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Abstract	

We report systematic, out-of-sample evidence on the benefits to an already well-
diversified investor that may derive from further diversification into various hedge fund 
strategies.  We investigate dynamic strategic asset  allocation  decisions that take into 
account investors’ preferences as well as return predictability. Our results suggest that not 
all hedge fund strategies benefit a long-term investor who is already well diversified 
across stocks, government and corporate bonds, and REITs. Only strategies whose payoffs 
are highly nonlinear (e.g., fixed income relative value and convertible arbitrage), and 
therefore not easily replicable, constitute viable options. Most of the realized economic 
value fails to result from a mean-variance type of improvement but comes instead from an 
improvement in realized higher-moment properties of optimal portfolios. Medium to 
highly risk-averse investors benefit the most from this alternative asset class. 

Keywords: Strategic asset allocation, hedge fund strategies, predictive regressions, out-of-
sample performance, certainty equivalent return. 
JEL	classification: G11, G17, G12, C53. 

1 Introduction	

A number of leading scholars have recently voiced the view that hedge funds do not—and could 

not—represent a separate, financially relevant asset class on their own.1 Former hedge fund 

* The authors are solely responsible for any errors or omissions. The Securities and Exchange
Commission, as a matter of policy, disclaims responsibility for any private publication or statement by
any of its employees. The views expressed herein are those of the authors and do not necessarily reflect
the views of the Commission or the authors’ colleagues on the staff of the Commission. We thank session
participants at the EFA 2018 conference and in particular Bakhteat Talukdar (a discussant), as well as
participants of the Research Incubator organized by the SEC’s Office of Asset Management.
1 For instance, John Cochrane has been quoted by Lim (2013) to have stated: “Hedge funds are not a new
asset class. They trade in exactly the same securities you already own.”
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manager Simon Lack (2012) has pointedly written that "[i]f all the money that’s ever been 

invested in hedge funds had been put in Treasury bills instead, the results would have been 

twice as good" (p. 1). The academic literature reflects this chasm. Ackermann, McEnally and 

Ravenscraft (1999), Brown, Goetzmann and Ibbotson (1999), and Liang (1999) showed that in 

the aggregate, hedge funds (henceforth, HFs) realize positive risk-adjusted performance, which 

is a condition to generate economic value in a mean-variance framework; however, Griffin and 

Xu (2009) find little evidence that HFs, on average, deliver abnormal performance. At the 

individual fund level, Chen and Liang (2007) show that HFs time the equity market and 

Kosowski, Naik and Teo (2007) show that abnormally high performance of top HFs cannot be 

explained by luck, even though Yet, Fung, Hsieh, Naik and Ramadorai (2008) find that only a 

quarter of all funds of HFs produce significantly positive alphas and Dichev and Yu (2011) 

report that the HF returns are not much higher than the risk-free rate once investor capital 

flows into and out of funds are taken into account. 

In spite of the raging debate, investors kept pouring wealth into the HF industry with renewed 

vigor after the 2007-2009 Global Financial Crisis, and the assets under management by the 

overall industry are predicted to exceed USD3.3 trillion during 2018 (Hedge Fund Research, 

2018).2 Are investors just after a mirage? Are they just after the record performances allegedly 

achieved by a few lonely but famed HFs during the 1980s and 1990s, when the industry was 

nascent and many of the very HF “stars” were still small and riding green pastures, free of 

strategy over-crowding? To try and tackle these questions, our paper presents comprehensive, 

out-of-sample evidence on the potential benefits accrued to investors who diversify their 

portfolios of bonds, stocks, and publicly traded real estate to include HF strategies.  

HFs are alternative investment vehicles that are subject to limited regulation and thus can take 

advantage of sophisticated strategies that rely on leverage, short-selling, and derivatives (see, 

e.g., Agarwal, Mullally and Naik, 2015, and Getmansky, Lee and Lo, 2015, for an introduction 

and references to seminal papers). Major investors in HFs include foundations, public and 

                                                        
2 In 2017 alone, the hedge fund industry’s AUM has increased by $10 billion and by the end of 2017 the 
total assets of hedge funds exceeded $3.2 trillion (Hedge Fund Research, 2018). For comparison, hedge 
funds assets were less than $40 billion in 1990 (see Agarwal, Mullally and Naik, 2015). 
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private pension funds, university endowments, and funds of HFs, but the ability of relatively 

small investors to expand their asset menus to include HF strategies has recently been 

facilitated by the advent of investable HF indices. Therefore whether or not HFs do create 

economic value (at least) in stylized portfolio choice problems and under fairly realistic 

assumptions seems to have become a pressing research question of general interest. 

Although HFs tout their sophisticated strategies and promise to deliver superior returns that 

are largely immune to adverse developments in the financial markets, it remains important to 

provide systematic, consumer-optimization-based evidence on whether investors can actually 

reap risk-adjusted benefits from diversifying into this alternative asset class. In fact, a literature 

exists that has investigated the null hypothesis that HFs could not add significant (often risk-

adjusted) economic value. In many respects, the seminal paper is Ackermann et al. (1999) 

which assessed the portfolio value of HFs using Elton, Gruber and Rentzler's (1987) mean-

variance methodology for estimating the contribution of an alternative investment portfolio to 

an existing portfolio. They reported that the correlations between HF returns and eight 

international stock and bond indices were sufficiently low, and the Sharpe ratio of HF was 

sufficiently high to augment the overall Sharpe ratio. Similarly, Agarwal and Naik (2000) found 

that a portfolio comprising of passive asset classes and investing in mainly nondirectional HF 

strategies provided better ex-ante risk-expected-return tradeoff than just investing passively in 

a broad range of asset classes comprising of equities, bonds, currencies, and commodities. 

These conclusions were discussed by a number of other papers set up in a Markowitz’s static 

mean-variance framework, wherein HFs are usually given high weights at the expense of bonds; 

among these papers are Amenc, El Bied and Martellini (2003), Terhaar, Staub and Singer 

(2003), and recently Mladina (2015). However, there are severe doubts as to whether a 

standard mean-variance framework and the Sharpe ratio as a leading performance index to 

rank funds may be suitable to HF strategies. Although inclusion of HFs leads to mean–variance 

improvement, Amin and Kat (2003a) have shown that including them in a given (not 

optimized) portfolio may frequently lead to lower skewness and higher kurtosis, which are 

then impossible to gauge in a two-moment set up. Cremers, Kritzman and Page (2005) have 
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rejected the validity of mean-variance analysis for HFs due to the strong and statistically 

significant non-normalities of HFs and experimented instead with the maximization of the log 

utility of wealth (which turns out to give rise to maximum growth portfolio).3 Recognizing the 

significant tail risk that HFs expose to, Agarwal and Naik (2004) have proposed to assess the 

economic value of HFs in a mean-conditional Value at-Risk (M-CVaR) framework. 

In this paper, we also take steps from a need to go past the risk-return characterization of HFs, 

and we contribute to the literature relative to each of these studies along two or more of the 

following dimensions: (i) we perform a dynamic, long-horizon portfolio optimization that 

admits cash outflows (in the stylized form of consumption streams) under constant relative 

risk aversion preferences that do not only integrate mean and variance in expected utility 

optimization, but focus instead on the entire predictive density of future outcomes, à la 

Campbell, Chan and Viceira (2003), (ii) we measure the welfare benefits of HFs as an asset class 

relying on realized utility differential measures of risk-adjusted performance, (iii) we use a 

broad set of benchmark portfolios, and (iv) we conduct an out-of-sample (OOS) analysis. 

Importantly, because we embrace a dynamic portfolio approach which estimates hedging 

demands and features long-horizon investors, in this paper we take into account the existence 

(if any) of linear predictability in the returns of the assets in the menu of choice. In this, we 

follow Bali, Brown and Caglayan (2012, 2014) and Wegener, von Nitzsch and Cengiz (2010) 

who have stressed that while HFs are not market-neutral, they are exposed to systematic, 

macroeconomic-type risks, such as the default premium and inflation shocks that predict 

performance. In fact, as emphasized by Amenc, El Bied and Martellini (2003), Avramov, Barras 

and Kosowski (2013), and Avramov, Kosowski, Naik and Teo (2011), HF returns are exposed to 

a large number of rewarded risk factors and, as such, we should expect them to be predictable 

because, as argued by Ferson and Harvey (1991) most of the predictability in financial returns 

can be attributed to predictable shifts in risks and the market wide reward for risks.4 For 

                                                        
3 Since the seminal work by Agarwal and Naik (2004), it is well understood that HFs may exhibit non-
normal payoffs for reasons such as their use of options, or of option-like dynamic strategies. The payoffs 
on a large number of equity-oriented hedge strategies resemble those from writing put options. 
4 Amenc et al. (2003) find evidence of predictability in HF index returns using the (lagged) yield on 3-
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instance, HFs rely heavily on leverage, which might be highly sensitive to business cycle 

conditions. To this purpose, we use simple but popular vector autoregressive (VAR) models, as 

in Campbell et al. (2003). The investor maximizes expected power utility defined over a 

monthly consumption stream over a long (in principle, infinite) investment horizon. It is 

important to produce utility-based evidence as even a superior risk-return trade-off of a HF 

strategy in a static perspective may not improve an investor’s risk-adjusted expected 

performance in the light of the remaining assets in the menu of choice (Amin and Kat, 2003a).5 

With this goal in mind, we conduct a wide range of recursive OOS experiments and assess the 

realized performance of portfolios using two metrics, the certainty equivalent return (CER) and 

the Sharpe ratio. The CER, defined as the riskless return that an investor is willing to accept in 

order to forego a risky portfolio/strategy/asset menu, is the most appropriate measure for 

ranking alternative models because it is a function not only of the underlying return generating 

process but also of the investor’s preferences. We also report the Sharpe ratio for completeness 

but note that it may lead to inaccurate rankings due to (spurious) serial correlation in HF 

returns, which can be attributed to return smoothing and the presence of illiquid securities in 

HF portfolios (see Getmansky, Lo and Makarov, 2004; Khandani and Lo, 2011). 

Our analysis is performed in two steps. In the first step, we compute the optimal portfolio-

consumption rules for an investor who diversifies across stocks, government bonds, corporate 

bonds, and REITs; we refer to this setup as the baseline	asset	menu. For each of three values of 

the relative risk-aversion coefficient (2, 5, and 10), we entertain a total of 64 VAR models, which 

correspond to all possible combinations that can be built assuming either one or two 

autoregressive lags, two different sample selection methods (i.e., rolling vs. expanding 

windows), and using up to four predictors (i.e., the default and term structure spreads, the 3-

month short rate, and the dividend yield) which are widely used in the literature on return 

                                                                                                                                                                                   

month T-bills, the dividend yield, the default spread, the term spread, the US and world equity factors, 
and changes in a volume-weighted basket of currencies vs. the US dollar. Avramov et al. (2013) examine 
whether conditional strategies based on simple trading rules can successfully exploit predictability from 
the default spread, the dividend yield, the VIX index, and the net aggregate flows into the HF industry. 
5 Similarly, Bollen (2013) has suggested that while market-neutral (i.e., zero-R2) hedge funds are 
characterized by high Sharpe ratios, they likely expose the investors to substantial downside risk. 
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predictability. Macroeconomic variables and uncertainty proxies such as these were recently 

shown to have explanatory power for HF returns (see Avramov et al., 2011; Bali et al., 2014), 

which is why we use these same predictors (in addition to HF strategy-specific predictors, 

following Fung and Hsieh, 2004) in our VAR models in the second step of the analysis. 

The model yielding the highest CER within the baseline asset menu is expanded in a second 

step to one (out of ten) HF strategy at a time using Hedge Fund Research style indices; we refer 

to this environment as the extended	asset	menu. In each case, we also re-optimize the structure 

of the models to include HF strategy-specific predictors. Using the resulting realized OOS CER 

estimates, we evaluate whether extending the asset menu to include HF strategies is desirable 

to long-term, risk-averse investors who are already well diversified across a broad spectrum of 

classical asset classes. This approach also allows us to identify which hedge strategy, if any, 

provides the highest realized utility gains relative to the optimal baseline portfolio. 

The key results of our analysis can be summarized as follows. In both the baseline and extended 

asset menus, the optimal portfolio weights are highly levered and unstable across time, 

particularly during the global financial crisis. We present evidence that the inclusion of HF 

strategies leads to a further increase in leverage obtained from shorting 1-month T-bills and 

that implied hedging demands for HF strategies tend to be negative because their returns show 

a high first-order serial correlation while they have positive coefficients on past lags of returns. 

As a result, long positions in HFs cannot be used to hedge intertemporal stochastic variations in 

investment opportunities. If investor were able to detect top performing models for the 

prediction of risk premia on the different asset classes, most HF strategies and, as a result, also 

the composite HFR index do outperform a classical asset menu on a risk-adjusted basis, even 

taking the resulting sample uncertainty into account. The strategies, whose payoffs are highly 

nonlinear and therefore not easily replicable in the baseline asset space, yield the highest utility 

gains. In particular, in our data, relative value strategies are the best viable option to be 

considered, while a few other strategies result in utility losses (significantly, funds of funds). 

Most of the OOS economic value fails to result from a mean-variance order improvement: in 

fact, when combined with classical assets, most (all) HF strategies yield realized mean returns 
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(Sharpe ratios) that are inferior to the benchmark portfolio. For instance, for an investor with a 

constant relative risk aversion coefficient of 5, while classical assets only lead to a mean return 

of 3.8% per month and a monthly Sharpe ratio of approximately 0.17, when the HFR composite 

index is used to expand the asset menu, the realized annual mean return declines to 0.8% and 

the Sharpe ratio is just positive. However, HF strategies grossly improve the higher-moment 

properties of the optimal portfolio: skewness increases from -0.87 to +0.80 and kurtosis stays 

essentially constant at just below 3. As a result, medium to highly risk-averse investors are 

found to benefit the most from diversifying into this alternative asset class. 

However, under the more realistic assumption that an investor could not know in advance what 

the best performing model (in terms of realized CER) would have to be ex-post, so that we pick 

at random a median model, an investor would have not fared so well unless she had known—

again, unrealistically—which specific hedge strategy to pick. Indeed, betting on the composite 

HFR index or on a fund-of-funds strategy leads to median realized CERs that are negative and 

therefore dominated by the simplest of the portfolio strategies: 100% in cash at all times. While 

the realized CERs of the median predictability model are promising for a few strategies because 

it is positive and exceeds the performance of the median model applied to a classical asset 

menu, other strategies lead to a non-positive CER. Depriving investors from the possibility to 

fine tune the predictability model hurts in particular the strategies that trade equities. 

Our paper draws primarily on three strands of the literature. The first strand attempts to 

explain HF returns using style analysis, multifactor, and nonlinear models (see, e.g., Fung and 

Hsieh, 2002a, 2004; Hamza, Kooli and Roberge, 2006; Bali et al., 2012, 2014). A second strand 

of literature focuses on the performance evaluation and optimal portfolio decisions involving 

hedge strategies (see, e.g., Agarwal and Naik, 2004, Mladina, 2015, Panopoulou and Vrontos, 

2015). Finally, there is extensive research on the underlying biases in the data on HF returns 

and the perils these would pose to a meaningful assessment of the risk-adjusted benefits (see, 

e.g. Agarwal, Fos and Jiang, 2013, Aiken, Clifford and Ellis, 2013). Our specific contribution is 

that we pursue a dynamic, optimizing consumption-portfolio approach that recognizes the 

existence of predictability in HF returns as well as in all other asset classes typically available to 



8 

an investor. In doing so, we echo the recommendation by Amin and Kat (2003a) to distinguish 

between an analysis of "(…) whether in terms of risk and return hedge funds offer investors 

value for money.” and an integrated portfolio view as “It is important to note from the outset, 

however, that strictly speaking this is a different question than whether hedge funds should be 

included in an investment portfolio. The fact that an investment offers a superior risk-return 

profile does not automatically mean investors should buy into it as it may not fit their 

preferences and/or fit in with other available alternatives.” (p. 253).6 

Hoevenaars, Molenaar, Schotman and Steenkamp (2008) have adapted Campbell et al.’s (2003) 

model to a long-term asset-liability investor who is diversified across several asset classes 

including HFs. Alternative assets are found to have a substantial impact on the portfolio rules. 

We extend their analysis in several ways. First, while Hoevenaars et al. model HF returns solely 

with the HFRI Fund of Funds Conservative Index, we use a wider spectrum spanning ten HF 

strategies. Second, we employ additional predictors specific to HF returns, such as the CBOE 

S&P 500 BuyWrite Index, in order to better capture the time variation in HFs returns. Third, we 

perform an OOS recursive back-test. Finally, we employ a utility-based metric (CER) to compare 

the benefits of diversifying into the HF strategies. 

There is also one small literature that has investigated the effects of the (sizeable, between 3 

and 4% on average, see Ibbotson, Chen, and Zhu, 2011; Jurek and Stafford, 2015) fees charged 

by HFs on typical inferences on their value to portfolio diversification. In fact, in our design, we 

have used HF returns net-of-fees and transaction costs along with returns on other, more 

classical asset classes that are treated in more heterogeneous ways: for instance, stock and 

bond returns are gross-of-fees, while REIT returns are net of management fees and costs 

internalized by the trusts. On the one hand, this does not appear to be a first-order concern just 

because stocks and bonds are now tradeable with cheap (in the limit, zero-fees) exchange 

traded funds (ETFs); while ETFs also exist in the case of REITs, most management costs and 

                                                        
6 Amin and Kat (2003a) find that the majority of individual HFs as well as HF indices cannot in isolation 
produce efficient payoffs, but that they are able to do so when combined in a portfolio with the S&P 500 
index, which suggests that a relatively well-developed portfolio approach to the problem is advisable. 
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fees are netted out of reported performances as these are already fund returns.7 On the other 

hand, we then may accept the key findings of our paper as a lower bound to the portfolio value 

created by HFs: if HFs may create value in spite of the way transaction costs are accounted for—

as our results seem to imply, in CER terms and subject to some caveats—and if we were to place 

all asset classes on a levelled playing field, then such value would be even higher. On the other 

hand, the literature (see, e.g., Greenwood and Scharfstein, 2013; Ibbotson et al., 2011) has 

emphasized that obtaining clean data on net-of-fees HF returns remains a chimera because 

many fees are privately negotiated and not reported, and the connection between gross and net 

returns is further complicated by the application of high-water marks. 

The next section describes the research design that allows us to exploit the predictability in 

asset returns, determine optimal consumption-portfolio rules, and measure OOS performance. 

Section 3 describes the data on the baseline assets, HF indices, and predictor variables. Section 

4 systematically selects the best-performing model from within the baseline asset menu. 

Section 5 computes optimal allocations with HF strategies and studies which strategies, if any, 

can improve the realized utility of the investor. Section 6 concludes. 

2 Research	design	

We compute the optimal portfolio-consumption rules using the approximate discrete-time 

solution of Campbell et al. (2003) and perform recursive, realized OOS evaluations while 

adjusting for small-sample bias following Engsted and Pedersen (2012). The investor is 

assumed to have a five-year investment horizon. The return generating process has either a 

VAR or Gaussian IID structure, and model estimation and optimization take place within rolling 

                                                        
7 The comparison would become more difficult if we were to ask a question different from the one we ask 
in the paper, e.g., can investors internalize the HF payoffs and replicate themselves HF-style returns 
without trading HFs? Indeed, if we further add options (that have nonlinear payoffs) in the benchmark 
model while ignoring transaction costs in options trading, we may spursiously find a low investment 
value for HFs. But we do ask a differentthe following question here: can HFs create value in otherwise	
traditional, linear investment portfolios? The theorerical analysis in Lan, Wang and Yang (2013) predicts 
that in present value terms management fees will capture all the value created by hedge funds, so that 
HF may even be expected to create value only by providing diversification benefits to various risks of 
other asset classes. This has been recently confirmed by the empirical analysis in Jennings and Payne 
(2016). 
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and expanding window schemes. This section gives details on these methodologies. 

2.1 Predictability	of	asset	returns	

2.1.1 Vector autoregressive models and bias correction 

The dynamics of investment opportunities are described by a range of reduced-form, pth-order 

VAR(p) processes. All variables, including the predictors, are modeled as endogenous. A vector 

of state variables 𝒛௧ାଵ is defined as 

𝒛௧ାଵ ≡ 
𝑟ଵ,௧ାଵ
𝒙௧ାଵ
𝒚௧ାଵ

൩, (1)  

where 𝑟ଵ,௧ାଵ is the log return on a benchmark short-term security, 𝒙௧ାଵ is an (n	‐	1) vector of log 

excess returns on the risky asset, and 𝒚௧ାଵ is an m vector of predictor variables. The stochastic 

evolution of 𝒛௧ାଵ in a VAR(1) model is given by8 

𝒛௧ାଵ ൌ 𝜱  𝜱ଵ𝒛௧  𝒗௧ାଵ,	 (2)  

where 𝜱 is the (n+m) vector of intercepts, 𝜱ଵ is the (n+m)x(n+m) coefficients matrix, and 𝒗௧ାଵ 

is a vector of Gaussian white noise processes distributed as 

𝒗௧ାଵ ൌ 𝒩ሺ𝟎, ∑𝒗∼   ..ௗ. ሻ,                ∑𝒗 ≡ 𝑉𝑎𝑟௧ሺ𝒗𝒕ା𝟏ሻ ൌ 
𝜎ଵ

ଶ 𝝈𝟏𝒙
ᇱ 𝝈𝟏𝒚

ᇱ

𝝈𝟏𝒙 𝜮𝒙𝒙 𝜮𝒙𝒚
ᇱ

𝝈𝟏𝒚 𝜮𝒙𝒚 𝜮𝒚𝒚

  (3) 

The shocks are zero mean, homoskedastic normal variables, which are contemporaneously 

correlated but IID over time. Normality is therefore induced in the unconditional distribution of 

𝒛௧, where the mean 𝝁𝒛 and the covariance matrix 𝜮𝒛𝒛 are described by 

𝝁𝒛 ൌ ሺ𝑰ሺାሻ െ 𝜱ଵሻିଵ𝜱,          𝑣𝑒𝑐ሺ∑𝒛ሻ ൌ ሺ𝑰ሺାሻమ െ 𝜱ଵ ⊗ 𝜱ଵሻିଵ𝑣𝑒𝑐ሺ𝜮௩ሻ.	 (4)  

Differently from Campbell et al. (2003), we take into account the instability of the VAR 

parameters and adjust the estimates for small-sample bias as in Engsted and Pedersen (2012). 

Using Pope’s (1990) formula, Engsted and Pedersen quantify the bias in the estimate 𝜱 ଵ of the 

slope parameters of the VAR in (2) as 

                                                        
8 All higher-order VAR can be re-written as a VAR(1) by way of a companion form representation (see 
e.g., Hamilton, 1994, p. 259). 
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𝑩𝒊𝒂𝒔் ൌ െ
𝒃
𝑇

 𝑂 ൬𝑇ି
ଷ
ଶ൰,	 (5)  

where T is the number of observations used in estimation and 

𝒃 ൌ 𝜮௩ ൫𝑰ሺାሻ െ 𝜱ଵ
ᇱ ൯

ିଵ
 𝜱ଵ

ᇱ ൫𝑰ሺାሻ െ ሺ𝜱ଵ
ᇱ ሻଶ൯

ିଵ
  𝜆

ା

ୀଵ

൫𝑰ሺାሻ െ 𝜆𝜱ଵ
ᇱ ൯

ିଵ
൩ 𝜮௭

ିଵ,	 (6)  

𝜮𝒗 and 𝜮𝒛 are defined in (3) and (4), respectively, and 𝜆 is the ith eigenvalue of 𝜱ଵ.9	

Starting from the OLS 𝜱 ଵ, the bias-correction procedure is implemented in four steps. First, as 

long as there are no unit roots in 𝜱 ଵ, we compute the bias 𝑩் by substituting 𝜱 ଵ for 𝜱ଵ in (6). 

Second, we subtract the result from the OLS estimate to arrive at the bias-corrected 𝜱෩ ଵ. Third, 

we check whether the latter contains unit roots and, if so, find the maximum value κ ∈ [0, 0.01, 

0.02, …, 0.99] that multiplies 𝑩் such that the bias-corrected 𝜱෩ ଵ lies again in the stationarity 

region (see Kilian, 1998). Finally, we calculate the bias-adjusted estimate of the intercept 𝜱 by 

imposing that the unconditional mean vector of 𝒛௧ coincides with its full-sample mean:10 

𝜱෩  ൌ ൫𝑰ሺାሻ െ 𝜱෩ ଵ൯ ∗ 𝝁ෝ𝒛.	 (7)  

2.1.2 Gaussian IID model 

To establish a benchmark against which to assess the VAR-based results, we also computed 

optimal portfolios on the basis of a Gaussian IID model in which returns evolve according to 

𝒙௧ାଵ ൌ 𝜱  𝒗௧ାଵ,               𝒗௧ାଵ ൌ 𝒩ሺ𝟎, ∑𝒗∼
..ௗ. ሻ. (8)  

This model implies no predictability and, equivalently, constant investment opportunities. 

Under this dynamics for excess returns, the investor will choose the same portfolio allocation 

regardless of the investment horizon. Bias correction has no effect in this framework as both 

the bias-corrected and the unadjusted estimates of 𝜱 coincide. 

                                                        
9 The rate of convergence of the error in (5) is equal to 𝑇ିଷ/ଶ and is comparable to that of either a 
bootstrap or Monte Carlo bias-adjustment simulation. 
10 Through a simulation study, Engsted and Pedersen (2012) find that the bias-correction procedure 
outlined above leads to an improvement upon the initial OLS estimates in terms of mean square error, 
variance and bias, and that the improvement is more significant as the samples are smaller. 
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2.2 Portfolio	selection	

2.2.1 Portfolio returns 

As in Campbell et al. (2003), the investor can allocate her savings among n securities, with the 

resulting gross portfolio returns given by 

𝑅,௧ାଵ ൌ  𝛼,௧൫𝑅,௧ାଵ െ 𝑅ଵ,௧ାଵ൯



ୀଶ

 𝑅ଵ,௧ାଵ,	 (9)  

where 𝑅୧,୲ାଵ is the gross return on the risky asset i which has been assigned a weight 𝛼,௧,	and 

𝑅ଵ,௧ାଵ is the gross return on a benchmark, short-term security.11 Campbell et al. convert (9) into 

logs using an approximation based on a first-order Taylor expansion: 

𝑟,௧ାଵ ൌ 𝑟ଵ,௧ାଵ  𝜶𝒕
ᇱ𝒙𝒕ା𝟏 

𝟏
𝟐

𝜶𝒕
ᇱሺ𝝈𝒙

𝟐 െ 𝜮𝒙𝒙𝜶𝒕 ሻ,	 (10) 

where 𝝈𝒙
𝟐 ≡ 𝑑𝑖𝑎𝑔ሺ𝜮𝒙𝒙ሻ	is the (n‐1) vector of variances of the log excess returns. 

2.2.2 Preferences and optimal portfolio-consumption choice 

In line with the portfolio choice literature (see Brandt, 2009), we assume that the investor 

maximizes time-separable, CRRA power utility preferences, here written in recursive form, 

𝑈൫𝐶௧, 𝐸௧ሺ𝑈௧ାଵ ሻ൯ ൌ ቂሺ1 െ 𝛿ሻ𝐶௧
ଵିఊ  𝛿 ቀ𝐸௧൫𝑈௧ାଵ

ଵିఊ൯ቁቃ
ଵ

ଵିఊ,	 (11) 

where 𝛿 is the discount factor and 𝛾  0 is the coefficient of relative risk aversion.  𝛾 also 

determines the investor’s consumption substitution patterns across time as the constant 

elasticity of intertemporal substitution is simply 𝜓 ൌ 𝛾ିଵ.12 

As it is well-known (see Ang, 2014) power utility makes an investor’s expected utility 

dependent on features of the entire distribution of the realized consumption/wealth process, 

                                                        
11 We express all returns in nominal terms because of a relatively low and constant realized inflation in 
our data ought to have been discounted in assets prices and it is unlikely to affect the key findings. 
12 It is well known that the Euler equation deriving from (11) for the CRRA case has been rejected in a 
large body of finance and economics research. For instance, Campbell et al. (2003) also use Epstein-Zin 
recursive preferences that separate relative risk aversion (γ) from elasticity of intertemporal 
substitution (ψ). However, it is well known that while γ mainly drives optimal portfolio allocations, ψ 
determines the optimal consumption-savings ratio. Because here we just focus on the realized portfolio 
performances, preliminary experiments on the benchmark asset menu revealed that ψ indeed exercised 
a rather modest effect on optimal recursive weights. 
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including moments of order higher than mean and variance, which resonates well with the 

great emphasis that has been placed on the (allegedly, poor) skewness, kurtosis, and left tail 

risk properties of HFs (see, e.g., Amin and Kat, 2003b; Agarwal, Ruenzi and Weigert, 2017). On 

each period t, the investor allocates her savings ሺ𝑊௧െ𝐶௧ሻ across different financial assets, thus 

facing the intertemporal capital accumulation (budget) constraint: 

𝑊௧ାଵ ൌ ሺ𝑊௧െ𝐶௧ሻ 𝑅,௧ାଵ. (12) 

Maximizing utility (11) subject to the budget constraint (12) yields the following set of Euler 

equations for each asset i as well as for the portfolio p: 

E୲ ቈ ቊδ ൬
C୲ାଵ

C୲
൰

ିఊ

ቋ R୧,୲ାଵ ൌ 1. (13) 

In a Gaussian IID framework, this first-order condition implies that the optimal portfolio rule is 

fully myopic and that the investor will consume the same percentage of wealth in each period. 

Under the VAR dynamics in (2), the portfolio weights solving the first-order condition is solved 

by Campbell et al. (2003) within an approximate analytical framework. The solution is based on 

a log-linearization around the ergodic mean of the log-consumption-wealth ratio and a second-

order Taylor expansion around the conditional expected values of ∆𝑐௧ାଵ, 𝑟,௧ାଵ, and 𝑟,௧ାଵ. This 

approach leads to an approximate linear portfolio policy that expresses the weights 𝜶𝒕 is a 

linear function of the VAR parameters: 

𝜶𝒕 ൌ 𝑨𝟎  𝑨𝟏𝒛𝒕, (14) 

𝑨𝟎 ൌ ൬
1
𝛾

൰ 𝜮௫௫
ିଵ ൬𝑯௫𝜱 

1
2

𝝈௫
𝟐  ሺ1 െ 𝛾ሻ𝝈ଵ௫൰  ൬1 െ

1
𝛾

൰ 𝜮௫௫
ିଵ ൬

െ𝜦𝟎

1 െ 𝜓
൰	 (15) 

𝑯௫ is the selection matrix which retrieves the excess returns from 𝒛𝒕, 𝑨𝟎 is an (n-1) vector, 𝑨𝟏 is 

an (n-1)x(n+m) matrix, and 𝜦𝟎 and 𝜦𝟏 are functions of the intercept and slope parameters of 

the VAR, the optimal consumption rule, and the investor’s preferences.13 The sum of the first 

terms in 𝑨𝟎 and 𝑨𝟏 reflects the myopic part of the total asset demand and is not affected by the 

values of the elasticity of intertemporal substitution. If the benchmark short-term security is 

risky (i.e., 𝝈ଵ௫ ് 𝟎), investors with 𝛾 ് 0 will modify their portfolio by ሺ1 െ 𝛾ሻ𝝈ଵ௫. The 

                                                        
13 Detailed expressions can be found in the on-line appendix to Campbell et al. (2003, p. 5). 
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remaining terms in 𝑨𝟎 and 𝑨𝟏 are the intertemporal hedging demands. This component allows 

investors to hedge against stochastic investment opportunities shifts and is a consequence of 

return predictability.14,15 

2.3 Out‐of‐sample	performance	measurement	

Comprehensive out-of-sample (OOS) performance evaluation is not possible within Campbell et 

al.’s (2003) framework because the investor is assumed to have an infinite planning horizon. In 

our approximation, which is driven by the size of our OOS period (and, in turn, data availability) 

we study a 5-year investment horizon (H) and perform recursive OOS experiments using the 

optimal weights from (14). We take the period 2004:01–2014:12 as our reference OOS period 

in which we estimate realized performances recursively. Importantly, such period includes both 

pre- and post-Great Financial Crisis data. We assume that investors may choose to either follow 

a 5-year buy-and-hold strategy (optimal when investment opportunities are constant but 

always efficient because it lowers turnover) or rebalance their portfolio on a monthly basis, 

which is optimal under time-varying investment opportunities. If rebalancing is pursued, 

investors are given the possibility to fully exploit the predictability captured by the vector 𝒛௧: 

the first investor allocates her wealth starting in 2004:01 according to the corresponding 

optimal weights and adjusts her exposure at the beginning of each of the next 60 months. The 

second investor acts in the same way as the first, although starting and ending a month later, 

etc. This is repeated until T	–	H. When the investor simply implements a buy-and-hold strategy, 

the weights computed at time t are held for H months before the optimal portfolio structure is 

re-estimated in the light of new data. 

We assess the realized OOS performance at the end of the investment horizon for each investor 

using two metrics: the CER and the Sharpe ratio. The CER is the riskless return that makes 

adopting a portfolio rule as attractive as cashing in a safe return equal to the CER. A negative 

                                                        
14 Under a Gaussian IID model, the hedging demand would be null as both 𝜦𝟎 and 𝜦𝟏 are matrices of 
zeros (since 𝜱ଵ ൌ 𝟎), and thus 𝑨𝟏 ൌ 𝟎 and (17) reduces to 𝜶𝒕 ൌ 𝑨𝟎. 
15 From the Euler equation, we derive the optimal policy 𝑐௧ െ 𝑤௧ ൌ 𝑏  𝑩ଵ

ᇱ 𝒛௧  𝒛௧
ᇱ 𝑩ଶ𝒛௧. Campbell et al. 

(2003) develop an ad-hoc iterative procedure which starts with arbitrary values 𝑩𝟏 and 𝑩𝟐, calculates 
𝑨𝟎 and 𝑨𝟏, and then inputs the latter in an equation similar to (15)-(16) to get the new values of	𝑩𝟏 and 
𝑩𝟐. This process is repeated until convergence (see the appendix to Campbell et al., 2003, p. 12). 
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CER would signal the investor’s willingness to pay to avoid a risky strategy: 

 𝛽௧

்ିு

௧ୀଵ

𝐸௧ ቈ
𝐶መ௧

ଵିఊሺ𝜶ෝ௧ሻ
1 െ 𝛾

 ൌ  𝛽௧

்ିு

௧ୀଵ

𝐸௧ ቈ
𝐶ሚ௧

ଵିఊ

1 െ 𝛾
,	 (16)

where 𝐶ሚ௧ ≡ ሺ1 െ 𝛽𝐶𝐸𝑅ு
ଵିఊሻ/ሾ1 െ ൫𝛽𝐶𝐸𝑅ு

ଵିఊ൯
ሺுି௧ାଵሻ/ఊ

ሿ is the consumption stream derived from 

a riskless strategy paying a monthly return of CERୌ, for the entire holding period H. 

For completeness, we also evaluate model performance using a more conventional H‐period 

Sharpe ratio, which is the ratio of the excess mean return to the standard deviation of the 

portfolio being evaluated: 

𝑆𝑅ு ≡
𝑟,ு െ 𝑟ଵ,ு

𝜎,ு
,	 (17)

where 𝑟,ு and 𝑟ଵ,ு are the cumulative returns (over H months) on the portfolio and on the 

benchmark, short-term security, respectively, while 𝜎,ு is the volatility of cumulative portfolio 

excess returns. We deem the CER the most appropriate realized performance measure because 

it is a function of not only the underlying return generating process but also of the investor’s 

preferences. Moreover, the Sharpe ratio may be biased by high serial correlation in HF returns 

due to illiquidity and returns smoothing (Getmansky et al., 2004; Khandani and Lo, 2011). 

The OOS recursive design proceeds as follows. In a first step, we compute the optimal portfolio-

consumption rules for an investor who has no access to HFs but is otherwise well diversified 

across stocks, long-term government bonds, corporate bonds, and real estate (i.e., the baseline 

asset menu). Assuming either one or two lags in the VAR models, using up to (i.e., also the 

realized OOS performance of lighter models that include less predictors is examined) four 

predictors among the default spread, the term structure spread, the 3-month nominal rate, and 

the dividend yield, and two different sample selection methods (rolling and expanding 

window), we estimate a total of 192 models. The first vector of portfolio weights in (14) is 

estimated using data for a 1994:01–2003:12 sample. For the next-period estimation, one 

additional set of monthly observations (referring to 2004:01) is added to the initial sample. 

This process is repeated recursively until the last available observation (2014:12) is included in 

the analysis. While under the expanding window scheme the sample size increases with each 

new estimation, in the rolling-window scheme, it is kept constant at 10 years (120 
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observations) by rolling the sample forward and discarding the oldest observations.16 

The OOS experiment is repeated considering three alternative risk aversion coefficients (γ = 2, 

5, 10). The VAR model that provides the investor with the highest CER is taken as optimal and 

assumed to be the one against which the same investor benchmarks possible modifications to 

her baseline asset menu. In a second step, we extend the best-performing model (as defined by 

the number of lags, estimation scheme, predictors included, etc.) by including one HF strategy 

at a time along with a set of predictor variables tailored to each strategy. This occurs separately 

for each of the three values of 𝛾. We thus estimate 17 VAR models for each of the ten HF 

strategies, each of the three values of the coefficient of risk aversion and each of the two types 

of recursive OOS experiments performed (i.e., rolling and expanding windows); this yields a 

total of 1020 alternative VARs entertained.17 

Finally, by comparing the CER obtained in this second stage with the CER of the initial best-

performing VAR, we are able to give a data-driven answer to our research question — that is, 

whether or not extending strategic asset allocation to include HFs is desirable to a long-term 

investor who is already well diversified across a broad spectrum of both classical and 

alternative asset classes. Additionally, our research design allows us to answer the question of 

which HF strategy yields the highest utility gains.18 

                                                        
16 The use of 10 years of data in the rolling window scheme addresses the investors’ need of protection 
against structural breaks in the underlying predictive relations (Stock and Watson, 1996). We have 
experimented with longer windows with qualitative similar results but a loss of OOS evidence as the 
recursive scheme implied that the first allocation that can be assessed is determined by how many initial 
observations are required. Shorter windows, and in particular the classical 5-year moving window are 
instead unfeasible because of the relatively large size of the estimated VAR(2) models. 
17 The vector 𝒛௧ in (2) includes the baseline assets, the HF strategy under investigation, the best-
performing predictors for the baseline menu, and up to four strategy-specific predictors, for a total n + m 
that ranges between 5 and 13.The 17 VAR models cited in the text encompass the 16 combinations of the 
four predictor variables (including the case when only the baseline asset predictors are included, 
without any specific variable for the hedge strategy) and a pure AR process without additional 
predictors (𝒚௧ାଵ=1 for all t). 
18 For comparison purposes, optimal allocation and realized performances are also reported for a 
Gaussian IID underlying return generating process (i.e., constant investment opportunities). Our CER 
spread estimates are of course model-driven, even though the combination of an extensive search over 
predictors and the addition of HF-specific predictors ought to guarantee some degree of robustness. 



17 

3 The	data	

This section summarizes the data on the baseline and extended asset menus and the 

corresponding predictors, and describes how our choice of HFR indices tries to minimize the 

effect of the biases prevalent in HFs data. Our choice of a January 1994 - December 2014 

sample is driven by the availability and characteristics of the HFs data (described below).19 

3.1 Baseline	asset	menu	

We use the 1-month T-bill rate, the CRSP value-weighted equity index (inclusive of dividends), 

the CRSP/Ibbotson 10-year US government bond index, the FTSE NAREIT Composite Index, and 

the Barclays Long U.S. Corporate Total Return Index to proxy for our five baseline asset 

classes.20 The Barclays long-term corporate bond index tracks the performance of US corporate 

bonds with maturities of 10 years or greater, and the FTSE NAREIT index is an indirect index 

built on all tax-qualified REITs.21 

Consistent with the literature, we use four predictors to model the time variation in investment 

opportunities as defined by our baseline asset menu. In line with Avramov et al. (2013) and 

Campbell et al. (2003), we employ the dividend yield, whose forecasting ability with respect to 

equity returns has been demonstrated at least since Rozeff (1984) and Campbell and Shiller 

(1988). The predictive power of the dividend yield extends also to other asset classes, including 

corporate bonds (Fama and French, 1989) and REITs (Karolyi and Sanders, 1998; Fugazza et al., 

2009). Second, following Fama (1981), we use the short-term riskless interest rate proxied by 

the 3-month Treasury constant maturity rate. Third, we rely on the term spread, which is 

calculated as the difference between the 10-year Treasury constant maturity rate and the 

corresponding 3-month rate. The predictive power of the term spread concerns not only excess 

                                                        
19 Our sample is sufficiently well-balanced as it encompasses major macroeconomic and idiosyncratic 
events that affected all asset classes under consideration (e.g., the 1997-1998 Asian crisis, the 1998 
Russian default and LTCM fall, the technology bubble, the 2008-2009 financial crisis and the subsequent 
recovery, and the 2013 taper tantrum). Optimizing portfolio choices in such a context enables us to 
evaluate how well the models perform in bull and bear markets and whether they can adjust over time. 
20 The data on monthly asset returns and predictor variables are obtained from CRSP, Datastream, 
Bloomberg, the web site of NAREIT, and the Federal Reserve Bank of St. Louis’ FRED. 
21 The use of FTSE NAREIT returns is in line with the literature on real estate predictability (see, e.g., 
Fugazza, et al. 2009), which opts for an indirect measures over direct-appraised and transactions data. 
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bond returns (Fama, 1990), but also the state of the economy at large and thus other asset 

returns (Campbell, 1987). Finally, we include the default spread computed as the yield 

differential between Moody’s seasoned Baa and Aaa corporate bond portfolio rates. Keim and 

Stambaugh (1986) find that default spreads are able to predict corporate and government 

bonds as well as stock returns, while Fugazza et al. (2009) and Ling, Naranjo and Ryngaert 

(2000) point to the predictive power of both the term spread and the default spread for to REIT 

excess returns. 

Panel A of Table 1 presents key descriptive statistics for the baseline menu asset returns and 

their predictors. The monthly (annualized) average excess log-returns in our sample are 0.53% 

(6.41%), 0.28% (3.37%), 0.39% (4.65%), and 0.61% (7.35%) for stocks, government bonds, 

corporate bonds, and REITs, respectively. Not surprisingly, higher monthly mean returns 

correspond to higher estimates of volatility: 4.50% (15.58%), 2.03% (7.04%), 2.62% (9.08%), 

and 5.68% (19.66%). REITs show the lowest unconditional monthly Sharpe ratio (0.11), 

corporate bonds the highest (0.15), with stocks and long-term Treasuries falling in between 

(0.12 and 0.14). The fact that bonds command higher Sharpe ratios than stocks and REITs is 

driven by the inclusion of the post-crisis, 2009-2014 period in our sample, with declining rates 

and FED-driven support to the bond markets. Kurtosis is well in excess of three for all returns, 

skewness is on average negative, and as a result, the Jarque-Bera test points to the rejection of 

normality for all asset classes and predictors. 

3.2 Extended	asset	menu	

Perhaps the most important issue endemic to HF data is the selection bias that stems from the 

lack of reporting standards and, consequently, from the discretionary decisions by HF managers 

as to whether to report the returns and to which databases (see, e.g., Fung et al., 2008, Akien et 

al., 2012). This leads to a limited compatibility among various hedge strategy indices, which is 

further exacerbated by the providers’ disparate choices with respect to weighting and fund 

inclusion thresholds and characteristics (e.g., Titman and Tiu, 2010). Although Agarwal et al. 

(2013) suggest that the incentives underlying the choice of whether to submit data to an index 

provider may skew an index return either upward (i.e., when returns are more likely to be 
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disclosed after a positive track record) or downward (i.e., when returns are less likely to be 

disclosed after a positive track record to preserve confidentiality or to avoid broadening the 

investor base), Aiken et al. (2012) compare reporting and non-reporting funds and conclude 

that the net selection bias is positive — i.e., it leads to an overestimation of HF returns.22 

Because the literature has generally concluded that on a net basis, these biases may tilt 

upwards the recorded HF returns (and bias downward the estimable volatility, because of the 

smoothing effects of positively serially correlated returns) in commercial data bases, we use the 

HFRI style indices distributed by Hedge Fund Research (HFR) as proxies for HF strategies. HFRI 

data are (i) net-of-fees, (ii) available starting from 1990 on a monthly basis for most of the main 

strategies and sub-strategies, (iii) compiled using data on both surviving and non-surviving 

funds, (iv) encompass both closed and open funds, and (v) impose either a minimum threshold 

of $50 million of assets under management (AUM) or a track record of more than a year. 

Importantly, no backfilling bias plagues the HFRI indices. Moreover, HFR provides, within the 

limits of the AUM thresholds imposed, a rather comprehensive coverage of the HF universe. To 

some extent (see the discussion in Tuchschmid et al. 2010), HFRI indices are investable via 

synthetic replication products and there is some evidence that such products are traded over-

the-counter. Our sample starts in in 1994 because from after that year the HFRI’s survivorship 

bias is virtually non-existent, as the track record of non-surviving funds has been retained 

starting on that year (e.g., Liang 2000). The selection bias in HFRI is less severe than with other 

sources of hedge index returns and HFR makes documented efforts (e.g., by directly contacting 

the managers and investors) to minimize the liquidation bias. 

In our empirical work, we focus on ten HF style indices that have been most frequently used in 

the literature (see, e.g., Fung and Hsieh, 2002a, Agarwal and Naik, 2004, Boyson, Stahel and 

Stulz, 2010, Panopoulou and Vrontos, 2015). Our dataset includes the two flagship indices 

                                                        
22 Other biases that can significantly distort the true representation of hedge funds returns include 
backfiling (or instant history), survivorship, liquidation, and incubation biases, see Agarwal et al. (2015) 
for a discussion and review of the literature. However, Edelman, Fung and Hsieh (2013) have recently 
issues some re-assurances on the reliability of standard data sets as they find that the performance 
measures for mega hedge fund management companies that collectively manage over 50% of the 
industry's assets that do not report to commercial databases are similar to those of funds reporting. 
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(Fund Weighted Composite Index and Fund of Funds Composite Index), all four main strategies 

(Equity Hedge, Event Driven, Global Macro and Relative Value), and four sub-strategies—Equity 

Hedge Equity Market Neutral, Event Driven Merger Arbitrage, Event Driven 

Distressed/Restructuring and Relative Value Fixed Income Convertible Arbitrage.23 

As hinted at in Section 2, we include in our analysis predictors that are tailored to each strategy 

in addition to the four predictors used for the benchmark asset menu (i.e., the dividend yield, 

the short-term bill rate, the default spread, and the term spread, which recent literature has 

shown to have forecasting power for HF excess returns as well, see Avramov et al., 2011, Bali et 

al., 2012, 2014). To model the time-varying risk premia in the excess returns on the two 

flagship HFRI indices we follow Fung and Hsieh (2004) and use the Fama-French size factor 

(SMB), the CBOE S&P 500 BuyWrite Index (henceforth BMX, consistent with the corresponding 

Bloomberg ticker), Carhart’s momentum factor, and a commodity trend-following factor.24 For 

the HFRI Macro strategy, we employ the SMB, the BMX and the commodity and currency trend-

following factors. To model the Equity Hedge, Equity Market Neutral, Event Driven, Merger 

Arbitrage and fixed income Relative Value/Arbitrage excess returns we use the SMB, BMX, 

Fama-French value factor (HML) and the momentum factor (see, e.g., Fung and Hsieh, 2002a, 

Agarwal and Naik 2004, Wegener et al. 2010), except for the replacement of the momentum 

factor with a bond trend-following factor when predicting the Event Driven strategy. 

Distressed/ Restructuring and Fixed Income Convertible Arbitrage are found to be best forecast 

by the default spread (as in Bali et al. 2014), the SMB, and by bond and short-term interest rate 

trend-following factors (e.g., Fung and Hsieh, 2002b, and Hamza et al., 2006). 

The descriptive statistics for the extended asset menu and the HF predictors are reported in 

Panel B of Table 1. Monthly average excess log-returns on the 10 HF strategies range from 

                                                        
23 Definitions and methodologies of construction of each composite index and each style category can be 
found at https://www.hedgefundresearch.com/indices. HFRI Indices are investable via synthetic 
replication products and there is some evidence that such products are traded over-the-counter, see 
Tuchschmid, Wallerstein and Zaker (2010). 
24 BuyWrite is an option strategy combining a long position on the S&P 500 index with a short position 
on the near-term call on the same index. From the put-call parity, the strategy is equivalent to writing a 
put option on the S&P500 and investing the premium at the risk-free rate. 
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0.21% (funds of funds, FoF) to 0.57% (event driven). Equity hedge strategies have the highest 

monthly standard deviations (2.58%), while equity market neutral strategies have the lowest 

(0.85%). The merger arbitrage strategy registers the highest Shapre ratio (0.40) and FoF the 

lowest (0.13). Yet, for 9 of the 10 strategies/indices under investigation, the full-sample Sharpe 

ratio exceeds the highest Sharpe ratio for traditional assets (0.15). Also in panel B, excess 

returns are highly non-normal (consistently with well-known evidence, e.g., Mitchell and 

Pulvino, 2001) and are characterized by positive excess kurtosis and negative skewness (Anson, 

Ho and Silberstein, 2007). The returns on the four trend-following factors, the SMB factor, and 

the macro HF index have positive skewness. Interestingly, the short-term rate trend-following 

factor posted triple-digit monthly returns during the financial crisis, which shows it can capture 

flight-to-quality phenomena. 

Table 2 reports pairwise linear correlations for portfolio return series under consideration. 

Excess returns are generally weakly correlated not only in the baseline asset menu but also in 

the extended menu, suggesting that the diversification into of HFs may improve the overall 

portfolio performance. However, we observe that event driven and equity hedge strategies’ 

correlation with stocks exceeds 0.75, which may attenuate the potential benefits of extending 

the baseline asset menu, at least in their case. 

4 Preliminary	results	for	the	baseline	asset	menu	

4.1 Linear	predictability	of	returns	

Table 3 presents the parameter estimates, as well as the correlation matrix of the residuals for a 

full VAR(1) model estimated on the full, 1994:01–2014:12 sample. For every asset and 

predictor, the table reports the bias-adjusted estimates, the original OLS estimates, and the 

associated t-statistics. Two remarks are in order. First, small-sample bias is particularly severe 

for the dividend yield coefficient in the VAR equation for excess stock returns, where the 

corrected coefficient (0.917) is less than half the (biased) OLS estimate (1.890). Other 

parameter estimates are similarly affected, although the differences are not always statistically 

significant. With very few exceptions, the bias-adjusted estimates tend to be smaller in absolute 
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value vs. the unadjusted ones. Second, and especially when bias adjustment is performed, the 

overall evidence of linear predictability is rather weak, as evidenced by the low R2 for most of 

the equations for excess returns in the VAR (the expected exception is the short-term rate). In 

fact, the majority of the t-statistics lie inside the rejection region for the 5% significance level. 

Notable exceptions are excess stock returns, which seem to be well predicted by past values of 

the dividend yield and the term spread, and excess long-term government and corporate bond 

returns, which are positively driven by one lag of the term spread. These results are similar to 

the results in Campbell et al. (2003) and should be assessed in light of the burgeoning literature 

pointing to the disappearance of linear predictability in the returns of stocks and bonds (e.g., 

Pesaran and Timmermann 2002, Welch and Goyal, 2008). Finally, all four predictor variables 

can be approximately described by unit root AR(1) processes, even though as a whole the 

estimated VAR(1) model is stationary. The distortions implied by the high persistence of the 

predictors are partially mitigated by the bias-correction technique. 

4.2 Strategic	asset	allocation:	total	and	hedging	demands	

Table 4 presents sample means, standard deviations, and the 90% empirical ranges for the 

monthly recursive portfolio weights computed following the recursive scheme described in 

Section 3. These weights summarize how a risk-averse investor with intermediate risk aversion 

(γ = 5) should have optimally allocated her wealth across 1-month T-bill, stocks, long-term 

government and corporate bonds, and REITs between 2004 and 2014. Since it is unfeasible to 

report the statistics for all 192 VAR models estimated for this “reference” investor, we have 

selected the ten models that are found to yield the highest CERs (computed in the next section). 

Table 4 shows that average weights are highly levered; such leverage is obtained from shorting 

1-month T-bills and government bonds, while the demand for corporate bonds is more 

heterogenous across different models, with long and massive average weights not impossible. 

The average optimal weight to be allocated to stocks and REITs is more stable and generally 

positive, especially for long-horizon investors. However, (average) optimal portfolio rules vary 

widely across model specifications. For instance, according to an expanding VAR(1) with the 

default spread, the short-term nominal rate and the dividend yield as predictors, a long-horizon 
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investor should build a portfolio which, on average, is long 53% in stocks, 215% in long-term 

government bonds and 111% in REITs, and is short 163% in T-bills and 115% in corporate 

bonds. On the other hand, when in this specification the default spread is replaced by the term 

spread, the same investor is required to offset the average long positions in stocks (63%), 

corporate bonds (163%), and REITs (35%), partially financed by a short position in long-term 

government bonds (161%) and basically shunning any investment in 1-month T-bills. In fact, 

this last model will be shown to rank first in terms of realized OOS CER and produces less 

extreme weights in REITs and 1-months T-bills than a Gaussian IID model. 

Average hedging demands (i.e., average differences between long- and short-horizon optimal 

portfolio weights that hedge portfolio performance against future changes in investment 

opportunities) are in general low for all asset classes. One aspect of our research design that 

contributes to this effect is the small-sample bias correction of the intercept and of the slope 

parameter estimates reported in Table 3. These parameters, together with the correlation 

matrix of the residuals terms, govern the relative speed of reversion to the mean by excess 

returns (see Barberis, 2000). For example, in the case of the full VAR(1) in Table 3, unreported 

results show that the hedging demand for stocks is drastically reduced after correcting for 

small-sample biases. Because the coefficient on the dividend yield in the excess stock return 

equation tends to be halved by the small-sample bias correction, a positive innovation in the 

dividend yield, which is induced by a negative innovation in stock returns (this is enforced by 

the negative sign of the correlation coefficient between residuals to the excess stock return and 

the dividend yield equations), translates into a reduced forecast of the equity return. Because 

such reduced forecast follows a negative excess return shock, this means that the long-run 

mean-reversion speed of the asset class is reduced. For the 192 VARs models entertained in our 

paper, average hedging demands are usually negative for 1-month T-bills and corporate bonds, 

and positive for government bonds and stocks. Interestingly, and consistent with Hoevenaars et 

al. (2008), in the case of REITs, the difference between total and myopic demands tends to be 

almost null, pointing to a flat term structure of risk. In the Gaussian IID models there is no 

predictability to be exploited and therefore no hedging demand is required. 
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Table 4 shows that recursive optimal weights change not only across models but also across 

time: both the reported standard deviations and 90% empirical ranges suggest that there are 

periods in which average leverage is magnified and the sign of the weights changes frequently. 

Such a pattern is in line with what has been systematically documented in studies on linear 

predictability (e.g., Brandt and Santa-Clara, 2006, and Fugazza et al., 2009, when real estate is 

included). In contrast, the Gaussian IID models produce the least volatile allocations despite the 

non-negligible implied leverage. This derives from the fact that time variation in weights 

derives in this case only from the updating of the sample estimates and not from the fact that 

the investment opportunities are time-varying. 

Figure 1 facilitates our understanding by plotting the dynamics over the OOS 2004-2014 

sample of the optimal weights (for H = 1 and 60 months) and hedging demands of the best 

performing VAR (the top row in each panel in Table 4), as well as for an IID myopic model. We 

derive three takeaways from Figure 1. First, while a somewhat erratic behavior tends to 

characterize the whole period, peaks and troughs are most visible during the 2008-2009 

financial crisis. Interestingly, the best-fitting VAR(1) detects the upcoming collapse of the real 

estate sector and suggests to the investor to massively short REIT already by September 2008. 

Second, hedging demands are rather stable except for two spikes of opposite sign 

characterizing stocks and government bonds, occurring during the crisis. Third, as one would 

expect, IID myopic demands are very stable and relatively close to zero. 

Much of our discussion so far has concerned the case of γ = 5, but the same qualitative insights 

also apply to the recursive OOS results obtained assuming either γ = 2 or γ = 10.25 The most 

notable differences concern the fact that while the sign of the average total portfolio allocations 

to the five asset classes is preserved across the three values of γ, the size is directly 

proportional to the investor’s risk tolerance (1/γ). More conservative investors (γ = 10) are 

generally less levered and tend to tilt their portfolios towards long-term government bonds 

while shunning stocks and REITs. Mildly risk-averse investors (γ	= 2) instead attach large and 

                                                        
25 These results are not tabulated here due to space considerations but are available in an Internet 
Appendix, or from the Authors upon request. 
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positive weights (usually above 100%) to these risky assets, also borrowing in the corporate 

credit market. Dispersion measures are also proportional to the investor’s risk tolerance, 

suggesting bigger spikes in the time series of portfolio weights for less risk-averse investors. 

4.3 Realized	portfolio	performance	and	optimal	allocation	

Table 5 presents the realized performance measures obtained in the recursive OOS experiment 

for an investor with intermediate risk aversion (γ = 5).26 The top panel analyzes the recursive 

rebalancing case while the bottom panel pertains to the buy-and-hold strategy. The table 

reports the annualized mean, volatility, Sharpe ratio and CER of the portfolio rules implied by 

the VARs and the Gaussian models. The last two columns report the skewness and kurtosis of 

realized portfolio returns, thereby providing a more comprehensive view of the realized 

distribution of returns. The realized CER rankings in Table 5 are used to determine the best-

performing model against which we benchmark the marginal contributions of HF strategies. 

Table 5 shows that an investor who chooses to follow a simple buy-and-hold strategy attains, on 

average, lower CERs than an investor who rebalances on a monthly basis. In fact, only the two 

Gaussian IID models yield positive CERs (2.26% for the expanding and 2.14% for the rolling 

window) when a buy-and-hold strategy is pursued, while the best-performing VAR produces a 

whapping CER of –50.70%; in the latter case, the investor would rather pay a high premium 

than be forced to use this model in a long-run SAA. This is expected: a fixed proportions buy-

and-hold strategy is indeed optimal only when investment opportunities are constant. This 

result is driven by the high negative skewness and high positive kurtosis of realized portfolio 

returns, which are fully taken into account by the investor’s power utility function. 

Whereas buy-and-hold strategies optimized on the ten best VARs result in average negative 

performances with limited volatility, monthly rebalancing enables the investor to substantially 

improve the CER, albeit at the expense of higher volatility as reflected in the wider 90% 

                                                        
26 Tabulated results for γ = 2 and γ = 10 are in the Internet Appendix. Our findings are robust across 
different levels of the relative risk-aversion. 
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bootstrapped confidence intervals.27 The top panel of Table 5 lists two VAR models that have 

positive CERs: an expanding window VAR(1) that includes the term spread, the short-term rate, 

and the dividend yield as predictors, and a rather similar VAR(1) in which the short-term rate is 

replaced by the default spread. The former model generates an annualized CER of 13.68%, 

whereas the latter produces a CER of 3.38%. These VAR models outperform the Gaussian IID 

benchmarks (estimated both under expanding and rolling window schemes), which rank third 

and fourth. Within a no-predictability framework, the investor would pay either 1.70% (rolling 

window scheme) or 0.79% (expanding) to allocate her wealth according to the rule in (14). 

These findings generally align with linear predictability OOS studies on US data (see, e.g., 

Brennan, Schwartz and Lagnado, 1997; Guidolin and Hyde, 2012). An in-depth analysis of the 

weights and implied portfolio returns from the best-performing VAR reveals that its high CER 

may stem from the stable increase in wealth and corresponding consumption flows produced 

by the optimal investment rule applied. Monthly negative returns tend to concentrate at the 

beginning of the OOS period and to be relatively small (when compared to other VARs) with a 

minimum value of –26% in May 2004. Interestingly, between July 2008 and August 2009, this 

strategy yields positive returns because it is able to profit from the collapse of the real estate 

sector by placing short bets on REITs. Overall, the leverage underlying this strategy does not 

generate too high a dispersion among returns as evident by the realized kurtosis of 2.70.28 

In light of this evidence, we study next the benefits of diversification into HFs within the 

monthly rebalancing scheme. The best-performing model against which we benchmark the 

marginal contribution of the HF strategies as potential new asset classes are given by the 

expanding VAR(1) that includes the term spread, the short-term rate, and the dividend yield as 

predictors (for γ = 2 and γ = 5), and a leaner rolling VAR(2) with the dividend yield as the only 

                                                        
27 The 95% confidence intervals are calculated by means of a block bootstrap technique with a block size 
equal to 12 monthly observations and 10,000 simulated paths. 
28 Especially in the case of γ = 2, we find that several models (among the 192 entertained) generate, at 
least on a single month, negative returns in excess of –100%, which implies total loss of the invested 
wealth and zero consumption in the following months. To guard against this scenario, we have modelled 
a stop loss at 0.01: that is, the investor can lose at most 99% of her wealth. In practical terms, the 
motivation behind this assumption can be related to Federal Reserve’s Reg T. As expected, such 
mechanism contributes to the positive skewness reported in Table 5. 
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predictor for the highly risk-averse investor (γ = 10). 

5 Main	results:	portfolio	selection	extended	to	hedge	fund	strategies		

5.1 Linear	predictability	of	hedge	fund	returns	

Table 6 exemplifies our procedure by presenting parameter estimates and the residual 

correlation matrix for the best-performing VAR model for γ = 5 as specified in Table 3 now 

extended to include, for starters, excess returns on the relative value HF strategy (RVR).29 The 

model is a VAR(1) estimated using an expanding window scheme on a sample up to December 

2014 and includes six predictors: the term spread, the short-term rate, the dividend yield, the 

S&P 500 BuyWrite index returns, HML, and momentum. Table 6 reports the bias-adjusted 

estimates, the original OLS estimates, and the associated t-statistics. Bias adjustment plays an 

important role in this extended asset space, just as it does in the baseline menu. This is 

particularly evident from the dividend yield coefficients in the equations for the risky excess 

returns: for example, in the excess stock returns equation, the biased coefficient is three times 

the bias-corrected coefficient. We expect that such a reduction in value (relative to the biased 

estimates), when combined with the negative residual correlations between unexpected stock 

returns and unexpected changes in the dividend yield, would translate into a slower rate of 

mean-reversion which, in turn, is likely to command smaller hedging demands for this asset. As 

a result, correcting for the bias makes stocks less attractive for hedging intertemporal 

stochastic changes in their own future returns. While a similar effect is generated by bias-

adjusting the dividend yield coefficient in the RVRt+1 equation, the opposite effect is obtained in 

the Corpt+1 and REITt+1 equations, where the speed of mean-reversion grows. The unadjusted 

OLS coefficients for the term spread are also heavily biased, especially in the case of 

government and corporate bond excess returns. Focusing on the RVRt+1 equation, which also 

flaunts the highest R2 among the risky assets equations, now also the lagged stategy excess 

return imply a positive and statistically significant coefficient. This finding may be explained by 

                                                        
29 This procedure is repeated for each of the ten hedge fund strategies and the three values of the relative 
risk-aversion coefficient. 
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positive serial correlation stemming from exposures of the hedge strategy to securities that are 

not actively traded or with discontinuous market prices, as documented by a literature since at 

least Getmansky et al. (2004). Interestingly, the returns on the BuyWrite strategy seem to be 

explained, at least partially, by past relative value returns. 

5.2 Strategic	asset	allocation:	total	and	hedging	demands	

We now compute monthly recursive OOS portfolio weights for the extended asset menu. 

Similarly to Section 4.2, we discuss in some details the results for an investor wit intermediate 

risk aversion (γ = 5) who allocates her wealth across 1-month T-bills, stocks, long-term 

government and corporate bonds, REITs, and a HF strategy. To individually assess the economic 

value of each of the HF strategies, we include them in the asset menu one at the time, from a 

starting pool of ten strategies.30 For each of the resulting ten portfolios, Tables 7 through 9, as 

well as additional tables in an Internet Appendix, report sample means, standard deviations, 

and the 90% realized range for monthly recursive OOS portfolio weights for the ten models that 

provide the investor with the highest CERs when the asset menu is expanded to each of the ten 

strategies, one at the time. 

Comparing Tables 7-9 with Table 4, we note that the inclusion of HF strategies in the portfolios 

prompts an overall increase in optimal leverage as compared to the allocation under the 

baseline asset menu. However, this gearing affects only 1-month T-bills and the HF strategy: 

large short weights in the former are offset by large positive weights in the latter. The other 

four risky assets are affected only to a small degree relative to the baseline portfolio in Table 4, 

even though the extended portfolios are on average not as long and in some cases even short in 

stocks and REITs. While under the baseline asset menu government bonds are shorted to 

finance long positions in corporate bonds, the opposite happens with three out of the ten HF 

                                                        
30 Tabulated results for investors with γ = 2 and γ = 10 are available from the authors upon request. 
Much of the discussion for γ = 5 applies to the cases of γ = 2 and γ = 10 with the same caveat: the average 
portfolio leverage and standard deviations turn out to be proportional to risk tolerance (1/γ). Intere-
stingly, at least in the case of γ = 5 and 10, the best models give positive weight to hedge strategies across 
the board of our OOS period, which allows us to skim over the fact that a few strategies—barring their 
outright replica (see, e.g., O’Doherty et al., 2016)—would be hard to short because HFR indices are not 
(always, reliably, see Getmansky et al., 2015) traded as shortable exchange traded notes. 
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strategies investigated, i.e., in the case of fixed income relative value (Table 9), event driven, and 

distressed restructuring strategies. Mean hedging demands for HFs are usually negative 

because their returns show high first-order positive serial correlations: in other words, this 

alternative asset class cannot be used to hedge intertemporal stochastic variations in the very 

opportunities they offer. The resulting term structure of risk is positively sloped so that short-

horizon investments in HFs may be perceived as less risky than long-horizon investments. Fund 

of funds, equity market neutral and merger arbitrage strategies are the only strategies showing 

positive, albeit modest, hedging demands. 

In some additional detail, Table 7 shows the results for an investor who is allowed to trade the 

HFRI Fund Weighted Composite Index (FWC) along with the baseline menu of assets. This is of 

course key evidence, because it may be argued that FWC represents a weighted average return 

for the whole HF industry. In the long run, the optimal weights to this alternative strategy are 

large and positive, often in excess of 200% of the total wealth. Still, such allocation is inferior to 

the short-horizon weights due to a negative intertemporal hedging demand. Positions in the 

other five assets are relatively balanced, even though the investor needs to short T-bills and 

government bonds (occasionally also stocks) to finance positions in HFs exceeding 100%. Of 

course, HFs themselves may then provide (especially when their market beta is positive, as 

often found in the empirical literature, see e.g., Patton, 2008) exposures to equity and Treasury-

bond risks, besides other types of tail risk-type and non-linear exposures, as documented by 

Agarwal, Arisoy and Naik (2018). For instance, based on the best-performing model (AR(1) 

with an expanding window), a long-horizon investor should build a portfolio which, on average, 

is long 280% in the HF strategy, 65% in REITs, 50% in corporate bonds and 59% in government 

bonds, and is short 230% in T-bills and 123% in stocks. Such an average allocation is rather 

stable over the entire OOS period with the exception of a few spikes during the financial crisis, 

see Figure 2. The negative weights of stocks most likely correspond to the net positive weights 

of the composite overall HF index, as recently argued by Ang (2014). 

When fund of HFs (FFP) is the strategy selected to be tested in addition to the baseline asset 

portfolio, Table 8 shows that a long-horizon investor should, on average, refrain from allocating 



30 

her wealth to funds of funds. Total portfolio demands for the other five assets are similar to the 

baseline case, although in this case leverage is obtained by shorting long-term government 

bonds rather than T-bills and corporate bonds. The best-performing model is still an expanding 

autoregressive model and it now requires the investor to buy corporate bonds (89%) and REITs 

(78%) by borrowing 1-month T-bills (23%), stocks (14%) and government bonds (27%). While 

the implied average leverage is low, portfolio weights change frequently during the OOS period 

(see Figure 3). The insight that funds of funds would fail to create positive economic value and 

as such should be avoided by rational, long-horizon investors echoes earlier findings by Amin 

and Kat (2003a) and Liang (2004). 

Table 9 presents results for the fixed income relative value/arbitrage strategies (RVR). This 

strategy has been selected and reported in detail because it implies very large optimal weights 

to be assigned on average to the strategy, almost entirely financed by short positions in 1-

month T-bills and to some extent corporate credit. Because a short-horizon investor ought to 

increase the weights to RVR by an additional 25% at least, this implies a negative hedging 

demand that is due to the high first-order serial correlation of RVR excess returns (0.50) which, 

combined with a positive slope coefficient in the VAR equation, translates current negative 

innovations in RVR into lower predicted returns. This effect is strong enough to dominate the 

positive hedging demands generated by the remaining six predictors. The best-performing VAR 

(which has six predictors, i.e., the term spread, the short-term rate, the dividend yield, the BMX, 

the HML and the momentum factors) is the top performer in terms of realized CER among not 

only the 17 models estimated for the RVR strategy, but also as compared with all models of all 

HFs investments. According to this rich VAR, a long-horizon investor should allocate 882% of 

her wealth to RVR, 114% to government bonds, –740% to 1-month T-bills, –9% to stocks, –

118% to corporate bonds and –29% to real estate. 

As expected, the inclusion of Global Macro HFs (MAC) reduces exposures to stocks, REITs, and 

corporate bonds at both long and short horizons, as this strategy tends to also use traditional 
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asset classes to take positions supported by macro views.31 Hedging demands are on average 

negative, indicating an increasing term structure of risk. Under the best-performing VAR, which 

includes the three baseline predictors and Fung and Hsieh’s (2004) currency trend-following 

factor, the weights change rather erratically over time, although they fluctuate within relatively 

tight ranges. For an investor wishing to add equity hedge strategies (EQH) to her portfolio, the 

equity exposure is given by the sum of the weights to this alternative asset class and stocks. 

Allocation to stocks is, on average, almost negligible and is used primarily to compensate large 

negative positions in EQH during certain periods. 

In the case of event driven strategies (EVD), the optimal investment in this alternative asset 

class are large and positive, often in excess of 100% of the total wealth, and short positions are 

frequently assumed in T-bills, stocks, corporate bonds, and REITs. In the case of merger 

arbitrage (MEA), the best-performing model is the no-predictability benchmark, which implies 

that both short- and long-horizon investors should follow the same portfolio rules. Optimizing 

investors go long in MEA, REITs and government bonds while shorting T-bills, stocks and 

corporate bonds. These allocations are the least volatile over the entire OOS period, as one 

would expect for a Gaussian IID model. 

When distressed/restructuring strategies (DSE) are added to the baseline asset menu, the best-

performing VAR is represented by an expanding AR(1) model, and the optimal portfolio weights 

call for going long in DSE, government bonds, and REITs; these positions are also financed by 

shorting T-bills, stocks, and corporate bonds. Diversifying into convertible arbitrage strategies 

(COA) results in relatively small portfolio leverage on average, although the weights as well as 

the level of leverage vary substantially over time. Relatively small average, albeit varying over 

time, leverage is also derived in the case of equity market neutral HFs (EMN). The best-

performing model in this case recommends that a long-horizon investor builds a portfolio 

which, on average, is long 48% in EMN, 9% in REITs, 73% in stocks and 106% in corporate 

bonds, and short 15% in the risk-free asset and 121% in government bonds. 

                                                        
31 Tabulated results and plots of optimal portfolio weights for Global Macro, Equity Hedge, Event Driven, 
Merger Arbitrage, Event Driven Distressed/Restructuring, fixed income Relative Value and Convertible 
Arbitrage and Equity Hedge Equity Market Neutral strategies are reported in an Internet Appendix. 
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5.3 Realized	portfolio	performances	and	the	economic	value	of	hedge	funds	

The key set of results concerns the realized OOS performance of the extended portfolios for 

each of the three levels of relative risk aversion. For each of the 10 HF strategies under analysis, 

we have analyzed a total of 18 models. These include the Gaussian IID model, the purely 

autoregressive model, and the 16 VARs which can be built for all possible combinations of the 

four new predictors tailored to each HF strategy. Through a comparison of the estimated CERs 

of these 180 models with the CER of 13.68% obtained from the best performing model applied 

to the benchmark asset menu, we are able to determine whether or not an allocation to HFs is 

attractive to a long-term investor who is already well diversified across a broad spectrum of 

classical asset classes. In the following, we do not formally test whether HF-strategies, as a 

whole, dominate traditional portfolios: this would be subject to a clear multiple, overlapping 

hypotheses testing problem best solved adopting model techniques from model confidence set 

estimation and reality check testing in econometrics. Instead, we ask a more modest question 

which, however, represents a necessary condition to the measurement of the economic value of 

HFs to investors: do HF strategies exist that can generate risk-adjusted performances in excess 

of more traditional strategies? 

When the composite, value-weighted basket of HF strategies is added to the baseline menu of 

an intermediate risk-averse investor, the best-performing VAR is represented by an expanding 

autoregressive model that provides an annualized CER of 19.89% (Table 10). This is a very 

large estimate that exceeds the effective costs of investing in hedged funds that have been 

estimated in the literature (see Ibbotson et al., 2011, for a discussion and estimates). Skewness 

and kurtosis are equal to 0.64 and 3.05, respectively, while the annualized mean return and 

volatility are 8.48% and 164.75%. Because of the monthly rebalancing, even though HFs 

returns per se are characterized by a volatility that is inferior to equity markets, the resulting 

market timing strategy yields rather risky realized OOS performance, at least in terms of 

recorded second moment. Note, moreover, that because 8.48/(164.75/(132)1/2) = 0.58, this 

realized mean performance per se is not significant in a statistical sense; in fact, the empirical 

90% confidence region for the mean includes zero. Yet, the lower bound of the 90% confidence 
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region for the CER is a hefty 18.70%. This model leads to a low Sharpe ratio (0.04 vs 0.40 under 

the benchmark) but compensates a power utility investor with a positive skewness and zero 

excess kurtosis (vs. -0.87 skewness in the absence of HFs, see Table 5). In some ways, HFs make 

a “lottery ticket component” available to positively skew the realized performance while 

modestly inflating the realized tails; yet, there is a steep cost to be paid in terms of lost Sharpe 

ratio, differently from the classical sales pitch in favor of HFs. This result is consistent with 

Amin and Kat’s (2003b), who, however, do not take predictability into account and fail to 

consider expected utility-maximizing portfolios. 

In Table 10, there is a clear pattern among the 18 models entertained with reference to this HF 

style: leaner models provide the highest welfare measures. Three models produce CERs above 

the baseline 13.68%, suggesting that the investor can profit from investing in FWC, and this is 

in spite of the implied realized variance, which remains high because of the portfolio turnover. 

Yet, the median CER across all expanding VAR remains negative, -6.94% per year: picking at 

random some predictability model to be applied to an asset menu that includes a HF index will 

not bring a positive risk-adjusted performance to investors. Because this strategy is a weighted 

basket of a number of HF strategies, we can expect to find specific strategies in this index to 

give both higher and smaller CERs vs. this best-performing model for FWC. 

The results in Table 11 suggest instead that a long-horizon investor should refrain from 

investing in funds of funds (FFP) strategies, in line with the bulk of the literature (see, e.g., Amin 

and Kat, 2003a). The highest CER (9.22%), obtained by an expanding AR(1) model, is 

approximately 450bp below the baseline threshold and characterized by an almost nil Sharpe 

ratio. The median strategy keeps delivering a negative CER (-6.23% per year). Notably, the table 

shows that adding funds-of-funds to the menu of choice stabilizes the performance (both in 

terms of realized variance and kurtosis) and induces some degree of positive skewness; 

however, presumably because of their double layer of fees, the realized mean is considerably 

penalized, to the point that realized Sharpe ratios and CERs decline vis-à-vis Table 5.32 On the 

                                                        
32 However, as γ increases, an investor will care less for the mean and more for the spread of the 
resulting distribution of realized portfolio returns (hence, wealth and consumption flows), so that that 
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contrary, and as an example of one specific type of strategy, making an investment in the RVR 

index provides substantial economic value to an investor regardless of the model selected, 

except for the no-predictability benchmark (Table 12). While the lowest-ranked VAR model 

yields a CER of 13.35%, the highest-ranked model provides a CER of 32.38% — the largest 

value among all HF strategies tested in this paper (which is why RVR is presented in detail) and 

largely exceeding the baseline asset menu. The best-performing model produces a mean annual 

return and volatility that are above the median values (15 and 35% per year), while the 

resulting Sharpe ratio (0.23) is below the median (0.37). Table 12 shows the usual mechanics 

through which a hedge strategy produces economic value: by reducing realized volatility and 

kurtosis and generating positive skewness in returns. The only difference is that RVR does that 

in a large enough magnitude to generate higher CER in net terms. In fact, the median across 

expanding VAR models in this case leads to an 18.1% CER, with 90% empirical confidence 

bounds of 15.5 and 24.4 percent per year, so that even the median lower bound outperforms 

the best investment scheme under the baseline asset menu. 

Figures 4 and 5 collect the main results in Tables 5 and 10-12 concerning the comparison of 

economic value estimates obtained with and without HF strategies, and extend our 

presentation of results to all strategies.33 Figure 4 compares the CER, mean returns, Sharpe 

ratios, skewness, and kurtosis of the top performing model for each hedge strategy, and plots 

them against the benchmark in Table 5. Figure 5 performs the same comparison with reference 

to median statistics for the expanding sample VAR models, selected because they represent the 

top performing model in Table 5. In the top portion of Figure 4 we see that—if investor were 

able to detect top-performing models for the prediction of risk premia on the different asset 

classes—most strategies and, as a result, also the composite HFR index would outperform a 

classical asset menu on a risk-adjusted basis; even taking the resulting sample uncertainty into 

                                                                                                                                                                                   

the distance between the top CERs of the baseline asset menu and those obtained including FFP 
strategies shrinks. We can speculate that for very high values of γ, FFP may stabilize performance so 
much that it generates positive economic value. 
33 Tabulated results for Global Macro, Equity Hedge, Event Driven, Merger Arbitrage, Event Driven 
Distressed/Restructuring, Relative Value Fixed Income Convertible Arbitrage and Equity Hedge Equity 
Market Neutral strategies are available in the Internet Appendix. 
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account, the only exceptions are the equity long-short, equity market neutral, and the fund-of-

funds strategies. The fixed income convertible arbitrage and relative value strategies give 

particularly strong results. Generally, strategies with highly nonlinear payoff, such as RVR, MEA, 

DSE and COA, are advantegeous. Interestingly, most of the realized economic value fails to result 

from a mean-variance order improvement: in fact, when combined with classical assets, most 

(all) HF strategies yield realized mean returns (Sharpe ratios) that are inferior to the 

benchmark portfolio. For instance, while classical assets only lead to an annualized mean 

return of 3.8% per month and a monthly Sharpe ratio of approximately 0.17, when the HFR 

composite index becomes available (and as we saw in Table 7, it will be heavily demanded), the 

realized annual mean return declines to 0.8% and the Sharpe ratio is barely positive. However, 

HF strategies grossly improve the higher-moment properties of the optimal portfolio: skewness 

increases from -0.87 to +0.80 and kurtosis stays essentially constant at just below 3. It turns out 

that a long-run investor with γ = 5 cares enough for the shape of the entire density of realized 

performances to considerably tilt her allocation towards HFs because these buy positive skew 

and hence chances of high, right-tail performances without inflating the overall thickness of the 

tails of the distribution. Mechanically, this is possible only because the resulting portfolio 

weights in Table 7 become sufficiently extreme and time-varying to increase at the same time 

the resulting portfolio variance, which explains why the Sharpe ratio declines. 

One tricky issue in this story is the difference between ex-ante moments (more generally, 

predictive density of realized consumption flows from the cumulative wealth process) and 

realized, ex-post moments from OOS backtesting. Although separate calculations confirm that a 

γ = 5 tilts her portfolio selection away from classical fixed income securities and towards hedge 

strategies in the way described to trade-off less mean, more variance, a lower Sharpe ratio, in 

exchange for higher skewness and even lower kurtosis on an ex-ante basis, this shift appears to 

occur on a more aggressive tone in terms of ex-post realized performance measure than an 

investor had budgeted for. In particular, the drastic reduction in Sharpe ratio deriving from the 

excess realized variance recorded by a dynamic portfolio that includes diversified hedge 

strategy positions seems to be also a product of VAR model specifications. In other words, an 
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investor appears to achieve the desired positive skewness, but she also pays a price in terms of 

reduced Sharpe ratio that is ex-post excessive. Additionally, the decline in kurtosis that ex-ante 

an investor would be looking for, does not seem to fully materialize, even though in Figure 4 the 

realized kurtosis of most HF strategies is inferior to the benchmark. 

Finally, Figure 4 shows that in terms of ex-post OOS CER, the two best strategies are fixed 

income relative value (RVR) and fixed convertible arbitrage (COA). They confirm the pattern 

that, especially ex-post, both strategies disappoint in the mean-variance space, as RVR leads to 

a sub-par monthly mean (approximately 2%) and both imply disappointing risk-reward ratios 

(0.06 and 0.10 on a monthly basis, respectively). Yet, they imply strong and precisely estimated 

ex-post realized skewness of almost 1, exceeding that of the composite index. By the same 

token, it is clear why funds-of-funds disappoint at least ex-post: they reduce mean returns and 

hence Sharpe ratios without bringing about much of an improvement in asymmetry.34  

In unreported plots, we have found evidence similar to Figure 4 for γ = 2 and γ = 10.35 For γ = 2, 

only three VARs out of 180 yield a positive CER when hedge strategies are made available. The 

two best-ranking models are obtained with the inclusion of RVR strategies, while the third is 

obtained with COA strategies. With a CER of 14.11%, the best-performing model is an 

expanding VAR(1) that includes the term spread, the short-term nominal rate, the dividend 

yield, and HML factor as predictors. RVR is also ex-post preferred to be included in the asset 

menu in the case of γ = 10: under a rolling window VAR(2) that bases its risk premia forecasts 

on the dividend yield, BMX returns and HML, a long-term investor would have achieved a 

realized OOS CER of 43.57%. In fact, in the case of γ = 10, RVR allows the investor to gain 

additional risk-adjusted returns, relative to the baseline asset menu, under almost all VARs 

used to capture time-varying investment opportunities. The same highly risk-averse investor 

can also improve her realized utility by investing in EVD, DSE, and COA strategies. Thus, there is 

clear evidence that the preference for highly nonlinear payoffs found in the case of γ = 5 is 

                                                        
34 In the case of MEA strategies, the best model in Figure 4 is the no-predictability benchmark. More 
generally, the best model within each strategy for γ = 5 is represented in four cases by an autoregressive 
model (FWC, FFP, EVD, DSE) and otherwise it is an expanding VAR (COA, MAC, EQH, RVR, EMN). 
35 These tables are available upon request from the authors. 
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robust across different degrees of relative risk-aversion. Because both funds-of-funds strategies 

and the HFR composite index are weighted combinations of individual strategies, 

correspondingly we find that while for a γ = 2 investor they fail to generate any economic value, 

for γ = 10 they generate large and robust improvements in risk-adjusted performance. This 

finding is coherent with Agarwal and Naik’s (2000) result that—within a portfolio comprising 

of passive asset classes and investments in nondirectional HF strategies—the relative 

importance of passive and alternative portfolios changes as one shifts down the risk-return 

trade-off towards the minimum variance portfolio as the weight of the equity class decreases, 

that of bonds and HF strategies increase; within HFs the weight of the directional strategies 

falls while that of the non-directional strategies rises. 

However, before rushing to a conclusion that for intermediate and highly risk-averse investors 

HF strategies are appealing investment opportunities, Figure 5 (that refers again to a γ = 5 

investor) offers a sobering view. Indeed, Figure 4 has been built under the unrealistic 

assumption that an investor would know in advance what the best performing model (in terms 

of realized CER) would have to be ex-post. In reality, this is hardly the case: while academics 

have been heatedly debating whether there is any exploitable predictability in financial returns, 

a fortiori we know much less about what model could represent the “right one” on an ex-ante 

basis. Figure 5 has the same structure as Figure 4 but it reports the realized OOS performance 

of the median prediction model for asset risk premia (including, as a special case, the IID no 

predictability model). Picking at random “some model” an investor would have not fared so 

well unless she had known—once more, rather unrealistically—which specific hedge strategy 

to pick. On the one hand, betting on the composite HFR index or on a fund-of-fund strategy 

leads to median realized CERs that are negative and therefore dominated by the simplest of the 

portfolio strategies: 100% in cash at all times. On the other hand, while the realized CERs of the 

median predictability model are rather promising for a few hedge strategies because positive 

and exceeding the performance of the median model applies to the classical asset menu (this is 

particularly obvious for RVR, MAC, MEA, DSE, and COV), other strategies lead to a non-positive 

CER (EQH and EMN). It seems that not fine-tuning the predictability model hurts in particular 
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the strategies that simply trade equities. Interestingly, and contrary to the best models in Figure 

4, in the case of the median predictability models, when the economic value created is positive, 

this comes almost entirely from an improvement in realized mean returns for approximately 

comparable realized volatility and therefore from higher realized Sharpe ratios vs. the 

benchmark; some additional contribution to high and positive CERs in this case comes from 

reductions in realized kurtosis vs. the benchmark, while the contribution of (non-negative) 

skewness to the realized utility of investors is limited at best. 

6 Discussion	and	conclusions	

We report systematic, out-of-sample evidence on the potential economic benefits of 

diversifying into various HF strategies accruing to a long-term, risk-averse investor, who is 

already well-diversified across stocks, REITs, and government and corporate debt. We have 

obtained the optimal weights and consumption rules using the approximate analytical solution 

of Campbell et al. (2003) while adjusting the underlying VAR estimates for small-sample biases 

following Engsted and Pedersen (2012). In a range of recursive OOS experiments, we have 

estimated the CERs for a range of models that can capture predictability in the risk premia of 

the asset classes under investigation to assess which HF strategies, if any, lead to an improved 

realized OOS utility relative to a baseline asset menu. 

We found similar patterns with respect to optimal portfolio weights as the ones documented in 

earlier studies on the predictability of returns (e.g., Brandt and Santa-Clara, 2006, and Guidolin 

and Hyde, 2012): average portfolio leverage is high and tends to be magnified in periods of 

crisis, while weights fluctuate widely. The inclusion of HF strategies prompts a further increase 

in leverage through short positions in 1-month T-bills to finance relatively large and persistent 

long positions in hedge strategies. The small-sample bias correction has a sizable effect on total 

and hedging demands as well as on the speed of mean-reversion implied by the estimated VAR 

models. Hedging demands for HFs tend to be negative due to the high positive first-order serial 

correlation in the returns. 

Our OOS experiments within the baseline asset space show that an investor who chooses to 
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follow a simple buy-and-hold strategy achieves, on average, lower CERs than an investor who 

rebalances on a monthly basis. In the case of the extended menu, our OOS experiments show 

that not all HF strategies have the potential to benefit long-term investors. Only strategies 

whose payoffs are highly nonlinear (relative value, merger arbitrage, distressed restructuring, 

convertible arbitrage), and therefore not easily replicable (by going long or short in the original 

asset classes) yield the highest utility gains. Our key results are robust across different values of 

the coefficient of relative risk aversion, although the highest benefits from diversifying into HFs 

accrue to medium and highly risk-aversion investors. Interestingly, the key findings on the value 

of HFs stem not from the ability of hedge strategies to increase realized mean returns, lower 

volatility, and therefore improve realized Sharpe ratios (as often debated by financial 

commentators), but from the ability of hedge strategies—when combined within well-

diversified portfolios of stocks, bonds, and REITs—to improve the higher-order moments of 

optimal portfolios (i.e., higher skewness and lower excess kurtosis). However, a portion of the 

findings that turn out to be encouraging for an assessment of HF performance critically hinges 

on the assumption that investors can accurately detect the best performing model for 

predictable risk premia. When we assess the OOS performance of the median model of 

predictable returns (or lack thereof), we find that only specific HF strategies may still generate 

economic value, while composite value-weighted portfolio or strategies (as well as funds-of-

funds) fail to do so. 

Our analysis has several limitations. This paper has ignored transaction costs. As Balduzzi and 

Lynch (1999) pointed out, their presence decreases the utility gain from exploiting asset return 

predictability in portfolio choice. In other words, the performance of all the optimized 

portfolios (both with and without HFs) may be overstated. Even though it is unclear whether 

such a bias may also result in an overstament of the economic value of HF strategies (as also 

whether the baseline strategic asset allocation is affected), it remains the case that it would be 

interesting—although computationally challenging, given the long-horizon, discrete-time 

nature of the massive sequence of recursive problems solved—to extend this paper to contrast 

the cases with and without transaction costs. Moreover, our key results do not seem to crucially 
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hinge on the presence of predictability in asset returns, when the impact of transaction costs 

would be understandably higher. For instance, comparing Tables 5 and 10 (with a 5-year buy-

and-hold horizon), we note that the best benchmark model with no HF investments is indeed a 

no-predictability model which gives an annualized mean return of 3.22%, with a standard 

deviation of 5.04%, to yield a Sharpe ratio of 0.78 and a CER of 2.26% affected by a large 

negative skewness and positive excess kurtosis; when the HFRI composite index is made 

available, the welfare gain is visible: the annualized mean is 9.37% with a standard deviation of 

10.97%, to yield a similar Sharpe ratio of 0.80 but a much higher CER of 5.44% that benefits 

from an almost zero skewness and negative excess kurtosis. The results, at least in terms of 

realized CER and higher-order moments, are similar for the no-predictability recursive 

strategies involving HFs in Tables 12 (relative value) and for many other strategies (see the 

Appendix). Insofar as removing predictability minimizes transaction costs, it seems our results 

may be reasonably robust to their explicit consideration. 

Apart from not taking into account transaction costs, we have not imposed any short-sale 

constraints. Such a choice may be problematic in the case of HFs because it is difficult to short 

this asset class, although in practice short positions can be obtained through synthetically 

tracking portfolios (see the discussion in Hamza et al., 2006). Therefore, our results should be 

construed as a necessary condition, rather than sufficient, in favor of HF investing; in this 

respect, the evidence crucially hinges on the best models of predictable asset returns being able 

to be discovered and tested. Our own assessment of the state-of-the-art in the empirical finance 

literature tends to be lukewarm at best (see the review in Rapach and Zhou, 2013). Moreover, 

recent empirical work by Joenvaara, Kosowski and Tolonen (2014) induces us to maintain a 

healthy degree of skepticism: when they account for the investment constraints faced by real-

world HF investors, they report a reduction in average performance and in performance 

persistence (see also Kumar, 2015). 

Our findings should encourage further analyses along several dimensions. First, distinguishing 

between bull and bear regimes may generate optimal portfolios which yield superior perfor-

mances relative to simple VARs (see, e.g., Guidolin and Hyde, 2012; Tu, 2010). For instance, 
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Avramov et al. (2011) note that in times of crisis, some HF strategies (e.g., global macro) 

perform better than others (e.g., equity long/short). The widespread evidence of regimes in 

investment opportunities may affect our results. Second, the precision of our estimates, and 

therefore the quality of our forecasts, might be further improved if the exposures to state 

variables were allowed to be time-varying in the spirit of Bollen and Whaley (2009). Finally, 

along the lines of recent work by Panopoulou and Vrontos (2015), given the long set of 

candidate predictors suggested by the literature, we could construct improved HF fund return 

predictions by carefully integrating the information content through combinations of forecasts. 
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Table	1	

Summary	Statistics	for	Asset	Returns	and	Predictor	Variables	of	the	Dataset	

The table presents summary statistics for monthly returns on stocks, bonds, publicly traded real 
estated, and HFR hedge fund strategy returns. The sample is January 1994 - December 2014. We 
use four predictors to model the time variation in investment opportunities, the dividend yield, 
the short-term riskless interest rate proxied by the 3-month Treasury constant maturity rate, 
the term spread calculated as the difference between the 10-year Treasury constant maturity 
rate and the corresponding 3-month rate, and the default spread computed as the yield 
differential between Moody’s seasoned Baa and Aaa corporate bond portfolio rates. In the case 
of hedge funds, we use HFRI style indices distributed by Hedge Fund Research (HFR). 
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Table	2	

Correlation	Matrix	

The table presents estimate correlations and reported significance levels for monthly returns on stocks, bonds, publicly traded real 
estated, and HFR hedge fund strategy returns. The sample is January 1994 - December 2014. The estimated pairwise correlations also 
involve the four predictors described in Table 1. 
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Table	2	(continued)	

Correlation	Matrix	

 

Legend: DY (dividend yield), Def. (default spread), Term. (riskless term spread), Short (short-term 3-month nominal rate), FWC (HFRI 
Fund Weighted Composite Index), FFP (HFRI Fund of Funds Composite), EQH (HFRI Equity Hedge), EVD (HFRI Event Driven), MAC (HFRI 
Macro), RVR (HFRI Relative Value), EMN (HFRI EH Equity Market Neutral), MEA (HFRI ED Merger Arbitrage), DSE (HFRI ED 
Distressed/Restructuring), COA (HFRI RV Fixed Income Convertible Arbitrage), BMX (CBOE S&P 500 BuyWrite Index), PtfsFX (portfolio of 
lookback straddles on currency), PtfsCom (portfolio of lookback straddles on commodities), Ptfs BD (portfolio of lookback straddles on 
bonds), PtfsIR (portfolio of lookback straddles on interest rates), SMB (small-minus-big), HML (high-minus-low), Mom. (momentum), 
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Table	3	

Full	Sample	(1994:01–2014:12)	Estimates	of	Full	VAR(1):	Baseline	Asset	Menu	

The table presents full-sample OLS estimate of a VAR(1) model  

𝒛௧ାଵ ൌ 𝜱  𝜱ଵ𝒛௧  𝒗௧ାଵ,	  

where 𝒛௧ାଵ collects the short rate, benchmark excess returns, and the predictors, 𝜱 is the 

(n+m) vector of intercepts, 𝜱ଵ is the (n+m)x(n+m) coefficient matrix, and 𝒗௧ାଵ  𝒩ሺ𝟎, ∑𝒗∼   ..ௗ. ሻ. 

We take into account the instability in parameters and adjust the estimates for small-sample 

bias as in Engsted and Pedersen (2012), by using the formula 𝜱 ଵ as 𝑩𝒊𝒂𝒔் ൌ െ
𝒃

்
 𝑂 ቀ𝑇ି

య
మቁ.  

	

Dependent	
variable Rft Stockst

Gov	
Treast

Corpt REITst Deft Termt
Short	
Ratet

DYt 		R2

Rft+1	‐	adj. -0.068 0.000 -0.001 0.001 0.000 0.000 -0.005 0.083 -0.003
Not adjusted -0.082 0.000 -0.001 0.001 0.000 0.000 -0.005 0.084 -0.003 0.988
t-stat (-1.29) (-0.84) (-1.04) (0.67) (0.93) (0.04) (-3.49) (15.80) (-0.75)

Stockst+1	‐	adj. -3.122 0.087 -0.033 0.191 -0.026 -1.905 -0.558 -0.203 0.917
Not adjusted -2.379 0.085 -0.036 0.189 -0.025 -1.987 -0.664 -0.215 1.890 0.057
t-stat (-0.18) (0.87) (-0.11) (0.60) (-0.30) (-1.80) (-2.01) (-0.20) (2.77)

Gov	Treast+1	‐	adj. -1.427 -0.079 -0.013 0.078 -0.063 -0.169 0.196 0.070 -0.210
Not adjusted -1.538 -0.080 -0.019 0.077 -0.062 -0.075 0.354 0.215 -0.262 0.096
t-stat (-0.35) (-2.20) (-0.20) (0.83) (-1.75) (-0.17) (2.07) (0.61) (-0.83)

Corpt+1	‐	adj. 0.740 0.035 0.021 0.139 -0.079 0.432 0.319 -0.070 -0.317
Not adjusted 0.653 0.037 0.030 0.121 -0.077 0.666 0.497 0.092 -0.151 0.064
t-stat (0.12) (0.80) (0.16) (0.63) (-1.26) (0.89) (2.21) (0.22) (-0.41)

REITst+1	‐	adj. -12.826 0.257 0.186 0.339 -0.096 -1.496 0.407 0.847 -0.979
Not adjusted -12.550 0.270 0.185 0.343 -0.111 -1.432 0.365 0.904 -0.181 0.094
t-stat (-0.93) (1.87) (0.33) (0.61) (-0.78) (-0.66) (0.87) (0.83) (-0.25)

Deft+1	‐	adj. 0.389 -0.001 0.035 -0.031 -0.002 0.975 0.002 -0.033 -0.002
Not adjusted 0.393 -0.001 0.035 -0.031 -0.002 0.961 0.001 -0.034 -0.004 0.959
t-stat (1.66) (-0.79) (3.98) (-3.30) (-0.77) (39.76) (0.10) (-1.92) (-0.29)

Termt+1	‐	adj. 2.227 0.000 -0.024 -0.025 0.006 0.064 0.965 -0.190 0.005
Not adjusted 2.186 0.000 -0.024 -0.025 0.006 0.063 0.945 -0.196 0.009 0.968
t-stat (3.97) (0.05) (-2.04) (-2.92) (1.58) (1.54) (52.78) (-4.51) (0.29)

Short	Ratet+1	‐	adj. -2.128 0.001 -0.035 0.016 0.001 -0.058 0.021 1.179 0.036
Not adjusted -2.076 0.001 -0.034 0.016 0.001 -0.064 0.027 1.172 0.039 0.994
t-stat (-4.08) (0.32) (-3.59) (2.24) (0.54) (-2.38) (1.94) (29.82) (1.74)

DYt+1	‐	adj. 0.077 -0.002 -0.001 -0.004 0.000 0.017 0.003 -0.005 0.984
Not adjusted 0.061 -0.002 -0.001 -0.004 0.000 0.018 0.005 -0.005 0.962 0.962
t-stat (0.28) (-1.04) (-0.09) (-0.51) (0.07) (0.55) (0.80) (-0.28) (64.24)

Correlation	of	residuals	(bias‐adjusted	coefficients)

Rf Stock
Gov.	
Treas

Corp. REITS Def. Term.
Short	
Rate

DY

Rf 1 -0.021 0.042 0.019 0.065 0.072 0.014 -0.017 0.013

Stock - 1 -0.161 0.261 0.585 -0.222 0.062 0.072 -0.922

Gov.	Treas - - 1 0.686 0.016 0.079 -0.547 -0.169 0.091

Corp. - - - 1 0.353 -0.171 -0.432 0.034 -0.320

REITS - - - - 1 -0.233 -0.076 0.028 -0.670

Def. - - - - - 1 -0.062 -0.075 0.245

Term. - - - - - - 1 -0.560 -0.054

Short	Rate - - - - - - - 1 -0.047

DY - - - - - - - - 1



50 

Table	4	

Summary	Statistics	for	Monthly	Realized,	Recursive	Optimal	Portfolio	Weights:	Baseline	Asset	Menu	(γ	=	5)	
The tables shows sample means, standard deviations, and the lower and upper bounds of the 90% sample range of the recursive portfolio weights 
computed from a range of VAR models for predictable risk premia and of constant investment opportunities (IID) models. The table presents 
statistics for 1-m T-bill weights, long-term (infinite horizon) weights, and for their differences, the hedging demands. 

 

CER	
rank

Model Lags

Def. Term. Short DY T=1 Long Hedging T=1 Long Hedging T=1 Long Hedging T=1 Long Hedging T=1 Long Hedging

1 Expanding VAR 1 N Y Y Y -0.791 -0.002 0.789 0.742 0.630 -0.112 -0.680 -1.612 -0.932 1.458 1.634 0.176 0.271 0.350 0.079
2 Expanding VAR 1 Y Y N Y -0.987 -0.717 0.270 1.417 1.295 -0.122 1.148 1.332 0.185 -1.270 -1.640 -0.370 0.693 0.730 0.037
3 Rolling N. IID 0 - - - - -1.350 -1.350 0.000 0.393 0.393 0.000 1.623 1.623 0.000 -0.090 -0.090 0.000 0.423 0.423 0.000
4 Expanding N. IID 0 - - - - -1.144 -1.144 0.000 0.431 0.431 0.000 1.428 1.428 0.000 -0.200 -0.200 0.000 0.485 0.485 0.000
5 Expanding VAR 1 N N Y Y -1.237 -0.711 0.526 0.308 0.280 -0.029 0.270 -0.377 -0.647 1.108 1.152 0.044 0.551 0.656 0.105
6 Expanding VAR 1 Y N Y Y -2.172 -1.630 0.542 0.629 0.527 -0.102 1.878 2.146 0.267 -0.383 -1.148 -0.765 1.048 1.105 0.058
7 Rolling VAR 2 Y N Y Y -7.430 -8.326 -0.896 3.600 4.099 0.498 8.824 9.978 1.154 -4.055 -4.946 -0.891 0.062 0.196 0.134
8 Rolling VAR 1 Y Y Y Y -3.732 -4.511 -0.780 3.244 3.966 0.722 4.382 5.753 1.371 -2.467 -3.888 -1.420 -0.426 -0.319 0.107
9 Rolling VAR 1 N N Y Y -2.926 -3.013 -0.087 0.585 0.901 0.316 2.457 2.005 -0.452 0.169 0.283 0.113 0.715 0.824 0.109

10 Expanding VAR 2 Y N Y Y -1.567 -1.681 -0.114 0.654 0.794 0.140 1.853 2.470 0.618 -1.061 -1.717 -0.656 1.122 1.134 0.012

1 Expanding VAR 1 N Y Y Y 3.352 3.308 0.717 1.082 1.167 0.449 5.753 5.800 1.344 4.306 4.226 0.438 1.099 1.084 0.082
2 Expanding VAR 1 Y Y N Y 4.185 4.116 0.260 1.480 1.593 0.329 7.245 7.884 1.112 5.027 5.796 1.267 1.099 1.060 0.089
3 Rolling N. IID 0 - - - - 0.716 0.716 0.000 0.545 0.545 0.000 0.657 0.657 0.000 0.371 0.371 0.000 0.412 0.412 0.000
4 Expanding N. IID 0 - - - - 0.237 0.237 0.000 0.093 0.093 0.000 0.500 0.500 0.000 0.404 0.404 0.000 0.310 0.310 0.000
5 Expanding VAR 1 N N Y Y 3.740 3.746 0.854 0.878 1.197 0.526 6.095 5.860 0.642 4.013 3.725 0.623 1.160 1.147 0.093
6 Expanding VAR 1 Y N Y Y 3.762 3.689 0.390 1.211 1.269 0.165 6.871 7.206 0.979 4.879 5.331 1.051 1.075 1.064 0.093
7 Rolling VAR 2 Y N Y Y 10.747 10.205 2.187 5.724 5.625 1.423 15.182 15.417 1.530 9.960 10.342 1.387 3.309 3.167 0.425
8 Rolling VAR 1 Y Y Y Y 7.174 7.304 1.891 3.269 3.548 0.754 9.554 10.896 2.808 5.914 7.472 2.356 2.116 2.241 0.422
9 Rolling VAR 1 N N Y Y 3.458 3.536 1.158 1.712 2.050 0.874 5.864 5.818 0.673 4.061 4.029 0.395 1.573 1.463 0.217

10 Expanding VAR 2 Y N Y Y 5.429 5.431 0.643 2.990 2.886 0.535 11.229 11.427 0.990 9.606 9.647 1.102 2.259 2.113 0.228

1 Expanding VAR 1 N Y Y Y 9.697 10.224 1.753 3.604 3.936 0.750 18.267 18.613 2.446 12.138 12.533 1.320 3.470 3.435 0.202
2 Expanding VAR 1 Y Y N Y 11.673 11.743 0.776 4.094 4.493 0.927 22.632 24.541 3.013 14.446 16.944 3.705 3.390 3.325 0.253
3 Rolling N. IID 0 - - - - 0.716 0.716 0.000 0.545 0.545 0.000 0.657 0.657 0.000 0.371 0.371 0.000 0.412 0.412 0.000
4 Expanding N. IID 0 - - - - 0.753 0.753 0.000 0.277 0.277 0.000 1.430 1.430 0.000 1.377 1.377 0.000 0.810 0.810 0.000
5 Expanding VAR 1 N N Y Y 10.501 10.387 1.560 3.340 3.525 0.886 19.984 19.410 1.215 12.131 12.149 0.542 2.907 2.982 0.226
6 Expanding VAR 1 Y N Y Y 11.905 12.403 1.183 3.824 4.137 0.519 21.583 22.681 3.163 15.817 16.551 3.123 2.975 2.989 0.237
7 Rolling VAR 2 Y N Y Y 34.278 31.650 6.803 18.532 16.352 4.421 49.529 47.184 5.026 28.991 28.982 4.344 10.524 10.000 1.446
8 Rolling VAR 1 Y Y Y Y 20.638 22.058 6.582 10.013 10.936 2.467 30.235 34.907 8.698 18.275 21.959 7.122 6.408 7.062 1.474
9 Rolling VAR 1 N N Y Y 10.380 10.377 3.641 5.795 7.050 2.677 18.189 18.740 2.131 10.454 9.772 1.154 5.289 4.957 0.716

10 Expanding VAR 2 Y N Y Y 15.239 15.189 1.950 7.691 7.097 1.723 34.317 35.014 2.929 34.908 34.235 3.309 7.367 6.760 0.689

Predictors	included

Sample	mean	of	portofolio	weights

Sample	Standard	Deviation	of	Portofolio	Weights

Empirical	90%	Range

Cash Stocks US	Long‐Term	Treasuries US	Corporate	Bonds REITs
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Table	5	

Top	10	Models	Ranked	According	to	Realized	CER	for	Buy‐and‐Hold	and	Monthly	Rebalancing	Strategies:	Baseline	Asset	Menu	(γ	=	5)	

The tables shows annualized sample means, standard deviations, the Sharpe ratio, and the Certainty Equivalent Return computed from the 
recursive portfolio weights under the ten top performing (in terms of CER) models for (predictable) risk premia, as defined by the VAR order 
(where a VAR(0) is equivalent to IID, constant investment opportunities), the selection of predictors, and whether the models are estimated 
either on an expanding or on a rolling 10-year window of data. The calculations are performed assuming the investor assess realized 
performance with a 5-year horizon (H = 60 months). 

 

Def. Term. Short DY
Mean	
returns

90%	Conf.	
Int.	‐	LB

90%	Conf.	
Int.	‐	UB

Volatility
90%	Conf.	
Int.	‐	LB

90%	Conf.	
Int.	‐	UB

Sharpe	
ratio

90%	Conf.	
Int.	‐	LB

90%	Conf.	
Int.	‐	UB

CER	(%	
Ann.)

90%	Conf.	
Int.	‐	LB

90%	Conf.	
Int.	‐	UB

Monthly	rebalancing

1 Expanding VAR 1 N Y Y Y 60 44.338 40.528 50.005 102.111 40.426 120.433 0.408 0.337 1.009 13.679 11.832 15.356 -0.865 2.696
2 Expanding VAR 1 Y Y N Y 60 35.651 32.802 44.529 108.940 65.530 117.768 0.303 0.260 0.459 3.382 2.369 7.937 0.426 2.272
3 Rolling N. IID 0 - - - - 60 5.420 -0.285 7.531 21.009 2.514 21.114 0.132 -0.109 0.326 1.703 -0.535 3.847 1.502 3.773
4 Expanding N. IID 0 - - - - 60 3.792 -0.913 5.723 16.642 2.236 16.593 0.069 -0.379 0.315 0.787 -1.184 2.912 1.475 3.699
5 Expanding VAR 1 N N Y Y 60 42.224 33.376 54.193 152.635 67.423 156.638 0.259 0.202 0.454 -0.879 -3.365 5.262 0.394 2.106
6 Expanding VAR 1 Y N Y Y 60 35.214 34.731 42.253 86.689 48.583 88.438 0.376 0.314 0.655 -1.454 -1.530 37.838 -0.123 2.414
7 Rolling VAR 2 Y N Y Y 60 27.598 19.704 40.799 140.452 70.247 192.890 0.178 0.162 0.257 -2.586 -2.850 6.330 1.700 5.419
8 Rolling VAR 1 Y Y Y Y 60 39.169 23.320 56.136 213.128 80.771 247.562 0.171 0.135 0.265 -3.235 -3.630 19.852 1.090 2.759
9 Rolling VAR 1 N N Y Y 60 12.358 -2.988 22.222 51.647 18.963 53.279 0.188 -0.145 0.382 -3.926 -6.658 6.033 0.569 1.721

10 Expanding VAR 2 Y N Y Y 60 32.011 28.737 43.058 121.591 79.600 141.336 0.242 0.204 0.331 -4.661 -5.983 24.503 0.841 2.897

60 -8.302 -6.415 -12.831 28.793 0.962 38.114 -0.380 -0.015 -0.304 -17.201 -14.209 -40.569 2.548 8.613
60 -4.011 -0.923 -1.847 34.846 4.555 43.745 -0.191 0.078 -0.037 -16.834 -13.667 -31.673 1.677 4.533

Buy‐and‐hold

1 Expanding N. IID 0 - - - - 60 3.221 3.244 4.194 5.041 1.815 5.346 0.636 0.782 1.780 2.257 2.333 4.016 -2.100 10.961
2 Rolling N. IID 0 - - - - 60 2.710 2.623 3.322 4.152 1.911 4.261 0.649 0.776 1.365 2.137 2.271 3.186 -1.968 11.172
3 Rolling VAR 1 Y N N Y 60 0.502 0.419 1.146 6.912 0.887 7.938 0.071 0.143 0.457 -50.698 -50.698 0.954 -4.854 30.257
4 Rolling VAR 1 Y Y N Y 60 0.225 -0.055 0.848 8.932 1.535 11.903 0.024 -0.045 0.070 -52.377 -53.333 0.636 -3.883 19.052
5 Rolling VAR 1 Y N Y Y 60 -1.667 -1.787 -1.021 9.636 6.428 10.066 -0.174 -0.280 -0.103 -52.377 -52.377 -4.965 -2.497 10.708
6 Rolling VAR 1 N Y N Y 60 -1.334 -2.817 -0.012 11.714 4.604 15.152 -0.115 -0.615 -0.002 -52.377 -53.999 -1.707 -1.818 6.415
7 Rolling VAR 1 N N N Y 60 -0.870 -0.866 0.385 10.812 2.254 12.044 -0.082 -0.390 0.031 -53.333 -53.999 0.075 -2.699 10.826
8 Expanding VAR 1 N N Y Y 60 -3.133 -4.593 -2.655 13.386 11.802 14.048 -0.235 -0.390 -0.190 -53.333 -54.510 -50.698 -1.346 4.769
9 Rolling VAR 1 Y N N N 60 -1.406 -2.029 0.126 13.017 10.383 13.210 -0.109 -0.197 0.008 -53.822 -54.370 -49.822 -1.718 6.443

10 Expanding VAR 1 Y N Y Y 60 -3.289 -5.481 -2.212 13.753 11.230 16.832 -0.240 -0.489 -0.132 -53.999 -55.827 -50.698 -1.174 4.410

60 -10.605 -12.438 -8.750 16.401 14.684 17.764 -0.616 -0.822 -0.462 -56.714 -57.271 -55.946 -0.032 2.483
60 -6.244 -8.606 -3.869 15.130 12.168 16.547 -0.397 -0.739 -0.226 -55.433 -56.651 -53.999 -0.912 3.310

Skewness KurtosisH
Annualized	mean Annualized	volatility Sharpe	ratio Annualized	CER

Median Expanding VAR performance
Median Rolling VAR performance

Median Expanding VAR performance
Median Rolling VAR performance

CER	
rank

Model Lags
Predictors	included
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Table	6	

Full	Sample	(1994:01–2014:12)	Estimates	of	Best	Performing	Full	VAR(1):	Relative	
Value	Hedge	Funds	

The table presents full-sample OLS estimate of a VAR(1) model  

𝒛௧ାଵ ൌ 𝜱  𝜱ଵ𝒛௧  𝒗௧ାଵ,	  

where 𝒛௧ାଵ is extended to include one specific hedge fund strategy return and 

𝒗௧ାଵ  𝒩ሺ𝟎, ∑𝒗∼   ..ௗ. ሻ. We adjust the estimates for small-sample bias as in Engsted and Pedersen 

(2012), by using the formula 𝜱 ଵ as 𝑩𝒊𝒂𝒔் ൌ െ
𝒃

்
 𝑂 ቀ𝑇ି

య
మቁ where b is in the main text. 

 

Dependent					
variable Rft Stockst

Gov	
Treast

Corpt REITt Deft Termt
Short	
Ratet

DYt BuyWritet HMLt Momentumt 		R2

Rft+1	‐	adj. -0.029 0.000 -0.002 0.001 0.000 0.002 -0.005 0.080 0.000 -0.001 0.001 0.001
Not adjusted -0.042 0.000 -0.002 0.001 0.000 0.002 -0.005 0.081 -0.001 -0.001 0.001 0.001 0.989
t-stat (-0.76) (0.28) (-1.24) (0.80) (-0.01) (1.58) (-3.49) (17.01) (-0.15) (-0.32) (2.60) (2.14)

Stockst+1	‐	adj. -5.600 0.097 0.133 0.016 0.015 0.466 -0.383 0.227 0.336 -0.283 -0.094 -0.004
Not adjusted -4.883 0.091 0.134 0.013 0.015 0.481 -0.446 0.242 1.160 -0.277 -0.090 -0.006 0.064
t-stat (-0.38) (0.53) (0.44) (0.04) (0.16) (0.88) (-1.28) (0.24) (1.41) (-0.59) (-0.66) (-0.08)

Gov	Treast+1	‐	adj. -1.895 0.017 -0.124 0.174 -0.052 -0.274 0.219 0.146 -0.248 -0.263 0.025 0.018
Not adjusted -1.887 0.019 -0.133 0.175 -0.051 -0.284 0.329 0.257 -0.272 -0.268 0.024 0.019 0.119
t-stat (-0.41) (0.30) (-1.24) (1.70) (-1.33) (-1.57) (1.98) (0.69) (-0.86) (-1.45) (0.52) (0.79)

Corpt+1	‐	adj. -0.211 0.142 -0.038 0.207 -0.088 -0.137 0.319 -0.013 -0.219 -0.394 0.028 -0.033
Not adjusted -0.197 0.149 -0.032 0.193 -0.087 -0.154 0.431 0.110 -0.023 -0.403 0.028 -0.034 0.074
t-stat (-0.04) (1.50) (-0.19) (1.10) (-1.34) (-0.53) (2.00) (0.24) (-0.06) (-1.30) (0.52) (-0.99)

REITt+1	‐	adj. -15.152 0.320 0.630 -0.023 -0.248 1.048 0.673 1.214 -1.446 0.000 0.312 -0.087
Not adjusted -14.691 0.330 0.627 -0.019 -0.262 1.047 0.648 1.263 -0.749 0.001 0.315 -0.088 0.139
t-stat (-1.02) (1.43) (1.31) (-0.04) (-1.82) (1.23) (1.54) (1.09) (-0.68) (0.00) (2.14) (-1.38)

Deft+1	‐	adj. 4.391 0.011 -0.042 0.086 0.009 0.408 -0.032 -0.356 0.022 -0.071 -0.018 -0.011
Not adjusted 4.458 0.014 -0.044 0.087 0.009 0.391 -0.041 -0.353 0.184 -0.073 -0.017 -0.012 0.261
t-stat (1.60) (0.48) (-0.60) (1.17) (0.42) (2.92) (-0.61) (-1.59) (1.14) (-0.64) (-0.90) (-0.82)

Termt+1	‐	adj. 2.272 -0.004 -0.018 -0.030 0.004 0.018 0.959 -0.201 0.023 0.005 -0.002 -0.003
Not adjusted 2.233 -0.004 -0.018 -0.030 0.004 0.018 0.942 -0.206 0.025 0.005 -0.002 -0.003 0.968
t-stat (3.91) (-0.57) (-1.44) (-2.80) (1.18) (1.28) (53.95) (-4.66) (0.86) (0.20) (-0.36) (-1.07)

Short	Ratet+1	‐	adj. -2.131 -0.003 -0.030 0.010 0.004 0.014 0.025 1.185 0.017 0.004 -0.006 0.002
Not adjusted -2.092 -0.003 -0.030 0.010 0.004 0.015 0.032 1.180 0.019 0.004 -0.006 0.002 0.994
t-stat (-4.19) (-0.47) (-2.91) (1.43) (1.57) (1.10) (2.32) (31.28) (0.95) (0.17) (-1.51) (0.65)

DYt+1	‐	adj. 0.099 -0.001 -0.008 0.002 0.001 -0.021 0.000 -0.009 0.989 0.003 0.000 0.001
Not adjusted 0.083 -0.001 -0.008 0.002 0.001 -0.021 0.001 -0.010 0.971 0.003 0.000 0.001 0.963
t-stat (0.36) (-0.31) (-1.05) (0.31) (0.37) (-1.54) (0.20) (-0.52) (46.16) (0.29) (0.07) (0.92)

BuyWritet+1	‐	adj. -2.923 -0.016 0.085 -0.004 0.000 0.247 -0.096 0.235 -0.014 0.012 -0.046 -0.021
Not adjusted -2.738 -0.012 0.084 -0.005 0.000 0.252 -0.117 0.235 0.209 -0.005 -0.045 -0.022 0.076
t-stat (-0.71) (-0.23) (1.02) (-0.06) (0.01) (1.31) (-1.11) (0.77) (0.88) (-0.03) (-1.15) (-0.96)

HMLt+1	‐	adj. -4.074 0.085 0.259 -0.148 -0.096 0.367 0.218 0.400 -0.736 0.283 0.180 -0.075
Not adjusted -4.382 0.083 0.258 -0.147 -0.097 0.368 0.223 0.437 -0.806 0.290 0.162 -0.075 0.086
t-stat (-0.41) (0.63) (1.44) (-0.86) (-1.64) (1.33) (0.94) (0.51) (-1.24) (0.86) (1.30) (-1.05)

Momentumt+1	‐	adj. -12.076 -0.219 -1.083 0.733 0.040 -0.572 0.566 1.393 -2.712 -0.402 -0.225 0.055
Not adjusted -12.803 -0.231 -1.078 0.736 0.041 -0.576 0.668 1.448 -3.145 -0.389 -0.226 0.040 0.162
t-stat (-0.89) (-1.47) (-1.86) (1.58) (0.45) (-1.26) (1.71) (1.31) (-2.78) (-0.55) (-1.38) (0.34)

Correlation	of	residuals	(bias‐adjusted	coefficients)

Rft Stockst
Gov	
Treast

Corpt REITst Deft Termt
Short	
Ratet

DYt BuyWritet HMLt Momentumt

Rft 1 -0.021 0.042 0.031 0.050 -0.046 0.024 -0.020 0.017 -0.001 0.048 -0.131

Stockst - 1 -0.152 0.250 0.608 0.633 0.040 0.079 -0.927 0.873 -0.244 -0.249

Gov	Treast - - 1 0.683 0.039 -0.047 -0.542 -0.160 0.068 -0.141 0.103 0.105

Corpt - - - 1 0.356 0.436 -0.424 0.035 -0.325 0.281 0.037 -0.143

REITt - - - - 1 0.509 -0.101 0.050 -0.670 0.595 0.212 -0.308

Deft - - - - - 1 -0.066 0.187 -0.624 0.598 -0.130 -0.198

Termt - - - - - - 1 -0.577 -0.031 0.057 -0.054 -0.144

Short	Ratet - - - - - - - 1 -0.046 0.114 0.015 0.040

DYt - - - - - - - - 1 -0.836 0.047 0.348

BuyWritet - - - - - - - - - 1 -0.115 -0.274

HMLt - - - - - - - - - - 1 -0.141

Momentumt - - - - - - - - - - - 1
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Table	7	

Summary	Statistics	for	Monthly	Realized,	Recursive	Optimal	Portfolio	Weights:	Asset	Menu	Including	HFRI	Fund	Weighted	
Composite	Index	(FWC)	(γ	=	5)	

The tables shows sample means, standard deviations, and the lower and upper bounds of the 90% sample range of the recursive portfolio weights 
computed from a range of VAR models for predictable risk premia and of constant investment opportunities (IID) models. The table presents 
statistics for 1-m T-bill weights, long-term (infinite horizon) weights, and for their differences, the hedging demands. 

 

Lags Term. Short DY SMB BMX Mom. PtfsCM T=1 Long Hedging T=1 Long Hedging T=1 Long Hedging T=1 Long Hedging T=1 Long Hedging T=1 Long Hedging

1 Expanding AR 1 - - - - - - - -2.742 -2.303 0.439 -1.197 -1.233 -0.037 0.110 0.590 0.480 1.040 0.503 -0.537 0.638 0.646 0.008 3.150 2.797 -0.353
2 Expanding VAR 1 Y Y Y N N N N -1.810 -1.286 0.525 -0.083 -0.227 -0.144 -0.451 -0.492 -0.040 0.931 0.865 -0.066 0.247 0.252 0.005 2.167 1.887 -0.280
3 Expanding VAR 1 Y Y Y N N Y Y -1.752 -1.218 0.534 0.118 -0.046 -0.163 -0.452 -0.487 -0.036 1.038 0.956 -0.082 0.151 0.154 0.003 1.896 1.641 -0.255
4 Expanding VAR 1 Y Y Y N N N Y -1.905 -1.391 0.514 0.058 -0.098 -0.156 -0.455 -0.450 0.005 1.144 1.027 -0.118 0.169 0.178 0.009 1.988 1.734 -0.255
5 Expanding VAR 1 Y Y Y N Y N Y -2.073 -1.606 0.468 0.015 -0.159 -0.174 -0.435 -0.411 0.024 1.183 1.088 -0.095 0.148 0.162 0.014 2.163 1.926 -0.237
6 Expanding VAR 1 Y Y Y N Y N N -2.010 -1.520 0.490 -0.174 -0.338 -0.164 -0.425 -0.453 -0.028 0.889 0.850 -0.039 0.222 0.231 0.009 2.498 2.230 -0.268
7 Expanding N. IID 0 - - - - - - - -4.228 -4.228 0.000 -1.233 -1.233 0.000 2.171 2.171 0.000 -0.898 -0.898 0.000 0.418 0.418 0.000 4.770 4.770 0.000
8 Expanding VAR 1 Y Y Y N N Y N -1.856 -1.268 0.587 -0.040 -0.193 -0.153 -0.459 -0.578 -0.120 0.870 0.843 -0.027 0.216 0.215 0.000 2.269 1.982 -0.287
9 Expanding VAR 1 Y Y Y N Y Y Y -1.863 -1.341 0.522 0.039 -0.100 -0.139 -0.308 -0.396 -0.089 0.756 0.726 -0.030 0.119 0.122 0.004 2.257 1.988 -0.269

10 Expanding VAR 1 Y Y Y N Y Y N -1.855 -1.295 0.560 -0.022 -0.147 -0.125 -0.450 -0.615 -0.166 0.855 0.863 0.008 0.119 0.125 0.006 2.353 2.070 -0.283

1 Expanding AR 1 - - - - - - - 5.688 5.287 0.567 3.952 3.837 0.215 5.665 5.486 0.461 4.294 4.175 0.340 1.627 1.549 0.153 9.498 8.782 0.793
2 Expanding VAR 1 Y Y Y N N N N 4.399 4.200 0.695 3.438 3.343 0.423 4.558 4.469 1.130 3.669 3.582 0.438 1.005 0.966 0.114 8.121 7.491 0.759
3 Expanding VAR 1 Y Y Y N N Y Y 4.484 4.260 0.686 4.025 3.866 0.414 4.916 4.778 1.037 4.404 4.261 0.442 1.433 1.364 0.137 8.757 8.088 0.820
4 Expanding VAR 1 Y Y Y N N N Y 4.502 4.267 0.712 3.902 3.790 0.409 5.104 4.986 1.112 4.423 4.285 0.460 1.338 1.285 0.123 8.523 7.859 0.800
5 Expanding VAR 1 Y Y Y N Y N Y 5.084 4.870 0.725 3.866 3.757 0.397 5.276 5.191 1.125 4.586 4.432 0.474 1.319 1.272 0.120 8.670 8.010 0.808
6 Expanding VAR 1 Y Y Y N Y N N 4.817 4.650 0.701 3.353 3.258 0.411 4.569 4.526 1.138 3.683 3.593 0.445 0.992 0.958 0.110 8.076 7.447 0.768
7 Expanding N. IID 0 - - - - - - - 0.227 0.227 0.000 0.160 0.160 0.000 0.632 0.632 0.000 0.474 0.474 0.000 0.122 0.122 0.000 0.269 0.269 0.000
8 Expanding VAR 1 Y Y Y N N Y N 4.338 4.167 0.662 3.608 3.445 0.423 4.507 4.392 1.066 3.651 3.565 0.420 1.217 1.151 0.136 8.322 7.658 0.801
9 Expanding VAR 1 Y Y Y N Y Y Y 5.235 5.090 0.706 3.924 3.801 0.588 4.490 4.547 1.236 3.756 3.623 0.515 1.420 1.360 0.139 8.812 8.164 0.832

10 Expanding VAR 1 Y Y Y N Y Y N 5.168 5.047 0.728 3.652 3.545 0.584 4.625 4.616 1.250 3.775 3.641 0.487 1.257 1.193 0.142 8.682 8.025 0.834

1 Expanding AR 1 - - - - - - - 12.184 10.708 1.628 11.039 10.615 0.677 17.353 16.867 1.141 12.968 12.466 0.955 3.532 3.519 0.434 29.159 26.856 2.522
2 Expanding VAR 1 Y Y Y N N N N 12.802 12.308 1.956 10.060 9.902 0.660 14.768 14.519 2.214 10.162 11.213 1.247 3.381 3.207 0.352 24.289 22.206 2.507
3 Expanding VAR 1 Y Y Y N N Y Y 11.505 11.201 1.843 10.795 10.838 0.720 14.970 15.115 2.083 10.268 11.116 1.300 4.779 4.910 0.374 23.798 21.710 2.743
4 Expanding VAR 1 Y Y Y N N N Y 12.385 11.322 2.077 11.917 11.549 0.745 17.963 17.111 2.396 10.710 12.880 1.339 4.595 4.590 0.385 24.878 22.529 2.728
5 Expanding VAR 1 Y Y Y N Y N Y 15.410 15.521 2.200 11.841 11.481 0.788 15.685 15.500 2.404 11.107 12.402 1.418 4.694 4.498 0.410 24.718 23.479 2.732
6 Expanding VAR 1 Y Y Y N Y N N 13.868 13.480 1.902 9.213 8.887 0.734 14.501 13.797 2.218 11.159 11.175 1.209 3.318 3.237 0.364 22.804 21.176 2.564
7 Expanding N. IID 0 - - - - - - - 0.692 0.692 0.000 0.510 0.510 0.000 1.748 1.748 0.000 1.555 1.555 0.000 0.395 0.395 0.000 0.824 0.824 0.000
8 Expanding VAR 1 Y Y Y N N Y N 11.302 11.355 1.887 9.068 9.099 0.683 14.653 14.198 2.212 11.119 11.169 1.233 3.779 3.586 0.359 21.657 20.331 2.515
9 Expanding VAR 1 Y Y Y N Y Y Y 13.353 12.951 2.079 10.588 10.582 0.792 14.267 14.882 2.330 11.454 11.266 1.378 4.865 4.825 0.373 22.994 20.819 2.618

10 Expanding VAR 1 Y Y Y N Y Y N 13.218 12.447 2.106 9.584 9.991 0.701 14.433 14.019 2.229 11.200 11.262 1.302 4.336 4.044 0.382 23.615 21.325 2.695

CER	
rank

FWC

Sample	mean	of	portofolio	weights

Sample	Standard	Deviation	of	Portofolio	Weights

Empirical	90%	Range

Cash Stock US	Long‐Term	Treasuries US	Corporate REITsPredictors	included
Model
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Table	8	

Summary	Statistics	for	Monthly	Realized,	Recursive	Optimal	Portfolio	Weights:	Asset	Menu	Including	HFRI	Fund	of	Funds	
Composite	(FFP)	(γ	=	5)	

The tables shows sample means, standard deviations, and the lower and upper bounds of the 90% sample range of the recursive portfolio weights 
computed from a range of VAR models for predictable risk premia and of constant investment opportunities (IID) models. The table presents 
statistics for 1-m T-bill weights, long-term (infinite horizon) weights, and for their differences, the hedging demands. 

 

Model

Lags Term. Short DY SMB BMX Mom. PtfsCM T=1 Long Hedging T=1 Long Hedging T=1 Long Hedging T=1 Long Hedging T=1 Long Hedging T=1 Long Hedging

1 Expanding AR 1 - - - - - - - -0.276 -0.234 0.042 -0.052 -0.142 -0.091 -0.424 -0.273 0.150 1.236 0.889 -0.347 0.699 0.776 0.077 -0.183 -0.015 0.168
2 Expanding VAR 1 Y Y Y N N N Y -0.020 0.211 0.232 0.875 0.774 -0.101 -0.964 -1.573 -0.608 1.314 1.411 0.097 0.209 0.295 0.087 -0.413 -0.120 0.293
3 Expanding VAR 1 Y Y Y N Y N N -0.048 0.199 0.247 0.726 0.628 -0.098 -0.800 -1.449 -0.648 1.053 1.219 0.166 0.231 0.313 0.082 -0.161 0.089 0.251
4 Expanding VAR 1 Y Y Y N N Y Y 0.077 0.308 0.231 0.849 0.746 -0.103 -0.859 -1.415 -0.556 1.126 1.208 0.082 0.228 0.310 0.082 -0.422 -0.157 0.265
5 Expanding VAR 1 Y Y Y N Y N Y -0.044 0.159 0.226 0.864 0.748 -0.120 -1.038 -1.596 -0.630 1.386 1.473 0.133 0.164 0.270 0.089 -0.332 -0.054 0.302
6 Expanding VAR 1 Y Y Y N N N N -0.044 0.253 0.285 0.766 0.650 -0.085 -0.812 -1.672 -0.683 1.032 1.405 0.148 0.288 0.350 0.082 -0.229 0.014 0.254
7 Expanding VAR 1 Y Y Y N Y Y Y -0.055 0.150 0.206 0.851 0.731 -0.119 -0.817 -1.395 -0.578 1.199 1.311 0.112 0.197 0.284 0.087 -0.374 -0.082 0.292
8 Expanding N. IID 0 - - - - - - - -2.195 -2.195 0.000 0.134 0.134 0.000 1.657 1.657 0.000 -0.446 -0.446 0.000 0.484 0.484 0.000 1.366 1.366 0.000
9 Expanding VAR 1 Y Y Y N N Y N -0.010 0.291 0.302 0.806 0.727 -0.080 -0.829 -1.516 -0.688 0.983 1.120 0.138 0.232 0.315 0.083 -0.182 0.063 0.246

10 Expanding VAR 1 Y Y Y N Y Y N -0.215 0.101 0.315 0.825 0.726 -0.099 -0.828 -1.556 -0.728 1.070 1.240 0.169 0.217 0.301 0.084 -0.071 0.188 0.259

1 Expanding AR 1 - - - - - - - 7.961 7.045 1.116 3.494 3.273 0.282 5.628 5.281 0.904 4.052 4.008 0.509 1.700 1.575 0.226 12.129 10.615 1.599
2 Expanding VAR 1 Y Y Y N N N Y 6.642 5.962 1.007 3.504 3.340 0.405 4.881 4.694 1.531 4.168 4.105 0.651 1.294 1.220 0.171 10.832 9.554 1.395
3 Expanding VAR 1 Y Y Y N Y N N 6.808 6.206 0.962 3.022 2.871 0.404 4.692 4.678 1.570 3.683 3.723 0.633 0.993 0.934 0.168 10.561 9.323 1.339
4 Expanding VAR 1 Y Y Y N N Y Y 6.558 5.904 1.003 3.645 3.447 0.388 4.849 4.628 1.418 4.215 4.158 0.608 1.460 1.358 0.189 10.981 9.710 1.420
5 Expanding VAR 1 Y Y Y N Y N Y 6.953 6.299 1.010 3.484 3.313 0.393 5.209 5.145 1.569 4.500 4.449 0.671 1.285 1.229 0.172 10.995 9.707 1.410
6 Expanding VAR 1 Y Y Y N N N N 6.384 5.778 0.943 3.027 2.899 0.416 4.514 4.758 1.531 3.479 4.197 0.620 0.976 0.935 0.166 10.307 9.092 1.314
7 Expanding VAR 1 Y Y Y N Y Y Y 7.136 6.472 1.031 3.651 3.452 0.379 5.231 5.076 1.483 4.565 4.490 0.640 1.477 1.374 0.198 11.374 10.080 1.448
8 Expanding N. IID 0 - - - - - - - 0.261 0.261 0.000 0.101 0.101 0.000 0.551 0.551 0.000 0.444 0.444 0.000 0.269 0.269 0.000 0.269 0.269 0.000
9 Expanding VAR 1 Y Y Y N N Y N 6.476 5.877 0.964 3.263 3.077 0.390 4.475 4.284 1.435 3.539 3.573 0.581 1.258 1.153 0.190 10.714 9.480 1.375

10 Expanding VAR 1 Y Y Y N Y Y N 7.144 6.505 1.048 3.256 3.075 0.377 4.704 4.599 1.477 3.725 3.755 0.600 1.296 1.176 0.205 11.123 9.863 1.404

1 Expanding AR 1 - - - - - - - 20.965 18.219 3.636 10.017 9.190 0.825 18.171 15.922 2.865 11.487 11.701 1.601 4.213 4.014 0.701 36.968 32.464 4.977
2 Expanding VAR 1 Y Y Y N N N Y 17.886 15.854 3.207 9.698 9.257 0.735 15.334 15.398 4.085 13.217 13.940 2.048 4.553 4.512 0.453 32.800 28.209 4.597
3 Expanding VAR 1 Y Y Y N Y N N 18.782 17.366 3.019 9.076 8.763 0.729 15.069 15.045 3.998 11.865 12.115 2.006 3.229 3.338 0.484 32.243 29.387 4.259
4 Expanding VAR 1 Y Y Y N N Y Y 17.931 16.938 3.432 11.029 10.727 0.723 15.029 14.428 3.849 11.960 13.165 1.858 4.553 4.640 0.481 31.637 26.869 4.704
5 Expanding VAR 1 Y Y Y N Y N Y 17.631 16.850 3.259 10.220 9.568 0.778 15.650 16.383 4.133 12.198 13.077 2.132 4.622 4.488 0.498 33.424 29.532 4.419
6 Expanding VAR 1 Y Y Y N N N N 17.706 15.704 2.850 8.862 8.457 0.709 14.830 14.647 3.982 11.084 13.452 1.909 3.269 3.279 0.488 29.970 26.686 4.360
7 Expanding VAR 1 Y Y Y N Y Y Y 16.546 15.769 3.510 11.027 10.832 0.798 15.505 15.915 3.923 12.529 12.586 1.964 4.914 4.863 0.511 31.816 27.317 4.791
8 Expanding N. IID 0 - - - - - - - 0.984 0.984 0.000 0.331 0.331 0.000 1.601 1.601 0.000 1.499 1.499 0.000 0.720 0.720 0.000 0.868 0.868 0.000
9 Expanding VAR 1 Y Y Y N N Y N 18.815 15.995 3.182 8.593 8.210 0.658 15.071 13.444 3.711 11.764 11.794 1.818 4.232 3.862 0.482 29.645 25.580 4.618

10 Expanding VAR 1 Y Y Y N Y Y N 18.585 16.811 3.595 9.298 8.742 0.734 15.313 15.030 3.663 11.762 11.953 1.810 4.457 4.199 0.521 29.451 25.904 4.937

FFP

Sample	mean	of	portofolio	weights

Sample	Standard	Deviation	of	Portofolio	Weights

Empirical	90%	Range

CER	
rank

Cash Stock US	Long‐Term	Treasuries US	Corporate REITsPredictors	included
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Table	9	

Summary	Statistics	for	Monthly	Realized,	Recursive	Optimal	Portfolio	Weights:	Asset	Menu	Including	HFRI	Relative	Value	(RVR)	(γ	=	5)	
The tables shows sample means, standard deviations, and the lower and upper bounds of the 90% sample range of the recursive portfolio weights 
computed from a range of VAR models for predictable risk premia and of constant investment opportunities (IID) models. The table presents 
statistics for 1-m T-bill weights, long-term (infinite horizon) weights, and for their differences, the hedging demands. 

 

Lags Term. Short DY SMB BMX HML Mom. T=1 Long Hedging T=1 Long Hedging T=1 Long Hedging T=1 Long Hedging T=1 Long Hedging T=1 Long Hedging

1 Expanding VAR 1 Y Y Y N Y Y Y -9.930 -7.403 2.527 -0.047 -0.086 -0.039 1.259 1.135 -0.123 -0.918 -1.181 -0.263 -0.191 -0.285 -0.095 10.826 8.821 -2.006
2 Expanding VAR 1 Y Y Y N N Y Y -10.013 -7.420 2.593 -0.073 -0.100 -0.026 1.270 1.129 -0.140 -1.033 -1.300 -0.267 -0.153 -0.255 -0.102 11.002 8.945 -2.057
3 Expanding VAR 1 Y Y Y N N Y N -9.701 -7.039 2.607 -0.141 -0.194 -0.054 0.958 0.692 -0.185 -0.640 -0.785 -0.212 -0.104 -0.187 -0.098 10.629 8.512 -2.059
4 Expanding VAR 1 Y Y Y N Y Y N -9.396 -6.892 2.505 -0.104 -0.149 -0.045 0.931 0.731 -0.200 -0.591 -0.792 -0.202 -0.141 -0.231 -0.090 10.300 8.332 -1.968
5 Expanding VAR 1 Y Y Y Y N Y Y -10.454 -7.838 2.560 -0.060 -0.114 -0.058 1.562 1.465 -0.019 -1.162 -1.386 -0.287 -0.159 -0.261 -0.112 11.274 9.134 -2.084
6 Expanding VAR 1 Y Y Y N N N Y -10.243 -7.626 2.617 -0.075 -0.113 -0.038 1.315 1.193 -0.123 -1.025 -1.319 -0.294 -0.188 -0.306 -0.118 11.216 9.171 -2.044
7 Expanding AR 1 - - - - - - - -9.379 -7.511 1.868 -0.775 -0.789 -0.014 1.766 1.913 0.146 -0.705 -1.108 -0.404 0.535 0.394 -0.140 9.557 8.101 -1.456
8 Expanding VAR 1 Y Y Y N N N N -9.742 -7.138 2.604 -0.142 -0.185 -0.043 1.005 0.795 -0.210 -0.686 -0.913 -0.227 -0.114 -0.234 -0.120 10.678 8.674 -2.004
9 Expanding VAR 1 Y Y Y Y Y Y Y -10.347 -7.860 2.487 -0.038 -0.092 -0.054 1.522 1.506 -0.016 -1.108 -1.395 -0.287 -0.180 -0.285 -0.105 11.151 9.126 -2.025

10 Expanding VAR 1 Y Y Y Y N N Y -10.257 -7.642 2.615 -0.033 -0.077 -0.045 1.416 1.285 -0.131 -1.070 -1.347 -0.278 -0.166 -0.292 -0.125 11.110 9.073 -2.037

1 Expanding VAR 1 Y Y Y N Y Y Y 13.283 10.972 2.591 2.484 2.455 0.383 5.044 5.340 0.850 3.802 3.936 0.731 1.509 1.486 0.153 16.671 14.440 2.506
2 Expanding VAR 1 Y Y Y N N Y Y 12.689 10.507 2.460 2.570 2.544 0.387 4.931 5.183 0.785 3.578 3.732 0.709 1.469 1.452 0.148 16.400 14.260 2.379
3 Expanding VAR 1 Y Y Y N N Y N 12.255 10.160 2.379 2.561 2.537 0.312 4.758 5.023 0.773 3.528 3.724 0.720 1.344 1.341 0.142 16.109 14.068 2.285
4 Expanding VAR 1 Y Y Y N Y Y N 13.192 10.844 2.609 2.499 2.504 0.397 4.972 5.233 0.873 3.790 3.890 0.735 1.351 1.337 0.145 16.519 14.296 2.504
5 Expanding VAR 1 Y Y Y Y N Y Y 12.242 10.269 2.299 2.609 2.532 0.293 4.546 4.731 0.488 3.215 3.410 0.682 1.659 1.649 0.155 16.505 14.514 2.184
6 Expanding VAR 1 Y Y Y N N N Y 12.581 10.494 2.353 2.302 2.238 0.316 4.776 4.941 0.760 3.442 3.616 0.698 1.180 1.178 0.156 16.557 14.483 2.285
7 Expanding AR 1 - - - - - - - 17.036 14.383 2.784 2.620 2.576 0.165 5.319 5.327 0.453 3.806 3.908 0.532 1.386 1.411 0.252 21.300 18.839 2.580
8 Expanding VAR 1 Y Y Y N N N N 12.502 10.374 2.369 2.257 2.227 0.314 4.584 4.754 0.795 3.393 3.564 0.714 0.916 0.936 0.146 16.451 14.397 2.274
9 Expanding VAR 1 Y Y Y Y Y Y Y 13.216 10.950 2.577 2.552 2.509 0.361 4.654 4.791 0.630 3.472 3.543 0.707 1.680 1.665 0.158 17.067 14.866 2.445

10 Expanding VAR 1 Y Y Y Y N N Y 12.383 10.284 2.348 2.555 2.468 0.319 4.729 4.899 0.754 3.316 3.485 0.713 1.184 1.181 0.159 16.557 14.494 2.273

1 Expanding VAR 1 Y Y Y N Y Y Y 40.515 32.899 8.302 7.680 7.637 0.900 17.942 18.481 1.800 11.325 11.927 2.089 5.618 5.582 0.468 49.491 41.815 7.551
2 Expanding VAR 1 Y Y Y N N Y Y 40.358 33.375 7.269 7.284 7.619 0.934 16.383 17.679 1.792 11.298 11.912 2.056 5.128 5.200 0.496 49.181 41.915 6.862
3 Expanding VAR 1 Y Y Y N N Y N 37.196 29.756 6.988 8.310 8.309 0.802 16.350 17.070 1.817 11.756 12.009 2.062 5.028 4.718 0.488 47.402 40.391 6.695
4 Expanding VAR 1 Y Y Y N Y Y N 39.316 32.239 8.268 8.472 8.547 0.785 17.352 17.606 1.833 11.202 11.219 2.065 4.903 4.736 0.467 49.320 40.005 7.521
5 Expanding VAR 1 Y Y Y Y N Y Y 38.301 29.815 6.669 7.580 7.538 0.976 15.942 16.160 1.536 9.855 11.021 2.068 6.218 5.917 0.487 47.255 41.959 6.173
6 Expanding VAR 1 Y Y Y N N N Y 37.743 30.386 6.872 6.416 6.239 0.838 16.365 17.878 1.764 11.042 11.405 2.041 4.035 4.225 0.453 47.976 42.185 6.745
7 Expanding AR 1 - - - - - - - 39.572 33.330 6.338 6.579 6.457 0.508 17.113 16.915 1.272 11.562 11.232 1.367 3.253 3.689 0.779 45.579 39.520 5.978
8 Expanding VAR 1 Y Y Y N N N N 37.064 29.472 7.231 6.879 6.864 0.774 14.894 16.917 1.861 10.820 10.823 2.083 3.018 3.153 0.457 47.808 40.738 6.767
9 Expanding VAR 1 Y Y Y Y Y Y Y 39.495 32.353 7.077 7.697 7.853 0.959 15.393 15.596 1.728 10.446 10.817 2.040 6.674 6.625 0.466 49.803 44.022 6.727

10 Expanding VAR 1 Y Y Y Y N N Y 38.078 29.752 7.033 6.856 7.052 0.864 16.424 16.663 1.700 10.088 10.747 2.093 4.215 4.302 0.481 47.473 42.115 6.441

RVR

Sample	mean	of	portofolio	weights

Sample	Standard	Deviation	of	Portofolio	Weights

Empirical	90%	Range

CER	
rank

Cash Stock US	Long‐Term	Treasuries US	Corporate REITsPredictors	included
Model
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Table	10	

Top	10	Models	Ranked	According	to	Realized	CER:	HFRI	Fund	Weighted	Composite	Index	(FWC)	(γ	=	5)	
The tables shows annualized sample means, standard deviations, the Sharpe ratio, and the Certainty Equivalent Return computed from the 
recursive portfolio weights under the ten top performing (in terms of CER) models for (predictable) risk premia, as defined by the VAR order 
(where a VAR(0) is equivalent to IID, constant investment opportunities), the selection of predictors, and whether the models are estimated either 
on an expanding or on a rolling 10-year window of data. The calculations are performed assuming the investor assess realized performance with a 
5-year horizon (H = 60 months). In the table, we have boldfaced all performance statistics that turn out to be superior to those recorded in Table 5 
for the baseline asset menu that excludes the hedge fund strategies. 

 

 

Term. Short DY SMB BMX Mom PtfsCM
Mean	
returns

90%	Conf.	
Int.	‐	LB

90%	Conf.	
Int.	‐	UB

Vol.
90%	Conf.	
Int.	‐	LB

90%	Conf.	
Int.	‐	UB

Sharpe	
ratio

90%	Conf.	
Int.	‐	LB

90%	Conf.	
Int.	‐	UB

CER	(%	
Ann.)

90%	Conf.	
Int.	‐	LB

90%	Conf.	
Int.	‐	UB

1 Expanding AR 1 - - - - - - - 60 8.482 -1.883 17.945 164.745 79.579 206.265 0.035 -0.008 0.193 19.887 18.700 24.635 0.800 2.874

2 Expanding VAR 1 Y Y Y N N N N 60 26.083 21.998 29.327 38.792 27.272 43.558 0.604 0.577 0.691 15.477 13.467 17.856 0.248 1.860

3 Expanding VAR 1 Y Y Y N N Y Y 60 24.764 20.882 29.403 45.519 28.578 53.955 0.486 0.505 0.626 13.871 12.511 16.792 0.899 2.618

4 Expanding VAR 1 Y Y Y N N N Y 60 22.876 19.225 26.130 32.409 25.487 35.490 0.624 0.618 0.646 13.403 11.321 16.631 0.160 1.622

5 Expanding VAR 1 Y Y Y N Y N Y 60 19.262 15.825 22.694 28.687 21.880 32.520 0.579 0.561 0.619 10.156 7.994 14.048 0.111 1.806

6 Expanding VAR 1 Y Y Y N Y N N 60 15.378 10.377 18.540 26.510 17.788 29.916 0.481 0.462 0.531 6.464 4.173 9.461 0.178 1.749

7 Expanding IID 0 - - - - - - - 60 9.368 5.561 11.079 10.973 6.908 11.892 0.613 0.689 0.798 5.438 3.422 7.300 ‐0.162 1.902

8 Expanding VAR 1 Y Y Y N N Y N 60 14.144 6.944 19.817 36.029 19.553 42.640 0.319 0.304 0.398 1.672 -0.863 6.920 0.558 1.968

9 Expanding VAR 1 Y Y Y N Y Y Y 60 8.507 3.188 11.790 21.183 14.936 24.700 0.277 0.182 0.409 0.484 -1.915 4.316 0.551 2.730

10 Expanding VAR 1 Y Y Y N Y Y N 60 2.391 -4.333 5.409 18.943 12.604 19.746 -0.013 -0.295 0.234 -6.944 -9.312 -1.874 0.640 2.492

11 Expanding VAR 1 Y Y Y Y N Y Y 60 5.985 -11.973 16.734 56.761 4.802 73.304 0.059 -0.161 0.196 -10.710 -12.267 -8.558 1.949 4.145

12 Expanding VAR 1 Y Y Y Y N Y N 60 -1.386 -10.854 4.888 24.406 8.298 31.238 -0.165 -0.261 0.134 -12.357 -14.410 -7.694 1.578 3.554

13 Expanding VAR 1 Y Y Y Y Y N N 60 -1.704 -15.067 5.988 31.204 4.583 38.743 -0.139 -0.407 0.132 -13.906 -15.777 -10.375 1.742 3.467

14 Expanding VAR 1 Y Y Y Y N N N 60 -1.361 -14.981 6.356 31.949 5.092 39.753 -0.125 -0.365 0.137 -13.970 -15.859 -10.442 1.722 3.413

15 Expanding VAR 1 Y Y Y Y N N Y 60 -2.591 -16.425 5.560 30.102 4.796 38.348 -0.174 -0.450 0.124 -15.264 -17.155 -11.765 1.792 3.633

16 Expanding VAR 1 Y Y Y Y Y N Y 60 -5.054 -19.916 3.198 27.863 3.376 34.868 -0.276 -0.754 0.078 -17.514 -19.293 -14.160 1.793 3.578

17 Expanding VAR 1 Y Y Y Y Y Y Y 60 -8.178 -24.586 -0.009 25.406 2.479 32.123 -0.426 -1.234 -0.001 -21.355 -23.061 -18.090 2.220 5.602

18 Expanding VAR 1 Y Y Y Y Y Y N 60 -16.895 -30.547 -11.501 14.492 1.855 18.457 -1.348 -2.626 -0.535 -27.444 -29.049 -22.440 2.758 7.814

60 5.985 ‐4.333 6.356 30.102 12.604 35.490 0.111 ‐0.295 0.196 -6.944 -9.312 -1.874 0.459 3.255

Kurtosis

Median Expanding VAR performance

CER	
rank

Model Lags H Skewness

Predictors	included Annualized	mean Annualized	volatility Sharpe	ratio Annualized	CER
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Table	11	

Top	10	Models	Ranked	According	to	Realized	CER:	HFRI	Fund	of	Funds	Composite	(FFP)	(γ	=	5)	
The tables shows annualized sample means, standard deviations, the Sharpe ratio, and the Certainty Equivalent Return computed from the 
recursive portfolio weights under the ten top performing (in terms of CER) models for (predictable) risk premia, as defined by the VAR order 
(where a VAR(0) is equivalent to IID, constant investment opportunities), the selection of predictors, and whether the models are estimated either 
on an expanding or on a rolling 10-year window of data. The calculations are performed assuming the investor assess realized performance with a 
5-year horizon (H = 60 months). In the table, we have boldfaced all performance statistics that turn out to be superior to those recorded in Table 5 
for the baseline asset menu that excludes the hedge fund strategies. 

 

 

Skewness Kurtosis

Term. Short DY SMB BMX Mom PtfsCM
Mean	
returns

90%	Conf.	
Int.	‐	LB

90%	Conf.	
Int.	‐	UB

Vol
90%	Conf.	
Int.	‐	LB

90%	Conf.	
Int.	‐	UB

Sharpe	
ratio

90%	Conf.	
Int.	‐	LB

90%	Conf.	
Int.	‐	UB

CER	(%	
Ann.)

90%	Conf.	
Int.	‐	LB

90%	Conf.	
Int.	‐	UB

1 Expanding AR 1 - - - - - - - 60 10.362 24.138 -4.095 227.179 124.373 264.820 0.046 -0.016 0.194 9.228 7.276 22.085 ‐0.376 2.400
2 Expanding VAR 1 Y Y Y N N N Y 60 19.171 9.588 26.066 62.416 23.897 74.639 0.307 0.349 0.401 4.899 1.003 11.160 0.734 2.148
3 Expanding VAR 1 Y Y Y N Y N N 60 17.642 11.366 21.369 38.580 25.730 47.703 0.457 0.441 0.448 4.094 -0.559 15.191 ‐0.310 2.042
4 Expanding VAR 1 Y Y Y N N Y Y 60 18.018 8.969 25.682 60.911 25.889 75.587 0.296 0.340 0.346 2.943 -1.127 10.797 0.794 2.319
5 Expanding VAR 1 Y Y Y N Y N Y 60 16.279 9.121 22.144 47.113 25.797 59.159 0.345 0.353 0.374 2.722 -1.541 11.824 0.528 2.181
6 Expanding VAR 1 Y Y Y N N N N 60 16.092 9.515 20.303 37.381 26.014 44.461 0.430 0.365 0.456 1.565 -3.051 13.335 ‐0.340 1.855
7 Expanding VAR 1 Y Y Y N Y Y Y 60 14.173 5.069 21.462 51.892 19.274 64.787 0.273 0.262 0.331 -0.107 -4.106 7.339 0.839 2.370
8 Expanding IID 0 - - - - - - - 60 2.362 -2.652 3.919 19.852 2.761 20.666 0.118 -0.966 0.189 -1.114 -2.958 -0.234 1.621 4.030
9 Expanding VAR 1 Y Y Y N N Y N 60 12.994 5.695 18.225 38.224 25.974 45.548 0.340 0.219 0.400 -5.537 -9.765 9.479 ‐0.176 1.938
10 Expanding VAR 1 Y Y Y N Y Y N 60 13.269 6.029 19.049 40.255 27.532 48.281 0.329 0.218 0.394 -6.229 -10.452 8.930 ‐0.139 1.941
11 Expanding VAR 1 Y Y Y Y Y N Y 60 9.145 -1.716 17.230 48.402 14.962 57.404 0.189 -0.116 0.300 -8.833 -12.754 -0.190 0.803 2.097
12 Expanding VAR 1 Y Y Y Y Y N N 60 7.294 0.011 12.205 30.824 20.278 38.056 0.236 0.000 0.320 -9.781 -13.910 2.688 0.099 2.045
13 Expanding VAR 1 Y Y Y Y Y Y Y 60 11.474 -3.860 22.312 69.910 11.873 82.108 0.164 -0.326 0.272 -9.927 -13.336 -2.790 1.013 2.293
14 Expanding VAR 1 Y Y Y Y N N Y 60 8.653 -5.355 17.594 55.815 12.205 65.607 0.155 -0.440 0.268 -11.340 -14.870 -4.845 0.931 2.315
15 Expanding VAR 1 Y Y Y Y N N N 60 5.495 -3.179 11.110 32.475 17.841 39.629 0.169 -0.179 0.280 -12.820 -16.837 -1.260 0.422 2.217
16 Expanding VAR 1 Y Y Y Y N Y Y 60 6.956 -9.463 17.499 59.208 9.802 70.061 0.117 -0.967 0.250 -16.325 -19.754 -9.153 0.993 2.327
17 Expanding VAR 1 Y Y Y Y Y Y N 60 3.831 -3.119 8.893 26.699 17.981 33.110 0.143 -0.174 0.268 -16.963 -20.798 -1.488 ‐0.180 2.039
18 Expanding VAR 1 Y Y Y Y N Y N 60 2.087 -5.722 7.694 27.095 17.843 33.966 0.076 -0.321 0.226 -18.912 -22.696 -4.930 0.198 2.272

60 11.474 5.069 18.225 47.113 20.278 57.404 0.236 0.000 0.320 ‐6.229 ‐10.452 7.339 0.422 2.181

CER	
rank

Model Lags H

Median Expanding VAR performance

Predictors	included Annualized	mean Annualized	volatility Sharpe	ratio Annualized	CER
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Table	12	

Top	10	Models	Ranked	According	to	Realized	CER:	HFRI	Fixed	Income	Relative	Value/Arbitrage	(RVR)	(γ	=	5)	
The tables shows annualized sample means, standard deviations, the Sharpe ratio, and the Certainty Equivalent Return computed from the 
recursive portfolio weights under the ten top performing (in terms of CER) models for (predictable) risk premia, as defined by the VAR order 
(where a VAR(0) is equivalent to IID, constant investment opportunities), the selection of predictors, and whether the models are estimated either 
on an expanding or on a rolling 10-year window of data. The calculations are performed assuming the investor assess realized performance with a 
5-year horizon (H = 60 months). In the table, we have boldfaced all performance statistics that turn out to be superior to those recorded in Table 5 
for the baseline asset menu that excludes the hedge fund strategies. 

 

 

Term Short DY SMB BMX HML Mom
Mean	
returns

90%	Conf.	
Int.	‐	LB

90%	Conf.	
Int.	‐	UB

Vol
90%	Conf.	
Int.	‐	LB

90%	Conf.	
Int.	‐	UB

Sharpe	
ratio

90%	Conf.	
Int.	‐	LB

90%	Conf.	
Int.	‐	UB

CER	(%	
Ann.)

90%	Conf.	
Int.	‐	LB

90%	Conf.	
Int.	‐	UB

1 Expanding VAR 1 Y Y Y N Y Y Y 60 24.288 22.394 26.913 95.354 69.090 111.942 0.227 0.175 0.238 32.380 30.881 37.571 0.357 1.858
2 Expanding VAR 1 Y Y Y N N Y Y 60 20.900 19.398 22.477 47.130 35.824 62.543 0.387 0.261 0.414 28.902 26.241 33.586 0.119 2.637
3 Expanding VAR 1 Y Y Y N N Y N 60 20.641 18.184 23.149 68.101 44.919 86.684 0.264 0.194 0.270 27.001 24.824 30.947 0.604 2.258
4 Expanding VAR 1 Y Y Y N Y Y N 60 19.195 16.160 21.997 68.520 42.094 85.244 0.242 0.188 0.256 22.944 20.802 27.080 0.505 1.855
5 Expanding VAR 1 Y Y Y Y N Y Y 60 17.528 15.841 19.133 35.661 26.682 47.311 0.417 0.294 0.439 22.933 20.369 27.556 0.117 2.266
6 Expanding VAR 1 Y Y Y N N N Y 60 17.486 15.239 18.783 43.036 23.381 55.001 0.345 0.248 0.434 21.250 18.556 27.224 0.667 3.327
7 Expanding AR 1 - - - - - - - 60 6.860 11.558 1.124 109.180 55.277 142.255 0.039 0.006 0.139 19.978 17.620 24.380 0.512 3.009
8 Expanding VAR 1 Y Y Y N N N N 60 16.452 13.776 18.233 39.415 25.347 52.707 0.350 0.252 0.362 18.754 16.105 24.735 0.228 2.216
9 Expanding VAR 1 Y Y Y Y Y Y Y 60 15.289 13.641 16.489 25.117 16.699 34.137 0.504 0.351 0.544 18.160 15.517 24.767 ‐0.590 2.695
10 Expanding VAR 1 Y Y Y Y N N Y 60 15.523 13.254 16.643 32.371 20.447 40.717 0.398 0.297 0.432 17.679 15.013 24.289 0.209 2.634
11 Expanding VAR 1 Y Y Y Y N N N 60 14.940 12.437 16.373 30.427 22.178 39.089 0.404 0.305 0.435 16.672 14.112 22.212 ‐0.122 2.110
12 Expanding VAR 1 Y Y Y N Y N N 60 15.236 12.785 17.046 33.468 22.891 44.650 0.376 0.278 0.380 16.504 13.862 23.054 0.149 2.276
13 Expanding VAR 1 Y Y Y N Y N Y 60 14.665 12.458 15.772 30.140 16.380 38.728 0.399 0.296 0.507 15.899 13.279 22.903 0.421 3.187
14 Expanding VAR 1 Y Y Y Y Y N N 60 14.179 11.651 15.623 27.895 20.075 35.801 0.414 0.317 0.441 14.865 12.320 20.903 ‐0.235 2.034
15 Expanding VAR 1 Y Y Y Y Y N Y 60 13.961 11.386 15.076 34.471 14.287 43.830 0.328 0.250 0.531 14.327 11.758 21.058 1.185 4.232
16 Expanding VAR 1 Y Y Y Y N Y N 60 12.633 10.335 13.910 21.420 14.515 27.523 0.467 0.367 0.475 13.828 11.415 19.279 ‐0.238 1.895
17 Expanding VAR 1 Y Y Y Y Y Y N 60 12.898 10.555 14.424 23.495 16.358 30.987 0.437 0.338 0.443 13.354 10.871 19.461 ‐0.098 2.089
18 Expanding IID 0 - - - - - - - 60 8.045 3.598 9.960 30.959 3.216 39.788 0.175 0.167 0.745 4.640 4.488 6.450 1.556 3.755

60 15.289 13.254 16.643 34.471 22.891 44.650 0.367 0.278 0.387 18.160 15.517 24.380 0.209 2.266

Kurtosis

Median Expanding VAR performance

CER	
rank

Model Lags H Skewness

Predictors	included Annualized	mean Annualized	volatility Sharpe	ratio Annualized	CER
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Figure	1	

Recursive	Optimal	Portfolio	Weights:	Baseline	Asset	Menu	(γ	=	5)	
The plots refer to an Expanding VAR(1) model with the term spread, the short-term nominal rate, and 
the dividend yield included as predictors. The Gaussian IID myopic demand is also plotted as a 
benchmark. 
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Figure	2	

Recursive	Optimal	Portfolio	Weights:	HFRI	Fund	Weighted	Composite	Index	(FWC)	(γ	=	5)	

The plots refer to an expanding autoregressive model with only lagged asset returns. The Gaussian IID 
myopic demand is also plotted as a benchmark. 
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Figure	3	

Realized,	Recursive	Optimal	Portfolio	Weights:	HFRI	Fund	of	Funds	Composite	(FFP)	(γ	=	5)	

The plots refers to an expanding autoregressive model with only lagged asset returns. The Gaussian IID 
myopic demand is also plotted as a benchmark. 
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Figure	4	

Comparisons	of	Realized	Performance	Indicators	for	the	Top	Models	

The plots represent the mean (as a solid horizontal line), median (as a cross), and realized 90% range 
(as a bin) of OOS performance measures obtained with references to a recursive portfolio exercises for 
the sample 2004:01 – 2014:12. Each measure refers to either a benchmark asset menu that excludes HF 
strategies or to extended menus that include either a composite value-weighted index of all HF 
strategies or to one strategy at the time. In the case of skewness and kurtosis, we report 90% confidence 
intervals based on a delta-method approximation of their standard error. 
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Figure	5	

Comparisons	of	Realized	Performance	Indicators	for	the	Median	Expanding	VAR	Models	

The plots represent the mean (as a solid horizontal line), median (as a cross), and realized 90% range 
(as a bin) of OOS performance measures obtained with references to a recursive, portfolio exercises for 
the sample 2004:01 – 2014:12. Each measure refers to either a benchmark asset menu that excludes HF 
strategies or to extended menus that include either a composite value-weighted index of all HF 
strategies or to one strategy at the time. In the case of skewness and kurtosis, we report 90% confidence 
intervals based on a delta-method approximation of their standard error. 

  

 

 


