credit rationing is zero.
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which implies that the franchise scheme is not even a second-best solution, despite

inducing a level of joint innovation that may actually be higher than that of the second-

best contract.29 As in the straight debt case, this occurs because the full-franchise

scheme leads to a corner solution in which only the entrepreneur innovates whereas

the second-best financing rule induces a balanced solution under which the investor

innovates as well. This in turn is due to the fact that the full-franchise contract only

provides high-powered incentives to the entrepreneur as a residual claimant, not to the

investor whose claim is to a fixed and riskless payment.

7 Concluding Remarks

This article characterizes the optimal contract for the financing of a highly innovative

project investment when both the investor and the entrepreneur undertake innovation

under moral hazard. The framework developed for the purpose generates results that

contribute to the previous literature in three main ways.

The first contribution arises from the framework’s treatment of innovation as an

endogenous variable that is shown to depend at the optimum on the primitive charac-

teristics of a returns distribution relating non-monotonically observed profitability to

unobserved innovation decisions. These primitives include the degree of the distribu-

tion’s skew towards success and failure and the extent to which returns and probabilities

concentrate around extreme results. This approach allows us to predict the expected

social value generated by an investment project as a function of how much its primitives

approximate ex ante one of the three typical profiles based on existing evidence from

highly innovative ventures in the real world. The proposed methodology also provides

a rich analytical setup for explaining and predicting the impact of technological shocks

(real or perceived) on levels of innovation in high-tech sectors.

The second contribution is the development of a novel explanation for the frequent

use of hybrid securities in financing high-tech firms. The explanation is founded on

two interconnected elements: (i) the non-monotone statistical relationship between

innovation and returns (i.e., the relaxation of the MLRP assumption) that potentially

characterizes highly innovative ventures, and (ii) the need to provide high-powered

incentives for both parties to the contract because of the double moral hazard. This

leads to the conclusion, first, that to incentivize innovation, what matters is to satisfy

a given relationship between the rewards to returns at the opposite extremes, and

second, that an optimal financial arrangement must always combine both outside and

inside equity.

29Like the pure debt scheme, the franchise contract dominates the second-best solution in terms of

joint innovation as long as θ1 < θ2.
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The third contribution is an alternative explanation for the credit rationing that in

practice affects highly innovative firms more severely than others. While the existing

literature has emphasized the role played by insuffi cient collateral, our explanation

relies rather on the primitives of the projects innovative firms undertake. Specifically,

we establish that ventures which are ex ante profitable but have excessively high rates

of failure or too much probability mass concentrated on moderate returns might not

be funded if conventional debt schemes are used.

In light of these three contributions, we argue that the proposed model constitutes

a novel and advantageous starting point for analyzing venture capital financing. This

is particularly so in that the formulation captures two features of this class of financial

vehicles: (i) the financing of highly innovative entrepreneurial firms with abnormally

large, but unlikely, success returns, and (ii) the venture capitalist’s provision not only

of funds but also of effort in the form of management, advice or monitoring.

As for future research, the framework set out here could be expanded in various di-

rections to more fully account for venture capital financing. A natural extension would

be to incorporate staged financing given that according to the empirical evidence,

funding conditional on milestones is typical for this type of investment. Also, a more

general functional form for joint innovation could be assumed in which investor and

entrepreneur innovation levels are not necessarily substitutes (they could, for example,

be assumed to be complementary). This might alter certain of our results, especially

those regarding the suboptimality of a straight debt scheme. A further extension would

be to conjecture that the effects of the venture capitalist’s actions on the returns distri-

bution are different from those effects due to the entrepreneur’s actions. This points to

yet another possibility for broadening the proposed approach, which is to assume that

whereas the entrepreneur’s actions can be interpreted as innovation leading to more

profitable but riskier ventures, the venture capitalist’s actions can be considered as

managerial effort and advice leading to more profitable ventures without any increases

in risk (and therefore an improvement in a first-order stochastic dominance sense).

Finally, regarding our credit rationing result, it would be interesting to analyze how

our explanation based on the primitives of projects undertaken by highly innovative

firms interacts with more conventional explanations based on the insuffi cient collateral

typically exhibited by such businesses.

8 Appendix

Proof of Proposition 1.We begin by characterizing first-best innovation levels. From

the problem posed in Section 4.1, it can easily be shown that these innovation levels



Financing of innovative projects 34

must maximize the social value of the project, and thus, they must solve the following

program30:

max
a,p∈[0,1]

3∑
i=1

π
(a,p)
i xi −

θ1a
2

2
− θ2p

2

2

subject to

a+ p ≤ 1.

The FOC’s of this problem imply that31

aFB =
Ψ

θ1
(8.1)

pFB =
Ψ

θ2
, (8.2)

where Ψ is defined by equation (3.4). Hence, the optimal joint innovation level is given

by

eFB = Ψ
θ1 + θ2

θ1θ2
.

Note that assumption (A2) guarantees that Ψ ∈ (0, θ1θ2
θ1+θ2

), and therefore that aFB and

pFB are interior solutions. This ensures in turn that joint innovation eFB is an interior

solution as well.

Next, we show that the two following optimal schemes achieve these first-best in-

novation levels using the investor’s program described by equations (4.1)-(4.5).

(i) A full-insurance contract for the entrepreneur implies that wi = w for all i.

Substituting this financing rule into his binding participation constraint (4.2) yields

w(a) = U +
θ1a

2

2
.

This is substituted into the investor’s objective function (4.1) and the FOC’s are then

derived, from which it is easily proved that the contract implements the first-best in-

novation levels described by equations (8.1) and (8.2). Thus, the optimal full-insurance

financing rule can be written as

wFB(a) =

{
U + Ψ2

2θ1
if a = Ψ

θ1

U − ε otherwise

where ε > 0 is a penalization.

(ii) A full-franchise contract for the entrepreneur implies that wi = xi−F for all i.
Substituting this financing rule into the binding entrepreneur’s participation constraint

30Kim and Wang (1998), in the context of a double moral-hazard setup, discuss the equivalence

between a program like that posed in Section 4.1 and the program solved in this proof.
31The SOC’s for a maximum are also satisfied.
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yields

FFB(a, p) =
3∑
i=1

π
(a,p)
i xi − U −

θ1a
2

2
.

This is substituted into the investor’s objective function and the FOC’s are then derived

with respect to a and p, from which it is easily proved that the contract implements the

first-best innovation levels of equations (8.1) and (8.2). Hence, the optimal franchise

financing rule is described by the following fixed payment from the entrepreneur to the

investor:

FFB(p) =

{
1 + Ψ2 2θ1+θ2

2θ1θ2
− U if p = Ψ

θ2

τ otherwise

where τ < 0 is a penalization.

Finally, note that the assumptions regarding the bounds of Ψ and U ensure that

FFB > 0 when p = Ψ
θ2
and also that the investor’s participation constraint (4.3)

is satisfied. Furthermore, it is satisfied with inequality because of the upper bound

imposed by assumption (A3) on the reservation utility. To check this, we compute the

optimal investor’s expected payoff by equation (3.2) such that

EBFB = 1 + Ψ2 θ1 + θ2

2θ1θ2
− U > 0,

which completes the proof. �

Proof of Proposition 2. According to the first-order approach (Rogerson, 1985),

the FOC of the problem that solves the optimal innovation level for the entrepreneur

can be substituted for the constraint (4.9) in the optimal sharing rule program.32 This

FOC is given by

mγw1 − γ (1 +m)w2 + γw3 − θ1a = 0. (8.3)

Moreover, it is easily verified that at the optimal contract the entrepreneur’s partici-

pation constraint is binding and thus

(a+ p)γ [mw1 − (1 +m)w2 + w3] + w2 −
θ1a

2

2
= U. (8.4)

Combining (8.3) and (8.4), we obtain

w2(a, p) = U − θ1a
2

2
− θ1ap. (8.5)

Then, substituting (8.5) into (8.3),

w3(a, p, w1) =
γ (1 +m)

(
U − θ1a2

2 − θ1ap
)
−mγw1 + θ1a

γ
. (8.6)

32The first-order approach can be applied given the concavity of πi with respect to a and p.
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Applying now the first-order approach to the investor’s innovation problem, from the

first order condition of (4.10) we get

mγ (x1 − w1)− γ (1 +m) (x2 − w2) + γ (x3 − w3)− θ2p = 0. (8.7)

Upon substituting (8.3) into (8.7) and recalling the definition of Ψ given by equation

(3.4), we obtain

p(a) =
Ψ− θ1a

θ2
. (8.8)

Substituting (8.8) into (8.5), we obtain

w2(a) = U +
θ1(2θ1 − θ2)a2

2θ2
− θ1Ψa

θ2
, (8.9)

Similarly, substituting (8.8) into (8.6) yields

w3(a,w1) =
θ1a

γ
−mw1 + (1 +m)

(
U +

θ1(2θ1 − θ2)a2

2θ2
− θ1Ψa

θ2

)
. (8.10)

Upon plugging (8.8), (8.9) and (8.10) into the investor’s objective function, we get the

program

max
a∈(0,1]

− 1

2θ2

(
θ2

1a
2 + θ1θ2a

2 − 2θ2Ψa−Ψ2 − 2θ2 + 2Uθ2

)
.

The FOC with respect to a yields

a∗ =
Ψ

θ1

θ2

(θ1 + θ2)
.

Using this result in (8.8), (8.9), and (8.10), we finally obtain

p∗ =
Ψ

θ2

θ1

(θ1 + θ2)
,

e∗ =
Ψ

θ1θ2

θ2
1 + θ2

2

(θ1 + θ2)
,

w∗2 = U −Ψ2 2θ2
1 + θ2

2

2θ1(θ1 + θ2)2
,

and

w∗3 = A−mw∗1, (8.11)

where

A ≡ Ψ
θ2

γ(θ1 + θ2)
+ (1 +m)

(
U −Ψ2 2θ2

1 + θ2
2

2θ1(θ1 + θ2)2

)
.

We can now easily verify that given assumption (A3), both sharing w∗2 and term A are

positive. Applying the limited liability constraints for w∗1 and w
∗
3 to equation (8.11)

implies that

w∗1 ∈
[
0,
A

m

]
,
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and

w∗3 ∈ [0, A] .

Finally, we confirm that the investor’s participation constraint (4.8) is satisfied. This is

done by computing the optimal investor’s expected payoff according to equation (3.2)

such that

EB∗ = 1 + Ψ2 θ
2
1 + θ2

2 + θ1θ2

2θ1θ2(θ1 + θ2)
− U > 0,

where the inequality holds because of the upper bound imposed by assumption (A3)

over U . �

Proof of Corollary 2. (i) From propositions 1 and 2 it is easily seen that

a∗ = aFB
θ2

θ1 + θ2
< aFB,

p∗ = pFB
θ1

θ1 + θ2
< pFB,

since aFB,pFB > 0 (because assumption (A2) guarantees that Ψ > 0) and θ1, θ2 > 0.

Hence, it follows directly that e∗ < eFB.

(ii) Substituting the optimal contract (a, p, {wi}3i=1) under symmetric information

(Proposition 1) and asymmetric information (Proposition 2) into equation (3.2) yields

the respective values of EBFB and EB∗ given in the corollary. Applying some basic

algebraic manipulations, it can be shown that the inequality in favour of EBFB holds

because Ψ > 0 and θ1, θ2 > 0 by assumption.

(iii) Substituting the optimal innovation pair (a, p) under symmetric information

(Proposition 1) and asymmetric information (Proposition 2) into equation (3.3) yields

the respective values of surpluses SFB and S∗ shown in the corollary. The inequality

in favour of SFB is a direct consequence of part (ii) of this corollary. �

Proof of Corollary 3. It can be easily shown that

(i)

∂aFB

∂θ1
= −Ψ

θ2
1

< 0,

∂pFB

∂θ2
= −Ψ

θ2
2

< 0.

(ii)

∂eFB

∂θi
= −Ψ

θ2
i

< 0,

∂SFB

∂θi
= −1

2

Ψ2

θ2
i

< 0,
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for i = 1, 2.

(iii)

∂a∗

∂θ1
= −Ψ

θ2
1

θ2

(θ1 + θ2)2 (2θ1 + θ2) < 0,

∂p∗

∂θ2
= −Ψ

θ2
2

θ1

(θ1 + θ2)2 (θ1 + 2θ2) < 0,

∂a∗

∂θ2
=

∂p∗

∂θ1
=

Ψ

(θ1 + θ2)2 > 0.

(iv) From (iii), in the case of the entrepreneur’s cost parameter we have

∂e∗

∂θ1
= − Ψ

θ2
1 (θ1 + θ2)2

(
−θ2

1 + 2θ1θ2 + θ2
2

)
< 0

if

−∂a
∗

∂θ1
>
∂p∗

∂θ1
.

Given the symmetry of the solutions, a similar result can be shown for the investor’s

cost parameter θ2.

(v) Since by assumption, θ1, θ2 > 0 and Ψ > 0, we have

∂S∗

∂θi
= −1

2

Ψ2

θ2
i

θj

(θi + θj)
2 (2θi + θj) < 0

for i, j = 1, 2, i 6= j. �

Proof of Corollary 4. Applying the chain rule to propositions 1 and 2 and Corollary

2 reveals that the sign of the effect of a marginal change in a given returns distribution

parameter on optimal innovation and surplus levels is the same as the sign of the partial

derivative of Ψ with respect to that parameter.33 Thus, we may confine our analysis

to this class of derivatives. The following results directly follow:

(i)
∂Ψ

∂γ
=

Ψ

γ
> 0,

which is true by assumption (A2) and since γ > 0.

(ii)
∂Ψ

∂k
= γ(1 + σ) > 0,

since γ, σ > 0.

(iii)
∂Ψ

∂m
= −γσ < 0.

(iv)

∂Ψ

∂σ
= γ(k −m)

{
≥ 0 if k ≥ m
< 0 if k < m

.

33 In the case of the surplus level this is true since assumption (A2) implies that Ψ > 0.
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�

Proof of Corollary 5. From propositions 1 and 2 it is easily seen that the gap between

first-best and second-best innovation for both the entrepreneur and the investor is
Ψ

θ1+θ2
. The corresponding gap for the expected surplus is 1

2
Ψ2

θ1+θ2
. Thus, the same results

in terms of comparative statics for a, p, e and S proved in Corollary 4 can immediately

be extended to these gaps. Also, simple inspection reveals that they are decreasing in

the two innovation cost parameters. �

Proof of Corollary 6. By equations (6.11) and (6.12), the investor’s ex post payoff

under the U-shaped scheme is represented by the following structure:34

xi − w∗i =


1− σ − A

1+m if i = 1

1− U +B if i = 2

k(1 + σ)− A
1+m if i = 3

. (8.12)

We must then show that the proposed mixed security scheme yields the same payoff

structure (8.12) for each state of nature.

(i) When i = 1, the investor’s payoff is given by

x1 −max {(1 + δ1)x1, 0} , (8.13)

where the first term is the payoff from the full equity stake and the second term is the

payoff from a short position in a zero-strike-price call option over a stake 1 + δ1 in the

equity. Since δ1 > 0 and x1 > 0, payoff (8.13) is

−δ1x1,

which, given the formula for δ1 and since x1 = 1−σ (see Assumption 1 in Section 3.1),
becomes

1− σ − A

1 +m
= x1 − w∗ < 0,

where the inequality holds because by assumption in Case 1, x1 < w∗. Since this payoff

is negative, the investor must then infuse additional funds of an amount given by

−
(

1− σ − A

1 +m

)
=

(
A

(1 +m)(1− σ)
− 1

)
(1− σ)

= δ1x1.

(ii) When i = 2, adopting the same line of reasoning as in (i) and since δ2 > −1 and

x2 = 1, it follows that the investor’s payoff is given by

x2 −max {(1 + δ2)x2, 0} = 1− U +B

= x2 − w∗2.
34This, of course, is before the innovation disutility and initial investment.
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(iii)When i = 3, since δ3 > −1 and x3 = k(1 +σ), it follows that the investor’s payoff

is given by

x3 −max {(1 + δ3)x3, 0} = k(1 + σ)− A

1 +m
= x3 − w∗,

which completes the proof. �

Proof of Corollary 7. As in the proof of Corollary 6, we must demonstrate that the

proposed hybrid financing scheme yields an investor’s ex post payoff structure identical

to that described by (8.12).

(i) When i = 1, the investor’s payoff is solely characterized by her equity stake

(1− α)x1.

Given the formula for α and since x1 = 1− σ (Assumption 1), this becomes

1− σ − A

1 +m
= x1 − w∗ ≥ 0,

where the inequality holds because by assumption in Case 2, x1 ≥ w∗.
(ii) When i = 2, the investor’s payoff is given by(

1− α+ φ2

1 + φ2

)
x2,

where the term in brackets represents the investor’s total equity stake after an amount

φ2 of new shares are issued in her favour.
35 Given the formulae for α and φ2, and since

x2 = 1 (Assumption 1), the investor’s payoff is

1− U +B = x2 − w∗2.

(iii) When i = 3, by the same logic used for i = 2 the investor’s payoff is described by(
1− α+ φ3

1 + φ3

)
x3 = k(1 + σ)− A

1 +m

= x3 − w∗,

where the first equality holds given the formulae for α and φ3 and that from Assump-

tion 1, x3 = k(1 + σ). �

35Recall that the amount of initial shares is normalized to 1.
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Figure 2. Convertible preferred equity with d∗ = 0.59886 and β∗ = 0.67445 assuming
θ1 = θ2 = 1, σ = 0.5, k = 1.6, m = 1.5, γ = 0.35 and U = 0.15.
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Figure 3. Preferred equity with dividend d = x1, and a set of two warrants with strike
price-equity stake pairs (d1,β1) and (d2,β2) assuming θ1 = θ2 = 1, σ = 0.5, k = 1.6,
m = 1.5, U = 0.15 and γ = 0.35. The investor’s final payoff (black lines) is the result of
summing the payoffs on the preferred equity (blue line) and the warrants (red lines).
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Figure 4. Initial full outside equity plus a set of call options with zero strike prices and
equity stakes δi assuming θ1 = θ2 = 1, σ = 0.5, k = 1.6, m = 1.5, U = 0.6 and γ = 0.35.
The investor’s final payoff (black lines) is the result of subtracting the payoff on her short
position in call options (red lines) from the payoff on the full equity claim (blue line).
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Figure 5. Expected surplus S as a function of γ for the second-best financing rule (red
line) and for a pure debt contract under asymmetric information (green line). The dashed
line indicates values of γ for which there is credit rationing under the debt scheme.
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Figure 6. Expected surplus S as a function of m for the second-best financing rule (red
line), and pure debt contract under asymmetric information (green line). The dashed line
indicates values of m for which there is credit rationing under the debt scheme.
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